

Skill assessment and sources of predictability for the leading modes of sub-seasonal Eastern Africa short rains variability

Article

Accepted Version

de Andrade, F. M., Hiron, L. C. ORCID: <https://orcid.org/0000-0002-1189-7576> and Woolnough, S. J. ORCID: <https://orcid.org/0000-0003-0500-8514> (2024) Skill assessment and sources of predictability for the leading modes of sub-seasonal Eastern Africa short rains variability. *Climate Dynamics*, 62. pp. 5721-5737. ISSN 1432-0894 doi: 10.1007/s00382-024-07244-9 Available at <https://centaur.reading.ac.uk/116132/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1007/s00382-024-07244-9>

Publisher: Springer

the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Skill assessment and sources of predictability for the leading modes of sub-seasonal Eastern Africa short rains variability	
Article Sub-Title		
Article CopyRight	The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature (This will be the copyright line in the final PDF)	
Journal Name	Climate Dynamics	
Corresponding Author	FamilyName Particle Given Name Suffix Division Organization Address Division Organization Address Phone Fax Email URL ORCID	Andrade de Felipe M. National Centre for Atmospheric Science and Department of Meteorology University of Reading Reading, UK National Institute for Space Research Cachoeira Paulista, SP, Brazil felipestratus@gmail.com http://orcid.org/0000-0001-6653-3916
Author	FamilyName Particle Given Name Suffix Division Organization Address Phone Fax Email URL ORCID	Hirons Linda C. National Centre for Atmospheric Science and Department of Meteorology University of Reading Reading, UK http://orcid.org/0000-0002-1189-7576
Author	FamilyName Particle Given Name Suffix Division Organization Address Phone Fax Email URL ORCID	Woolnough Steven J. National Centre for Atmospheric Science and Department of Meteorology University of Reading Reading, UK http://orcid.org/0000-0003-0500-8514
Schedule	Received Revised	8 Jan 2024

Abstract

Understanding how models represent sub-seasonal rainfall variations and what influences model skill is essential for improving sub-seasonal forecasts and their applications. Here, empirical orthogonal function (EOF) analysis is employed to investigate weekly Eastern Africa short rains variability from October to December. The observed leading EOF modes are identified as (i) a monopole-like rainfall pattern with anomalies impacting southern Ethiopia, Kenya, and northern Tanzania; and (ii) a dipole-like rainfall pattern with contrasting anomalies between Tanzania and the northeastern sector of Eastern Africa. An examination of the links between the leading modes and specific climate drivers, namely, the Madden–Julian Oscillation (MJO), El Niño–Southern Oscillation, and Indian Ocean Dipole (IOD), shows that the MJO and IOD have the highest correlations with the two rainfall modes and indicates that the monopole (dipole)-like rainfall pattern is associated with MJO convective anomalies in the tropical Indian Ocean and western Pacific (Maritime Continent and Western Hemisphere). Assessments of model ability to capture and predict the leading modes show that the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models outperform the National Centers for Environmental Prediction model at forecast horizons from one to four weeks ahead. Amongst the drivers examined, the MJO has the largest impact on the forecast skill of rainfall modes within the ECMWF model. If MJO-related variability is reliably represented, the ECMWF model is more skilful at predicting the main modes of weekly rainfall variability over the region. Our findings can support model developments and enhance anticipatory planning efforts in several sectors, such as agriculture, food security, and energy.

Keywords (separated by '-') Eastern Africa Short Rains - Empirical Orthogonal Function Analysis - Madden–Julian Oscillation - El Niño–Southern Oscillation - Indian Ocean Dipole - Sub-seasonal Prediction Skill

Footnote Information

1 Skill assessment and sources of predictability for the leading modes 2 of sub-seasonal Eastern Africa short rains variability

3 Felipe M. de Andrade^{1,2} · Linda C. Hirons¹ · Steven J. Woolnough¹

4 Received: 8 January 2024 / Accepted: 12 April 2024

5 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

6 Abstract

7 Understanding how models represent sub-seasonal rainfall variations and what influences model skill is essential for improving
8 sub-seasonal forecasts and their applications. Here, empirical orthogonal function (EOF) analysis is employed to investigate
9 weekly Eastern Africa short rains variability from October to December. The observed leading EOF modes are identified
10 as (i) a monopole-like rainfall pattern with anomalies impacting southern Ethiopia, Kenya, and northern Tanzania; and (ii)
11 a dipole-like rainfall pattern with contrasting anomalies between Tanzania and the northeastern sector of Eastern Africa.
12 An examination of the links between the leading modes and specific climate drivers, namely, the Madden–Julian Oscilla-
13 tion (MJO), El Niño–Southern Oscillation, and Indian Ocean Dipole (IOD), shows that the MJO and IOD have the highest
14 correlations with the two rainfall modes and indicates that the monopole (dipole)-like rainfall pattern is associated with
15 MJO convective anomalies in the tropical Indian Ocean and western Pacific (Maritime Continent and Western Hemisphere).
16 Assessments of model ability to capture and predict the leading modes show that the European Centre for Medium-Range
17 Weather Forecasts (ECMWF) and the UK Met Office models outperform the National Centers for Environmental Prediction
18 model at forecast horizons from one to four weeks ahead. Amongst the drivers examined, the MJO has the largest impact
19 on the forecast skill of rainfall modes within the ECMWF model. If MJO-related variability is reliably represented, the
20 ECMWF model is more skilful at predicting the main modes of weekly rainfall variability over the region. Our findings can
21 support model developments and enhance anticipatory planning efforts in several sectors, such as agriculture, food security,
22 and energy.

AQ1 AQ2

23 **Keywords** Eastern Africa Short Rains · Empirical Orthogonal Function Analysis · Madden–Julian Oscillation · El Niño–
24 Southern Oscillation · Indian Ocean Dipole · Sub-seasonal Prediction Skill

25 1 Introduction

26 Rainfall variations in Eastern Africa, which includes the
27 countries of Burundi, Djibouti, Eritrea, Ethiopia, Kenya,
28 Rwanda, Somalia, Sudan, South Sudan, Tanzania, and
29 Uganda (Fig. 1), with a total population of 457 million peo-
30 ple (Palmer et al. 2023), may substantially impact several
31 crucial activities in the region, in sectors such as agriculture,
32 food security, and energy (Funk et al. 2008; Anande and
33 Luhunga 2019; Chang'a et al. 2020; FSNAU 2022; Palmer

34 et al. 2023). Thus, there has been an increasing interest in
35 understanding what controls Eastern Africa rainfall vari-
36 ability (Ogallo et al. 1988; Ogallo 1989; Indeje et al. 2000;
37 Black et al. 2003; Schreck and Semazzi 2004; Bowden and
38 Semazzi 2007; Berhane and Zaitchik 2014; Gamoyo et al.
39 2015; Nicholson 2017; Wenhaji Ndomeni et al. 2018; Kol-
40 stad and MacLeod 2022; Maybee et al. 2022; among others).

41 Specifically, significant variations in Eastern Africa rain-
42 fall occur throughout the October–November–December
43 (OND) short rains (Nicholson 2017; Palmer et al. 2023),
44 showing, in particular, large interannual/seasonal variabil-
45 ity (Camberlin and Wairoto 1997; Camberlin et al. 2009).
46 Previous studies have investigated the sources of seasonal
47 short rains variability, mainly indicating associations with
48 El Niño–Southern Oscillation (ENSO; Nicholson and Kim
49 1997; Schreck and Semazzi 2004; Bowden and Semazzi
50 2007; Hoell et al. 2014; MacLeod et al. 2021; Kolstad and

A1 Felipe M. de Andrade
A2 felipestratus@gmail.com

A3 ¹ National Centre for Atmospheric Science and Department
A4 of Meteorology, University of Reading, Reading, UK

A5 ² National Institute for Space Research, Cachoeira Paulista, SP,
A6 Brazil

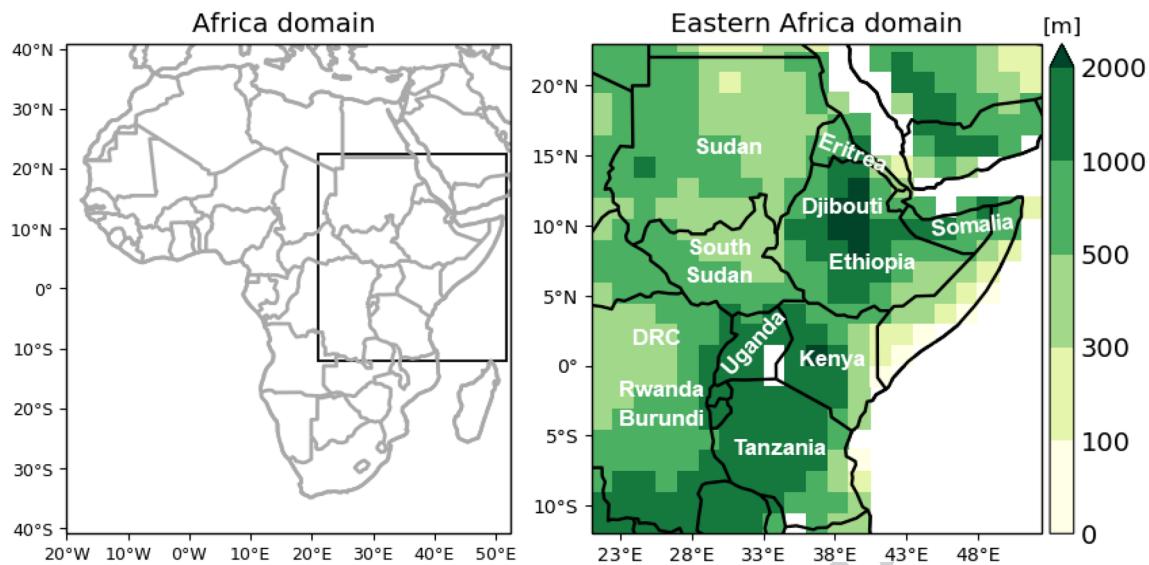


Fig. 1 Africa domain in the left panel with a black box indicating the Eastern Africa domain (12°S - 23°N , 21° - 52°E) magnified in the right panel. Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Sudan, South Sudan, Tanzania, and Uganda are the 11 countries

comprising the Eastern Africa domain. DRC stands for Democratic Republic of the Congo. Topography (shaded) in the right panel is shown in metres (m) and sourced from ERA5 reanalysis (Hersbach et al. 2020)

MacLeod 2022) and the Indian Ocean Dipole (IOD; Black et al. 2003; Behera et al. 2005; Nicholson 2015; Hiron and Turner 2018; Bahaga et al. 2019; Kolstad and MacLeod 2022). Strong co-variability exists between ENSO and the IOD (Nicholson 2015; Zhang et al. 2015), with the latter typically having more influence than the former on the short rains owing to its modulation of local zonal circulation (Goddard and Graham 1999; Bergonzini et al. 2004; Nicholson 2015; Zhao and Cook 2021). A weaker-than-normal zonal circulation over the Indian Ocean is related to positive sea surface temperature (SST) anomalies in the west and negative SST anomalies in the east, leading to enhanced rainfall in Eastern Africa (Black et al. 2003; Behera et al. 2005; Ummenhofer et al. 2009). The opposite SST pattern strengthens the zonal circulation over the Indian Ocean (Jiang et al. 2021; Zhao and Cook 2021), favouring reduced rainfall in Eastern Africa (Black et al. 2003; Behera et al. 2005). The most recent noticeable impact of an IOD event occurred in Eastern Africa's 2019 short rains and was associated with substantially above-average rains that forced hundreds of thousands of people to flee their homes and caused crop and livestock losses in the areas severely affected (Wainwright et al. 2021).

In addition to seasonal rainfall variability, sub-seasonal short rains anomalies (i.e., wet and dry spells within the rainy season that extend longer than the synoptic timescale) have also been identified (Camberlin and Wairoto 1997; Mutai and Ward 2000; Pohl and Camberlin 2006a; b; Zaitchik 2017). Such sub-seasonal rainfall variations are mainly related to the influence of the Madden-Julian

Oscillation (MJO) over Eastern Africa, with significant phasing dependence (Pohl and Camberlin 2006a; b; Omeny et al. 2008; Berhane and Zaitchik 2014; Hogan et al. 2015). In general, rainfall increases (reduces) in most of Eastern Africa when the MJO-enhanced convective core is over the tropical Indian Ocean (Western Pacific) (Omeny et al. 2008; Hogan et al. 2015), as indicated by phases 2 and 3 (6 and 7) of the Real-Time Multivariate MJO index (RMM; Wheeler and Hendon 2004).

While seasonal predictions of short rains variability show great accuracy several months ahead of a season in association with ENSO and IOD modulation (Bahaga et al. 2015; MacLeod 2019; Walker et al. 2019), sub-seasonal prediction skill of short rains variability over a few weeks ahead remains relatively modest (Vigaud et al. 2018; 2019; de Andrade et al. 2021; Kolstad et al. 2021), with correlations rarely above 0.4 after two weeks lead time (de Andrade et al. 2021). As a result, linearly corrected forecasts have emerged and, to some extent, skill improvements have been linked to potential drivers of sub-seasonal to seasonal predictability such as the MJO, ENSO, and the IOD (Vigaud et al. 2018; de Andrade et al. 2021; Kolstad et al. 2021). Nevertheless, improving our understanding of sub-seasonal short rains variability, particularly the underlying drivers that modulate the local rainfall impacts, is essential to better predicting and anticipating sub-seasonal rainfall anomalies in Eastern Africa.

Here, an in-depth investigation of sub-seasonal variability and prediction skill of short rains is performed by examining its leading weekly rainfall modes rather than the

111 commonly assessed weekly rainfall anomalies within the
 112 season (Vigaud et al. 2019; de Andrade et al. 2021). This
 113 approach allows us to evaluate distinct weekly rainfall vari-
 114 ability patterns accounting for the largest portion of the total
 115 variance in the sub-seasonal rainfall anomalies. While this
 116 approach has been applied in a small number of studies at
 117 pentad and seasonal timescales (Schreck and Semazzi 2004;
 118 Bowden and Semazzi 2007; Wenhaji Ndomeni et al. 2018;
 119 Kolstad and MacLeod 2022), evidence is lacking for further
 120 assessing the leading modes of Eastern Africa short rains
 121 variability at weekly timescales, along with their represen-
 122 tation within dynamical models, sources of predictability,
 123 and prediction skill. Given that, the following questions are
 124 addressed:

125 What are the leading modes of weekly Eastern Africa
 126 short rains variability and their relationships with poten-
 127 tial climate drivers?

128 What is the current ability of the models to capture and
 129 predict the leading rainfall modes at different weekly lead
 130 times?

131 What is the contribution of climate drivers to the sub-
 132 seasonal predictive skill of the leading rainfall modes?

133 Providing answers to the questions above would help
 134 advance the scientific understanding, support model devel-
 135 opments, and contribute to assisting sectors in taking
 136 preparedness measures that reduce or avoid the effects of
 137 high-impact weather conditions on people's lives and live-
 138 lihoods in Eastern Africa (Hirons et al. 2021; Gudoshava
 139 et al. 2022). The paper is organised as follows: Section 2
 140 presents the datasets and methods used, Section 3 describes
 141 the results from this study, and Section 4 summarises key
 142 findings and provides conclusions.

144 2 Methodology

144 2.1 Observational analysis

145 Rainfall data sourced from the Tropical Applications of
 146 Meteorology using SATellite and ground-based observa-
 147 tions (TAMSAT; Maidment et al. 2014; 2017) version 3.1
 148 were used to investigate observed sub-seasonal Eastern
 149 Africa short rains variability. Land-only TAMSAT rain-
 150 fall estimates are derived from rain gauge measurements
 151 used for calibration and thermal infrared satellite imagery
 152 (Maidment et al. 2017). Here, the spatial resolution of
 153 daily TAMSAT data was linearly interpolated (using bi-
 154 linear interpolation) from the regular $0.0375^\circ \times 0.0375^\circ$
 155 grid to $1.5^\circ \times 1.5^\circ$ to facilitate the comparison with mod-
 156 elled outputs, as shown later. Although TAMSAT produces
 157 rainfall estimates from 1983 to the present, we focused

158 on the 1999–2016 period to match all datasets temporal
 159 resolution analysed here. Weekly data were obtained by
 160 averaging seven consecutive days without overlapping
 161 from October 1st to December 24th, totalling 13 weeks
 162 within the short rains season. This produces a sample
 163 size of 234 weeks between 1999 and 2016 (13 weeks over
 164 18 years). Weekly rainfall anomalies were computed by
 165 subtracting the corresponding 1999–2016 long-term mean
 166 from the total field.

167 Given the known uncertainty in rainfall observations in
 168 the region (Sylla et al. 2013), three other observational data-
 169 sets were assessed to examine how sensitive the results are to
 170 selecting the observational reference, following the method
 171 described to obtain weekly TAMSAT rainfall anomalies.
 172 The additional datasets are the land-only Climate Hazards
 173 Group Infrared Precipitation with Stations (CHIRPS; Funk
 174 et al. 2015), the Global Precipitation Climatology Project
 175 (GPCP; Huffman et al. 2001) version 1.3, and the Tropi-
 176 cal Rainfall Measuring Mission (TRMM) Multi-Satellite
 177 Precipitation Analysis 3B42 (Huffman et al. 2007). These
 178 datasets were chosen because they are also frequently used
 179 satellite-derived products to study rainfall variability in East-
 180 ern Africa (Dinku et al. 2007; 2011; Kimani et al. 2017;
 181 Agete et al. 2022; Palmer et al. 2023).

182 Empirical orthogonal function (EOF; Wilks 2006)
 183 analysis was performed on all the observational datasets to
 184 identify the leading modes of weekly rainfall variability in
 185 the Eastern Africa domain (Fig. 1). The EOF analysis used
 186 GPCP and TRMM data with masking over oceanic regions
 187 to consider all datasets with land-only grid point informa-
 188 tion. The eigenvalues and eigenvectors of an anomaly covar-
 189 iance matrix of a field were computed to extract the EOF
 190 modes. Since the EOF analysis does not consist of physi-
 191 cal assumptions, a field is separated into mathematically
 192 orthogonal modes, which occasionally can be translated into
 193 physical structures (Hannachi et al. 2007). The eigenvalues
 194 are used to express the percentage of variance explained
 195 by each EOF mode. Nevertheless, the eigenvalues may not
 196 always be distinguishable owing to sampling issues. The
 197 North's rule of thumb was used to overcome this constraint
 198 by evaluating if a particular eigenvalue is distinct from its
 199 nearest neighbour and indicating when a sampling error
 200 is expected to be significant (North et al. 1982). Rainfall
 201 anomalies were projected onto the generated eigenvectors
 202 to produce normalised time series, or principal components
 203 (PCs), associated with each EOF mode.

204 To investigate possible associations between the domi-
 205 nant modes of weekly Eastern Africa short rains vari-
 206 ability and potential drivers of sub-seasonal rainfall vari-
 207 ations, we calculated climate indices frequently used as
 208 indicators of MJO, ENSO, and IOD activity. These are the
 209 RMM daily index (Wheeler and Hendon 2004), the Niño
 210 3.4 (hereafter referred to as N3.4) index (Trenberth and

211 Stepaniak 2001) and the Dipole Mode Index (DMI; Saji
 212 et al. 1999), respectively.

213 The European Centre for Medium-Range Weather
 214 Forecasts (ECMWF) data store provided the RMM
 215 components (i.e., RMM1 and RMM2) calculated as
 216 in (Vitart 2017). The RMM components illustrate dif-
 217 ferent phases of the MJO cycle (Wheeler and Hendon
 218 2004), with RMM1 (RMM2) representing MJO convec-
 219 tive anomalies over the Maritime Continent and Western
 220 Hemisphere (tropical Indian Ocean and western Pacific).
 221 These indices are the two leading PCs extracted from
 222 an EOF analysis, which combines daily zonal upper-
 223 (200 hPa) and lower- (850 hPa) wind and outgoing long-
 224 wave radiation anomalies in the tropics after subtracting
 225 the low-frequency variability associated with ENSO (as
 226 in Wheeler and Hendon 2004). Weekly RMM compo-
 227 nents were determined using the same approach applied to
 228 obtain weekly rainfall totals. SST anomalies in the N3.4
 229 region (5°S–5°N, 120°–170°W) were averaged to pro-
 230 duce the N3.4 index, whereas the DMI index was deter-
 231 mined by the difference between SST anomalies in the
 232 western (10°S–10°N, 50°–70°E) and eastern (10°S–0°,
 233 90°–110°E) tropical Indian Ocean. SST data were sourced
 234 from the daily optimum interpolation SST version 2 of
 235 the National Oceanic and Atmospheric Administration
 236 (NOAA; Reynolds et al. 2007). The same technique
 237 applied to find weekly rainfall anomalies was employed
 238 to obtain weekly SST anomalies, which were used to cal-
 239 culate N3.4 and DMI indices. The respective standard
 240 deviations were utilised to normalise weekly SST anom-
 241 ality indices. Additionally, considering that ENSO and IOD
 242 may have strong associations during the boreal autumn
 243 (Nicholson 2015; Zhang et al. 2015), we removed from
 244 N3.4 and DMI indices their variability associated with
 245 DMI and N3.4 indices (hereafter referred to as N3.4*
 246 and DMI* indices), respectively. This was performed by
 247 first computing a simple linear regression (Allen 1997)
 248 between the response and explanatory variables, then sub-
 249 tracting the corresponding co-variability from N3.4 and
 250 DMI indices.

251 Pearson's correlation (Wilks 2006) was computed to
 252 indicate linear associations between the leading TAM-
 253 SAT PCs and drivers' indices, in addition to showing
 254 the strength of the linear relationship between the PCs
 255 derived from observational datasets. The magnitude of
 256 the correlation was determined by its absolute value (or
 257 modulus). Therefore, the higher the absolute correlation,
 258 the stronger the association. A two-sided Student's t-test
 259 with a 95% significance level was used to examine the
 260 statistical robustness of correlations distinct from zero
 261 (Wilks 2006). Based on lag-1 autocorrelation, the effec-
 262 tive sample size was estimated as in Livezey and Chen
 263 (1983).

2.2 Hindcast assessment

264 The ability of dynamical models to capture and predict
 265 the leading modes of sub-seasonal Eastern Africa short
 266 rains variability was evaluated using hindcasts from
 267 ECMWF, the National Centers for Environmental Prediction
 268 (NCEP), and the UK Met Office (UKMO) models.
 269 Using these models allows us, in particular, to expand
 270 the hindcast assessment conducted by de Andrade et al.
 271 (2021), contributing to enhancing the knowledge of
 272 sub-seasonal rainfall forecast quality in Eastern Africa.
 273 Rainfall hindcasts were obtained from two sub-seasonal
 274 forecasting databases: the Subseasonal to Seasonal (S2S)
 275 prediction project (Vitart et al. 2017) for ECMWF and
 276 UKMO models, and the Subseasonal Experiment (SubX;
 277 Pegion et al. 2019) for the NCEP model. The SubX data-
 278 base was used for NCEP to allow a longer time frame
 279 (i.e., 1999–2016) than what is provided in the S2S data-
 280 base (i.e., 1999–2010). ECMWF and UKMO hindcasts
 281 were sourced at the regular $1.5^\circ \times 1.5^\circ$ spatial resolu-
 282 tion, whereas the NCEP grid was reduced from $1^\circ \times 1^\circ$ to
 283 $1.5^\circ \times 1.5^\circ$ using bi-linear interpolation. As in de Andrade
 284 et al. (2021), four start dates per month, based on weekly
 285 UKMO initialisations, were evaluated for each model,
 286 accounting for the closest start dates for some non-matching
 287 ECMWF initialisations. Moreover, three perturbed
 288 members, drawn from 1-day lag after initialisations, were
 289 added to the NCEP ensemble size to achieve an accurate
 290 intercomparison between models while considering the
 291 same ensemble size (i.e., at least 7 ensemble members).
 292 The amount of weekly rainfall was defined by averaging
 293 the following daily forecast lead times falling within the
 294 short rains season: days 5–11 (Week 1), 12–18 (Week 2),
 295 19–25 (Week 3), and 26–32 (Week 4). This implied that
 296 a few initialisations in September and December were
 297 respectively included and removed when evaluating tar-
 298 gets at Weeks 2–4 leads. The ensemble mean climatology,
 299 calculated considering a leave-one-out cross-validation
 300 approach (Wilks 2006), was subtracted from the ensemble
 301 mean totals to obtain the corresponding anomalies over
 302 the 1999–2016 period. The procedure was carried out
 303 depending on the start date and lead time. An equivalent
 304 method was used to determine observed rainfall anomalies
 305 in Weeks 1–4.

306 The leading PCs of modelled rainfall variability at Weeks
 307 1–4 were calculated by projecting land-only model anom-
 308 alies onto the observed rainfall eigenvectors determined
 309 in Section 2.1. By regressing the derived PCs and model
 310 anomalies, it yielded the corresponding modelled regressed
 311 spatial modes (RSMs). Observed PCs and associated RSMs
 312 at Weeks 1–4 were obtained considering the same approach
 313 used to identify the dominant rainfall modes within models.
 314 To extract modelled and observed spatiotemporal modes

316 for each lead time, we utilised samples with 180 (i.e., 10
 317 start dates over 18 years) weekly hindcast and observation
 318 anomalies, respectively.

319 The ability of the model to capture the RSMs was evaluated
 320 by computing spatial correlation (i.e., Pearson's correlation
 321 was examined in two spatial dimensions considering an
 322 area-average weighted with latitude) and the region-averaged
 323 absolute difference (or modulus of the difference) between
 324 modelled and observed RSMs. Additionally, the ability of
 325 the model to predict the PCs was assessed by computing
 326 Pearson's correlation and root mean squared error (RMSE;
 327 Wilks 2006) between modelled and observed PCs. Correla-
 328 tions were computed to assess model phase errors, with
 329 values equal to one indicating the strongest linear associa-
 330 tions between observations and model data. On the other
 331 hand, model amplitude errors were assessed using RMSE
 332 and absolute difference, with values equal to zero indicat-
 333 ing the best model accuracy. The statistical significance of
 334 the correlations was examined as described in Section 2.1.

335 2.3 Drivers of model skill

336 The contribution of climate drivers in modulating the
 337 ECMWF model skill at predicting the main modes of weekly
 338 Eastern Africa short rains variability was investigated
 339 employing a similar methodology as the one described in
 340 de Andrade et al. (2021). The method assesses the ECMWF
 341 model skill after replacing the modelled driver-related
 342 rainfall variability with the corresponding observed driver-
 343 related response in the hindcasts. Observed and modelled
 344 driver-related rainfall variabilities are derived from the
 345 corresponding linear regression between rainfall anomalies and
 346 climate indices representing MJO, ENSO, and IOD varia-
 347 tions. Here, RMM, N3.4, and DMI indices were respectively
 348 used to characterise MJO, ENSO, and IOD activity as in de
 349 Andrade et al. (2021). Daily RMM components for each
 350 model ensemble member were sourced from the ECMWF
 351 data store, allowing the computation of the 7-member
 352 ensemble mean for RMM1 and RMM2 indices at Weeks
 353 1–4. Furthermore, daily SST hindcasts from the S2S data-
 354 base were used to obtain the 7-member ensemble mean of
 355 weekly SST anomalies, following the procedures adopted to
 356 obtain weekly rainfall anomalies in Section 2.2. ENSO and
 357 IOD indices at Weeks 1–4 were computed as in Sect. 2.1,
 358 with their co-variability also removed from modelled N3.4*
 359 and DMI for producing modelled N3.4* and DMI* indices.
 360 Both indices were normalised by the corresponding stand-
 361 ard deviation depending on the initialisation and lead time.
 362 Suitable datasets specified in Sect. 2.1 were used to produce
 363 the observed RMM1, RMM2, N3.4*, and DMI* indices in
 364 Weeks 1–4.

365 Next, we performed a simple linear regression analysis
 366 between weekly rainfall anomalies and MJO, ENSO, and

367 IOD indices. We subtracted from both observed and mod-
 368 modelled rainfall anomalies the corresponding variations in rain-
 369 fall that were linearly associated with each driver. Rainfall
 370 anomalies without the presence of drivers' signals were used
 371 to calculate observed and modelled PCs at Weeks 1–4 as in
 372 Section 2.2. After removing driver-related rainfall variability
 373 from modelled rainfall anomalies, the impact on the model
 374 skill was also investigated by adding observed regression
 375 patterns to hindcasts, producing a new set of model rain-
 376 fall anomalies utilised to obtain corrected PCs. The model
 377 skill was evaluated by measuring the percentage change in
 378 Pearson's correlation between the resulting observed and
 379 modelled PCs according to (1):

$$(\hat{R} - R) / R * 100 \quad (1) \quad 380$$

381 Where R is the correlation computed without modifying any
 382 driver-related signals in rainfall anomalies, and \hat{R} is the cor-
 383 relation after removing or adding particular driver-related
 384 signals in rainfall anomalies. Positive (Negative) values of
 385 (1) denote strengthening (weakening) in the association
 386 between observed and modelled PCs, indicating, therefore,
 387 improvements (degradations) in the model skill.

389 3 Results

390 The results are organised into three sections, which system-
 391 atically respond to the questions presented in Section 1. The
 392 first Section (3.1) identifies and compares the leading modes
 393 of sub-seasonal Eastern Africa short rains variability from
 394 distinct observational datasets, and shows how these modes
 395 relate to specific climate drivers. The second Section (3.2)
 396 presents a hindcast evaluation for investigating the ability of
 397 the model to capture and predict the leading rainfall modes
 398 at forecast horizons from one to four weeks into the future.
 399 The third Section (3.3) furthers this evaluation to consider
 400 how the model quality is related to the potential sources of
 401 sub-seasonal climate variability.

3.1 The leading EOF modes and their associations 402 with climate drivers

403 Figure 2 shows weekly TAMSAT rainfall climatology, the
 404 standard deviation of associated anomalies, and the corre-
 405 sponding EOF analysis for Eastern Africa rainfall anomalies
 406 during the short rains season from October to December.
 407 The highest climatological rainfall totals are located over
 408 elevated topography in the western sector of Eastern Africa,
 409 covering parts of Burundi, Rwanda, South Sudan, Tanzania,
 410 Uganda, and the central-eastern Democratic Republic of the
 411 Congo (DRC; Figs. 1, 2a). In contrast, the highest rainfall
 412 variability appears in the southeastern sector of Eastern
 413 Africa.

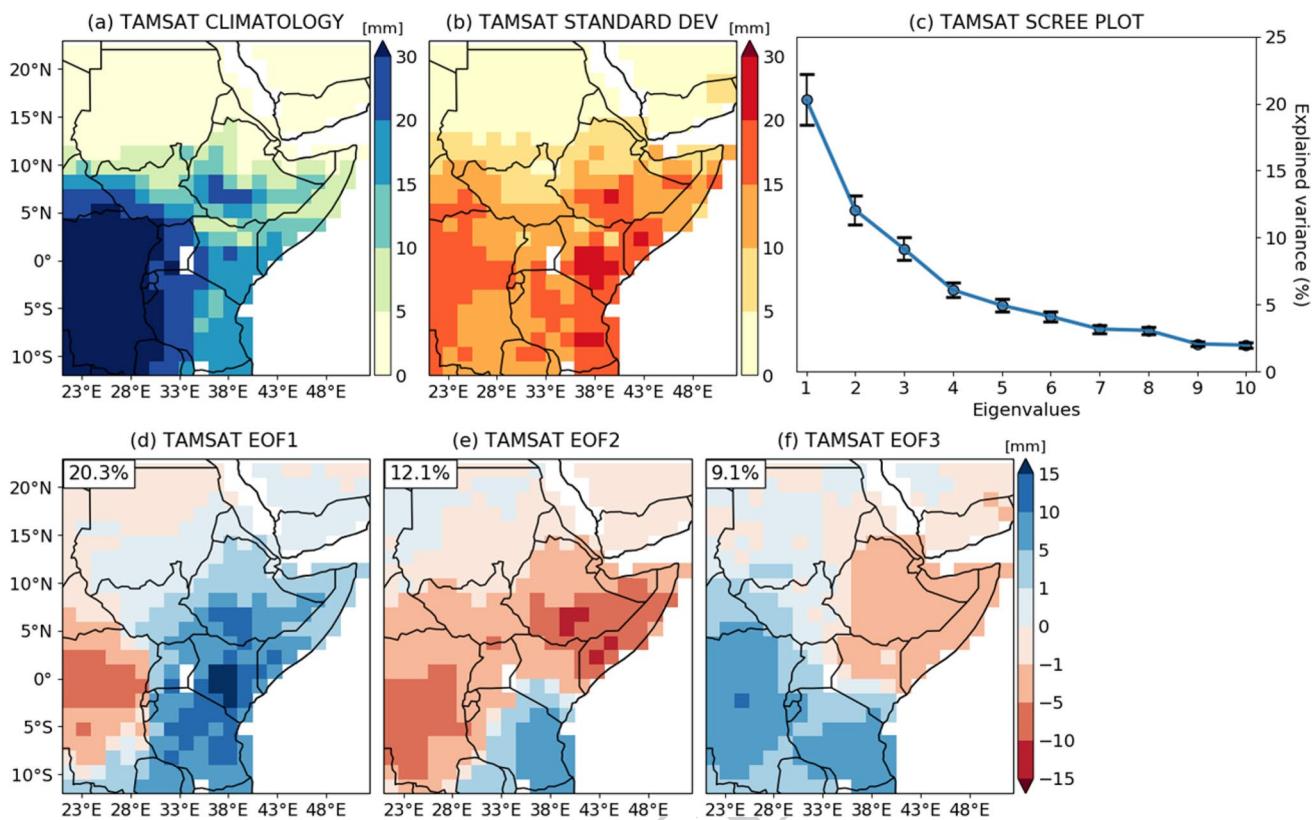


Fig. 2 Weekly TAMSAT accumulated rainfall (a) climatology and (b) standard deviation for Eastern Africa short rains season (OND). (c) Scree plot showing the corresponding explained variance in percentage (%) for the first ten eigenvalues of the EOF analysis from weekly TAMSAT rainfall anomalies. Sample errors are indicated by the error

bars in (c) according to the North's rule of thumb. The first three spatial EOF modes (or eigenvectors) for weekly TAMSAT rainfall accumulation anomalies are respectively displayed in (d), (e), and (f), with their explained variance in percentage (%) shown in the top-left corner. Rainfall accumulations are in millimetres (mm)

414 Africa, including the highlands of Ethiopia and Kenya, as
 415 well as coastal regions in Somalia and Tanzania (Figs. 1,
 416 2b). The first three EOF modes for TAMSAT show spatial
 417 structures that influence varying rainfall levels in most
 418 Eastern Africa countries and, when combined, account for
 419 41.5% of the total variance (Figs. 2d, e, f). According to the
 420 criteria of North et al. (1982), these dominant modes are
 421 distinguished from each other and well separated from the
 422 degenerate set of higher EOFs (Fig. 2c).

423 The first leading mode (EOF1) is characterised by a mon-
 424 opole-like rainfall pattern with the largest positive rainfall
 425 anomalies affecting southern Ethiopia, Kenya, and north-
 426 ern Tanzania (Fig. 2d). The second (EOF2) and the third
 427 (EOF3) modes show a dipole-like rainfall pattern with pos-
 428 itive anomalies in Tanzania and negative anomalies in the
 429 northeastern portion of Eastern Africa, which covers Djib-
 430 outi, Eritrea, Ethiopia, and Somalia (Figs. 2e, f). EOF2 and
 431 EOF3 have similar spatial characteristics in the eastern part
 432 of the domain and coastal regions, whereas opposite signals
 433 are seen further inland (Figs. 2e, f). Although using other
 434 datasets, periods, and domains, the EOF modes found here
 435 generally correspond well with the main modes of seasonal

436 and pentad Eastern Africa rainfall variability identified in
 437 previous studies (Schreck and Semazzi 2004; Bowden and
 438 Semazzi 2007; Wenhaji Ndomeni et al. 2018; Kolstad and
 439 MacLeod 2022).

440 To investigate sources of sub-seasonal Eastern Africa
 441 short rains variability, Fig. 3 presents the correlations
 442 between potential climate drivers' indices and the first three
 443 TAMSAT PCs. RMM1 exhibits strong significant connec-
 444 tions with PC2 and PC3, whereas

445 RMM2 shows high significant co-variability linked to
 446 PC1 (Fig. 3a). Despite N3.4 and DMI showing significant
 447 correlations with PC1, as also found in previous studies
 448 (Schreck and Semazzi 2004; Bowden and Semazzi 2007;
 449 Kolstad and MacLeod 2022), it is worth pointing out that
 450 for N3.4, removing the signal associated with DMI makes
 451 the association insignificant (compare the correlations
 452 when considering the ENSO index as N3.4 (darkest blue
 453 bar) and N3.4* (lightest blue bar) in Fig. 3a), whereas
 454 removing the N3.4 signal from DMI does weaken the
 455 correlation with PC1 but it is still significant (compare
 456 the correlations when considering the DMI index as DMI
 457 (darkest red bar) and DMI* (lightest red bar) in Fig. 3a).

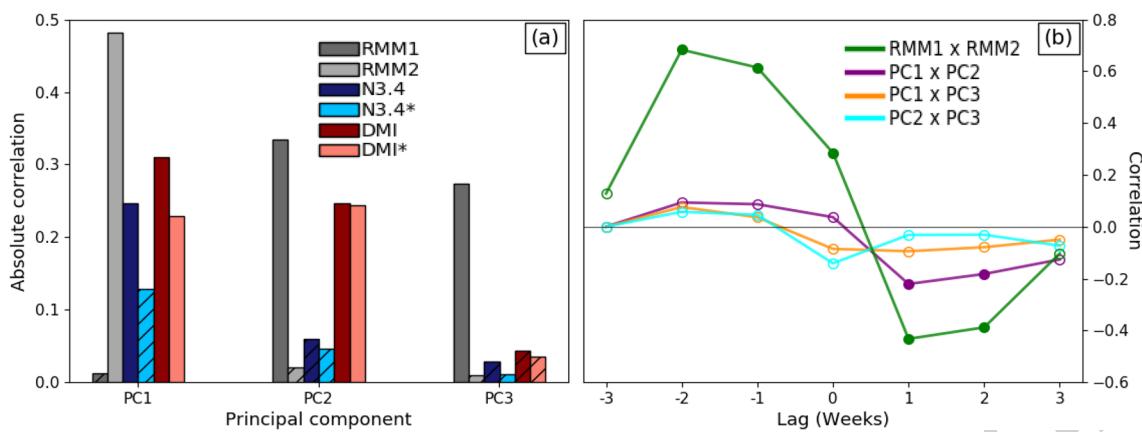


Fig. 3 (a) Absolute Pearson's correlation between weekly TAMSAT PC1 to PC3 and observed weekly drivers' indices represented by RMM1, RMM2, N3.4, and DMI. N3.4* (DMI*) indicates that the DMI (N3.4) signal has been removed from the N3.4 (DMI) index. (b) Lagged correlations between RMM1 and RMM2, as well as between

the leading TAMSAT PCs. A positive (negative) lag indicates RMM1 leads (lags) RMM2, for instance. Hatching over the bars in (a) and open circle markers in (b) denote correlation coefficients that are not statistically significant at the 95% confidence level according to a two-tailed Student's t-test

458 For PC2, the correlations indicate that the MJO and IOD
459 have significant associations with the dipole-like rainfall
460 variability in the region. In contrast, there are no sig-
461 nificant associations between ENSO and PC2 (Fig. 3a).
462 Unlike PC1 and PC2, PC3 does not significantly correlate
463 with SST indices, which mainly emphasises its rela-
464 tionship with the MJO (Fig. 3a).

465 The climate drivers' associations with TAMSAT PC1
466 and PC2 (Fig. 3a), along with the corresponding TAMSAT
467 spatial modes shown in Fig. 2, generally are consistent with
468 the regression patterns that de Andrade et al. (2021) found
469 when relating similar drivers' indices to weekly GPCP
470 rainfall anomalies. That is, EOF1 (Fig. 2d) compares quite
471 strongly to the September–October–November RMM2- and
472 DMI-related rainfall patterns shown in de Andrade et al.
473 (2021) (see SON in their Fig. 9), whereas EOF2 (Fig. 2e)
474 reasonably matches with the corresponding SON RMM1-
475 related rainfall pattern. Moreover, December–January–Fe-
476 bruary N3.4- and RMM1-related rainfall patterns shown in de
477 Andrade et al. (2021) (see DJF in their Fig. 9) also indicate
478 consistent signals with TAMSAT EOF1 (Fig. 2d) and EOF2
479 (Fig. 2e), respectively. All these characteristics corroborate
480 with GPCP EOF1 and EOF2, as shown later in Fig. 5.

481 To specifically deepen understanding of the MJO-related
482 Eastern Africa rainfall variability, Fig. 3b shows the lagged
483 correlation between RMM components, as well as between
484 TAMSAT PC1, PC2, and PC3. Significant correlations for
485 PC1 and PC2 are identified at 1–2-week lags, showing that
486 PC1 generally leads PC2 by a few weeks (Fig. 3b; purple line).
487 This agrees with the MJO cycle, which also indicates
488 that RMM1 and RMM2 occur sequentially with significant
489 correlations at 1–2-week lags (Fig. 3b; green line). How-
490 ever, the correlations between PC1 and PC3 or PC2 and

491 PC3 are not significant across all lags (Fig. 3b; orange and
492 blue lines).

493 The results discussed so far have been carried out using
494 TAMSAT data. To examine the sensitivity of weekly rainfall
495 to the choice of the observational dataset, Fig. 4 displays the
496 climatology and standard deviation for CHIRPS (Figs. 4a,
497 d), GPCP (Figs. 4b, e), and TRMM (Figs. 4c, f) data during
498 OND.

499 All datasets show the highest climatological rainfall
500 totals in the western sector of the domain (Figs. 4a, b, c)
501 and the highest rainfall deviations in the southeastern sector
502 of Eastern Africa (Figs. 4d, e, f), overall corroborating with
503 TAMSAT data (Figs. 2a, b). Nevertheless, higher (lower) cli-
504 matological rainfall totals are seen over Kenya for CHIRPS
505 and TRMM (GPCP) data (compare Fig. 2a with Figs. 4a,
506 c (Fig. 4b)), whereas higher (lower) rainfall variations are
507 found further inland for GPCP and TRMM (CHIRPS) data
508 (compare Fig. 2b with Figs. 4e, f (Fig. 4d)). Despite these
509 minor differences in the rainfall data, there is considerable
510 agreement in the weekly evolution of the region-averaged
511 rainfall anomalies throughout the short rains when compar-
512 ing all datasets (Online Resource 1—Fig. 1). These find-
513 ings, therefore, contribute to increasing the reliability of the
514 observed rainfall variability in the region and its related EOF
515 analysis, as shown below.

516 Figure 5 displays the first three spatial EOF modes and
517 scree plots for CHIRPS, GPCP, and TRMM rainfall anom-
518 alies. The combined explained variance of EOF1, EOF2,
519 and EOF3 is 42.1% for CHIRPS (Figs. 5a, b, c), 45.4% for
520 GPCP (Figs. 5e, f, g), and 34.4% for TRMM (Figs. 5i, j, k).
521 Thus, the sum of the explained variance of TRMM is lower
522 than that of CHIRPS or GPCP when compared to TAMSAT
523 (41.5%; Figs. 2d, e, f).

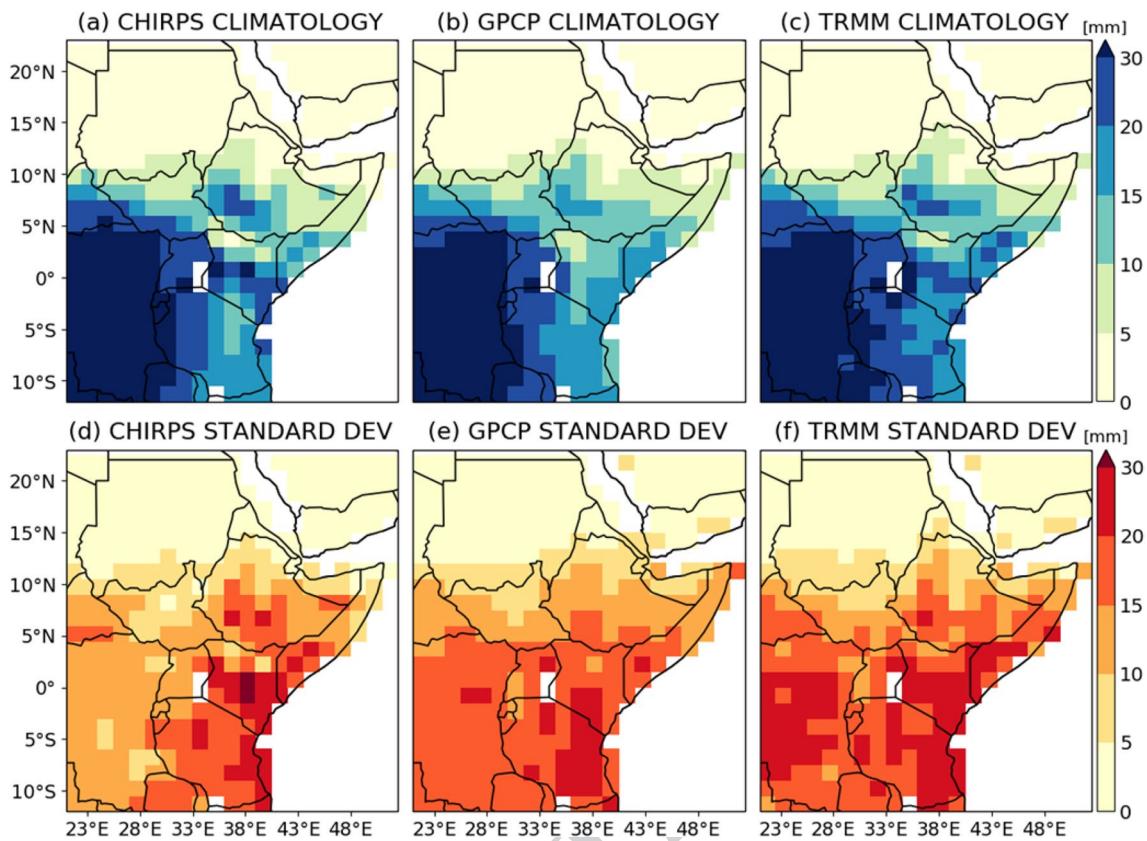


Fig. 4 Weekly accumulated rainfall (upper panel) climatology and (lower panel) standard deviation for (a, d) CHIRPS, (b, e) GPCP, and (c, f) TRMM datasets during the Eastern Africa short rains season (OND). Rainfall accumulations are in millimetres (mm)

The spatial patterns associated with EOF1 and EOF2 from the additional datasets (CHIRPS, GPCP, and TRMM) are similar to the ones found for TAMSAT, i.e., a monopole-like rainfall pattern for EOF1 (compare Fig. 2d with Figs. 5a, e, i) and a dipole-like rainfall pattern for EOF2 (compare Fig. 2e with Figs. 5b, f, j). For EOF3, however, there are discrepancies when comparing its spatial pattern among the datasets. While GPCP shows positive rainfall anomalies in Tanzania and negative rainfall anomalies in the northeastern sector of Eastern Africa in agreement with TAMSAT (compare Fig. 2f with Fig. 5g), CHIRPS and TRMM exhibit rainfall patterns that differ from TAMSAT (compare Fig. 2f with Figs. 5c, k). The uncertainty in representing EOF3 in the observations is also seen through the scree plots, showing distinct sample errors and how separated this mode is from EOF2 and higher EOF modes, depending on the dataset (Figs. 5d, h, l).

To further assess the representation of the leading EOF modes within CHIRPS, GPCP, and TRMM datasets, Fig. 6 shows the association between the first three TAMSAT PCs and the first ten PCs (PC1 to PC10) derived from the EOF analysis using CHIRPS, GPCP, and TRMM rainfall anomalies. The highest correlation coefficients indicate that

TAMSAT PC1 and PC2 are adequately represented across all datasets, particularly in CHIRPS data (Figs. 6a, b). However, Fig. 6c shows there is some sensitivity to the selection of the reference data when performing an EOF analysis of weekly rainfall anomalies for Eastern Africa short rains, specifically that TAMSAT PC3 properties are not well represented by other datasets, notably CHIRPS and TRMM as also seen in the spatial patterns (compare Fig. 2f with Figs. 5c, k). In fact, CHIRPS can reasonably represent the temporal variability associated with EOF3, though it is captured by the fourth EOF mode (Fig. 6c).

The following two sections only address a model evaluation for the first two EOF modes (EOF1 and EOF2) owing to the inconsistency in representing EOF3 across the datasets (Figs. 2, 5, 6). Moreover, the results for the TAMSAT dataset are exclusively used when assessing model hindcasts, as the sensitivity to the reference data selection is minimal for the two leading rainfall modes (Figs. 2, 5, 6).

3.2 Model evaluation

Figures 7 and 8 show the model capability to capture the first (RSM1) and the second (RSM2) RSMs at lead times

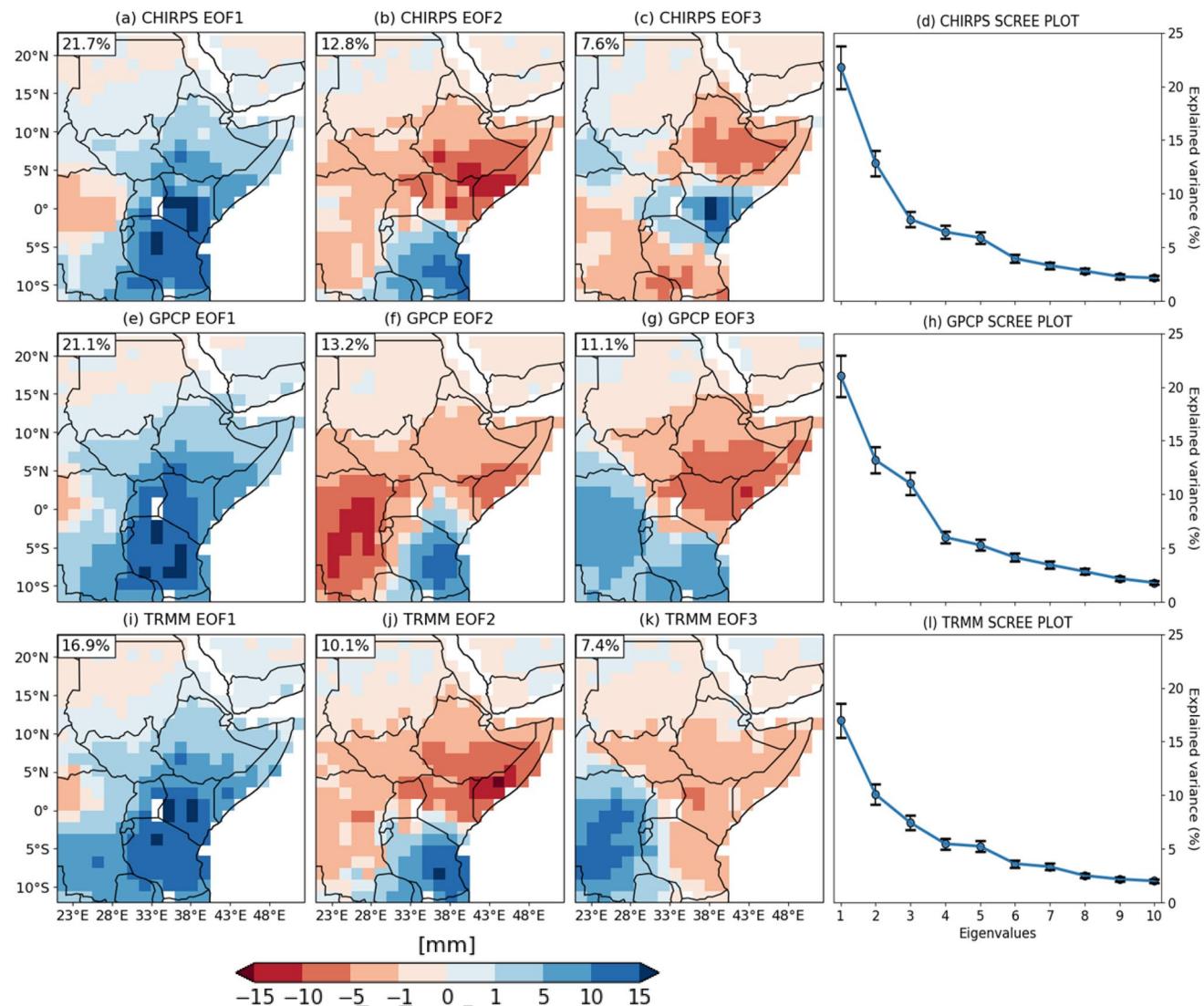


Fig. 5 The first three spatial EOF modes (or eigenvectors) for weekly (a)-(c) CHIRPS, (e)-(g) GPCP, and (i)-(k) TRMM rainfall accumulation anomalies during OND, with their explained variance in percentage (%) shown in the top-left corner. Scree plot showing the corresponding explained variance in percentage (%) for the first ten

eigenvalues of the EOF analysis from weekly (d) CHIRPS, (h) GPCP, and (l) TRMM rainfall anomalies. Sample errors are indicated by the error bars in (d, h, l) according to the North's rule of thumb. Rainfall accumulations are in millimetres (mm)

568 of one to four weeks ahead, respectively. Even though the
 569 amplitude of anomalies reduces with increasing lead time,
 570 all models can satisfactorily represent essential characteristics
 571 of the leading RSMs, that is, the monopole-like rainfall
 572 pattern for RSM1 (Fig. 7) and the dipole-like rainfall pattern
 573 for RSM2 (Fig. 8), in agreement with the observations (con-
 574 tours in Figs. 7, 8). The ability of the NCEP model to capture
 575 RSM1 and RSM2 is lower than in other models, as indicated
 576 by the largest region-averaged amplitude differences and the
 577 weakest spatial correlation coefficients computed between
 578 modelled and observed RSMs. Less accurate outcomes in
 579 the NCEP model are, in particular, associated with errors in
 580 representing the location of the rainfall anomaly. For RSM1,

581 this is seen through the largest positive anomalies displaced
 582 to the west of Tanzania (Figs. 7e, f, g, h) compared to the
 583 ECMWF (Figs. 7a, b, c, d) and UKMO (Figs. 7i, j, k, l) mod-
 584 els. ECMWF and UKMO models place such variations in
 585 rainfall over the entire southeastern sector of Eastern Africa,
 586 as also seen in the observations. For RSM2, the discrepancy
 587 is found in the largest negative anomalies (Figs. 8e, f, g, h),
 588 which appear further to the west of the domain compared to
 589 the other models and observations (Figs. 8a, b, c, d, i, j, k, l).

590 Shortcomings in capturing the leading RSMs are likely
 591 related to the model capability of representing its climatol-
 592 ogy and variance (Online Resource 1—Figs. 2, 3). Although
 593 all models predict the highest climatological rainfall totals in

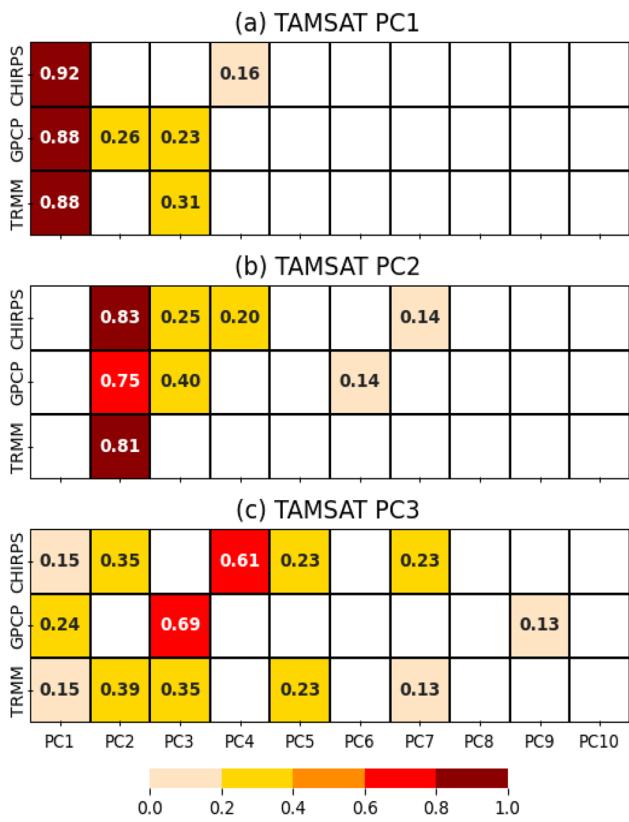


Fig. 6 Absolute Pearson's correlation for TAMSAT (a) PC1, (b) PC2, and (c) PC3 against the first ten PCs (PC1 to PC10) from CHIRPS, GPCP, and TRMM datasets. Shaded boxes with numbers indicate statistically significant values at the 95% confidence level according to a two-tailed Student's t-test

the western portion of the domain, the mean state response for ECMWF and UKMO (NCEP) is stronger (weaker) than TAMSAT over most of the southern and southeastern sectors of Eastern Africa (compare Fig. 2a with Online Resource 1—Fig. 2). Additionally, all models show a reduction in rainfall variability with increasing lead time, as well as discrepancies at predicting the location of rainfall anomalies, particularly in the NCEP model, which shows higher deviations near DRC compared to TAMSAT (compare Fig. 2b with Online Resource 1—Fig. 3).

The model skill at predicting the leading PCs (PC1 and PC2) in Weeks 1–4 is evaluated in Fig. 9. For both PCs, the skill reduces with increasing lead time, with, in particular, Week 1 showing the highest associations (Fig. 9a) and lowest amplitude errors (Fig. 9b) for all models PC1. UKMO and ECMWF PC1 have the highest skill at all leads, with UKMO having a marginally higher skill than ECMWF. The results for PC1 overall corroborate the correlation assessments performed by de Andrade et al. (2021) for weekly Eastern Africa rainfall anomalies initialised in September–October–November. All models exhibit higher skill at predicting PC1 compared with PC2. Notably, the skill for

NCEP PC1 remains just slightly higher than for ECMWF or UKMO PC2 in Weeks 3–4, and even comparable to these models PC2 in Week 2. The lowest skill is seen for NCEP PC2 at most leads, showing, for instance, a non-significant correlation with a value below 0.2 at Week 4 (Fig. 9a).

4 Sources of predictability

To investigate where the skill found in the previous section comes from, Figs. 10 and 11 show respectively the percentage change in the correlations for ECMWF PC1 and PC2 against the corresponding observed PCs considering two conditions: i) when the co-variability between modelled rainfall anomalies and specific climate drivers' indices is subtracted from the model (Figs. 10a, 11a) and (ii) when the corresponding observed co-variability is added to the model (Figs. 10b, 11b) after removing its modelled co-variability as in (i). According to Eq. (1), both conditions (i) and (ii) are relative to reference values obtained when no modification is considered in the model rainfall anomalies before computing the PCs. Since ECMWF and UKMO had comparative skill in Fig. 9, with skill significantly higher than NCEP, the former is used here to compare the results with those found in de Andrade et al. (2021).

The driver-rainfall co-variability subtracted from modelled rainfall anomalies modulates the skill at predicting PC1 (Fig. 10a) and PC2 (Fig. 11a) throughout the lead times. When examining the removal of a single driver's signal rather than a combination of two or more of these drivers' signals in the model, the skill degradation (i.e., negative percentage change) for PC1 is mainly seen after removing the RMM2 signal from hindcasts (Fig. 10a). This shows a correlation reduction varying from 9.3% in Week 1 to 53.8% in Week 4 relative to reference values (i.e., CORR in Fig. 10a). Removing N3.4* and DMI* signals from hindcasts also affects the PC1 skill. Nevertheless, the rate of skill degradation over the weeks is no higher than 11.6% for N3.4* and 15.2% for DMI* about reference values (Fig. 10a). For PC2 (Fig. 11a), the highest skill degradations occur when removing RMM1- and DMI*-related rainfall anomalies from hindcasts, with skill reducing over the weeks up to 31.5% and 36.2%, respectively, comparing to reference values (i.e., CORR in Fig. 11a). When all drivers' signals are eliminated from the model, the overall skill drop estimated is substantially explained by skill degradation associated with the removal of the MJO signal from hindcasts (compare RMM2 and RMM1 with ALL in Figs. 10a and 11a, respectively), which is more pronounced for PC1 than for PC2 (compare RMM2 in Fig. 10a with RMM1 in Fig. 11a). These decreases in skill seen when subtracting all drivers' signals from hindcasts are also considerably associated with removing the DMI* signal in the model, particularly for PC2

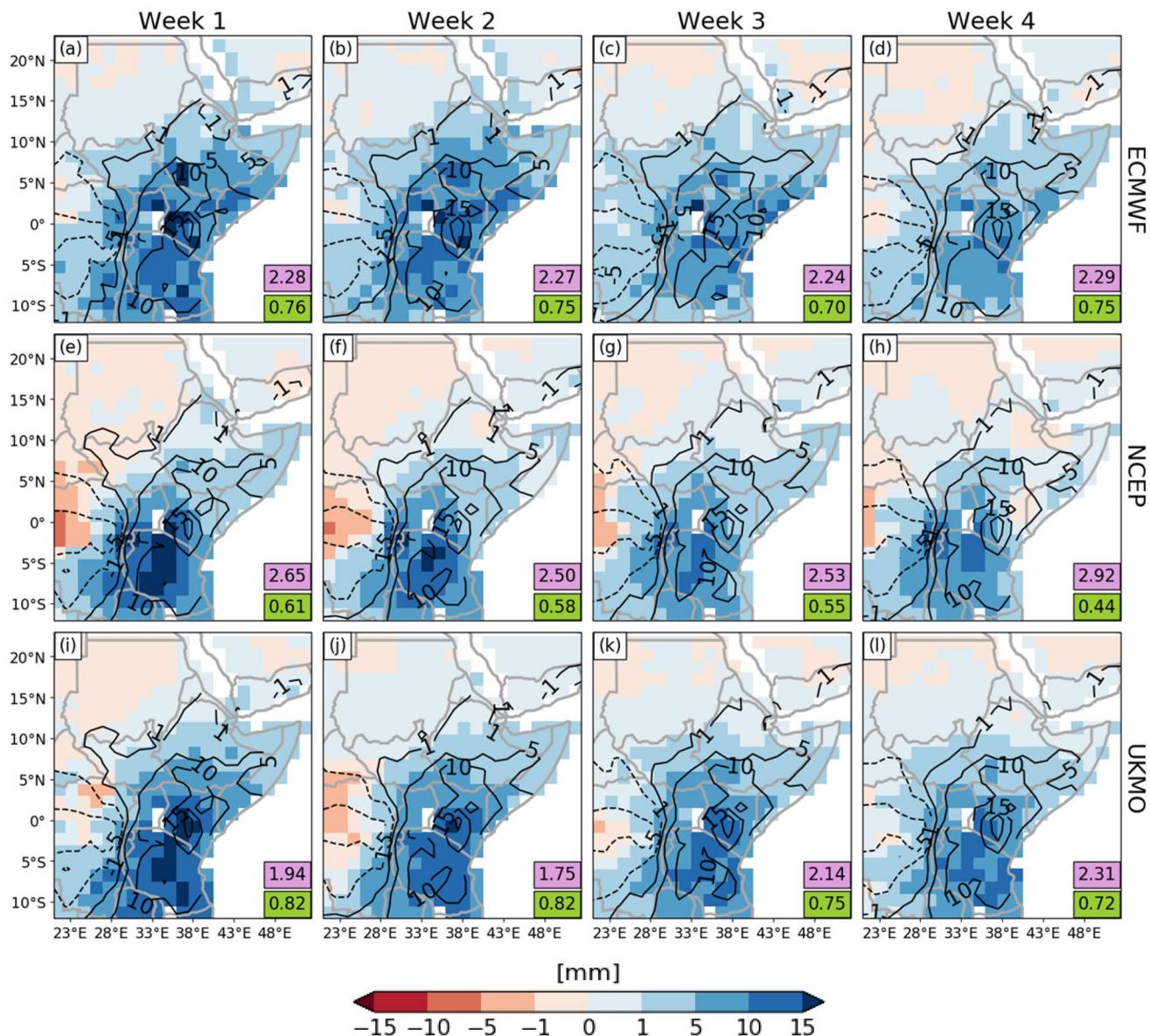


Fig. 7 First regressed spatial mode (RSM1) at Weeks 1–4 for (a)–(d) ECMWF, (e)–(h) NCEP, and (i)–(l) UKMO models (shaded). The contours denote the corresponding RSM for TAMSAT rainfall anomalies, with solid (dashed) lines for positive (negative) values. The zero line is omitted. Magenta (Green) boxes in the bottom-right corner

indicate the region-averaged absolute difference (statistically significant spatial correlation) between modelled and observed RSMs. Statistically significant spatial correlation at the 95% level confidence level is examined according to a two-tailed Student's t-test

666 (compare DMI* with ALL in Figs. 10a, 11a). The combined
 667 removal of rainfall variations linked to RMM components
 668 (RMM1+RMM2) and SST indices (N3.4*+DMI*) further
 669 indicates that degradations in PC1 forecast skill are mainly
 670 related to the RMM2 signal, and are secondarily associated
 671 with N3.4* and DMI* signals (Fig. 10a). For PC2,
 672 however, such a combined removal affecting its prediction
 673 skill is dominated by RMM1 and DMI signals in the model
 674 (Fig. 11a). Thus, these forecast skill results for PC1 and PC2
 675 corroborate the corresponding observed associations shown
 676 in Fig. 3.

677 Skill improvements (i.e., positive percentage changes)
 678 are seen for both PC1 and PC2 predictions after replacing
 679 the modelled rainfall response to a single driver with the
 680 corresponding observed response, especially in Weeks 3–4 (Figs. 10b, 11b). Although PC1 and PC2
 681 skills improve if using corrected DMI*-related rainfall
 682 variability patterns, this approach is not more effective
 683 than simply correcting the model with the observed
 684 MJO-related rainfall variability. Moreover, the effect of
 685 adjusting the rainfall signal associated with N3.4* in the
 686 model is almost zero (Figs. 10b, 11b), indicating that of
 687

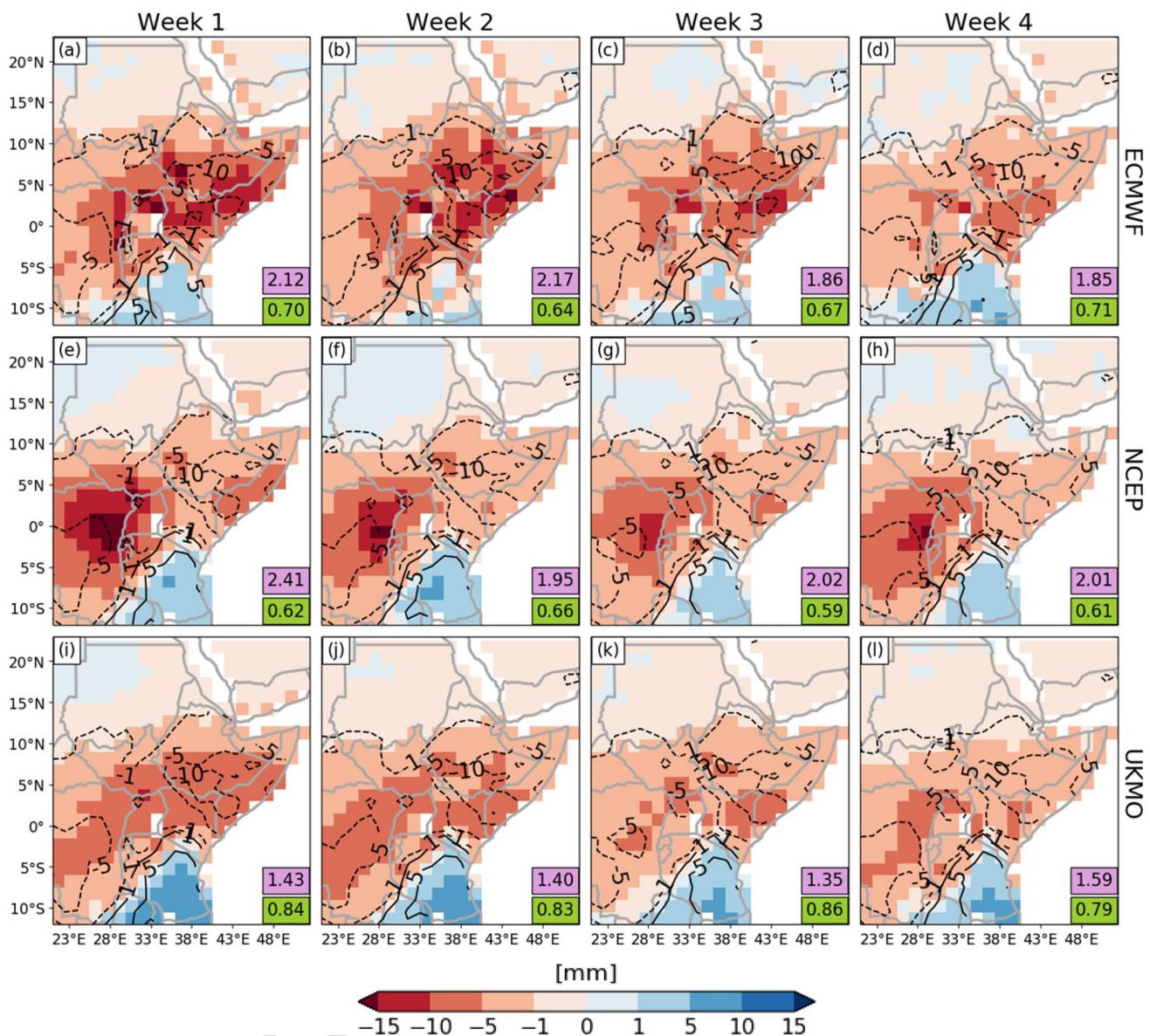


Fig. 8 Second regressed spatial mode (RSM2) at Weeks 1–4 for (a)–(d) ECMWF, (e)–(h) NCEP, and (i)–(l) UKMO models (shaded). The contours denote the corresponding RSM for TAMSAT rainfall anomalies, with solid (dashed) lines for positive (negative) values. The zero line is omitted. Magenta (Green) boxes in the bottom-right corner

indicate the region-averaged absolute difference (statistically significant spatial correlation) between modelled and observed RSMs. Statistically significant spatial correlation at the 95% level confidence level is examined according to a two-tailed Student's t-test

the predictability drivers investigated here, ENSO contributes the least to varying PCs forecast skill. PC1 skill improvements are more sensitive to RMM2 variations than to anomalies in other drivers (Fig. 10b), whereas the most pronounced PC2 skill responses are linked to RMM1 variations (Fig. 11b). These findings are supported, for example, by the largest positive percentage changes for PC1 and PC2 in Week 4, with correlation coefficients exceeding, respectively, 50% (RMM2 in Fig. 10b) and 70% (RMM1 in Fig. 11b) relative to reference values (i.e., CORR in Figs. 10b, 11b). For PC2 rather than PC1, skill

improvements associated with MJO are more pronounced (compare RMM1 in Fig. 11b with RMM2 in Fig. 10b), and account for a considerable portion of the enhanced overall level of skill after including all observed drivers' signals in the model (compare RMM1 and RMM2 with ALL in Figs. 11b and 10b, respectively).

The results presented in this section overall corroborate the ones found by de Andrade et al. (2021), highlighting, in particular, the potential contribution of improved

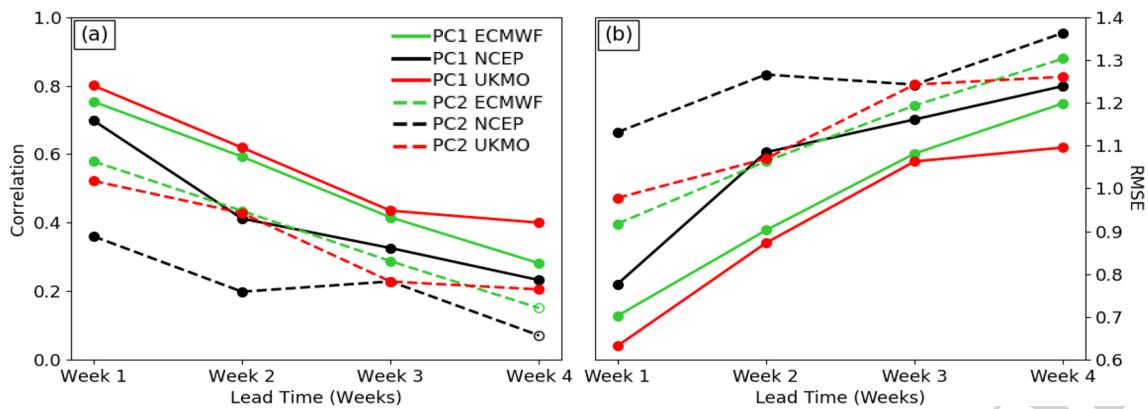


Fig. 9 (a) Correlation and (b) RMSE for the first two observed (TAMSAT) and modelled (ECMWF, NCEP, and UKMO) PCs (PC1 and PC2) at Weeks 1–4. Solid (Dashed) lines indicate the skill assess-

ment for PC1 (PC2). The open circle marker in (a) denotes correlation coefficients that are not statistically significant at the 95% level confidence level according to a two-tailed Student's t-test

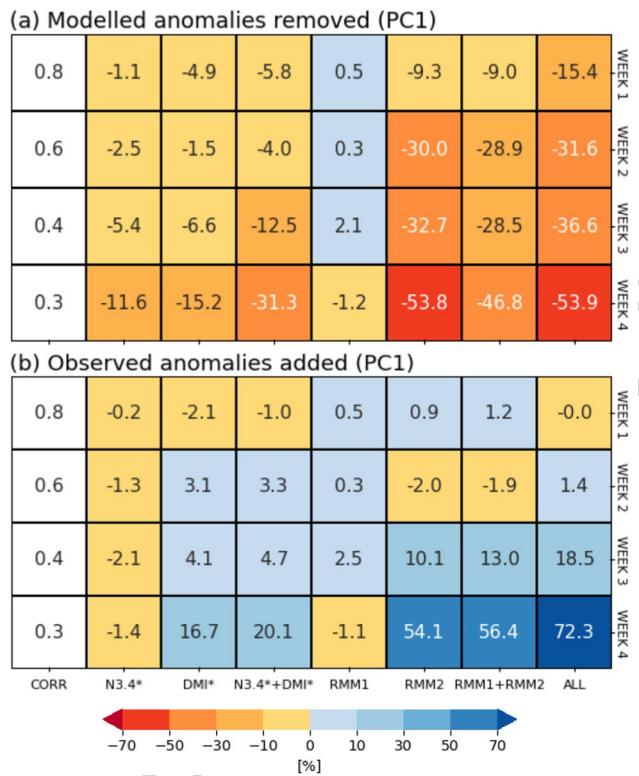


Fig. 10 Percentage change in the correlation between TAMSAT and ECMWF PC1 at Weeks 1–4 computed after (a) removing from and (b) adding to model rainfall anomalies a particular driver-related variability. The co-variability is indicated at the bottom of (b) by the corresponding driver's index or a combination of two or all ("ALL") drivers' indices. The leftmost column shows the correlation computed without modifying any driver-related signal in rainfall anomalies ("CORR"), as in Fig. 9a (solid green line)

MJO-related rainfall variability (or a bias correction based

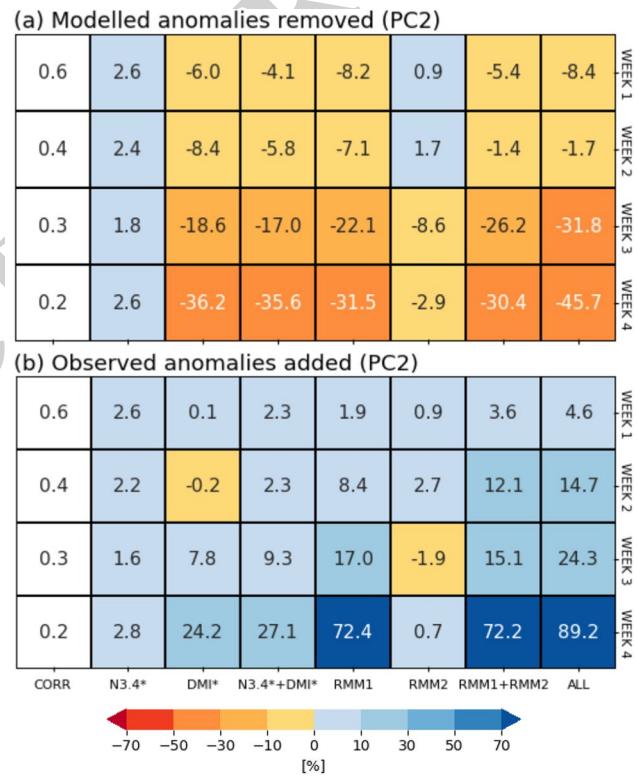


Fig. 11 Percentage change in the correlation between TAMSAT and ECMWF PC2 at Weeks 1–4 computed after (a) removing from and (b) adding to model rainfall anomalies a particular driver-related variability. The co-variability is indicated at the bottom of (b) by the corresponding driver's index or a combination of two or all ("ALL") drivers' indices. The leftmost column shows the correlation computed without modifying any driver-related signal in rainfall anomalies ("CORR"), as in Fig. 9a (dashed green line)

on the MJO impacts on model rainfall anomalies) to skill increases in weekly Eastern Africa rainfall predictions within the ECMWF model.

711 5 Summary and conclusions

712 The sub-seasonal variability and prediction skill of short
 713 rains in Eastern Africa are assessed using several observational
 714 and model datasets. An EOF analysis is performed
 715 to identify the leading modes of weekly rainfall variability
 716 in Eastern Africa, allowing exploring their associations
 717 with specific climate drivers. This study then goes on to
 718 investigate the ability of dynamical models to capture and
 719 predict the leading rainfall modes, as well as examine
 720 potential-related sources of predictability.

721 Irrespective of the observational dataset used (i.e.,
 722 TAMSAT, CHIRPS, GPCP, or TRMM), two distinct
 723 weekly rainfall modes in the Eastern African short rains
 724 from October to December (OND) are identified; these are:
 725 i) a monopole-like rainfall pattern with the largest anomalies
 726 in southern Ethiopia, Kenya, and northern Tanzania; and (ii) a dipole-like rainfall pattern between Tanzania and
 727 the northeastern sector of Eastern Africa, mainly impacting
 728 Ethiopia and Somalia. Our results indicated that the
 729 two leading rainfall modes have the strongest correlations
 730 with the MJO. Specifically, the first (second) rainfall mode
 731 showed the highest correlations with the RMM2 (RMM1)
 732 index, which is linked to MJO-related convective anomalies
 733 in the tropical Indian Ocean and western Pacific (Mar-
 734itime Continent and Western Hemisphere). Moreover, we
 735 found that the first and second leading modes are signifi-
 736 cantly correlated with the DMI index, with the former also
 737 having significant associations with the N3.4 index if the
 738 ENSO-IOD co-variability is retained in the index. Despite
 739 using distinct datasets, periods, domains, and methods for
 740 representing ENSO and IOD activities, our results com-
 741plement previous work (e.g., Bowden and Semazzi 2007),
 742 suggesting that the modulation of the leading weekly rain-
 743 fall modes may depend on the MJO variability superim-
 744 posed on distinct lower-frequency background conditions,
 745 which deserves additional investigation.

746 The ability of ECMWF, NCEP, and UKMO models to
 747 capture and predict the two leading rainfall modes at lead
 748 times of one to four weeks is also examined. Evaluation
 749 of modelled spatiotemporal properties of rainfall modes
 750 showed that ECMWF and UKMO are comparable and
 751 outperformed NCEP. NCEP exhibited, with respect to
 752 observations, a westward shift in the anomalies of both
 753 spatial modes, which may explain the model shortcomings
 754 in capturing the rainfall associated with those modes. The
 755 skill assessments for predicting the corresponding PCs
 756 further demonstrated that models' phase and amplitude
 757 errors increased from Week 1 to Week 4, with ECMWF
 758 and UKMO PC1 having the highest skill at all lead times
 759 and PC2 showing lower skill than PC1 for all models.

761 To improve the understanding of potential sources driv-
 762 ing ECMWF model skill, an examination of specific cli-
 763 mate drivers in modulating the model ability to predict the
 764 leading rainfall modes is further carried out. We showed
 765 evidence that if the modelled MJO-related rainfall variability
 766 is removed from the model, this leads to a degradation in
 767 predicting the leading PCs, with rainfall variations linked
 768 to the RMM2 (RMM1) index contributing the most to the
 769 percentage change in the PC1- (PC2-) related skill. We also
 770 found that removing SST-related rainfall variations in the
 771 model modulates skill reductions in both PCs, with ENSO
 772 and IOD (IOD) impacting the skill at predicting PC1 (PC2).
 773 Skill degradations are mainly compensated after replacing
 774 the modelled MJO-related rainfall variability with observed
 775 MJO-related rainfall variability in the model, leading to the
 776 largest skill improvements in Weeks 3–4. It is worth noting
 777 that the skill for PC1 and PC2 is respectively improved by
 778 up to 18.2% and 16.8% over the weeks when considering the
 779 combination of all corrected driver-related rainfall variabil-
 780 ity relative to considering the most correlated MJO signal
 781 only (i.e., RMM2 for PC1 and RMM1 for PC2). Thus, our
 782 results indicate that correcting SST-related rainfall vari-
 783 ations in the model, especially those associated with IOD,
 784 could have contributed to enhancing the skill in predicting
 785 the leading rainfall modes, though suggesting a secondary
 786 role.

787 Even though it is still challenging to predict sub-seasonal
 788 variations in Eastern Africa short rains (de Andrade et al.
 789 2021; Kolstad et al. 2021), this study demonstrated, in par-
 790 ticular, that strengthening the model ability to capture MJO-
 791 related rainfall variability has the potential to more accu-
 792 rately predict the main modes of weekly rainfall variability
 793 in the region. These results support the concept of windows
 794 of opportunity (Mariotti et al. 2020) that may help forecast-
 795 ers identify periods when sub-seasonal rainfall prediction
 796 accuracy is at its highest during Eastern Africa short rains.
 797 Additionally, given that the drivers examined interact with
 798 each other (e.g., Hendon et al. 2007; Wilson et al. 2013;
 799 Zhang et al. 2015) and that their combined activity may
 800 impact the rainfall in Eastern Africa during the short rains
 801 (e.g., Vashisht and Zaitchik 2022), future work is recom-
 802 mended to specifically elucidate the multi-way interactions
 803 among ENSO, IOD, and the MJO, as well as the correspond-
 804 ing effects on the sub-seasonal Eastern Africa short rains
 805 prediction skill. However, when examining forecast skill,
 806 the limited length of typical hindcast datasets can limit the
 807 number of samples of each combination of phases of mul-
 808 tiple drivers.

809 Finally, by projecting sub-seasonal rainfall anomaly fore-
 810 casts onto the two observed leading rainfall modes examined
 811 here, a pair of sub-seasonal rainfall monitoring indices could
 812 be used as a forecasting tool in operational routines across
 813 Eastern Africa. Therefore, in addition to supporting model

814 developers in identifying shortcomings in Eastern Africa
 815 rainfall predictions for advancing the sub-seasonal prediction
 816 systems in the future, our results can further contribute
 817 to developing sub-seasonal forecast products that may
 818 add valuable climate information for anticipatory planning
 819 decisions across several sectors, such as agriculture, food
AQ5 security, and energy.

821 **Acknowledgements** We thank TAMSAT, The Climate Hazards
 822 Center, the National Center for Atmospheric Research, the National
 823 Aeronautics and Space Administration, the International Research
 824 Institute for Climate and Society, ECMWF, and NOAA for data provi-
 825 sion. This work is based on S2S data. S2S is a joint initiative of the
 826 World Weather Research Programme (WWRP) and the World Climate
 827 Research Programme (WCRP). The original S2S database is hosted at
 828 ECMWF as an extension of the TIGGE database.

829 **Author contributions** All authors contributed to the study conception,
 830 design, and analysis. Material preparation and data collection were per-
 831 formed by Felipe Marques de Andrade. The first draft of the manuscript
 832 was written by Felipe Marques de Andrade and all authors commented
 833 on previous versions of the manuscript. All authors read and approved
 834 the final manuscript.

835 **Funding** FMdeA, LCH, and SJW were supported by the U.K. Research
 836 and Innovation as part of the GCRF, African SWIFT Programme (NE/
 837 P021077/1). LCH and SJW were also supported by the National Centre
 838 for Atmospheric Science through the NERC National Capability
 839 International Programmes Award (NE/X006263/1).

840 **Data availability** The data used in this research can be found at the fol-
 841 lowing websites: TAMSAT (<http://www.tamsat.org.uk/data/>); CHIRPS
 842 (https://data.cse.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/); GPCP (<https://rda.ucar.edu/datasets/ds728.7/>); TRMM (https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_L3/TRMM_3B42_Daily.7/); S2S hindcasts (<https://apps.ecmwf.int/datasets/>); RMM index (<https://aux.ecmwf.int/ecpds/data/list/RMMS/> (username: s2sidx; password: s2sidx)); SubX hindcasts (https://iridl.ldeo.columbia.edu/SOURCES/Models/_SubX/NCEP/CFSv2/hindcast/pr/); SST (<https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>).

850 **Code availability (software application or custom code)** The python
 851 codes used in this research are available upon request to the first author.

852 **Declarations**

853 **Competing interests** The authors declare no conflicts of interest.

AQ6 AQ7 **References**

855 Aageet S, Fink AH, Maranan M, Diem JE, Hartter J, Ssali AL, Aya-
 856 bagabo P (2022) Validation of satellite rainfall estimates over
 857 equatorial east Africa. *J Hydrometeorol* 23:129–151. <https://doi.org/10.1175/JHM-D-21-0145.1>

858 Allen MP (1997) The t-test for the simple regression coefficient. *Under-
 859 standing Regression Analysis*, Springer, 66–70. https://doi.org/10.1007/978-0-585-25657-3_14

860 Anande D, Luhunga P (2019) Assessment of Socio-Economic Impacts
 861 of the December 2011 Flood Event in Dar es Salaam, Tanzania.
 862 *Atmospheric Climate Sci* 9:421–437. <https://doi.org/10.4236/acs.2019.93029>

863 Bahaga TK, Mengistu Tsidu G, Kucharski F, Diro GT (2015) Poten-
 864 tial predictability of the sea-surface temperature forced equato-
 865 rial East African short rains interannual variability in the 20th
 866 century. *Quart J Roy Meteorol Soc* 141:16–26. <https://doi.org/10.1002/qj.2338>

867 Bahaga TK, Fink AH, Knippertz P (2019) Revisiting interannual
 868 to decadal teleconnections influencing seasonal rainfall in the
 869 Greater Horn of Africa during the 20th century. *Int J Climatol*
 870 39:2765–2785. <https://doi.org/10.1002/joc.5989>

871 Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A,
 872 Yamagata T (2005) Paramount impact of the Indian Ocean
 873 dipole on the East African short rains: A CGCM study. *J Clim*
 874 18:4514–4530. <https://doi.org/10.1175/JCLI3541.1>

875 Bergonzini L, Richard Y, Petit L, Camberlin P (2004) Zonal circula-
 876 tions over the Indian and Pacific oceans and the level of lakes
 877 Victoria and Tanganyika. *Int J Climatol* 24:1613–1624. <https://doi.org/10.1002/joc.1089>

878 Berhane F, Zaitchik B (2014) Modulation of daily precipitation over
 879 East Africa by the Madden–Julian oscillation. *J Clim* 27:6016–
 880 6034. <https://doi.org/10.1175/JCLI-D-13-00693.1>

881 Black E, Slingo J, Sperber KR (2003) An observational study of the
 882 relationship between excessively strong short rains in coastal
 883 East Africa and Indian Ocean SST. *Mon Weather Rev* 131:74–
 884 94. [https://doi.org/10.1175/1520-0493\(2003\)131%3c0074:AOSOTR%3e2.0.CO;2](https://doi.org/10.1175/1520-0493(2003)131%3c0074:AOSOTR%3e2.0.CO;2)

885 Bowden JH, Semazzi FH (2007) Empirical analysis of intraseasonal
 886 climate variability over the Greater Horn of Africa. *J Clim*
 887 20:5715–5731. <https://doi.org/10.1175/2007JCLI1587.1>

888 Camberlin P, Wairuto J (1997) Intraseasonal wind anomalies related
 889 to wet and dry spells during the “long” and “short” rainy sea-
 890 sons in Kenya. *Theor Appl Climatol* 58:57–69. <https://doi.org/10.1007/BF00867432>

891 Camberlin P, Moron V, Okoola RE, Philippon N, Gitau W (2009)
 892 Components of rainy seasons’ variability in equatorial East
 893 Africa: Onset, cessation, rainfall frequency and intensity.
 894 *Theor Appl Climatol* 98:237–249. <https://doi.org/10.1007/s00704-009-0113-1>

895 Chang'a L, Kijazi A, Mafuru K, Kondowe A, Osima S, Mtongori H,
 896 Ng'ongolo H, Juma O, Michael E (2020) Assessment of the Evo-
 897 lution and Socio-Economic Impacts of Extreme Rainfall Events
 898 in October 2019 over the East Africa. *Atmospheric Climate Sci*
 899 10:319–338. <https://doi.org/10.4236/acs.2020.103018>

900 de Andrade FM, Young MP, MacLeod D, Hiron LC, Woolnough SJ,
 901 Black E (2021) Subseasonal precipitation prediction for Africa:
 902 Forecast evaluation and sources of predictability. *Weather Fore-
 903 cast* 36:265–284. <https://doi.org/10.1175/WAF-D-20-0054.1>

904 Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor SJ,
 905 Ropelewski CF (2007) Validation of satellite rainfall products over
 906 East Africa’s complex topography. *Int J Remote Sens* 28:1503–
 907 1526. <https://doi.org/10.1080/01431160600954688>

908 Dinku T, Ceccato P, Connor SJ (2011) Challenges of satellite rainfall
 909 estimation over mountainous and arid parts of east Africa. *Int J
 910 Remote Sens* 32:5965–5979. <https://doi.org/10.1080/01431161.2010.499381>

911 FSNAU (Somalia) Food Security & Nutrition Quarterly Brief (2022)
 912 — Focus on Post Gu 2017 Season Early Warning (Food Security
 913 and Nutrition Analysis Unit and Famine Early Warning System
 914 Network)

915 Funk C, Dettinger MD, Michaelsen JC, Verdin JP, Brown ME, Barlow
 916 M, Hoell A (2008) Warming of the Indian Ocean threatens east-
 917 ern and southern African food security but could be mitigated by
 918 agricultural development. *Proc Natl Acad Sci* 105:11081–11086.
 919 <https://doi.org/10.1073/pnas.070819610>

920 Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S,
 921 Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015)
 922 The climate hazards infrared precipitation with stations—a new
 923

924

925

926

927

928

929

930

931

932 environmental record for monitoring extremes. *Sci Data* 2:150066. 998
 933 <https://doi.org/10.1038/sdata.2015.66> 999

934 Gamoyo M, Reason C, Obura S (2015) Rainfall variability over the 1000
 935 East African coast. *Theor Appl Climatol* 120:311–322. <https://doi.org/10.1007/s00704-014-1171-6> 1001

936 Goddard L, Graham NE (1999) Importance of the Indian Ocean for 1002
 937 simulating rainfall anomalies over eastern and southern Africa. *J 1003
 938 Geophys Res Atmos* 104:19099–19116. [https://doi.org/10.1029/1999JD900326](https://doi.org/10.1029/1004

 939 1999JD900326) 1004

940 Gudoshava M, Wanzala M, Thompson E, Mwesigwa J, Endris HS, 1005
 941 Segele Z, Hiron L, Kipkoge O, Mumbua C, Njoka W, Baraibar 1006
 942 M, de Andrade FM, Woolnough SJ, Atheru Z, Artan G (2022) 1007
 943 Application of real-time S2S forecasts over Eastern Africa in the 1008
 944 co-production of climate services. *Climate Services* 27:100319. 1009
 945 <https://doi.org/10.1016/j.cleser.2022.100319> 1010

946 Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal 1011
 947 functions and related techniques in atmospheric science: A review. 1012
 948 *Int J Climatol: J Royal Meteorol Soc* 27:1119–1152. <https://doi.org/10.1002/joc.1499> 1013

949 Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of 1014
 950 the MJO–ENSO relationship. *J Clim* 20:531–543. <https://doi.org/10.1175/JCLI4003.1> 1015

951 Hersbach H et al (2020) The ERA5 global reanalysis. *Q J R Meteorol 1016
 952 Soc* 146:1999–2049. <https://doi.org/10.1002/qj.3803> 1017

953 Hiron L, Turner A (2018) The impact of Indian Ocean mean-state 1018
 954 biases in climate models on the representation of the East African 1019
 955 short rains. *J Clim* 31:6611–6631. <https://doi.org/10.1175/JCLI-D-17-0804.1> 1020

956 Hiron L, Thompson E, Dione C, Indasi VS, Kilavi M, Nkiaka E, 1021
 957 Talib J, Visman E, Adefisan EA, de Andrade FM, Ashong J, 1022
 958 Mwesigwa JB, Boult V, Diédhieu T, Konte O, Gudoshava M, 1023
 959 Kiptum C, Amoah RK, Lampert B, Lawal KA, Muita R, Nzekwu 1024
 960 R, Nying'uro P, Ochieng W, Olaniany E, Opoku NK, Endris HS, 1025
 961 Segele Z, Igri PM, Mwangi E, Woolnough S (2021) Using 1026
 962 co-production to improve the appropriate use of sub-seasonal 1027
 963 forecasts in Africa. *Climate Services* 23:100246. <https://doi.org/10.1016/j.cleser.2021.100246> 1028

964 Hoell A, Funk C, Barlow M (2014) La Niña diversity and northwest 1029
 965 Indian Ocean rim teleconnections. *Clim Dyn* 43:1–18. <https://doi.org/10.1007/s00382-014-2083-y> 1030

966 Hogan E, Shelly A, Xavier P (2015) The observed and modelled 1031
 967 influence of the Madden–Julian Oscillation on East African rainfall. 1032
 968 *Meteorol Appl* 22:459–469. <https://doi.org/10.1002/met.1475> 1033

969 Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce 1034
 970 R, McGavock B, Susskind J (2001) Global precipitation at one- 1035
 971 degree daily resolution from multisatellite observations. *J Hydrometeorol* 1036
 972 2:36–50. 1037

973 Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong 1038
 974 Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite 1039
 975 precipitation analysis (TMPA): Quasi-global, multiyear, combined- 1040
 976 sensor precipitation estimates at fine scales. *J Hydrometeorol* 1041
 977 8:38–55. <https://doi.org/10.1175/JHM560.1> 1042

978 Indeje M, Semazzi FHM, Ogallo LJ (2000) ENSO Signals in East 1043
 979 African Rainfall Seasons. *Int J Climatol* 20:19–46. [https://doi.org/10.1002/\(SICI\)1097-0088\(200001\)20:1%3c19::AID-JOC449%3e3.0.CO;2-0](https://doi.org/10.1002/(SICI)1097-0088(200001)20:1%3c19::AID-JOC449%3e3.0.CO;2-0) 1044

980 Jiang Y, Zhou L, Roundy PE, Hua W, Raghavendra A (2021) Increasing 1045
 981 influence of Indian Ocean Dipole on precipitation over Central 1046
 982 Equatorial Africa. *Geophys Res Lett* 48:e2020GL092370. <https://doi.org/10.1029/2020GL092370> 1047

983 Kimani MW, Hoedjes JC, Su Z (2017) An assessment of satellite- 1048
 984 derived rainfall products relative to ground observations over East 1049
 985 Africa. *Remote Sensing* 9:430. <https://doi.org/10.3390/rs9050430> 1050

986 Kolstad EW, MacLeod D (2022) Lagged oceanic effects on the East 1051
 987 African short rains. *Clim Dyn* 59:1043–1056. <https://doi.org/10.1007/s00382-022-06176-6> 1052

988 Ogallo LJ (1989) The spatial and temporal patterns of the East African 1053
 989 seasonal rainfall derived from principal component analysis. *Int 1054
 990 J Climatol* 9:145–167. <https://doi.org/10.1002/joc.3370090204> 1055

991 Ogallo LJ, Janowiak JE, Halpert MS (1988) Teleconnection between 1056
 992 seasonal rainfall over East Africa and global sea surface temperature 1057
 993 anomalies. *J Meteorol Soc Jpn* 66:807–821. https://doi.org/10.2151/jmsj1965.66.6_807 1058

994 Omeny PA, Ogallo L, Okoola R, Hendon H, Wheeler M (2008) East 1059
 995 African rainfall variability associated with the Madden–Julian 1060
 996 Oscillation. *J Kenya Meteorol Soc* 2:109–118. 1061

997 Palmer PI, Wainwright CM, Dong B et al (2023) Drivers and impacts 1062
 998 of Eastern African rainfall variability. *Nat Rev Earth Environ* 4:254–270. <https://doi.org/10.1038/s43017-023-00397-x> 1063

999 Pegion K, Kirtman BP, Becker E, Collins DC, LaJoie E, Burgman 1063

999 R, Bell R, DeSole T, Min D, Zhu Y, Li W et al (2019) The

1064 Subseasonal Experiment (SubX): A multimodel subseasonal pre- 1111
 1065 diction experiment. *Bull Am Meteor Soc* 100:2043–2060. <https://doi.org/10.1175/BAMS-D-18-0270.1> 1112
 1066
 1067 Pohl B, Camberlin P (2006a) Influence of the Madden–Julian Oscil- 1113
 1068 lation on East African rainfall. I: Intraseasonal variability and 1114
 1069 regional dependency. *Q. J. R. Meteorol. Soc.*, 132(621), 2521– 1115
 1070 2539. doi:<https://doi.org/10.1256/qj.05.104>. 1116
 1071 Pohl B, Camberlin P (2006b) Influence of the Madden–Julian Oscil- 1117
 1072 lation on East African rainfall: II. March–May season extremes 1118
 1073 and interannual variability, *Q. J. R. Meteorol. Soc.* 132(621, B), 1119
 1074 2541–2558. <https://doi.org/10.1256/qj.05.223>. 1120
 1075 Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG 1121
 1076 (2007) Daily high-resolution-blended analyses for sea surface 1122
 1077 temperature. *Journal of climate* 15;20(22):5473–96. <https://doi.org/10.1175/2007JCLI1824.1> 1123
 1078 Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A 1124
 1079 dipole mode in the tropical Indian Ocean. *Nature* 401:360–363. 1125
 1080 <https://doi.org/10.1038/43854> 1126
 1081 Schreck CJ, Semazzi FHM (2004) Variability of the recent climate 1127
 1082 of eastern Africa. *Int J Climatol* 24:681–701. <https://doi.org/10.1002/joc.1019> 1128
 1083 Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties 1129
 1084 in daily rainfall over Africa: assessment of gridded observation 1130
 1085 products and evaluation of a regional climate model simulation. *Int J 1131
 1086 Climatol* 33:1805–1817. <https://doi.org/10.1002/joc.3551> 1132
 1087 Trenberth KE, Stepaniak DP (2001) Indices of el Niño evolution. *J 1133
 1088 Clim* 14:1697–1701. [https://doi.org/10.1175/1520-0442\(2001\)014%3c1697:LIOENO%3e2.0.CO;2](https://doi.org/10.1175/1520-0442(2001)014%3c1697:LIOENO%3e2.0.CO;2) 1134
 1089 Ummenhofer CC, Sen Gupta A, England MH, Reason CJ (2009) 1135
 1090 Contributions of Indian Ocean sea surface temperatures to enhanced 1136
 1091 East African rainfall. *J Clim* 22:993–1013. <https://doi.org/10.1175/2008JCLI2493.1> 1137
 1092 Vashisht A, Zaitchik B (2022) Modulation of East African boreal fall 1138
 1093 rainfall: combined effects of the Madden–Julian oscillation (MJO) 1139
 1094 and El Niño–Southern Oscillation (ENSO). *J Clim* 35:2019–2034. 1140
 1095 <https://doi.org/10.1175/JCLI-D-21-0583.1> 1141
 1096 Vigaud N, Tippett MK, Robertson AW (2018) Probabilistic skill of 1142
 1097 subseasonal precipitation forecasts for the East Africa–West Asia 1143
 1098 sector during September–May. *Wea Forecasting* 33:1513–1532. 1144
 1099 <https://doi.org/10.1175/WAF-D-18-0074.1> 1145
 1100 Vigaud N, Tippett MK, Robertson AW (2019) Deterministic skill of 1146
 1101 subseasonal precipitation forecasts for the East Africa–West Asia 1147
 1102 sector from September to May. *J. Geophys. Res. Atmos.* 124, 11 1148
 1103 887–11 896. <https://doi.org/10.1029/2019JD030747> 1149
 1104 Vitart F (2017) Madden–Julian oscillation prediction and teleconnec- 1150
 1105 tions in the S2S database. *Quart J Roy Meteor Soc* 143:2210– 1151
 1106 2220. <https://doi.org/10.1002/qj.3079> 1152
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Journal:	382
Article:	7244

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details Required	Author's Response
AQ1	Please check if affiliations and there respective authors was captured/presented correctly.	
AQ2	Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct.	
AQ3	References 'FSNAU 2022, s 2019' are cited in text but not provided in the reference list. Please provide references in the list or delete these citations.	
AQ4	Please check if section heads was captured/presented correctly.	
AQ5	Please check backmatter if all the details in the backmatter was captured/presented correctly.	
AQ6	References 'Chang'a et al (2020), FSNAU (Somalia) Food Security Nutrition Quarterly Brief (2022), Pohl and Camberlin (2006b).' are given in list but not cited in text. Please cite in text or delete them from list.	
AQ7	Please provide complete bibliographic details of references: (FSNAU (Somalia) Food Security & Nutrition Quarterly Brief (2022) Wilks D S (2006))	