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Abstract 24 

This study assesses the performance of the latest phase of Coupled Model Intercomparison Project (CMIP6) 25 

models in simulating easterly wave disturbances (EWD) over the tropical South Atlantic (TSA) impacting 26 

northeast Brazil (NEB). Initially, we evaluate simulated precipitation from 17 historical CMIP, 16 AMIP, 7 hist-27 

1950, and 10 highresSST-present models against the Global Precipitation Climatology Project (GPCP) dataset to 28 

identify models that accurately reproduce the spatial and temporal precipitation patterns in the study region. The 29 

ensemble's spatial analysis demonstrates their capability in reproducing annual and seasonal precipitation 30 

climatology. However, models underestimate precipitation intensity along NEB's coast while overestimating it in 31 

TSA and NEB's north. Model uncertainties tend to be greater with higher latitudes. The models represented the 32 

annual cycle in all subareas within the study region, particularly from July to October, albeit with a greater spread 33 

in the first half of the year, especially over the Intertropical Convergence Zone (ITCZ). Based on it, three top-34 

performing models from each ensemble were selected for EWD evaluation. The automatic tracking algorithm for 35 

EWDs showed the model's ability to represent mean values of EWD lifetime (~6 days) and phase speed (~7 m s-1) 36 

as found in ERA5 reanalysis. However, they failed to capture EWD's interannual variability or climatological 37 

mean frequency. Despite CMIP6 model weaknesses, they accurately identified two primary EWD genesis regions: 38 

one over the TSA and another near the West African coast. Overall, CMIP6 models, particularly atmospheric and 39 

high-resolution models (HighResMIP), effectively captured precipitation climatology and EWD characteristics 40 

over NEB and the adjacent TSA. 41 
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 46 
1 Introduction 47 

Northeast Brazil (NEB), encompassing the states of Alagoas (AL), Sergipe (SE), and the eastern Bahia (BA), 48 

Pernambuco (PE), Paraíba (PB), and Rio 49 

to ~60 million inhabitants. In recent years, the region has witnessed significant investments in the industrial and 50 

agro-industrial sectors, establishing it as the third-largest economy in Brazil, following the Southeast and South 51 

regions. Due to its vast expanse and diverse physical characteristics, NEB can be divided into sub-regions with 52 

distinct climates and precipitation regimes. Oliveira et al. (2017) identified five such sub-regions based on rainfall 53 

characteristics: north coast, south coast, north semiarid, south semiarid, and northwest. The lowest total annual 54 

precipitation occurs in the north (654.09 mm year-1) and south (810.42 mm year-1) semiarid regions, while the 55 

north coast and northwest NEB regions experience the highest annual precipitation (1450 mm year-1). Rodrigues et 56 

al. (2020) observed distinct rainy seasons across NEB, with precipitation occurring between February and May in 57 

the north, April and July on the north coast, and December and March in the south and semiarid coast. 58 

The spatial and temporal variability of rainfall regimes in NEB is influenced by a myriad of global, 59 

synoptic and regional-scale processes. At the synoptic scale, various processes influence the NEB's precipitation 60 

regime. These include the penetration of cold fronts or their remnants between latitudes 5°S and 18°S (Kousky 61 

1979; Molion and Bernardo 2002), the Intertropical Convergence Zone (ITCZ) (Hastenrath and Heller 1977; 62 

Nobre 1993; Nobre and Shukla 1996; Melo 2009), Upper-Tropospheric Cyclonic Vortices (UTCV) (Kousky and 63 

Gan 1981; Gan and Kousky 1986; Alves 2001; Oliveira et al. 2017; Dos Reis et al. 2021), Mid-Tropospheric 64 

Cyclonic Vortices (Fedorova et al. 2016), and Easterly Wave Disturbances (EWD) (Neiva 1975; Yamazaki and 65 

Rao 1977; Ferreira et al. 1990; Pontes da Silva 2011; Gomes et al. 2015; Gomes et al. 2019). For example, 66 

Oliveira et al. (2017) emphasize the importance of UTCV and the South Atlantic Convergence Zone (SACZ) in 67 

68 

rainy periods in the north coasts.  69 

EWDs are transient synoptic-scale disturbances, propagating from east to west in the trade wind region, 70 

71 

NEB is associated with these systems (Gomes et al. 2019). These disturbances as evidenced by those two recent 72 

extreme precipitation events in east coast of NEB during 2022 and 2023 (Lyra et al. 2024; Freitas 2022; Portela 73 

2022). EWD activity can be observed in all tropical ocean basins with peaked between latitudes of 10-15° in both 74 

hemispheres during warmer months (Hollis et al. 2023). Its frequency also varies across regions and atmospheric 75 

levels, notably at 700 hPa (South Atlantic Ocean, South Pacific Ocean) or 850 hPa (central North Pacific Ocean, 76 

South Indian Ocean), with 700 hPa showing higher activity (Hollis et al. 2023). While studies on EWDs in the 77 

Southern Hemisphere (SH) are limited compared to the NH, recent efforts have been made to characterize these 78 

systems, particularly in the Tropical South Atlantic (TSA) basin close to the Brazilian coast. However, challenges 79 

arise from the variability in EWD structure and characteristics, influenced by their propagation within zonal 80 

currents and seasonal variations (Asnani 1993). Different identification methods and study periods used in 81 

previous research have resulted in discrepancies in the observed characteristics of EWDs, albeit with some notable 82 

similarities (Table 1). 83 

Table 1 Characteristics of EWDs over the Tropical South Atlantic Basin according to referenced studies. 84 

For identifying and tracking EWDs in this region, Gomes et al. (2015) used an automated method, called TRACK, 85 

based on Hodges (1995, 1999), who developed it for tracking EWDs on the East African coast (Hopsch et al. 86 
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2007; Serra et al. 2010; Thorncroft and Hodges 2001). Applying this tracking method on 21 years (1989-2009) of 87 

European Centers for Medium-Range Weather Forecasting interim reanalysis (ERAI) data, Gomes et al. (2019) 88 

successfully tracked 342 EWDs out of 518 manually detected EWDs in the TSA, a success rate of 66%. The 89 

majority of the untracked EWDs formed very close to the coast of the continent and were filtered out due to the 90 

selection criteria. Gomes et al. (2019) observed that 97% of the EWDs reached the NEB coast during their 91 

evolution, 64% showed significant convective characteristics and 14% reached the Amazon region. The highest 92 

frequency of EWDs was found between April and August (rainy season), with 429 cases identified, which 93 

accounted for 60% of the total precipitation from the coast of Alagoas to the east of Paraíba. The other months 94 

presented less than half of the cases, where the periods with the lowest frequency are between October and 95 

December, and are more frequent in La Niña years, especially in years with stronger or longer-lasting ENSO 96 

episodes. Regarding the genesis of EWDs, the authors identified five associated systems. The main contributor is 97 

frontal remnants that propagate at low latitudes, accountig for 72.20% of cases.  Convective clusters of the west 98 

coast of Africa contribute to 10.04% cases, followed by the ITCZ at 6.37%, and UTCV at 1.54%. 99 

To explore these complex characteristics of the EWDs, numerical models have become indispensable. In 100 

particular, the Coupled Model Intercomparison Project (CMIP) models (Eyring et al. 2016) have been instrumental 101 

across different regions of the globe (e.g., Dong and Dong 2021; Ngoma et al. 2021; Shiru and Chung 2021; 102 

Babaousmail et al. 2021).  Studies evaluating CMIP6 model performance over South America reveal mixed 103 

results, with challenges in accurately reproducing precipitation characteristics (e.g., Rivera and Arnould 2020; 104 

Ortega et al. 2021), particularly during monsoon seasons (Dias et al. 2021). While some models excel the results 105 

of Firpo et al. (2022) showed better model performance in reproducing spatial patterns of winter (JJA) 106 

precipitation, others struggle, especially in regions like NEB (Firpo et al. 2022). Model limitations in simulating 107 

cloud physics and the Low-Level Jet Stream contribute to discrepancies in summer precipitation estimates, with 108 

underestimations in the Amazon region and overestimations in NEB (Reboita et al. 2010; Firpo et al. 2022). 109 

Despite these challenges, models generally captured the annual cycle of precipitation over NEB, albeit with some 110 

overestimations during wet months.  111 

Further evaluations across various CMIP model generations (CMIP3, CMIP5, and CMIP6) underscores 112 

deficiencies in representing precipitation and climate extremes in tropical SA (Medeiros et al. 2022). Model 113 

performance varied depending on the specific index investigated and the macro-region of Brazil under 114 

consideration, with pronounced uncertainties in the north and northeast, and lower uncertainties in the south and 115 

southeast. Although no single model emerged as superior, CMIP6 models exhibited better performance over north, 116 

southeast, and south regions compared to earlier versions. However, challenges persists in accurately simulating 117 

key meteorological features that characterize the climate in various regions of South America, such as the ITCZ, 118 

Subtropical and polar jet streams, Bolivian High, and the NEB trough (Bazzanela et al. 2023), particularly in 119 

summer months. Common characteristics observed across all models include superior performance in winter, a 120 

double trend of the ITCZ in both summer and winter, underestimation of precipitation in northern Brazil, and 121 

overestimation on the west coast of South America and NEB during summer.  122 

Understanding how climate models simulate observed historical climate provides useful information about 123 

124 

to capture the characteristics of EWDs over the TSA during peak activity period (April to August) in the current 125 

climate. Through comprehensive evaluation and comparison with observational data, this study seeks to contribute 126 

to better understanding of model performance and its implications for future climate projections. The rest of the 127 
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paper is organized as follows: Section 2 describes data and methods, Section 3 discusses results, followed by 128 

conclusions in Section 4. 129 

2 Material and methods 130 
 131 
The choice of the study area (Fig. 1; 5°N-20°S and 0°-60°W) was driven by our objective to capture the nuanced 132 

variations in precipitation patterns within the NEB and the adjacent TSA. The study area encompasses most of the 133 

Brazilian territory, including the entire NEB and parts of the Brazilian north and southeast regions, and the TSA 134 

covering the entire coastline of the NEB extending toward the West African coast. To better represent the different 135 

precipitation regimes within the NEB and the variety of meteorological systems that influence this region, the total 136 

area was divided into 8 subareas: area 1 (5-15°S and 45-40°W) represents the semiarid region; area 2 (5-15°S and 137 

40-35°W) represents the NEB coast; areas 3 (5-15°S and 35-30°W) and 4 (5-15°S and 30-25°W) represent the 138 

path of EWDs until they reach the NEB; and areas 5.1 (5°N-0° and 35-20°W), 5.2 (0-5°S and 35-20°W), 6.1 (5°N-139 

0° and 20-5°W), and 6.2 (0-5°S and 20-5°W) represent the ITCZ region, divided to better represent its seasonal 140 

displacement. 141 

Fig. 1 The study area (5°N-20°S and 0°-60°W) and its 8 subareas: 1 (5-15°S and 45-40°W) represents the semiarid 142 

region; area 2 (5-15°S and 40-35°W) represents the NEB coast; 3 (5-15°S and 35-30°W) 4 (5-15°S and 30-25°W) 143 

represent the path of EWDs until they reach the NEB; and 5.1 (5°N-0° and 35-20°W), 5.2 (0-5°S and 35-20°W), 144 

6.1 (5°N-0° and 20-5°W), and 6.2 (0-5°S and 20-5°W) represent the ITCZ region. 145 

In CMIP phase 6, substantial updates were introduced compared to the prior phase (Eyring et al. 2016). 146 

Notably, this phase includes the CMIP's historical simulations and the Diagnostic, Assessment, and 147 

Characterization of Klima (DECK) framework, which contains the Atmospheric Model Intercomparison Project 148 

(AMIP) historical simulations. This aims to ensure model continuity and preserve fundamental characteristics 149 

across CMIP phases. An innovative addition in this phase is the endorsed Model Intercomparison Projects (MIP), 150 

specifically designed to address targeted questions and bridge scientific gaps from earlier CMIP phases. 151 

Outputs from AMIP models and CMIP's historical simulations were utilized at the highest available spatial 152 

resolution (Table 2). Model selection was contingent upon the presence of the first ensemble member (r1i1p1f1) 153 

within the specified analysis scope. Given the relatively small scale of EWDs compared to other synoptic-scale 154 

systems, the High-Resolution Model Intercomparison Project (HighResMIP) was employed with increased 155 

horizontal resolutions of approximately 50 km or 25 km in both the atmosphere and ocean (Haarsma et al., 2016). 156 

Specifically, outputs from coupled models (hist-1950) and atmospheric models (highresSST-present) from the first 157 

level of HighResMIP were considered for this study.  158 

Table 2 Description of the CMIP6 models used in this study. 159 

Precipitation estimates from the Global Precipitation Climatology Project Version 3.1 (GPCP; 0.5° x 0.5°; 160 

Huffman et al. 2020; Bazzanela et al. 2023) were used to evaluate model performance. Developed under the 161 

auspices of the World Climate Research Program (WRCP), GPCP provides global monthly precipitation estimates 162 

by combining rain gauge stations, satellite data, and sounding observations. The GPCP dataset is available from 163 

1983. The assessment of model performance was conducted over the common period of 1983-2014, during which 164 

both GPCP and model outputs are available. For consistent comparisons, all data were interpolated to a uniform 1° 165 

x 1° grid resolution. 166 
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2.1       Statistical analysis 167 

The robustness of precipitation from each CMIP6 model and their ensembles at both annual and seasonal (April to 168 

August) time scales are assessed by comparing them to GPCP. The ensembles comprise the mean of all models 169 

within each model set (CMIP, AMIP, hist-1950, and highresSST-present). Climatological annual and seasonal 170 

averages were computed from monthly data. 171 

For evaluating the coherence of CMIP6 model ensembles against GPCP over the entire study area (Fig. 1), 172 

we use various statistical measures, such as Arithmetic Mean (Eq. 1), Mean Bias (Eq. 2), and Spread (Eq. 3). 173 

These parameters represent precipitation values from individual models (Pp), ensembles (Ep), and GPCP (Op) at 174 

each grid point (n) within the total domain presented in Figure 1. 175 

 (1) 176 

  (2)    177 

  (3) 178 

For evaluating model performance over subareas for annual precipitation variability, Box Plots (Tukey 179 

1977) were constructed. The calculations utilized outputs from CMIP, AMIP, hist-1950 and highresSST-present 180 

models across all eight subareas.  181 

For evaluating performance of individual models, we use Taylor diagrams (Taylor 2001), whose 182 

parameters include Pearson correlation (R²; Eq. 4) between simulated (Pi) and observed (Oi) precipitation and the 183 

model's normalized standard deviation (Eq. 5). Annual mean precipitation values in each of the eight subareas 184 

were employed for this analysis. Additionally, to create a ranking based on the model's performance, other 185 

parameters such as Root Mean Square Error (RMSE; Eq. 6) and Taylor Skill Score (TSS; Eq. 7) were utilized. 186 

Here, R² (Eq. 4) denotes the correlation coefficient of the spatial pattern between model outputs and observations, 187 

R²L is the highest achievable value (set to 1), and P and O are the simulated and observed standard deviations, 188 

respectively 189 

 (4) 190 

 (5) 191 

 (6) 192 

 193 

 (7)   194 

2.2        Automatic tracking algorithm 195 

An automatic tracking algorithm was applied to models that exhibited superior performance in the previous stage. 196 

Data were obtained for zonal and meridional winds at 6-hour intervals from 1989 to 2009 - the period 197 

corresponding to the climatology proposed by Gomes et al. (2019). The number of vertical levels varied among 198 

models, with the majority providing data for levels at 850, 500, and 250 hPa, while some models also included 199 

levels at 925, 700, 600, and 50 hPa. In addition to the Gomes et al. (2019) study, a TRACK run using the 200 

European Centers for Medium-Range Weather Forecasting reanalysis version 5 (ERA5) was also used to evaluate 201 
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model performance. 202 

For identifying the EWDs in the CMIP6 models, we used the automatic identification and tracking method 203 

TRACK (Hodges 1995, 1999). This method identifies and tracks EWDs based on the minimum of relative 204 

vorticity in the southern hemisphere, which signifies cyclonic systems, adhering to specific criteria concerning 205 

their lifetime and distance traveled. Given the distinct characteristics of EWDs in the TSA and TNA, including 206 

their intensity and distance traveled (Asnani 1993), adjustments were made to the tracking algorithm to enable the 207 

identification of systems along the TSA that reach the NEB coast. Thus, the identification and tracking criteria 208 

used here are the same as those in Gomes et al. (2015, 2019). The main changes include applying the tracking 209 

algorithm at a higher resolution, from T42 (~310 km) to T63 (~210 km), reducing the minimum distance traveled 210 

by EWDs to 500 km (~5°), requiring a persistence of at least 1.5 days, and setting the minimum threshold of 211 

relative vorticity to -212 

relative vorticity are more intense and better identified. 213 

3 Results and discussions 214 

3.1      Climatology of ensembles and their spread 215 

The climatological characteristics and variability of precipitation among different ensemble simulations are 216 

examined in this section. Figure 2 shows the annual (left column) and seasonal climatology (right column) of 217 

precipitation for the CMIP (Fig. 2b, g), AMIP (Fig. 2c, h), hist-1950 (Fig. 2d, i), and highresSST-present (Fig. 2e, 218 

j) ensembles, as well as for GPCP observations (Fig. 7a, f). GPCP data show regions of low precipitation over the 219 

TSA that are associated with the Subtropical High, and areas wi220 

are associated with the ITCZ and northern Brazil. For April to August (AMJJA), minimal precipitation is observed 221 

over the São Francisco basin (Fig. 2f) across all ensembles, with highresSST-present best representing their spatial 222 

223 

the EDWs activity, consistent with previous studies (Gomes et al., 2019). The  The GPCP annual climatology 224 

(Fig. 2a) exhibits two precipitation nuclei, one in the northern coast and the other in the southern coast, while the 225 

226 

eastern NEB. The AMIP ensemble best represented both areas of high precipitation (Fig. 2c, h), while ensembles 227 

with higher resolution (HighResMIP) faced difficulties in reproducing these features, especially hist-1950 (Fig. 2d, 228 

i). Although large-scale spatial patterns were captured in all ensembles, limitations are observed in precipitation 229 

intensity, especially along the NEB coast and the ITCZ. Among the ensembles, CMIP showed the greatest 230 

differences in both intensity and positioning of observed precipitation patterns.  231 

Fig. 2 Annual (left column) and seasonal (right column, April to August or AMJJA) average precipitation (mm 232 

day-1) from the GPCP (a, f), CMIP (b, g), AMIP (c, h), hist-1950 (d, i), and highresSST-present (e, j) model 233 

ensembles during the period of 1983-2014. 234 

Figure 3 illustrates the annual (left column) and seasonal bias (right column) in precipitation among the 235 

ensembles for CMIP (Fig. 3a, e), AMIP (Fig. 3b, f), hist-1950 (Fig. 3c, g), and highresSST-present (Fig. 3d, h). 236 

All ensembles overestimated precipitation in the northern NEB and the adjacent latitudinal band of the TSA, with 237 

238 

ther hand, low bias is evident in the 239 

HighResMIP (Fig. 3c, d, g, h) in this same region. In all cases, precipitation was underestimated over the NEB 240 
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coast, especially during the peak activity of the EWDs. The highest bias in this region was found in the high-241 

resolution models (Fig. 3g, h). This bias is also evident, albeit to a lesser extent, in the HighResMIP (Fig. 3c, d), 242 

CMIP (Fig. 3a) and AMIP (Fig. 3b), particularly in the coastal areas of Bahia. The HighResMIP ensemble showed 243 

¹ over the semi-arid region of the NEB (Fig. 3c, d), corroborating with their better 244 

representation of the subsidence region over the São Francisco basin (Fig. 2f). Additionally, part of the northern 245 

Brazil showed lower precipitation in all ensembles. Overall, deviations were more pronounced in the seasonal 246 

climatology and in the CMIP ensembles (Fig. 3a, e).  247 

Fig. 3 Bias for annual (left column) and seasonal (right column) mean precipitation (mm day-1) for the CMIP (a,e), 248 

AMIP (b,f), hist-1950 (c,g), and highresSST-present (d,h) model ensembles during the period of 1983-2014. The 249 

dashed line corresponds to the Bias values. 250 

The spatial distribution of the spread between the ensemble members (Fig. 4) shows greater uncertainty at 251 

latitudes farther north and decreasing toward southern latitudes, particularly close to the ITCZ. Using a spread line 252 

253 

and 10°S over the TSA for the annual mean (Fig. 4a), while for the seasonal mean (Fig. 4e), this line is close to 254 

8°S on the continent and 12°S on the TSA. This feature is observed in all ensembles and is more pronounced in 255 

hist-1950, where the line is located near 20°S over the continent and 5°S on the TSA for the annual mean (Fig. 4c). 256 

Thus, the decrease is more pronounced over land compared to the TSA, especially in the annual mean. The spread 257 

in the seasonal mean of the HighResMIP shows the lowest uncertainty over the continent, especially in hist-1950, 258 

wher259 

In the seasonal maps (Fig. 4; right column), the NEB coast stands out as a region with higher uncertainty 260 

compared to the surrounding areas, especially in the CMIP (Fig. 4e) and AMIP (Fig. 4f) ensembles. 261 

Fig. 4 The annual (left column) and seasonal (right column) precipitation spread (mm day-1) for the CMIP (a, e), 262 

AMIP (b, f), hist-1950 (c, g), and highresSST-present (d, h) during the period of 1983-2014. The dashed line 263 

corresponds to the annual and seasonal climatological average of precipitation. 264 

3.2     Annual Cycle 265 

Figure 5 shows the annual cycle of precipitation in each subarea (Fig. 1) for CMIP models (green box), AMIP (red 266 

box), hist-1950 (gray box), and highresSST-present (blue box), along with GPCP data as a reference (dotted black 267 

line). All model sets successfully capture the annual precipitation cycle in all subareas. The model ensembles 268 

exhibit greater spread in the first half of the year (January to June). During this period, the largest discrepancies 269 

compared to GPCP data were observed, with overestimation of precipitation in all areas except for subareas 5.1 270 

and 6.1, where underestimation occurred.  271 

The uncertainty and discrepancy against GPCP data were more pronounced in subareas corresponding to 272 

the ITCZ (5.1, 5.2, 6.1, and 6.2), especially in the northern part (5.1 and 6.1), and in the CMIP models. In other 273 

subareas, the models showed greater proximity to the GPCP, especially between July and October, extending into 274 

December in subareas 2, 3, and 4, and from May to October in subarea 1. The AMIP and HighResMIP models 275 

exhibited similar patterns, which significantly differed from the CMIP models. Nonetheless, the hist-1950 models 276 

significantly deviated from these patterns from April to June in areas 1, 2, 3, and 5.2 (Fig. 5a, b, c, f). 277 

Fig. 5 Annual cycle of model and observation for the 8 subareas as depicted in Fig. 1. The green (CMIP), red 278 

(AMIP), gray (hist-1950), and blue (hishresSST-present) box plots represent the distribution of monthly 279 
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precipitation for all members in areas: 1(a), 2(b), 3(c), 4(d) , 5.1(e), 5.2(f), 6.1(g) and 6.2(h). The black line 280 

overlaid on the diagram represents the annual precipitation variability of GPCP and the open circles are the 281 

outliers. 282 

3.3       Individual Model Analysis 283 

Fig. 6 Taylor diagram for the annual mean precipitation in the 8 subareas (as shown in figure 1). The normalized 284 

standard deviation is shown on the x-axis and y-axis, and the correlation coefficient is shown on the curved side. 285 

The performance of individual models for annual mean precipitation across 8 subareas is shown in Taylor 286 

diagrams for CMIP (Fig. 11a), AMIP (Fig. 11b), hist-1950 (Fig. 11c), and highresSST-present (Fig. 11d) models. 287 

CMIP, AMIP, hist-1950, and highresSST-present models exhibit normalized standard deviation (correlation) 288 

values between 0.57- -0.987), 0.37- -0.990), 0.14- -289 

0.96), and 0.73- -0.993), respectively. Same coupled models within CMIP, exhibited 290 

correlation values close to 0, such as MPI-ESM1-2-HR (0.001) and EC-Earth3-Veg (0.009), as well as BCC-291 

CSM2-MR (0.018) from hist-1950. HighresSST-present models showed the highest correlations, with HadGEM3-292 

GC31-HH from hist-1950 being the only model with a correlation exceeding 0.90 in area 5.1. Among CMIP, 293 

AMIP, and highresSST-present models, area 6.2 exhibited the highest correlations, followed by 5.2 and 1, while 294 

area 5.1 showed the lowest values in AMIP and highresSST-present models. Thus, better model performance is 295 

observed in the south of the ITCZ, the semi-arid region, and the NEB coast compared to the north of the ITCZ and 296 

adjacent ATS. For hist-1950 models, the highest correlations are found in area 1, followed by areas 6.1 and 5.2, 297 

with the lowest correlation observed in area 3, indicating better performance in the semi-arid and ITCZ than the 298 

adjacent ATS. Regarding the normalized standard deviation, highresSST-present models show values closest to 299 

the reference (1), while CMIP models are the farthest away. In CMIP, AMIP, and highresSST-present models, 300 

301 

(NEB's coast and ATS). This suggests that although models may exhibit high correlation in certain areas, they also 302 

show greater dispersion of annual means compared to GPCP in those same areas. 303 

Despite some models performing well in certain regions and poorly in others, consistency across all areas 304 

was considered in selecting the best models. Noteworthy models include ECMWF-IFS-HR and MRI-AGCM3-2-H 305 

from highresSST-present, along with ECMWF-IFS-LR and CMCC-CM2-VHR4. ECMWF-IFS-HR exhibited 306 

correlation exceeding 0.92 in all areas except for area 3 (0.88), outperforming its lower-resolution counterpart. 307 

ECMWF-IFS-LR, which showed values over 0.90 except for areas 3 (0.83) and 5.1 (0.86), with both models 308 

-IFS- -309 

IFS-LR). CMCC-CM2-VHR4 achieved values exceeding 0.90, except for area 5.1 (0.71). MRI-AGCM3-2-H 310 

exhibited correlations exceeding 0.92, except for areas 2 (0.80), 3 (0.71), and 4 (0.85), with standard deviations 311 

-CM2-SR5 stood out with a correlation 312 

exceeding 0.92, except for area 5.1 (0.67), with standard deviations between 0.76 and 1.62. INM-CMS-0 and 313 

CAS-FGOALS-I3-L exhibited correlations exceeding 0.90 in areas 5.2 and 6.2, respectively. BCC-CSM2 from 314 

CMIP demonstrated a correlation exceeding 0.90 in area 6.2, outperforming its higher-resolution counterpart, 315 

which exhibited the lowest correlation. Despite inferior results compared to highresSST-present, ECMWF-IFS-HR 316 

and CMCC-CM2-VHR4 also performed well among hist-1950 models. 317 

Fig. 7 Annual and seasonal values of RMSE  (a), and annual values of R² and TSS (b), corresponding 318 

to the average of the 8 subareas for each model. 319 
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To select the best performing models, we examine the RMSE (Fig. 7a), TSS and Pearson correlation (Fig. 320 

7b) for both annual and seasonal means of the eight subareas for each model, see supplementary material Table 1S 321 

for CMIP models, Table 2S for highresSST-present models, Table 3S for hist-950 models and Table 4S for AMIP 322 

models. The results indicate that the RMSE is generally lower for the annual period compared to seasonal period, 323 

with CMIP models exhibiting the highest values: 1.6- -324 

-f3-L and AS-325 

RCEC.TaiESM1 standing out from the rest. Among the HighResMIP models, 4 highresSST models had RMSE 326 

-IFS-HR, ECMWF-IFS-LR, CMCC-CM2-VHR4, and MRI-AGCM3-2-H, along with 327 

the ensemble. In contrast, only the HadGEM3-GC31-HH model from the hist-1950 had R328 

The TSS index and Pearson correlation varies from 0 to 1, with values closer to 1 indicating better model 329 

performance. In CMIP models, only the NCC.NorESM2-MM model exhibits a TSS exceeding 0.6 (0.619). The 330 

four aforementioned highresSST models had TSS above 0.8 and average correlation above 0.9. The HadGEM3-331 

GC31-HH model from hist-1950 exhibited both correlation and TSS above 0.8. Standout AMIP models were 332 

CMCC-CM2-SR5 with TSS of 0.837, and average correlation of 0.910, and AS-RCEC.TaiESM1 with 0.859 and 333 

0.894, respectively. 334 

Table 3 lists the top three performing models from each ensemble. CAS.FGOALS-f3-L and AS-335 

RCEC.TaiESM1 models excelled in both CMIP and AMIP ensembles, with AMIP showing the better results 336 

overall. CMCC-CM2-SR5 was the best-performing model among AMIP models, although its CMIP version did 337 

not yield satisfactory results, having one of the lowest TSS (0.401). ECMWF-IFS-LR from highresSST showed 338 

excellent performance, ranking second best overall, but was not included in the set as its values were slightly 339 

lower than ECMWF-IFS-HR, a higher-resolution model, emphasizes the role of resolution in model performance. 340 

Table 3 TSS (annual), RMSE (annual and seasonal), bias (annual and seasonal), R² (annual), and normalized 341 

standard deviation of the models with the best performance from each set, corresponding to the average of the 8 342 

subareas for each model. 343 

3.4      TRACK 344 

Due to missing U and V wind components within the study period for some selected models, the analysis of 345 

EWDs was conducted on 9 out of the 12 selected models, comprising two from each model set. Only the 850 hPa 346 

level was evaluated in contrast to previous studies (GOMES et al., 2015 and 2019; HOLLIS et al., 2023) due to 347 

data limitations. For the same reason, the ensembles were not included in this analysis stage despite achieving 348 

good results. 349 

The EWD's identified in the models showed similar characteristics to those reported by Gomes et al. 350 

(2019), with mean lifetimes ranging from 5.84 to 6.51 days and phase sp351 

352 

353 

20354 

355 

models, with the NCC.NorESM2-MM from CMIP close356 

accentuated in the HighResMIP coupled and atmospheric models, which showed ~3 times more EWDs (74.7 and 357 

et al. (2023), 358 

the most prominent level of EWD occurrence in the TSA is at 700 hPa. Hence, the choice to evaluate only at the 359 
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850 hPa might have resulted in increased noise, particularly in high-resolution models, with some cyclonic 360 

vorticity centers potentially not being accurately characterized as EWDs. 361 

Table 4 EWD characteristics identified by TRACK method and the correlation between models and ERA5 and 362 

Gomes et al. (2019) of EWD interannual variability (R²) from 1989 to 2019. 363 

Although the differences between ERA5 (this work) and ERA-Interim (GOMES et al., 2019), we observe 364 

the same variability pattern over the years (Fig. 8). Figure 8 presents the EWD frequency from 1989 to 2009 for 365 

each model. Evaluating the interannual variations of EWD between the models and from ERA5 and the 366 

climatology of Gomes et al. (2019), a low correlation is observed in both cases, with the ECMWF-IFS-HR 367 

(highresSST-present) and AS-RCEC.TaiESM1 (highresSST-present) (AMIP) presenting the highest values 368 

(~0.35). Because of that, the CMIP6 models were unable to reproduce the interannual variation of EWDs as 369 

observed in both climatology and ERA5, making it impossible to observe variations during El Niño and La Niña 370 

years. 371 

Fig. 8 EWD's frequency from 1989 to 2019 identified in coupled models (red bars) and atmospheric models (blue 372 

bars) for CMIP and AMIP models (a), and for hist-1950 and highresSST-present (b). The solid black dashed line 373 

represents the EWD's frequency identified by ERA5 reanalysis data, and the solid line represents the EWD's 374 

climatological frequency from Gomes et al. (2019). 375 

Assessing the EWD's genesis locations using ERA5 (Fig. 9a), a concentration was observed between 25-376 

15°W, with a northwest-southeast inclination and another cluster near the African coast between 5-10°E. These 377 

core positions align closely with the two main systems associated with EWD formation (Gomes et al., 2019), 378 

namely the frontal remnants propagating at low latitudes and the convective clusters off the west coast of Africa. 379 

While these cores were observed in all models, except for the HighResMIP models, additional cores were detected 380 

in other models: one positioned farther north between the aforementioned cores and another near the NEB coast 381 

(Fig. 9b-e). 382 

Analysis of the EWD density map based on ERA5 reveals two centers of higher EWD frequency, one near 383 

the NEB coast and the other near the west coast of Africa, coinciding with the genesis regions of these systems. 384 

The CMCC-CM2-VHR4 models from hist-1950 and highresSST-present (Fig. 9m) were the only ones unable to 385 

capture both of these core clusters, although their magnitude was closer to CMIP and AMIP models. Overall, the 386 

HighResMIP models better represented the magnitude of both EWD's genesis and density, with the ECMWF 387 

models standing out (Fig. 9g, i, p, r). 388 

Fig. 9 Tracking statistics at 850 hPa to the rainy season (AMJJA) of 1989-2009. Genesis density (left column) per 389 

unit area ( of EWDs 390 

based on ERA5 (a, j) and CMIP models: NorESM2 (b, i), TaiESM1 (c, j); AMIP model: CMCC-CM2 (d, k), 391 

TaiESM1 (e, l); hist-1950 models: CMCC-CM2-VHR4 (f, m) and ECMWF-IFS-HR (g, n); highresSST models: 392 

CMCC-CM2-VHR4 (f, m) and ECMWF-IFS-HR (g, n). The continuous line corresponds to the values. 393 

4 Conclusion 394 

A comprehensive evaluation was conducted using 17 CMIP (historical), 16 AMIP, 7 hist-1950, and 10 395 

highresSST-present models, focusing on their ability in replicating the annual and seasonal evolution of 396 

precipitation associated with EWDs over the southern tropical Atlantic. While the model ensembles exhibited 397 
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consistent representations of precipitation, they struggled to accurately capture the precipitation intensity over the 398 

NEB coast, often underestimating it, while exhibiting overestimation in the northern NEB and TSA regions. A 399 

larger discrepancy between models and observations was found from January to June, with prevalent 400 

overestimation across most subareas. The highest uncertainty among the models was observed at the northern 401 

latitudes, whereas it was lower at the southern latitudes. 402 

Analysis of normalized standard deviation and correlation revealed that better model performance was 403 

generally observed in regions south of the ITCZ, including the semi-arid and NEB coast, compared to those north 404 

of the ITCZ and adjacent TSA. On the other hand, standard deviations were better captured north of the ITCZ, 405 

indicating that despite higher correlation over some areas, certain models exhibited greater dispersion in the same 406 

areas. 407 

CMIP models showed the poorest correlation and standard deviation, while highresSST-present models 408 

performed the best, a trend echoed across multiple statistical measures such as the RMSE and TSS. Top-409 

performing models from each ensemble were identified, with atmospheric models, particularly those with higher 410 

resolutions, demonstrating superior performance compared to coupled models. Better performing models include 411 

CAS.FGOALS-f3-L and AS-RCEC.TaiESM1 in the CMIP and AMIP, with the AMIP version showcasing better 412 

results than its CMIP counterpart. CMCC.CMCC-CM2-SR5 emerged as the best-performing model among the 413 

AMIP models; however, in CMIP, it presented the lowest TSS values. In the hist-1950 and highresSST ensembles, 414 

CMCC-CM2-VHR4 and ECMWF.ECMWF-IFS-HR models emerged as top performers, particularly in their 415 

atmospheric versions. Overall, in our analysis, atmospheric models outperformed coupled models, especially those 416 

with higher resolutions (highresSST-present). 417 

The three best-performing models in each set were selected: CMIP (AS-RCEC.TaiESM1, CAS.FGOALS-418 

f3-L, and NCC.NorESM2-MM), AMIP (CAS.FGOALS-f3-L, AS-RCEC.TaiESM1, and CMCC.CMCC-CM2-419 

SR5), hist-1950 (HadGEM3-GC31-HH, CMCC-CM2-VHR4, and ECMWF.ECMWF-IFS-HR), and highresSST 420 

(MRI.MRI-AGCM3-2-H, CMCC-CM2-VHR4, and ECMWF.ECMWF-IFS-HR). 421 

Despite data limitations, the TRACK analysis was performed on a subset of models (9 out of 12), revealing 422 

and 7.29 423 

424 

phases between 1989 and 1993, consistent variability patterns were still observed over time. However, most 425 

models overestimated EWD frequ426 

few models (e.g., NorESM2-427 

variation in EWDs, except CMCC-CM2-SR5 (AMIP), NCC.NorESM2-MM (CMIP) and CMCC-CM2-VHR4 428 

(hist-1950). 429 

Two major genesis areas of EWDs were found from observations: one over the TSA and the other near the 430 

African coast. Models generally captured the key features observed in ERA5, aligning with known EWD 431 

formation systems. Most models successfully reproduced core positions near the NEB coast and the African west 432 

coast, with HighResMIP models, particularly those from ECMWF, demonstrating superior performance in 433 

capturing both core positions and magnitudes. 434 

In conclusion, while improvements are still necessary, CMIP6 models exhibited promising capabilities in 435 

simulating spatial and temporal patterns in precipitation, as well as EWD characteristics over the NEB and 436 

adjacent TSA regions. Atmospheric models, especially those with higher spatial resolution, performed better, 437 

emphasizing the importance of higher resolution in model outcomes. 438 

 439 
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Period 
(days) 

Wavelength 
(km) 

Phase 
velocity 
(ms-1) 

Levels (hPa) Methods/Data References 

4-6 6000 14 700-300 v, spectral analysis Neiva 1975 
4 4000 10 - Satellite Yamazaki 1975 

3-5 - 12 - Sounding Kayano 1979 
3-6 6200 12 850 v, ROLE, spectral 

analysis 
Chou 1990 

4 3500-4500 10-13 1000-500 v, EOF and EEOF Espinoza 1996 
3.5-3.8 2900-3800 9.8-11.6 700 v, composites, satellite Mota 1997 

3-6 - - 850-500 v, sounding Coutinho 2007 
3-9 2000-4000 6-12 700 Spectral analysis, v, 

composites, 
Diedhiou et al. 

2010 
5 4000 10 850 and 700 v, satellite, sounding Torres 2011 

5,3 4307 9.5 1000
200 

u, v, w, composites, 
synoptic analysis 

Pontes da Silva 
2011 

5,5 4500 9.5 1000
200 

u, v, w, 
composites, Track 

Gomes et al. 
2015 

4 6 4500 9.5 1000
200 

u, v, w, 
composites, Track 

Gomes et al. 
2019 
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Research Centers/Groups Institute (ID) Model (Spatial Resolution latitude 
x longitude) 

CMIP (historical) 

Research Center for Environmental 
Changes 

AS-RCEC TaiESM1 (0.94° x 1.25°) 

Beijing Climate Center, China 
Meteorological Administration 

BCC BCC-CSM2-MR (1.1° × 1.1°) 

Chinese Academy of Sciences CAS FGOALS-f3-L (1° × 1.25°) 
Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
CMCC CM2-SR5 (0.94° × 1.25°) 

CM2-HR4 (0.94° x 1.25°) 

EC-EARTH consortium EC-EARTH EC-Earth3 (0.7° × 0.7°) 
EC-Earth3-Veg (0.7° × 0.7°) 

Institute for Numerical Mathematics INM INM-CM4-8 (1.5° × 2°) 
INM-CM5-0 (1.5° × 2°) 

Max Planck Institute for Meteorology MPI-M MPI-ESM1-2-HR (0.9° × 0.9°) 

Meteorological Research Institute MRI MRI-ESM2-0 (1.1° × 1.1°) 

Norwegian Climate Centre NCC NorESM2-MM (0.9° × 1.3°) 

National Center for Atmospheric 
Research 

NCAR CESM2 (0.95° × 1.25°) 
CESM2-WACCM (0.95° × 1.25°) 
CESM2-WACCM-FV2 (1.95° x 

2.5°) 
National Oceanic and Atmospheric 

Administration (NOAA) Geophysical 
Fluid Dynamics Laboratory 

NOAA GFDL GFDL-CM4 GFDL-ESM4 (1° × 1°) 

Seoul National University SNU SAM0-UNICON (0.9° × 1.3°) 

AMIP 

Research Center for Environmental 
Changes 

AS-RCEC TaiESM1 (0.94° x 1.25°) 

Chinese Academy of Meteorological 
Sciences 

CAMS CAMS-CSM1-0 (1.1° × 1.1°) 

Chinese Academy of Sciences CAS FGOALS-f3-L (1° × 1.25°) 
 

Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CMCC CM2-SR5 (0.94° × 1.25°) 

EC-EARTH consortium EC-EARTH EC-Earth3 (0.7° × 0.7°) 
EC-Earth3-Veg (0.7° × 0.7°) 

EC-Earth3-AerChem (0.7° x 0.7°) 
EC-Earth3-CC (0.7° × 0.7°) 

Institute for Numerical Mathematics INM INM-CM4-8 (1.5° × 2°) 
INM-CM5-0 (1.5° × 2°) 

Max Planck Institute for Meteorology MPI-M MPI-ESM1-2-HR (0.93° × 0.93°) 

National Center for Atmospheric 
Research 

NCAR CESM2 (0.95° × 1.25°) 
CESM2-WACCM (0.95° × 1.25°) 
CESM2-WACCM-FV2 (1.95° x 

2.5°) 
National Oceanic and Atmospheric 

Administration (NOAA) Geophysical 
Fluid Dynamics Laboratory 

NOAA GFDL GFDL-CM4 (1° × 1°) 
GFDL-ESM4 (1° × 1°) 

hist-1950 

European Centre for Medium-Range 
Weather Forecasts 

ECMWF ECMWF-IFS-HR (0.50° x 0.50°) 
  

Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CMCC CM2-VHR4 (0.23° x 0.31°) 

Research Center for Environmental 
Changes 

AS-RCEC HiRAM-SIT-LR (0.5° x 0.5°) 

Chinese Academy of Sciences CAS FGOALS-f3-H (0.25° x 0.25°) 



 
 

Beijing Climate Center, China 
Meteorological Administration 

BCC BCC-CSM2-HR (0.45° × 0.45°) 

Max Planck Institute for Meteorology MPI-M MPI-ESM1-2-XR (0.47° × 0.47°) 

Met Office Hadley Centre MOHC HadGEM3-GC31-HM (0.23° × 
0.35°) 

highresSST-present 

European Centre for Medium-Range 
Weather Forecasts 

ECMWF ECMWF-IFS-HR (0.50 °x 0.50°) 
ECMWF-IFS-LR (1.0° × 1.0°) 

Institut Pierre-Simon Laplace IPSL IPSL-CM6A-ATM-HR (0.50° x 
0.70°) 

Japan Agency for Marine-Earth 
Science and Technology, Atmosphere 

and Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies 

MIROC NICAM16-8S (0.28° × 0.28°) 

Max Planck Institute for Meteorology MPI-M MPI-ESM1-2-XR (0.47° × 0.47°) 

Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CMCC CM2-VHR4 (0. 31° x 0.23°) 

Research Center for Environmental 
Changes 

AS-RCEC HiRAM-SIT-LR (0.56° x 0.70°) 
 

Chinese Academy of Meteorological 
Sciences 

CAMS CAMS-CSM1-0 (0.46° × 0.46°) 

Met Office Hadley Centre MOHC HadGEM3-GC31-HM (0.23° × 
0.35°) 

Meteorological Research Institute MRI MRI-AGCM3-2H (0.56° × 0.56°) 
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MODEL TSS RMSE_A 
(mm 

 

RMSE_S 
(mm 

 

BIAS_A 
(mm 

 

BIAS_S 
(mm 

 

R² DV_norm 
(mm 

 
CMIP 

AS-RCEC.TaiESM1 0.545 2.269 2.474 1.323 2.019 0.734 1.790 
CAS.FGOALS-f3-L 0.551 2.338 2.715 1.245 2.873 0.539 1.293 
NCC.NorESM2-MM 0.619 1.606 1.664 0.719 3.563 0.666 1.263 

AMIP 
CAS.FGOALS-f3-L 0.800 1.094 1.166 0.667 2.740 0.873 0.980 
AS-RCEC.TaiESM1 0.859 1.158 1.147 0.761 2.929 0.894 1.134 

CMCC-CM2-SR5 0.837 1.239 1.362 0.934 2.849 0.910 1.184 
hist-1950 

CMCC-CM2-VHR4 0.648 1.552 1.160 0.095 -0.345 0.710 2.095 

ECMWF-IFS-HR 0.718 1.535 1.578 0.748 0.776 0.792 2.182 

HadGEM3-GC31-HH 0.852 0.852 0.687 -0.028 0.036 0.905 1.871 

highresSST-present 

MRI-AGCM3-2-H 0.873 0.810 0.667 0.381 0.285 0.894 1.178 
CMCC-CM2-VHR4 0.881 0.964 0.917 0.572 0.508 0.918 0.954 

ECMWF-IFS-HR 0.920 0.815 0.866 0.490 0.563 0.943 1.100 
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MODELS Mean phase 
speed (m/s) 

Mean lifetime 
(day) 

Mean frequency 
(EWD/year) 

R² 
(ERA5) 

R² 
(Gomes et al, 

2019) 

CMIP 

NCC.NorESM2-
MM 

6.65 6.51 31.1 -0.05 -0.05 

AS-RCEC.TaiESM1 6.37 6.31 47.6 -0.10 -0.10 

AMIP 

CMCC-CM2-SR5 6.62 6.42 49.5 0.01  0.01 

AS-RCEC.TaiESM1 7.07 5.83 46.1 0.35 0.35 

hist-1950 

CMCC-CM2-VHR4 6.90 6.12 64.5 0.23  0.23 

ECMWF-IFS-HR 6.94 6.68 75.0 0.06 0.06 

highresSST-present 

CMCC-CM2-VHR4 6.7 5.84 74.7 -0.31 -0.31 

ECMWF-IFS-HR 7.07 5.99 78.6 0.34 0.34 

 

ERA5 7.29 5.78 27.7   

Gomes et al (2019) 9.5 5 25   

 




