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Abstract

Understanding how models represent sub-seasonal rainfall variations and what influences model skill is
essential for improving sub-seasonal forecasts and their applications. Here, empirical orthogonal
function (EOF) analysis is employed to investigate weekly Eastern Africa short rains variability from
October to December. The observed leading EOF modes are identified as (i) a monopole-like rainfall
pattern with anomalies impacting southern Ethiopia, Kenya, and northern Tanzania; and (ii) a dipole-like
rainfall pattern with contrasting anomalies between Tanzania and the northeastern sector of Eastern
Africa. An examination of the links between the leading modes and specific climate drivers, namely, the
Madden—Julian Oscillation (MJO), El Niflo—Southern Oscillation, and Indian Ocean Dipole (I0OD),
shows that the MJO and IOD have the highest correlations with the two rainfall modes and indicates that
the monopole (dipole)-like rainfall pattern is associated with MJO convective anomalies in the tropical
Indian Ocean and western Pacific (Maritime Continent and Western Hemisphere). Assessments of model
ability to capture and predict the leading modes show that the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the UK Met Office models outperform the National Centers for
Environmental Prediction model at forecast horizons from one to four weeks ahead. Amongst the drivers
examined, the MJO has the largest impact on the forecast skill of rainfall modes within the ECMWF
model. If MJO-related variability is reliably represented, the ECMWF model is more skilful at
predicting the main modes of weekly rainfall variability over the region. Our findings can support model
developments and enhance anticipatory planning efforts in several sectors, such as agriculture, food
security, and energy.

Keywords (separated by '-')

Eastern Africa Short Rains - Empirical Orthogonal Function Analysis - Madden—Julian Oscillation - El
Nifio-Southern Oscillation - Indian Ocean Dipole - Sub-seasonal Prediction Skill
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®  Abstract

7 Understanding how models represent sub-seasonal rainfall variations and what influences model skill is essential for improv-
8 ing sub-seasonal forecasts and their applications. Here, empirical orthogonal function (EOF) analysis is employed to investi-
o gate weekly Eastern Africa short rains variability from October to December. The observed leading EOF modes are identified
0 as@)a monopole-like rainfall pattern with anomalies impacting southern Ethiopia, Kenya, and northern Tanzania; and (ii)
noa dipole-like rainfall pattern with contrasting anomalies between Tanzania and the northeastern sector of Eastern Africa.
2 An examination of the links between the leading modes and specific climate drivers, namely, the Madden—Julian Oscilla-
8 tion (MJO), EI Nifio—Southern Oscillation, and Indian Ocean Dipole (IOD), shows that the MJO and IOD have the highest
4 correlations with the two rainfall modes and indicates that the monopole (dipole)-like rainfall pattern is associated with
S MJO convective anomalies in the tropical Indian Ocean and western Pacific (Maritime Continent and Western Hemisphere).
6 Assessments of model ability to capture and predict the leading modes show that the European Centre for Medium-Range
7" Weather Forecasts (ECMWEF) and the UK Met Office models outperform the National Centers for Environmental Prediction
8 model at forecast horizons from one to four weeks ahead. Amongst the drivers examined, the MJO has the largest impact
% on the forecast skill of rainfall modes within the ECMWF model. If MJO-related variability is reliably represented, the
20 ECMWF model is more skilful at predicting the main modes of weekly rainfall variability over the region. Our findings can
21 support model developments and enhance anticipatory planning efforts in several sectors, such as agriculture, food security,

and energy.
23 Keywords Eastern Africa Short Rains - Empirical Orthogonal Function Analysis - Madden—Julian Oscillation - El Nifio-
24 Southern Oscillation - Indian Ocean Dipole - Sub-seasonal Prediction Skill
25 1 Introduction et al. 2023). Thus, there has been an increasing interest in
understanding what controls Eastern Africa rainfall vari-

26 Rainfall variations in Eastern Africa, which includes the ability (Ogallo et al. 1988; Ogallo 1989; Indeje et al. 2000;
27 countries of Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Black et al. 2003; Schreck and Semazzi 2004; Bowden and
28 Rwanda, Somalia, Sudan, South Sudan, Tanzania, and Semazzi 2007; Berhane and Zaitchik 2014; Gamoyo et al.
2 Uganda (Fig. 1), witha total population of 457 million peo-  2015; Nicholson 2017; Wenhaji Ndomeni et al. 2018; Kol-
30 ple (Palmer et al. 2023), may substantially impact several  stad and MacLeod 2022; Maybee et al. 2022; among others).
z; crucial activities in the region, in sectors such as agriculture, Specifically, significant variations in Eastern Africa rain-

food security, and energy (Funk et al. 2008; Anande and

Luhunga 2019; Chang’a et al. 2020; FSNAU 2022; Palmer
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fall occur throughout the October—-November-December
(OND) short rains (Nicholson 2017; Palmer et al. 2023),
showing, in particular, large interannual/seasonal variabil-
ity (Camberlin and Wairoto 1997; Camberlin et al. 2009).
Previous studies have investigated the sources of seasonal
short rains variability, mainly indicating associations with
El Nifio-Southern Oscillation (ENSO; Nicholson and Kim
1997; Schreck and Semazzi 2004; Bowden and Semazzi
2007; Hoell et al. 2014; MacLeod et al. 2021; Kolstad and
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Fig. 1 Africa domain in the left panel with a black box indicating the
Eastern Africa domain (12°S-23°N, 21°-52.°E) magnified in the right
panel. Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Soma-
lia, Sudan, South Sudan, Tanzania, and Uganda are the 11 countries

MacLeod 2022) and the Indian Ocean Dipole (I0D; Black
et al. 2003; Behera et al. 2005; Nicholson 2015; Hirons and
Turner 2018; Bahaga et al. 2019; Kolstad and MacLeod
2022). Strong co-variability exists between ENSO and the
10D (Nicholson 2015; Zhang et al. 2015), with the latter
typically having more influence than the former on the
short rains owing to its modulation of local zonal circula-
tion (Goddard and Graham 1999; Bergonzini et al. 2004;
Nicholson 2015; Zhao and Cook 2021). A weaker-than-
normal zonal circulation over the Indian Ocean is related
to positive sea surface temperature (SST) anomalies in
the west and negative SST anomalies in the east, leading
to enhanced rainfall in Eastern Africa (Black et al. 2003;
Behera et al. 2005; Ummenhofer et al. 2009). The opposite
SST pattern strengthens the zonal circulation over the Indian
Ocean (Jiang et al. 2021; Zhao and Cook 2021), favour-
ing reduced rainfall in Eastern Africa (Black et al. 2003;
Behera et al. 2005). The most recent noticeable impact of an
10D event occurred in Eastern Africa's 2019 short rains and
was associated with substantially above-average rains that
forced hundreds of thousands of people to flee their homes
and caused crop and livestock losses in the areas severely
affected (Wainwright et al. 2021).

In addition to seasonal rainfall variability, sub-seasonal
short rains anomalies (i.e., wet and dry spells within the
rainy season that extend longer than the synoptic time-
scale) have also been identified (Camberlin and Wairoto
1997; Mutai and Ward 2000; Pohl and Camberlin 2006a;
b; Zaitchik 2017). Such sub-seasonal rainfall variations
are mainly related to the influence of the Madden—Julian
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comprising the Eastern Africa domain. DRC stands for Democratic
Republic of the Congo. Topography (shaded) in the right panel is
shown in metres (m) and sourced from ERAS reanalysis (Hersbach
et al. 2020)

Oscillation (MJO) over Eastern Africa, with significant
phasing dependence (Pohl and Camberlin 2006a; b; Omeny
et al. 2008; Berhane and Zaitchik 2014; Hogan et al. 2015).
In general, rainfall increases (reduces) in most of Eastern
Africa when the MJO-enhanced convective core is over the
tropical Indian Ocean (Western Pacific) (Omeny et al. 2008;
Hogan et al. 2015), as indicated by phases 2 and 3 (6 and 7)
of the Real-Time Multivariate MJO index (RMM; Wheeler
and Hendon 2004).

While seasonal predictions of short rains variability show
great accuracy several months ahead of a season in associa-
tion with ENSO and IOD modulation (Bahaga et al. 2015;
MacLeod 2019; Walker et al. 2019), sub-seasonal predic-
tion skill of short rains variability over a few weeks ahead
remains relatively modest (Vigaud et al. 2018; 2019; de
Andrade et al. 2021; Kolstad et al. 2021), with correlations
rarely above 0.4 after two weeks lead time (de Andrade et al.
2021). As a result, linearly corrected forecasts have emerged
and, to some extent, skill improvements have been linked to
potential drivers of sub-seasonal to seasonal predictability
such as the MJO, ENSO, and the IOD (Vigaud et al. 2018;
de Andrade et al. 2021; Kolstad et al. 2021). Nevertheless,
improving our understanding of sub-seasonal short rains
variability, particularly the underlying drivers that modu-
late the local rainfall impacts, is essential to better predicting
and anticipating sub-seasonal rainfall anomalies in Eastern
Africa.

Here, an in-depth investigation of sub-seasonal vari-
ability and prediction skill of short rains is performed by
examining its leading weekly rainfall modes rather than the
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commonly assessed weekly rainfall anomalies within the
season (Vigaud et al. 2019; de Andrade et al. 2021). This
approach allows us to evaluate distinct weekly rainfall vari-
ability patterns accounting for the largest portion of the total
variance in the sub-seasonal rainfall anomalies. While this
approach has been applied in a small number of studies at
pentad and seasonal timescales (Schreck and Semazzi 2004;
Bowden and Semazzi 2007; Wenhaji Ndomeni et al. 2018;
Kolstad and MacLeod 2022), evidence is lacking for further
assessing the leading modes of Eastern Africa short rains
variability at weekly timescales, along with their represen-
tation within dynamical models, sources of predictability,
and prediction skill. Given that, the following questions are
addressed:

What are the leading modes of weekly Eastern Africa
short rains variability and their relationships with poten-
tial climate drivers?

What is the current ability of the models to capture and
predict the leading rainfall modes at different weekly lead
times?

What is the contribution of climate drivers to the sub-
seasonal predictive skill of the leading rainfall modes?

Providing answers to the questions above would help
advance the scientific understanding, support model devel-
opments, and contribute to assisting sectors in taking
preparedness measures that reduce or avoid the effects of
high-impact weather conditions on people’s lives and live-
lihoods in Eastern Africa (Hirons et al. 2021; Gudoshava
et al. 2022). The paper is organised as follows: Section 2
presents the datasets and methods used, Section 3 describes
the results from this study, and Section 4 summarises key
findings and provides conclusions:

2 Methodology

144
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2.1 Observational analysis

Rainfall data sourced from the Tropical Applications of
Meteorology using SATellite and ground-based observa-
tions (TAMSAT; Maidment et al. 2014; 2017) version 3.1
were used to investigate observed sub-seasonal Eastern
Africa short rains variability. Land-only TAMSAT rain-
fall estimates are derived from rain gauge measurements
used for calibration and thermal infrared satellite imagery
(Maidment et al. 2017). Here, the spatial resolution of
daily TAMSAT data was linearly interpolated (using bi-
linear interpolation) from the regular 0.0375° % 0.0375°
grid to 1.5°x 1.5° to facilitate the comparison with mod-
elled outputs, as shown later. Although TAMSAT produces
rainfall estimates from 1983 to the present, we focused

on the 1999-2016 period to match all datasets temporal
resolution analysed here. Weekly data were obtained by
averaging seven consecutive days without overlapping
from October 1st to December 24th, totalling 13 weeks
within the short rains season. This produces a sample
size of 234 weeks between 1999 and 2016 (13 weeks over
18 years). Weekly rainfall anomalies were computed by
subtracting the corresponding 1999-2016 long-term mean
from the total field.

Given the known uncertainty in rainfall observations in
the region (Sylla et al. 2013), three other observational data-
sets were assessed to examine how sensitive the results are to
selecting the observational reference, following the method
described to obtain weekly TAMSAT rainfall anomalies.
The additional datasets are the land-only Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS; Funk
et al. 2015), the Global Precipitation Climatology Project
(GPCP; Huffman et al. 2001) version 1.3, and the Tropi-
cal Rainfall Measuring Mission (TRMM) Multi-Satellite
Precipitation Analysis 3B42 (Huffman et al. 2007). These
datasets were chosen because they are also frequently used
satellite-derived products to study rainfall variability in East-
ern Africa (Dinku et al. 2007; 2011; Kimani et al. 2017;
Ageet et al. 2022; Palmer et al. 2023).

Empirical orthogonal function (EOF; Wilks 2006)
analysis was performed on all the observational datasets to
identify the leading modes of weekly rainfall variability in
the Eastern Africa domain (Fig. 1). The EOF analysis used
GPCP and TRMM data with masking over oceanic regions
to consider all datasets with land-only grid point informa-
tion. The eigenvalues and eigenvectors of an anomaly covar-
iance matrix of a field were computed to extract the EOF
modes. Since the EOF analysis does not consist of physi-
cal assumptions, a field is separated into mathematically
orthogonal modes, which occasionally can be translated into
physical structures (Hannachi et al. 2007). The eigenvalues
are used to express the percentage of variance explained
by each EOF mode. Nevertheless, the eigenvalues may not
always be distinguishable owing to sampling issues. The
North's rule of thumb was used to overcome this constraint
by evaluating if a particular eigenvalue is distinct from its
nearest neighbour and indicating when a sampling error
is expected to be significant (North et al. 1982). Rainfall
anomalies were projected onto the generated eigenvectors
to produce normalised time series, or principal components
(PCs), associated with each EOF mode.

To investigate possible associations between the domi-
nant modes of weekly Eastern Africa short rains vari-
ability and potential drivers of sub-seasonal rainfall vari-
ations, we calculated climate indices frequently used as
indicators of MJO, ENSO, and IOD activity. These are the
RMM daily index (Wheeler and Hendon 2004), the Nifio
3.4 (hereafter referred to as N3.4) index (Trenberth and
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Stepaniak 2001) and the Dipole Mode Index (DMI; Saji
et al. 1999), respectively.

The European Centre for Medium-Range Weather
Forecasts (ECMWF) data store provided the RMM
components (i.e., RMMI1 and RMM2) calculated as
in (Vitart 2017). The RMM components illustrate dif-
ferent phases of the MJO cycle (Wheeler and Hendon
2004), with RMM1 (RMM2) representing MJO convec-
tive anomalies over the Maritime Continent and Western
Hemisphere (tropical Indian Ocean and western Pacific).
These indices are the two leading PCs extracted from
an EOF analysis, which combines daily zonal upper-
(200 hPa) and lower- (850 hPa) wind and outgoing long-
wave radiation anomalies in the tropics after subtracting
the low-frequency variability associated with ENSO (as
in Wheeler and Hendon 2004). Weekly RMM compo-
nents were determined using the same approach applied to
obtain weekly rainfall totals. SST anomalies in the N3.4
region (5°S-5°N, 120°-170°W) were averaged to pro-
duce the N3.4 index, whereas the DMI index was deter-
mined by the difference between SST anomalies in the
western (10°S—10°N, 50°~70°E) and eastern (10°S-0°,
90°-110°E) tropical Indian Ocean. SST data were sourced
from the daily optimum interpolation SST version 2 of
the National Oceanic and Atmospheric Administration
(NOAA; Reynolds et al. 2007). The same technique
applied to find weekly rainfall anomalies was employed
to obtain weekly SST anomalies, which were used to cal-
culate N3.4 and DMI indices. The respective standard
deviations were utilised to normalise weekly SST anom-
aly indices. Additionally, considering that ENSO and 10D
may have strong associations during the boreal autumn
(Nicholson 2015; Zhang et al. 2015), we removed from
N3.4 and DMI indices their variability associated with
DMI and N3.4 indices (hereafter referred to as N3.4*
and DMI* indices), respectively. This was performed by
first computing a simple linear regression (Allen 1997)
between the response and explanatory variables, then sub-
tracting the corresponding co-variability from N3.4 and
DMI indices.

Pearson’s correlation (Wilks 2006) was computed to
indicate linear associations between the leading TAM-
SAT PCs and drivers’ indices, in addition to showing
the strength of the linear relationship between the PCs
derived from observational datasets. The magnitude of
the correlation was determined by its absolute value (or
modulus). Therefore, the higher the absolute correlation,
the stronger the association. A two-sided Student's t-test
with a 95% significance level was used to examine the
statistical robustness of correlations distinct from zero
(Wilks 2006). Based on lag-1 autocorrelation, the effec-
tive sample size was estimated as in Livezey and Chen
(1983).

@ Springer

2.2 Hindcast assessment

The ability of dynamical models to capture and predict
the leading modes of sub-seasonal Eastern Africa short
rains variability was evaluated using hindcasts from
ECMWEF, the National Centers for Environmental Predic-
tion (NCEP), and the UK Met Office (UKMO) models.
Using these models allows us, in particular, to expand
the hindcast assessment conducted by de Andrade et al.
(2021), contributing to enhancing the knowledge of
sub-seasonal rainfall forecast quality in Eastern Africa.
Rainfall hindcasts were obtained from two sub-seasonal
forecasting databases: the Subseasonal to Seasonal (S2S)
prediction project (Vitart et al. 2017) for ECMWF and
UKMO models, and the Subseasonal Experiment (SubX;
Pegion et al. 2019) for the NCEP model. The SubX data-
base was used for NCEP to allow a longer time frame
(i.e., 1999-2016) than what is provided in the S2S data-
base (i.e., 1999-2010). ECMWF and UKMO hindcasts
were sourced at the regular 1.5° X 1.5° spatial resolu-
tion, whereas the NCEP grid was reduced from 1°x 1° to
1.5°%1.5° using bi-linear interpolation. As in de Andrade
et al. (2021), four start dates per month, based on weekly
UKMO initialisations, were evaluated for each model,
accounting for the closest start dates for some non-match-
ing ECMWEF initialisations. Moreover, three perturbed
members, drawn from 1-day lag after initialisations, were
added to the NCEP ensemble size to achieve an accurate
intercomparison between models while considering the
same ensemble size (i.e., at least 7 ensemble members).
The amount of weekly rainfall was defined by averaging
the following daily forecast lead times falling within the
short rains season: days 5—-11 (Week 1), 12-18 (Week 2),
19-25 (Week 3), and 26-32 (Week 4). This implied that
a few initialisations in September and December were
respectively included and removed when evaluating tar-
gets at Weeks 2—4 leads. The ensemble mean climatology,
calculated considering a leave-one-out cross-validation
approach (Wilks 2006), was subtracted from the ensemble
mean totals to obtain the corresponding anomalies over
the 1999-2016 period. The procedure was carried out
depending on the start date and lead time. An equivalent
method was used to determine observed rainfall anomalies
in Weeks 1-4.

The leading PCs of modelled rainfall variability at Weeks
1-4 were calculated by projecting land-only model anoma-
lies onto the observed rainfall eigenvectors determined
in Section. 2.1 By regressing the derived PCs and model
anomalies, it yielded the corresponding modelled regressed
spatial modes (RSMs). Observed PCs and associated RSMs
at Weeks 1-4 were obtained considering the same approach
used to identify the dominant rainfall modes within models.
To extract modelled and observed spatiotemporal modes
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for each lead time, we utilised samples with 180 (i.e., 10
start dates over 18 years) weekly hindcast and observation
anomalies, respectively.

The ability of the model to capture the RSMs was evalu-
ated by computing spatial correlation (i.e., Pearson’s correla-
tion was examined in two spatial dimensions considering an
area-average weighted with latitude) and the region-averaged
absolute difference (or modulus of the difference) between
modelled and observed RSMs. Additionally, the ability of
the model to predict the PCs was assessed by computing
Pearson's correlation and root mean squared error (RMSE;
Wilks 2006) between modelled and observed PCs. Corre-
lations were computed to assess model phase errors, with
values equal to one indicating the strongest linear associa-
tions between observations and model data. On the other
hand, model amplitude errors were assessed using RMSE
and absolute difference, with values equal to zero indicat-
ing the best model accuracy. The statistical significance of
the correlations was examined as described in Section 2.1.

2.3 Drivers of model skill

The contribution of climate drivers in modulating the
ECMWF model skill at predicting the main modes of weekly
Eastern Africa short rains variability was investigated
employing a similar methodology as the one described in
de Andrade et al. (2021). The method assesses the ECMWF
model skill after replacing the modelled driver-related
rainfall variability with the corresponding observed driver-
related response in the hindcasts. Observed and modelled
driver-related rainfall variabilities are derived from the cor-
responding linear regression between rainfall anomalies and
climate indices representing MJO, ENSO, and IOD varia-
tions. Here, RMM, N3.4, and DMI indices were respectively
used to characterise MJO, ENSO, and IOD activity as in de
Andrade et al. (2021). Daily RMM components for each
model ensemble member were sourced from the ECMWF
data store, allowing the computation of the 7-member
ensemble mean for RMM1 and RMM?2 indices at Weeks
1-4. Furthermore, daily SST hindcasts from the S2S data-
base were used to obtain the 7-member ensemble mean of
weekly SST anomalies, following the procedures adopted to
obtain weekly rainfall anomalies in Section 2.2. ENSO and
10D indices at Weeks 1-4 were computed as in Sect. 2.1,
with their co-variability also removed from modelled N3.4
and DMI for producing modelled N3.4* and DMI* indices.
Both indices were normalised by the corresponding stand-
ard deviation depending on the initialisation and lead time.
Suitable datasets specified in Sect. 2.1 were used to produce
the observed RMM 1, RMM2, N3.4*, and DMI* indices in
Weeks 1-4.

Next, we performed a simple linear regression analysis
between weekly rainfall anomalies and MJO, ENSO, and

IOD indices. We subtracted from both observed and mod-
elled rainfall anomalies the corresponding variations in rain-
fall that were linearly associated with each driver. Rainfall
anomalies without the presence of drivers' signals were used
to calculate observed and modelled PCs at Weeks 1—4 as in
Section 2.2. After removing driver-related rainfall variability
from modelled rainfall anomalies, the impact on the model
skill was also investigated by adding observed regression
patterns to hindcasts, producing a new set of model rain-
fall anomalies utilised to obtain corrected PCs. The model
skill was evaluated by measuring the percentage change in
Pearson’s correlation between the resulting observed and
modelled PCs according to (1):

(R = R)/R) * 100 (1)

Where R is the correlation computed without modifying any
driver-related signals in rainfall anomalies, and R is the cor-
relation after removing or adding particular driver-related
signals in rainfall anomalies. Positive (Negative) values of
(1) denote strengthening (weakening) in the association
between observed and modelled PCs, indicating, therefore,
improvements (degradations) in the model skill.

3 Results

The results are organised into three sections, which system-
atically respond to the questions presented in Section 1. The
first Section (3.1) identifies and compares the leading modes
of sub-seasonal Eastern Africa short rains variability from
distinct observational datasets, and shows how these modes
relate to specific climate drivers. The second Section (3.2)
presents a hindcast evaluation for investigating the ability of
the model to capture and predict the leading rainfall modes
at forecast horizons from one to four weeks into the future.
The third Section. (3.3) furthers this evaluation to consider
how the model quality is related to the potential sources of
sub-seasonal climate variability.

3.1 The leading EOF modes and their associations
with climate drivers

Figure 2 shows weekly TAMSAT rainfall climatology, the
standard deviation of associated anomalies, and the corre-
sponding EOF analysis for Eastern Africa rainfall anomalies
during the short rains season from October to December.
The highest climatological rainfall totals are located over
elevated topography in the western sector of Eastern Africa,
covering parts of Burundi, Rwanda, South Sudan, Tanzania,
Uganda, and the central-eastern Democratic Republic of the
Congo (DRC; Figs. 1, 2a). In contrast, the highest rainfall
variability appears in the southeastern sector of Eastern
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Fig.2 Weekly TAMSAT accumulated rainfall (a) climatology and (b)
standard deviation for Eastern Africa short rains season (OND). (c)
Scree plot showing the corresponding explained variance in percent-
age (%) for the first ten eigenvalues of the EOF analysis from weekly
TAMSAT rainfall anomalies. Sample errors are indicated by the error

Africa, including the highlands of Ethiopia and Kenya, as
well as coastal regions in Somalia and Tanzania (Figs. 1,
2b). The first three EOF modes for TAMSAT show spa-
tial structures that influence varying rainfall levels in most
Eastern Africa countries and, when combined, account for
41.5% of the total variance (Figs. 2d, e, f). According to the
criteria of North et al. (1982), these dominant modes are
distinguished from each other and well separated from the
degenerate set of higher EOFs (Fig. 2c¢).

The first leading mode (EOF1) is characterised by a mon-
opole-like rainfall pattern with the largest positive rainfall
anomalies affecting southern Ethiopia, Kenya, and north-
ern Tanzania (Fig. 2d). The second (EOF2) and the third
(EOF3) modes show a dipole-like rainfall pattern with posi-
tive anomalies in Tanzania and negative anomalies in the
northeastern portion of Eastern Africa, which covers Dji-
bouti, Eritrea, Ethiopia, and Somalia (Figs. 2e, ). EOF2 and
EOF3 have similar spatial characteristics in the eastern part
of the domain and coastal regions, whereas opposite signals
are seen further inland (Figs. 2e, f). Although using other
datasets, periods, and domains, the EOF modes found here
generally correspond well with the main modes of seasonal
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bars in (c) according to the North's rule of thumb. The first three spa-
tial EOF modes (or eigenvectors) for weekly TAMSAT rainfall accu-
mulation anomalies are respectively displayed in (d), (e), and (f), with
their explained variance in percentage (%) shown in the top-left cor-
ner. Rainfall accumulations are in millimetres (mm)

and pentad Eastern Africa rainfall variability identified in
previous studies (Schreck and Semazzi 2004; Bowden and
Semazzi 2007; Wenhaji Ndomeni et al. 2018; Kolstad and
MacLeod 2022).

To investigate sources of sub-seasonal Eastern Africa
short rains variability, Fig. 3 presents the correlations
between potential climate drivers’ indices and the first three
TAMSAT PCs. RMM1 exhibits strong significant connec-
tions with PC2 and PC3, whereas.

RMM2 shows high significant co-variability linked to
PC1 (Fig. 3a). Despite N3.4 and DMI showing significant
correlations with PC1, as also found in previous studies
(Schreck and Semazzi 2004; Bowden and Semazzi 2007,
Kolstad and MacLeod 2022), it is worth pointing out that
for N3.4, removing the signal associated with DMI makes
the association insignificant (compare the correlations
when considering the ENSO index as N3.4 (darkest blue
bar) and N3.4* (lightest blue bar) in Fig. 3a), whereas
removing the N3.4 signal from DMI does weaken the
correlation with PC1 but it is still significant (compare
the correlations when considering the DMI index as DMI
(darkest red bar) and DMI* (lightest red bar) in Fig. 3a).
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Fig.3 (a) Absolute Pearson’s correlation between weekly TAM-
SAT PC1 to PC3 and observed weekly drivers’ indices represented
by RMM1, RMM2, N3.4, and DMI. N3.4* (DMI*) indicates that the
DMI (N3.4) signal has been removed from the N3.4 (DMI) index. (b)
Lagged correlations between RMM1 and RMM2, as well as between

For PC2, the correlations indicate that the MJO and IOD
have significant associations with the dipole-like rainfall
variability in the region. In contrast, there are no sig-
nificant associations between ENSO and PC2 (Fig. 3a).
Unlike PC1 and PC2, PC3 does not significantly correlate
with SST indices, which mainly emphasises its relation-
ship with the MJO (Fig. 3a).

The climate drivers' associations with TAMSAT PC1
and PC2 (Fig. 3a), along with the corresponding TAMSAT
spatial modes shown in Fig. 2, generally are consistent with
the regression patterns that de Andrade et al. (2021) found
when relating similar drivers' indices to weekly GPCP
rainfall anomalies. That is, EOF1 (Fig. 2d) compares quite
strongly to the September—October-November RMM?2- and
DMlI-related rainfall patterns shown in de Andrade et al.
(2021) (see SON in their Fig. 9), whereas EOF2 (Fig. 2e)
reasonably matches with the corresponding SON RMM1-
related rainfall pattern. Moreover, December-January—Feb-
ruary N3.4- and RMM 1-related rainfall patterns shown in de
Andrade et al. (2021) (see DJF in their Fig. 9) also indicate
consistent signals with TAMSAT EOF1 (Fig. 2d) and EOF2
(Fig. 2e), respectively. All these characteristics corroborate
with GPCP EOF1 and EOF2, as shown later in Fig. 5.

To specifically deepen understanding of the MJO-related
Eastern Africa rainfall variability, Fig. 3b shows the lagged
correlation between RMM components, as well as between
TAMSAT PC1, PC2, and PC3. Significant correlations for
PC1 and PC2 are identified at 1-2-week lags, showing that
PC1 generally leads PC2 by a few weeks (Fig. 3b; purple
line). This agrees with the MJO cycle, which also indicates
that RMM1 and RMM?2 occur sequentially with significant
correlations at 1-2-week lags (Fig. 3b; green line). How-
ever, the correlations between PC1 and PC3 or PC2 and

the leading TAMSAT PCs. A positive (negative) lag indicates RMM1
leads (lags) RMM2, for instance. Hatching over the bars in (a) and
open circle markers in (b) denote correlation coefficients that are not
statistically significant at the 95% confidence level according to a
two-tailed Student’s t-test

PC3 are not significant across all lags (Fig. 3b; orange and
blue lines).

The results discussed so far have been carried out using
TAMSAT data. To examine the sensitivity of weekly rainfall
to the choice of the observational dataset, Fig. 4 displays the
climatology and standard deviation for CHIRPS (Figs. 4a,
d), GPCP (Figs. 4b, e), and TRMM (Figs. 4c, f) data during
OND.

All datasets show the highest climatological rainfall
totals in the western sector of the domain (Figs. 4a, b, c¢)
and the highest rainfall deviations in the southeastern sector
of Eastern Africa (Figs. 4d, e, f), overall corroborating with
TAMSAT data (Figs. 2a, b). Nevertheless, higher (lower) cli-
matological rainfall totals are seen over Kenya for CHIRPS
and TRMM (GPCP) data (compare Fig. 2a with Figs. 4a,
c (Fig. 4b)), whereas higher (lower) rainfall variations are
found further inland for GPCP and TRMM (CHIRPS) data
(compare Fig. 2b with Figs. 4e, f (Fig. 4d)). Despite these
minor differences in the rainfall data, there is considerable
agreement in the weekly evolution of the region-averaged
rainfall anomalies throughout the short rains when compar-
ing all datasets (Online Resource 1—Fig. 1). These find-
ings, therefore, contribute to increasing the reliability of the
observed rainfall variability in the region and its related EOF
analysis, as shown below.

Figure 5 displays the first three spatial EOF modes and
scree plots for CHIRPS, GPCP, and TRMM rainfall anom-
alies. The combined explained variance of EOF1, EOF2,
and EOF3 is 42.1% for CHIRPS (Figs. 5a, b, ¢), 45.4% for
GPCP (Figs. 5e, f, g), and 34.4% for TRMM (Figs. 51, j, k).
Thus, the sum of the explained variance of TRMM is lower
than that of CHIRPS or GPCP when compared to TAMSAT
(41.5%; Figs. 2d, e, 1).
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Fig.4 Weekly accumulated rainfall (upper panel) climatology and (lower panel) standard deviation for (a, d) CHIRPS, (b, ) GPCP, and (c, f)
TRMM datasets during the Eastern Africa short rains season (OND). Rainfall accumulations are in millimetres (mm)

The spatial patterns associated with EOF1 and EOF2
from the additional datasets (CHIRPS, GPCP, and TRMM)
are similar to the ones found for TAMSAT, i.e., a monopole-
like rainfall pattern for EOF1 (compare Fig. 2d with Figs. 5a,
e, i) and a dipole-like rainfall pattern for EOF2 (compare
Fig. 2e with Figs. 5b, f, j). For EOF3, however, there are
discrepancies when comparing its spatial pattern among the
datasets. While GPCP shows positive rainfall anomalies in
Tanzania and negative rainfall anomalies in the northeast-
ern sector of Eastern Africa in agreement with TAMSAT
(compare Fig. 2f with Fig. 5g), CHIRPS and TRMM exhibit
rainfall patterns that differ from TAMSAT (compare Fig. 2f
with Figs. 5¢, k). The uncertainty in representing EOF3 in
the observations is also seen through the scree plots, show-
ing distinct sample errors and how separated this mode is
from EOF2 and higher EOF modes, depending on the data-
set (Figs. 5d, h, 1).

To further assess the representation of the leading EOF
modes within CHIRPS, GPCP, and TRMM datasets, Fig. 6
shows the association between the first three TAMSAT
PCs and the first ten PCs (PC1 to PC10) derived from the
EOF analysis using CHIRPS, GPCP, and TRMM rainfall
anomalies. The highest correlation coefficients indicate that
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TAMSAT PC1 and PC2 are adequately represented across all
datasets, particularly in CHIRPS data (Figs. 6a, b). However,
Fig. 6¢ shows there is some sensitivity to the selection of the
reference data when performing an EOF analysis of weekly
rainfall anomalies for Eastern Africa short rains, specifically
that TAMSAT PC3 properties are not well represented by
other datasets, notably CHIRPS and TRMM as also seen
in the spatial patterns (compare Fig. 2f with Figs. 5c, k). In
fact, CHIRPS can reasonably represent the temporal vari-
ability associated with EOF3, though it is captured by the
fourth EOF mode (Fig. 6¢).

The following two sections only address a model evalua-
tion for the first two EOF modes (EOF1 and EOF2) owing to
the inconsistency in representing EOF3 across the datasets
(Figs. 2, 5, 6). Moreover, the results for the TAMSAT dataset
are exclusively used when assessing model hindcasts, as the
sensitivity to the reference data selection is minimal for the
two leading rainfall modes (Figs. 2, 5, 6).

3.2 Model evaluation

Figures 7 and 8 show the model capability to capture the
first (RSM1) and the second (RSM2) RSMs at lead times
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Fig.5 The first three spatial EOF modes (or eigenvectors) for weekly
(a)-(c) CHIRPS, (e)-(g) GPCP, and (i)-(k) TRMM rainfall accumu-
lation anomalies during OND, with their explained variance in per-
centage (%) shown in the top-left corner. Scree plot showing the
corresponding explained variance in percentage (%) for the first ten

of one to four weeks ahead, respectively. Even though the
amplitude of anomalies reduces with increasing lead time,
all models can satisfactorily represent essential characteris-
tics of the leading RSMs, that is, the monopole-like rainfall
pattern for RSM1 (Fig. 7) and the dipole-like rainfall pattern
for RSM2 (Fig. 8), in agreement with the observations (con-
tours in Figs. 7, 8). The ability of the NCEP model to capture
RSM1 and RSM2 is lower than in other models, as indicated
by the largest region-averaged amplitude differences and the
weakest spatial correlation coefficients computed between
modelled and observed RSMs. Less accurate outcomes in
the NCEP model are, in particular, associated with errors in
representing the location of the rainfall anomaly. For RSM1,

23°E 28°E 33°E 38°E 43°E 48°E 1 2 3 4 5 6 7 8 9 10

Eigenvalues

4
10 15

eigenvalues of the EOF analysis from weekly (d) CHIRPS, (h) GPCP,
and (I) TRMM rainfall anomalies. Sample errors are indicated by the
error bars in (d, h, 1) according to the North's rule of thumb. Rainfall
accumulations are in millimetres (mm)

this is seen through the largest positive anomalies displaced
to the west of Tanzania (Figs. 7e, f, g, h) compared to the
ECMWEF (Figs. 7a, b, ¢, d) and UKMO (Figs. 71, j, k, 1) mod-
els. ECMWF and UKMO models place such variations in
rainfall over the entire southeastern sector of Eastern Africa,
as also seen in the observations. For RSM2, the discrepancy
is found in the largest negative anomalies (Figs. 8e, f, g, h),
which appear further to the west of the domain compared to
the other models and observations (Figs. 8a, b, ¢, d, 1, j, k, 1).

Shortcomings in capturing the leading RSMs are likely
related to the model capability of representing its climatol-
ogy and variance (Online Resource 1—Figs. 2, 3). Although
all models predict the highest climatological rainfall totals in
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Fig.6 Absolute Pearson’s correlation for TAMSAT (a) PC1, (b) PC2,
and (c) PC3 against the first ten PCs (PC1 to PC10) from CHIRPS,
GPCP, and TRMM datasets. Shaded boxes with numbers indicate sta-
tistically significant values at the 95% confidence level according to a
two-tailed Student’s t-test

the western portion of the domain, the mean state response
for ECMWF and UKMO (NCEP) is stronger (weaker) than
TAMSAT over most of the southern and southeastern sectors
of Eastern Africa (compare Fig. 2a with Online Resource
1—Fig. 2). Additionally, all models show a reduction in
rainfall variability withincreasing lead time, as well as dis-
crepancies at predicting the location of rainfall anomalies,
particularly in the NCEP model, which shows higher devia-
tions near DRC compared to TAMSAT (compare Fig. 2b
with Online Resource 1—Fig. 3).

The model skill at predicting the leading PCs (PC1 and
PC2) in Weeks 1—4 is evaluated in Fig. 9. For both PCs, the
skill reduces with increasing lead time, with, in particular,
Week 1 showing the highest associations (Fig. 9a) and low-
est amplitude errors (Fig. 9b) for all models PC1. UKMO
and ECMWF PC1 have the highest skill at all leads, with
UKMO having a marginally higher skill than ECMWF. The
results for PC1 overall corroborate the correlation assess-
ments performed by de Andrade et al. (2021) for weekly
Eastern Africa rainfall anomalies initialised in Septem-
ber—October-November. All models exhibit higher skill at
predicting PC1 compared with PC2. Notably, the skill for
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NCEP PC1 remains just slightly higher than for ECMWF
or UKMO PC2 in Weeks 3—4, and even comparable to these
models PC2 in Week 2. The lowest skill is seen for NCEP
PC2 at most leads, showing, for instance, a non-significant
correlation with a value below 0.2 at Week 4 (Fig. 9a).

4 Sources of predictability

To investigate where the skill found in the previous section
comes from, Figs. 10 and 11 show respectively the percent-
age change in the correlations for ECMWEF PC1 and PC2
against the corresponding observed PCs considering two
conditions: i) when the co-variability between modelled
rainfall anomalies and specific climate drivers’ indices is
subtracted from the model (Figs. 10a, 11a) and (ii) when the
corresponding observed co-variability is added to the model
(Figs. 10b, 11b) after removing its modelled co-variability
as in (i). According to Eq. (1), both conditions (i) and (ii) are
relative to reference values obtained when no modification is
considered in the model rainfall anomalies before comput-
ing the PCs. Since ECMWF and UKMO had comparative
skill'in Fig. 9, with skill significantly higher than NCEP, the
former is used here to compare the results with those found
in de Andrade et al. (2021).

The driver-rainfall co-variability subtracted from mod-
elled rainfall anomalies modulates the skill at predicting PC1
(Fig. 10a) and PC2 (Fig. 11a) throughout the lead times.
When examining the removal of a single driver's signal
rather than a combination of two or more of these drivers'
signals in the model, the skill degradation (i.e., negative per-
centage change) for PC1 is mainly seen after removing the
RMM2 signal from hindcasts (Fig. 10a). This shows a cor-
relation reduction varying from 9.3% in Week 1 to 53.8% in
Week 4 relative to reference values (i.e., CORR in Fig. 10a).
Removing N3.4* and DMI* signals from hindcasts also
affects the PC1 skill. Nevertheless, the rate of skill degra-
dation over the weeks is no higher than 11.6% for N3.4*
and 15.2% for DMI* about reference values (Fig. 10a). For
PC2 (Fig. 11a), the highest skill degradations occur when
removing RMMI1- and DMI*-related rainfall anomalies
from hindcasts, with skill reducing over the weeks up to
31.5% and 36.2%, respectively, comparing to reference val-
ues (i.e., CORR in Fig. 11a). When all drivers’ signals are
eliminated from the model, the overall skill drop estimated
is substantially explained by skill degradation associated
with the removal of the MJO signal from hindcasts (com-
pare RMM?2 and RMM1 with ALL in Figs. 10a and 11a,
respectively), which is more pronounced for PC1 than for
PC2 (compare RMM?2 in Fig. 10a with RMM1 in Fig. 11a).
These decreases in skill seen when subtracting all drivers'
signals from hindcasts are also considerably associated with
removing the DMI* signal in the model, particularly for PC2

| Journal : Large 382 Article No : 7244 Pages : 17

MS Code : 7244

Dispatch : 19-4-2024

616
617
618
619
620

621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665



666
667
668
669
670
671
672
673
674
675
676

Skill assessment and sources of predictability for the leading modes of sub-seasonal Eastern...

Week 1 Week 2 Week 3 Week 4
(b) (c) (d)
(i B >
o m
\\ \‘ g
...... - =
=S M
"—-\v —y
¢ m 2.29
’ 7
L
oo (e) | (h)
N
15°N- ’x-\ > l ‘
|
10°N (Y Y -
son frone 0 o O ‘ .
| ¥ g Y r&e ~ K
0 I 7] B | = pu
o 265| | 253|| 2.92
10°5 {4 =4 L=
oo [© M) 0)
|
10°N
L S R %
5°N = \\ e \\ ‘\\ \~ Z
- e Ee=n. [ F==~s [ =R (@)
5’5--:-' g e / ~ 1, e ‘:’,
; 1.94 175|| 214 Li y 231
'i > : o 1’/ =)
10°S{\/ ‘ I

23°E 28°E 33°E 38°E 43°E 48°E

23°E 28°E 33°E 38°E 43°E 48°E

23°E 28°E 33°E 38°E 43°E 48°E

[mm]

23°E 28°E 33°E 38°E 43°E 48°E

-15-10 -5 -1

Fig. 7 First regressed spatial mode (RSM1) at Weeks 1-4 for (a)-(d)
ECMWEF, (e)-(h) NCEP, and (i)-(1) UKMO models (shaded). The
contours denote the corresponding RSM for TAMSAT rainfall anom-
alies, with solid (dashed) lines for positive (negative) values. The zero
line is omitted. Magenta (Green) boxes in the bottom-right corner

(compare DMI* with ALL in Figs. 10a, 11a). The combined
removal of rainfall variations linked to RMM components
(RMM1 +RMM2) and SST indices (N3.4* + DMI*) further
indicates that degradations in PC1 forecast skill are mainly
related to the RMM2 signal, and are secondarily associ-
ated with N3.4* and DMI* signals (Fig. 10a). For PC2,
however, such a combined removal affecting its prediction
skill is dominated by RMM1 and DMI signals in the model
(Fig. 11a). Thus, these forecast skill results for PC1 and PC2
corroborate the corresponding observed associations shown
in Fig. 3.

0 1 5

10 15

indicate the region-averaged absolute difference (statistically signifi-
cant spatial correlation) between modelled and observed RSMs. Sta-
tistically significant spatial correlation at the 95% level confidence
level is examined according to a two-tailed Student’s t-test

Skill improvements (i.e., positive percentage changes)
are seen for both PC1 and PC2 predictions after replac-
ing the modelled rainfall response to a single driver
with the corresponding observed response, especially
in Weeks 3-4 (Figs. 10b, 11b). Although PC1 and PC2
skills improve if using corrected DMI*-related rainfall
variability patterns, this approach is not more effective
than simply correcting the model with the observed
MJO-related rainfall variability. Moreover, the effect of
adjusting the rainfall signal associated with N3.4* in the
model is almost zero (Figs. 10b, 11b), indicating that of

@ Springer

Journal : Large 382 Article No : 7244 Pages : 17

MS Code : 7244

Dispaich : 19-4-2024 |

677
678
679
680
681
682
683
684
685
686
687



688
689
690
691
692
693
694
695
696
697
698

F. M. de Andrade et al.

Week 1

Week 2

Week 3

Week 4

20°N (a)

15°N
10°N

5°N

2.12

(b)

Ll

-
o o/

(c)

2.7

1.86

(d)

AMIWDO3

1.85

20°N

15°N

10°N

P - R

L 5 1 e
e ©

7

5°N

5°S

[}
10°S {32

Pl

d3ON

20°N
15°N
10°N 3 5

5°N

e

i/
105 =4 -

ondn

23°E 28°E 33°E 38°E 43°E 48°E

Fig.8 Second regressed spatial mode (RSM2) at Weeks 1-4 for (a)-
(d) ECMWEF, (e)-(h) NCEP, and (i)-(1) UKMO models (shaded). The
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the predictability drivers investigated here, ENSO con-
tributes the least to varying PCs forecast skill. PC1 skill
improvements are more sensitive to RMM?2 variations
than to anomalies in other drivers (Fig. 10b), whereas the
most pronounced PC2 skill responses are linked to RMM 1
variations (Fig. 11b). These findings are supported, for
example, by the largest positive percentage changes for
PC1 and PC2 in Week 4, with correlation coefficients
exceeding, respectively, 50% (RMM2 in Fig. 10b) and

70% (RMMI1 in Fig. 11b) relative to reference values (i.e.,
CORR in Figs. 10b, 11b). For PC2 rather than PC1, skill
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indicate the region-averaged absolute difference (statistically signifi-
cant spatial correlation) between modelled and observed RSMs. Sta-
tistically significant spatial correlation at the 95% level confidence
level is examined according to a two-tailed Student’s t-test

improvements associated with MJO are more pronounced
(compare RMMI1 in Fig. 11b with RMM?2 in Fig. 10b),
and account for a considerable portion of the enhanced
overall level of skill after including all observed drivers'
signals in the model (compare RMM1 and RMM2 with
ALL in Figs. 11b and 10b, respectively).

The results presented in this section overall corroborate
the ones found by de Andrade et al. (2021), highlight-
ing, in particular, the potential contribution of improved
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and PC2) at Weeks 1-4. Solid (Dashed) lines indicate the skill assess-
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Fig. 10 Percentage change in the correlation between TAMSAT and
ECMWF PC1 at Weeks 1-4 computed after (a) removing from and
(b) adding to model rainfall anomalies a particular driver-related
variability. The co-variability is indicated at the bottom of (b) by the
corresponding driver’s index or a combination of two or all (“ALL”)
drivers’ indices. The leftmost column shows the correlation computed
without modifying any driver-related signal in rainfall anomalies
(“CORR?”), as in Fig. 9a (solid green line)
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= =
0.8 -1.1 4.9 -5.8 0.5 9.3 90 | -154 E 0.6 2.6 6.0 4.1 8.2 0.9 5.4 8.4 E
= =
0.6 2.5 -1.5 4.0 0.3 -28.9 E 0.4 2.4 8.4 5.8 -7.1 1.7 -1.4 -1.7 E
= =
0.4 5.4 6.6 | -12.5 21 -28.5 E 0.3 18 -18.6 | -17.0 | -22.1 8.6 | -26.2 E
= =
0.3 -11.6 | -15.2 E 0.2 2.6 : 31.5 2.9 E
- E
(b) Observed anomalies added (PC1) (b) Observed anomalies added (PC2)
= =
0.8 0.2 2.1 -1.0 0.5 0.9 12 0.0 5 0.6 2.6 0.1 2.3 19 0.9 3.6 4.6 ﬁ
= =
0.6 -1.3 31 33 0.3 2.0 -1.9 1.4 E 0.4 22 0.2 2.3 8.4 2.7 12:1 14.7 E
= =
0.4 2.1 41 4.7 2.5 10.1 13.0 18.5 E 0.3 1.6 7.8 9.3 17.0 -1.9 1553 243 5
0.3 -1.4 16.7 20.1 0.2 2.8 24.2 27.1 72.4

CORR N3.4* DMI*  N3.4*+DMI* RMM1 RMM2 RMM1+RMM2 ALL

O —

TP | | | |
-70 -50 -30 -10 O 10 30 50 70
[%]

Fig. 11 Percentage change in the correlation between TAMSAT and
ECMWF PC2 at Weeks 1-4 computed after (a) removing from and
(b) adding to model rainfall anomalies a particular driver-related
variability. The co-variability is indicated at the bottom of (b) by the
corresponding driver’s index or a combination of two or all (“ALL”)
drivers’ indices. The leftmost column shows the correlation computed
without modifying any driver-related signal in rainfall anomalies
(“CORR?”), as in Fig. 9a (dashed green line)

on the MJO impacts on model rainfall anomalies) to skill
increases in weekly Eastern Africa rainfall predictions
within the ECMWF model.
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5 Summary and conclusions

The sub-seasonal variability and prediction skill of short
rains in Eastern Africa are assessed using several observa-
tional and model datasets. An EOF analysis is performed
to identify the leading modes of weekly rainfall variability
in Eastern Africa, allowing exploring their associations
with specific climate drivers. This study then goes on to
investigate the ability of dynamical models to capture and
predict the leading rainfall modes, as well as examine
potential-related sources of predictability.

Irrespective of the observational dataset used (i.e.,
TAMSAT, CHIRPS, GPCP, or TRMM), two distinct
weekly rainfall modes in the Eastern African short rains
from October to December (OND) are identified; these are:
i) a monopole-like rainfall pattern with the largest anoma-
lies in southern Ethiopia, Kenya, and northern Tanzania;
and (ii) a dipole-like rainfall pattern between Tanzania and
the northeastern sector of Eastern Africa, mainly impact-
ing Ethiopia and Somalia. Our results indicated that the
two leading rainfall modes have the strongest correlations
with the MJO. Specifically, the first (second) rainfall mode
showed the highest correlations with the RMM?2 (RMM1)
index, which is linked to MJO-related convective anoma-
lies in the tropical Indian Ocean and western Pacific (Mar-
itime Continent and Western Hemisphere). Moreover, we
found that the first and second leading modes are signifi-
cantly correlated with the DMI index, with the former also
having significant associations with the N3.4 index if the
ENSO-IOD co-variability is retained in the index. Despite
using distinct datasets, periods, domains, and methods for
representing ENSO and IOD activities, our results com-
plement previous work (e.g., Bowden and Semazzi 2007),
suggesting that the modulation of the leading weekly rain-
fall modes may depend on the MJO variability superim-
posed on distinct lower-frequency background conditions,
which deserves additional investigation.

The ability of ECMWF, NCEP, and UKMO models to
capture and predict the two leading rainfall modes at lead
times of one to four weeks is also examined. Evaluation
of modelled spatiotemporal properties of rainfall modes
showed that ECMWF and UKMO are comparable and
outperformed NCEP. NCEP exhibited, with respect to
observations, a westward shift in the anomalies of both
spatial modes, which may explain the model shortcomings
in capturing the rainfall associated with those modes. The
skill assessments for predicting the corresponding PCs
further demonstrated that models’ phase and amplitude
errors increased from Week 1 to Week 4, with ECMWF
and UKMO PC1 having the highest skill at all lead times
and PC2 showing lower skill than PC1 for all models.

@ Springer

To improve the understanding of potential sources driv-
ing ECMWF model skill, an examination of specific cli-
mate drivers in modulating the model ability to predict the
leading rainfall modes is further carried out. We showed
evidence that if the modelled MJO-related rainfall variability
is removed from the model, this leads to a degradation in
predicting the leading PCs, with rainfall variations linked
to the RMM2 (RMM1) index contributing the most to the
percentage change in the PC1- (PC2-) related skill. We also
found that removing SST-related rainfall variations in the
model modulates skill reductions in both PCs, with ENSO
and IOD (IOD) impacting the skill at predicting PC1 (PC2).
Skill degradations are mainly compensated after replacing
the modelled MJO-related rainfall variability with observed
MJO-related rainfall variability in the model, leading to the
largest skill improvements in Weeks 3—4. It is worth noting
that the skill for PC1 and PC2 is respectively improved by
up to 18.2% and 16.8% over the weeks when considering the
combination of all corrected driver-related rainfall variabil-
ity relative to considering the most correlated MJO signal
only (i.e., RMM?2 for PC1 and RMMI1 for PC2). Thus, our
results indicate that correcting SST-related rainfall varia-
tions in the model, especially those associated with IOD,
could have contributed to enhancing the skill in predicting
the leading rainfall modes, though suggesting a secondary
role.

Even though it is still challenging to predict sub-seasonal
variations in Eastern Africa short rains (de Andrade et al.
2021; Kolstad et al. 2021), this study demonstrated, in par-
ticular, that strengthening the model ability to capture MJO-
related rainfall variability has the potential to more accu-
rately predict the main modes of weekly rainfall variability
in the region. These results support the concept of windows
of opportunity (Mariotti et al. 2020) that may help forecast-
ers identify periods when sub-seasonal rainfall prediction
accuracy is at its highest during Eastern Africa short rains.
Additionally, given that the drivers examined interact with
each other (e.g., Hendon et al. 2007; Wilson et al. 2013;
Zhang et al. 2015) and that their combined activity may
impact the rainfall in Eastern Africa during the short rains
(e.g., Vashisht and Zaitchik 2022), future work is recom-
mended to specifically elucidate the multi-way interactions
among ENSO, IOD, and the MJO, as well as the correspond-
ing effects on the sub-seasonal Eastern Africa short rains
prediction skill. However, when examining forecast skill,
the limited length of typical hindcast datasets can limit the
number of samples of each combination of phases of mul-
tiple drivers.

Finally, by projecting sub-seasonal rainfall anomaly fore-
casts onto the two observed leading rainfall modes examined
here, a pair of sub-seasonal rainfall monitoring indices could
be used as a forecasting tool in operational routines across
Eastern Africa. Therefore, in addition to supporting model

| Journal : Large 382 Article No : 7244 Pages : 17

MS Code : 7244

Dispatch : 19-4-2024

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813



814
815
816
817
818
819

Skill assessment and sources of predictability for the leading modes of sub-seasonal Eastern...

developers in identifying shortcomings in Eastern Africa
rainfall predictions for advancing the sub-seasonal predic-
tion systems in the future, our results can further contrib-
ute to developing sub-seasonal forecast products that may
add valuable climate information for anticipatory planning
decisions across several sectors, such as agriculture, food

security, and energy.
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