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The Middle to Upper Palaeolithic transition in Europe is associated with the regional
disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals
persisted in western Europe several millennia after the occurrence of H. sapiensin
eastern Europe'. Local hybridization between the two groups occurred? but not on
all occasions®. Archaeological evidence also indicates the presence of several
technocomplexes during this transition, complicating our understanding and the
association of behavioural adaptations with specific hominin groups*. One such
technocomplex for which the makers are unknown is the Lincombian-Ranisian-
Jerzmanowician (LRJ), which has been described in northwestern and central
Europe® 8. Here we present the morphological and proteomic taxonomic identification,
mitochondrial DNA analysis and direct radiocarbon dating of human remains
directly associated with an LR] assemblage at the site llsenhohle in Ranis (Germany).
These human remains are among the earliest directly dated Upper Palaeolithic

H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ
were present in central and northwestern Europe long before the extinction of late
Neanderthals in southwestern Europe. Our results strengthen the notion of a
patchwork of distinct human populations and technocomplexes present in Europe
during this transitional period.

TheMiddle to Upper Palaeolithic LRJ**° technocomplex extends across
northwestern and central Europe (Fig. 1b and Supplementary Fig. 1a).
It has been attributed to either Neanderthals® or H. sapiens®. Based
onitsstonetools, the LRJ has often been classified as Early Upper Pal-
aeolithic? given the laminar blank production directed towards the
production of partial-bifacial blade points (Jerzmanowice points)'2. By
contrast, the LRJ has alternatively beeninterpreted asalocal develop-
mentby Neanderthals*', as the bi-directional blade production differs
from the predominantly uni-directional blade production system of
the succeeding Upper Palaeolithic made by H. sapiens. Additionally,

the occasional presence of bifacial leaf pointsin some LR) assemblages
suggested aMiddle Palaeolithic origin. Froma chronological perspec-
tive, either attribution is possible, as LR] assemblages are generally
dated to about 44,000-41,000 calibrated years before the present
(cal BP)>", a period during which Neanderthals and H. sapiens groups
are known to be presentin Europe!*™,

The site llsenhohle in Ranis (50°39.7563’ N, 11° 33.9139’ E, hereaf-
ter Ranis) is one of the eponymous LRJ sites based on its unique com-
position of bifacial and unifacial points. Ranis is located in the Orla
River valley (Thuringia, Germany; Fig. 1b and Supplementary Fig. 1a).
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Fig.1|Stratigraphy withlocation of H. sapiensbones, map of LR) sites and
lithics from Ranis. a, General stratigraphy and correlations of the 1930s and
2016-2022 excavations with theinsitu location of the hominin specimen ID
16/116-159327 within the layer 8, north profile (photograph). Stars mark the
layers with homininbones. Shadedinred are the LR] layers. ‘R’ marks rockfall
events. The purplerock represents the1.7-m-thick rock that sealed the basal
sequence.gr, grey; d-s, dark-spotted; bl, black; br, brown. b, Location of Ranis
(star)and the LRJ (red shaded area). Schematic artefacts mark the dominant leaf

The cave formed in the south-facing cliff of a Permian limestone reef
(Extended Data Fig. 1a and Supplementary Fig. 2a). Only two short
chambers remain intact from a formerly large and high chamber
that collapsed during the late Pleistocene”. Fieldwork started in
1926, continuing in 1929 and 1931, but the site was mainly excavated
by W. M. Hiille between 1932 and 1938 (Extended Data Figs. 1b and 2
and Supplementary Fig. 3; ref. 17). Near the base of the 8-m sequence,
these excavations revealed a complex stratigraphy of five layers
(from bottom to top: XI to VII), including a layer (variably named X
and Graue Schicht; Fig. 1a) rich in bifacial leaf points (Fig. 1g and Sup-
plementary Fig. 2¢) and with Jerzmanowice blade points (Fig. 1f and
Supplementary Fig. 2d). This layer represents the Ranisian as part
oftheLRJ.

In 2016, we returned to Ranis to clarify the stratigraphy and chro-
nology™ and to identify the makers of the LR]. We reopened the main
1934 trench and excavated adjacent squares to bedrock (Extended Data
Fig.1b and Supplementary Figs. 2b and 3-8). Among the basal layers,
layer 11 (Hiille: XI, Fig. 1a) has a low density of undiagnostic, possibly
Middle Palaeolithic artefacts”. The overlying layer 10 has no equivalent
inthe1932-1938 stratigraphy and is followed by layers 9 and 8, which
we correlate with the LR] layer X or Graue Schicht of the Hiille excava-
tion (Fig. 1a). The following layer 7 is sealed by a roof collapse event.
Alargerock of 1.7 mthickness (Extended Data Fig. 1c and Supplemen-
tary Figs. 6 and 8) separates layer 7 from layer 6-black/dark spotted
(Halle: VIII), which contains younger Upper Palaeolithic artefacts. This
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Specimen ID: 16/116-159327

pointtypeinthe LR) subdivisions (Lincombian (blade points), Ranisian (blade
points and large bifacial points) and Jerzmanowician (blade points)). The map
was created in QGIS* on the basis of Shuttle Radar Topography Mission data
V4 (http://srtm.csi.cgiar.org)*’. ¢,d, Blade fragments (16/116-159048 and
16/116-151453), layer 8. e, Quartzite flake (16/116-159051) from surface retouch,
layer 8.f, Jerzmanowice blade point, layer X (Museum Burg Ranis, [V1328).

g, Bifacial leaf point (Museum Burg Ranis IV1319), layer X. a, Adapted from
ref.17.f,g, Photos:]. Schubert.

large rock prevented Hiille from excavating the key basal layers in this
location (Extended DataFig. 1b).

The correlation of our layers 9-8 with the LRJ layer X of the Hiille
excavation is based on an extensive set of radiocarbon dates from
both collections, ancient DNA analysis, sedimentology and micro-
morphology showing anthropogenicinputs of charred plant material
(Supplementary Fig. 9), and lithic artefact analysis. Like layer X (ref. 17),
layer 8 has the highest lithic density (Supplementary Tables 2 and 3) of
the basal stratigraphic sequence below the Upper Palaeolithic (layer
6-black/dark spotted) and represents the main occupation of the LR].
Although we did not recover any diagnostic points, two of the artefacts
fromour excavations are fragmented blades (Fig. 1c,d), which are typi-
calblanks for the LR blade points. Similar to the LRJ assemblage from
layer X (ref. 17), most of the artefacts from layers 9 and 8 were made
of Baltic flint (Supplementary Table 3). This shows a connection of the
Ranis LRJ tothelowlands north of the site where the flint was procured.
Three small flakes coming from surface shaping and edge retouchare
made of quartzite (Fig. 1e). This raw material also occursin a few arte-
facts fromthe 1932-1938 excavation (Supplementary Table1). Among
themis afragment of a bifacial tool, possibly a leaf point. Except for
one chunk, layer 7 contained no artefacts, but a few flint chips were
found during sorting of screened excavated sediment from the layer
contact 8/7 (Supplementary Table 3). We assign these artefacts to the
archaeological horizon of layers 9-8. In contrast to the LR] layers,
flint artefacts are absent in the underlying layers 10 and 11. A similar


http://srtm.csi.cgiar.org

low-frequency usage of flint has also been reported for layer Xl of the
1932-1938 excavation”.

We constructed a chronological model based on 28 radiocarbon
dates from newly excavated material from layers 11-7, including
directly dated human remains, anthropogenically modified bones
and charcoal. Bone collagen preservation was exceptional with an aver-
age yield of 11.8% (range: 5.3-16.3%, n = 33; Supplementary Table 13).
Only one date in the model was identified as an outlier, highlighting
the stratigraphic integrity of the layers. At the base, layer 11, contain-
ing undiagnostic artefacts, dates to 55,860-48,710 cal BP. Layers 9
and 8, associated with the LRJ, date to 47,500-45,770 cal BP and
46,820-43,260 cal BP, respectively (modelled ranges at 95.4% prob-
ability; Extended Data Fig. 3 and Supplementary Table 15). The over-
lying layer 7 dates to 45,890-39,110 cal BP and is sealed by the roof
collapse.Inaddition, six newly identified human bones fromlayer Xin
the1930s collection, thought to be associated with the LR), were directly
radiocarbon dated (see below). These dates (46,950-42,200 cal BP
at 95.4% probability) fit within the range of dates obtained in our
model forlayers 9 and 8 (Fig. 2 and Extended Data Fig. 3), thus provid-
ing additional support for linking the LR] of layer X (1930s) with our
layers 9 and 8.

We carried out acombination of two proteomic screeningapproaches
(matrix-assisted laser desorption ionization-time-of-flight mass
spectrometry and liquid chromatography-tandem mass spectrom-
etry) and morphological identification on bone specimens from the
2016-2022 and 1932-1938 excavations (Methods). We were able to
retrieve 13 hominin bone specimens in total (Extended Data Table 1).
Out of those, four hominin bones were discovered through proteomic
methods and derived from the 2016-2022 excavation: one from layer
9 (specimen ID: 16/116-159416) and three from layer 8 (specimen
IDs:16/116-159253, 16/116-159327 and 16/116-159199; Fig. 1a). Among
material fromthe 1932-1938 excavation, we identified nine additional
hominin bone specimens, four through proteomic analysis, all from
layer X (specimen IDs: R10318, R10355, R10396 and R10400), and five
through morphological analysis from boxes labelled with layer X, lay-
ersIXand X, orlayers X and XI (specimen IDs: R10873, R10874, R10875,
R10876 and R10879; Fig. 1a and Supplementary Table 5). The boxes
with mixed layer tags from the 1932-1938 excavationare aresult of the
expedited excavation methods from the 1930s. The hominin remains
were in most cases, however, excavated on the same day or within a
day of the discovery of LR] artefacts in the same squares (Extended
DataFig.2).

To support the identification of endogenous proteomes in all pro-
teomically identified hominin specimens, we evaluated the amino
acid degradation and their coverage per identified position. Proteome
deamidation measurements (matrix-assisted laser desorptionioniza-
tion-time-of-flight and liquid chromatography with tandem mass
spectrometry) of the fauna revealed diagenesis of collagen type |
consistent with all of the hominin remains (Extended Data Fig. 4
and Supplementary Fig. 10). Finally, we compared our results with
the existing reference proteome of Homininae'" and calculated the
proteomic coverage per amino acid position for all of the identified
hominin specimens (Extended Data Fig. 5). Our proteomic sequenc-
ing results showed that amino acid positions recovered for all homi-
nin specimens analysed with the species by proteome investigation
pipeline’ matched with the Homininae reference proteome. However,
owing to limitations in the existing proteomic reference database®,
further taxonomic distinctions among hominin populations are
not made.

Wetested 11 of the hominin remains for the preservation of ancient
mitochondrial DNA (mtDNA). Between 4,413 and 175,688 unique reads
mapping to the human mtDNA reference genome were recovered per
skeletal fragment. These mtDNA reads had elevated frequencies of
cytosine (C)-to-thymine (T) substitutions (32.6% to 49.6% on the 5
end and 19.0% to 47.9% on the 3’ end, respectively; Supplementary

a
Bacho Kiro Cave, Bulgaria, layer N1-I -
Bacho Kiro Cave, Bulgaria, layer N1-J Upper ~
Brno-Bohunice 2, Czech Republic
Glaston Grange Farm, UK, Bone bed
Ligeri Podoli I, Czech Republic
Zelesice lll, Czech Republic
Kozarnia Cave, Poland, layer D
Schmahingen, Germany
Ranis, Germany, layer 8 o
Ranis, Germany layer 9 A
60,000 55,000 50,000 45,000 40,000
b Modelled date (cal 8p)
Ranis
16/116-159253 (layer 8) ——
16/116-159327* (layer 8) _—
16/116-159199 (layer 8)
16/116-159416 (layer 9) e
R10396* (layer X) —_—=
@ R10875 (layer X-XI?) —_—
-g R10876 (layer X-XI) —_—
] R10874* (layer X) ——
I R10879* (layer X-XI) —_—
R10873 (layer IX-X) ey
Bacho Kiro Cave, Bulgaria
AA7-738 —
BB7-240 —
CC7-2289 ——
ETH-86772 CC7-335 —_—
Ust’Ishim, Siberia
Ust’Ishim femur ——
Grotte du Renne AR-14 —_—
» St-Césaire SP28 e
© La Ferrassie 8 e
5 Fonds-de-Forét [
2 Engis 2 —
g Spy 94a —
Spy 589a _
Spy 1378 f— Y/

45,000 40,000

Modelled date (cal Br)

55,000 50,000

Fig.2|Chronological comparison of Ranis with selected contemporary
sites and directly dated humanremains. a, Distributions showing

kernel density estimates* of radiocarbon dates from LR) contexts across
Europe (red), IUP contexts at Bacho Kiro Cave (green) and TL dates from
Brno-Bohunice (yellow). The location of the sites is shown in Supplementary
Fig.1.b, Calibrated ranges of directly radiocarbon dated H. sapiens from
Ranis (LRJ, red), BachoKiro Cave (IUP, green) and Ust-Ishim (no associated
archaeology, blue), and Neanderthals (grey) from southwestern France and
Belgium. The asterisk marks the Ranis bones for which mtDNA indicates that
they originate either from the same or maternally related individuals. The four
dates are statistically identical. R10355 and R10318 were not directly dated
owing to contamination from conservative treatments (Supplementary
Information section4.1). Layer numbers of the bones from the 1932-1938
excavation (IX, X and X1) refer to labels of boxes in which the finds are stored,
which contain material from one or more layers. Dataincluded are shownin
Supplementary Tables17 and 26.

Figs.14-24), which are indicative of ancient DNA. Positions shown to
be informative for differentiating between H. sapiens, Neanderthal
and Denisovan mtDNA genomes enabled us to identify each of the 11
skeletal fragments as belonging to ancient H. sapiens (Supplementary
Table18). Libraries from ten of the eleven skeletal fragments contained
sufficient datafor reconstructing near-complete mtDNA genomes. Five
ofthese mtDNA genomes showed no pairwise differences among them
for the positions covered, suggesting that they stemmed from either
the sameindividual or maternally related individuals (Supplementary
Fig.25and Supplementary Table 19). Four of these skeletal fragments
come from the 1932-1938 collection and one from the 2016-2022

Nature | Vol 626 | 8 February 2024 | 343
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Individual genomes are coloured to denote whether they are ancient (blue) or

excavation (16/116-159327; Fig. 1), providing additional support to
the correlation of layers 9 and 8 with layer X. Four of these fragments
(16/116-159327 from the 2016-2022 excavation; R10874, R10879 and
R10396 from the 1930s collection) also produced statistically indis-
tinguishable radiocarbon dates (Fig. 2). The morphology and stable
isotopic values® of R10874 suggest that it originates from a different
individual, consistent with a maternal relation. Notably, whereas nine
of the ten reconstructed mtDNA genomes belonged to haplogroup
N, one (16/116-159199) was identified as belonging to haplogroup
R. When placed onto a phylogenetic tree with other ancient humans,
the mtDNA genomes with an N haplogroup cluster together with the
mtDNA genome of Zlaty kdn, an individual from the Czech Republic,
whose chronological ageis around 45,000 years before presentonthe
basis of genetic estimates® (Fig. 3and Supplementary Figs. 26 and 27).
The estimated mean genetic dates of the Ranis mtDNA genomes ranged
from 49,105 to 40,918 years before present (Supplementary Table 22
and Supplementary Fig.26), consistent with the radiocarbon dates from
layers 9 and 8.
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modern (black) genomes; newly sequenced mtDNA genomes from this study
arecolouredinred. The Neanderthal mtDNA genomes used toroot the tree
and modern human mtDNA genomes falling outside the clades shown are not
depicted. Asterisks mark mtDNA genomes with no pairwise differences. MtDNA
haplogroups (L, M, N,Rand U) are labelled in the right column.

The homininremains from the 2016-2022 and 1932-1938 excavations
are associated with a range of animal taxa (Supplementary Table 9).
Overall, both zooarchaeological and proteomic analyses identified a
total of 17 taxa with a predominance of reindeer (Rangifer tarandus).
Othertaxaincluded Bovinae (Bos primigenius and Bison priscus), Cervi-
dae (Cervuselaphus), horse (Equus ferus) and megafauna (Coelodonta
antiquitatis and Mammuthus primigenius). A variety of carnivores were
alsoidentified, dominated by cave bear (Ursus spelaeus; Supplemen-
tary Table 9). This species composition is consistent with the faunal
record of central Europe during Marine Isotope Stage 3 (refs. 21-24).
Our analyses suggest that large carnivores accumulated most bone
remains with only occasional, short-term site use by human groups
(Supplementary Tables 10-12), which is consistent with the recov-
ered ancient sediment DNA and the relatively low lithic counts (Sup-
plementary Tables 1-3) in these LR] layers®. This is similar to what
hasbeen observed at other LRJ sites?. Our sedimentological analyses
indicate a temperature decline from layer 9 towards colder climatic
conditionsinlayer 7 (Supplementary Table 4). This agrees with stable



isotope analyses of equid teeth that indicate a temperature decline
with low temperatures and an open steppe environment during all
phases of the LRJ occupations. Temperatures reconstructed for the
coldest phase, about 45,000-43,000 cal BP (overlapping with both
layer 8 and layer 7), were 7-15 °C lower than those of the modern day
and are consistent with a highly seasonal subarctic climate in full
stadial conditions?. On the basis of comparisons with the timing
of Greenland stadials and Greenland interstadials in both the
North Greenland Ice Core Project and terrestrial sequences in western
Germany, the LRJ occupations overlap with avariety of climatic phases
including Greenland Stadial 13 (GS13), Greenland Interstadial 12
and GS12, and a temperature decline towards full stadial conditions
during the coldest phase is congruent with an interstadial-stadial
transition culminating in a pronounced cold phase such as GS12 or
GS13 (Extended Data Fig. 3).

In summary, our work shows that the LR] at Ranis was made by
hominins with H. sapiens mtDNA. This indicates that pioneer groups
of H. sapiens expanded rapidly into the higher mid-latitudes, possi-
bly as far as the modern day British Isles (Fig. 1b), before much later
expansions into southwestern Europe, where directly dated Nean-
derthal remains are documented until about 42,000 cal BP (Fig. 2).
Althoughnon-directly dated and non-genetically identified, ahuman
deciduous tooth from Grotte Mandrin® also suggests an H. sapiens
incursioninto southeastern France as early asabout 54,000 cal Bp. If
confirmed, this evidence would create a complex mosaic picture of
Neanderthal and H. sapiens groups in Europe between about 55,000
and 45,000 cal Bp. On the basis of the archaeological and zooarchaeo-
logical evidence, the pioneer H. sapiens groups were small and pos-
sibly left no notable genetic traces in the later Upper Palaeolithic
hunter-gatherersin Europe®. The early presence of H. sapiensin the
modern day BritishIsles is further evidenced by the disputed dating
of the Kent’s Cavern maxilla’®*°, probably associated with LR) stone
tools at this site. Archaeological and mtDNA data further suggest that
LRJ H. sapiens at Ranis were connected to populations of eastern and
central Europe. The relationship between the bifacial-point-rich LR)
at Ranis and other chronologically overlapping bifacial point indus-
tries of central Europe, such as the Szeletian®*?and Altmiihlian®3*
(Supplementary Fig. 1b), remains to be explored. If the Initial Upper
Palaeolithic (IUP) Bohunician® of Moravia and the LR] are related
technocomplexes®, then the LR] is part of the IUP expansion into
Europe. There are no human remains preserved from the Bohunician,
but the Zlaty kain H. sapiens skull from the Czech Republic overlaps
with the dates for both the Bohunician®* and the LR] at Ranis. Nota-
bly, nine out of ten Ranis mtDNA genomes cluster with the Zlaty kin
individual and one clusters with the Fumane 2 individual, both of
whom are other early H. sapiens individuals who lived around the
same time in Europe as the Ranis specimens described here. This
connects the LRJ hominins to a wider population network of initial
H. sapiens incursions into Europe. Finally, the demonstration that
the LRJ was produced by H. sapiens fills an important gap in the
record of the last Neanderthals and H. sapiens in northwestern and
central Europe around 45,000 cal BP. The hypothesis that Neander-
thals disappeared from northwestern Europe well before the arrival
of H. sapiens—which is largely based on the chronological hiatus
observed between Neanderthal-made late Middle Palaeolithic assem-
blages and H. sapiens-made Aurignacian assemblages®*—can now be
rejected.
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Methods

Excavation methods

Welocated and reopened 18 squares on the grid line of the main east-
west trench from 1934 and excavated an 8-m-deep sequence of 12
adjacent squares (Extended Data Fig. 1b and Supplementary Figs. 2b
and 3-8). Layers were identified using lithological as well as archaeo-
logical criteria, if available. Stratigraphic units were subsequently
numbered fromtop to bottom, independently of the 1932-1938 exca-
vation”. The lower layers, from layer 6 to bedrock, were excavated
over 2.25 m? Large rocks within the sequence (that is, collapsed parts
of the former cave roof) prevented us from enlarging the excavation.
To access the deeper stratigraphy that includes the transition period
of layers 9 and 8 (Hiille: X), we removed a 1.7-m-thick rock (Extended
DataFig.1cand Supplementary Figs. 6 and 8) that separated these lay-
ers from the overlying Upper Palaeolithic layer 6-black/dark spotted
(Hiille: VIII)". The same rock extended into squares 35and 37 from the
Hiille excavation”. Hiille did not remove this rock and never excavated
belowit. We thereforeincorporated these two squares below the rock
into our excavation (1003/1000 and half of1004/1000; Extended Data
Fig.1b). Although rock removal required substantial efforts, the rock-
fall provided an ideal situation for the underlying sequence, as it was
sealed from post-depositional disturbances by geological processes,
humans and animals.

Owing of the depth of the sequence, we secured the walls with
wooden planks and metal poles during the progress of the excavation.
This work was carried out professionally (by a construction firm) and
inspected. Before the walls were closed and secured, all profiles were
documented (see below).

We excavated using current standards for Palaeolithic sites. We estab-
lished anarbitrary excavation grid oriented along the former east-west
trench of the 1932-1938 excavation, which was later georeferenced
in the global Universal Transverse Mercator coordinate system. We
removed sediments in 10-1 buckets separated by layer. We recorded
the location of each bucket with two sets of three-dimensional (3D)
coordinates, one at thebeginningand one atthe end of eachbucket. The
sediments were then wet-screened through 4-mm and 2-mm meshes.
Single finds >20 mm (lithics and fauna) and samples (sediment and
micromorphology) were assigned unique IDs; their layer, date of exca-
vationand excavator were recorded, and 3D coordinates were measured
using a Leica total station (5” accuracy). The total station measure-
ment and attribute recording were carried out with EDM-mobile, a
self-authored software. At the end of each day, we transferred these
datato the primary database for the project. Objects with an identifi-
ablelong axis were measured with two coordinates at their endpoints
torecord bearing and plunge. Stones >10 mm were measured with
one coordinate at the base and stones >20 mm were recorded with six
coordinates (representing the three axes of the object) to document
volume and orientation. Large rocks were documented using multiple
measurements.

We documented layers, special features and profiles in highly
detailed and precise 3D models using structure from motion (Agisoft
Metashape), total station measurements, digital photographs and
drawings. The 3D models were georeferenced with control points
recorded with the total station to align to the excavation grid.

Proteomic screening

We proteomically screened 1,322 morphologically unidentified frag-
mentary bone specimens from layers 7-12 (2016-2022 excavation)
and layers IX-XI(1932-1938 excavation) withzooarchaeology by mass
spectrometry (ZooMS)* and a subset of 341 bone specimens with the
species by proteome investigation (SPIN) workflow". Generally, we
targeted specimens >2 cminlengthto enable future direct radiocarbon
dating and ancient DNA analysis. We measured bone length for most
specimens, and recorded anthropogenic, carnivore and taphonomic

modifications for all of them. Sampling was carried out using pliers or
adental drill. Negative controls were also included in the study (Sup-
plementary Table 6).

First, all specimens were analysed through ZooMS analysis. A total
of 769 specimens were derived from the 1932-1938 excavation (Sup-
plementary Table 24), and 553 specimens derived from the 2016-2022
excavation (Supplementary Table 23). Extraction and analytical pro-
tocols followed in ZooMS were previously published*. In brief, asmall
piece of bone (about 5 mg) from each specimen was suspended and
denatured in 50 mM ammonium bicarbonate pH 8.0 for 1 h at 65°C.
The samples were digested overnight at 37 °C with 50 mM trypsin solu-
tion, acidified using 5% trifluoroacetic acid (TFA) and purified using a
HyperSep C18 filter plate (Thermo Scientific). Matrix-assisted laser
desorptionionization-time-of-flight MS (MALDI-TOF MS) analysis for
thefirst 649 specimens was conducted at the IZI Fraunhofer in Leipzig,
Germany, in an autoflex speed LRF MALDI-TOF (Bruker) with reflector
mode, positive polarity and spectra collected in the mass-to-charge
range1,000-3,500 m/z. The remaining specimens were analysed ona
MALDI-TOF 5800AB Sciex instrument at the Ecole Supérieure de Phy-
sique et Chimie Industrielle, Paris, France, in positive reflector mode,
covering amass-to-charge range of1,000to 3,500 Da. MALDI-TOF MS
replicates (n = 3) were averaged for each sample and manually inspected
for the presence of relevant peptide markers (A-G)** in mMass v5.5.0
(ref. 45). MALDI-TOF MS spectra were analysed in comparisonto a
reference database containing collagen-peptide marker masses of all
medium-to larger-sized generain existence in western Eurasia during
the late Pleistocene*****’, Glutamine deamidation values were calcu-
lated using the Betacalc3 package*® on the basis of COL1a1 508-519
deamidation.

Second, we proteomically sequenced a subset of 341 fragmentary
bone specimens, previously identified by ZooMS, with SPIN®. A total
of 129 specimens were retrieved during the 1932-1938 excavation and
212 specimens came from the 2016-2022 excavation (Supplementary
Table 7). Approximately 5 mg of each bone specimen was suspended
and demineralized overnightin 5% hydrochloric acid (HCl)and a 0.1%
nonyl phenoxypolyethoxylethanol (NP-40) solution at room temper-
ature with continuous shaking. Reduction, alkylation and collagen
gelatinization were facilitated by adding 0.1 M tris(2-carboxyethyl)
phosphine (TCEP) and 0.2 M N-ethylmaleimide (NEM) at 60 °C, for
1h. The protein aggregation capture and digestion took placeon a
KingFisher Flex (ThermoFisher Scientific) magnetic bead-handling
robot. Protein extracts were mixed with magnetic SIMAG-Sulfon beads.
Protein aggregation was initiated with the addition of 70% acetoni-
trile (ACN). The beads and the proteins were washed in 70% acetoni-
trile, 80% ethanoland 100% acetonitrile consecutively. Then, proteins
were released into a solution of 20 mM Tris pH 8.5, 1 ug ml™ LysC and
2 pug ml™ trypsin for proteome digestion. The digestion was finalized
outside therobotat37 °C, overnight. The peptides were acidified with
5%trifluoroacetic acid and purified ina C18 Evotip. The specimens were
analysed on an Evosep One (Evosep)* connectedin line to an Orbitrap
Exploris tandem mass spectrometer (ThermoFisher) at the Centre
for Protein Research at the University of Copenhagen, Denmark. The
samples were analysed with the 200SPD Evosep One method onashort
online liquid chromatography gradient in MS/MS data-independent
acquisition (DIA) mode using a homemade 3-pm silica column. Full
scans ranged from 350 to 1,400 m/z and were measured at 120,000
resolution, 45 ms maximum IT, 300% AGC target. Precursors were
selected for data-independent fragmentation in 15 windows ranging
from349.5t0770.5 m/zand 3 windows ranging from 769.5t0 977.5 m/z,
with 1-m/z overlap.

DIA MS/MS spectra were loaded into Biognosys Spectronau
v15.6.211220, and analysed using either library-based (libDIA) or library-
free DirectDIA (dirDIA) search. The required peptide identification
datawere generated with a Spectronaut report based on the SPIN.rs®
scheme for DIA analysis, and the library-based and the library-free
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DirectDIA searches were carried out as described in previous studies®.
The utilized protein sequence databases contained entries for the 20
most common bone proteins from awide range of species represented
in UniProt and Genbank. The species determination was carried out
inRv4.1.2 (ref. 52) as described previously™. Variable modifications
included in the search were oxidation (methionine), deamidation
(asparagine-N, glutamine-Q), glutamine to pyroglutamic acid, gluta-
mate to pyroglutamate and proline hydroxylation, while NEM derivati-
zation of cysteine was included as a fixed modification. In part, SPIN
taxonomicidentification was based on gene-wise alignment of protein
entries in the searched database and the computation of two quality
control markers for estimating the confidence of each taxonomic
assignment. As a result, we noted that the SPIN and ZooMS taxo-
nomic reference databases were composed of partly overlapping but
highly different taxonomic entities (Supplementary Table 8), with
absences of some taxonomic groups in SPIN resulting in false species
assignments despite high-confidence bone proteome data (Supple-
mentary Figs. 11 and 12). The six Ranis specimens subjected to liquid
chromatography-MS/MS with data-dependent acquisition were
analysed as described previously*>.

Morphological identification of hominin remains

All of the faunal remains from the 1932-1938 excavation housed at
the Landesamt fiir Denkmalpflege und Archiologie Sachsen-Anhalt
in Halle (Saale) were sorted to potentially identify human remains
among them. This consisted of examining each skeletal element of any
size and visually assessing characteristics such as overall shape, size,
tissue proportions, developmental stage and presence of particular
anatomical features to discern the right category for abone or tooth.
Several potentially hominin specimens were isolated in this manner.
They come mostly fromthe upperlayers of the site. The human status
of those from the lower layers was confirmed through DNA analysis,
and they were subsequently directly radiocarbon dated.

Radiocarbon dating

Radiocarbon dating of 30 samples from layers 11-7 of the 2016-2022
excavation was undertaken to establish a site chronology, including
27 bone specimens and 3 charcoal samples (Supplementary Table13).
The bone specimens included 4 hominin bones and 23 faunal bones
(14 of which showed signs of anthropogenic modification including
butchery, cut marks and percussion notches). Six homininbones from
the1930s collections wereradiocarbon dated to determine their chron-
ological positioninrelationto the newsite chronology. Two additional
hominin bones from the 1930s collection had been conserved with
paraffin so they were excluded from dating owing to the risk of con-
tamination (Supplementary Fig. 13 and Supplementary Information
section 4.1).

Pretreatment of the bone samples was carried out in the Depart-
ment of Human Evolution at the Max Planck Institute for Evolutionary
Anthropology in Leipzig, Germany. Collagen was extracted from the
faunal bone samples using about 300-600 mg material following an
acid-base-acid plus ultrafiltration protocol published previously**,
and from the human bones using about 55-160 mg bone material fol-
lowing a previously published protocol for small sample extraction®*
(Supplementary Information section 4.1). Two faunal bones were
pretreated with a second collagen extraction protocol to test for the
presence of modern carbon contamination resulting from humicacids
(Supplementary Table 14). Suitability for dating was assessed on the
basis of the collagen yield (as a percentage of dry bone weight) with
a1% minimum requirement and the elemental values, measured on a
ThermoFinnigan Flash elemental analyser coupled to a Thermo Delta
plus XPisotope ratio mass spectrometer. To pass the quality threshold,
samples were required to fall within the accepted elemental ranges
of modern collagen samples (about 35-45% C; about 11-16% N; C/N
between 2.9 and 3.6)%.

The collagen extracts were graphitized®” and dated at the Labora-
tory for lon Beam Physics at ETH Zurich, Switzerland on a MICADAS
accelerator mass spectrometer (AMS)***?, Sub-samples of two bones
that date beyond the limit of the *C method (>50,000 BP) (‘back-
ground’ bones) were pretreated and dated alongside the samples
to monitor laboratory-based contamination. The accelerator mass
spectrometer measurements of the collagen backgrounds were used
in the age correction of each batch of samples in BATS®, with an addi-
tional 1%. error added, as per the standard practice (Supplementary
Table13).

The three charcoal samples were pretreated at the Curt-Engelhorn-
Center for Archaeometry gGmbH (MAMS) using a softened ABOX proto-
colbefore being combusted to CO, in an elemental analyser, converted
catalytically to graphite and measured ona MICADAS accelerator mass
spectrometer®. Two of the three charcoal samples had very low percent-
ages of C following combustion and were therefore excluded from the
site chronological modelling.

Measured radiocarbon ages arereported in Supplementary Table 13
with the abbreviation BP, meaning radiocarbon years before AD 1950,
and arereported with loerrors, whereas calibrated radiocarbon ranges
aredenoted as cal Bpand are given at the 95.4% (20) probability range.
Allages have beenrounded to the nearest 10 yr. Calibration and Bayes-
ian modelling of the radiocarbon dates was carried out in OxCal v4.4
(ref. 62) using the IntCal20 calibration curve®’. A multi-phase model
was constructed for the dates from the 2016-2022 excavation using
stratigraphicinformationas a prior. A ‘general’ outlier model was used
toassessthelikelihood of each sample being an outlier with prior prob-
abilities set to 5%. The date ranges for each layer discussed inthe text are
the output of the site chronological modelling. Furtherinformation and
the OxCal codeisincluded in Supplementary Information sections 4.2
and 4.3 and Supplementary Tables 15 and 16.

Ancient DNA analysis

Eleven skeletal remains were screened for ancient human DNA pres-
ervation. Between 6.1 and 63.9 mg of bone powder was drilled from
each specimenin a dedicated clean room at the Max Planck Institute
for Evolutionary Anthropology in Leipzig, Germany, or the former Max
Planck Institute for the Science of Human History inJena, Germany. DNA
extracts were prepared following the protocol described previously®*
with buffer ‘D’ and subsequently converted into single-stranded and
double-indexed libraries following the automated protocol described
previously®. Libraries from 10 of the 11 remains were subsequently
enriched for human mtDNA using the singleplex automated capture
protocol described earlier®®. The resulting libraries were sequenced
on either the lllumina NextSeq or MiSeq platforms (2 x 76 cycles). No
cross-contamination of DNA molecules due to index hopping was
detected in these libraries on the basis of calculations from a previ-
ously published method®. For one of the specimens, R10873, four
single-stranded libraries were prepared from the same extract in the
Jena facilities following the protocol described above and pooled
together. Shotgun sequencing of the pooled libraries was carried out at
the SciLifeLab, onafull NovaseqS4-200 flow-cell using 2 x 75-base-pair
paired-end sequencing.

Base calling was carried out with Bustard, and reads were overlap
merged using leeHom®. Mapping was carried out with BWA®® using
adjustments forancient DNA (-n 0.01-02-116500)%. All libraries were
mapped to the human mtDNA revised Cambridge Reference Sequence
(NC_01290)™. Reads fromthelibraries generated from the same skeletal
fragment were then merged using Samtools merge”. PCR duplicates,
reads shorter than 35 base pairs or with a mapping quality less than
25 were removed using bam-rmdup (v0.6.3; https://bitbucket.org/
ustenzel/biohazard). Each library was then evaluated for the pres-
ence of authentic ancient human DNA (Supplementary Table 25). The
proportion of present day human DNA contamination was estimated
using AuthentiCT”2 Support for H. sapiens, Neanderthal or Denisovan
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mtDNA among the recovered mtDNA fragments was determined using
sets of previously published ‘diagnostic’ positions” that allow differ-
entiation among these hominin mtDNA types (Supplementary Infor-
mation section 5).

FullmtDNA genomes were reconstructed for 10 of the 11 specimens
with >70-fold coverage of the mtDNA genome. Consensus bases were
called using either all fragments (for the libraries with the levels of
present day human DNA contamination <5%) or deaminated frag-
ments alone (for the libraries with the levels of present day human
DNA contamination >5%), requiring each site to be covered with at
least five DNA fragments and 80% support while ignoring the C-to-T
substitutions onthe first and/or the last seven positions from the align-
ment ends. The haplogroup of each reconstructed mtDNA genome
was determined using HaploGrep2 (v2.4.0)™. MAFFT (v7.453)” was
used torealign all ten newly reconstructed human mtDNA genomes to
the rCRS with previously published mtDNA genomes from 54 modern
humans, 19 ancient humans and 2 Neanderthals. A phylogenetic tree
relating these mtDNA genomes was generated using BEAST2 v2.6.6
(ref. 76) with a Bayesian skyline tree model and strict clock model (see
Supplementary Information section 5 for model and parameter details;
Supplementary Table 21). Molecular dates for the new mtDNA genomes
were estimated by calibrating the tree with the mtDNA genomes of
individuals with direct radiocarbon dates (Supplementary Table 20).
Todifferentiate between calibrated radiocarbon ranges and molecular
dates, we use cal Bp before present for the former and years before
present for the latter.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw LC-MS/MS proteomics data for the DIA search have been
deposited to the ProteomeXchange Consortium through the PRIDE”
partner repository under accession code PXD043272. The raw LC-
MS/MS and MaxQuant search proteomics data for six bone specimens
analysed in DDA mode included in this study have been deposited to
the ProteomeXchange Consortium through the PRIDE partner reposi-
tory with the dataset identifier PXD042321. The MALDI-TOF.mzml
and.msd type files included in this study are available at https://doi.
org/10.5281/zenod0.8063812 (ref. 78). The newly reconstructed mtDNA
sequences are available at https://doi.org/10.5061/dryad.1jwstqkOs
and the sequencing data are available at the European Nucleotide
Archive (PRJEB67776).

Code availability
The full code descriptionis provided in the Supplementary Information.
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Extended DataFig.2|Map of Ranis with the location of the newly identified  sq.101/107-2,31",2,56%sq.51A/114-2,32/,2,36’,2,37,2,528,2,54 % sq.

homininspecimens andselected lithic artefacts. The numbered squares 144/154-2,247,2,297°,2,428,2,43),2,59%;5q.164 - 2,26’,2,60’,2,78°.

were excavated by W.M. Hiille in the 1930s and we excavated the blue area Artefacts marked witha®,’,P*and®are bifacial leaf points, Jerzmanowice
between 2016 and 2022. The human specimen IDs are provided on the figure points, pointed blades and ablade, respectively. Theillustrated lithic artefacts
(Tab. S5, SI); the five specimens with an asterisk next to their ID showed no wereallfoundin the same layers and on the same day as or withinaday of the
pairwise differencesin their mtDNA. The artefact IDs are as follows (from left excavation of the newly identified human remains from the same squares. Site

toright whenmore thanoneis presentinthe same square):sq.51-2,46°5; map and artefact drawings are modified from Hiille".
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Extended DataFig. 4 |Protein deamidation for allhomininspecimensin
Ranis. a) Deamidation rate of COL1A1508-519 for hominin specimensinthe
2016-2022 and 1932-1938 excavations with ZooMS (layer X, n =4 NISP; layer 8,
n=3;layer9,n=1),b) Glutamine (Q) deamidation plot for hominin specimens
inthe2016-2022 and 1932-1938 excavations analysed with directDIA SPIN
(layer X, n=4;layer 8, n=3),and c) Asparagine (N) deamidation plot for hominin
specimensinthe2016-2022 and 1932-1938 excavations analysed with directDIA
SPIN (layer X, n = 4;layer 8, n=3). The hominin specimenrecovered from layer 9

wasnotincludedinthe SPIN analysis (plotsband c). For panela, lindicates no
deamidation of Nor Q, while O indicates complete deamidation of Nor Q. For
panelsbandc, Oindicates no deamidation of Nor Q, while lindicates complete
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medians (centrelines).



se—"

20 40 60
Yo N p -~ pt = E = |
Ooblol < | < S =[Szl 2|2 2 ZE
A 5 o - A I VI B [ 3 9 9 A I = RO
< 3 3 5 ololaloloa] o o) o | o |"Hok
< ol O (] (] (]
o 1) o o | o o o o o 8} o o o
R10355*
R10396*
R10400
R10318
16/116-159253
16/116-159327*
16/116-159199
0 10000 20000
Extended DataFig. 5| Proteomic coverage for the seven homininbone coverage, and black indicates high coverage. The asterisk (*) marks the
specimens analysed with SPIN. Peptide spectrum match (PSM) count per specimens where mtDNA indicates they originate from the same or maternally
proteinamino acid for each hominin specimen by libraryDIA of the 20 genes related individuals. The x-axis represents the amino acid positionin the protein
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Extended Data Table 1| Hominin specimens identified in Ranis

Specimen ID Morp lIl]o)l gtical ZooMS ID [SPIN ID mtDNA Square Layer | Excavation
R10355 - Homo Homo | Homo sapiens S1A X 1932-1938
R10396 - Homo Homo | Homo sapiens 164 X 1932-1938
R10400 - Homo Homo | Homo sapiens 51 X 1932-1938
R10318 - Homo Homo | Homo sapiens S1A X 1932-1938
R10874 Homo - - Homo sapiens | 101/102/107 X 1932-1938
R10873 Homo - - Homo sapiens 114 IX-X | 1932-1938
R10875 Homo sapiens? - - Homo sapiens 14C X-XI? | 1932-1938
R10876 Homo - - Homo sapiens 19A X-XI | 1932-1938
R10879 Homo? - - Homo sapiens 144/154 X-XI | 1932-1938
16/116-159253 - Homo Homo | Homo sapiens | 1004/999 8 2016-2022
16/116-159327 - Homo Homo | Homo sapiens | 1003/1000 8 2016-2022
16/116-159199 - Homo Homo | Homo sapiens | 1003/999 8 2016-2022
16/116-159416 - Homo - Homo sapiens | 1003/999 9 2016-2022

Hominin specimens are organised by their recovery during either the 1932-1938 or 2016-2022 excavations.
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

The Lincombian-Ranisian-Jerzmanowician (LRJ) is an archaeological technocomplex of the Middle to Upper Paleolithic transition
spanning from Poland to Britain and whose makers are yet unknown. The main research questions of our project were: who made
the LRJ and what is the chronology of their occupation? The site llsenhdle in Ranis is one of the type sites of the LRJ and the target of
our investigations. The site was initially excavated from 1932-1938. The collection from this excavation period is stored in the
Landesmuseum fir Vorgschichte Halle/Saale, Germany. We excavated the site llsenhohle in Ranis from 2016-2022. The goal was to
clarify and date the stratigraphy, and obtain samples from the entire stratigraphy, with a focus on the LRJ find layer. These samples
include: sediment samples, artefacts, bones, charcoal and sediment DNA. Additionally, we worked on the 1932-1938 collection and
analysed the material. Based on the detailed stratigraphy of the new excavations and the dating, the material of old and new
excavations can be correlated.

Samples from archaeological fieldwork (sediment including micromorphology and sediment DNA, bones, charcoal, artefacts), and
from the collection of the 1932-1938 excavation (bones).

For proteomic analysis, 20 mg of fine bone powder was homogenized and equally divided into two different tubes. For radiocarbon
dating, samples were selected based on their stratigraphic context and presence of anthropogenic modifications (faunal bones) and
human material from both collections was selected for direct dating. ~300-600 mg material was sampled from faunal bones and
minimal sampling strategies were employed for the human remains (55-160 mg) to minimise destructive sampling. The amount for
genetic analysis s between 9.9 and 63.9 mg per skeletal fragment.

Data from the 2016-2022 fieldwork was collected during excavation. The 1932-1938 collection (bones) was provided from the
Landesmuseum fir Vorgschichte Halle/Saale, Germany.

Excavations of llsenhohle in Ranis were conducted from 2016-2022. The sampling of the 1932-1938 collection (bones), stored in the
Landesmuseum fir Vorgeschichte Halle/Saale was done in parallel to the fieldwork.

No data were excluded from this study.

We performed two different types of proteomic analysis (Zooarchaeology by Mass spectrometry and shotgun proteomics) for species
identification of a subset of bone specimens. However, not all specimens were analysed by the two different proteomic approaches.

Randomization was not relevant to the current study - all available archaeological data were collectively analysed.

Blinding was not relevant to the current study - all available archaeological materials were analysed.
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Did the study involve field work? X ves [InNo

Field work, collection and transport

Field conditions The field conditions were optimal and temperate in terms of temperature. We excavated mostly during summer. Weather had only
minimal effect as the site is a cave setting and was additionally protected by a roof.

Location lIsenhohle in Ranis/ Thuringia, Germany: 50°39.7563'N, 11°33.9139’E

Access & import/export  We had direct access to the site llsenhdhle in Ranis and the Landesmuseum fiir Vorgeschichte/ Halle, as all responsible authorities
are part of the study.

Disturbance No disturbance

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern
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Palaeontology and Archaeology

Specimen provenance Excavation of the site llsenhohle in Ranis. Responsible: Thuringian State Office for the Preservation of Historical Monuments and
Archaeology, Weimar.

Specimen deposition Thuringian State Office for the Preservation of Historical Monuments and Archaeology,
Weimar, Germany (2016-2022 collection); and Landesamt fir Denkmalpflege und Archéologie Sachsen-Anhalt-Landesmuseum fir
Vorgeschichte, Halle, Germany (1932-1938 collection)

Dating methods 36 new radiocarbon dates are reported (bone = 27, charcoal = 3) from material sampled from the 1932-1938 collection and
2016-2022 collection. Human samples were selected for direct dating and faunal/charcoal material was selected from the new
excavation based on stratigraphic context. Animal bones with anthropogenic modifications were selected where possible. ~300-600
mg material was sampled from faunal remains and 55-160 mg from human remains. Bone samples were pretreated at the MPI-EVA
(Leipzig, Germany) using an acid-base-acid plus ultrafiltration protocol, with quality assessed based on collagen yield (%) and
elemental values derived through EA-IRMS (C%, N%, C:N). Collagen extracts were graphitised and AMS dated at the Laboratory of lon
Beam Physics at ETH-Zurich (Switzerland; lab code ETH). Charcoal samples were pretreated with an ABOx pretreatment method,
graphitised and AMS dated at the Curt-Engelhorn-Centre for Achaeometry (Mannheim, Germany; lab code MAMS). Two charcoal
dates were excluded from the site model based on their low C% following combustion. All the dates were calibrated using the
IntCal20 calibration curve (Reimer et al 2020). Calibration and modelling were done using OxCal (v4.4). All measured and calibrated
dates are reported.

|X| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight No ethical approval was required for this study considering we did not perform any experiments on living organisms.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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