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W Check for updates

With global warming currently standing at approximately +1.2 °C since
pre-industrial times, climate change is a pressing global issue. Marine

cloud brighteningis one proposed method to tackle warming through
injecting aerosols into marine clouds to enhance their reflectivity and
thereby planetary albedo. However, because it is unclear how aerosols
influence clouds, especially cloud cover, both climate projections and the
effectiveness of marine cloud brightening remain uncertain. Here we use
satellite observations of volcanic eruptions in Hawaii to quantify the aerosol
fingerprint on tropical marine clouds. We observe alarge enhancement
inreflected sunlight, mainly due to an aerosol-induced increase in cloud
cover. This observed strong negative aerosol forcing suggests that the
current level of global warming is driven by a weaker net radiative forcing
than previously thought, arising from the competing effects of greenhouse
gases and aerosols. Thisimplies a greater sensitivity of Earth’s climate to
radiative forcing and therefore alarger warming response to both rising
greenhouse gas concentrations and reductions in atmospheric aerosols due
to air quality measures. However, our findings also indicate that mitigation
of global warming via marine cloud brightening is plausible and is most
effective in humid and stable conditions in the tropics where solar radiation
isstrong.

Aerosol-induced increases in liquid cloud opacity cool the Earthby  debated in the past few decades and still constitute one of the larg-
enhancing reflection of sunlight back to space and offset a large, est uncertainties in the estimate of radiative forcing'~, impeding
yet poorly quantified, portion of greenhouse gas warming". The cli-  a better understanding of climate sensitivity* and the remaining
mate impacts of aerosol-cloud interactions (ACI) have been widely  carbon emissions budget for avoiding overshooting the +1.5°C
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Fig.1|Kilauea volcanic plume. a,The SO, plumes observed by satellite in June
andJuly 2018. The colour shows the SO, (Dobson unit, DU) plume in the planetary
boundary layer observed by Ozone Mapping and Profiler Suite sensor on the
Suomi-NPP satellite, launched in October 2011. Here we aggregate the daily
level-two product of the boundary layer column SO, (horizontal resolution of
about 50 km) to a two-month average. The studied region is marked by a pink
box, where plume dispersal was sufficient and is also displaced from the Hawaii
islands to avoid orographic effects. b, Conceptual picture of volcanic aerosol
plumeinteracts with shallow convective marine clouds, leading to increase of
cloud cover, precipitation and more reflected solar radiation back to space.

climate target>®. However, as this target is in peril*, proposals have
emerged to help mitigate devastating climate impacts by conducting
deliberate marine cloud brightening (MCB) to ‘buy some time’”® while
the global economy is decarbonizing. At real-life regional scales, sci-
entists are experimenting with MCB, aimed at saving the Great Barrier
Reef from the seawater warming’. However, the efficacy and potential
side effects'® of MCB are not well understood or well evaluated, due to
anincomplete understanding of ACI.

The underlying principle of MCB s the ACI cooling effect, and the
goalisto enhancethe planetary albedo by seeding marine clouds with
aerosols. The cooling effect of ACl originates from aerosols serving as
cloud condensation nuclei, the seeds of cloud droplets. Higher aerosol
loadings typically lead to more but smaller cloud droplets, resulting
inenhanced cloud albedo and thus more sunlight reflection (Twomey
effect)". Smaller cloud droplets could delay precipitation onset, lead-
ing to alonger cloud lifetime and hence larger cloud cover and water
content (lifetime effect)'>. On the other hand, more but smaller cloud
droplets could also enhance entrainment evaporation from dry free
troposphere air, possibly leading to a decrease of cloud coverage and
albedo (entrainment effect). The ACI climate impact is determined
by the neteffect of the above processes, which are poorly constrained
orrepresented in global climate models (GCMs)"'*** resulting in large
uncertaintiesin the magnitude and even the sign of the efficacy when
evaluating MCB using multi-model ensembles'.

Onereason for the slow progress in the development of realistic
simulations of ACl in GCMs is the lack of observational constraints*®.
Satellite observations of aerosol and clouds have been widely employed
tostudy AClusing either small-scale natural experiments or large-scale
climatological approaches. Whereas both are useful, they do not

provide sufficient constraints®'**>, Small-scale natural experiments,
such asship tracks and industrial plumes manifested as linear features
of brighter clouds, are one prominent pathway to study ACI because
confounding meteorological co-variability cangenerally be ruled out,
forexample, refs. 5,16, but ship tracks are subgrid scale compared with
GCM resolutions. Large-scale climatological studies, for example,
refs.17,18, investigating spatio-temporal co-variability between aerosol
and clouds, while more suitable for constraining large-scale GCMs',
are often contaminated by meteorological co-variability®'*. Despite
theserespective limitations, aggregating alarge observational ensem-
ble of small-scale and large-scale satellite observations has resulted in
convergence of ACI'simpacts on cloud microphysical properties™'®: a
larger cloud droplet number concentration (N,) reduces cloud droplet
effective radius (r.) and brightens clouds with negligible change in
the ensemble-averaged cloud liquid water path (LWP). However, ACI's
impact on cloud macro-physical properties, such as cloud cover, is
persistently disputed, with disagreement of several orders of mag-
nitude between observations and models"*'*, This is because the
large-scale nature of cloud macro-physical properties suggests that
small-scale approaches struggle, for example, ship tracks cannot reveal
cloud cover response over hundreds of kilometres scale. On the other
hand, traditional climatological large-scale approaches also struggle
due to confounding meteorological co-variability®***°,

Early global modelling studies suggest that enhancing cloud
albedo by doubling N, could offset the warming from CO, doubling,
but they also highlight the large uncertainty associated with cloud
macro-physical properties”. Another modelling study estimated that
degassing volcanoes increase tropical low-level clouds’ N;by16%in the
present day, leading to a radiative effect (and associated cooling) of
about -0.9 W m2in the tropics due to the Twomey effect”. However,
the Twomey effect could only explain 20% of the increased reflection
of sunlight observed by satellites for a degassing volcanic event from
Hawaii®’. Previous studies® > suggest that cloud cover adjustment
should play a crucial role in ACI cooling and hence MCB, but GCMs
struggle to reproduce the observed strong relationship between aero-
sol and cloud cover*'”**, MCB could be significantly more effective
if cloud cover were to increase strongly in response to aerosol injec-
tions'®?, providing further motivation for this study.

Large-scale degassing volcanic eruptions offer ideal natural
experiments to investigate the overall impacts of ACl on climate®'s*®
with implications for MCB. Our recent study developed a novel
machine-learning approach to quantitatively disentangle aerosol
fingerprints on clouds from the noise of meteorological co-variability
and demonstrated its fidelity using a high-latitude degassing volcano
in Iceland®. Building on this approach, we disentangle the aerosol
fingerprints on tropical marine shallow convective clouds and fur-
ther quantify volcanic aerosol’s radiative cooling as an analogue to
MCB. We use four months of observations of volcanic eruptions in
Hawaii (Fig. 1), each month with distinct meteorological conditions.
These unique natural experiments in the tropics not only provide
invaluable constraints for improving climate models but have practi-
calimplications for any potential MCB deployment. Whereas areas of
stratocumulus frequently exceed 80% cloud cover®, the cloud fraction
in areas of tropical oceanic shallow convective clouds are frequently
much less than 50%. Thus, any MCB-induced change in the cloud frac-
tion in shallow convective areas could have a disproportionally large
cooling impact. This was one motivation behind the Geoengineering
Model Intercomparison Project-6 (GeoMIP6) whose solar radiation
management simulations (G4sea-salt) modelled the effectiveness of
injecting sea salt aerosols into the tropical marine boundary layer to
offset awarming radiative forcing of 2 W m™(refs. 30-32).

Aerosol fingerprints on clouds
To quantify the aerosol fingerprint on clouds and hence evaluate the
MCB, we build machine-learning surrogates of satellite observations
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Fig. 2| Aerosol fingerprints on clouds from natural experiments. a-c,June
2008 (a),June 2018 (b) and July 2018 (c). The aerosol-induced responses of
clouds are showninred, as ratios between observations and machine-learning
surrogates; non-perturbed baselines of normal conditions are shown in black.
The boxplots show 10th, 25th, median (Med.), 75th and 90th percentiles with
the average indicated by a dot. Cloud droplet number concentration (N,), cloud
droplet effective radius (r.g), cloud liquid water path (LWP) and cloud fraction
(CF), top of atmosphere upward shortwave flux at all sky (TOA-SW,.4,)

and rainfall. The uncertainty is estimated by a bootstrapping Monte Carlo

method (Methods), with black boxes showing the validation of machine-
learning surrogate against observations under normal conditions. The cloud
susceptibilities are show in black text, median (90% confidence interval).

Area (in units of km?) weighted averaging is used to calculate average cloud
properties over the geographical region (the pink box in Fig. 1a), to estimate
anunbiased large-scale response. All the ACl signals, that is, the differences
between the red and black boxes, pass the Mann-Whitney-Wilcoxom test with
significance >95% (P value < 0.05).

to diagnose counterfactual cloud properties and radiative fluxes for
given meteorological conditions (Methods). Using this approach, we
canreproduce clouds under ‘normal’ unperturbed conditions and
compare to observations perturbed by volcanic eruptions. Surrogates
are generated using 20 years of satellite observations of cloud proper-
ties, radiative energy fluxes, precipitation and co-located meteoro-
logical parameters and are well validated against observations using
advanced statistical approaches (Fig. 2, Supplementary Section1and
Extended DataFig.1; details alsoin Methods). Four months of degassing
volcanic eruptions at Kilauea in Hawaii during June and July in 2008
and 2018 are investigated. The Hawaii-Kilauea volcanic outgassing
events provide excellent natural experiments for assessing the effects
of aerosol on clouds and climate due to the characteristics of the vol-
canicemissions and the pristine environment. These four experiments
represent distinct meteorological conditions (Table 1 and Extended
Data Fig. 2; also Methods), with a tropical cloud regime spectrum of
mainly oceanic shallow convective clouds representing a very differ-
ent but MCB-relevant case compared with our previous high-latitude
study of the Holuhraun eruption in Iceland (Extended Data Fig. 3).

Almost all clouds in this studied region are likely to be precipitating,
as suggested by r. > 14 pm (Extended Data Fig. 2) and hence facilitat-
ing droplet growth by collision coalescence*. The June 2008 case is
a balance of different meteorological conditions, with a wide range
of lower-tropospheric stability (LTS) and relative humidity (RH). LTS
is calculated as the difference in the potential temperature between
700 hPa and the surface®*, and LTS <14 K indicates strongly unstable
conditions"”. Here we analyse the RH at 850 hPa as being representa-
tive for the layer between 700 hPa and the ocean surface. July 2008
is a special case with distinct bimodality of very dry conditions in the
south and humid air in the north of the studied region (Fig. 3a). The
natural experiments in 2018 represent humid conditions with more
stable conditionsinJune (nearly all LTS > 14 K) thanin July.

We find that the volcanic aerosol leads to a significant Twomey
effect, with N, increasing by 26-28% and r. decreasing by 5-7%,
on average, over the region studied (Fig. 2 and Extended Data
Figs. 4-7). This is consistent with many previous studies, for exam-
ple, refs. 5,17,18,28,33,35, of the well-documented Twomey effect as
anindicator of ACI, although these and other studies suggest that the

Nature Geoscience


http://www.nature.com/naturegeoscience

Article

https://doi.org/10.1038/s41561-024-01427-z

Table 1| Description of meteorological conditions for each
natural experiment case

Natural experiments Description

2008-06 Wide range of RH and LTS, including very unstable
conditions (LTS<14K)

2008-07 Special case: dry-stable conditions in the southern
part and humid-unstable conditions in the northern
part of the studied region

2018-06 Humid environment with dominantly RH>70%, very
stable with nearly LTS>14K everywhere

2018-07 Very humid environment with dominantly RH>75%,

medium stability

The meteorological details are analysed in Extended Data Fig. 2.

LWP adjustmentis unclear overall, with bothincreases, decreases and
no changes reported>*'*'#333¢37_Qur observations indicate a statisti-
cally significant 4-6% decrease of the in-cloud LWP when aggregated
over the region, independent of initial weather conditions. This is
somewhat different to the conclusions from our study of the Holuhraun
volcanic eruption®, where very different high-latitude meteorological
conditions prevailed and LWP did not change. The Holuhraun eruption
occurredinaregion where about 40% of the clouds are precipitating,
whereas theKilauea eruptionoccurredinatropical region dominated
by shallow oceanic convective clouds (Extended Data Fig. 3), 90% of
which are likely to be precipitating (indicated by r.>14 pm (ref. 17)).
The decrease in LWP that we diagnose could be due to an increase of
rainfall (Fig. 2), as clouds are still precipitating despite the reduction
inrand/or because of entrainment of dry airinducing cloud evapora-
tion, as indicated by the dry southern part of the domain in July 2008
(Fig. 3a). The reduction of in-cloud LWP counteracts the brightening
from the Twomey effect, a process known as ‘buffering’,

However, we find a strong increase in cloud cover (also known
as cloud fraction, CF), due to the volcanic aerosol injection. This, in
conjunction with the aerosol direct effect, enhances the shortwave
cooling at the top of atmosphere (TOA). Increased aerosol leads to a
direct radiative effect of -2 W m™2in June 2008, -5 W m™2in June 2018
and -4.2 W mZinJuly 2018. ACI adds extra radiative effect averaged
over theregion by about—2W m=,-2.8 Wm2and-10.5W m~2inJune
2008, June 2018 and July 2018, respectively, despite there being only
10-16% cloudy skies. We estimate the relative contributions to ACI
shortwave forcing using equation (1) (Methods) and find that the cool-
ing radiative forcing from cloud cover enhancement contributes 65%
inthe balanced and more generalized conditions of June 2008 versus
84-87% in the humid conditions in 2018. Cooling forcing from the
albedo enhancement by the Twomey effect amounts to 64% in June
2008 versus 25-34% in humid conditions. But warming forcing from
LWP adjustment partially compensates cloud albedo cooling (-29%in
June2008;-9% to —21% in humid conditions). To show that this strong
cooling forcingisindeed resulted from aerosol perturbation, we pro-
vide asimilar analysis upwind onthe volcanic plume. The results show
weak or negligible ACl signals (and the associated radiative forcing) in
the slightly polluted or non-polluted upwind region (Supplementary
Section 1). Although June 2018 shows the strongest relative increase
of cloud cover by +54% (Fig. 2b, 1.53-0.99 = 54%), July 2018 shows a
stronger enhanced TOA shortwave reflection by +18%. This is possibly
duetothedifferent solar zenith angles and meteorology across these
two months as the machine-learning approachis designed to remove
meteorological co-variability within each individual month but not
meteorological difference across different months. It could also be
partly due to the uncertainty associated with anomalous high clouds
inJuly 2018 in the southern part of the domain (<15° N). By removing
this southern part, similar aerosol fingerprints on clouds are found,
indicating this uncertainty does not significantly impact the core find-
ings of this study (Supplementary Section 2).

We find a high susceptibility of cloud cover to changes in Ny
(dInCF / dInN,4 = 0.38; Fig. 2a) for the more generalized case of June
2008 covering a wide range of meteorological conditions. This value
is similar to our previous study of the Holuhraun natural experiment®,
which also covers a wide range, yet different, meteorological condi-
tions in the North Atlantic. Extremely high cloud cover susceptibility
(dInCF / dInN,>1.0) is found in humid conditions (in 2018 and in the
northern humid regioninJuly 2008); dInCF / dInN canreachupto1.6
inhumid and stable conditions (June 2018; Fig. 2), which favours higher
cloud cover®***, This means that a 30% increase of N,, the estimate of
the averaged increase from pre-industrial to present-day conditions™,
could potentially lead to a10% relative increase in cloud cover overall
(for example, Holuhraun® and June 2008 cases with a mixture of mete-
orological conditions) and up to a 50% relative increase under humid
and stable conditions (Fig. 4). Increasing N, under humid and stable
conditions can lead to strong TOA cooling; whereas contrastingly
under dry conditions, it can suppress cloud cover increases (Fig. 3d)
through more cloud top entrainment and cloud droplet evaporation.

Efficacy of marine cloud brightening

Recent research underlines the remarkable impacts of aerosols on
clouds and climate change, and the fact that these strong impacts are
potentially concealed when using traditional analysis approaches
that suffer from biases associated with sampling, scale limitations
and meteorological co-variability’*'****°, In this study of Kilauea natu-
ral experiments, we overcome the challenges of sampling small-scale
episodes and are able to quantify the significant aerosol finger-
prints on clouds and climate forcing by investigating a large region
(2,500 km x 1,500 km) and by ruling out the noise of meteorological
co-variability using along-term observation-based machine-learning
approach (Methods). The uncertainty in satellite retrievals over low
latitudes is expected to be relatively small compared with higher lati-
tudes due to smaller solar zenith angles**?, although some systematic
underestimationin cloud cover has beenreported for shallow convec-
tive clouds®. In addition, random uncertainties in satellite retrievals
are naturally cancelled out with averaging over a large region, and
systematic uncertainties are minimized as well by comparing satellite
observations against their machine-learning surrogates®.

Our findings suggest that MCB may be quite effective for alle-
viating climate warming, although it would probably manifest as
anincrease in cloud cover rather than cloud opacity, as the MCB
terminology implies. This is in line with a recent cloud-resolving
large-eddy simulation of MCB?. Climate modelling studies suggest
that offsetting the warming from CO, doubling by enhancing marine
cloud albedos requires an increase in N, by 200-300% (refs. 21,44).
The stronger cooling from cloud cover adjustment than from the
cloud albedo effect suggests that MCB could be more effective and
achievable than the model previously suggested. Our results also
suggest that the most practicable approach would be to seed clouds
under humid and stable conditions (Fig. 4) where cloud cover might
substantially expand; even if clouds are missed and seeding is into
clear sky, the hygroscopical-swelled aerosol can also contribute a
large cooling®>***, This optimal approach is demonstrated by the
June 2018 case where cloud cover increased by 54% and resulted in a
strong TOA cooling. Seeding clouds under dry conditions could lead
to reduction of cloud cover and warming, opposing the intention to
increase reflected solar radiation to space. This best practice would
be particularly effective in tropical oceans where incoming solar
radiation is strong and background environment is clean (that is,
clouds are more ‘pristine’).

While effective, MCB can only be seen as a ‘pain killer’, because
it does not address the cause of warming from anthropogenic green-
house gases. Our resultsillustrate the high potential risk of unforeseen
large ‘side effects’ of MCB, owing to the large uncertainty due to a
poor understanding of aerosol-cloud interactions. This new finding
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Fig.3 | Aerosol fingerprints on clouds. Natural experiment of July 2008 with
humid condition in the northern part and very dry conditions in the southern
part.a-d, The distribution of RH at 850 hPa (a), the response of cloud fraction
to aerosol perturbations (b), ACI manifestations for wet conditions (c) and ACI
manifestations for dry conditions (d). The boxplots show 10th, 25th, median
(Med.), 75thand 90th percentiles with the average indicated by a dot. Cloud

droplet number concentration (N,), cloud droplet effective radius (r.g), cloud
liquid water path (LWP) and cloud fraction (CF), top of atmosphere upward
shortwave flux at all sky (TOA-SW,.4,) and rainfall. All the fingerprint signals pass
the Mann-Whitney-Wilcoxom test with significance >95%, unless marked as
‘non-significant’.

of alarge-scale strong cloud cover response taking place in differ-
ent climate and cloud regimes, as demonstrated by the high-latitude
Holuhraun®and tropical Kilauea eruption natural experiments, is, how-
ever, not replicated by state-of-the-art GCMs"*'** [t is paramount

that we close current gaps in ACI knowledge in a fundamental way
not only to advance our understanding of Earth climate system and
its hydrological cycle but also for a holistic evaluation of the benefits
and risks of MCB.
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Humid and stable tropics

a
o
T

Very high cloud cover sensitivity
effective regime for marine cloud brightening

60% ~ 65% Global (refs. **)

Relative change of cloud cover (%)
S

Dry tropics

Humidity and stability

Fig. 4| Conceptual model of cloud cover’s response to aerosol perturbation.
Theresponses of cloud cover to 30% increase in N, depend on meteorology
conditions and cloud regimes. The Holuhraun study inref. 6 represents amore
generalized analogy for the global cloud regime spectrum, whereas this study
represents a cloud regime spectrum for tropical marine clouds that could
potentially be used for marine cloud brightening; they are all marked in the
figure. The colour gradation from blue to red demonstrates the effecacy of MCB,
with cooling in blue but warming in red. The effective meteorology regime for
MCBis highlighted in blue.

Such a strong increase of large-scale cloud cover has remained
undetected in many previous studies, for example, refs. 5,16,18,19,46,
and has beenintensely debated in several modelling and climatologi-
cal studies***?%47*8 The current theoretical understanding suggests
that cloud cover increases via inhibition of precipitation'?, whereas
our new findings demonstrate that cloud cover can increase even as
rainfall strengthens (Fig. 2). We propose the following hypothesis to
explain this phenomenon. As more aerosols activate, N, increases,
leading to the Twomey effect. For stratocumulus clouds embedded in
an aerosol-abundant regime, this can inhibit precipitation and hence
increase cloud lifetime. In an aerosol-limited and convective regime,
the Twomey effect reduces r but not sufficiently to efficiently slow
down collision coalescence, hence itis not effective ininhibiting rain-
fall. Instead, when the atmosphere is humid, an increase of aerosols
not only prolongs the lifetime of precipitating clouds but could also
facilitate cloud detrainment (as suggested by the decrease of LWP),
which humidifies the areasurrounding clouds and leads to horizontal
expansion of the precipitating clouds to larger areas and more rainfall
(Fig. 1b). Our case of tropical shallow convective clouds in a pristine
marine environment?, with r.>14 pm and N, mostly in the range of
15-35 cm™ (Extended Data Fig. 1), is considered an aerosol-limited
regime*. The mechanism that we are proposing would mean that new
particle formation plays an even more critical role in Earth climate
system than previously thought, especially in aerosol-limited envi-
ronments (such as pre-industrial) where new particle formationis a
major source of cloud condensation nuclei and where cloud cover is
highly susceptible to increases in aerosol*. This mechanism needs to
be tested by further research, ideally by large-eddy modelling of both
the Holuhraun and Kilauea eruptions to reproduce the different ACI
mechanisms prevailing in different meteorological and cloud regimes.
A moredetailed representation of subgrid-scale variability than diag-
nostic schemes currently used in most climate models®*? could also
serve asaplausible direction toimprove ACland hence predicted cloud
feedbacks, whichremainsthe largest source of uncertainty in climate
projections for decades.

This study sheds additional light on the understanding of aerosol
fingerprints on clouds, especially with regard to cloud cover response.
This is critical for more reliable climate projections and underscores
the urgent need to have a sound theoretical foundation and a holistic

assessment of any potential risks before implementing global warming
mitigation strategies, such as MCB.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41561-024-01427-z.

References

1. IPCC Climate Change 2021: The Physical Science Basis
(eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021);
https://doi.org/10.1017/9781009157896

2. Watson-Parris, D. & Smith, C. J. Large uncertainty in
future warming due to aerosol forcing. Nat. Clim. Change
https://doi.org/10.1038/s41558-022-01516-0 (2022).

3. Bellouin, N. et al. Bounding global aerosol radiative forcing of
climate change. Rev. Geophys. 58, e2019RG0O00660 (2020).

4. Hansen, J. E. et al. Global warming in the pipeline. Oxford
Open Clim. Change https://doi.org/10.1093/oxfclm/kgad008
(2023).

5. Toll, V., Christensen, M., Quaas, J. & Bellouin, N. Weak average
liquid-cloud-water response to anthropogenic aerosols.

Nature 572, 51-55 (2019).

6. Chen, Y. etal. Machine learning reveals climate forcing from
aerosols is dominated by increased cloud cover. Nat. Geosci.
https://doi.org/10.1038/s41561-022-00991-6 (2022).

7. Latham, J. et al. Marine cloud brightening. Philos. Trans. R. Soc. A
370, 4217-4262 (2012).

8. Connolly, P. J., McFiggans, G. B., Wood, R. & Tsiamis, A. Factors
determining the most efficient spray distribution for marine cloud
brightening. Philos. Trans. R. Soc. A 372, 20140056 (2014).

9. Tollefson, J. Can artificially altered clouds save the Great Barrier
Reef? Nature 596, 476-478 (2021).

10. Stjern, C. W. et al. Response to marine cloud brightening in a
multi-model ensemble. Atmos. Chem. Phys. 18, 621-634 (2018).

1. Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 8,
1251-1256 (1974).

12. Albrecht, B. A. Aerosols, cloud microphysics, and fractional
cloudiness. Science 245, 1227-1230 (1989).

13. Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E. & Toon, O. B. The
impact of humidity above stratiform clouds on indirect aerosol
climate forcing. Nature 432, 1014-1017 (2004).

14. Ghan, S. et al. Challenges in constraining anthropogenic
aerosol effects on cloud radiative forcing using present-day
spatiotemporal variability. Proc. Natl Acad. Sci. USA113,
5804-5811(2016).

15. Seinfeld, J. H. et al. Improving our fundamental understanding
of the role of aerosol-cloud interactions in the climate system.
Proc. Natl Acad. Sci. USA 113, 5781-5790 (2016).

16. Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen,
J.-P. & Stier, P. Invisible ship tracks show large cloud sensitivity to
aerosol. Nature 610, 101-106 (2022).

17. Rosenfeld, D. et al. Aerosol-driven droplet concentrations
dominate coverage and water of oceanic low-level clouds.
Science 363, eaav0566 (2019).

18. Malavelle, F. F. et al. Strong constraints on aerosol-cloud
interactions from volcanic eruptions. Nature 546, 485-491
(2017).

19. Glassmeier, F. et al. Aerosol-cloud-climate cooling overestimated
by ship-track data. Science 371, 485-489 (2021).

20. Quaas, J. et al. Constraining the Twomey effect from satellite
observations: issues and perspectives. Atmos. Chem. Phys. 20,
15079-15099 (2020).

Nature Geoscience


http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01427-z
https://doi.org/10.1017/9781009157896
https://doi.org/10.1038/s41558-022-01516-0
https://doi.org/10.1038/s41558-022-01516-0
https://doi.org/10.1093/oxfclm/kgad008
https://doi.org/10.1038/s41561-022-00991-6

Article

https://doi.org/10.1038/s41561-024-01427-z

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Latham, J. et al. Global temperature stabilization via controlled
albedo enhancement of low-level maritime clouds. Philos. Trans.
R. Soc. A 366, 3969-3987 (2008).

Schmidt, A. et al. Importance of tropospheric volcanic aerosol
for indirect radiative forcing of climate. Atmos. Chem. Phys. 12,
7321-7339 (2012).

Yuan, T., Remer, L. A. & Yu, H. Microphysical, macrophysical and
radiative signatures of volcanic aerosols in trade wind cumulus
observed by the A-Train. Atmos. Chem. Phys. 11, 7119-7132 (2011).
Goren, T. & Rosenfeld, D. Decomposing aerosol cloud radiative
effects into cloud cover, liquid water path and Twomey components
in marine stratocumulus. Atmos. Res. 138, 378-393 (2014).
Prabhakaran, P., Hoffmann, F. & Feingold, G. Evaluation of pulse
aerosol forcing on marine stratocumulus clouds in the context of
marine cloud brightening. J. Atmos. Sci. 80, 1585-1604 (2023).
Quiaas, J., Stevens, B., Stier, P. & Lohmann, U. Interpreting the
cloud cover-aerosol optical depth relationship found in satellite
data using a general circulation model. Atmos. Chem. Phys. 10,
6129-6135 (2010).

Slingo, A. Sensitivity of the Earth’s radiation budget to changes in
low clouds. Nature 343, 49-51(1990).

Breen, K. H., Barahona, D., Yuan, T., Bian, H. & James, S. C. Effect of
volcanic emissions on clouds during the 2008 and 2018 Kilauea
degassing events. Atmos. Chem. Phys. 21, 7749-7771 (2021).
Muhlbauer, A., McCoy, I. L. & Wood, R. Climatology of
stratocumulus cloud morphologies: microphysical properties
and radiative effects. Atmos. Chem. Phys. 14, 6695-6716 (2014).
Kravitz, B. et al. Sea spray geoengineering experiments in the
geoengineering model intercomparison project (GeoMIP):
experimental design and preliminary results. J. Geophys. Res.:
Atmos. 118, 11,175-111,186 (2013).

Kravitz, B. et al. The Geoengineering Model Intercomparison
Project Phase 6 (GeoMIP6): simulation design and preliminary
results. Geosci. Model Dev. 8, 3379-3392 (2015).

Ahlm, L. et al. Marine cloud brightening—as effective without
clouds. Atmos. Chem. Phys. 17, 13071-13087 (2017).

Toll, V., Christensen, M., Gasso, S. & Bellouin, N. Volcano and ship
tracks indicate excessive aerosol-induced cloud water increases
in a climate model. Geophys. Res. Lett. 44,12,492-412,500 (2017).
Wood, R. & Bretherton, C. S. On the relationship between
stratiform low cloud cover and lower-tropospheric stability.

J. Clim. 19, 6425-6432 (2006).

Christensen, M. W., Jones, W. K. & Stier, P. Aerosols enhance cloud
lifetime and brightness along the stratus-to-cumulus transition.
Proc. Natl Acad. Sci. USA 117, 17591-17598 (2020).

Gryspeerdt, E. et al. Constraining the aerosol influence on cloud
liquid water path. Atmos. Chem. Phys. 19, 5331-5347 (2019).
Yuan, T. et al. Observational evidence of strong forcing

from aerosol effect on low cloud coverage. Sci. Adv. 9,
eadh7716 (2023).

Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and
precipitation in a buffered system. Nature 461, 607-613 (2009).
Quaas, J. Evaluating the ‘critical relative humidity’ as a measure of
subgrid-scale variability of humidity in general circulation model
cloud cover parameterizations using satellite data. J. Geophys.
Res. https://doi.org/10.1029/2012JD017495 (2012).

40. Arola, A. et al. Aerosol effects on clouds are concealed by natural
cloud heterogeneity and satellite retrieval errors. Nat. Commun.
13, 7357 (2022).

A1. Grosvenor, D. P. et al. Remote sensing of droplet number
concentration in warm clouds: a review of the current state of
knowledge and perspectives. Rev. Geophys. 56, 409-453 (2018).

42. Grosvenor, D. P. & Wood, R. The effect of solar zenith angle on
MODIS cloud optical and microphysical retrievals within marine
liquid water clouds. Atmos. Chem. Phys. 14, 7291-7321 (2014).

43. Mieslinger, T. et al. Optically thin clouds in the trades. Atmos.
Chem. Phys. 22, 6879-6898 (2022).

44. Wood, R. Assessing the potential efficacy of marine cloud
brightening for cooling Earth using a simple heuristic model.
Atmos. Chem. Phys. 21,14507-14533 (2021).

45. Chen, Y. et al. Ammonium chloride associated aerosol liquid
water enhances haze in Delhi, India. Environ. Sci. Technol. 56,
7163-7173 (2022).

46. Yuan, T. et al. Global reduction in ship-tracks from sulfur
regulations for shipping fuel. Sci. Adv. 8, eabn7988 (2022).

47. Gryspeerdt, E., Quaas, J. & Bellouin, N. Constraining the
aerosol influence on cloud fraction. J. Geophys. Res. 121,
3566-3583 (2016).

48. Quaas, J. et al. Robust evidence for reversal in the aerosol
effective climate forcing trend. Atmos. Chem. Phys. 22,
12221-12239 (2022).

49. Misumi, R. et al. Classification of aerosol-cloud interaction
regimes over Tokyo. Atmos. Res. 272, 106150 (2022).

50. Kirkby, J. et al. lon-induced nucleation of pure biogenic particles.
Nature 533, 521-526 (2016).

51. Muench, S. & Lohmann, U. Developing a cloud scheme
with prognostic cloud fraction and two moment microphysics
for ECHAM-HAM. J. Adv. Model. Earth Syst. 12, e2019MS001824
(2020).

52. Tompkins, A. M. A prognostic parameterization for the
subgrid-scale variability of water vapor and clouds in large-scale
models and its use to diagnose cloud cover. J. Atmos. Sci. 59,
1917-1942 (2002).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

Nature Geoscience


http://www.nature.com/naturegeoscience
https://doi.org/10.1029/2012JD017495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41561-024-01427-z

Methods

Natural experiment of Kilauea volcano on Hawaii
Kilaueaisavolcanoontheisland of Hawaii (19° 34’ N, 155° 30’ W), situ-
ated in the middle of the North Pacific Ocean thousands of kilometres
away from major anthropogenic emission sources. The marine environ-
ment surroundingKilauea is close to pristine”>”* with concentrations of
cloud condensation nuclei thought to be close to those of pre-industrial
conditions in summertime®. Therefore, the degassing eruptions of
Kilauea serve as excellent natural experiments to investigate how
cloudsrespondto aerosol perturbations (thatis, aerosol-cloud inter-
actions, ACI).

Kilauea was strongly active in June-August 2008 and May-July
2018%, with SO, emission peaks over 10 kilotons per day in 2008** and
over100 kiloton per day in 2018%. The volcanic SO, plumes (Fig.1) and
subsequently oxidation-formed particulate sulfate, which was effi-
ciently dispersed over the downwind marine region as far as 6,000 km
(ref.23). The plumesreached upto1,200-2,500 m heightin 2008, and
about 2to 8 km height in 2018%. Here we chose the months of June and
July, which are common to both volcanic periods in 2008 and 2018
and allow us to distinguish aerosol fingerprints on shallow convective
marine clouds in the tropics under different meteorological condi-
tions. The natural experiment study focused on adownstream region
(12°N~25°N,160° W - 180° W) strongly impacted by volcanic plumes
(Fig.1and also Fig. 2 inref. 28.

Normal conditions of clouds and precipitation from
machinelearning
Following our recent study®, machine learning (ML, details given later)
is adopted to train a surrogate for the Moderate Resolution Imaging
Spectroradiometer (MODIS). This ML surrogate is designed to diagnose
cloud properties, which are unperturbed by volcanic aerosols. The
performance of the ML surrogate in reproducing satellite observations
under normal conditions (without the perturbation of volcanic aerosol)
is demonstrated using the ‘leave-one-year-out’ cross validation®®. Here
one normal year is held for validation; the ML is trained based on the
datasets of the other normal years, and the evaluation is performed
once foreachnormalyearin 2001-2020 (left panels of Extended Data
Fig.1). We further estimate the uncertainty of the ML surrogate using
amore statistically robust bootstrapping Monte Carlo method. This
method selects two out of 18 normal years (2001-2020 excluding 2008
and 2018) as the hold years for validationina bootstrapping way (uni-
form sampling with replacement) and trains ML based on the remain-
ing normal years. This greatly enlarges the diversity of the sample
pool, with 324 (18 x 18) different sample variantsin total and therefore
improves the robustness of the statistical analysis. We repeated this
bootstrapping select-validation process for each ML surrogate for
648times (twice the number of the total variants), to ensure the pool is
efficiently sampled. The bootstrapping validation of ML surrogates are
shownintheblackboxplotsinFigs.2and 3c,d. The ratios between ML
surrogate (without aerosol perturbation) and observations in volcanic
years (2008 or 2018, with aerosol perturbation) are shown in the red
boxplots of Figs. 2 and 3¢,d. These red boxplots show the variability of
the aerosol fingerprints on clouds. The significance of the statistical
difference of cloud properties and precipitation betweenthe perturbed
and unperturbed conditions is tested by both the one-tail and two-tail
Wilcoxon-Mann-Whitney test with Pvalues < 0.05 (significance > 95%).
A100-trees random forest algorithm is adopted to train the ML
surrogate. Random forest is chosen because of its great capability to
avoid overfitting and handle high-dimensional feature spaces with a
relatively small sample size. Following our recent study®, each tree,
with a regression mode and minimal leaf size value of seven, samples
60% of the training data with replacement. ML surrogate is trained
based on114 meteorological parameters (Supplementary Table1) from
the surface up to the 550-hPa level under which virtually all low-level
liquid clouds occur. The training of the ML surrogate is performed for

June and July separately and is supervised by MODIS observations of
cloud properties (cloud droplet number concentration: N4; droplet
effectiveradius: r.; cloudliquid water path: LWP and cloud fraction: CF)
under normal conditions during 2001-2020 by excluding the volcanic
years 2008 and 2018. The ML surrogate is therefore able to predict
unperturbed cloud conditions and enables like-with-like comparisons
against volcanic-perturbed clouds observed by MODIS in 2008 and
2018. This approach has been demonstrated to work excellently in
discerningthelarge-scale aerosol fingerprint on clouds fromthe noise
of meteorology co-variability®. To distinguish aerosol fingerprint on
precipitation, this ML surrogate approachis also applied to the Global
Precipitation Climatology Project (GPCP) dataset®’.

The ERAS5 meteorological reanalysis from the European Centre
for Medium-Range Weather Forecasts (ECMWF) is used to provide
the best estimate of the atmospheric state*® for ML surrogate train-
ing. We take ERA5 monthly averages of meteorological conditions at
0.25° x 0.25° horizontal resolution from the surface up to 550 hPa at
50-hPaintervals and aggregate them to MODIS and GPCP grid cells
atthetime of Aquaand Terradaytime overpasses. The ERA5 meteor-
ology corresponding to Aqua and Terra overpassing time is used in
this study. The top-ten most important meteorological variables for
predicting CFin 2008 and 2018 are mostly lying within the variation
range of the training dataset, indicating reliable ML training®. The only
exceptionis the unprecedented dry condition (850 hPaRH < 50%) in
the southern part of the studied region in July 2008, which lies out-
side the range of the training dataset. However, this exception is not
expected to havealargeinfluence on our cloud analysis, because the
fraction of outliers is only about 10% of the total data points in July
2008.In addition, the extrapolation for these very dry conditions is
performed in a regime where the cloud response has flattened out
(Extended Data Fig. 8).

MODIS provides continuous satellite observations of clouds in
June and July during 2003-2020 for Aqua and 2001-2020 for Terra.
We use the latest MODIS Collection 6.1 Level-3 products, which has
rectified retrieval biases in the previous Collection 5 and shows
excellent consistency between Aqua and Terra'®. The MODIS Level-3
monthly productis aggregated from Level-2 products with 1-km nadir
resolution and provides monthly mean values of cloud optical thick-
ness, cloud phase, r.;, LWP and CF. The ‘cloud optical property CF’
for liquid clouds® is used because it is based on the pixel population
with successful retrieval of cloud optical properties and is consistent
with the other microphysical retrievals used in this study. Following
refs. 60,61, we derived N, from daily Level-3 products of rsand cloud
optical thickness and then aggregated the datato monthly meanvalues.
The uncertainty in derived N,is about 50% in general when averaging
across a 1° x 1° grid cell*. This uncertainty is expected to be much
smaller in this study, because of (1) lower uncertainty in the tropics
compared with mid-latitudes”, (2) lower uncertainty in precipitating
clouds*® (>90% in this study) and also (3) extensive averaging over a
2,500 km x 1,500 km geographical region, which greatly suppresses
random errors. Monthly products are adopted in this study to inves-
tigate the aerosol fingerprints on clouds and radiative forcing on a
climate-relevant timescale. This isin line with many previous studies,
which also used monthly or seasonal average products to investigate
ACI*'#232862_ Although monthly averages can potentially have several
different realizations owing to variability in individual days®* ¢, which
could lead to uncertainty in monthly analysis and is out of the scope
of this study, the trained ML surrogate is able to reasonably reproduce
the monthly averaged conditions of cloud properties (Fig. 2 and Sup-
plementary Section 1) and therefore is suitable for investigating ACI
signals on a climate-relevant timescale.

GPCP combines datasets from rain gauge stations, sounding
observations and various satellites to provide the best estimate of
precipitation on a global scale”. The GPCP monthly rainfall with a
2.5° x 2.5°horizontal resolutioninJune and July 2001-2020 (excluding
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2008 and 2018) is used to supervise the ML training of the GPCP sur-
rogate to represent rainfall under unperturbed normal conditions.

Radiative effect

We further use the above mentioned ML approach to trainasurrogate
to represent the unperturbed top of the atmosphere (TOA) reflected
shortwave flux, which is observed by the Clouds and the Earth’s Radiant
Energy System (CERES) on board the Terra and Aqua satellites®’. This
enables us to quantify the volcanic aerosol impact on the radiative
cooling. Following the above-explained bootstrapping approach, the
ML surrogate of CERES is validated and the change in TOA reflected
shortwave flux is quantified. This change includes the aerosol direct
effect (or aerosol radiationinteraction) in the clear sky and ACl effects
in cloudy skies.

The radiative effect (associated with a cooling) for aerosol direct
effect is estimated to be -2 W m™2inJune 2008, -5W m2in June 2018
and-4.2 W m2inJuly 2018, based on the MODIS observations of aerosol
optical depth (AOD) anomaly (0.2in 2008, 0.27 in June 2018 and 0.28
inJuly 2018), cloud fraction and forcing efficiency®®. This estimate
method and results are in line with ref. 23.

For ACl effects over cloudy skies, we estimate the contributions
from the Twomey effect, LWP and CF adjustments to ACl-induced
radiative cooling using the susceptibilities of cloud properties to
aerosol-induced changes in N,. The ACl-induced total radiative cool-
ing can be described as equation (1)***°, which is a modified version
of equation (3) in ref. 6. The relative contributions from the Twomey
effect, LWP adjustment and cloud cover adjustment are described in
equation (1) fromleft toright by the three termsin the square bracket.

dSWron  _ dSWroa dSWroa
dinAerosol  dInAerosol albedo dInAerosol 'CF
dInN, 1
~ —SWrga X 4 % CF x [ 3Aaa(1- A 1
TOA X Jiacrosal 3Aad(l —Aaa) )]
5 dInLWP dInCF
Aga(l = Agg) x> Agq — A —]
HAaa(l = Aag) X £ 70 + (Aad —Aes) G
0.15x COD

A (2)

cd ¥ 377015 x COD

where SW, isthe net shortwave solar radiation at the top of the atmos-
phere, dSWy,, is the change of net shortwave solar radiation at the top
of atmosphere (that s, instantaneous shortwave radiative forcing). A4
isthe shortwave cloud albedo for liquid clouds, which canbe estimated
from cloud optical depth (COD, observed by MODIS) using equation (2)
assumingasolar zenith angle close to zero and an asymmetry factor of
0.85"°. The A4 average over the studied period and region is about 0.35.
A isshortwave broadband ocean surface albedo under clear-sky condi-
tions. A under pristine conditions has an average value of 0.06 for the
studied region’. We estimate an effective A, for the aerosol polluted
ocean, using AOD anomaly and a state-of-the-art radiative transfer
model (SOCRATES), which is also used in the UK Met Office climate
models’. The effective A is estimated by assuming sulfate aerosol with
specificextinction of 4.8 m? g, asymmetry factor of 0.7 (at 670 nm, a
wavelength that is reasonably representative of broadband fluxes’™),
with a mono-modal log-normal distribution, and a mode radius of
0.05 um and a standard deviation of 27*. The estimated effective A,
with AOD accountedis 0.2in2018 and 0.15in2008, inline with ref. 23.

Data availability

The Level-3 C6.1 MODIS cloud and aerosol observations from Aqua
(MYDO08_M3, https://doi.org/10.5067/MODIS/MYD08_M3.061)
and Terra (MODO8_M3, https://doi.org/10.5067/MODIS/MODO08_
M3.061) used in this study are available at the Atmosphere Archive
and Distribution System Distributed Active Archive Center of
National Aeronautics and Space Administration (LAADS-DAAC,
NASA), https://ladsweb.modaps.eosdis.nasa.gov. Suomi-NPP

Ozone Mapping and Profiler Suite SO, v2.0 data” are available
from NASA Suomi web database: snpp-omps.gesdisc.eosdis.nasa.
gov. ERAS datasets’®”’ are available from the European Centre for
Medium-range Weather Forecast (ECMWF) archive, https://cds.
climate.copernicus.eu. GPCP v2.3 precipitation data’®’’ are avail-
able from NCAR, https://climatedataguide.ucar.edu/climate-data/
gpcp-monthly-global-precipitation-climatology-project. The Level-3
CERES EBAF Ed4.1dataset® is available from the NASA CERES project
website (https://ceres.larc.nasa.gov/data/). All dataneeded to evaluate
the results in this study are present in the main text and the Supple-
mentary Information.

Code availability

Codeisavailable fromthe corresponding author onreasonable request.

References

53. Hamilton, D. S. et al. Occurrence of pristine aerosol environments
on a polluted planet. Proc. Natl Acad. Sci. USA 111, 18466-18471
(2014).

54. Elias, T, Kern, C., Horton, K. A., Sutton, A. J. & Garbeil, H.
Measuring SO, emission rates at Kilauea volcano, Hawaii,
using an array of upward-looking UV spectrometers, 2014-2017.
Front. Earth Sci. https://doi.org/10.3389/feart.2018.00214
(2018).

55. Neal, C. A. et al. The 2018 rift eruption and summit collapse of
Kilauea Volcano. Science 363, 367-374 (2019).

56. Bastos, L. S. & O'Hagan, A. Diagnostics for gaussian process
emulators. Technometrics 51, 425-438 (2009).

57. Huffman, G. J. et al. The Global Precipitation Climatology Project
(GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc.
78, 5-20 (1997).

58. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol.
Soc. 146, 1999-2049 (2020).

59. Hubanks, P., Platnick, A. S., King, M. & Ridgway, B. MODIS
Atmosphere L3 Gridded Product Algorithm Theoretical Basis
Document (ATBD) and Users Guide (NASA, 2019); https://icdc.
cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/
MODIS/MODIS_Collection6_AtmospherelL.3_GriddedProduct_
ATBDandUsersGuide_v4.1_Sep22_2015.pdf

60. Quaas, J., Boucher, O. & Lohmann, U. Constraining the total
aerosol indirect effect in the LMDZ and ECHAM4 GCMs using
MODIS satellite data. Atmos. Chem. Phys. 6, 947-955 (2006).

61. Quaas, J., Boucher, O., Bellouin, N. & Kinne, S. Satellite-based
estimate of the direct and indirect aerosol climate forcing.

J. Geophys. Res. https://doi.org/10.1029/2007JD008962 (2008).

62. McCoy, D. T. & Hartmann, D. L. Observations of a substantial
cloud-aerosol indirect effect during the 2014-2015
Bardarbunga-Veidivotn fissure eruption in Iceland. Geophys. Res.
Lett. 42,10,409-410,414 (2015).

63. Bony, S. et al. Observed modulation of the tropical radiation
budget by deep convective organization and lower-tropospheric
stability. AGU Adv. 1, €2019AV000155 (2020).

64. Rasp, S., Schulz, H., Bony, S. & Stevens, B. Combining
crowdsourcing and deep learning to explore the mesoscale
organization of shallow convection. Bull. Am. Meteorol. Soc. 101,
E1980-E1995 (2020).

65. Rasp, S. et al. WeatherBench: a benchmark data set for
data-driven weather forecasting. J. Adv. Model. Earth Syst. 12,
€2020MS002203 (2020).

66. Cho, N., Tan, J. & Oreopoulos, L. Classifying planetary cloudiness
with an updated set of MODIS cloud regimes. J. Appl. Meteorol.
Climatol. 60, 981-997 (2021).

67. Loeb, N. G. et al. Clouds and the Earth’'s Radiant Energy System
(CERES) energy balanced and filled (EBAF) top-of-atmosphere
(TOA) edition-4.0 data product. J. Clim. 31, 895-918 (2018).

Nature Geoscience


http://www.nature.com/naturegeoscience
https://doi.org/10.5067/MODIS/MYD08_M3.061
https://doi.org/10.5067/MODIS/MOD08_M3.061
https://doi.org/10.5067/MODIS/MOD08_M3.061
https://ladsweb.modaps.eosdis.nasa.gov
http://snpp-omps.gesdisc.eosdis.nasa.gov
http://snpp-omps.gesdisc.eosdis.nasa.gov
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project
https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project
https://ceres.larc.nasa.gov/data/
https://doi.org/10.3389/feart.2018.00214
https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/MODIS_Collection6_AtmosphereL3_GriddedProduct_ATBDandUsersGuide_v4.1_Sep22_2015.pdf
https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/MODIS_Collection6_AtmosphereL3_GriddedProduct_ATBDandUsersGuide_v4.1_Sep22_2015.pdf
https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/MODIS_Collection6_AtmosphereL3_GriddedProduct_ATBDandUsersGuide_v4.1_Sep22_2015.pdf
https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/MODIS_Collection6_AtmosphereL3_GriddedProduct_ATBDandUsersGuide_v4.1_Sep22_2015.pdf
https://doi.org/10.1029/2007JD008962

Article

https://doi.org/10.1038/s41561-024-01427-z

68. Remer, L. A. & Kaufman, Y. J. Aerosol direct radiative effect at the
top of the atmosphere over cloud free ocean derived from four
years of MODIS data. Atmos. Chem. Phys. 6, 237-253 (2006).

69. Ackerman, A. S. et al. Effects of aerosols on cloud albedo:
evaluation of Twomey’s parameterization of cloud susceptibility
using measurements of ship tracks. J. Atmos. Sci. 57, 2684-2695
(2000).

70. Feingold, G. et al. Analysis of albedo versus cloud fraction
relationships in liquid water clouds using heuristic models and
large eddy simulation. J. Geophys. Res. 122, 7086-7102 (2017).

71. lJin, Z., Charlock, T. P., Smith Jr., W. L. & Rutledge, K. A
parameterization of ocean surface albedo. Geophys. Res. Lett.
https://doi.org/10.1029/2004GL021180 (2004).

72. Manners, J., Edwards, J. M., Hill, P. & Thelen, J. C. SOCRATES
Technical Guide: Suite Of Community RAdiative Transfer Codes
Based on Edwards and Slingo (Met Office, 2017).

73. Haywood, J. M. & Shine, K. P. The effect of anthropogenic sulfate
and soot aerosol on the clear sky planetary radiation budget.
Geophys. Res. Lett. 22, 603-606 (1995).

74. A Preliminary Cloudless Standard Atmosphere for Radiation
Computation Report No. WCP-112, WMO/TD-No. 24 (WMO, 1986).

75. Li, C., Krotkov, N. A., Leonard, P. & Joiner, J. OMPS/NPP PCA SO,
Total Column 1-Orbit L2 Swath 50x50km V2 (GES DISC, 2020);
https://doi.org/10.5067/MEASURES/SO2/DATA205

76. Hersbach, H. et al. ERA5 hourly data on single levels from 1940 to
present. C3S CDS https://doi.org/10.24381/cds.adbb2d47 (2023).

77. Hersbach, H. et al. ERA5 hourly data on pressure levels from
1940 to present. C3S CDS https://doi.org/10.24381/cds.bd0915c6
(2023).

78. Adler, R.F. et al. The Global Precipitation Climatology Project
(GPCP) monthly analysis (new version 2.3) and a review of 2017
global precipitation. Atmosphere 9, 138 (2018).

79. Adler, R. et al. Global Precipitation Climatology Project (GPCP)
Climate Data Record (CDR), version 2.3 (monthly). Natl Cent.
Environ. Inf. https://doi.org/10.7289/V56971M6 (2016).

Acknowledgements

Y.C. is supported by the start-up fund from the University of
Birmingham. A.P., J.H., D.G.P.,, D.G. and P.F. are supported by the UKRI
Natural Environment Research Council (NERC) funded ADVANCE
project (NE/TO06897/1). Y.W. thanks the University of Edinburgh
start-up fund, ETH Zurich Foundation (ETH fellowship project:
2021-HS-332) and P. Sarasin. J.H., G.J. and F.M. were also partly
funded under funding provided by the EU’s Horizon 2020 research
and innovation programme under the CONSTRAIN grant agreement
820829. J.H., P.F., G.J. and F.M. are supported by the Joint UK BEIS/
Defra Met Office Hadley Centre Climate Programme (GAO1101). J.H.
is also supported by the SilverLining Safe Climate Research Initiative.
D.G. is funded by the National Centre for Atmospheric Science (NCAS),

one of the UK NERC's research centres. N.C. and L.O. are funded by
USA NASA programmes. The machine-learning training is performed
using the ‘Statistics and Machine Learning Toolbox’ in MATLAB
(version R2022a, MathWorks). The data storage and processing are
performed on high performance computers Stratus, Nimbus and
Cumulus, which are supported by the University of Exeter. The findings
and opinions expressed in this study do not necessarily represent the
views of the funders. For the purpose of open access, a CC BY public
copyright license is applied to any Author Accepted Manuscript
arising from this submission. We would like to thank S. Platnick
(NASA) for useful discussion in interpreting MODIS observations

and uncertainty and C. Jackson (University of Birmingham) for her
contribution to the conceptual figure (Fig. 1b).

Author contributions

Conceptualization: Y.C., YW., J.H., U.L. Methodology: YW., Y.C., J.H.
Investigation: Y.C., J.H., YW., U.L.,, FM., G.J., A.P, D.G.P, L.O., N.C, RA.
Visualization: Y.C., YW. Funding acquisition: J.H., YW., Y.C. Writing—
original draft: Y.C., YW., J.H. Writing—review and editing: Y.C., YW., J.H.,
U.L., D.G.P, D.G., G.J., O.L., R.A. with input from all co-authors.

Ethics and inclusion statement

The authors declare that all researchers contributed to this study
and fulfil the authorship criteria as stated by Nature are included as
co-authors. This study does not result in any health, safety, security,
stigmatization, incrimination, discrimination or personal risk

to researchers.

Competinginterests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41561-024-01427-z.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41561-024-01427-z.

Correspondence and requests for materials should be addressed
to Ying Chen.

Peer review information Nature Geoscience thanks Hauke Schulz
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editor: Tom Richardson, in
collaboration with the Nature Geoscience team.

Reprints and permissions information is available at
www.nhature.com/reprints.

Nature Geoscience


http://www.nature.com/naturegeoscience
https://doi.org/10.1029/2004GL021180
https://doi.org/10.5067/MEASURES/SO2/DATA205
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.7289/V56971M6
https://doi.org/10.1038/s41561-024-01427-z
https://doi.org/10.1038/s41561-024-01427-z
https://doi.org/10.1038/s41561-024-01427-z
https://doi.org/10.1038/s41561-024-01427-z
http://www.nature.com/reprints

Article https://doi.org/10.1038/s41561-024-01427-z

a Non-Eruption Years June Eruption Year 2008 June Eruption Year 2018 June
40Vslope =0.99 4 slope =1 27 40 slope = 1.29,./7 ~
30 30 30 -

N nemt | P W ey
10 . . 10 = - "
10 20 30 40 10 20 30 40
. slope = 0.95 -
Lt
20
") T Lim]
5 15
2 15 20 25 15 20 25
©
e 150 | slope = 0.99 150 | slope = 0.95) 150 [ slope = 0.95
$ ¥ ;
2100; 100 100 d
o sol LWP [g m?) 50 WP [gm?) 5 40 LW g m)
50 100 150 50 100 150 50 100 150
slope=1.00 7] slope =110, & | slope=1517 o~
0.2 0.2 T Y 0.2 -
-
0.1 0.1 ;
CF [ 3 e | ! d CF [
0 0
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

[slope = 1.00 slope =1.10
00 -

TOA-SW (W m™?]

50 .
60 80 100 120

5/ slope = 0.98

s|slope = 1.10 ’ -
o

Rain [mm day™) Rain [mm day™)

0 " 0 - 0 ]
0 2 4 6 0 2 4 6 0 2 4 6
Machine Learning Machine Learning Machine Learning
(]
0.2 04 0.6 0.8 1
b Non-Eruption Years July Eruption Year 2008 July Eruption Year 2018 July
“'slope.= 1.00 40 4 slope =1 25
30 30
20 20 ’ 120
Ny fom™] ‘ N, Lem]
10 - - 10 . .
10 20 30 40 10 20 30 40
2'r’AsIope =1.00 28 slope = 0.94 -
-~
20+
)
5 15
=2 15 20 25 15 20 25 15 20 25
E 150 slope = 0.99 150 slope = 0.95, 150 [slope = 0.93 P
@ N =
2100 100 > : 1 100 2
- -2
o 561l LWP [gm?) - LWP [gm?] 50 e e gm?
50 100 150 50 100 150 50 100 150
y slope =1.10 .2 | slope = 1.32. -
0.2 102 ~ o
1 H
0 e | 1 i
0 0
0 0.1 0.2 0.3 0 0.1 0.2 03 o 0.1 0.2 0.3
[slope = 1.00 slope =0.99 ,%°° slope = 1,17
00" 100 "y 1100 3
TOA-SW (W m?] TOA-SW (W m™)
50 * - - - 50 * - - .50
60 80 100 120 60 80 100 120 60 80 100 120
s/ slope =1.01 5[ slope = 0.88 P 5|slope =1.06 & %
-~ ST
f' u‘ v&,,-'
o e D
Rain [mm day™] Rain [mm day”] <. ~*""Rain [mm day™"]
0 ; . 0 . . J o
0 2 4 6 0 2 4 6 0 2 4 6
Machine Learning Machine Learning Machine Learning
L
0.2 04 0.6 0.8 1

Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Validation of machine-learning surrogates against
observations. Panel (a) June and (b) July. Left subpanels show validations in

non-eruption years, demonstrating the very good agreement between machine-

learning surrogates and observations, with regression (pink lines) very close
tothel:1blacklines and 80% of the data (black dash circles) around the 1:1

lines. The shading areas indicate the 90% confidence interval for the multi-year
regression lines based on individual years. The middle subpanels show results
for the eruption year 2008 and the right subpanels show results for the eruption
year 2018, highlighting the differences between machine-learning surrogates
and observations. The following variables are shown from top to bottom: cloud

droplet number concentration (N), cloud droplet effective radius (r), in-cloud
liquid water path (LWP), cloud fraction (CF, or cloud cover), reflected shortwave
radiation (SW) at the top of the atmosphere (TOA), and daily precipitation (Rain).
The colour of each pixel indicates the normalized data density function, brighter
colour means more data points in this pixel. A steeper pink slope (than the black
dashed line) indicates an increase of the given variable compared to the non-
eruptionyears average. Note that the slopes here can be different from the ratios
inFig. 2, inwhich area-weighted averaging is applied and provides a more robust
validation using Monte Carlo bootstrapping.
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Extended Data Fig. 4 | Aerosol-cloud interactionsin June 2008. The colours
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conditions, that is, observations - machine-learning surrogate. Zonal mean
values and probability distribution function are also provided in the middle
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TOA downward shortwave radiation with blue colour indicating cooling and red
indicating warming, and (f) rainfall.
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Extended DataFig. 5| Aerosol-cloud interactions in July 2008. The colours
indicate the differences between volcanic aerosol perturbation and normal
conditions, i.e., observations - machine-learning surrogate. Zonal mean values
and probability distribution function are also provided in the middle and right

subpanels. The panels show (a) Nd, (b) reff, (c) in-cloud LWP, (d) CF, (e) TOA
downward shortwave radiation, does not pass the significance test and therefore
is marked as “insignificant”, and (f) rainfall.
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indicate the differences between volcanic aerosol perturbation and normal
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subpanels. The panels show (a) Nd, (b) reff, (c) in-cloud LWP, (d) CF, (e) TOA
downward shortwave radiation with blue color indicating cooling and red
indicating warming, and (f) rainfall.
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Extended Data Fig. 7| Aerosol-cloud interactions in July 2018. The colours
indicate the differences between volcanic aerosol perturbation and normal
conditions, i.e., observations - machine-learning surrogate. Zonal mean values
and probability distribution function are also provided in the middle and right

subpanels. The panels show (a) Nd, (b) reff, (c) in-cloud LWP, (d) CF, (e) TOA
downward shortwave radiation with blue color indicating cooling and red
indicating warming, and (f) rainfall.
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Extended Data Fig. 8 | Partial dependence of cloud fraction (CF, also known as cloud cover) on 850 hPaRH. The other predictors are fixed at average values.
The RH range of the training dataset is marked with blue dash lines, and the probability distribution of RH in July 2008 is indicated by the red bars.
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