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ABSTRACT

Thermal processes on the Tibetan Plateau (TP) influence atmospheric conditions on regional and global scales. Given
this, previous work has shown that soil moisture—driven surface flux variations feed back onto the atmosphere. Whilst soil
moisture is a source of atmospheric predictability, no study has evaluated soil moisture—atmosphere coupling on the TP in
general circulation models (GCMs). In this study, we use several analysis techniques to assess soil moisture—atmosphere
coupling in CMIP6 simulations including: instantaneous coupling indices; analysis of flux and atmospheric behaviour
during dry spells; and a quantification of the preference for convection over drier soils. Through these metrics we partition
feedbacks into their atmospheric and terrestrial components.

Consistent with previous global studies, we conclude substantial inter-model differences in the representation of soil
moisture—atmosphere coupling, and that most models underestimate such feedbacks. Focusing on dry spell analysis, most
models underestimate increased sensible heat during periods of rainfall deficiency. For example, the model-mean bias in
anomalous sensible heat flux is 10 W m=2 (/=25%) smaller compared to observations. Deficient dry-spell sensible heat
fluxes lead to a weaker atmospheric response. We also find that most GCMs fail to capture the negative feedback between
soil moisture and deep convection. The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models
also struggle to exploit soil moisture—driven predictability. To improve the representation of land—atmosphere feedbacks
requires developments in not only atmospheric modelling, but also surface processes, as we find weak relationships
between rainfall biases and coupling indexes.
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Article Highlights:

¢ Substantial inter-model differences in the representation of soil moisture—atmosphere feedbacks on the Tibetan Plateau.
¢ All models underestimate surface flux-atmospheric coupling during three-day dry spells.
¢ CMIP6 models are typically in contrast with observations and tend to favour deep convection over locally wetter soils.
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of the atmospheric circulation (Duan and Wu, 2005; Jiang
et al., 2008), whilst glacial melt from the plateau is a key
source of several major Asian rivers (Immerzeel et al.,
2010). Typical of a semi-arid environment, the partitioning
of surface turbulent fluxes across the TP is partly controlled
by soil moisture variability (Fan et al., 2019; Cui et al.,
2020; Talib et al., 2021). For example, evaporative fraction
decreases when soils are anomalously dry. Soil
moisture—driven variations in surface turbulent fluxes not
only influence low-level atmospheric humidity, but also
partly control boundary-layer temperatures (Fan et al.,
2019; Talib et al., 2021), the formation of deep convection
(Barton et al., 2021; Zhao et al., 2022), and the regional atmo-
spheric circulation (Chow et al., 2008; Wan et al., 2017,
Talib et al., 2021). Across the TP and in other semi-arid
regions, the atmospheric response to soil moisture variability
is a crucial source of atmospheric predictability (Koster et
al., 2010; Dirmeyer et al., 2018b). However, evaluations of
the representation of soil moisture—atmosphere feedbacks in
general circulation models (GCMs) are fairly limited, espe-
cially those focusing on processes across the TP. In this
study, we assess to what extent the latest state-of-the-art
GCMs from CMIP6 correctly represent soil moisture—atmo-
sphere feedbacks across the TP.

Evaluating the representation of soil moisture—atmo-
sphere feedbacks requires a consideration of two processes:
(1) the surface flux response to soil moisture fluctuations (ter-
restrial); and (2) the sensitivity of atmospheric conditions to
surface flux variations (atmospheric). Focusing on the terres-
trial component, most models agree on the location of semi-
arid regions where surface fluxes strongly respond to soil
moisture variations (Koster et al., 2006; Dirmeyer, 2011;
Schwingshackl et al., 2017). However, a positive evapotran-
spiration bias in GCMs (Mueller and Seneviratne, 2014)
leads to an amplification of terrestrial coupling (Dirmeyer et
al., 2018a). As well as this, the magnitude of terrestrial cou-
pling substantially varies amongst models (Dirmeyer, 2011;
Schwingshackl et al., 2017; Gallego-Elvira et al., 2019).
These differences still remain when driving surface models
with identical atmospheric forcing, indicating that differences
in simulated terrestrial coupling is partly driven by the repre-
sentation of surface characteristics and evaporative dynamics
(Gevaert et al., 2018).

Alongside evaluating the terrestrial component of soil
moisture—atmosphere feedbacks, studies have also assessed
surface flux—atmospheric coupling. Given that the majority
of GCMs overestimate soil moisture—driven surface flux vari-
ations (Dirmeyer et al., 2018a; Gallego-Elvira et al., 2019),
it is unsurprising that most models amplify the occurrence
and persistence of high temperatures associated with negative
evapotranspiration anomalies (Ukkola et al., 2016). With
regards to the influence of soil moisture on precipitation char-
acteristics, the differing impacts of surface moisture on
local atmospheric conditions makes it challenging to simulate
the correct feedback. For example, when the surface is dry
and moisture sourced from the surface decreases, low-level
temperature and instability increase. The fine interplay
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between decreased moisture and increased instability can trig-
ger and suppress local precipitation depending on the prevail-
ing conditions. In general, GCMs tend to agree that rainfall
is influenced by soil moisture across semi-arid regions
(Koster et al., 2004; Dirmeyer et al., 2006; Miiller et al.,
2021b). However, the sign and magnitude of simulated soil
moisture-precipitation feedbacks is sensitive to the representa-
tion of convection, horizontal resolution and choice of circula-
tion model (Hohenegger et al., 2009; Taylor et al., 2013).
GCMs with a horizontal resolution typical of an Earth system
model (ESM; 100 to 250 km) commonly simulate a positive
feedback. Meanwhile, a negative feedback is favoured when
increasing horizontal resolution and using an explicitrepresen-
tation of convection, which is more consistent with observa-
tions (Taylor et al., 2012; Guillod et al., 2015; Barton et al.,
2021).

The favouring of sensible heat over evapotranspiration
across semi-arid regions of the TP when soils are dry (Guo
etal., 2017; Cui et al., 2020) leads to a deepening of the plane-
tary boundary layer and the development of a heat low circula-
tion (Wan et al., 2017; Talib et al., 2021). Not only does this
surface-driven heat low circulation affect local atmospheric
conditions, but circulation characteristics beyond the TP are
influenced by the development of an upper-level Rossby
wave. In addition to controlling regional-scale circulation
characteristics, Barton et al. (2021) show that soil
moisture—driven surface flux variations partly control the initi-
ation of deep convection on the TP. Deep convection is
favoured over dry soils, close to wet-dry boundaries, due to
the development of daytime mesoscale circulations induced
by differential heating across surface soil moisture gradients
(Pielke Sr, 2001). For the TP specifically, the sensitivity of
deep convection to soil moisture gradients decreases with
increased local topographic complexity (Barton et al., 2021),
as orographic lifting can trigger deep convection irrespective
of the surface state (Imamovic et al., 2017). Whilst previous
studies have highlighted that soil moisture on the TP is a
key source of atmospheric predictability (Wang et al., 2008;
Talib et al., 2021; Barton et al., 2021), an evaluation of simu-
lated soil moisture—atmosphere coupling remains to be per-
formed.

To investigate the impact of anthropogenic climate
change on environmental processes across the TP, a large
number of studies use GCMs that simulate historical and
future climates under various emission scenarios (i.e.
Immerzeel et al., 2010). Whilst climate models have signifi-
cantly developed over the past few decades, errors still exist
partly due to our current level of understanding of the complex
climate system. CMIP6 is the latest release of state-of-the-
art simulations from different institutions around the world
(Eyring et al., 2016). Most CMIP6 simulations have a cold
near-surface temperature bias and overestimate total precipita-
tion accumulations across the TP (Zhu and Yang, 2020).
Given the sensitivity of atmospheric conditions to soil mois-
ture on the TP (Wang et al., 2008; Talib et al., 2021; Barton
et al, 2021), we assess the representation of soil
moisture—atmosphere feedbacks in CMIP6 simulations. In
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the subsequent section we discuss model data (section 2.1),
observations (section 2.2) and analysis techniques used in
this work (section 2.3). In section 3, we then document inter-
model differences in previously-used soil moisture—atmo-
sphere coupling metrics. Following this, in section 4, we
assess land—atmosphere feedbacks using observational met-
rics specifically designed for the TP. This section is parti-
tioned into two components including an evaluation of surface
fluxes and atmospheric conditions during three-day dry
spells (section 4.1), and an assessment of the sensitivity of
deep convection to anomalous soil moisture (section 4.2).
Finally, section 5 closes the paper with a discussion and con-
clusions.

2. Methodology

2.1. Model data

In this study, we examine soil moisture—atmosphere feed-
backs in 18 historical CMIP6 simulations (Eyring et al.,
2016). Table 1. summarises the details of each simulation,
including atmospheric resolution and land surface model.
CMIP6 experiments were selected based on the availability
of sub-daily data of precipitation, surface-layer soil moisture
and surface energy balance components. The CMIP6 model
outputs used in this study are resolved at two temporal resolu-
tions: precipitation, convective precipitation and surface
fluxes are outputted as three-hourly means; whilst surface-
layer soil moisture and surface air pressure are diagnosed

Table 1.
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instantaneously every three hours. Unless stated, we only anal-
yse model outputs from a single ensemble member
(rlilp1fl or lowest available), between years 1980 to 2014,
and during boreal summer months (June to August; JJA).

2.2. Observations

Building on the analysis performed by Talib et al.
(2021), in section 4.1 we assess the behaviour of simulated
surface fluxes during dry spells. To evaluate the simulated sur-
face energy balance, we approximate real world radiative
and turbulent fluxes through amalgamating weather station
measurements and satellite-based observations. Here we pro-
vide a brief overview of our methodology to derive surface
energy balance components, however more detail can be
found in Talib et al. (2021).

Six-hourly data from 49 weather stations above 3000 m
from the China Meteorological Administration (CMA), loca-
tions later shown in Fig. 2u, is used to approximate surface
sensible heat flux (SHF, W m~2) and upward longwave radia-
tion (LW,,,, W m2). Using measurements of surface tempera-
ture (7, K), near-surface air temperature (7,, K) and 10 m
wind speed (vigm, m s71), we estimate the surface SHF using
a bulk formula:

SHF = pC,Cpuviom(Ts —Ta) , (1

where C, is the specific heat capacity of dry air at constant
pressure (1005 J kg! K-1); p is density (kg m=3) and
decreases exponentially with height; and Cpy is the drag coef-
ficient for heat [assumed to be 4.0 x 103 for all stations fol-

CMIP6 models used in this study. Third and fourth columns show the horizontal and vertical resolution of the model's

atmospheric component. We follow the typical convention of the modelling institution in stating the model resolution. “T” and “TL”
denote spectral models with a triangular truncation with an “L” signifying models with a linear Gaussian grid. “C” refers to a cubed-
sphere finite volume model, whilst an “N” prefix is used before stating the total number of two-gridpoint zonal waves that can be
represented. Following the grid specification, the dimensions of the model output on a Gaussian longitude/latitude grid is given alongside

the stated nominal resolution from Taylor et al. (2017).

Model name Institution Horizontal resolution Vertical resolution Land surface model
ACCESS-CM2 CSIRO-ARCCSS N96; 192 x 144; 250 km 85 levels to 85 km CABLE 2.5
ACCESS-ESM1-5 CSIRO NO96; 192 x 144; 250 km 85 levels to 85 km CABLE 2.4 with
biogeochemistry
BCC-CSM2-MR BCC T206; 320 x 160; 100 km 46 levels to 1.46 hPa BCC-AVIM2
CNRM-CM6-1 CNRM-CERFACS T127; 384 x 192; 150 km 91 levels to 0.01 hPa ISBA-CTRIP
CNRM-ESM2-1 CNRM-CERFACS T127; 384 x 192; 150 km 91 levels to 0.01 hPa Surfex 8.0c
EC-Earth3-Veg EC-Earth consortium TL255; 512 x 256; 100 km 91 levels to 0.01 hPa HTESSEL
GFDL-CM4 NOAA-GFDL C96; 360 x 180; 100 km 33 levels to 1 hPa GFDL-LM 4.0.1
GISS-E2-1-G NASA-GISS C48; 144 x 90; 250 km 40 levels to 0.1 hPa GISS LSM
HadGEM3-GC31-LL MOHC N96; 192 x 144; 250 km 85 levels to 85 km JULES-HadGEM3-GL7.1
HadGEM3-GC31-MM MOHC N216; 432 x 324; 100 km 85 levels to 85 km JULES-HadGEM3-GL7.1
HadGEM3-GC31-HM MOHC N512; 1024 x 768; 50 km 85 levels to 85 km JULES-HadGEM3-GL7.1
IPSL-CM6A-LR IPSL N96; 192 x 144; 250 km 79 levels to 40 km ORCHIDEE
KACE-1-0-G NIMS-KMA N96; 192 x 144; 250 km 85 levels to 85 km JULES-HadGEM3-GL7.1
MIROC6 MIROC T85; 256 x 128; 250 km 81 levels to 0.004 hPa MATSIRO6.0
MPI-ESM1-2-HAM HAMMOZ consortium  T63; 192 x 96; 250 km 95 levels to 0.01 hPa JSBACH 3.20
MPI-ESM1-2-HR MPI-M T127; 384 x 192; 100 km 95 levels to 0.01 hPa JSBACH 3.20
MPI-ESM1-2-LR MPI-M T63; 192 x 96; 250 km 47 levels to 0.01 hPa JSBACH 3.20
SAMO-UNICON SNU C96; 288 x 192; 100 km 30 levels to ~ 2 hPa CLM 4.0
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lowing Duan and Wu (2008)]. We compute the outgoing sur-
face LW, using the Stefan-Boltzmann equation:

LW, = eo T, )

where € is the surface emissivity (assumed here to be fixed
at 0.95) and o is the Stefan-Boltzmann constant (5.67 x
108 W m~2 K—*). We then combine computed surface SHF
(Egn. 1) and LW, (Eqn. 2) with radiative surface fluxes
derived from the Clouds and the Earth's Radiant Energy Sys-
tem (CERES; Loeb et al., 2003) to partition the surface
energy balance. Radiative surface fluxes are outputted on a
1° latitude x 1° longitude grid. For each station, fluxes are
selected from the nearest CERES grid point. The following
equation is formulated after partitioning the surface energy
balance into land surface forcings (left hand side) and surface
fluxes that depend on land surface characteristics (right
hand side):

SWiet + LWyown = LW, + SHF+LHF+G,  (3)

where SW ., denotes the net-downward shortwave radiation
(W m~2); LWy,wn denotes the downward longwave radiation
(W m~2); LHF denotes the surface latent heat flux (W m=2);
and G denotes the ground heat flux (W m=2). To minimise
errors associated with the spatial misalignment between in
situ observations and gridded satellite products, we only anal-
yse station-mean anomalies relative to monthly climatolo-
gies. If we assume that surface albedo changes are minimal,
only components on the right-hand side of (Eq. 3) depend
on changes in surface characteristics. Upon subtracting SHF
and LW, from surface radiation (SWnet + LWdown), the
remainder is assumed to be a combination of LHF and G.
Approximated observed surface fluxes are calculated
instantaneously every six hours, whilst simulated fluxes are
outputted as three-hourly means (i.e. 0900-1200,
1200-1500 UTC etc.; section 2.1). To enable a suitable com-
parison between observed and simulated surface fluxes dur-
ing dry spells, we perform a temporal cubic interpolation of
simulated surface fluxes. To do so we assume, for example,
that the three-hourly mean between 0600 and 0900 UTC is
an approximation of the instantaneous value at 0730 UTC.
To then estimate the value at 0600 UTC, we perform a
cubic interpolation of three-hourly mean surface fluxes cen-
tered at 0430 and 0730 UTC. With regards to referencing
the local time of day, we conclude it is inappropriate to use
Beijing time (BT) as a reference for local solar conditions
on the TP as it covers a large longitudinal range. Instead, we
define local solar time (LST) as six hours ahead of UTC as
the eastern TP is situated at approximately 90° longitude.

2.3. Analysis techniques

2.3.1.

In this study, soil moisture-precipitation feedbacks are
defined by the complete pathway with which soil moisture
variations lead to precipitation changes through fluctuations
in the partitioning of surface turbulent fluxes. Components

Coupling metrics
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of soil moisture-precipitation feedbacks are quantified
through comparing covariances of evaporative fraction (EF,
dimensionless), surface soil moisture (SM, m3 m=3) and pre-
cipitation (P, mm d-!). This follows multiple studies which
have quantified components of land—atmosphere feedbacks
through comparing covariances between surface and atmo-
spheric fields (i.e. Dirmeyer, 2011; Dirmeyer et al., 2014;
Miiller et al., 2021b). Our coupling metrics are derived from
Dirmeyer et al. (2014) and are the same as in Miiller et al.
(2021b), except for the use of EF instead of LHF. The use
of EF removes the dependence of surface turbulent fluxes
on radiation, and instead focuses on the partitioning of turbu-
lent fluxes.

The terrestrial leg of soil moisture-precipitation feed-
backs, which identifies areas where anomalous soil moisture
drives surface flux variability, is quantified by a terrestrial
coupling index (TCI, dimensionless):

_ cov(SM,EF)

TCI
o(SM)

“
where cov(x,y) and o(x) denote the covariance between two
variables and the temporal standard deviation of single vari-
able respectively. Based on this definition, strong soil mois-
ture-surface flux coupling is quantified in regions where
soil moisture conditions drive evapotranspiration dynamics.
Following this, the atmospheric component of soil moisture-
precipitation feedbacks, which highlights regions where sur-
face flux changes lead to a precipitation response, is defined
by an atmospheric coupling index (ACI, mm d-!):

ACI= ——2"2 (5)

ACI complements TCI through highlighting areas
where the partitioning of surface turbulent fluxes impacts pre-
cipitation. Whilst previous studies have used more intermedi-
ate atmospheric variables to compute coupling indices, such
as the lifting condensation level (Dirmeyer et al., 2014), we
use precipitation as it ensures that the full cycle of land—atmo-
sphere coupling is analysed given the direct feedback
between precipitation and surface conditions (Miiller et al.,
2021b). Even though using precipitation will likely result in
a weaker concluded coupling between surface fluxes and
atmospheric conditions, our definition of ACI represents the
full cycle in surface flux-precipitation coupling, which is
not guaranteed when using intermediate atmospheric vari-
ables. Precipitation is also one of only suitable atmospheric
diagnostics regularly outputted at a sub-daily temporal resolu-
tion.

Regions with strong soil moisture-precipitation feed-
backs are identified using a two-legged coupling index
(TLCI, mm d-1):

cov(SM, EF)cov(EF, P)

TLCI =
o(SM)o2(EF)

(6)

TLCI quantifies the anomalous precipitation influenced
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by moisture—driven surface flux variability and is derived
through combining TCI and ACI. Hot spots with substantial
soil moisture-precipitation coupling are regions where both
TCI and ACI are large. In these regions we expect a feedback
from the atmosphere to the land, completing the mechanistic
loop (Guo et al., 2006). Partitioning TLCI into its two compo-
nents highlights locations where the relationship between
soil moisture and evaporative fraction is strong (TCI), and
where anomalous evaporative fraction influences precipita-
tion (ACI).

For calculating all three indices we use daily time series
of anomalies relative to a monthly climatology. To ensure
that we sample the impact of surface conditions on daytime
precipitation, we compute coupling metrics using three-
hourly means of surface SM and EF between 06 and 09
LST. We also only analyse precipitation accumulations
between 09 and 18 LST. In principle, one could compare sim-
ulated indices with those computed using reanalysis data,
however in practice, due to the use of complex land surface
models and an inadequate representation of orographic precip-
itation (Tong et al., 2014; Hu and Yuan, 2021; Miiller et al.,
2021a), it is unreliable to evaluate simulated metrics with
those calculated using reanalysis data. It is also challenging
to obtain reliable surface flux observations across the whole
of the TP. Therefore, we do not compute coupling metrics
using observations.

2.3.2. The sensitivity of daytime convective precipitation
to soil moisture

To evaluate the simulated feedback between soil mois-
ture and daytime rainfall, we use a metric derived by Taylor
et al. (2012). For the rest of this study this metric is referred
to as “T12” and denoted by J.. T12 quantifies soil moisture-
rainfall coupling by assessing anomalous antecedent soil mois-
ture differences between locations with daytime precipitation
maxima and minima. The metric was originally developed
for global applications and has been used to diagnose soil
moisture-rainfall coupling in both observations and models
(Taylor et al., 2012, 2013). T12 is computed using:

(5e=A_Se_A_SC’ (7)

where AS. is the composite-mean difference in pre-rainfall
soil moisture anomalies between locations of maximum and
minimum rainfall, and AS. is a control sample of typical
soil moisture anomaly mean differences between those loca-
tions. Locations of maximum and minimum rainfall are identi-
fied from accumulated convective precipitation between
0900 to 1800 LST. The inclusion of rainfall between 0900
to 1200 LST accounts for the early diurnal onset bias in simu-
lated precipitation (Christopoulos and Schneider, 2021). A 3
x 3 pixel box is centered on an afternoon convective precipita-
tion event with rainfall exceeding 2 mm. The minimum is
located within the 3 x 3 pixel box. We decided to use a
lower precipitation threshold than Taylor et al. (2012),
2 mm compared to 3 mm, due to low convective precipitation
rates in several models. Where two boxes overlap, the box

TALIB ET AL.

2067

containing the more intense maxima is retained. If there is
more than one minima within a 3 x 3 pixel box, the average
soil moisture anomaly is taken. Soil moisture anomalies are
sampled at 0600 to 0900 LST. If the total precipitation for
sampled pixels exceeds 0.1 mm during this or the preceding
time-step (0300 to 0900 LST), the event is excluded. This
ensures that only pre-event soil moisture is sampled. Daily
soil moisture anomalies are generated with respect to a 35-
year (1980-2014) monthly climatology. For each event, soil
moisture anomalies for the control sample are taken from
the same day of year in non-event years.

0. is expressed as a percentile of typical ¢ values
derived from random reassignment of AS values. Percentile
values less than 10 denote a negative feedback at a 10% sig-
nificance level or lower, whilst those greater than 90 indicate
a positive feedback. Strong negative and positive feedbacks
at a 1% signficance level or lower are indicated by percentile
values less than 1 and greater than 99 respectively. Whilst a
combination of high topographic complexity and poor quality
remotely-sensed soil moisture data over the TP means that
we cannot directly compare simulated T12 metrics with obser-
vations, we can compare the sign of the simulated metric
with more detailed analysis from Barton et al. (2021).

3. Simulated soil
coupling metrics

moisture—atmosphere

To understand the variety of model behaviours in the rep-
resentation of soil moisture—atmosphere coupling, we use met-
rics which aim to diagnose the intensity of such feedbacks
(section 2.3.1). Figure 1 shows the TCI, ACI and TLCI for
each CMIP6 simulation, alongside the ensemble-mean and
ensemble-coefficient of variation across all GCMs analysed.
The ensemble-coefficient of variation is calculated by divid-
ing the standard deviation amongst GCMs by the ensemble-
mean. We also show the ensemble-mean for low- (= 250 km)
and medium-resolution (< 100 km) models. Focusing on the
control of soil moisture on surface turbulent fluxes, the ensem-
ble-mean of the TCI highlights strong coupling in central
and western regions of the TP (Fig. 1v). Across the east of
the TP, evaporative fraction is relatively insensitive to soil
moisture variability. However, whilst most models simulate
a strong west-to-east gradient in soil moisture-surface flux
coupling (in particular those in the MPI and HadGEM3
model families), associated with surface aridity variations,
some models (e.g., BCC-CSM2-MR and MIROC6) simulate
minimal surface coupling across the whole of the TP. This
model variability is illustrated by large values in the ensem-
ble-coefficient of variation, in particular, across edges of the
TP (Fig. 1ul).

Assurface conditions are sensitive to precipitation charac-
teristics, we might expect that simulated rainfall differences
affect the intensity of soil moisture-surface flux coupling.
For example, greater precipitation across the arid surface in
the west may moisten soils such that surface moisture has a
strong control on the evaporative fraction. To understand
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whether simulated precipitation differences affect the repre- shows boreal summer seasonal rainfall biases in each
sentation of soil moisture-surface flux coupling, Fig. 2 CMIP6 simulation relative to absolute values from the Inte-
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Fig. 1. (a—s, excluding 1) TCI (top, suffix 1, dimensionless), ACI (middle, suffix 2, mm d-') and TLCI (bottom, suffix 3, mm d-!) in
each CMIP6 simulation along with the (u) ensemble-coefficient of variation and (v) multi-model mean. We also show the multi-
model mean for low- (= 250 km) and medium-resolution (< 100 km) models in panels (1) and (t) respectively. For all maps we only
show grid points with an elevation above 1500 m. Models are ordered based on horizontal resolution with a vertical dashed line
between low- and medium-resolution models. The grey outline of the TP denotes an elevation of 3000 m.
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Fig. 2. (a-s, excluding 1) Boreal summer-mean rainfall biases (mm d-!) in each CMIP6 simulation relative to (u) IMERG
precipitation totals (mm d-!). Multi-model mean rainfall biases in low-resolution, medium-resolution and all models are shown in
panels (1), (t) and (v) respectively. For all maps we only show grid points with an elevation above 1500 m. The vertical grey dashed
line between panels partitions low- and medium-resolution models. Green squares in panel (u) denote the location of CMA weather
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denotes the region used to composite convective events. The grey outline of the TP denotes an elevation of 3000 m.

grated Multi-satellitE Retrievals for the Global Precipitation
Measurement mission (GPM IMERG) version 6B (Fig. 2u),
which utilises satellite-based passive microwave and geosyn-
chronous infrared measurements (Huffman et al., 2019). We
use retrievals from GPM IMERG as previous studies have
shown that this is one of the most reliable rainfall products
on the TP (Zhang et al., 2018). As data from GPM IMERG
begins in 2000, we only analyse simulated precipitation
from boreal summer seasons between 2000 and 2014. In gen-
eral, and consistent with Zhu and Yang (2020), too much rain-
fall is simulated across the TP (Fig. 2v). Large biases are
observed across the southern edge of the plateau, associated
with intense orographic uplift, along with small negative
biases in central regions. When comparing rainfall biases
with simulated values of TCI (Figs. la—vl and 2), we find
no distinctive relationship between simulated precipitation
and the magnitude of soil moisture-surface flux coupling.
For example, models with a strong northwest to southeast gra-
dient in soil moisture-surface flux coupling, such as SAMO-
UNICON and KACE-1-0-G, show similar rainfall biases to
models with minimal coupling across the whole of TP, i.e.
ACCESS-ESM1.5 and CNRM-ESM2-1. Figure Al in the
Appendix a shows the relationship between mean rainfall
and simulated TCI on grid points with an elevation greater
than 1500 m. Whilst a significant relationship between the
two variables is concluded when using a relaxed confidence
level of 10%, regional-scale model differences in simulated
TCI are not solely driven by precipitation biases. Therefore
we conclude that inter-model differences in surface dynamics
are partly responsible for inter-model variability in soil mois-
ture-surface flux coupling.

Positive values of ACI across southern and eastern

parts of the TP (Fig. 1v2) indicate that simulated rainfall is
partly controlled by surface flux variations and favoured
when EF is high. Across the north and west of the plateau, val-
ues of ACI are minimal due to little rainfall (Fig. 2u) and
small precipitation variability (Wang et al., 2017). Similar
to the TCI, we find large intermodel variability in the ACI
with some models, i.e. GFDL-CM4 and HadGEM3-GC31-
MM, simulating minimal surface flux-precipitation coupling
across a large area of the TP. The ensemble-coefficient of
ACI highlights large model differences across the north and
west of the TP (Fig. 1u2). This is largely influenced by experi-
ments from the ACCESS model family simulating negative
ACT values, whilst others simulate positive values. Bringing
together the dependence of turbulent fluxes to soil moisture
fluctuations (TCI) with the sensitivity of precipitation to evap-
orative fraction variations (ACI), the ensemble-mean of the
TLCI illustrates strong positive soil moisture-precipitation
coupling across the south-west and south-east corner of the
TP (Fig. 1v3). We find weak soil moisture-precipitation cou-
pling across northern parts of the TP, associated with weak
correlations between evaporative fraction and precipitation
(i.e., small values of ACI). Whilst most models simulate
strong soil moisture-precipitation coupling across the south-
west, where precipitation biases (Fig. 2v) and the coefficient
of variation are low (Fig. 1u3), across the rest of the TP, simu-
lated differences in ACI and TCI leads to high intermodel
variability in TLCI. For example, BCC-CSM2-MR and exper-
iments from the CNRM model family simulate negative val-
ues of TLCI across eastern regions of the TP, whilst all
other models have positive values. This different behaviour
seenin CNRM experiments and BCC-CSM2-MR can be asso-
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ciated with relatively strong values of ACI and weak values
of TCI. Large inter-model differences in soil moisture-precipi-
tation coupling across most of the TP is consistent with simu-
lated differences in soil moisture-precipitation coupling
over the Sahel (Taylor et al., 2013) and variability amongst
GCMs in the surface flux response to dry spells (Gallego-
Elvira et al., 2019).

4. Assessing components of land—atmosphere
feedbacks

Coupling metrics illustrate large inter-model differences
in simulated soil moisture-precipitation feedbacks across
the TP (section 3.). Whilst these metrics provide a good
overview of the coupling strength between soil moisture
and precipitation, they can be influenced by atmospheric or
rainfall persistence (Guillod et al., 2015). It is also challenging
to understand the processes responsible for different coupling
characteristics. In light of this, for the rest of this study we
gain insight from examining observational metrics specifi-
cally designed for the TP. In the following subsection we eval-
uate the surface flux and atmospheric response to regional-
scale dry spells. After this we investigate the sensitivity of
convective precipitation to soil moisture heterogeneity (sec-
tion 4.2).

4.1. Simulated surface flux and atmospheric response to

dry spells

To assess simulated surface fluxes during three-day dry
spells, we first show the behaviour of the surface energy bal-
ance in the real world. In this study, we define a regional
dry spell as a period of three consecutive days when the
regional-mean precipitation rate is below the non-zero 20th
percentile boreal summer daily rainfall accumulation. Toiden-
tify real world regional-scale dry spells we use station-mean
daily precipitation accumulations at 1200 UTC from CMA
weather stations (Fig. 2u). Due to the time span of weather sta-
tion data (section 2.2), we only composite real world dry
spells between 2000 and 2014. Figure 3a shows surface flux
variations across the TP during observed three-day dry
spells. Day 0.0 is defined as the start of a three-day regional
dry spell, whilst anomalies are only shown at 1200 LST as
this is the time of day with the largest surface flux response.
Unsurprisingly, a dry spell across the TP increases downward
radiation into the surface due to reduced cloud cover. Surface
drying during a dry spell changes the partitioning of this
enhanced radiation with LHF decreasing by approximately
60 W m~2 and SHF increasing by approximately 40 W m~2
between days O to 2. We also observe increased LW, by
approximately 30 W m~2 associated with increased surface
temperatures.

We next compare this observed surface flux behaviour
to that exhibited in CMIP6 experiments. To identify simulated
dry spells, we use regional-mean daily precipitation accumu-
lations on grid points above 3000 m between 25° to 40° lati-
tude and 85° to 105° longitude, region denoted by a red rectan-
gle in Fig. 2u. Whilst for observations we were only able to
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composite dry spells between 2000 and 2014, for CMIP6
experiments we use data from 1980 to 2014 to increase the
number of composited dry spells. Even though each GCM
simulates a reasonable number of three-day dry spells when
using its own 20th percentile precipitation rate, all of the simu-
lated precipitation thresholds are larger compared to observa-
tions, which is unsurprising given positive precipitation
biases (Fig. 2). When selecting simulated dry spells using
the observed precipitation threshold, only eleven out the eigh-
teen GCMs have a substantial number of dry spells (> 20).
Due to the smaller number of individual models with a sub-
stantial number of dry spells when using the observed thresh-
old, we focus on the anomalous surface energy balance during
dry spells that are defined using simulated 20th percentile pre-
cipitation rates. Given that simulated dry-spell precipitation
rates are greater than observations, we expect simulated sur-
face flux variations to be dampened.

Figures 3b to 3e highlight the variety of model
behaviours in the CMIP6 ensemble by focusing on BCC-
CSM2-MR, HadGEM3-GC31-HM, MIROC6 and MPI-
ESM1-2-HR. For CMIP6 experiments we are able to compos-
ite simulated latent heat fluxes, whilst for observations, we
approximate the sum of latent and ground heat fluxes.
Whilst all four chosen models simulate increased downward
surface radiation, associated with clear skies, they all have a
different surface energy balance response. All four chosen
models simulate increased SHF and LW, however,
changes in these surface energy balance components are typi-
cally underestimated. Only BCC-CSM2-MR well represents
changes in SHF, whilst anomalies in HadGEM3-GC31-HM,
for example, are 50% smaller compared to observations.
We also find that three of our chosen models exhibit small
latent heat flux changes during a dry spell compared to obser-
vations, indicating that the surface dries more rapidly in the
real world. Whilst we do see a latent heat flux decrease in
MPI-ESM1-2-HR of a similar magnitude to observations,
the reduction in evapotranspiration takes several days
longer.

Following on from focusing on four chosen models,
Figs. 4a to 4c show the average anomalous surface SHF,
LW,,, and radiation reaching the surface during observed
and simulated three-day dry spells. Consistent with the subset
of models analysed in Fig. 3., the majority of models underes-
timate increases in SHF and LW, (Figs. 4a and 4b). For
example, by day 2 of a three-day dry spell, the anomalous
model-mean bias in SHF is approximately 10 W m2
smaller than observations, whilst anomalous LW, is underes-
timated by approximately 20 W m~2. CMIP6 simulations bet-
ter represent the amplitude of surface radiation anomalies
across the TP during dry spells (Fig. 4c). This indicates that
errors in cloud representation are less of a concern compared
to surface flux dynamics. Given that it may be the case that
changes in surface SHF and LW, are poorly simulated due
to underestimated anomalous radiation, we compute the frac-
tion of radiation inputted into the surface that is re-emitted
as SHF or LW/,;,. In this study, this term is referred to as the
“fraction of downwelling radiation”:
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Fig. 3. Anomalous surface fluxes (W m=2) and daily precipitation accumulations
(mm d-!) preceding, during and after three-day regional dry spells in (a) observations,
(b) BCC-CSM2-MR, (c) HadGEM3-GC31-HM, (d) MIROC6 and (¢) MPI-ESM1-2-
HR. A three-day regional dry spell is defined when the precipitation accumulation is
smaller than the twentieth percentile of boreal summer daily precipitation, denoted by
the blue dashed horizontal line, for three consecutive days. We show the following
components of the surface energy balance: (orange) upward longwave radiation;
(purple) sensible heat flux, (black) and sum of net-downward shortwave and
longwave downward radiation. In panel (a) the red line denotes the sum of latent and
ground heat fluxes, whilst for panels (b) to (e) it denotes the latent heat flux only.
Panels (b) to (e) also include a (dashed grey) “residual” term which is the remainder
when subtracting sensible and latent heat fluxes from net-downward radiation. Box-
and-whisker plots show station-mean or regional-mean daily precipitation
accumulations. The orange line within each box denotes the median; the top and
bottom of the box denotes the upper and lower quartiles; and the blue whiskers
denote the 10th and 90th percentiles. Filled blue circles denote outliers in
precipitation rates.
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Fraction of downwelling radiation = m .
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Figure 4d shows the change in the anomalous fraction
of downwelling radiation during a dry spell in both observa-

tions and CMIP6 simulations. The increased fraction of down-
welling radiation during a dry spell in observations illustrates
that in the real world changes in surface characteristics lead
to anomalous sensible heating and surface longwave emis-
sion. However, all CMIP6 simulations underestimate the
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Fig. 4. Anomalous surface (a) sensible heat flux, (b) upward longwave radiation, (c) radiation
inputted into the surface, and (d) fraction of downwelling radiation that is re-emitted as
sensible heat and upward longwave radiation, preceding, during and after a three-day dry
event. All models from the same model family are denoted by the same line colour with
individual configurations distinguished by marker style. Observations are denoted by a green
line whilst the model mean is denoted by a black line. The model mean for simulated dry
spells with the observed precipitation threshold is denoted by a dashed black line. The values
to the right of each model name in the legend include the regional-mean 20th percentile
boreal summer rainfall rate and the number of three-day dry spells identified.

change in partitioning of incoming radiation towards SHF
and LW, This difference between observations and
CMIP6 simulations highlights that surface dynamics are
poorly represented on the TP during a dry spell, and that
errors in the surface energy balance are not solely due to
biases in atmospheric radiation.

In comparison with observations, all CMIP6 simulations
poorly represent the favouring of SHF over evapotranspira-
tion during a dry spell. However, it may be the case that this
weak surface response during simulated dry spells is associ-
ated with high dry-spell precipitation rates. For example,
Fig. 3 shows larger anomalies in SHF and LW, in models
with smaller dry-spell precipitation rates (BCC-CSM2-MR
and HadGEM3-GC31-HM). To investigate the hypothesis

that anomalous surface fluxes are small in CMIP6 experi-
ments due to large dry-spell precipitation rates, Fig. Sa com-
pares the average change in SHF and LW, during dry
spells with the prescribed precipitation threshold. We also cal-
culate the linear least-squares regression between simulated
values and take note of the Pearson correlation coefficient
and p-value for a single-sided 7-test assuming a negative rela-
tionship. Whilst one would expect excessive dry spell rainfall
to suppress the surface flux response, the slope of the linear
regression is not significantly negative. This provides evi-
dence that an improved representation of anomalous surface
fluxes during a dry spell requires more than just a better repre-
sentation of dry-spell precipitation intensities. To analyse
our hypothesis further, Fig. A2 shows composited surface
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Fig. 5. (a) Comparison of boreal summer 20th percentile precipitation rate (mm d-!) against the change in surface
sensible heat flux and upward longwave radiation (W m~2) at 12 LST between days —0.25 and 2.75 of a regional dry
spell. The grey dashed line in panel (a) denotes the linear least-squared fit between simulated values. The line's
Pearson correlation coefficient value (R) and p-value for a single-sided t-test assuming a negative relationship (P) is
shown in the top right hand corner. (b) Anomalous surface pressure (hPa) between 25° to 40° latitude and 85° to 105°
longitude preceding, during and after a three-day dry spell. Dashed grey horizontal and vertical lines in panel (b)
denote the zeroth value. All models from the same model family are denoted by the same line colour with individual
configurations distinguished by marker style. Observations are denoted by green circular markers, whilst the model

mean is denoted by black stars.

flux anomalies during simulated dry spells using the
observed precipitation threshold. As discussed previously,
only a selection of models simulate a substantial number of
dry spells when using the observed precipitation threshold.
The model-mean surface flux response during these dry
spells is also denoted in Fig. 4 by black dashed lines. Whilst
Figs. 4 and A2 illustrate that using the observed precipitation
threshold leads to a better simulation of anomalous SHF and
LW,,, models still do not adequately capture the strong
change in surface flux partitioning. This indicates that land
surface schemes in GCMs are unable to represent soil mois-
ture—driven short-term (x~ few days) variability in evapotran-
spiration on the TP.

The inter-model variability in the behaviour of surface
fluxes during dry spells is consistent with differences in TCI
values (Figs. 1 and 4). Models which simulate unrealistic
large dry-spell precipitation rates, such as MIROC6 and
ACCESS-ESM1-5 (Fig. 5a), simulate relatively weak TCI val-
ues. In these simulations it is likely that the dry-spell precipita-
tion rate is greater than potential evapotranspiration. This

may lead to an unrealistic representation of the land surface
as it rarely dries out and uses all additional radiative energy
to increase evapotranspiration. We also find that models
with a relatively large change in the fraction of downwelling
radiation during dry spells, such as MPI-ESM2-2-HR
(Fig. 4d), are typically those with high TCI values. Whilst
our analysis of surface fluxes during three-day dry spells can-
not fully explain simulated TCI differences due to influence
of variability on longer timescales, we find a good agreement
between the magnitude of TCI values simulated and the
response of surface fluxes during a dry spell.

In the real world surface drying on the TP favours sensi-
ble heat, a deeper planetary boundary layer, and a negative
near-surface pressure tendency (Wan et al., 2017; Talib et
al.,, 2021). Due to the lack of a surface energy balance
response to regional dry spells in the majority of GCMs
(Fig. 4), we predict that models underestimate the surface
pressure response to surface drying. To illustrate the favour-
ing of a heat low circulation across the TP during dry spells
in observations, Fig. 5b shows regional-mean anomalous sur-
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face pressure from the European Centre for Medium-Range
Weather Forecasts (ECWMF) Reanalysis version 5 (ERAS;
Hersbach et al., 2020) at a 1° resolution between 25° to 40°
latitude and 85° to 105° longitude. The negative pressure ten-
dency associated with surface drying maximises after sunset
which is indicative of a heat low circulation as negative pres-
sure tendencies are limited until a stable boundary layer has
formed. Fig. 5b also shows the anomalous surface pressure
during simulated dry spells in each GCM. Whilst most models
correctly simulate diurnal fluctuations in anomalous surface
pressure, the magnitude of pressure tendencies during a dry
spell are smaller compared to observations. For example,
the model-mean surface pressure anomaly decreases by
approximately 0.7 hPa from days 0.0 to 3.0, compared to
1.3 hPa in observations. We also observe distinct pressure
anomalies in BCC-CSM2-MR and IPSL-CM6A-MR, which
we associate with synoptic forcing dominating any effects
from surface heating. The simulation of weaker pressure ten-
dencies in CMIP6 experiments is consistent with underesti-
mated changes in surface energy balance components. The
weak surface pressure response is likely to limit the impact
of soil moisture-atmospheric coupling on large-scale circula-
tion anomalies (Wan et al., 2017; Talib et al., 2021).

4.2. Simulated feedback between soil moisture and
convective initiation

In the previous subsection we show that the dampened
behaviour of surface fluxes during dry spells in CMIP6 simu-
lations leads to a misrepresentation of surface-induced atmo-
spheric pressure fluctuations. In this subsection we investi-
gate whether CMIP6 models correctly favour deep convection
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initiation over dry soils, as observed by Barton et al. (2021).
To do this, we first analyse simulated pre-rainfall soil mois-
ture anomalies before a strong convective precipitation
event (section 2.3.2). We pool all events that occur within
80° to 102° longitude and 28° to 40° latitude, as denoted by
the grey box in Fig. 2v, where elevation exceeds 2500 m.
The T12 metric for 12 out of the 18 GCMs is shown in
Fig. 6, with the order of GCMs determined by horizontal reso-
lution (increasing from left to right). For the remaining six
CMIP6 simulations, an insufficient number of convective pre-
cipitation events (< 100) were identified due to either persis-
tent early-morning rainfall (GISS-E2-1-G, IPSL-CM6A-LR,
CNRM-CM6-1 and CNRM-ESM2-1) or minimal precipita-
tion rates (GFDL-CM4 and BCC-CSM2-MR). These models
are also those with relatively low values of deep convective
precipitation (Fig. A3). Almost all remaining GCMs fail to
capture the observed negative feedback between soil moisture
and deep convection found in Barton et al. (2021). Only
ACCESS-CM2 simulates a significant strong negative feed-
back, whilst six GCMs show a significant strong positive feed-
back.

Given that the majority of rainfall in CMIP6 experiments
with a substantial number of events is associated with deep
convection (Fig. A3) and most experiments simulate positive
values of TCI and ACI (Fig. 1), it is unsurprising that a posi-
tive soil moisture-deep convection feedback is seen in most
models (Fig. 6). The lack of a simulated negative feedback
is similar in other semi-arid regions (Taylor et al., 2012)
and can be explained by a typically strong dependence of con-
vective parameterisations on low-level humidity, which is
favoured across wet soils. In reality, convective initiation

n N Y+ %
S O Q) N O N M o © N O O
~ [«) [ © N N
n=°% § 5 a3 83 N RN N ™
100 T i y Y T -
4o ! . { ; ———| positive
80 - [ A P X { L
o '\ LANA N N
S 60+ [ A oN1% 4 K|
S ! 1 [ . null
5 40 L4 KK LS
a | 1 I |
20 A % { KN
1 YT~ = T S~ negative
0 =1 T T T T T T — T T T T T T T T T T
O s £ x v f o 4 Q9 VW ox 23 x 03 =
4L T Faoda T2 QS0 Qs
TINS5 s 2 Q% 0 400 4 25 2
N DTS m S o ! D o0 B e
0 o n o un gun T = s 24 4 = mm
n D S w oW n w s H oS 0 5 O O
n O h = < O u QO 7 oL = &£
w2 P58 E = ;s 0 Qoo g
LD's w a4 wnw ™ § 0w
O nh - »n w =2 s O O = 0 ToMm M
mhaa OO L 25« O < T O = =
s — O O 06 o n s W b w
o < ko) o 9
= © K 3
b i £ T

Fig. 6. T12 metric (5., percentile) for events within 80° to 102° longitude and 28° to
40° latitude for CMIP6 simulations. For clarity, bars are plotted as a deviation from
50 where values larger and smaller than 50 denote positive and negative feedbacks
respectively. Blue and red filled bars denote a preference for afternoon convection
over wet and dry soils respectively with a significance level below 10%. Grey
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occurs later in the day than in climate models (Christopoulos
and Schneider, 2021), which favours stronger daytime
mesoscale circulations and more intense heavy precipitation.
We might expect that increasing the horizontal resolution of
a climate model improves the model's ability at simulating
the formation of realistic circulations in response to soil mois-
ture heterogeneity. However, if the model’s convection
scheme is typically triggered before these circulations can
develop, then a positive feedback may persist, irrespective
of resolution, as illustrated in Taylor et al. (2013).
Considering all twelve GCMs for which we were able
to compute the T12 metric, there is no obvious improvement
with resolution (Fig. 6, left to right). However, if we compare
different resolutions within the same model family, i.e. MPI-
ESM1-2-HR with MPI-ESM1-2-LR and HadGEM3-GC31-
HM with HadGEM3-GC31-MM, increased resolution
decreases the value of the T12 metric and weakens the positive
feedback. To examine this behaviour in more detail, we
focus on HadGEM3-GC31 simulations for which we have a
sufficient number of events at all three resolutions to subdi-
vide the TP into four 11° longitude x 6° latitude quadrants
(regions shown in Fig. 7). For the low (HadGEM3-GC31-

(a) HadGEM3-GC31-LL
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LL) and medium (HadGEM3-GC31-MM) resolutions, a sig-
nificant positive feedback is simulated in all four quadrants
(Figs. 7a and 7b). HadGEM3-GC31-HM on the other hand,
simulates varying behaviour across the TP with a negative/
positive feedback in the south-east/north-east quadrant
(Fig. 7c). Comparing simulated feedbacks with resolved
topography (Figs. 7d to 7f) gives some indication that
increased topographic complexity influences the sign of the
feedback. To investigate whether topographic complexity in
the model influences the feedback between soil moisture
and deep convection in more detail, we partitioned all
events in HadGEM3-GC31-HM into two groups based on
the grid-scale topographic complexity. The grid-scale topo-
graphic complexity is calculated as the standard deviation in
altitude across a 3 x 3 pixel which is centered on a rainfall
event. As shown in Table 2, events centered where topo-
graphic complexity is low have a weak negative feedback,
whilst where topographic complexity is high, a strong positive
feedback is concluded. This indicates that when increasing
resolution, and hence improving the representation of oro-
graphic convection, we begin to favour negative soil mois-
ture-convection feedbacks across regions with low topo-

(d) HadGEM3-GC31-LL

Latitude (N)
w
(0]

M (e) HadGEM3-GC31-MM

Latitude (N)

Latitude (N)

75 84 93
Longitude (E)

Em—

Percentile

75 84 93
Longitude (E)

]
0 1 5 10 90 95 99100 3 4 5 6

102

Elevation (km)

Fig. 7. (a—c) T12 metric (6., percentile) over 11° longitude x 6° latitude quadrants
and (d—f) resolved topography (km) for (a, d) HadGEM3-GC31-LL, (b, e) HadGEM3-
GC31-MM and (c, f) HadGEM3-GC31-HM. In panels (a) to (c) blue and red shading
denotes a preference for afternoon convection over wet and dry soils respectively.
Coloured shading is only applied in quadrants with a significance level below 10%.
The grey outline of the TP denotes an elevation of 2500 m.
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Table 2. Evaluation of topographic dependence on soil moisture-
deep convection coupling over TP in HadGEM3-GC31-HM.
Regions with low and high topographic complexity have a
standard deviation in altitude below or above 100 m, respectively,
over a 3 x 3 pixel box. Blue and red shading denotes a preference
for afternoon convection over wet and dry soils respectively.

Topographic complexity Number of events be
Low 1842 10
High 1956 98

graphic complexity. It is known that convection-permitting
resolutions are needed to fully capture soil moisture-convec-
tion feedbacks (Hohenegger et al., 2009; Taylor et al., 2013),
but these configurations are currently too expensive to run
globally across climate relevant time scales. The fact that
HadGEM3-GC31-HM, a current medium-resolution global
climate model, can begin to overcome a significant feedback
bias on the TP is promising for future generations of ESMs.

5. Discussion and conclusions

In this study, we use three analysis techniques to assess
the representation of soil moisture—atmosphere coupling on
the TP. These techniques include: daily coupling metrics
which partition the terrestrial and atmospheric components
of soil moisture—atmosphere feedbacks (section 3.;
Dirmeyer, 2011; Dirmeyer et al., 2014); analysis of the sur-
face flux and atmospheric behaviour during three-day dry
spells (section 4.1; Talib et al., 2021); and an index which
quantifies the favouring of convective precipitation over dry
soils (section 4.2; Taylor et al., 2012, 2013). Whilst previous
studies have used similar techniques to perform global
model assessments (Dirmeyer, 2011; Dirmeyer et al., 2014;
Gallego-Elvira et al., 2019), this is the first study to focus
on evaluating such feedbacks across the TP.

We find substantial inter-model differences in simulated
soil moisture—atmosphere feedbacks across the TP, consistent
with studies focusing on other semi-arid regions (Taylor et
al., 2013; Gallego-Elvira et al., 2019). Partitioning feedbacks
into their terrestrial and atmospheric segments highlights sub-
stantial model variability in both feedback components.
GCMs typically underestimate the feedback of surface flux
dynamics on atmospheric conditions during three-day dry
spells. We note that whilst GCMs overestimate the limitation
of evapotranspiration by soil moisture deficiency over rela-
tively long periods (> 10 days) (Ukkola et al., 2016;
Dirmeyer et al., 2018a; Gallego-Elvira et al., 2019), they
canstillunderestimate soil moisture—driven surface flux varia-
tions on shorter timescales (< 3 days). Such behaviour sug-
gests that simulated evapotranspiration fluctuations are too
restrained by root-zone soil moisture and insufficiently sensi-
tive to rapid variations in near-surface moisture. The high
dependence of evapotranspiration on near-surface soil mois-
ture has been highlighted by surface flux observations
across semi-arid environments on the TP (Cui et al., 2020).
Given that observations show that anomalous near-surface
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soil moisture on the TP is source of atmospheric predictability
(Talib et al., 2021; Barton et al., 2021), it is likely that inhib-
ited soil moisture—atmosphere coupling in CMIP6 models is
also present in dynamical forecast models, which reduces
daily to seasonal predictive skill.

We conclude that to improve the representation of soil
moisture—atmosphere feedbacks on the TP requires a better
representation of both rainfall and surface dynamics. Focus-
ing on precipitation, the positive rainfall bias in the majority
of CMIP6 simulations is likely to change the representation
of soil moisture-surface flux coupling. In semi-arid environ-
ments for example, greater precipitation may dampen soils
such that the partitioning of surface turbulent fluxes is pre-
dominately controlled by radiation instead of near-surface
soil moisture. However, whilst we hypothesise that correcting
the simulation of rainfall ought to improve the simulation of
soil moisture—atmosphere feedbacks, weak correlations
between rainfall biases and coupling strengths suggest that
feedback errors are not solely due to precipitation errors.
Alongside improving the representation of precipitation, a
more realistic simulation of surface dynamics is required.
This is consistent with Gevaert et al. (2018), who found
large model variability in soil moisture-surface flux coupling
when driving several surface models with the same atmo-
spheric data.

Alongside highlighting that an improved representation
of soil moisture-surface flux coupling requires a better simula-
tion of both surface dynamics and rainfall variability, our
work illustrates that deep convection on the TP occurs too fre-
quently over wet soils for the majority of CMIP6 models.
Our analysis is consistent with previous studies which argue
that deep convection parameterisation schemes are too sensi-
tive to low-level humidity and therefore favour positive soil
moisture-deep convection feedbacks (Hohenegger et al.,
2009; Taylor et al., 2013). In the real world, the favouring
of deep convection over dry soils occurs due to influence of
soil moisture gradients on the formation of mesoscale circula-
tions (Taylor et al., 2011; Barton et al., 2021). However in
coarse-resolution ESMs, the influence of soil moisture on
the development of mesoscale circulations is limited due to
the inability to resolve mesoscale circulations and the early
onset of daytime rainfall (Christopoulos and Schneider,
2021). Only ACCESS-CM2 correctly simulates a negative
soil moisture-deep convection feedback, which we associate
with large convective rainfall totals and negative values of
ACI across the north-west of the TP. We also find that
increasing horizontal resolution improves simulated soil mois-
ture—atmosphere coupling for the HadGEM3 family. We
hypothesise that increasing horizontal resolution improves
the representation of mesoscale flows driven by orography
or soil moisture variability, and their impact on convective ini-
tiation. For example, the highest resolution of HadGEM3-
GC31 in CMIP6 simulates a negative soil moisture-deep con-
vection feedback across regions with low topographic com-
plexity. These results suggest that future modelling develop-
ments will improve the simulation of soil moisture-deep con-
vection feedbacks.
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Alongside efforts in model development, improved obser-
vations of the soil moisture and surface flux response to pre-
cipitation variability will support our understanding of
land—atmosphere interactions. As well as this, an improved
quantification of spatial variability in surface characteristics
on the TP will develop our ability at parameterising surface
processes in course-resolution GCMs. Not only can our
knowledge of real world soil moisture—atmosphere feedbacks
be developed by increasing the number of stations that moni-
tor surface fluxes and weather conditions on the TP, but devel-
oping reliable analysis techniques of satellite retrievals
across a topographically-complex region will also support
our understanding. Given the influence of TP surface charac-
teristics on atmospheric conditions across East Asia and
beyond (Wan et al., 2017; Talib et al., 2021), an improved
understanding and representation of surface—atmosphere feed-
backs will improve atmospheric predictability beyond the
plateau itself. In addition to improving daily to seasonal atmo-
spheric predictability, a greater understanding of
surface—atmosphere feedbacks on the TP will improve our
understanding of the mechanisms responsible for amplified
climate change-induced warming across the TP, lead to a bet-
ter attribution of anthropogenic climate change on observed
environmental changes, and reduce model uncertainties in
future predictions of hydrological and atmospheric changes
(You et al., 2020).
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Fig. A1. Comparison of average boreal summer precipitation across the TP
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squared fit between simulated values. The line's Pearson correlation
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vertical lines denote the zeroth value. All models from the same model family
are denoted by the same colour with individual configurations distinguished
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