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Abstract—Clustering of high-dimensional data is a challenging
task, since the usual distance measures in high-dimensional space
cannot reflect how clusters are partitioned. In this work, by
assuming there are some data examples with known labels, a new
semi-supervised clustering approach is proposed using a modified
canonical correlation analysis and t-SNE. Initially, t-SNE projects
high dimensional data onto 3D embedding. While the clusters in
the t-SNE embedding space may be visually separable, it is still
challenging to achieve very good clustering performance with a
conventional unsupervised clustering algorithm. In this work, by
using radial basis functions (RBFs) in t-SNE embedding space,
centred as some labelled points, a modified canonical correlation
analysis algorithm is introduced. The proposed algorithm is
referred to as RBF-CCA, which learns the associated projection
matrix using supervised learning on the small labelled data set,
followed by projection of the associated canonical variables to a
large amount of unlabelled data. Then, k-means clustering is ap-
plied as the final clustering step. To demonstrate its effectiveness,
the proposed algorithm is experimented on several benchmark
image data sets.

Index Terms—semi-supervised learning, embedding, canonical
correlation analysis, radial basis function, spectral clustering.

I. INTRODUCTION

When dealing with empirical data, it is common to begin
by identifying groups of similar behaviour in the data sets.
Over the past decades, various clustering methods have been
proposed, including centroid-based clustering [1], density-
based clustering [2], spectral clustering [3], distribution-based
clustering [4], ensemble clustering [5], etc. Clustering is one
of the most prominent research topics in machine learning,
computer vision, data mining and various scientific applica-
tions [3], [6], [7]. Data visualization via dimensionality reduc-
tion is critically important for understanding and interpreting
the clustering structure of large data sets. The t-distributed
stochastic neighbor embedding (t-SNE) algorithm, proposed
by van der Maaten and Hinton [8], is a state-of-art technique
of dimensionality reduction and visualization for a wide range
of applications [9]. Cai and Ma investigated the theoretical
foundations of t-SNE, to provide theoretical guidance for
applying t-SNE and help select its tuning parameters in various
applications [10]. Note that since the t-SNE technique cannot
be used for predicting embeddings of new data samples, the
data set needs to be defined in advance.

Data clustering, in most cases, is an unsupervised classi-
fication paradigm which divides observed data into different
subsets (clusters), such that similar objects are allocated to the
same subset while dissimilar objects are assigned to different
subsets. However, sometimes there is prior knowledge in the
clustering output space which can be used to enhance the
clustering results, such as some cluster labels being available
for a subset of observations, or we may know that some obser-
vations belong to the same cluster, or must belong to different
clusters. Clustering algorithms which combine complementary
information to supervise the cluster learning process are called
semi-supervised clustering methods [11]. One of which, the
concept of few shots learning (FSL) is proposed [12], [13]
which refers to the learning from a limited number of examples
with supervised information. This learning paradigm is desired
since large-scale labelled datasets can be expensive in many
applications, e.g. in semantic segmentation to associate a label
or category with every pixel in an image [14].

The canonical correlation analysis (CCA) was originally
proposed by H. Hotelling in the seminal works [15], [16]. The
subject of this work is finding the best predictors among the
linear functions from each set by maximizing the correlation
coefficient between two sets. CCA can simplify the statistical
analysis for two set variables and properly solve the afore-
mentioned problem, by defining a sequence of pairs of vari-
ates as canonical variates and the correlations between them
as canonical correlations. The complicated high-dimensional
variable sets are projected in the common latent subspace
with a desired low dimension. In an attempt to increase the
flexibility of CCA for nonlinear relationships between two ran-
dom variables, kernel CCA (KCCA) has been introduced [17].
CCA/KCCA was applied for effective feature selection tool as
a preprocessing step for classifiers of support vector machine
or random forests [18]. As a powerful tool for multimodal
feature fusion, CCA/KCCA has received widespread attentions
in both theoretical advances and applications (see [19] and
references within).

In this work, a novel semi-supervised clustering algorithm
is proposed using a modified canonical correlation analysis
and t-SNE. The contributions of this work are summarized as
follows:

1) The proposed algorithm operates over a 3D embedding



space via t-SNE, aimed at clustering of high dimensional
data sets.

2) In order to provide an approximation of the nonlinear
shapes of t-SNE clusters, radial basis functions using
labelled-data input features, are employed as the first
set of variables for RBF-CCA, the class labels become
indicative variables as a second set of variables in CCA.

3) The proposed algorithm transfers knowledge from la-
belled data sets, via projection of the associated canoni-
cal variables, to a large amount of unlabelled data, based
on which k-means clustering is applied as used by a
spectral clustering algorithm [20].

4) The clustering algorithm can be viewed as a generalized
spectral clustering algorithm, due to that CCA is based
on eigen-decomposition of data matrices.

The remainder of paper is organized as follows: Section II
introduces the proposed semi-supervised algorithm based on
RBF-CCA and t-SNE. Section II-A presents the problem state-
ment and the objective. Section II-B provides preliminaries of
CCA, followed by Section II-C which presents the problem of
the semi-supervised clustering and the proposed algorithmic
solution. In Section III, numerical experiments are performed
based on four well-known image data sets to compare with the
baseline approaches of a k-means clustering algorithm based
on the original data and the t-SNE embedding, respectively.
Section IV is devoted to conclusions.

II. PROPOSED SEMI-SUPERVISED ALGORITHM BASED ON
RBF-CCA AND T-SNE

A. Problem statement
To consider a task of semi-supervised few-shots cluster-

ing, we have some labelled data points Nl � Nu , as
Dtrain = {xi, ti}Nl

i=1, where xi = [xi,1, ..., xi,n]
T ∈ �n

is a high dimensional input feature vector, there is also a
large test data set Dtest = {xi, ti}Ni=Nl+1, N = Nl + Nu.
The problem is to assign each xi a cluster t̂i ∈ {1, ...K},
that minimizes the average discrepancies between ti and t̂i
for all i. We initially adopt an unsupervised learning stage
via the t-SNE embedding construction, followed by building
the so-called canonical variables using radial basis functions
from Dtrain’s t-SNE embedding. Finally, k-means clustering
is applied to these canonical variables, learnt from RBF-CCA
projection, over both Dtrain and Dtest, in order to obtain
cluster membership of each index i.

Note that the problem and solution differ fundamentally
from a classification problem, in which one trains a classi-
fier H : xi → t̂i using an optimization algorithm, which
involves minimizing training errors over Dtrain, then the
classifier is applied to Dtest or any new data samples. The
main objective of the proposed semi-supervised clustering
algorithm is to offer improvement over clustering performance
of an unsupervised algorithm. The clustering algorithms, with
limited labels in large amounts of data, is desired in many
applications, since a classification algorithm can be expensive
due to its dependency on data collection and labelling, or being
computationally costly to train.

B. Canonical correlation analysis

Canonical correlation analysis (CCA) is a way of mea-
suring the linear relationship between two sets of multidi-
mensional variables. Consider two sets of random variables
Φ = {φi}, i = 1, ..., d1 and Ψ = {ψi}, i = 1, ..., d2
with zero mean. It is assumed that Φ, Ψ are full rank, and
d = min(rank(Φ), rank(Ψ)).

Denote the total covariance matrix as

C =

[
CΦΦ CΦΨ

CΨΦ CΨΨ

]
= E

[(
Φ
Ψ

)(
Φ
Ψ

)T
]

(1)

Define a set of two projection matrices A = [a1, ...,ad] ∈
�d1×d and B = [b1, ..., bd] ∈ �d2×d, which generate a set
of linear combinations named U = ΦA = [u1, ...ud] and
V = ΨB = [v1, ...vd]. Each member of U is paired with a
member of V , as a set of canonical variables pairs (ui,vi).

The task in CCA is to find A,B such that the correlations
ρi(ui,vi) are maximized. Represent

ρi =
aT
i CΦΨbi√

aT
i CΦΦai

√
bTi CΨΨbi

, i = 1, ..., d. (2)

Equivalently,

max
ai,bi

ρi = a
T
i CΦΨbi, ∀i (3)

subject to aT
i CΦΦai = 1, bTi CΨΨbi = 1.

To obtain the CCA solution, initially define [21]

K = C
−1/2
ΦΦ CΦΨC

−1/2
ΨΨ (4)

and perform singular value decomposition of K as

K = ΓΛΔT (5)

with Γ = [γ1, ...γd], Δ = [δ1, ..., δd]. Λ = diag{λ1/2
1 , ...λ

1/2
d }.

and λ1 ≥ λ2 ≥ ...λd are the nonzero eigenvalues of KTK. γi
and δi are the left and right eigenvectors of K.

Now define

ai = C
−1/2
ΦΦ γi

bi = C
−1/2
ΨΨ δi (6)

so that

cov(ui,uj) = a
T
i CΦΦaj = γT

i γj =

{
1 i = j
0 i �= j

(7)

cov(vi,vj) = b
T
i CΨΨbj = δTi δj =

{
1 i = j
0 i �= j

(8)

and the correlation between ui and vi has maximal of

ρ(ui,vi) = γT
i ΓΛΔ

T δi = λ
1/2
i . (9)



C. Proposed semi-supervised spectral clustering algorithm
using RBF-CCA

Suppose that we have some Nl � Nu labelled data points,
as Dtrain = {xi, ti}Nl

i=1, where xi = [xi,1, ..., xi,n]
T ∈ �n

is a high dimensional input feature vector. ti ∈ {1, ...K}
for a given K � Nl. Let the input data points with labels
be denoted as X(L) = [x1, ...,xNl

]T. Simultaneously, there
are Nu 	 Nl unlabelled data points given as X(U) =
[xNl+1, ...,xN ]T. Denote the completed input data points

X =

[
X(L)

X(U)

]
∈ �N×n,

The goal of semi-supervised clustering is to partition these
points into K disjoint sets, with partial assistance of supervised
learning from the data set Dtrain.

Initially, we apply t-SNE algorithm (Appendix A) for di-
mensionality reduction xi ∈ �n −→ yi ∈ �m. Denote
Y = t-SNE(X) as the full set of input features.

It is known that the t-SNE algorithm can generate visually
irregular shaped clusters. However, if a conventional clustering
algorithm, e.g. k-means, is applied to assign cluster labels to
yi, it may not be very effective, due to that the clustering
criterion in k-means is oversimplified, minimizing average
distances to each cluster centre, which is not suitable for
irregularly shaped clusters. An improvement would be to have
a better approximation to the actual cluster shapes.

Radial basis functions are a cornerstone in approximation
theory [22]. The output of a radial basis function reduces as
the distance between the input and its fixed centre increases,
giving its ability to locally identify new data to these centres.
In order to model the irregularly shaped t-SNE clusters, we
propose to use a modified CCA based on radial basis functions
using Dtrain, referred to as RBF-CCA. Since within the
visible t-SNE separate clusters, the training data embeddings
are assigned known labels, these are set to be centres us-
ing Dtrain. For convenience, we denote the embedding of
labelled data points as cj = yj , i = 1, ..., Nl. Over Y , let

φi,j = exp
(
−‖yi−cj‖2

2σ2

)
, in which cj are the centres of radial

basis functions, σ is a preset proper hyperparameter. In this
work, we simply use

σ =

√√√√ 1

NNl

N∑
i=1

Nl∑
j=1

‖yi − cj‖2 (10)

to construct a matrix

Φfull =

⎡
⎢⎣

φ1,1 · · · φ1,Nl

...
. . .

...
φN,1 · · · φN,Nl

⎤
⎥⎦ (11)

followed by mean removal as

Φfull ← Φfull − mean(Φfull).

Let

Φfull =

[
Φ

ΦU

]
, (12)

where Φ ∈ �N×nl is based on labelled data Dtrain, which
is used as the first set of variables in our proposed RBF-
CCA. By examining (11), we can see that this fills up all
pair-wise RBFs between a query (input features in t-SNE)
to that of training data (with known labels). At each row,
only data points close to any given labelled training data will
be excited, otherwise their values are close to zero. Since t-
SNE have visible clusters, this means that each data query,
will generate some significant values according to the labelled
points associated to some cluster, linked to the second set of
variable in CCA designed as follows.

In order to create the second set of variables with the objec-
tive of semi-supervised clustering, Ψ ∈ �Nl×K is generated
as

Ψ =

⎡
⎢⎣

ψ1,1 · · · ψ1,K

...
. . .

...
ψNl,1 · · · ψNl,K

⎤
⎥⎦ (13)

in which

ψi,j =

{
1 j = ti
0 j �= ti

(14)

followed by mean removal as

Ψ ← Ψ− mean(Ψ).

Clearly, using canonical correlation analysis (CCA) for the two
sets of multidimensional variables Φ, Ψ, as defined above,
aims to capture the relationship between the nonlinear RBF
transform based on t-SNE clusters and the cluster labels for
the labelled data set Dtrain. The proposed algorithm, as shown
in Algorithm 1, modifies CCA in Sec II-B, based on RBF
functions constructed in labelled data via t-SNE embedding
mapping, and is referred to as RBF-CCA. Note that Line 5
returns the canonical variable corresponding to the full input
features, which are used for spectral clustering. The proposed
semi-supervised spectral clustering based on RBF-CCA is
given in Algorithm 2.

Algorithm 1 Modified CCA using radial basis functions
(RBF-CCA).
Require: Number K of clusters to construct; Labelled data

Dtrain = {xi, ti}Nl
i=1; Unlabelled data points X(U) =

[xNl+1, ...,xN ]T. Complete data in space of t-SNE Y .
1: Construct Φfull and Ψ using (11) and (13) respectively,

then remove their mean.
2: Recover Φ using (12).
3: Perform CCA to obtain A ∈ �Nl×K and B ∈ �K×K

(Section II-B)
4: Calculate Ufull = ΦfullA using complete input data set.
5: Return Ufull = {ui,j} ∈ �N×K .

Remarks:

1) The computational complexities of each part of the
proposed algorithm is in the order of O(nN2) (t-SNE),
which is further scaled by iterations of gradient descent
algorithms, O(N3

l ) (RBF-CCA), and O(N) (k-means



Algorithm 2 Proposed semi-supervised algorithm based on
RBF-CCA and t-SNE
Require: Number K of clusters to construct; Labelled data

Dtrain = {xi, ti}Nl
i=1; Unlabelled data points X(U) =

[xNl+1, ...,xN ]T.
1: Form complete input data matrix X . Apply Y =

t-SNE(X) to each point (Appendix A).
2: Call Algorithm 1.
3: Form the matrix Z = {zi,j} ∈ �N×K by normalising the

rows to norm one, i.e. to set

zi,j = ui,j

/√√√√ K∑
j=1

u2
i,j . (15)

4: for i = 1, ..., N do

5: Let ẑi ∈ �K be the vector corresponding to the ith row
of Z.

6: end for

7: Cluster the points ẑi, i = 1, ..., N with the k-means
algorithm [6] into clusters C1, ..., CK .

8: Return: Find clusters k ∈ {1, ...,K} with {k, ẑi ∈ Ck}
and assign original data points xi according to cluster’s
index set of k = 1, ...,K.

clustering). Since N 	 Nl, the main cost is due to that
of obtaining t-SNE embedding, which is a drawback for
problems with large N and n.

2) The proposed algorithm can transfer knowledge that
are learnt from RBF-CCA using labelled data sets via
projection of the associated canonical variables. Because
canonical variables, which are related to eigenvectors,
are applied for clustering, this approach is similar to
spectral clustering algorithms [20].

III. EXPERIMENTS

Four image data sets pendigits, usps, mnist [7] and fashion-
mnist [23] are used for validating the proposed algorithm. A
brief summary of the four data sets is provided in Table I.
We used this type of data set since it is generally large with
high dimensionality, thus likely to benefit from dimensionality
reduction for improved performance. The data set pendigits is
a handwritten digit data set of 250 samples from 44 writers,
collected as sampled coordinate information of each digit from
a tablet. The data set usps is a standard handwritten database,
and mnist is a handwritten digits data set, presented as a fixed-
sized image. The fashion-mnist data set is proposed as a more
challenging replacement data set for mnist. It is a data-set
comprised of 70,000 28×28 pixel gray scale images of items of
10 types of clothing, such as shoes, T-shirts, dresses, and more.
A visualization comparison between different types is shown
in Figure 1. Each data sample in X has undergone a 3D t-SNE
algorithm, to obtain the embedding Y , as shown in Figure 2.
Note that these data sets are originally divided into training and
test data sets for supervised classification tasks. In this work,
we merge the two parts for our semi-supervised setting. Then

the whole data set are divided by a randomly drawn labelled
subset with size (Nl) for semi-supervised, i.e, the labels are
used in training of the modified CCA model. The average
results over repeated random experiments are demonstrated.

The comparative methods are explained as follows:
1) The k-mean algorithm was applied to original data

feature.
2) The k-means algorithm was applied in 3D t-SNE as

described in this work.
3) Linear CCA algorithm: This semi-supervised method is

devised to validate effectiveness of RBF-CCA, in which
the same amount of labelled data are used for training,
and the t-SNE features and CCA are also applied. There
exists a key difference, which is that Φfull is formed
differently. In linear CCA algorithm, the t-SNE features
are used directly without any nonlinear transformation.

The results of the proposed RBF-CCA algorithm are pre-
sented in Tables II-V, based on an average of 20 random
experiments carried out by varying the number of labelled data
samples for training. The ratio of Nl/N is set as low as possi-
ble, yet as large as necessary to cover the data space, so there
are meaningful estimation results. Therefore, for pendigits and
usps data sets, a minimum of 5% data sample is experimented,
while for mnist and fashion-mnist, a minimum of 1% data
sample is experimented, according to their data size. This
means only a few hundred labelled data samples over K = 10
are used at most, which can lead to much improved clustering
performance over both unsupervised k-means algorithm for
original data and t-SNE embedding data. It can be seen
that as Nl increases, the clustering results improves for all
data sets. All algorithms outperform significantly over k-
means algorithm in original features, which don’t use any
labelled data to guide the clustering algorithm. When k-means
algorithm was applied in 3D t-SNE space, the performance
is much better than in original high dimensional data space
for all data sets. For the linear CCA algorithm, the same
range of Nl/N is experiments, it can also be seen that as Nl

increases, the clustering results also improve. Yet linear CCA
algorithm performance is much worse than the proposed RBF-
CCA algorithm, and is in general even slightly worse than k-
means algorithm in 3D t-SNE. This is because linear CCA is
unable to explain nonlinearity in 3D t-SNE clusters, which is
crucially important in achieving high clustering performance.
The proposed RBF-CCA algorithm is shown to have the best
performance for all data sets, due to the use of radial basis
functions with a small amount of labelled data sets as centres,
thus to fit irregular 3D t-SNE clusters.

IV. CONCLUSIONS

This paper has introduced a new semi-supervised clustering
algorithm by modifying canonical correlation analysis in the
manner that two sets of random variables are designed using
an RBF function. Given a set of large amount of data features,
within which a subset has known clustering labels, we have
proposed to perform t-SNE embedding initially, based on
which RBF-CCA algorithm is then developed. The first set



(a) (b)

Fig. 1. 10 sample images per class are shown as visual comparison between (a) mnist and (b) fashion-mnist; Each data-set has 70000 images.

(a) (b)

(c) (d)

Fig. 2. 3D t-SNE embedding with the true labels indicated by color; (a) pendigits and (b) usps; (c) mnist and (d) fashion-mnist;



TABLE I
A SUMMARY OF FOUR IMAGE DATA SETS.

Data sets Number of data Number of Number of
size (N ) features(d) classes (K)

pendigits 10992 16 10
usps 9298 256 10
mnist 70000 784 10

fashion-mnist 70000 784 10

TABLE II
CLUSTERING ACCURACY OF pendigits DATA SET.

Nl/N k-means k-means (t-SNE) Linear CCA Proposed CCA-RBF
0 77.06 86.45 - -

0.05 - - 82.90± 4.62 96.54± 3.69
0.1 - - 82.57± 3.62 98.49± 0.15
0.15 - - 85.59± 1.80 98.57± 0.18

TABLE III
CLUSTERING ACCURACY OF usps DATA SET.

Nl/N k-means k-means (t-SNE) Linear CCA Proposed CCA-RBF
0 66.66 66.51 - -

0.05 - - 76.49± 3.78 92.34± 2.74
0.1 - - 84.82± 6.46 93.44± 3.34
0.15 - - 87.96± 6.59 94.22± 3.20

TABLE IV
CLUSTERING ACCURACY OF minst DATA SET.

Nl/N k-means k-means (t-SNE) Linear CCA Proposed CCA-RBF
0 55.33 96.22 - -

0.01 - - 91.99± 4.58 96.06± 1.00
0.02 - - 92.64± 3.62 96.72± 0.10
0.05 - - 92.58± 3.78 96.89± 0.04

TABLE V
CLUSTERING ACCURACY OF fashionMinst DATA SET.

Nl/N k-means k-means (t-SNE) Linear CCA Proposed CCA-RBF
0 54.21 59.21 - -

0.01 - - 56.07± 0.55 76.58± 0.75
0.02 - - 56.09± 0.46 80.02± 0.40
0.05 - - 56.23± 0.54 81.32± 0.25

of random variables is designed based on a set of RBFs
using t-SNE embedding of input features, and the second
set of random variables are from their labels. The proposed
algorithm learns the associated projection matrix from RBF-
CCA, followed by learning the associated canonical variates
for the full input features. Finally, the canonical variates are
clustered using k-means clustering. The algorithm has been ex-
perimented using several benchmark data sets to demonstrate
its effectiveness, in comparison with baseline approaches.
Since clustering approaches do not make many assumptions
on the availability of labelled data, they are desirable in many
applications. Our future research will be focused on semi-
supervised or unsupervised clustering tasks in computer vision
applications, such as object detection and segmentation, by
combining other techniques in image analysis. It is also worth
investigating alternative design of CCA variables, with the
aim to achieve more effective performance for unsupervised

clustering approaches.

APPENDIX A: T-DISTRIBUTED STOCHASTIC NEIGHBOUR
EMBEDDING (T-SNE)

Given a set of N high-dimensional X = {xi}, i = 1, ...N .
As a tool for visualizing high-dimensional data by giving each
data point a location in a two or three-dimensional map, the
t-SNE [8] aims to learn a very low m-dimensional map Y =
{yi ∈ �m}, i = 1, ...N , with m typically chosen as 2 or 3.

The locations of the points yi in the map are determined by
minimizing the (non-symmetric) Kullback–Leibler divergence
of the distribution of the pairwise similarity probability P (of
X) from the distribution Q (of Y ):

KL(P‖Q) =
∑
i �=j

log
pij
qij

(16)

where pij is joint probabilities of similarity {xj ,xi}, qij is
joint probabilities of similarities of {yj ,yi}.



To this end, the similarity of two distinctive xj to xi is the
conditional probability, pj|i, defined as:

pj|i =
exp

(−‖xi − xj‖2/(2σ2
i )
)∑

k �=i exp (−‖xi − xk‖2/(2σ2
i ))

(17)

for i �= j. Set pi|i = 0, and

pij =
pj|i + pi|j

2N
(18)

By doing this, the distances between high dimensional data
points are transferred into probabilities using a Gaussian
distribution.

In t-SNE, a Student t-distribution with one degree of free-
dom (which is the same as a Cauchy distribution) as the heavy-
tailed distribution in the low-dimensional map. Set qii = 0.
The similarity of two distinctive yj to yi is defined as:

qij =

(
1 + ‖yi − yj‖2

)−1∑
k

∑
l �=k (1 + ‖yk − yl‖2)−1 (19)

for i �= j. yi in the map are determined using gradient descent
algorithm, with a user set hyperparameter using the concept
of perplexity, which is then used to determine σi in (17).
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