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Recent excavations at Ranis (Germany) identified an early dispersal of
Homo sapiensinto the higher latitudes of Europe by 45,000 years ago. Here we
integrate results from zooarchaeology, palaeoproteomics, sediment DNA
and stableisotopes to characterize the ecology, subsistence and diet of these
early H. sapiens. We assessed all bone remains (n=1,754) from the 2016-2022
excavations through morphology (n =1,218) or palaeoproteomics (zooarcha-
eology by mass spectrometry (n =536) and species by proteome investigation
(n=212)). Dominant taxainclude reindeer, cave bear, woolly rhinoceros and
horse, indicating cold climatic conditions. Numerous carnivore modifications,
alongside sparse cut-marked and burnt bones, illustrate a predominant use
of the site by hibernating cave bears and denning hyaenas, coupled witha
fluctuating human presence. Faunal diversity and high carnivore input were
further supported by ancient mammalian DNA recovered from 26 sediment
samples. Bulk collagen carbon and nitrogen stable isotope data from

52 animal and 10 human remains confirm a cold steppe/tundra setting and
indicate ahomogenous human diet based on large terrestrial mammals.
This lower-density archaeological signature matches other Lincombian-
Ranisian-Jerzmanowiciansites and is best explained by expedient visits of
short duration by small, mobile groups of pioneer H. sapiens.

Reconstructing the ecological conditions and behavioural dynamics
underlying the expansion of early groups of Homo sapiens into Eura-
siais crucial to understand both the disappearance of Neanderthals
andtheglobal dispersal of our own species. Until recently, the earliest
H. sapiens spreading across Europe were associated with the (Proto-)
Aurignacianstone toolindustry from circa 43 ka (thousand years ago)
(cal BP)"*. However, recent archaeological discoveries have provided

directevidence thatearly groups of H. sapiens were already presentin
Europe between 50 and 45 kain Bulgaria (Bacho Kiro Cave)*™, Czechia
(Zlaty kain)® and Germany (Ranis)’, with preliminary claims from south-
east France as far back as 54 ka®”’.

The expansion of H. sapiensinto Europe has been linked to favour-
able climatic conditions during warm phases'®", but recent stable iso-
topeanalysesindicate their presence during extreme cold climates'>",
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This raises questions about the behavioural adaptations and survival
strategies of these early H. sapiens populations. In-depth analyses of
recovered faunal remains are limited, partly due to poor bone pres-
ervation''°, In general, Upper Palaeolithic H. sapiens subsistence
has been correlated with a shift in site use and occupation intensity
and an expansion in diet breadth, to include larger proportions of
smaller and faster animals, such as fish, birds, rabbits and foxes'"2°.
However, the subsistence strategies of H. sapiens groups during their
first expansion onto the Northern European Plains 50-45 ka remain
poorly understood.

Recent excavations (2016-2022) at the cave llsenhohle in Ranis
(hereafter Ranis, Thuringia, central Germany; Fig. 1) have yielded
well-preserved faunal assemblages across its stratigraphic sequence,
which includes layers with non-diagnostic tools (layers 12-11)*%, the
Lincombian-Ranisian-Jerzmanowician” > (LRJ, layers 9-8) and the
Upper Palaeolithic (layers 6-4a; Fig. 1). The main focus of this paper
is on fauna from these excavations and more specifically LR] layers
9 and 8, which have been dated to 47,500-45,770 cal BP and 46,820~
43,260 cal BP, respectively’. These layers are associated with multiple
skeletal remains of H. sapiens’.

For further contextualization, we conducted detailed analyses
of the overlying layer 7 and underlying layers 12-10. To enlarge the
faunal reference baseline for the isotopic analysis, we also include
stable isotope data from faunal remains from the 1932-1938 exca-
vations, including directly radiocarbon dated equid remains that
are equivalent in age with layer 7 (2016-2022 excavations) or older”
and faunal material recovered from layer IX*. We applied a multi-
disciplinary approach, integrating methods from zooarchaeology,
palaeoproteomics, sediment DNA and bulk stable isotopes (Supple-
mentary Table 1). The integration of these different datasets allows
for a detailed reconstruction of the animal species present at the site
~45ka, their accumulation agents, food webs and human subsist-
ence practices. We propose a model in which the ephemeral involve-
ment of early H. sapiens with the faunal accumulation at Ranis can be
related either to small group sizes or short site visits by highly mobile
human groups.

Results

Bone fragment identification

We analysed a total of 1,754 piece plotted remains and using traditional
comparative morphology were able to taxonomically identify 9.7%
(n=170), consistent with other Late Pleistocene sites'*". Zooarchae-
ology by mass spectrometry (ZooMS; n = 536) provided additional
taxonomicidentifications to either family or specieslevel for over 98%
of the analysed specimens (n =530; 98.9%; AmBic extractions). This
increased our overallidentification rate to40% (n=700). The LR) fauna
is dominated by cervids (layer 8 =36%, layer 9 = 29%; Supplementary
Table2) thatare mainly reindeer (Rangifer tarandus), although red deer
(Cervus elaphus) are present as well. Other large herbivores, such as
equids (layer 8 =8%, layer 9 = 9%) and bovids (layer 8 = 8%, layer 9 =11%)
occur in lower proportions. Furthermore, there is a high percentage
of Ursidae (mainly Ursus speleaus, layer 8 = 28%; layer 9 =29%), and
carnivores (3.5-7.5%) from a broad range of taxa (Canidae, Hyaenidae/
Pantherinae, Felinae, red fox (Vulpesvulpes), Arctic fox (Vulpes lagopus)
and wolverine (Gulo gulo)) are present in low numbers. ZooMS identi-
fied Elephantidae (most likely Mammuthus primigenius) and Rhinoc-
erotidae (most likely Coelodonta antiquitatis), which were absent in
the morphologically identifiable fraction. We also applied species by
proteome investigation (SPIN) to all the morphologically unidentifi-
able fauna from layer 8 (n = 212), which confirmed the identifications
made through ZooMS. SPIN was able to provide additional taxonomic
resolution for 10 of the ZooMS samples, specifying them as Bison sp.
(Supplementary Table 7 in Mylopotamitaki et al.”). Overall, the iden-
tified fauna is representative of a marine isotope stage 3 cold-stage

climate with alargely open tundra-like landscape””.

The faunal spectrum of layers 9-8 is largely consistent with the
overlying layer 7 and the underlying layers 12-10 (Fig. 2), although
samplesizes are variable (Supplementary Table 2).Ingeneral, thereis
adecreasein megafauna (mammothandrhinoceros) andanincreasein
ursids forward through time, while the proportion of equids and bovids
remains relatively stable (Fig. 2). Layer 10 is marked by an increase
inreindeer and a lower abundance of carnivore and ursid bones. To
assess whether the change in the proportion of these NISP (number
of identified specimens) values between layers was statistically sig-
nificant, we calculated composite chi-square values and adjusted
residuals (Extended Data Table 1). There were significant differences
intaxonomic proportions. Between layers 11and 10 this was driven by
anincrease in Cervidae remains and a decrease in Ursidae remains.
Between layers 10 and 9 this pattern was reversed (Fig. 2). For layers
8-7thedifferences are drivenby notableincreasesin carnivore remains
and larger herbivores, including equids and cervids, while the propor-
tion of both Ursidae and megafaunal remains is reduced significantly.

Species diversity and taxonomic richness

Thereis arelatively high number of taxa (NTAXA) in all layers (5 to 12
per layer; Fig. 3 and Supplementary Table 3) identified through both
comparative morphology and ZooMS analysis. In general, NTAXA and
taxonomic richness are positively correlated with sample size, and
thisis also true at Ranis** . For example, the lower NTAXA in layer 12
(NTAXA =5) can be explained by the small number of bone fragments
recovered fromthis layer (n =18). We see some variation in faunal diver-
sity through layers 12-7 reflected by fluctuations in the Shannon-Wie-
ner and Simpson’s indices (Fig. 3), which are used to measure faunal
diversity®*. At Ranis we see higher values for these diversity indices
in those layers with the highest proportions of carnivore modified
remains (layers 11,9 and 7). Infact, despite layers 11and 8 having similar
assemblage sizes, taxonomic diversity and assemblage evenness are
different, with lower values for layer 8.

Ancient sediment DNA

Twenty-six sediment samples were collected from layers 12-7 (Fig. 1
and Supplementary Tables 4-7) to test for the preservation of ancient
mammalian DNA. Al126 samples contained evidence for the presence of
ancientmammalian DNA, with between 4,991and 63,966 unique mam-
malian mitochondrial DNA sequences recovered from each sample.
These sequences were assigned to a total of 11 mammalian families,
each of which wasrepresented by between 1,416 and 15,631 sequences
(Extended DataFig.1). Ancient Bovidae, Cervidae, Elephantidae, Equi-
dae, Hyaenidae, Rhinocerotidae and Ursidae DNA was recovered from
alllayers (Fig.2). Ashasbeen seenin other sediment DNA studies, more
large than small mammals were identified””. The proportion of DNA
fragments recovered from a given taxon is not necessarily expected
to correlate strongly with the proportion of bone fragments due to
differences in taphonomy, body mass, activity among species at sites,
laboratory processes (for example, hybridization capture design) and
sequence identification. However, as trends for the relative amount
of DNA or skeletal remains of large mammals have been previously
shown to be complementary”, we calculated the average proportion
of mtDNA fragments assigned to each family per sediment sample per
layer to investigate this relationship in a different location. At Ranis
the ancient sediment DNA (sedaDNA) and bone fragment data follow
similar patterns (Fig. 2), with a decrease in megafauna towards the
younger layers coupled with an increase in Ursidae. While the rela-
tive amount of Bovidae and Cervidae DNA was consistent throughout
the layers, the proportion of carnivore (especially Hyaenidae) DNA is
more variable (Fig. 2). In layer 10 this increase in Hyaenidae DNA cor-
relates witha peakin Cervidae bone fragments, adecreasein carnivore
bone fragments and anincrease in hyaena coprolites as seen at other
Pleistocene sites”®*’. Overall, the consistency between the identified
taxain the sedaDNA and the zooarchaeological records confirms the
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Fig.1| Geographiclocation, stratigraphy and excavation plan for the 2016-2022
excavations at Ranis. a, Geographic location of Ranis and the main LRJ sites,

b, plan of the 2016-2022 excavations and ¢, stratigraphic sequence of the cave
Ilsenho6hle at Ranis. Orange dots in b and ¢ mark the layers and squares that were
sampled for sedaDNA. R denotes rockfall events. See Mylopotamitaki et al.”

for the description of the sedimentary and chronological framework. In

a, the location of main LR] sites (1-7 and 9-15, adapted from Hussain et al*’;

8, Aldhouse-Green';16-17, Demidenko and Skrdla®). Triangles mark sites with
well-contextualized fauna. 1, Ranis; 2, Schméhingen-Kirchberghohle;

3,Bench Quarry; 4, Kent’s Cavern; 5, Soldier’s Hole; 6, Hyena Den; 7, Badger Hole;
8, Paviland Cave; 9, Robin Hood'’s Cave; 10, Grange Farm; 11, Beedings; 12, Spy;
13, Goyet; 14, Nietoperzowa Cave; 15, Koziarnia Green Cave; 16, LiSen Podolil;

17, ZeleSice Ill. The map was created in QGIS based on Shuttle Radar Topography
Mission data V4 (http://srtm.csi.cgiar.org)"®. Inb, Each numbered square is

1m? The basal sequence including the LR] layers was excavated in the red area
of squares1003/999,1003/1000,1004/999 and 1004/1000. Panels aand b were
created with Affinity Designer version 2.3.0.2165.

previous notion that sedaDNA analysis can provide a relatively quick
and simple method for assessing, at least broadly, the past diversity of
large mammals at caves with DNA preservation.

Find densities

During the 2016-2022 excavations 1,754 bone piece-plotted remains
(>20 mm) and 76 lithic remains (mostly <20 mm) were recovered from
layers12-7 (Extended Data Table 2), with higher densitiesin layers 9-7

and especially withinlayer 8 (bone density = 1.44; lithic density = 0.23).
By contrast, the sedaDNA density (number of sequences identified per
milligram of sediment) is highestin layers 12-11, while there is atwofold
to threefold decrease in ancient animal sequences within LR] layers
9-8 (Extended Data Table 2). It should be noted that the DNA libraries
used for this analysis were not sequenced to exhaustion (see dupli-
cationrates in Supplementary Table 6) and that deeper sequencing
may change these results. In addition, differences in the geochemistry
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Equussp.). e, Cervidae, including reindeer (R. tarandus) and Cervus sp.

f, Bovidae (Bos primigenius, Bison priscus, Bos/Bison). The proportion of aDNA
was calculated based on the number of ancient mtDNA fragments assigned to
each taxon per layer (Supplementary Tables 3-6). The % on the y axis includes
%NISP for bone fragments and percentage of identified sedaDNA (%sedaDNA).
Animal silhouettes downloaded from https://www.phylopic.org/.

between layers may impact the DNA preservation and resulting density
calculations. Taken together, the density of lithic, bone and ancient
DNA suggests acomplex picture of site use. The most intense use of the
siteby H.sapiensoccursinlayer 8, while theinput of human groupsin
other layers appears even more ephemeral with the site potentially used
more extensively and over a longer time by larger carnivores (Fig. 2).

Bone fragmentation and preservation

Piece-plotted bone remains are similarly fragmented across layers 12-7
with amajority between 25 mm and 50 mm long and a small number of
pieces larger than 100 mm (Extended Data Fig. 2 and Supplementary
Table 8). A t-test shows no significant difference between the layers
(Supplementary Table 9). The major taxa from layers 12-7 are simi-
larly fragmented with comparable average bone length (Extended
Data Fig. 2 and Supplementary Tables 10-13) and statistical tests
illustrate no significant difference between either dominant taxa
or between major taxa within these layers. Overall, extensive bone
assemblage fragmentation prevents further discussions of either
skeletal representation or transport decisions (see Supplementary
Table 14 for data on zooarchaeological quantification including
NISP, minimum number of elements (MNE) and minimum number of
individuals (MNI)).

Bone fragments from all layers are well preserved with a high
percentage of original bone surface remaining and low percentage of
sub-aerial weathering (Fig. 4 and Extended Data Table 3). Biomolecu-
lar preservation was assessed through the calculation of glutamine
deamidation values, which are indicative of protein preservation®.
Deamidation values were obtained for 518 of the bone fragments
that were part of the ZooMS analysis (97%). The deamidation values
for COL1al 508-519 cluster between 0.60 and 0.80 (Extended Data
Fig. 3 and Supplementary Tables 15 and 16). No outliers are present,

which could represent intrusions into the archaeological unit or dif-
ferential bone preservation. A comparison across layers shows that
deamidation values largely overlap, with aslight trend towards lower
values (thus poorer preservation) deeper down the stratigraphic
sequence. Wilcoxon testsillustrated significant differences in deami-
dationbetween layers (especially between layers 7and 11and between
layers 8 and 11) (Supplementary Table 17). This difference, though,
couldrelate tovariationsinsample sizes. A Wilcoxon test showed there
were no significant differences in COL1al 508-519 deamidation values
by bone fragment size (Supplementary Table18). Overall, despite their
high fragmentation, the LR) bone fragments are well preserved and
show neither difference in macroscopic alterations nor biomolecular
preservation, indicating a consistent diagenesis.

Bone surface modifications

Across alllayers carnivore modifications are abundant and dominant,
ranging from 19% to 44%, across a range of species, including rhinoc-
eros, reindeer, bovids and equids. This includes traces of gnawing
(tooth pits, scalloping and scratches) and digestion (acid etching;
Fig. 5). Carnivore modifications are highest in layers 7 and 10, which
also preserve coprolite material (Supplementary Fig.1). Micromorpho-
logical analysis of one coprolite (sample 116 159507, layer 7) indicates a
carnivore origin, possibly hyena or canid (Supplementary Fig.1), and
further detailed analyses are ongoing.

Human modifications, including marrow fractures and cut marks
(Fig. 5), are very sparse in layers 9-8 (3.5-4.1%) and 12-11 (3.0-5.6%)
and (near) absent in layers 7 (0.6%) and 10 (0.0%) (Supplementary
Table 19). We calculated a chi-square test with adjusted residuals to
assess whether the proportion of human and carnivore bone surface
modifications showed significant differences betweenall layers. There
was a statistically significant difference between layers 7and 8 (y>=14.9,
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between 0 (no taxonomic evenness) and 1 (complete taxonomic evenness); note
that different scales are used on the y axisinaand b; see Supplementary Table

7 for abreakdown of NISP, NTAXA and ecological indices. Point size is scaled to
the NISP.

P=<0.01)driven by anincreasein the proportion of carnivore modified
bones compared to human modifications (Supplementary Table 20).

LRJ layers 9-8 have the highest proportion of bones with human
butchery modifications and the lowest proportion of carnivore modifi-
cations, although these are still high and predominant (Supplementary
Tables 19 and 21). Anthropogenic modifications throughout layers
12-7 are predominantly represented by marrow fractured elements of
arange of large ungulates, including Equidae and Cervidae (Extended
DataTable 4) with limited evidence for meat removal on mammallong
bones. Weidentified limited exploitation of carnivores at Ranis with a
cut-marked red fox (V. vulpes) mandible from layer 8 and a cut-marked
wolf (Canis lupus) mandible from layer 11. Furthermore, we identified a
single cut-marked bird bone inlayer 8, suggesting the limited exploita-
tion of avian taxa.

Among the faunal fragments larger than 20 mm, only 14 show
macroscopic evidence for burning (Fig. 5). These burnt fragments
showarange of temperature-induced colour changes from carbonized
(stage1) tofully calcined (stage 5), and despite a concentrationin layer
11 (64.3%; n=9), the overall low quantity of burnt material prevents
further analysis of spatial or temporal trends.

Seasonality and site use

Only 21 post-cranial fragments from layers 12-7 are fetal, unfused or
withincomplete element fusion, providing limited data on biological
age, with most of the elements representing adult individuals. Dental
remains, especially the presence of deciduous dentition and unerupted
molar teeth, provide seasonality data from most layers at Ranis for both
carnivore and herbivore taxa (Supplementary Table 22). The pattern
of seasonality in all layers at Ranis, including the main LR] layers 9-8,
suggests animals died during all seasons of the year but especially
during the spring and summer months (March to August). The low
anthropogenic signal at Ranis means that such seasonality indicators

most probably relate to carnivores rather than human occupationat the
site. Further analysis of dental fragments from the screened residues
could help to further clarify these seasonality patterns.

Ursidae remains provide the most seasonality information (Meth-
ods), although only from layers 8 and 7. We identified mainly juvenile
individuals (layer 7, n = 3; layer 8, n=3) and a single prime-aged indi-
vidual fromlayer 7 (Supplementary Table 22). Eruption and wear stages
ofthe Ursidae teeth (I-11I) suggest young individuals (some potentially
between 5and 12 months old) that died toward the end of hibernation
(late winter to spring)®-*%. Other individuals suggest they died during
spring and summer months after leaving hibernation. Finally, the pres-
ence of anunerupted manidublar molar 3 (M,) indicates anindividual
that died, perhaps, duringits second hibernation. The low quantity of
human modifications on these cave bear remains suggests that most
of these represent natural deaths during hibernation.

Diet and ecology

Mammalianisotope data (n = 52) reveal niche separation between spe-
cies (Fig. 6 and Extended Data Table 5). Comparatively high §°C values
are consistent withlichen consumptionin cervid species®**, especially
reindeer (R. tarandus), and (isotopic) niche separation from equidsis
clear during the colder phase between ~45 and 43 ka cal BP" (Fig. 6).
Cave bear remains from layers 7 and 9 have low 6°N values typical of
this species, consistent with an herbivorous diet®. Carnivore remains
offoxes (V. vulpes and Alopex lagopus), wolves and hyaenas show higher
62C and 6N values consistent with their anticipated trophic level.
Theabsence of §C values lower than—22.5%. in any herbivore species
indicates an open environment or lack of woodland cover®*** (Supple-
mentary Figs.2and 3). Combined with prevalent lichen consumption by
cervids, thisis consistent with other stable isotope data from the site,
showing that the LRJ occupation of Ranis took place in a cold steppe
or tundrasetting®.
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deamidation by layer plotted with bone readability. d, COL1al 508-519
deamidation by layer plotted with bone weathering stages. Sample sizesin
c:layer 8:low readability (n = 22), high readability (n =168); layer 9: low
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readability (n =19), high readability (n = 50). Sample sizesind: layer 8: low
weathering (n =186), high weathering (n = 4); layer 9: low weathering (n = 64),
highweathering (n=>5). Box plots in c and d, box extends from first quartile
(Qlontheleft) to third quartile (Q3 on the right) with bold line in the middle
representing the median. Lines extending from both ends of the box indicate
variability outside Q1 and Q3; minimum/maximum whisker values are calculated
as Q1/Q3 + 1.5 x IQR. Everything outside is represented as an outlier. IQR,
interquartile range.

Similar §*C values for H. sapiens and herbivores suggests humans
consumed a range of terrestrial mammal species, including horse,
rhinos and reindeer. Nitrogen isotope ratios for the Ranis H. sapiens
are more consistent with Neanderthals®**’ than with early Upper Pal-
aeolithic H. sapiens (Supplementary Fig. 4a, Extended Data Table 5and
Supplementary Tables 23 and 24). However, taking into account the
isotoperatiosobservedintheassociated fauna, the trophiclevel enrich-
mentlooks similar to that of their Goyet Neanderthal contemporaries,
as well as the later H. sapiens from Buran Kaya and Kostenki*** (Sup-
plementary Fig. 4b,e). This suggests that Ranis H. sapiens mainly relied
onsimilarresources as those individuals, that s, terrestrial animals, for
their protein intake and no (or small amounts of) aquatic foods**. It
supports the hypothesis of Bocherens et al.*-* that different nitrogen
isotope ratios between Upper Palaeolithic H. sapiens and Neanderthals
arenotrelated to different subsistence strategies between the two spe-
ciesbutarerelated to a change of baseline over time (Supplementary
Fig.4c,d). When comparing the average 6°N values of the humans and
associated herbivores, humans show higher values beyond what could
be expected for a diet based on these species (that is, 7% as opposed
to the 3-5% typical of trophic level enrichment). For Goyet and Buran
Kaya, it has been interpreted as a sign of frequent mammoth meat
consumption**?, We did not obtain any nitrogen isotope ratios from
mammoth remains in Ranis, and other species that typically show high
65N values (for example, freshwater fish) were not found at the site
(Supplementary Information). However, woolly rhinos and horses show
high 6"N values compared to other local herbivores. Their consump-
tion, or consumption of other foods with high §°N, possibly from sites
occupied in other times of the year, could therefore explain the high
human 6®N values.

The diet of the ten H. sapiens fragments studied is remarkably
homogeneous, withall samples but one being within 1%, of each other.
The mtDNA’ suggests a minimum of six individuals, indicating that
inter-individual dietary variability was low with a relatively stable
resource base during the different periods of site occupation. By con-
trast the human individual R10874 has higher 6N values (by ~2-2.5%o),
whichis close to the range of typical trophic level enrichment (3-5%).
Based onmorphological characteristics of the bone specimen, this indi-
vidual appearstobe ajuvenile, and further assessment is ongoing***.

Discussion and conclusion

H.sapiens expanded into the higher latitudes of Europe by 45 ka’. Our
multi-proxy approachindicates thatbetween 55and 40 ka (layers12-7)
thelarge cave llsenhohle at Ranis was predominantly used for hyaena
denning and cave bear hibernation. In general, carnivore dens con-
tain a higher species diversity compared to human accumulations*®,
and we have illustrated the important role of carnivores in the faunal
accumulationin the LRJ layers at Ranis. Human presence fluctuated as
seen by the presence of morphologically identifiable human remains,
humanly modified bones and stone artefacts’. H. sapiens occupation
occurredinitially during climatic conditions ~7-8 °C cooler than today
(-48-45ka), followed by their presence during a period of extreme
cold” (-45-43 ka), as indicated by abundant cold-adapted taxa (for
example, reindeer, wolverine, arctic fox, woolly rhino and mammoth)
and stable isotope data. Traces of fire use are sparse, although micro-
morphological analysis does indicate increased fire use in layer 8’
compared to other layers at Ranis. Human butchery signatures are
scarce and mainly focused on marrow exploitation from a range of
species (equids, cervids and, occasionally, carnivores). Stable isotope
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Fig. 5| Bone surface modifications from Ranis. a, Carnivore modifications:1,
digested piece (layer10,16/116-159503); 2, digested piece (layer 7,16/116-151389);
3, carnivore gnawing (layer 8,16/116-151583); 4, U. spelaeus: carnivore tooth pit
(layer11,16/116-186374); 5, graphillustrates different carnivore modifications as
percentage of total number of carnivore modifications (n = 527) across all layers
(%modNSP). b, Human modifications: 1, unknown mammal: burnt fragment

(layer11,16/116-186401); 2, cut-marked fragment (layer 9,16/116-159345); 3,

C. elaphus: marrow fracture (layer 8,16/116-159070); 4, graphillustrates different
human modifications as percentage of total number of human modifications
(n=35) across all layers (%modNSP); for data underlying both graphs, see
Supplementary Table 21. All photo scales are in centimetres.

data confirms a human diet focused on cervids (including reindeer),
rhinoceros and horse with 6C and §°N values suggesting these early
H. sapiens populations had a diet similar to contemporary Neander-
thals. The significant enrichment in 6°N levels in juvenile R10874
suggests that breast milk was the primary source of dietary protein.
However, the low 6°C value for this individual, compared to others,
cannot be explained by breast milk consumptionalone. Thislow carbon
value could be consistent with breast milk consumption if the nurs-
ing person had a diet including more horse meat than others or if the
juvenile individual was weaned but experienced a prolonged period
of catabolic stress before their death***#745,

While LR] leaf points have been found at over 40 find spots across
the Northern European Plains®, reconstructions of LR human subsist-
ence behaviour are limited as much of the material originates from
either older (and often poorly contextualized, recorded and/or dated)
excavations or sites with poor bone preservation (for example, Beed-
ings, UK*; Extended Data Table 6). In recent years, several new LRJ
excavations and up-to-date reassessments of old collections?**>°0~
have been undertaken. These indicate that despite its large geo-
graphic extension, from Moravia into Britain, LR] occupations pre-
dominantly relate to cold, open environments with grassland and
shrub tundracomprisingjuniper, dwarfbirchand willow>*> . At LR} sites
cold-adapted species dominate (for example, horse, woolly mammoth,

woolly rhinoceros, reindeer and lemming), and carnivores (for exam-
ple, wolf, hyaena and red fox) played adominantrole in the accumula-
tion of the faunal remains, asindicated by a high frequency of gnawing
marks, carnivore skeletal part profiles dominated by teeth®*>*** and at
Ranisanincreasein hyaenasedaDNA. Conversely, humaninputatLRJ
sitesis generally low, and thisephemeral presence of humanactivity in
carnivore densisacommon feature across the Palaeolithic, including
in Middle Palaeolithic and Chatelperronian contexts®*,

Combined with low artefact densities and scarce fire use, we sug-
gest alow-intensity site use by these early groups of H. sapiens and an
LR] settlement pattern dominated by short-term hunting stations®.
This low archaeological signature contrasts with the Initial Upper
Palaeolithic H. sapiens occupation at Bacho Kiro Cave where we see
an increasingly intense use of the site (including fire) alongside the
specialized exploitation of carnivore carcasses and the use of bone as
raw material for tools and ornaments'*%, The scarce archaeological
signature of the LR) can be best explained by small group sizes of these
pioneer H. sapiens populations. Their highly mobile lifestyles resulted
in expedient visits of short duration at localities which are otherwise
occupied by carnivores. The presence of a sub-adultindividual opens
up the possibility that these short-term stays included family groups,
although further osteometric and nuclear DNA data from all Ranis
individualsis needed to clarify these patterns. Additional excavations
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of well-contextualized LRJ sites with good bone preservation will be
key to understand fully the variability within the ecology, diet and
subsistence of LR) H. sapiens during their dispersal across the higher
latitudes of Europe.

Methods

Atotal of 1,754 piece-plotted remains were analysed through a com-
bination of traditional and biomolecular approaches. This includes
all material from the lower layers of the new excavation (layers 12-7;
Supplementary Table 1). In general, an untargeted sampling strategy
was used to select morphologically unidentifiable bone for ZooMS
analysis throughout layers 12-7. The importance of layers 8 and 9
for identifying and understanding the makers of the LR) meant that
all unidentifiable bone remains were sampled through ZooMS and a
majority analysed through SPIN. A fragment size cut-off of bone length
>20 mm was used to ensure that taxonomically identified fragments
could be subjected to further biomolecular analyses in the future, if
needed. Overall, 30.7% of the total bone remains from layers 12-7 were
analysed withZooMS. A detailed description and account of the excava-
tion strategy, sedimentary analysis, micromorphology and lithics are
provided in Mylopotamitakietal.’.

Zooarchaeology

Allfaunal material from layers 12-7 was studied using traditional com-
parative morphological approaches. The faunal reference collection
stored at the Max Planck Institute for Evolutionary Anthropology
(Leipzig) alongside reference atlases were used to assign fragments
to species and skeletal elements, where possible®®*®*, To understand
site use and human behaviour at Ranis, a series of taphonomic attrib-
utes were recorded on each bone and combined with specific taxon,
body part identifications and where applicable various indices of
zooarchaeological quantification including MNE, MNI and minimum
anatomical units (MAU). The NISP value is the number of specimens
identified to species and element®>*®; when an accurate taxonomic
identification was unclear, fragments were recorded to the family level
(forexample, Ursidae species) or specificbody size class (for example,
ungulate large; based on Morin'® and Smith et al.'*). The MNE was cal-
culated by selecting the zone with the highest representation of >50%
present, which was further combined with side and fusion data for
each specific element'**7°, The MNI was calculated for each specific

element (including left and right) with an overall value for each taxon
chosen by selecting the highest value.

Allbone fragments were studied under magnification (x20) using
an oblique light source, to assess bone surface preservation and the
presence of specific bone surface modifications. The proportion of
original bone surface remaining was recorded and expressed as a
percentage ranging from 0% (no original surface remains) to 100%
(all bone surface remaining)**. We recorded bone surface weathering
using Behrensmeyer”’, which provides a qualitative scale for under-
standing the exposure (short/long) of bone material before deposition.
Root etching and abrasion (expressed as a percentage of bone surface
affected) were recorded and range from 0% (no visible modification
observed) to 100% (the whole bone surface covered'*°"*®). We used
Stiner etal.’ torecord the specific colour and surface changes associ-
ated withburning and fire use.

Specific carnivore modifications recorded included tooth pits,
scratches, crenelation and damage from digestion'****”’°, Human
modificationsincluded thoserelated to butchery and carcass process-
ing such as cut marks, skinning marks and deliberate marrow frac-
tures (identification of impact point and/or percussion notches®®’),
alongside other secondary uses of organic material forinformal bone
tools (‘retoucher’), formal bone tools (lissoirs, awls and so on) and
ornaments>®,

We calculated ecological diversity indices to investigate the diver-
sity of the faunal community within layers 12-7 at Ranis. We calculated
the Shannon-Wiener index (H’)’>”* to quantify the taxonomic diversity
of the faunal assemblages (which combined morphologically and
ZooMS-identified specimens). The Shannon-Wiener index is sensitive
tosamplesize, so some values should be evaluated with cautionwhen
sample size is small’%, This index produces values that typically range
between 1.5 and 3.5 with larger values indicating taxonomic hetero-
geneity’’. The Simpson’s index of evenness provides a bias-adjusted
estimate of evenness in the population from which sub-samples are
derived and studied. This makesita more preferred method for measur-
ing evenness’”. The index value ranges from O (no taxonomic evenness)
to1(complete taxonomic evenness). Inshort, the closer the calculated
value for the Simpson index is to 1 then the more that assemblage is
dominated by a single taxon’.

Age and seasonality indicators were calculated from various spe-
ciesusing both cranial (mainly teeth eruptionand wear) and postcranial
bonefusion data”. Herbivore age was calculated using various methods
depending on tooth type. For species with low-crowned teeth such
as Bos, Bison and cervids, the quadratic crown height measure was
applied” " along with established wear stages”. For equids, crown
height was measured on juveniles and adults and calculated using
established equations’”® and tooth wear stages documented®’. Bear
dentition was scored according to the three-stage scheme devised by
Stiner®**81"%* Bears have an unusual dental development and eruption,
as they are born during hibernation (winter, January), compared to
other carnivores (hyena and canids) and ungulates (generally spring
time, late May)®"%. All bears are born during hibernation (peak time
January) and are toothless, although full deciduous dentition emerges
by the third month with the permanent first molar (M1) usually by the
fifth month. Bears generally have all permanent dentition erupted by
the end of the first year with the eruption of the permanent canines
starting during the second year and completion by the end of the third
year of life. Using specific timing and eruption of deciduous and per-
manentdentition allows for the development of atooth eruption wear
scheme that includes nine stages, grouped into three age categories
(juvenile (I-11I), prime (IV-VII) and old (VIII-1X))*"**%2, Although the
scheme does not provide an estimate for the age at death, it provides
the ability for intersite and intrasite comparisons at an ordinal scale™.

All analyses were undertaken in R, v. 4.3.2% using RStudio, v.
2023.03.1%, mainly by using the ‘tidyverse’ packages, v. 2.0.0% and with
statistics performed using the ‘rstatix’ package, v. 0.7.2%. All ecological
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indices were calculated using the vegan package v. 2.6-2°°. Figures were
produced with the ‘ggplot2’ package, v.3.4.1” with the exception of the
maps that were produced using QGIS, v. 3.18.3%%,

Proteomicscreening

Before peptide extraction all specimens were recorded using a modi-
fied faunal and taphonomic database to record a similar range of attrib-
utes as in the zooarchaeological analysis and following previous app
roaches'?*”%* A small bone splinter (-5 mg) was removed from each
specimen, and subsequent ZooMS extraction was conducted at the
palaeoproteomics lab at the Max Planck Institute for Evolutionary
Anthropology in Leipzig (Germany). In total, 536 morphologically
unidentified faunal remains were processed following existing proto-
cols®, Empty wells were processed as laboratory blanks alongside the
bone samples to assess potential contamination by non-endogenous
peptides. All spectra were empty of collagenous peptides, excluding
the possibility of laboratory or storage contamination.

All matrix-assisted laser desorption ionization (MALDI) spectra
were automatically acquired at the Ecole Supérieure de Physique et
Chimieindustrielle (Paris, France) with an AB SCIEX 5800 MALDI-TOF
spectrometer in positive reflector mode. Before sample acquisition, an
external plate model calibration was achieved on13 adjacent mass spec-
trometry (MS) standard spots with a standard peptide mix (Proteomix
Peptide calibration mix4, LaserBioLabs). The calibration is validated
according to the laboratory specifications (resolution above 10,000
for573 Da, 12,000 for1,046 Daand 15,000 to 25,000 for other masses,
errortolerance <50 ppm). For MALDIMS sample measurements, laser
intensity was set at 50% after optimization of signal-to-noise ratio on
several spots, then operated at up to 3,000 shotsaccumulated per spot
and covering a mass-to-charge range of 1,000 to 3,500 Da.

The triplicate data files obtained from the MALDI were merged
in R using the packages MALDIquant and MALDIquantForeign to
smooth the intensity of the peaks (applying a moving average func-
tion), remove the baseline (using the TopHat method) and align the
spectra (SuperSmoother, signal-to-noise ratio of 3). The three rep-
licates are then summed into a single spectrum, and the baseline is
removed once more using the TopHat approach. The obtained.msd
files were analysed in the open source MS tool mMass (http:/www.
mmass.org/). Glutamine deamidation values were calculated using
the Betacalc3 package”.

SPINis ashotgun proteomics workflow for analysing archaeologi-
calboneby liquid chromatography-tandem MS’®. Here we applied SPIN
to all the morphologically unidentifiable bone fragments recovered
fromthe2016-2022 excavations fromlayer 8 (n = 212) following exist-
ing methodologies™.

sedaDNA

Atotal of 26 sediment samples were collected from layers 7to12 during
excavations in 2020-2021 from the stratigraphic profile (see Supple-
mentary Table 4 for samples per layer and year collected). Eachsample
was collected in a sterile manner, with the individuals collecting the
samples wearing sterile gloves, a facemask, hairnet and clean room
suit. A sterile scalpel was used to first remove a few millimetres of the
exposed profile, and a second, fresh sterile scalpel was then used to
collectatleast1gofsedimentinsterile5or 15 mlscrew-cap tubes. The
collected samples were then sealed in sterile plastic bags and trans-
ported back toadesignated clean room at the Max Planck Institute for
Evolutionary Anthropology for further processing.

In the clean room, sub-samples of ~50 mg were taken from each
sample for automated DNA extraction (ref. 99; using buffer ‘D’) and
single-stranded DNA library prep'°’. Negative controls were included
for each of the extraction and library preparation steps. The result-
ing libraries were then enriched for a selection of 242 mammals'” via
automated singleplex hybridization capture as described in ref. 102.
Five microlitres of each enriched library were pooledin sets of 15to 69

with libraries (including controls) from other projects for sequenc-
ing. Sequencing was performed on the lllumina MiSeq platform with
Bustard used for basecalling.

The resulting sequencing data were processed following a previ-
ously published mitochondrial sediment DNA pipeline'®®. In brief,
leeHom (v. 1.1.5)'°* (https://bioinf.eva.mpg.de/) was used to merge
overlapping paired-end sequences into single sequences that were
then mapped to 242 mammalian mitochondrial genomes. Reads that
were shorter than 35 bp, unmapped or could not be merged were then
removed. In addition, sequences seen only once were removed, and
asingle sequence was retained from duplicate sequences. BLAST (v.
2.9.0)' and MEGAN (v. 0.0.12)'°° were then used to assign the remain-
ing unique sequences to the family level. Within each family assign-
ment, sequences were mapped to all available reference mitochondrial
genomes per family. In this step PCR duplicates were removed using
bam-rmdup (v. 0.2) (https://github.com/mpieva/biohazard-tools),and
only sequences with amapping quality of at least 25 wereretained. The
reference genome with the most aligned sequences was then used for
generation of summary statistics and aDNA authentication (Supple-
mentary Table 5). Taxa were identified as ancientif they met the follow-
ing criteria: (a) at least 1% of total taxonomically identified sequences
were assigned to the taxon in question, (b) have significantly higher
than 10% C-to-T substitutions (based on 95% binomial confidence
intervals) on one or both termini and (c) the fragments cover at least
105 base pairs of the reference mitochondrial genome.

Stable isotope methodology
Approximately 400-600 mg material was sampled from each faunal
specimen using a dentistry drill and diamond cutting disc, after sur-
face removal via a sandblaster. Smaller samples of 55-160 mg were
removed from the hominin bones. Collagen was extracted using the
protocol described in refs. 107,108. Briefly, the sample chunks were
demineralized in HCI 0.5 M at 4 °C until soft and CO, effervescence
had stopped, treated with NaOH 0.1 M for 30 min to remove humic
acid contamination and then re-acidified in HCI 0.5 M. The samples
were gelatinized in HCI pH3 (75 °C for 20 hfor large samples and 70 °C
for 2-6 h for small samples). The solubilized gelatin was then filtered
to remove particles >60-90 pum (Ezee filters, Elkay Labs) and ultrafil-
tered to concentrate the >30 kDa fraction (Sartorius VivaSpin Turbo
15).Filters were pre-cleaned before use'”. Finally, the >30 kDa fraction
was lyophilized for 48 h, and the collagen was weighed to determine
the collagenyield as a percentage of the dry sample weight.

Approximately 0.4-0.5 mg of collagen was weighed into tin
capsules using an ultramicrobalance and measured on a Flash 2000
Organic Elemental Analyser coupled to a Delta XP isotope ratio mass
spectrometer via a Conflo Ill interface (Thermo Fisher Scientific).
Stable carbon isotope ratios were expressed using the delta nota-
tion (6) relative to Vienna Peedee Belemnite (VPDB), and stable nitro-
gen isotope ratios were measured relative to AIR. The stable isotope
delta values were two-point scale normalized using international
reference materials IAEA-CH-6 (sucrose, 6°C = -10.449 + 0.033%o),
IAEA-CH-7 (polyethylene, 8C = -32.151 + 0.050%.), IAEA-N-1 (ammo-
nium sulfate, 6°N = 0.4 + 0.2%0) and IAEA-N-2 (ammonium sulfate,
6N =20.3 +0.2%0). Two in-house quality control standards were
used to quality check the scale normalization and evaluate analyti-
cal precision: (1) EVA-0012 methionine (Elemental Microanalysis),
n=60, 6°C=-28.05+0.06%o (1s.d.), 6°N=-6.41+0.07%o (1s.d.);
and (2) EVA MRG pig gelatin, n= 61, §°C =-19.76 + 0.25%. (1s.d.)
and 6°N =4.94 + 0.12%o (1 s.d.). This compares well to the long-term
average values of §C =-28.0 + 0.1%o (1s.d.) for EVA-0012 and
6BC=-19.7 £ 0.3%o (1s.d.) for EVAMRG, and 6°N =-6.4 + 0.1%. (1 s.d.)
for EVA-0012 and 6°N = 5.0 + 0.1%. (1 s.d.) for EVAMRG.

The quality of the collagen extracts was assessed based on the
yield, with minimum ~1% required. The elemental values (C%, N%, C:N)
were compared to ranges of modern mammalian collagen (C,30-50%;
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N, 10-17%), with C:N values of -3.2 considered well preserved"*"" and
with extracts falling outside the range 0f 2.9-3.6 excluded from analy-
sis'?. All extracts fell within accepted ranges and so were considered
suitable for palaeodietary reconstruction (Extended Data Table 5).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The MS proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE' partner repository under accession code
PXD-043272. The MALDI-TOF.mzml and.msd type files included in this
study areavailable at https://doi.org/10.5281/zenodo.8063812. The raw
sequencing aDNA data of single-stranded libraries enriched for mam-
malian mtDNA from the 26 sediment samples are publicly available
on the European Nucleotide Archive (PRJEB67902). Isotope data are
availablein Extended Data Table 5and the Supplementary Information.

Code availability
TheRcodeassociated with this work is publicly available through OSF
at https://osf.io/aez4v/.
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Extended Data Fig. 1| Mammalian ancient DNA recovered from sediment 9 (nsamples=3),10 (nsamples=2),11 (nsamples =9) and 12 (nsamples =1).
samples from the 2016-2022 excavations at Ilsenhohle in Ranis. 26 sediment Assignmentsto Cricetidae are not included in this figure. A detailed breakdown
samples were analysed across Layers 7 (n samples =5), 8 (nsamples=6), ofthe aDNA data can be found in Sl Table 5.
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Extended Data Fig. 2| Overview of the length of all piece-plotted bone
fragments recovered across Layers 12-7 at llsenhohle in Ranis; B: Overview of
length for major taxa from Layers 12-7 at llsenhohle in Ranis. Figure 2a sample
sizesare: Layer 12 (n =18); Layer 11 (n = 565); Layer 10 (n = 92); Layer 9 (n =115);
Layer 8 (n=244); Layer 7 (n = 722). Figure 2b sample sizes are: Ursidae (Layer 12
n=1;Layer1ln=47;Layer10 n=7;Layer 9 n=23;Layer 8 n = 62; Layer 7n =18);
Rhinocerotidaesp. (Layer12n=3; Layer11n=13;Layer10n=8;Layer9n=35;
Layer 8 n=28;Layer 7 n=3); Equidaesp. (Layer12n=1; Layer 11 n =11; Layer 10

n=3;Layer 9n=7;Layer 8 n=18;Layer 7 n =18); Rangifer tarandus (Layer 12
n=6;Layer11n=32;Layer10n=32;Layer 9n=13;Layer 8 n=67; Layer 7n=27);
Bos/Bisonsp. (Layer12n=1; Layer11n=12; Layer 10 n =5; Layer9n=9; Layer 8
n=18;Layer 7n=7).Box plotin Extended Data Figs. 2a and 2b: box extends from
first quartile (Q1on left) to third quartile (Q3 on right) with bold line in middle
representing (median); Lines extending from both ends of the box indicate
variability outside Q1 and Q3; minimum/maximum whisker values are calculated
as Q1/Q3 -/ +1.5*IQR. Everything outside is represented as an outlier.
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Extended Data Fig. 3| Glutamine deamidation values for a1 508 of the bone first quartile (Q1 on left) to third quartile (Q3 on right) with bold line in middle
fragments analysed through ZooMS. These are seen as an indicator for the representing (median); Lines extending from both ends of the box indicate
biomolecular preservation of the bone. Sample sizes are Layer 7 (n = 44), Layer 8 variability outside Q1 and Q3; minimum/maximum whisker values are calculated
(n=190), Layer 9 (n = 69), Layer 10 (n = 61), Layer 11 (n =133) and Layer 12 (n = 16); as Q1/Q3 -/ +1.5*IQR. Everything outside is represented as an outlier.
see Sl Tables 14 and SI Table 15. Box plot in Extended Data Fig. 3: box extends from
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Extended Data Table 1| Chi-square test with adjusted residuals (AR) for Number of identified specimens (NISP) by layer and
major taxon. AR refer to the layer to the left of the residuals column and should be read as standard normal deviates"""®

Taxon NISP7 AR7 NISP8 ARS8 NISP9 AR9 NISP 10 AR 10 NISP 11 AR 11 NISP 12

Carnivores 10 2.2 7 -1.6 6 1.2 2 -19 18 1.3 0
Ursidae 18 -2.6 62 -0.1 23 2.8 7 =27 47 1.8 1
Megafauna 4 3.0 31 -0.2 12 0.3 9 -0.7 30 -1.4 5
Equidae 18 2.1 18 -0.1 7 1.0 3 -05 11 0.0 1
Cervidae 58 23 82 1.4 23 -4.0 42 4.0 59 -1.3 8
Bovidae 7  -0.7 18 -0.8 9 0.8 5 0.2 12 0.1 1
chi-square 25.1 4.4 18.4 194 6.9

Significant values are >1.96 and are highlighted in bold. Chi square tests for taxon vs. Layer (Layer 12 vs Layer 11 x2(5, n=193)=6.9, p=0.23; Layer 11 vs Layer 10 x2(5, n=245)=19.4, p=0.001; Layer
10 vs. Layer 9 x2(5, n=148)=18.4, p=0.002; Layer 9 vs. Layer 8 X2(5, n=298)=4.4, p=0.5; Layer 8 vs. Layer 7 x2(5, n=333)=25.1, p=0.0001).
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Extended Data Table 2 | Bone, aDNA and lithic find densities from the 2016-2022 excavations at Ranis (Layers 12-7)

Excavated
Layer volume Bone Bon.e aDl\.IA Lithics Lithic density Bfm?:
. NSP  density density" Lithic
(Litre)
7 568.5 723 1.27 74.4 11 0.01 65.73
8 167.5 241 1.44 47.6 39 0.23 6.21
9 151 114 0.75 66 2 0.01 585
10 150.5 93 0.62 27.9 2 0.01 465
11 1077 565 0.52 129.8 22 0.02 25.68
12 44 18 0.41 120.1 0 0 0
Total 2,390 1,754 76

* This is calculated based on the number of buckets excavated from a particular layer (a bucket is 10 1).
**This aDNA density is calculated based on the number of ancient sequences per mg of sediment
sampled per layer; complete data can be found in SI Table 2

***except one, these lithics come from the screening fraction of sediment buckets from the boundary
between Layers 7 and 8, or 7-Brown, a thin limited subcontext that was directly overlying Layer 8, and
appear most likely they were displaced from 8.
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Extended Data Table 3 | Macroscopic indicators of bone surface preservation

Bone readability Bone weathering Bone abrasion
Layer NSP low %o high %o NSP low % medium % NSP low % high %
7 723 107 14.8 616 85.2 708 708 97.9 15 2.1 711 711 98.3 12 1.7
8 244 30 12.3 214 87.7 240 240 98.4 4 1.6 243 243 99.6 1 0.4
9 115 22 19.1 93 80.9 109 109 94.8 6 5.2 115 115 100.0 0 0.0
10 93 19 20.4 74 79.6 92 92 98.9 1 1.1 92 92 98.9 1 1.1
11 565 100 17.7 465 82.3 522 522 92.4 43 7.6 559 559 98.9 6 1.1
12 18 7 38.9 11 61.1 15 15 83.3 3 167 18 18 100.0 0 0.0

Bone readability is based on the proportion of original bone surface remaining and is based on Smith et al" low includes 0% and <50%; high includes >50% and 100%; bone weathering is
based on Behrensmeyer”'; low weathering includes Stages 0 and 1, while medium weathering includes Stages 2 and 3; Bone abrasion is based on the proportion of the bone surface covered
by the phenomenon and is based on Smith et al.* low includes 0% and <50%; high includes >50% and 100%.
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Extended Data Table 4 | Bone surface modifications observed across the bone fragments recovered from Ilsenhoéhle
in Ranis

Carnivore modifications Human modifications
Layer Taxon digestion tooth pits scalloping tooth scratch| cut scrape marrow
7 Bos/Bison sp. 1 0 0 0 0 0 0
7 Cervid/Saiga 1 0 0 0 0 0
7 Cervidae sp. 13 8 6 0 0 0 1
7 Equidae sp. 1 0 0 0 0 0 0
7 Equus ferus 1 0 0 0 0 0 0
7 Rangifer tarandus 2 0 0 0 0 0 0
7 Ursidae sp. 1 2 2 0 0 0 0
7 mammal unknown 116 16 22 0 1 0 0
7 ungulate large 4 2 6 0 0 0 0
8 Bos/Bison sp. 5 1 1 1 0 0 1
8 Cervid/Saiga 1 0 0 0 0 0 0
8 Cervid/Saiga/Capreolus 1 0 0 0 0 0 0
8 Elephantidae sp. 2 0 0 0 0 0 0
8 Equidae sp. 3 0 0 0 0 0 1
8 Leporidae sp. 1 1 0 0 0 0 0
8 Rangifer tarandus 7 0 0 0 0 0 4
8 Rhinocerotidae sp. 12 0 0 0 0 0 0
8 Ursidae sp. 3 1 1 0 0 0 0
8 mammal unknown 7 0 0 0 0 0 0
9 Bos/Bison sp. 5 0 0 0 0 0 0
9 Canis lupus 1 0 0 0 0 0 0
9 Cervid/Saiga 2 0 0 0 0 0 0
9 Elephantidae sp. 3 0 0 0 0 0 0
9 Equidae sp. 4 0 0 0 0 0 0
9 Rangifer tarandus 7 0 0 0 0 0 0
9 Rhinocerotidae sp. 4 0 0 0 0 0 0
9 mammal unknown 9 3 1 0 1 0 1
10 Bos/Bison sp. 3 0 0 0 0 0 0
10 Cervid/Saiga 2 0 0 0 0 0 0
10 Cervid/Saiga/Capreolus 4 1 0 0 0 0 0
10 Elephantidae sp. 1 0 0 0 0 0 0
10 Rangifer tarandus 12 1 1 0 0 0 0
10 Rhinocerotidae sp. 3 0 0 0 0 0 0
10 Ursidae sp. 1 0 0 0 0 0 0
10 mammal unknown 9 1 1 0 0 0 0
11 Bos/Bison sp. 8 1 2 0 0 0 0
11 Cervid/Saiga 2 0 0 0 0 0 0
11 Cervid/Saiga/Capreolus 4 0 0 0 0 0 0
11 Cervidae sp. 1 0 2 0 0 0 0
11 Elephantidae sp. 4 1 0 0 0 0 0
11 Equidae sp. 3 0 0 0 0 0 0
11 Equus ferus 1 0 1 0 0 0 0
11 Hyaenidae/Pantherinae 1 0 0 0 0 0 0
11 Rangifer tarandus 8 2 1 0 0 0 0
11 Rhinocerotidae sp. 8 0 0 0 0 0 0
11 Ursidae sp. 9 0 0 0 0 0 0
11 Ursus arctos 1 0 0 0 0 0 0
11 Ursus spelaeus 1 1 1 1 0 0 0
11 Vulpes vulpes 1 0 0 0 0 0 0
11 mammal unknown 97 3 9 0 1 0 4
11 ungulate medium large 1 0 0 0 0 0 0
12 Cervid/Saiga 1 0 0 0 0 0 0
12 Elephantidae sp. 1 0 0 0 0 0 0
12 Equidae sp. 1 0 0 0 0 0 0
12 Rangifer tarandus 2 0 1 0 0 0 0
12 Rhinocerotidae sp. 2 0 0 0 0 0 0
12 mammal unknown 1 0 0 0 1 0 0
7 Leporidae sp. 0 2 1 0 0 0 0
7 Ursus spelaeus 0 1 0 0 0 0 0
7 ungulate medium large 0 1 2 0 0 0 0
9 Cervidae sp. 0 1 0 0 0 0 0
10 Cervidae sp. 0 1 0 0 0 0 0
7 ungulate small medium 0 0 1 0 0 0 0
9 Ursus spelaeus 0 0 1 0 0 0 0
10 Leporidae sp. 0 0 1 0 0 0 0
8 Aves sp. 0 0 0 0 1 0 0
8 Vulpes vulpes 0 0 0 0 1 1 0
11 Canis lupus 0 0 0 0 1 0 0
8 Cervus elaphus 0 0 0 0 0 0 1

(broken down by species); these figures included modified specimens identified through both comparative morphology and ZooMS.
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Extended Data Table 5 | Bulk collagen C and N stable isotope data from Ranis

Sample ID Excavated Layer  Species Group C% N% C:N 3°C (%0) 8"N (%0)
16/116-124429  2016-2022 7 Rangifer Herbivore 46.2 16.5 3.3 -19.1 4.5

16/116-124430  2016-2022 7 Rangifer Herbivore 463 168 3.2 -18.8 33
16/116-151382  2016-2022 7 Rangifer ~ Herbivore 46.6 165 3.3 -18.4 3.1
16/116-150274  2016-2022 7 Ursidae Omnivore 46 16.8 3.2 -21.5 1.7
16/116-151393  2016-2022 7 Ursidae Omnivore 46.2 169 3.2 -21.6 2.8
16/116-150209  2016-2022 7 Cervid sp.  Herbivore 46.7 164 3.3 -19.6 4.6
16/116-150358  2016-2022 8 Rangifer Herbivore 47 17 32 -18.4 32
16/116-151564  2016-2022 8 Rangifer Herbivore 463 167 3.2 -18.1 2.6
16/116-159155  2016-2022 8 Rangifer Herbivore 46.1 168 3.2 -18.4 3.7
16/116-159070  2016-2022 8 Cervid sp.  Herbivore 43.7 156 3.3 -18.7 4
16/116-159091  2016-2022 8  Vulpes vulpes Omnivore 44.4 155 3.3 -20 7.7
16/116-159223  2016-2022 8 Ursidae Omnivore 439 16 3.2 -21.8 3.2
16/116-159253  2016-2022 8  Homo sapiens Hominin 44.6 16.1 3.2 -18.8 10.6
16/116-159327+  2016-2022 8  Homo sapiens Hominin 449 162 3.2 -18.7 10.6
16/116-159199  2016-2022 8  Homo sapiens Hominin 459 164 3.3 -18.6 10.8
16/116-159376  2016-2022 9 Rangifer ~ Herbivore 46.6 16.7 3.3 -19.2 3
16/116-159380  2016-2022 9 Ursidae Omnivore 46.8 16.8 3.3 -22.2 32
16/116-159296  2016-2022 9 Ursidae Omnivore 46.8 17.1 3.2 -21.6 4
16/116-159318  2016-2022 9 Equidae Herbivore 46.5 17 32 -20.8 6

16/116-159416  2016-2022 9 Homo sapiens Hominin 45 162 3.2 -18.8 10.9

16/116-159508  2016-2022 10 Rangifer Herbivore 51.4 17.6 3.4 =20 2.9
16/116-159523  2016-2022 10 Rangifer Herbivore 442 159 3.2 -19.3 3
16/116-159586  2016-2022 11 Canis lupus ~ Carnivore 464 164 3.3 -18.6 8
16/116-186171 2016-2022 11 Rangifer Herbivore 46.7 16.7 3.3 -19.5 2.7
16/116-186285  2016-2022 11 Rangifer ~ Herbivore 472 17 32 -19.8 3.1

16/116-186405  2016-2022 11 Rangifer Herbivore 46.2 16.8 3.2 -19.2 2.8
16/116-189239  2016-2022 11 Rangifer Herbivore 464 167 3.2 -18.5 3.8
16/116-186481  2016-2022 12 Rangifer Herbivore 47.8 17 33 -18.6 4.1

R10141 1932-1938  VIII Equidae Herbivore 458 16.6 3.2 -20.9 6.5
R10148a 1932-1938  IX Cervid sp.  Herbivore 443 157 3.3 -17.7 5.4
R10148b 1932-1938  1X Rangifer Herbivore 44.5 158 3.3 -17.9 5.6
R10149a 1932-1938  IX Vulpes lagopus Carnivore 44.5 154 3.4 -20.2 6.4
R10149b 1932-1938  IX  Vulpes lagopus Carnivore 45 158 3.3 222 8.5
R10152 1932-1938 IX Cervid sp.  Herbivore 44.5 16.1 3.3 -18.7 5.5
RI0155 19321938 IX UM Camivore 452 165 33 -188 8
spelaea
RI0158 19321938 IX  TOU Comivore 452 162 32 <193 99
spelaea
R10161 1932-1938  IX  Vulpes lagopus Carnivore 43.3 158 3.2 -20 9.6
RI10162 1932-1038  1x  Coclodonta e 455 166 32 -0 43
antiquitatis
R10163 1932-1938  IX Cervus elaphus Herbivore 44.1 16 32 -18 4.5
R10164 1932-1938  IX  Vulpes lagopus Carnivore 454 16.6 3.2 -19.9 7.7
R10165 1932-1938  IX Cervus elaphus Herbivore 44.5 162 3.2 -18.9 33
R10166 1932-1938  IX Cervus elaphus Herbivore 43 158 3.2 -18 5.5
R10167 1932-1938 1IX Cervid sp.  Herbivore 45.6 16.8 3.2 -17.9 4.6
RI0168 1932-1038  1x  Coclodonta o 45 166 32 198 48
antiquitatis

R10169 1932-1938  IX Cervid sp.  Herbivore 46.7 16 34 -21.5 4.6
R10170 1932-1938  IX carnivore small Carnivore 44.9 16.5 3.2 -23.1 5.7
R10171 1932-1938  IX  Ursus spelaeus Omnivore 452 16.8 3.1 =21 24
R10172 1932-1938  IX Rangifer Herbivore 44.7 164 3.2 -19.4 43
R10128%* 1932-1938  IX Equidae Herbivore 44.8 163 3.2 -20.8 6.2
R10876 1932-1938 XI/X Homo sapiens Hominin 42.7 153 3.3 -18.7 11

R10396+ 1932-1938 X Homo sapiens Hominin 42.3 16.3 3 -18.7 10.6
R10874+ 1932-1938 X Homo sapiens Hominin 43.3 154 3.3 -19.2 13

RI10121%* 1932-1938 X Equidae Herbivore 46.3 16.8 3.2 21.2 5.3
R10126* 1932-1938 X Equidae Herbivore 454 165 3.2 -20.7 6.8
R10130* 1932-1938 X Equidae Herbivore 444 162 3.2 -21.3 42
R10131%* 1932-1938 X Equidae Herbivore 452 163 3.2 -21.1 7.2
R10879+ 1932-1938 XI/X Homo sapiens Hominin 44.1 158 3.2 -18.6 10.6
R10873 1932-1938 X/IX Homo sapiens Hominin 44.1 156 3.3 -18.9 10.9
R10875 1932-1938 XI?/X Homo sapiens Hominin 42.8 154 3.2 -18.9 10.6
R10123* 1932-1938  XI Equidae Herbivore 46.2 169 3.2 -20.7 6.8
R10124% 1932-1938  XI Equidae  Herbivore 448 164 32 218 8.7
R10132%* 1932-1938  XI Equidae Herbivore 44.5 162 3.2 -21.2 4.1

The cross (+) indicates the Homo sapiens bones where mtDNA indicates they could derive from the same individual or maternal relations. Equid samples marked with an asterisk (*) are
reported in Pederzani et al.”*, and have been directly dated to the same time period as Layers 11-7 from the 2016-2022 excavation.
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Extended Data Table 6 | Overview of the main LRJ find spots and their associated faunal remains?34952115119-124

Site Country Site type artelftlcts Fauna  Dominant taxa x?elll‘lence
Beedings UK open-air 140  no 49
Grange Farm UK open-air 83 ca. 1,000 woolly rhinoceros, wild
horse, reindeer, woolly o
mammoth, bovine, spotted
hyaena and wolverine.
Soldier's Hole UK cave 3 yes  correlations problematic 49
Badger Hole UK cave 4  yes  correlations problematic 120
Bench Quarry UK cave 1  yes correlations problematic 121
Robin Hood cave UK cave 10  yes  correlations problematic 49
Paviland cave UK cave 9 yes correlations problematic 122
Kent's cavern UK cave 10  yes  correlations problematic 49
Spy Belgium cave 25  yes  correlations problematic 123
Goyet Belgium cave 6 yes correlations problematic 123
Ranis Germany cave 115 >2,000 reindeer, cave bear, woolly
mammoth, woolly
rhinoceros, horse, bovids, this paper
Canidae, Hyenaidae, Felinae,
red fox and wolverine.
Schméhingen Germany cave 4 375 horse, reindeer, red deer,
hyaena, woolly rhinoceros 124
and bison.
Zelesice III Czechia open-air 1,505 no 2
LiSen Podoli I Czechia open-air 3,577 ca. 30 horse, large, medium and ”
small sized mammals.
Nietoperzowa Poland  cave 277  yes  cave bear, cave lion,
wolverine, wolf, woolly
mammoth, woolly 15

rhinoceros, horse, red deer,
reindeer and auroch/bison.

Koziarnia Poland  cave ? yes  cave bear, giant deer,
reindeer, Bos/Bison , horse,
mammoth, wolf and red fox.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data is available in manuscript and supplementary materials and code and data made available on publication.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a

other socially relevant
groupings

Population characteristics

Recruitment

Ethics oversight

n/a
n/a

n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences

|:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Analysis of bone remains through zooarchaeology and peptide mass fingerprinting (ZooMS, SPIN) combined with sedaDNA and bulk
collagen stable isotopes to investigate the ecology, diet and subsistence of Homo sapiens at Ranis.

Bone remains, sedaDNA and collagen bulk isotopes were analysed from all layers at Ranis but only Layers 7-12 are reported on here
in line with sampling and reporting stategy of companion papers.

1754 bones from Layers 7-12 were studied using traditional morphological approaches to identify species and element and record all
observable taphonomic attributes. Where it was not possible to identify these to species using morphology these specimens were
analysed using zooarchaeology by mass spectrometry (ZooMS; n = 536) and on a more limited basis Species by Proteome
INvestigation (SPIN, n = 212). sedaDNA samples were recovered from Layers 7-12 and analysed for the presence of animal and
human DNA. Bulk collagen stable isotope values were obtained from radiocarbon samples (n = 54) taken from Layers 7-12 from both
animal and human remains and combined with a selection of bulk collagen isotope samples from dated animal remains from old
excavations at Ranis.

G. Smith analysed the faunal material at the Max Planck Institute for Evolutionary Anthropology in Leipzig between 2017-2021.
ZooMS analysis was undertaken at the Max Planck Institute for Evolutionary Anthropology in Leipzig between 2017-2021 by K.
Ruebens, D. Mylopotamitaki, V. Sinet-Mathiot and F. Welker. DNA samples were collected between 2017-2021 by E. Zavala and
analysed at the Max Plannck Institute for Evolutionary Anthropology in Leipzig. H. Fewlass sampled faunal remains from Ranis at the
Max Plannck Institute for Evolutionary Anthropology in Leipzig between 2017-2021. M. Stahlschmidt analysed the coprolite material
recovered between 2017-2021 at the Max Plannck Institute for Evolutionary Anthropology in Leipzig.

Bones and sediment samples were recovered from Ranis between 2015-2021 with material from Layers 7-12 recovered mainly
between 2018-2021.

No data excluded

All data related to the analyses in these paper including the ZooMS spectra, DNA data and isotope values will be made available at
publication.

N/A

N/A

Did the study involve field work? Yes |:| No
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Field work, collection and transport

Field conditions Excavations at Ranis occurred during June/July between 2015-2021

Location All material recovered from the cave llsenhohle in Ranis, in Thuringia, Germany (50° 39' 45,3" N, 11° 33' 53,5" E)

Access & import/export  Material was studied and analysed at the Max Planck Institute for Evolutionary Anthropology in Leipzig and access arranged in
collaboration between the Thiringer Landesamt fir Denkmalpflege und Archaologie and Deptarment of Human Evolution.

Disturbance The samples were obtained from excavations of the archaeological site. The area of the renewed excavations was kept as small as
possible to reach the lowest layers following safety measures of stepped excavation levels.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XX XXX X s
OO0O0OXOO

Plants

Palaeontology and Archaeology

Specimen provenance All bones were excavated from Ranis Cave, Germany, in a joint project of the Thiringer Landesamt fur
Denkmalpflege und Archaologie (Weimar, Germany ) and the Department of Human Evolution at Max Planck Institute for
Evolutionary Anthropology (MPI-EVA, Leipzig, Germany).

Specimen deposition All specimens have been returned to the LDA and the TLDA, where they are curated under museum authority.

Dating methods N/A

g Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Permissions for destructive sampling were given by the LDA by the TLDA, who are the relevant archaeological authorities regulating
protection of archaeological finds in Thuringia and Saxony-Anhalt, Germany.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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