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ABSTRACT

Automated measurements of the ratio of concentra-
tions of methane and carbon dioxide, [CH4]:[CO,], in
breath from individual animals (the so-called “sniffer
technique”) and estimated CO, production can be used
to estimate CH,4 production, provided that CO, produc-
tion can be reliably calculated. This would allow CH,
production from individual cows to be estimated in large
cohorts of cows, whereby ranking of cows according to
their CH4 production might become possible and their
values could be used for breeding of low CHy-emitting
animals. Estimates of CO, production are typically
based on predictions of heat production, which can be
calculated from body weight (BW), energy-corrected
milk yield, and days of pregnancy. The objectives of the
present study were to develop predictions of CO, produc-
tion directly from milk production, dietary, and animal
variables, and furthermore to develop different models
to be used for different scenarios, depending on available
data. An international dataset with 2,244 records from
individual lactating cows including CO, production and
associated traits, as dry matter intake (DMI), diet com-
position, BW, milk production and composition, days
in milk, and days pregnant, was compiled to constitute
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the training dataset. Research location and experiment
nested within research location were included as random
intercepts. The method of CO, production measurement
(respiration chamber [RC] or GreenFeed [GF]) was con-
founded with research location, and therefore excluded
from the model. In total, 3 models were developed based
on the current training dataset: model 1 (“best model”),
where all significant traits were included; model 2 (“on-
farm model”), where DMI was excluded; and model 3
(“reduced on-farm model”), where both DMI and BW
were excluded. Evaluation on test dat sets with either
RC data (n = 103), GF data without additives (n = 478),
or GF data only including observations where nitrate,
3-nitrooxypropanol (3-NOP), or a combination of nitrate
and 3-NOP were fed to the cows (GF+: n =295), showed
good precision of the 3 models, illustrated by low slope
bias both in absolute values (—=0.22 to 0.097) and in
percentage (0.049 to 4.89) of mean square error (MSE).
However, the mean bias (MB) indicated systematic over-
prediction and underprediction of CO, production when
the models were evaluated on the GF and the RC test
datasets, respectively. To address this bias, the 3 mod-
els were evaluated on a modified test dataset, where the
CO, production (g/d) was adjusted by subtracting (where
measurements were obtained by RC) or adding absolute
MB (where measurements were obtained by GF) from
evaluation of the specific model on RC, GF, and GF+ test
datasets. With this modification, the absolute values of
MB and MB as percentage of MSE became negligible. In
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conclusion, the 3 models were precise in predicting CO,
production from lactating dairy cows.

Key words: tracer gas, cattle, heat production, model
evaluation

INTRODUCTION

Quantification of enteric methane (CH,4) production is
increasingly important, as it is required to evaluate CH,
mitigation strategies in greenhouse gas inventories and
for calculating the carbon footprint of the beef and dairy
industry. However, large-scale direct measurement of
CH, with respiration chambers (RC), GreenFeed head
chambers (GF), or the sulfur hexafluoride method (SF)
is difficult, labor intensive, and costly. To address these
challenges, models for predicting CH, production in
cows fed specific diets have been developed (Appuhamy
et al., 2016; Niu et al., 2018), although between-animal
variation of CH, emission is ignored. Furthermore, CHy-
reducing feed additives are foreseen to be implemented in
farm practice in the near future, and therefore prediction
of CH, will require models that account for the effect
of different additives, which requires a comprehensive
dataset.

The sniffer technique is an alternative approach to es-
timate individual enteric CH4 production in large-scale
settings (Madsen et al., 2010; Lassen et al., 2012), and
it offers an economically favorable alternative compared
with other methods (RC, GF, and SFy). Installation of the
sniffer equipment in combination with a concentrate bin
will allow measurements of the ratio between concentra-
tion of CH, and concentration of carbon dioxide (CO,)
in breath exhaled by the cows, when they visit the bin
(Madsen et al., 2010). Compared with the approach of
predicting CH,4 production by a model, between-animal
variation is accounted for by the sniffer technique, as
the CO, production is calculated and used to estimate
the individual CH4 production based on the ratio of
[CH4]:[CO,] in exhaled breath. The sniffer technique as
such is therefore not a quantitative measure of emissions,
like RC and GF, but it relies on calculating CH4 emis-
sion by combining the predicted CO, production with gas
concentration ratio measured by use of a given instru-
ment. The idea is that CO, production is more accurately
predicted from animal, dietary, and production traits than
CH,. Therefore, CO, production from dairy cows can be
estimated as in Pedersen et al. (2008) and Madsen et al.
(2010) in Equations [1] and [2], respectively:

CO, (L/d) = HPU/d x 180 L COy/h/HPU x 24 h, [1]

where heat-producing units (HPU) are equal to the heat
production (HP) of an animal (when expressed in W/d)
divided by 1,000 W; and
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CO, (L/d) = HP (kJ/d)/21.75 kJ/L CO,, [2]
where 21.75 kJ is an estimate of HP when 1 L of CO, is
exhaled due to the metabolism of nutrients of an aver-
age cow diet (Chwalibog, 1991). Furthermore, because
the unit of HP in Equation [3] is W/d, and 1 W =1 J/s,
therefore HP (kJ/d) = (HP (W/d) x 60 s x 60 min x 24
h)/1,000.

One of the equations currently used to estimate HP is
based on metabolic BW (BW""%), ECM (kg/d; Sjaunja et
al., 1990), and days in pregnancy (DIP), and it originates
from a report by Commission Internationale du Génie
Rural (CIGR, 2002), where the following model was
developed to quantify needed barn ventilation on group
level of dairy cows:

Heat production (W/d) = 5.6 x BW (kg"")

+22 x ECM (kg/d) +1.6 x 10°° x DIP”. [3]
Measuring the CH, production from cows in large-scale
settings plays a crucial role in identifying low CH,-emit-
ting cows, forming the basis for genetic selection aimed
at reducing CH, emission. This approach was used by
Manzanilla-Pech et al. (2022), where sniffer data created
the basis for calculating genetic correlations between
CHy, traits and other phenotypes. The approach of using
CO, as an internal marker has also been used to predict
ammonia emissions at barn level (Kai et al., 2017).
Measuring gas emissions by RC is considered “the gold
standard,” but although the CH, and CO, production as
such is not measured with the sniffer method, measured
CH, concentration values by the sniffer method are well
correlated (r = 0.75, based on random cow effects) with
data obtained in RC (Difford et al., 2019). However,
based on a minor Danish dataset and using Equation [3]
in combination with Equation [1] on data from RC, Hell-
wing et al. (2013) concluded on a dataset, which is now
a minor part of the current training dataset from which
the models are derived, that the sniffer method under-
estimated the actual production of CO, and thereby the
production of CH, as well. A part of the explanation lays
in the use of HP as an intermediate step to calculate CO,
production, as HP is dependent on the energy balance of
the cow (Huhtanen et al., 2020) and nutrient composition
of the diet (Kirchgessner and Muller, 1998). The sniffer
method only measures the concentration of CO, and CHy,
and, to estimate CH, emission from cattle, it relies on
a prediction equation for CO, production. We hypothe-
sized that CO, production can be predicted directly from
dietary variables, milk production, and animal variables.
The objectives were to (1) identify variables that explain
variance in CO, production from dairy cows, (2) develop
a CO, prediction model with the most determining vari-
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ables, ignoring that some variables may be difficult to
obtain on farms, and (3) develop models that can be ap-
plied on commercial farms to estimate CO, production
from dairy cows.

MATERIALS AND METHODS

Dataset

Members of the Feed and Nutrition Network of the
Global Research Alliance on Agriculture Greenhouse
Gases (FNN, 2023) provided data for the present study.
As some research groups have more than 1 experimen-
tal location, the dataset contains data from 12 research
groups, covering 15 different locations in North Amer-
ica, Europe, and Oceania, derived from 76 experiments
conducted from 1989 until 2019 (Tables 1 and 2). Some
limitations for inclusion of data were predefined: (1) to
ensure data quality, measurement of gas exchange should
have been performed either in RC or with GF (C-Lock
Inc., Rapid City, SD); (2) only data from lactating dairy
cows were included; (3) records of CO, production
should be available; and (4) data had to be on an indi-
vidual animal level. The initial dataset contained 3,179
individual animal records. Because BW, ECM yield, and
DIP were data used to predict HP (CIGR, 1984), they
were considered as being highly important in the present
study as well due to their expected correlation to CO,
production, but not all datasets included DIP.

Data Pre-Processing

Data pre-processing was necessary before model
development to cope with incomplete and inconsistent
records, or use of different units for a given variable. Re-
cords based on a diet containing monensin were excluded
(n = 23) given its noncompliance with EU regulations.
Despite the feed additives 3-nitrooxypropanol (3-NOP)
and nitrate not being used in all countries at present, re-
cords were kept in the training dataset if these specific
additives were supplied to the cows. Records with miss-
ing values for CO, (n = 192) production were also ex-
cluded. Furthermore, records from cows with more than
300 DIM (n = 140) were excluded, as they constitute a
small group of animals in the dataset, which is not repre-
sentative for a commercial farm. After this selection, the
pre-training dataset contained n = 2,824 records.

Records were categorized into 4 breed groups, (1)
Holstein, (2) Jersey, (3) Ayrshire, or (4) other breeds and
crossbreeds, and 3 parity groups: (1) first, (2) second,
or (3) third parity and higher. Emissions of CO, were
reported as grams per day (g/d) or liters per day (L/d).
If the research locations delivered the measured gas
exchange in liters per day, the ideal gas law was used
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Table 1. Overview of each research location in the refined training dataset (n = 2,244) after data pre-processing

Parity of lactating cows (n)

Breeds (n)

Gas measuring method (n)

Experiments (n)

n

Research location

First (118), second (112), third and older (83)
First (3), second (6), third and older (19)

Second (9), third and older (47)

Holstein (271), Jersey (42)

Others/crossbreeds

Respiration chamber

GreenFeed

18

313

Aarhus University

28

AgResearch Lincoln

Others/crossbreeds

Holstein

56 Respiration chamber

AgResearch Palmerston North

First (23), second (52), third and older (121)
First (4), second (7), third and older (30)

Respiration chamber

Agriculture Victoria Research

ETH Zurich

Holstein (7), others/crossbreeds (34)

Holstein

Respiration chamber

First (27), second (56), third and older (58)

Respiration chamber

141

Flanders Research Institute for

Agriculture, Fisheries and Food

INRAE

First (17), second (56), third and older (45)

Holstein
Holstein

Respiration chamber

GreenFeed

118

418

PennState

First (148), second (147), third and older (123)

Second (10), third and older (9)

Holstein

Respiration chamber

19

Research Institute for Farm Animal

Biology
Swedish University of Agricultural

First (167), second (128), third and older (160)

Ayrshire (96), others/crossbreeds (359)

GreenFeed

455

Sciences
TU Munich

First (3), second (17), third and older (31)

Second (22), third and older (23)

Others/crossbreeds

Respiration chamber

51

Holstein (22), Jersey (23)

Respiration chamber

45

USDA Beltsville Agricultural Research

Center
University of Milan

First (18), second (33), third and older (11)

Second (25), third and older (81)

Holstein
Holstein

Respiration chamber
Respiration chamber

62
106
195

2,244

University of Reading

First (52), second (55), third and older (88)

Holstein

Respiration chamber (1,343)  Ayrshire (96), Holstein (1,555),

Respiration chamber
GreenFeed (901)

Wageningen University and Research

All

First (580), second (735), third and older (929)

76

6773

Jersey (65), others/crossbreeds (528)
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Table 2. Summary statistics of the continuous parameters included in the
training dataset (n = 2,244)

Item n Mean SD  Minimum Maximum
Dietary composition

OM (g/kg DM) 2,227 924 17.0 833 953

CP (g/kg DM) 2,244 167 22.6 81.0 253

CF (g crude fat’/kg DM) 2,244 38.8 11.22 12.1 74.0
DMI (kg/d) 2,244 20.7 4.49 6.80 37.2
Milk (kg/d) 2,244 30.1 9.09 2.65 65.7
ECM (kg/d) 2,244 30.6 8.35 291 71.5
Milk composition

CF (g crude fat/kg) 2,244 42.7 8.74 13.2 88.5

CP (g/kg) 2,244 333 3.92 23.0 53.9

Lactose (g/kg) 2,148 47.7 2.87 26.0 56.3
Days in pregnancy (d) 562 56 60.0 0 233
DIM (d) 2,244 137 69.2 7 299
BW (kg) 2,244 606 82.0 341 969
CO, (g/d) 2,244 12,402 2,023.0 4,937 20,950
CH, (g/d) 2,241 397 85.8 136 729

to convert to grams per day, with the conversion factor
depending on the temperature and pressure at the specific
research location. The outcome of the models is CO, in
grams per day at standard temperature and pressure (0°C
and 101.325 kPa). If needed, the outcome of the model
can be converted to liters per day as CO, (L/d) = CO,
(g/d) x 0.509 (L/g). Yield of ECM (3.14 MJ/kg) was
calculated according to the respective ECM equations
in Sjaunja et al. (1990) based on fat, protein, and lac-
tose concentration, taking into account lactose reported
as monohydrate or in anhydrous form (15.71 kJ/g and
16.54 kl/g, respectively). Conversion from true protein
to CP was performed with the factor 1.058 (DePeters and
Ferguson, 1992).

Model Development

Individual DMI is often available at research facilities
but not on commercial farms. In addition, only some
commercial farms continuously track cows’ BW. Due to
the difference in data availability in different settings,
3 models were developed to cover these different sce-
narios. Before the continuous predictor variables were
included in the model development, Pearson correlation
coefficients (r) were calculated (Supplemental Table S1,
see Notes). In case of 2 variables being highly correlated
(r > 0.5), only the predictor variable with the highest
correlation coefficient to CO, production was chosen.
This, for instance, excluded milk production (kg/d) and
ECM (kg/d) from being predictor variables in the same
model (r = 0.93). They were equally correlated with CO,
production (both r = 0.50), and ECM was chosen for
model development, as inclusion of milk production led
to a high number of interactions between milk produc-
tion and milk nutrients (data not shown). Also, DMI and
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ECM were highly correlated (r = 0.75), where DMI had
the strongest correlation with CO, production (r = 0.69);
therefore they could not be predictor variables in the same
model. Furthermore, milk crude fat (CF; g/kg) and milk
CP (g/kg) were highly correlated (r = 0.54). Therefore,
only milk CF was included in the model development,
since its correlation to CO, production was stronger (r =
—0.19) than it was for milk CP (r = —0.09). Based on the
described exclusion of predictor variables, continuous
predictor variables were DMI, ECM yield, concentra-
tions of fat and lactose in milk, BW®”, DIM, DIP, and
dietary CP and CF concentration. Parity and breed were
set as discrete factors. Breed was only to some extent
confounded to research location (Table 1); therefore it
was per default included in all models as a fixed effect.
Also, research location and experiment nested within
research location were per default included as random
effects (allowing individual intercepts) in all 3 models.
Method of measuring CO, production (RC or GF) was
confounded with research location, and none of the re-
search locations provided data obtained by both GF and
RC. Therefore, measurement method was not included
as a predictor variable by itself, as it was indirectly in-
cluded through the random effect of research location.
As some of the variables by nature have different units
(e.g., DIM and ECM), all values were centered (mean
= 0) by using the “scale” function in R (R Core Team,
2023). No standardization was performed (original varia-
tion was kept) to ease the implementation of the mod-
els. All statistical analyses were conducted in R 4.3.0
(R Core Team, 2023). The selection of each model was
performed with the buildmer function (Voeten, 2023), us-
ing the default criterion likelihood ratio test for selection
of predictor variables. Using Akaike’s information crite-
rion or Bayesian information criterion as criteria instead
of likelihood ratio test resulted in the selection of the
same variables, regardless of whether the stepwise inclu-
sion or elimination followed a “forward” or “backward”
direction order. The 3 basic models derived from the
buildmer function were tested for increased complexity
by adding interactions and afterward testing for inclu-
sion of a random slope of one of the predictor variables.
Analysis of variance tests were performed to determine
the level of significance of increased model complexity
(fitting with either “ML” or “REML,” depending on the 2
models compared). Statistical significance was declared
at P < 0.05. Based on the significant predictor variables
from the model development, a common training data-
set (n = 2,259), without missing records for DMI, DIM,
ECM, BW, dietary CP, dietary CF, milk CF, parity, and
breed was used to derive all 3 models. Another approach
would have been to train different models using different
datasets, containing the predictor variables of interest to
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maximize the number of records (Niu et al., 2018). How-
ever, to perform unbiased comparisons across models,
the same dataset was used for all models in the current
study. Outliers, here defined as records with residuals
>5 x SD (residuals derived with model 1, n = 15), were
removed from the dataset. The residuals of each model
were plotted against predicted values of CO, production
and against individual variables. The residuals did not
show any nonlinear relationship; therefore data were
not transformed. The refined training dataset contained
2,244 individual animal records (Tables 1 and 2), where
60% of the records were obtained by RC.

Model Evaluation

Model performance was tested on 3 datasets from
Aarhus University, including (1) solely RC data (without
any CHy-reducing feed additives), (2) solely GF data
(without any CHy-reducing feed additives), and (3) GF
data with observations where only nitrate, only 3-NOP,
or both nitrate and 3-NOP were fed (Table 3). All test
datasets consisted of data obtained in studies performed
after the current training dataset was collected (from
2020 to 2022), and the training dataset was tested again
with different applicable models as shown in Table 4.

The RC test dataset (n = 103) consisted of data from
5 studies; 4 Latin square designs and 1 crossover design,
and records having DIM >300 d were excluded from the
test dataset. All animals were Holstein cows and were
136 + 64.4 DIM (£SD), with a DMI of 21.4 + 3.76 kg/d
and an ECM of 31.3 + 6.92 kg/d. The percentages of
cows in first, second, and third and higher lactation in
the dataset were 39%, 47%, and 15%, respectively.

6775

The GF test dataset (n = 478) consisted of data from
a part of 4 production trials; 3 Latin square designs and
1 continuous trial were included, and in case of the lat-
ter, an average from the last week of measuring was in-
cluded. Records having DIM >300 d were excluded. All
animals were Holstein cows and were 145 + 52.0 DIM,
with a DMI of 21.3 + 3.06 kg/d and yielding 33.8 + 6.56
kg ECM/d. The percentages of first-, second-, and third-
lactation and older cows in the dataset were 50%, 27%,
and 23%, respectively.

The last test dataset consisted only of records where the
additives nitrate and 3-NOP were supplemented (GF+, n
= 295). The data were from a part of 2 production tri-
als, which were both Latin square designs. None of the
records had DIM >300 d. All animals were Holstein cows
and were 107 £ 43.6 DIM, with a DMI of 20.0 + 3.21
kg/d and an ECM of 31.2 + 6.14 kg/d. The percentages of
cows in first, second, and third and higher lactation in the
dataset were 52%, 25%, and 23%, respectively.

In addition, the models were also evaluated on a modi-
fied and merged version of the 3 test datasets (RC, GF,
and GF+; Table 5) and on the training dataset (Table 6).
In the modified dataset, the records of the measured CO,
production (g/d) from the test datasets subtracted (where
measurements were obtained by RC) or added (where
measurements were obtained by GF) the absolute mean
bias (MB, here calculated as observed — predicted), from
the model evaluation of the specific model on RC, GF,
and GF+.

The “opmetrics” function from the R package mod-
MetricsR (Giagnoni, 2023) was used to obtain the evalu-
ation estimates: root mean square error (RMSE), RMSE
as percentage of observed mean, mean absolute error

Table 3. Summary statistics of the continuous parameters and CO, production (g/d) in the test dataset obtained from respiration chambers (RC,
without additives, n = 103), GreenFeed (GF, without additives test dataset, n = 478), or GreenFeed only including diets containing nitrate,
3-nitrooxypropanol, or both nitrate and 3-nitrooxypropanol (GF+, n = 295); all data were obtained at Aarhus University (Viborg, Denmark) from 2020

to 2022
Mean SD Minimum Maximum
Test dataset RC! GF? GF+ RC GF GF+ RC GF GF+ RC GF GF+
DMI (kg/d) 21.4 21.3 20.0 3.76 3.06 321 1.8 139 117 27.4 30.0 27.6
Diet CP (g/kg DM) 171 165 171 7.9 8.4 113 157 149 148 188 188 186
CF (g crude fat/kg DM) 33.9 44.1 41.7 8.52 13.3 15.6 237 272 263 62.0 70.6 69.1
ECM (kg/d) 31.3 33.8 31.2 6.92 6.56 6.14 174 161 174 47.4 543 49.6
Milk CF (g crude fat/kg) 39.3 39.4 40.9 6.75 6.25 5.84 234 186  23.1 58.9 58.7 57.7
DIM (d) 136 145 107 64.4 52.0 43.6 42 16 24 297 290 231
BW (kg) 640 655 642 53.1 67.6 62.8 550 500 496 747 873 858
CO, (g/d) 14369 12,625 12,163 1,663.8  1,531.0 1,468.0 11,086 8,617 8213 18215 17,782 15,365

'The percentages of cows in first, second, and third and higher lactation in the dataset were 39%, 47%, and 15%, respectively. All cows were Holstein

Cows.

>The percentages of first, second, and third and older cows in the dataset were 50%, 27%, and 23%, respectively. All cows were Holstein cows.
3The percentages of cows in first, second, and third and higher lactation in the dataset were 52%, 25%, and 23%, respectively. All cows were Holstein

COows.
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Table 4. Coefficients of the 3 models to predict CO, (g/d) from lactating
dairy cows, where model 1 is “best model,” model 2 is “on-farm model,”
and model 3 is “reduced on-farm model”'

Item Model 1~ Model 2 Model 3
Intercept 956 —6,134 8,781
DMI (kg/d) 122
ECM (kg/d) 213 80.3
MetaBW (kg) 60.4 126
Diet CP (g/kg DM) 344
Milk CF (g/kg) 52.5
DIM (d) =5.13 —4.66
Breed
Ayrshire 0 0 0
Holstein =777 2,117 —49.0
Jersey 1,103 1,364 -2,321
Others/crossbreeds 1,501 4,083 —1,237
Parity
First 0
Second 511
Third and higher 1,587
DIM x Diet CF -0.122 —0.149
ECM x DIM 0.386 0.338
ECM X metaBW -1.18
Milk CF x metaBW -0.614

DMI x Ayrshire 0

DMI x Holstein 206
DMI x Jersey 204
DMI x others/crossbreds 225
DMI x first parity 0
DMI x second parity 7.53
DMI x third parity 15.7

MetaBW x Ayrshire 0 0

MetaBW x Holstein —18.5 -5.96
MetaBW X Jersey —37.3 —1.03
MetaBW x others/crossbreds —43.2 -33.4

DIM x Ayrshire 0 0

DIM x Holstein 2.06 6.05
DIM x Jersey 2.49 6.02
DIM x others/crossbreds 8.94 11.3
MetaBW x first parity 0

MetaBW x second parity 3.66

MetaBW x third parity 4.01

First parity x milk CF —4.18
Second parity x milk CF —-10.5
Third parity x milk CF —28.8
Ayrshire x first parity 0
Ayrshire x second parity 0
Ayrshire x third parity 0
Holstein x first parity 0
Holstein x second parity 775
Holstein x third parity 803
Jersey x first parity 0
Jersey x second parity 608
Jersey x third parity 1,307
Others/crossbreds x first parity 0
Others/crossbreds x second parity 791
Others/crossbreds x third parity 659

'Diet CF = dietary crude fat (g/kg DM), diet CP = dietary crude protein
(g/kg DM), DIM = days in milk (d), DMI = dry matter intake (kg/d),
ECM = energy-corrected milk yield (kg/d), milk CF = milk crude fat (g/
kg), metaBW = metabolic body weight = body weight’”® (kg).

(MAE), concordance correlation coefficient (CCC),
ratio of RMSE to standard deviation of measured data
(RSR), MB, slope bias (SB), and MB, SB, and dispersion
as percentage of mean square error (MSE). Both CCC
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and RSR are dimensionless parameters. The CCC is the
product of Pearson correlation coefficient (r; ranging
from —1 to +1) and the bias correction factor (Cy; ranging
from 0 to 1). Perfect fit (precision) is indicated by r = 1,
and agreement between predicted and observed values
(accuracy) is indicated by C, = 1 and thus CCC = 1.

RESULTS

Due to the incorporation of data from different research
locations in the training dataset, a high level of variabil-
ity was present (Table 2). The DMI ranged from 6.80 to
37.2 kg/d, and CH4 and CO, production varied from 136
to 729 g/d and 4,937 to 20,950 g/d, respectively.

Description of Models 1, 2, and 3

The different models developed to be used in different
practical settings, depending on data availability, were
as follows.

Model 1, intended to be used in a situation where in-
dividual DMI data are available (“best model”; e.g., at
research locations), and where DMI alone described 58%
of the variation in CO, production (g/d) in the present
dataset, reads,

Model 1 (“best model”): CO, (g/d) = b, + (b; x DMI)
+ (by x BW"”) + (b; x Diet CP) + breed + (bpyypreca
X DMI) + (bpwmiparity X DMI) + (pw" " preeca X BW"™),

where, b, is the intercept; b;, b,, and b; are the coef-
ficients of DMI (kg/d), BW"" (kg"”"), and diet CP (g/
kg DM), respectively; and bpypreea and bBWOJS,breed are
the breed-specific coefficients of DMI and BW”°. The
parity-specific coefficient of DMI is bpyy parity- All coef-
ficients are listed in Table 4.

An example of using model 1 to calculate the CO, pro-
duction (g/d) from a second-parity Holstein cow, with a
DMI of 25 kg DM/d, with 160 g dietary CP per kilogram
DM, weighing 600 kg, is as follows:

956 + [122 x 25 (kg DM/d)] + [60.4 x 600 (kg""")]
+[3.44 x 160 (g CP/kg DM)] — 777
+ [206 x 25 (kg DM/d)] + [7.53 x 25 (kg DM/d)]
+[—18.5 x 600 (kg"™*)] = 14,197 g CO, per day.
Model 2 was intended for an on-farm setting, where in-
dividual DMI data are not available (“on-farm model”);
therefore ECM became a significant predictor variable,

as ECM alone described 28% of the variation in CO,
production (g/d) in the present dataset. It reads,
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Table 5. Model evaluation of the 3 models to predict CO, production (g/d) from lactating dairy cows, where model 1 is “best model,” model 2 is “on-

farm model,” and model 3 is “reduced on-farm model”"

RMSE, % MB, % SB, %  Dispersion, %
Item Test dataset RMSE mean MAE ccc RSR MB SB MSE MSE MSE
Model performance’
Model 1 RC 1,456 10.1 1,281 0.66 0.88 1,134 —0.065  60.6 0.44 389
GF 1,046 8.29 856 0.76 0.68 —655 -0.040  39.1 0.27 60.6
GF+ 949 7.81 756 0.79 0.65 —587 -0.052 382 0.54 61.3
Model 2 RC 1,416 9.85 1,240 0.66 0.85 1,192 0.097 709 0.85 28.2
GF 1,187 9.40 993 0.67 0.78 =740 0.059  38.9 0.32 60.8
GF+ 1,199 9.86 959 0.63 0.82  —639 -0.063  28.4 0.35 71.3
Model 3 RC 1,847 12.9 1,635 0.54 .11 1,619 -0.028  76.9 0.049 23.1
GF 1,138 9.01 916 0.68 0.74 -138 —-0.19 1.47 4.89 93.6
GF+ 1,172 9.64 931 0.61 0.80 =774 -0.22 0.44 4.68 94.9
Model performance’
Model 1 Modified 806 6.15 616 0.85 0.52 0.27 —0.046 0.000 0.63 99.4
Model 2 Modified 941 7.15 742 0.77 0.61 —0.11 0.025 0.000 0.10 99.9
Model 3 Modified 1,118 8.88 886 0.69 0.72 0.024 -0.17 0.000 3.87 96.1

'Model performance was evaluated based on either of the following. (1) Observations from 3 test datasets (both from Aarhus University, Viborg,
Denmark) obtained from respiration chambers (RC, n = 103) or GreenFeed units (GF, n = 478) without additives, or GF only including diets contain-
ing nitrate, 3-nitrooxypropanol, or both nitrate and 3-nitrooxypropanol (GF+, n = 295). Or (2) a modified dat set, with RC, GF, and GF+ test datasets
merged together (n = 876). The CO, production (g/d) in the modified dataset was calculated by subtracting mean bias (if measurements were obtained
by RC) or adding mean bias (if measurements were obtained by GF and GF+) from evaluation of the specific model on RC, GF, and GF+ test datasets.
RMSE = root mean square error, MAE = mean absolute error, CCC = concordance correlation coefficient, RSR = ratio of RMSE to standard deviation
of measured data, MB = mean bias, SB = slope bias, and MSE = mean square error.

*Test dataset based on observed CO, production.
*Test dataset corrected for mean bias of CO, production.

Model 2 (“on-farm model”): CO, (g/d) =
by + (b; x ECM) + (b, x BW®”) + (b; x Milk CF)
+ (by x DIM) + breed + (bpm.piercr X DIM x Diet CF)
+ (beempm X ECM % DIM) + (bgewpw’ > X ECM
x BW*”) + (byincrsw’~ * Milk CF x BW*")
+ (bpw"" preca X BW*™) + (bpipreea X DIM)

0.75 0.75
+ (bBW ,parity x BW )a

where, b, is the intercept; and b, b,, b3, and b, are the
coefficients of ECM (kg/d), BW®” (kg®”), milk CF
(g/kg milk), and DIM (d), respectively. Furthermore,
bpim,pietcks  DECM,DIMS bECM,BWMS, and bMilkCF,BWOjS are
the coefficients of DIM x diet CF, ECM x DIM, ECM
x BW*” and milk CF x BW%", respectively, and
bBwO'75,breed and bpvpreea are the breed-specific coefti-

cients of BW"”> and DIM, whereas bBw0'75,parity is the

parity-specific coefficient of BW*”. All coefficients
are listed in Table 4.

An example of using model 2 to calculate the CO,
production from a second-parity Ayrshire cow, with a
yield of 30 kg ECM/d, weighing 650 kg, being 110 DIM,
with an average milk CF concentration at 35.0 g/kg milk,
eating a TMR with a CF content at 40 g/kg DM is as
follows:

—6,134 + [213 x 30 (kg ECM/d)] + [126 x 650 (kg"")]
+[52.5 x 35.0 (g/kg)] + [5.13 x 110 (d)] + 0
+[—0.122 x 110 (d) x 40 (g CF/kg DM)] + [0.386
x 30 (kg ECM/d) x 110 (d)] + [~1.18 x 30 (kg ECM/d)
x 650 (kg""®)] + [-0.614 x 35.0 (g milk CF/kg)

x 650°7° (kg)] + [0 x 650 (kg”™*)] + [0 x 110 (d)]
+[3.66 x 650 (kg"”°)] = 11,634 g CO, per day.

Table 6. Model evaluation of the 3 models to predict CO, production (g/d) from lactating dairy cows based on the training dataset itself (n = 2,244),
where model 1 is “best model,” model 2 is “on-farm model,” and model 3 is “reduced on-farm model”"

MB, % Dispersion, %
Item? Test data et RMSE RMSE, % mean MAE CCC RSR MB SB MSE SB, % MSE MSE
Model 1 Training dataset 1,435 11.6 1,115 073 071 298 —0.18 432 5.27 90.4
Model 2 Training dataset 1,549 12.5 1,230 0.63  0.77 59.0 —0.14 0.145 1.87 98.0
Model 3 Training dataset 1,573 12.7 1,254 059 0.78 68.7  —0.071 0.191 0.382 99.4

'RMSE = root mean square error, MAE = mean absolute error, CCC = concordance correlation coefficient, RSR = ratio of RMSE to standard devia-
tion of measured data, MB = mean bias, SB = slope bias, and MSE = mean square error.

*Model performance, training dataset based on observed CO, production.
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Model 3 was intended for an on-farm setting, where BW
is not a part of the predictor variables (“reduced on-farm
model”). It reads,

Model 3 (“reduced on-farm model”): CO, (g/d) =
by + (b; x ECM) + (b, X DIM) + breed + parity
+ (boreed,parity) T (boim,pietcr * DIM % Diet CF)

+ (bgempiv X ECM % DIM) + (bpiv preea * DIM)
+ (bumilkcF,parity X Milk CF),

where by is the intercept; by, b,, and bgcy piv are the co-
efficients of ECM (kg/d), DIM (d), and ECM x DIM,
respectively; bpm.pieccr and beeypiv are the coetficients
of DIM x diet CF and ECM x DIM; bpppreea 1S the
breed-specific coefficient of DIM; byyeed parity 1S the breed-
specific coefficient for each parity; and byjicr parity 1 the
parity-specific coefficient of milk CF. All coefficients
are listed in Table 4.

An example of using model 3 to calculate the CO, pro-
duction from a first-parity crossbreed cow, with a yield
of 28 kg ECM/d, being 100 DIM, eating a TMR with 35
g CF/kg DM, with 37 g CF/kg milk is as follows:

8,781 + [80.3 x 28 (kg ECM/d)] + [-4.66 x 100 (d)]
- 1,237+ 0+ 0+ [-0.149 x 100 (d)
x 35 (g CF/kg DM)] + [0.338 x 28 (kg ECM/d)
x 100 (d)] + [11.3 x 100 (d)] + [-4.18
x 37 (g milk CF/kg)] = 10,727 g CO, per day.

The models predict the CO, production in grams per day;
to calculate the CO, production in liters per day, see Ma-
terials and Methods section.

Evaluation on RC and GF Test Datasets

When evaluated on the RC test dataset, model 2 was
superior with respect to RMSE, RMSE as percentage of
mean, MAE, and RSR (Table 5). However, model 1 was
superior with respect to MB, MB as percentage of MSE,
and dispersion as percentage of MSE when evaluated on
the RC test dataset.

Model 1 was superior in most of the evaluation pa-
rameters when the models were evaluated on the GF test
dataset (RMSE, RMSE as percentage of mean, MAE,
CCC, RSR, SB, and SB as percentage of MSE).

Model 3 performed better than models 1 and 2 with
respect to SB, and SB as percentage of MSE, when
evaluated on the RC test dataset. In addition, model 3
was superior to models 1 and 2 with respect to MB, MB
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as percentage of MSE, and consequently dispersion as
percentage of MSE on the GF test dataset.

Evaluation on GF+ Test Dataset

Model 3 had the highest dispersion as percentage of
MSE when the models were evaluated on the GF+ test
dataset, as a consequence of low MB and MB as per-
centage of MSE (Table 5). Oppositely, RMSE, RMSE as
percentage of mean, MAE, CCC, RSR, and SB were bet-
ter for model 1 when evaluated on the GF+ test dataset.

Evaluation on the Modified Test Dataset

The predicted CO, production underestimated the ac-
tual measured CO, production in RC (MB across models
was 1,315) and overestimated the actual measured CO,
production using GF units (MB across models was 511).
Bearing in mind that the models were developed with a
training dataset containing both GF (40% of the records)
and RC data (60% of the records), it was decided to ad-
dress this by evaluating the 3 models with a modified
dataset (see Materials and Methods section). The evalu-
ations obtained with the modified test dataset clearly
illustrated that nearly all the variation was related to
dispersion error (Table 5).

Evaluation on the Training Dataset

Due to the risk of some of the models simply matching
the properties of test dataset better than other models,
it was decided to evaluate the models on the training
dataset as well (Table 6). Furthermore, this evaluation il-
lustrates the predictability of the models if certain animal
parameters were not available. Model 1 was superior to
the other models with respect to RMSE, RMSE as per-
centage of mean, MAE, CCC, and RSR, when evaluated
on the training dataset. However, the actual values of MB
or SB, and MB, SB, or dispersion as percentage of MSE
for model 1 were not superior to model 2 and 3. This was
partly caused by the relatively higher MB for model 1;
SB was also slightly higher for model 1, causing the dis-
persion as percentage of MSE to be somewhat lower than
it was for models 2 and 3. Model 2 (without DMI, with
BW as predictor variable) performed slightly better than
model 3 (without DMI and BW as predictor variables)
with respect to RMSE, RMSE as percentage of mean,
MAE, CCC, RSR, MB, and MB as percentage of MSE.
However, SB and SB or dispersion as percentage of MSE
were slightly better for model 3. Based on the compari-
son of model 2 and 3 on the training dataset, predicting
CO, production from dairy cows in settings without data
on BW is feasible.
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DISCUSSION
Overall Model Evaluation on the Test Dataset

The models were developed with a training dataset
where 69.3% of the records were Holstein cows, whereas
Ayrshire, Jersey and others or crossbreed cows consti-
tuted 4.3%, 2.9%, and 23.5% of the records, respectively.
The external validation test datasets consisted of only
Holstein cows. Furthermore, the models were developed
and evaluated with a dataset of cows having <300 DIM.
It is important to consider this when applying the models
to breeds other than Holstein cows or cows in lactation
beyond 300 d.

Initially, the RC and the GF test datasets were treated
as a unified dataset (data not shown), but a systematic
underprediction for the RC data and a simultaneous over-
prediction for GF data were observed. Therefore, the
models were evaluated separately on the RC and GF
parts of the test dataset (Table 5). Additionally, the mod-
els were evaluated on the GF+ test dataset to investigate
the potential impacts of the use of nitrate, 3-NOP, or a
combination of nitrate and 3-NOP on the precision and
accuracy of the models. The observed underprediction
for RC and overprediction for GF could be caused by
inherent model characteristics, but the method of gas
measurement was confounded with research location
(included as a random effect in all the models). Technical
differences between the 2 methods, such as the GF units
exclusively measuring gases emitted in exhaled air and
not from the rectum of the cow, could partly contribute
to the observed discrepancies, despite lack of data related
to CO, released from the rectum of the cow. In addition,
the GF relies on repeated short-term measurements, typi-
cally lasting 2 to 7 min, and repeated at intervals over
subsequent days, whereas RC measurements are gener-
ally continuous over successive days (typically 2 to 4 d).
The GF system has the advantage of being able to record
gas data on a much larger number of animals compared
with RC systems. Previous studies have compared RC
and GF measurements of CO, emission, but the conclu-
sions drawn were limited by the low number of animals
(Doreau et al., 2018) and occasional reductions in DMI
when cows entered the chambers (Alemu et al., 2017).
For CH, production, Hristov et al. (2018) showed an
unexpectedly weak relationship between DMI and CH,
production measured with the GF (13.9 to 35.4 kg DMI,
R? = 0.05), and a much stronger relationship measured
with the RC (3.9 to 33.5 kg DMI, R* = 0.58), indicating
a better capability of RC compared with GF to capture
variation in gaseous release. However, the variation in
DMI was also greater for the RC than the GF data, which
could partly explain the better relationship for RC data in
the study by Hristov et al. (2018); even a more restricted
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range of DMI (15.0 to 33.5 kg/d) with the RC still showed
a stronger relationship (R? = 0.41) than with the GF.

The model performance was better when the 3 models
were assessed based on the GF and the GF+ test datasets,
compared with evaluation on the RC test dataset. This is
evident from the higher dispersion in percentage of MSE
and CCC (except for model 2 on GF+ test dataset). More-
over, the RMSE, RMSE as percentage of mean (except
for model 2 on GF+ test dataset), and MAE were consis-
tently lower when the models were tested on the GF and
the GF+ test datasets. The major reason for lower model
performance with the RC test data is the more pronounced
MB (inaccuracy) compared with the GF test data. The
mean of CO, production in the RC test dataset (14,369
g/d) is also higher than in the training dataset (12,402
g/d), likely contributing to the high MB observed when
evaluating the models on the RC test dataset. The higher
dispersion in percentage of MSE indicates that a greater
fraction of variation is random variation for GF and GF+
(Table 5). However, it is important to acknowledge that
these differences are also attributable to the sizes of the
respective test datasets (Doreau et al., 2018), with the
GF and GF+ test datasets being larger than the RC test
dataset.

The DMI in the GF+ dataset (based on a part of 2
production trials) was on average lower than DMI in
the GF dataset (based on the same 2 production trials,
with all observations in it, plus 2 other production tri-
als), likely causing the lower mean CO, production (g/d)
in that specific test dataset (Table 3). Furthermore, the
variation of the CO, production within the GF+ dataset
was less (smaller SD: Table 3) than for the RC and GF
test dataset, and the cows were earlier in lactation (mean
DIM was lower for GF+ than RC and GF: Table 3). The
evaluation on the GF+ test dataset should therefore be
interpreted bearing in mind that the cows in this test
dataset generally produced lower amounts of CO, with
less variation; thus the evaluation on the GF+ test dataset
indicates somewhat better model performance than the
evaluation on the RC and GF test dataset.

All 3 models showed a low SB both in absolute values
and as percentage of MSE when tested on the RC, GF,
and GF+ test dataset (Table 5). This suggests consistently
good prediction abilities for determining whether a given
cow emits lower or higher amounts of CO, as compared
with the average cow (Figure 1). Furthermore, it indi-
cates that GF units rank cows with comparable preci-
sion to RC, contrasting with the results from a previous
study (Alemu et al., 2017) but partially in agreement
with the findings of Rischewski et al. (2017). Precision
is of importance, especially when the models are used
within a herd to rank individual cows based on their CO,
production, and subsequently ranking them according to
their CH,4 production by combining estimated CO, pro-
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Figure 1. Observed (red) CO, production (g/d) in the test dataset, and residual values (blue) of CO, production of the 3 models plotted against
predicted values of CO, production for (A) model 1 (“best model”), tested on respiration chamber (RC) data; (B) model 2 (“on-farm model”), tested
on RC data; (C) model 3 (“reduced on-farm model”), tested on RC data; (D) model 1, tested on GreenFeed (GF) data; (E) model 2, tested on GF data;
(F) model 3, tested on GF data; (G) model 1, tested on GF data, only including diets containing nitrate, 3-nitrooxypropanol (3-NOP), or both nitrate
and 3-NOP (GF+); (H) model 2 tested on GF+ data; and (I) model 3 tested on GF+ data. The red and blue line represent the linear regression lines
of observed and residual values, respectively.

duction and measured [CH,]:[CO,] ratio in breath using cause the outcome of the models to reach a more accurate
the sniffer technique. However, model 1 and model 2 level, if the observed difference between RC and GF data
had noticeable MB when evaluated on the RC and GF in the current test dataset is considered universal across
dataset, indicating a lack of accuracy and a disparity in research groups.

absolute values between RC and GF. Assuming that RC A slight underprediction of CO, production for the
data represents the true production of CO,, and that RC measured low levels of CO, production was evident from
are seen as the the gold standard, it is suggested to add the regression lines of the present models on a reduced
the MB from the RC evaluation of the given model to the version of the training dataset where DIP was given (n =
dependent variable of the model (CO, g/d). This would 562, Figure 2). However, the underprediction was even
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Figure 2. Measured CO, production (g/d) plotted against predicted
CO, production in a reduced version of the training dataset (n = 562,
see Supplemental Table S3), where observations having missing values
of days in pregnancy were not included. The black line represents y
(measured CO, production, g/d) = x (predicted CO, production, g/d); the
red, green, and blue lines represent linear regressions of CO, production
predicted by models 1, 2, or 3, respectively. This reduced version of the
training dataset was a part of the training dataset (n = 2,244), which these
3 models were derived from. Regression lines are given for each model.

more pronounced when using the previous equations
from Madsen et al. (2010) and Pedersen et al. (2008) on
the same reduced dataset (Figure 3). This advocates for
using the models from the present study in combination
with the sniffer method instead of the equations from
Madsen et al. (2010) and Pedersen et al. (2008).

Gestation

Previously, the requirement of metabolizable energy
(ME) for pregnancy in dairy cows was described by an
exponential function related to number of days pregnant,
with an efficiency of 10.5% of ME for fetal tissue deposi-
tion (Moe and Tyrrell, 1972). A recent study estimated
efficiency of ME for pregnancy in Holstein x Gyr heif-
ers to be 14.1% (Sguizzato et al., 2020). However, this
estimation was based on a nonlinear development of net
energy (NE) for pregnancy, and possible variation was
not taken into account (Sguizzato et al., 2020). Accord-
ing to Nielsen and Volden (2011), the NE requirement for
gestation is only minor when DIP <150, but significantly
increased for cows >150 DIP. Thereby HP increases
along gestation, assuming a constant efficiency of ME
for gestation as indicated in Moe and Tyrrell (1972) and
Sguizzato et al. (2020). The gravid uterus and develop-
ment of the mammary gland cause HP to increase (Sguiz-
zato et al., 2020), as they, especially the gravid uterus,
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Figure 3. Measured CO, production (g/d) plotted against predicted
CO, production in a reduced version of the training dataset (n = 562,
see Supplemental Table S3), where observations having missing values
of days in pregnancy were not included. The black line represents y
(measured CO, production, g/d) = x (predicted CO, production, g/d); the
red and blue lines represent linear regressions of CO, production pre-
dicted by Pedersen et al. (2008) and Madsen et al. (2010), respectively.
Regression lines are given for each model.

account for significant metabolism of nutrients. Hence,
DIP was initially included in the models (and it is a factor
in the equation of HP; CIGR, 2002). However, only a few
records in the training dataset (n = 562) could provide
such data, likely due to lack of recording, and DIM was
expected to be used as a close proxy for DIP. However,
in the part of the training dataset with DIP available (n
= 562 records), DIM was not a very precise indicator of
DIP (Supplemental Table S2, see Notes), likely because
the time point of a successful insemination of these
experimental animals did not follow the same pattern
across research locations. Therefore, the effect of DIP as
a predictor variable was only tested on the smaller data-
set where DIP was available, and there was no effect of
DIP on CO, production (P = 0.30).

Dietary Crude Protein

Increasing the dietary CP level has been found to
increase the energy content in cattle urine (Ramin and
Huhtanen, 2013; Hynes et al., 2016), and the energy
content in cattle urine is closely linked with the urinary
carbon content (Morris et al., 2021). In addition, dietary
CP is an indicator of nutrient composition within a diet.
In the current training dataset, data on NDF and starch
content were not collected from the research locations,
and the correlation between dietary CP and CF was low
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(=0.07). However, dietary CP was positively correlated
with urinary nitrogen (g/d) in van Lingen et al. (2018),
and in the same study, urinary nitrogen (expressed in g/
kg DMI) was positively correlated with CHy yield. A
part of the explanation could be a higher DM digest-
ibility when cows are sufficiently supplied with dietary
CP (Oldham, 1984). Thereby, more nutrients are avail-
able for intermediary metabolism without increasing the
DMI. Excess of absorbed amino acids also causes altera-
tions in oxidation, and less efficient conversion of ME to
NE, thereby increasing CO, production (Oldham, 1984).
Not surprisingly, dietary CP concentration was therefore
a significant predictor variable of CO, production in
model 1 (“best model”), where DMI was also included
in the model, and increased dietary CP intake increased
CO, production.

Effects of Different CH,-Mitigating Additives
or Feedstuffs on CO, Production

A recent study has shown decreased CO, production
and increased CO, yield (g/kg DMI; Kjeldsen et al.,
2024) when dairy cows were fed 3-NOP, even though
3-NOP, by its mode of action, is not expected to affect
CO, metabolism, except from a small increase due to less
reduction of CO, to CH,. These results are in alignment
with another study where increased CO, yield for 3-NOP
concentrations of both 60 mg/kg DM (+3%) and 80 mg/
kg DM (+4%) were observed, whereas it was only the diet
with 80 mg/kg DM that negatively affected CO, produc-
tion (van Gastelen et al., 2022). Additionally, Maigaard
et al. (2024) observed a reduced CO, production and
increased CO, yield when cows were provided 80 mg
3-NOP/kg DM. In the 3 studies mentioned above, DMI
was negatively affected by 3-NOP supplementation for
reasons still unclear, which likely at least partly caused
the effect on CO, yield and production. Melgar et al.
(2021) and Van Wesemael et al. (2019) did not observe
decreased DMI when dairy cows were supplemented
with 3-NOP, nor changes in CO, production or yield; this
indicates that a reduction in CO, production associated
with the use of a given potent CH,-mitigating feed addi-
tive seems to be related to a potential reduction in DMI.

Nitrate acts as an alternative hydrogen sink and com-
petes with methanogens in taking up H, in the rumen
(Leng, 2008). Considering the mode of action, nitrate
supplementation does not affect CO, metabolism of the
animal, as also not found in the study by Olijhoek et al.
(2016), where 5, 14, and 21 g nitrate’kg DM were fed
to the cows. However, Wang et al. (2023) included 10
g nitrate’kg DM and observed decreased CO, produc-
tion, when dairy cows were supplemented with nitrate,
although likely due to reduced DMI.
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Increased dietary fat content has also proven to be an
effective CH, mitigation strategy (Beauchemin et al.,
2007). The training dataset reflects very different feed
rations, and thereby CF levels also varied, from 12 to
74 g/kg DM (Table 2). Metabolism of fat releases more
heat (28 kJ/L CO,) than the metabolism of carbohydrates
(21 kJ/L CO,; Madsen et al., 2010). However, increas-
ing the fat level from 2% to 5% of the diet reduces CO,
production by ~1 percentage unit (Madsen et al., 2010),
as the efficiency of using ME to NE of lactation is rela-
tively high (estimated to 0.63 in Moraes et al., 2015, and
0.60-0.64 in Moe, 1981), and thus less heat is lost with
feeding higher fat concentrations, as long as the mam-
mary gland takes up the fatty acids provided by the feed.
The study by Maigaard et al. (2024) is one of few to
report CO, emissions when feeding a high level of fat
(60-67 g dietary CF/kg DM). They reported a significant
effect of fat supplementation on CO, production, but an
interaction was observed between fat and nitrate supple-
mentation, and interpretation of the results are affected
by this interaction. In conclusion, high (>60 g/kg DM) or
low (<30 g/kg DM) CF concentrations of a given diet are
not expected to cause less precise estimation of the CO,
production in the current study.

CONCLUSIONS

Production of CO, (g/d) from lactating dairy cows can
be predicted directly from dietary, animal, and produc-
tion traits, without quantifying HP. The absolute values
of SB (—0.22 to 0.097) and SB as percentage of MSE
(0.049 to 4.89) were very low, which indicates precision
of the models. The absolute value of the dependent vari-
able (CO, g/d) should be interpreted accounting for the
fact that the models were developed on a dataset contain-
ing both RC and GF data, causing a relatively high MB
for nearly all models in all evaluations (=740 to 1,619).

NOTES

The current project “Reduced climate impact at cow-
level and herd-level” was funded by the Milk Levy Fund,
and the PhD project of M. H. Kjeldsen was funded by iCli-
mate (Interdisciplinary Centre for Climate Change, Aar-
hus University, Aarhus, Denmark) and Arla (Aarhus, Den-
mark). Christian Friis Bersting, Giulio Giagnoni, Morten
Maigaard, and Wenji Wang provided very valuable data
from their experiments performed at Aarhus University
(Viborg, Denmark) to the model evaluation. Supplemen-
tal material for this article is available at https://www.erda
.au.dk/archives/0f1bc3258dbf693109b3d9bb4a94237¢/
published-archive.html. Because no human or animal
subjects were used, this analysis did not require approval
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Nonstandard abbreviations used: 3-NOP = 3-nitro-
oxypropanol; BW®”> = metabolic BW; CCC = concor-
dance correlation coefficient; CF = crude fat; DIP = days
in pregnancy; GF = GreenFeed head chamber; HP = heat
production; HPU = heat-producing unit; MAE = mean
absolute error; MB = mean bias; ME = metabolizable
energy; MSE = mean square error; NE = net energy; RC
= respiration chamber; RMSE = root mean square error;
RSR = ratio of RMSE to SD of measured data; SB =
slope bias.
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