

Dairy farming in the era of artificial intelligence: trend or a real game changer?

Article

Accepted Version

Espinoza-Sandoval, O. R., Angeles-Hernandez, J. C., Gonzalez-Ronquillo, M., Ghavipanje, N., Zhang, N., Bayat, A.R., Hervás, G., Kholif, A. E., Mele, M., Loor, J. J., Stergiadis, S. ORCID: <https://orcid.org/0000-0002-7293-182X> and Vargas-Bello-Pérez, E. ORCID: <https://orcid.org/0000-0001-7105-5752> (2024) Dairy farming in the era of artificial intelligence: trend or a real game changer? *Journal of Dairy Research*, 91 (2). pp. 139-145. ISSN 1469-7629 doi: 10.1017/S0022029924000426 Available at <https://centaur.reading.ac.uk/116081/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1017/S0022029924000426>

Publisher: Cambridge University Press

the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Dairy Farming in the Era of Artificial Intelligence: Trend or a real game changer?**

2
3 Oscar R. Espinoza-Sandoval¹, Juan C. Angeles-Hernandez², Manuel Gonzalez-Ronquillo³,
4 Navid Ghavipanje⁴, Naifeng Zhang⁵, Ali R. Bayat⁶, Gonzalo Hervás⁷, Ahmed E. Kholif⁸,
5 Marcello Mele⁹, Juan J. Loor¹⁰, Sokratis Stergiadis¹¹ and Einar Vargas-Bello-Pérez^{1,11*}

6
7 ¹Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, 31453-Chihuahua,
8 México; ²Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo,
9 43600-Tulancingo, México; ³Departamento de Nutrición Animal, Facultad de Medicina
10 Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, 50295-Toluca,
11 México; ⁴Department of Animal Science, Faculty of Agriculture, University of Birjand,
12 97175-Birjand, Iran; ⁵Key Laboratory of Feed Biotechnology of the Ministry of Agriculture
13 and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences,
14 100081-Beijing, China; ⁶Animal Nutrition, Production Systems, Natural Resources Institute
15 Finland (Luke), FI-31600-Jokioinen, Finland; ⁷Instituto de Ganadería de Montaña (CSIC-
16 ULE), 24346-Grulleros, Spain; ⁸Dairy Science Department, National Research Centre,
17 12622-Giza, Egypt; ⁹Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali,
18 University of Pisa, 56124-Pisa, Italy; ¹⁰Mammalian NutriPhysioGenomics, Department of
19 Animal Sciences and Division of Nutritional Sciences, University of Illinois, 61801-Urbana,
20 USA and ¹¹Department of Animal Sciences, School of Agriculture, Policy and Development,
21 University of Reading, P.O. Box 237, Earley Gate, Reading, UK.

22
23 Corresponding author: evargasb@uach.mx.

24

Abstract

25 Artificial Intelligence (AI) is reshaping the world as we know it, impacting all aspects of
26 modern society, basically due to the advances in computer power, data availability, and AI
27 algorithms. The dairy sector is also on the move, from the exponential growth in AI research,
28 to ready to use AI-based products, this new evolution to Dairy 4.0 represents a potential
29 “game-changer” for the dairy sector, to afront challenges regarding sustainability, welfare,
30 and profitability. To explore this possibility this research reflection, discusses the main
31 drivers in the field of AI, from the origins, challenges, and opportunities. Further, we present
32 a multidimensional vision considering factors that are not commonly considered in dairy
33 research, such as geopolitical aspects and legal regulations that can have an impact on the
34 application of AI in the dairy sector. This is just the beginning of the third tide of AI, and a
35 future is still ahead. For now, the current advances in AI at on-farm level seem limited and
36 based on the revised data, we believe that AI can be a “game-changer” only if AI is integrated
37 with other components of Dairy 4.0 such as robotics and is fully adopted by dairy farmers.

38

39 **Keywords:** Dairy 4.0; innovation; artificial intelligence; machine learning; deep learning;
40 computer vision.

41 Throughout its history, humanity has experienced several industrial revolutions that have
42 transformed the way we live, and dairy farms have adapted and taken advantage of these
43 technological advances, incorporating them into their production processes. Today, with the
44 arrival of the Fourth Industrial Revolution (4IR), the dairy sector is adapting these
45 technologies to the new concept of Dairy 4.0 under development, and one of the most
46 promising of those technologies is AI (Hassoun et al., 2023). Since the 1950s, AI has gone
47 through several periods of low and high development, but in recent years it has gained
48 unprecedented strength. At the macro level of innovation systems, the big tech companies
49 such as Open AI, Meta AI, or Google AI, have been leading the AI research at a basic level
50 due to their infrastructure. But not only the big tech is in it, but also several country
51 governments consider AI as a key technology.

52 The first scientific reports implementing AI related to dairy science appeared in the mid-
53 1990s (i.e., Nielen et al., 1995) and have grown exponentially since the mid-2010s. Although
54 there are great advances in the AI sector, the use of this technology in the dairy sector will
55 depend on the feasibility to be applied on-farm; particularly facing the challenges around
56 data integration and farmers' technical capabilities. Regarding data integration, the
57 continuous big-data collection from different sensors as described by Knight (2020), is
58 divided by: at cow (i.e., data from accelerometers, temperature, heart rate and pH analysis),
59 near cow (i.e., video and sound recordings, climate data, feed analysis and GPS) and from
60 cow (i.e., milk, blood, hair, DNA, and faeces), which are usually stored in the cloud, and with
61 continuous development of AI technologies.

62 The dairy sector faces important sustainability challenges in the coming decades, but the
63 question of what impact AI could have on these challenges remains unclear. Due to the
64 current trends in AI in all aspects of society, the present research reflection aims to discuss
65 if AI could be considered a “game-changer” for the dairy sector. To explore this possibility,
66 we used a multidimensional view starting by discussing the origins of AI to the current
67 available on-farm applications, including current challenges and opportunities. A “game-
68 changer” in global terms, are those events and developments that shape the course of history
69 (Avelino et al., 2017). Now, several studies have been published in other areas such as health,
70 economics, and education, but for dairy science, this concept has not been coined and thus,
71 AI has not been cataloged as a “game-changer”. Although this research reflection focuses on

72 AI, other pillars of Dairy 4.0 will also be considered due to their importance and their vital
73 coexistence with AI.

74

75 **The fourth industrial revolution and Dairy 4.0**

76 Since the early 21st century, the world has been immersed in the fourth industrial revolution
77 (4IR), a term developed by Klaus Schwab, during the World Economic Forum Annual
78 Meeting 2016. But the term Industry 4.0, originated from a German project designed to
79 stimulate the high-tech industry between 2011 and 2015 (Philbeck and Davis, 2019). Several
80 adaptations to these terms have been proposed to identify agri-food areas, such as Agriculture
81 4.0, Precision Agriculture, Dairy 4.0, Smart-Farming, Smart Dairies, and Precision Livestock
82 Farming. Hassoun et al. (2023) suggested that the main pillars of Dairy 4.0 are: AI, big data,
83 robotics, 3D printing, internet of things (IoT), and blockchain (enabling the provision of real-
84 time data of milk from farm to fork approach ensuring transparency and food security; Gehlot
85 et al., 2022). However, other 4IR technologies are also important including simulation,
86 quantum computing, augmented reality, cloud computing, and horizontal and vertical
87 integration.

88 Today's leading Dairy 4.0 technologies, which have been in the market for several years, in
89 dairy systems are automated milking systems (robotic milking systems without the direct
90 assistance of milking staff), animal monitoring systems (such as neck collars for heat
91 detection, health and behavioral monitoring sensors, eating patterns monitoring devices,
92 calving alerts, etc.), automatic feed dispensers, robotic feed pushers and cleaners, milk
93 quality and mastitis detection systems, turn-key system designed to measure greenhouse gas
94 emissions (i.e., CH₄ and CO₂), and other based largely on sensors (Knight, 2019; Krpalkova
95 et al., 2021). The main benefits of implementing the 4IR are increased efficiency and
96 productivity, revenue gain, and minimizing human/manual errors (Neethirajan, 2020;
97 Jerhamre et al., 2022).

98

99 **Artificial Intelligence: origins and framework**

100 The origins of modern AI can be traced back to the 1950s when pioneers in computer science
101 were exploring whether computers could be able to think. So, AI can be defined as a
102 simulation of human intelligence (replicated by a system or a machine to perceive their

103 environment, learn, and make decisions), but until now a conclusive definition has not been
104 established and several proposals remain under debate (Wang, 2019; Hassoun et al., 2023).
105 In recent years, there has been a rapid growth in technological advancements such as
106 computer power, with large availability of data (“big data”) allowing AI to evolve from mere
107 theory to real-world applications on an unprecedented scale (Topol, 2019).

108 The framework of AI is organized into different layers according to Xu et al. (2021):

- 109 • Infrastructure layer (data, machine and deep learning algorithms, storage, and
110 computing power).
- 111 • Perception layer (computer vision, speech recognition, and synthesis) that allows
112 machines to see and hear.
- 113 • Cognitive layer (natural language processing) provides superior capabilities of
114 induction and reasoning.
- 115 • Decision-making layer (expert systems and automatic planning) allows AI to make
116 complex decisions such interpretation, diagnosis, and prediction.

117

118 **Periods of AI technological development**

119 Over time, the field of AI has passed through several periods of ups and downs in knowledge
120 development, commonly known as seasons, divided into tides of summers (ups) and winters
121 (downs) (Toosi et al., 2021). The first winter occurred from 1973 to 1980 and the second
122 from 1987 to 1993 (Haenlein and Kaplan, 2019). The main reasons for the first winter were
123 the disappointments in machine translation and the consequent Lighthill report for the British
124 Science Research Council with the conclusion that the expectations of AI development
125 projects were exaggerated. Consequently, the UK cut the funding to AI, and other agencies
126 like DARPA (Defense Advanced Research Projects Agency) redirected the funding to more
127 applied AI projects. Although the possibility of the sector of AI going through another winter
128 is possible, at the same time the chances are probably slimmer than before because of the
129 large financial investment of big tech companies in the sector, as well as the government
130 support which sees the potential of AI to provide financial growth in many industries and
131 enhance military capabilities. At the end of the second winter, the first publications on dairy
132 dealing with AI started to appear and grow exponentially (Nielen et al., 1995; Hassoun et al.,

133 2023). As shown in Figure 1, this is explained by the achievements of the third summer of
134 AI, and this trend is not expected to stop.

135

136 **The fundamentals of machine learning, deep learning, and computer vision**

137 Machine learning (ML) systems are classified according to the amount and type of
138 supervision during training. Four major categories exist, supervised learning, unsupervised
139 learning, semisupervised learning, and reinforcement learning. The most used algorithms in
140 supervised learning are k-nearest neighbors (KNN), support vector machines (SVM),
141 decision trees (DT), and random forest (RF). For example, the module for Python Scikit-
142 learn contains a vast variety of ML algorithms. Another example is Weka, which also
143 contains a wide variety of ML algorithms with the advantage that can be used without writing
144 any program code by using a graphical user interface, making it attractive for new students
145 in AI.

146 Deep learning (DL) a subset of ML, deals with deep neural networks (DNN) inspired by the
147 biological neural networks in the human brain. The term DL was introduced in 2006, after
148 training a DNN, by eliminating gradient vanishing during training, capable of recognizing
149 handwritten digits with a precision of more than 98% (Le Cun et al., 2015). After this
150 breakthrough, DL became the most researched field in AI, achieving important technological
151 advances such as voice and facial recognition or autonomous vehicles. In the early stages of
152 DL, the process of developing ANNs was only possible with a few tools, like MATLAB,
153 OpenNN, and Torch, that demand high computer capabilities and tedious procedures. Today
154 with availability and free access to modern frameworks like TensorFlow developed by the
155 Google Brain Team, CNTK by Microsoft Research, Pytorch based on Torch, MXNet by
156 Amazon, Keras, and ONNX by the Linux Foundation for example, the application of these
157 methods has become simpler (Xu et al., 2021). There is a wide type of ANN such as deep
158 neural networks (DNNs) including convolutional neural networks (CNNs), recurrent neural
159 networks (RNNs), and long short-term memory (LSTM), and in recent development of liquid
160 neural networks (LNN).

161 The origins of computer vision (CV) can be traced back to the 1960s, were the first attempts
162 to imitate human vision by the human sensory system (cameras) and human cognitive
163 systems (machine perception). The common pipeline of CV starts with the image or video

164 acquisition, followed by image preprocessing which prepares the data for analysis and
165 concludes with standardization, color transformation, binarization, and thresholding.
166 Fernandez et al. (2020) presented a complete overview of the current applications of CV in
167 the field of animal science. Traditional CV techniques like scale invariant feature transform
168 (SIFT) or speed up robust features (SURF) are usually combined with ML algorithms (SVM,
169 KNN). The DL can be defined to be a tool for CV, their combination has achieved enormous
170 progress (O'Mahony et al., 2020).

171

172 **Examples of machine learning, deep learning, and computer vision in livestock farming**
173 An example of the use of ML is demonstrated by Chen et al. (2022), where they compare
174 several ML algorithms to predict the excretion of nitrogen in the manure of dairy cows. The
175 use of ML in precision livestock farming was reviewed by Garcia et al. (2020). A systematic
176 literature review (Cockburn, 2020) of the application of ML models in cattle farming
177 confirms that ML has become a ubiquitous tool in various aspects of dairy farming,
178 particularly to predict data with the most used models including SVM, KNN, and artificial
179 neural networks (ANNs). However, the majority of tested algorithms have yet to be refined
180 for practical use.

181 A review (Mahmud et al., 2021) on the current state of DL in cattle highlighted two main DL
182 algorithms: combining image processing and DL and fine-tuning pre-trained DL models. The
183 main challenges associated with DL in the dairy sector include image quality, data processing
184 speed, dataset size, redundant information, and cattle movement during data acquisition. We
185 anticipate increased interest in automated cattle farming using cutting-edge DL models while
186 acknowledging their real-time implementation requires addressing the current challenges and
187 further improvements.

188 Recent CV system adoption in livestock applications has shown promising results,
189 demonstrating their potential for high-throughput phenotyping. These systems offer real-
190 time, non-invasive, and precise predictions for health, welfare, nutrition, and reproduction at
191 both group and individual levels (Fernandez et al., 2020; Oliveira et al., 2021). CV
192 applications are a burgeoning topic in dairy farming and some commercial products are
193 already on the market. Nevertheless, there are still hurdles that must be overcome through
194 continued research to create independent solutions that can provide vital information.

195 **Innovation systems: application pathways of AI at the farm level**

196 To fully obtain the main opportunities and advantages coming from AI applied in the day-
197 to-day at the dairy farm, several actions need to allow the natural coevolution of science,
198 technology, and production. This will depend on the innovative systems that vary among
199 countries but usually interact between them as proposed by Pugliese et al. (2019) in a
200 multilayered space of innovation activities. The conceptual framework of the national
201 innovation systems, suggests that the main goal of the research is innovation (Figure 2). The
202 first step depends on the knowledge infrastructure that is composed of three research sectors:
203 university, government, and industry. The second step is transforming the knowledge into
204 utility, by established companies or new startups, taking the knowledge, and transforming it
205 into applied technologies. The introduction of a new product or service into the market
206 interacts with customers as the third step. Usually, these types of companies are transnational
207 conglomerates that are searching for profits on a new product of interest (Sena et al., 2021).

208

209 **Geopolitical implications of AI**

210 Several countries have classified AI as a matter of national security, this is mainly due to the
211 potential impact of AI on the military, cybersecurity, and economics. It is estimated that the
212 global investment in AI could reach \$200 billion by 2025 which is almost double the \$94
213 billion invested in 2021 (Goldman Sachs, 2023). Two countries are leading the technological
214 race in AI, China, and the United States. China introduced the “Next Generation AI
215 Development Plan” in 2017 intending to become the global AI innovation center. Based on
216 Freeman’s hypothesis, Lundvall and Rikap (2022), suggested that the emergence of a
217 radically new technology like AI, can reconfigure the world order, and explore in depth how
218 crucial is AI for China. The EU also launched its initiative “AI for Europe” in 2018, intending
219 to become a world leader in this technology. The US in 2018 created the “National Security
220 Commission on Artificial Intelligence” to evaluate the current status of the US in the field of
221 IA, with the conclusion that the US is not prepared to defend or compete in the era of AI.
222 Also, other countries (like Japan, South Korea, India, Israel, Singapore, and Taiwan) have
223 the intention of becoming leaders in the AI race (Schmidt et al., 2021). This wave of interest
224 in AI on a global scale, not only benefits non-agri-food sectors, but is also an opportunity for
225 the expansion of AI on Dairy 4.0. Firstly, they signify resources for research, which

226 consequently represent more tools such as AI algorithms, which can be used by researchers
227 to solve specific problems in the dairy industry.

228 One potential risk is the over-reliance on one/limited companies and/or countries/regions for
229 the provision of technology and materials for their construction, as experienced previously
230 with the semiconductors during the COVID-19 pandemic (TSMC, Taiwan) (Michael, 2023).

231 Under this scenario some concerns need to be considered, such as how susceptible dairy
232 farmers using AI will be in geopolitical conflicts and changes in the global control of the
233 distribution of certain resources; for example, data analysis has been done on servers located
234 outside their country.

235

236 **Legal and ethical concerns related to AI**

237 Although the field of AI had remained unregulated worldwide, the EU was the first to
238 propose the “AI Act” in 2021, reaching a political agreement in 2023, and on the way to
239 becoming an EU law between 2024 and 2026 (Madiega and Chahri, 2023). These initiatives
240 aim to classify and regulate the providers of AI, based on their risk, mainly to protect the
241 consumer's rights (i.e. facial recognition in public spaces) and a special emphasis on
242 generative AI (ChatGPT) related to transparency requirements. Also, the US president in
243 2023 issued an “Executive order on the safe, secure and trustworthy development and use of
244 AI”. These regulations aimed to due to the concerns on fraud, discrimination, bias, and
245 disinformation.

246 Although these initiatives have been issued, none of them contemplate the agri-food sectors
247 directly and it is still unclear how they will be implemented in non-agri-food sectors. De
248 Baerdemaeker J (2023), presented a study at the request of the European Parliament
249 Parliamentary Research Services were describes the applications, risks, and impacts on agri-
250 food areas. This study identifies AI as a key technology for modern agriculture, among the
251 concerns identified is to clarify the ownership and the exploitation of the data generated by
252 sensors in farms, the potential risks of automation and robotics and ensure that they are safe
253 and secure for the animals and farmers, also proposed support for protecting the investment
254 of the farmers in AI technologies.

255 In the case of regulations-related challenges do not seem to currently influence the dairy
256 sector but it is likely that in the future the launch of new regulations may affect how AI is
257 implemented on dairy farms (De Baerdemaeker J, 2023).

258

259 **Leading countries and trends in dairy AI research**

260 In recent years, there has been an exponential growth in the number of scientific publications
261 dealing with AI and dairy cows. The first publications started to appear in the mid-90s
262 (Nielen et al., 1995). Several reviews have explored the geographic location, technology
263 employed, and areas of dairy science (i.e., nutrition, reproduction, and health) (Cockburn,
264 2020; Mahmud et al., 2021; Shine and Murphy, 2022; Hassoun et al., 2023). Of the 4
265 literature reviews revised, 2 trends in geographic locations were identified based on their
266 results (i) Cockburn (2020) and Shine and Murphy (2022), finding the major number of
267 publications coming from the United States and Ireland, (ii) Mahmud et al. (2021) and
268 Hassoun et al. (2023) reported the greatest number of publications coming from China as a
269 great advantage. In general, considering the 4 reviews, other countries also stand out by their
270 number of scientific reports like Australia, India, and the United Kingdom. The review of
271 Shine and Murphy (2021) on AI and ML applications in dairy farming (literature between
272 1999 and 2021) has shown an exponential increase in publications after 2010 mostly
273 addressing the physiology and health-related problems in dairy cows (32%) with the feature
274 data were most often derived from sensors (48%). Also, since 2018 publications mostly
275 employed neural network algorithms, suggesting an increasing use of DL algorithms in the
276 dairy sector. Also, it has been found (Cockburn, 2020; Mahmud et al., 2021; Garcia et al.,
277 2020) that AI techniques in the dairy sector were mainly applied to management, milk yield
278 prediction, resource usage, and health and physiological monitoring (including mastitis, body
279 condition, metabolic status, lameness, heat stress, reproduction outcomes, dystocia and
280 calving, and feeding).

281 The literature, however, noted that AI algorithms failed to reliable implementation in
282 practice, mainly due to the poor training data (Cockburn, 2020). Robotics also making its
283 mark in dairy farming with examples such as voluntary milking systems that milk cows
284 without being guided by humans, and laser-guided detection of teat placement for attachment
285 of the milking unit is accomplished by algorithms that appear intelligent as well as are self-

286 driving vehicles to deliver feed (De Vries et al., 2023). Virtual reality is another AI
287 application in the dairy sector, it could be employed for the training of farm workers, modeled
288 on web-based virtual dairy herds to promote active learning of students and farmers as well
289 as simulation and optimization models to support decision-making in dairy farms.
290 Furthermore, video-based monitoring systems have been suggested as a potential solution for
291 ensuring employee compliance with farm protocols, however, these systems raise concerns
292 among employees regarding punitive consequences, data security, and confidentiality (De
293 Vries et al., 2023). Of note, previous studies on AI applications in dairy-related sectors lack
294 consistent reporting of model accuracy, performance, and scalability. Most studies focus
295 solely on model development, neglecting real-world pilots or deployments. This makes it
296 difficult to assess practicality and applicability, as models need continuous updating and
297 adaptation to changing circumstances.

298

299 **Challenges faced by dairy science researchers related to AI**

300 One of the main challenges that afront animal science researchers, is that AI engineering is
301 likely not included in their training and skill development, lacking in disciplines such as
302 mathematics, statistics, programming, big data, ML, and DL. Consequently, research
303 students need to acquire these abilities in a short time allowance to be fully involved in all
304 steps of an AI research project. As this is not possible on several occasions, collaborations
305 with AI engineers or bioinformaticians for the programming process are essential, who in
306 turn need close guidance and monitoring to understand the interpretation of AI results into
307 biological processes. Although multidisciplinary teams offer several benefits to scientific
308 progress, early career students and researchers may lose their interest and motivation, as they
309 might feel less ownership of their research program and redirect their research interest to
310 more traditional research areas such as reproduction or nutrition. This has led academic
311 programs to incorporate courses on the topics of AI (such as programming, data science, ML,
312 and DL) and, on many occasions, hire specialized staff.

313

314 **Dairy sector's major challenges**

315 The future of dairy farming worldwide faces several challenges, due to a growing population
316 estimated to be 9.8 billion in 2050. In 2017, the total milk production from all dairy species

317 (standardized to an energy-corrected milk of 4.0% fat and 3.3% protein) reached 864 million
318 tonnes, and is estimated that in 2030 the demand will be 1,168 million tonnes, an increase of
319 35% in 13 years (Wyrzykowski et al., 2018). This raises the pressure on the agri-food systems
320 to increase productivity to cover the growing demand and ensure food security. The food
321 systems are also required to adapt to the changing climate and play a key role in reducing
322 greenhouse gas (GHG) emissions (as a contribution to the effort of mitigating climate
323 change), as agriculture contributes approximately 12% of the global emissions of GHG,
324 whilst 30% of the anthropogenic methane comes from ruminants (Wijerathna-Yapa and
325 Pathirana, 2022). Under this future scenario, the challenge for a sustainable milk production
326 system that guarantees food safety needs to perform dramatic changes to confront these
327 current and future challenges.

328

329 **Available AI-based Dairy 4.0 products**

330 At the dairy farm level, the applicability of AI technologies is limited to the available
331 products on the market, that have developed user-friendly interfaces (Fifield, 2020). The
332 great majority of these products are in the field of CV. For example, Cattle Eye Ltd. (UK;
333 Cattle Eye, 2023) is a commercially available technology that tracks body condition scores
334 as well as lameness indicators. Another example is Alus Feedbunk Management from
335 Ever.Ag Ltd. allows the use of CV to monitor the feed bunk and inform the dairy farmer
336 when supplementation of feed is needed (US; Cainthus, 2023). This type of innovation
337 requires an inversion that comes with customer service and a complete easy-to-use interface
338 platform. Regarding augmented reality, Nedap Livestock Management (NL; Nedap, 2023)
339 offers a product that, through a virtual reality glass, the user can navigate through cow's
340 records and register daily actions, via holograms.

341 In the field of data-based technologies Dairy Data Warehouse has developed Predicta
342 Guardian (NL; DDW, 2023), which recovers data from individual cows and sends it to the
343 cloud and analyzed through AI and can predict with an advance of 60 days the presentation
344 of transition diseases (ketosis, milk fever, displaced abomasum and retained placenta) and
345 send an alarm to the farmer to implement corrective actions. Another example is algoMilk
346 (SP; algoMilk, 2023) which using DL, integrates data from individual cows (such as body
347 weight, and lactation number) and cows' production, and feed ingredients costs, to present

348 the best solution to group cows based on their needs and optimize the ration to find the best
349 IOFC. The major challenge that affronts data-based technologies is data integration from
350 multiple sources (Cabrera and Fadul-Pacheco, 2021). In general, one of the inconveniences
351 of these products is that is not clear what type of algorithms are used these are mainly due to
352 intellectual property, on one side they declare that area using AI, ML, or DL, so is
353 complicated to criticize the techniques used in deep.

354

355 **Final Remarks**

356 This research reflection shows a multidimensional vision, from the origins and drivers of AI,
357 the possible impact of geopolitical factors on AI research, to actual applications in dairy
358 systems, and future expectations. Since the third summer of AI which is the actual period,
359 new types of AI algorithms, especially in the field of DL, are constantly reported and updated.
360 Most of the AI applications for livestock farming are academic with little implementation for
361 real-world settings. To change this, multidisciplinary teams should prioritize the
362 development of efficient and cost-effective technologies, beginning with the analysis of large
363 datasets gathered from various dairy sectors.

364 The speed of AI technology development requires dairy scientists to know technological
365 tools, and the relevant skills to apply them at the dairy farm level. In the short term, the
366 authors of this research reflection believe that AI can be a “game-changer” only if AI is
367 integrated with other components of Dairy 4.0 such as robotics and is fully adopted by dairy
368 farmers. The biggest opportunities in the short- to mid-term are on the integrated tools based
369 on DL and CV, rather than in decision support systems based on data and AI. This is due to
370 challenges around data integration from multiple sensors but for now, the storage of data is
371 the most grown aspect. Today the dairy sector is limited to available AI products in the
372 market, and more companies will be launching new ready-to-use AI-based products for dairy
373 farmers within the next few years. The survival of these new startups in the early stages will
374 be dependent on the performance of their products and their ability to co-develop together
375 with dairy farmers so that they meet their requirements and gain their trust.

376

References

377 **algoMilk** (2023) A unique performance model <https://www.algomilk.com/> (Aug 2023).

378 **Avelino F, Wittmayer JM, Kemp R, Haxeltine A** (2017) Game-changers and
379 transformative social innovation. *Ecology and Society* **22**, 41.

380 **Betz F, Carayannis E, Jetter A, Min W, Phillips F and Woo-Shin D** (2016) Modeling an
381 Innovation Intermediary System Within a Helix. *Journal of the Knowledge Economy*
382 **7**, 587-599.

383 **Cabrera VE and Fadul-Pacheco L** (2021) Future of dairy farming from the Dairy Brain
384 perspective: Data integration, analytics, and applications. *International Dairy Journal*
385 **121**, 105069.

386 **Cainthus** (2023) ALUS Feedbunk Management. <https://www.ever.ag/dairy/software-solutions/cainthus/> Accessed (Aug 2023).

388 **Cattle Eye** (2023) Autonomous Livestock Monitoring. <https://cattleye.com/> Accessed (Aug
389 2023).

390 **Chen X, Zheng H, Wang H and Yan T** (2022) Can machine learning algorithms perform
391 better than multiple linear regression in predicting nitrogen excretion from lactating
392 dairy cows. *Scientific Reports* **12**, 12478.

393 **Cockburn M** (2020) Review: Application and Prospective Discussion of Machine Learning
394 for the Management of Dairy Farms. *Animals* **10**, 1690.

395 **DDW** (2023) Predicta Guardian is a fast and easy way for dairy farmers to get access to the
396 latest artificial intelligence (AI) technology on farm.
397 <https://www.dairydatawarehouse.com/products-farmers> Accessed (Aug 2023).

398 **De Baerdemaeker J** (2023) Artificial intelligence in the agri-food sector: Applications, risks
399 and impacts. *European Parliamentary Research Service*. Available at
400 [https://www.europarl.europa.eu/RegData/etudes/STUD/2023/734711/EPRS_STU\(2023\)734711_EN.pdf](https://www.europarl.europa.eu/RegData/etudes/STUD/2023/734711/EPRS_STU(2023)734711_EN.pdf) (Accessed Aug 2023).

402 **De Vries A, Bliznyuk N and Pinedo P** (2023) Invited Review: Examples and opportunities
403 for artificial intelligence (AI) in dairy farms. *Applied Animal Science* **39**, 14-22.

404 **Fernandez AFA, Dórea JRR and Rosa GJM** (2020) Image Analysis and Computer Vision
405 Applications in Animal Sciences: An Overview. *Frontiers in Veterinary Sciences* **7**,
406 551269.

407 **Fifield A** (2020) Orwell's nightmare? Facial recognition for animals promises a farmyard
408 revolution. Available at https://www.washingtonpost.com/world/asia_pacific/facial-
409 [recognition-china-animals-farms-agriculture/2020/08/23/9808c710-d6fb-11ea-b9b2-](https://www.washingtonpost.com/world/asia_pacific/facial-recognition-china-animals-farms-agriculture/2020/08/23/9808c710-d6fb-11ea-b9b2-)
410 [1ea733b97910_story.html](https://www.washingtonpost.com/world/asia_pacific/facial-recognition-china-animals-farms-agriculture/2020/08/23/9808c710-d6fb-11ea-b9b2-1ea733b97910_story.html) Accessed (Aug 2023).

411 **García R, Aguilar J, Toro M, Pinto A, Rodríguez P.** 2020. A systematic literature review
412 on the use of machine learning in precision livestock farming, *Computers and*
413 *Electronics in Agriculture* **179**, 105826.

414 **Gehlot A, Malik PK, Singh R, Akram SV & Alsuwian T (2022)** Dairy 4.0: Intelligent
415 Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT
416 Enables Technologies. *Applied Sciences* **12**, 7316.

417 **Haenlein M and Kaplan A** (2019) A Brief History of Artificial Intelligence: On the Past,
418 Present and Future of Artificial Intelligence. *California Management Review* **61**, 5-14.

419 **Hassoun A, Garcia-Garcia G, Trollman H, Jagtape S, Parra-López C, Cropotova J,**
420 **Bhat Z, Centobelli P and Aït-Kaddour A** (2023) Birth of dairy 4.0: Opportunities
421 and challenges in adoption of fourth industrial revolution technologies in the
422 production of milk and its derivatives. *Current Research in Food Science* **7**, 100535.

423 **Jerhamre E, Carlberg CJC and Zoest VV** (2022) Exploring the susceptibility of smart
424 farming: Identified opportunities and challenges. *Smart Agricultural Technology* **2**,
425 100026.

426 **Knight C** (2019) Review: Sensors techniques in ruminants: more than fitness trackers.
427 *Animal* **14**, 187-195.

428 **Krpalkova L, Mahony N, Carvalho A, Campbell S, Corkery G, Broderick E and Walsh**
429 **J** (2021) Decision-Making Strategies on Smart Dairy Farms: A Review. *International*
430 *Journal of Agricultural and Biosystems Engineering* **15**, 138-145.

431 **LeCun, Y, Bengio Y and Hinton G** (2015) Deep learning. *Nature* **521**, 436-444.

432 **Lundvall B and Rikap C** (2022) China's catching-up in artificial intelligence seen as a co-
433 evolution of corporate and national innovation systems. *Research Policy* **51**, 104395.

434 **Madiega T and Chahri S** (2023) Artificial intelligence act. *European Parliamentary*
435 *Research Service.* Available at
436 [https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI\(2021\)698792_EN.pdf](https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf) (Accessed Aug 2023).

438 **Mahmud MS, Zahid A, Das AK, Muzammil M and Khan MU** (2021) A systematic
439 literature review on deep learning applications for precision cattle farming. *Computers*
440 and *Electronics in Agriculture* **187**, 106313.

441 **Michael A-P** (2023) Semiconductors, geopolitics and technology rivalry: The US CHIPS &
442 Science Act, 2022. *Educational Philosophy and Theory* **55**, 1642-1646.

443 **Nedap** (2023) Augmented Reality <https://www.nedap-livestockmanagement.com/dairy-farming/solutions/nedap-cowcontrol/augmented-reality/> Accessed (Aug 2023).

444 **Neethirajan S** (2020) The role of sensors, big data and machine learning in modern animal
445 farming. *Sensing and Bio-Sensing Research* **29**, 100367.

446 **Nielen M, Schukken YH, Brand A, Haring S and Ferwerda-van Zonneveld RT** (1995)
447 Comparison of analysis techniques for on-line detection of clinical mastitis. *Journal of*
448 *Dairy Science* **78**, 1051-1061.

449 **O'Mahony N, Campell S, Carvalho A, Harapanahalli S, Velasco G, Krpalkova L,
450 Riordan D and Walsh J** (2020) Deep Learning vs. Traditional Computer Vision.
451 *Advances in Intelligent Systems and Computing* **943**, 128-144.

452 **Oliveira DAB, Pereira LGR, Bresolin T, Ferreira REP, and Dorea JRR** (2021) A review
453 of deep learning algorithms for computer vision systems in livestock. *Livestock Science*
454 **253**, 104700.

455 **Philbeck T and Davis N** (2019) The Fourth Industrial Revolution: Shaping a New Era.
456 *Journal of International Affairs* **72**, 17-22.

457 **Pugliese E, Cimini G, Patelli A, Zaccaria A, Pietronero L and Gabrielli A** (2019)
458 Unfolding the innovation system for the development of countries: coevolution of
459 science, technology and production. *Scientific Reports* **9**, 16440.

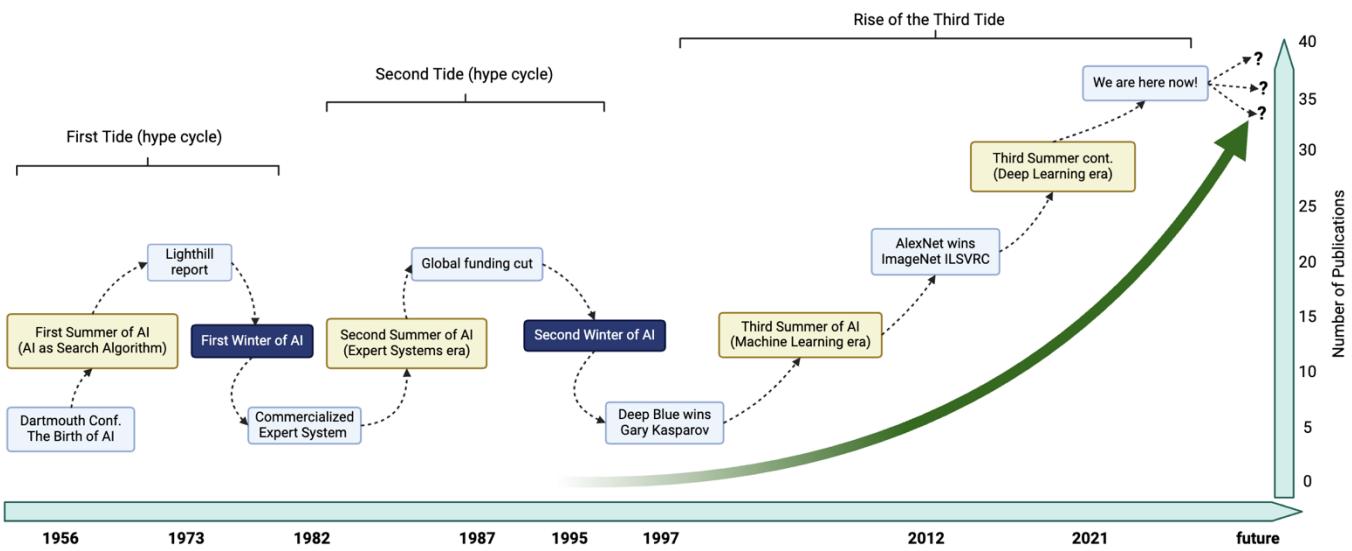
460 **Schmidt E, Work R, Cats S, Horovitz E, Chien S, Jassy A, Clyburn M, Louie G, Darby
461 C, Mark W, Ford K, Griffiths JM, McFarland K and Moore A** (2021). Final
462 Report: National security commission on artificial intelligence (AI). Available at
463 <https://apps.dtic.mil/sti/citations/AD1124333> (Accessed Aug 2023).

464 **Sena V, Arranz N, Lucas P, Park HW and Fernandez JC** (2021) “Editorial: Big Data and
465 Network Analysis in National Innovation Systems (NIS)”. *Technological Forecasting
466 and Social Change* **168**, 120790.

467

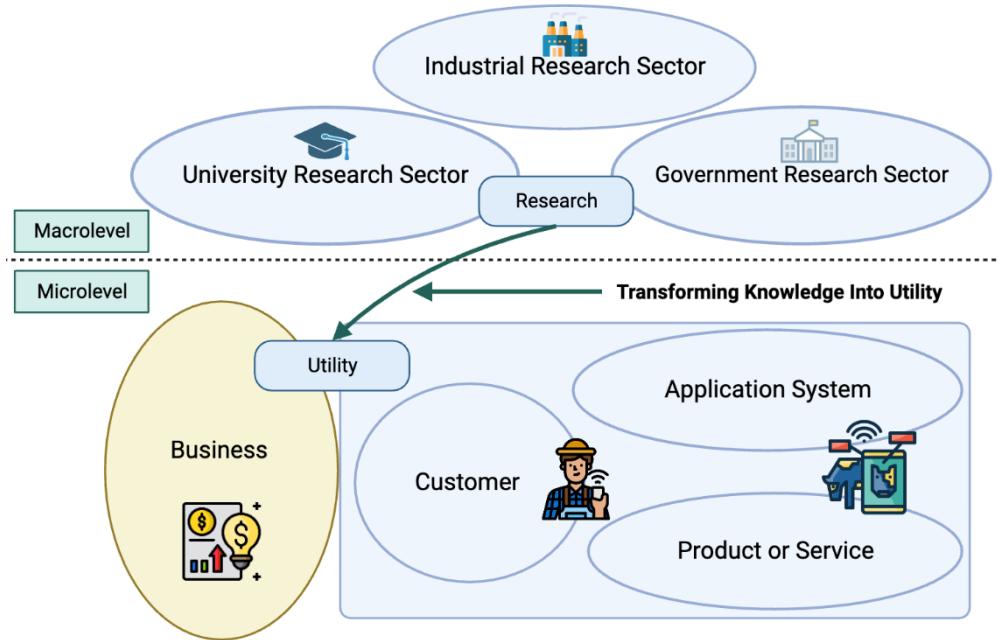
468 **Shine P and Murphy MD** (2022) Over 20 Years of Machine Learning Applications on Dairy
469 Farms: A Comprehensive Mapping Study. *Sensors* **22**, 52.

470 **Toosi A, Bottino AG, Saboury B, Siegel E and Rahmim A** (2021) A Brief History of AI:
471 How to Prevent Another Winter (A Critical Review). *PET Clinics* **16**, 449-469.


472 **Topol E** (2019) High-performance medicine: the convergence of human and artificial
473 intelligence. *Nature Medicine* **25**, 44-56.

474 **Wang P** (2019) On Defining Artificial Intelligence. *Journal of Artificial General Intelligence*
475 **10**, 1-37.

476 **Wijerathna-Yapa A and Pathirana R** (2022) Sustainable Agro-Food Systems for
477 Addressing Climate Change and Food Security. *Agriculture* **12**, 1554.


478 **Wyrzykowski L, Reincke K and Hemme T** (2018) IFCN Long-term Dairy Outlook. The
479 IFCN Vision of the Dairy World in 2030. Available at [https://ifcndairy.org/wp-
480 content/uploads/2018/06/IFCN-Dairy-Outlook-2030-Article.pdf](https://ifcndairy.org/wp-content/uploads/2018/06/IFCN-Dairy-Outlook-2030-Article.pdf) (Accessed Aug
481 2023).

482 **Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu C; et al.** (2021)
483 Artificial Intelligence: A Powerful Paradigm for Scientific Research. *The Innovation*
484 **2**, 100179.

485 **Figure 1.** Cycles of development in the field of AI and the number of publications (green

486 arrow) in dairy (Toosi et al., 2021; Hassoun et al., 2023).

487 **Figure 2.** Components of the Innovative Systems, adapted from Betz et al. (2016).