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Abstract

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows
sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main
component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then
taken up by plants. However, the relationship between root-secreted acid phosphatases
(APase) and root morphology traits, two important P-acquisition strategies in response to P
deficiency, is unclear among B. napus genotypes. This study aimed to understand their
relationship and how they affect P acquisition, which is crucial for the sustainable utilisation
of agricultural P resources. This study showed significant genotypic variations in root-secreted
APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant
(total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP
but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with
contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with
longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under
P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and
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total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs
existed between the two P-acquisition strategies among B. napus genotypes under P-
deficient conditions. Total SAP was an important root trait under Po conditions. These results
might help to breed B. napus with greater P-acquisition ability under low P availability
conditions.

1-Introduction

Phosphorus (P) is the second most essential macronutrient for plant growth, accounting for
about 0.2% of a plant’s dry weight (Schachtman et al., 1998). Plants acquire P from the soil in
the form of inorganic P (Pi, phosphate). However, Pi can form strong ionic interactions with
metal cations (e.g., AI*", Ca®" and Fe’") present in the soil, resulting in the formation of
unavailable forms (Chen & Liao, 2016). In comparison, organic P (Po) is relatively abundant
and around 35-65% of total P in soil, sometimes even as high as 90% in organically managed
agricultural soils (Shen et al,, 2011; Zhang et al., 2023). However, Po must be mineralised to
Pi through the phosphatases (e.g., phosphatases, diesterases, phytases), and then taken up
by plants (Richardson et al., 2000; Tarafdar & Claassen, 1988; Zhang et al., 2023). Therefore,
the amount of available Pi in the soil is often inadequate to meet plant requirements. In many
natural ecosystems and arable soils, the amount of available Pi is below the concentration
required for optimal growth of plants, which greatly restrains agricultural production
worldwide (Neset & Cordell, 2012; Vance, 2003).

In response to P deficiency, plant roots have evolved two main strategies to enhance soil P
acquisition (Wang et al., 2018). One is to enhance Pi uptake by exploiting a greater volume
of soil through changing root system architecture and/or fostering symbiotic relationships
with arbuscular mycorrhizal fungi (AMF) (Liu, 2021; Lynch, 2019; Poirier et al., 2022; Sawers et
al., 2017; Smith et al., 2011; White et al., 2013). The other is to increase the mobilization of
both Po and Pi components from the soil by increasing the release of root exudates into the
rhizosphere, including hydrolytic enzymes (e.g., APase, RNase and phytase), carboxylates and
protons/hydroxides (Deng et al., 2020; Poirier et al., 2022; Wang et al., 2018; Wang & Lambers,
2019; Wen et al.,, 2021). All these adjustments in root functional traits could contribute to
more plant P acquisition, but the costs of energy and resources may limit a plant's ability to
enhance all these strategies simultaneously. Because root functional traits are able to develop
by investing carbon (Nguyen, 2003; Jones et al., 2009), and based on the concept of the trait
economics spectrum, there is always an equilibrium between acquiring and utilizing resources,
with a specific focus on the trade-offs between features such as root functional traits
(Honvault et al., 2020; Reich & Cornelissen, 2014; Wen et al., 2019). Consequently, different
plant species and even different genotypes of a particular species can exhibit contrasting
abilities in root functional properties.
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Large interspecific variations in root functional traits associated with P acquisition have been
demonstrated in pasture legumes, grass species, crops, and tree species (Becquer et al., 2021;
Honvault et al., 2020; Kidd et al., 2015; Lyu et al., 2016; Ushio et al., 2015; Waddell et al., 2016;
Wen et al., 2019). Species with thinner roots depend more on their root morphology to
enhance P acquisition by increasing soil exploration, suggesting a resource-acquisitive
strategy; conversely, species with thicker roots tend to rely on greater colonization by AMF,
which compensates for a low root absorptive surface or depend more root exudates (e.g.,
carboxylate exudation) to mine sparingly soluble P in the rhizosphere (Kidd et al., 2015; Wen
et al., 2019; Wen et al., 2021). However, there was a negative correlation between root
diameter and root APase activity among tree species (Han et al., 2021; Ushio et al., 2015).
Genotype variations in root functional traits are also reported, but there is a different
relationship between root morphology traits and rhizosphere exudates in response to low P
stress among different species (Wang et al., 2021; When et al., 2020). The rhizosphere APase
activity is negatively correlated with root length but positively correlated with root diameter
among wheat (7riticum aestivum) genotypes (Wang et al., 2021). However, root secrete
carboxylate is negatively correlated with root diameter but positively correlated with root
length among chickpea (Cicer arietinum) genotypes (When et al., 2020). These indicate that
different species or different genotypes in the same species have different interactions
between root functional traits (e.g., root morphology, root exudates, AMF). Much progress
has been made in interactions of root morphology and mycorrhizal symbioses, but the roles
of root exudates, especially root-secreted APases have been largely ignored (Wen et al., 2019).
APases (E.C. 3.1.3.2) catalyse the cleavage of a broad array of phosphomonoesters (Po sources)
with optimal activity below pH 7.0 to release Pi (Bhadouria & Giri, 2022; Vincent et al., 1992;
Wang & Liu, 2018). It is a common response to low soil P availability to increase the activity
of root-secreted APases in most crops, such as oilseed rape (Brassica napus), wheat, rice
(Oryza sative), soybean (Glycine max) and common bean (Phaseolus vulgaris) (Bhadouria et
al., 2023; Ciereszko et al., 2011; Du et al., 2022; Duan et al., 2020; Liang et al., 2010; Wu et al.,
2018). Pi is released from Po by root-secreted APases in the rhizosphere, which is closely
related to the efficiency of P acquisition in crops (Deng et al., 2020; Duff et al., 1994; Lu et al.,
2016; Mehra et al., 2017).

Brassica napus is one of the most important and profitable oil crops in the world (Angelovic
et al.,, 2013), but it is sensitive to low soil P availability (Ding et al., 2012; Duan et al., 2020; Shi
et al,, 2013; Yuan et al., 2016). Root morphology traits of B napus in response to low P
availability have been well studied (Duan et al., 2021; Li et al., 2022; Wang et al., 2017; Xu et
al., 2022; Xu et al., 2023; Yang et al., 2010), and wide genotype variations in root morphology
traits and seed yield (SY) are reported among a large association panel of B napus with
diverse genetic backgrounds under P-deficient conditions (Wang et al., 2017; Liu et al., 2023).
Recently, Duan et al. (2020) report that rhizosphere APase activity of B. napus increased from
the leaf development stage to pod development in soils with low P availability, especially

during the leaf development stage. This suggests that the root-secreted APase of B napus
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should also be important for adaptation to low soil P availability. However, the genotype
variations of root-secreted APase in response to low P availability and their effect on seed
yield in B. napus are still unknown. Additionally, B. napus is a nonmycorrhizal species with a
thinner root; whether there is a coordinated or trade-offs in P acquisition between root
morphology and secreted APase under different P conditions is still unclear.

In this study, the root biomass, root-secreted APase activity per unit root fresh weight (SAP)
and total root-secreted APase activity per plant (total SAP) of 350 B. napus genotypes with
various genetic backgrounds under P-deficient conditions were quantified, and it was found
that these root traits have wide genotype variations and different effects on SY. Subsequently,
18 B. napus genotypes with contrasting root biomass and SAP were selected from the above
350 B. napus genotypes to explore the effect of SAP and root morphology on P acquisition,
and results showed that there were trade-offs between the two P-acquisition strategies
among B. napus under P-deficient conditions. Total SAP was an important root trait under Po
conditions. Understanding the interactions of root morphology and root-secreted APase will
provide valuable insights into how to explore root functional traits for sustainably managed
systems and be helpful for breeding B. napus with greater P acquisition ability with limited P
availability.

2-Materials and methods

2.1-Plant materials and growth conditions

Experiment 1

A total of 350 genotypes from an association panel of oilseed rape (Brassica napus) with
diverse genetic backgrounds, including 303 semi-winter, 41 spring, 4 winter and 2 unknown
types collected worldwide, were used in this study (Table S1). The flowering time of them
grown in Wuhan ranged from 146 to 174 days (Han et al., 2022). The seeds were washed
three times with pure water and then placed at 4°C for overnight soaking. The imbibed seeds
were germinated on a piece of gauze moistened with pure water for six days, and then
transferred to Hoagland nutrient solution (Hoagland & Arnon, 1950) without phosphate at
pH 5.6 for five days. Then, the plants were used for the measurement of the fresh root weight
(RFW), root-secreted APase activity per unit RFW (SAP) and total root-secreted APase activity
per plant (total SAP). A total of 54 plants were grown in each pot containing 11 L nutrient
solution and all the plants were cultivated in a greenhouse with a 16 h / 8 h (light/dark) at
22°C. RFW, SAP and total SAP were used to cluster genotypes into three different classes: (1)
high RFW but low SAP, (2) high SAP but low RFW, and (3) low RFW and SAP (Fig. 1A). In
addition, the differences in seed yield under P-deficient soil among the three classes were
compared according to the data provided by Liu et al. (2023).

Experiment 2
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Nine Class 1 genotypes, which had high root biomass but low SAP, and nine Class 2 genotypes,
which had high SAP but low root biomass, were selected from the above association panel to
explore the effect of different root functional strategies on P acquisition. The seeds of these
18 B napus genotypes were surface-sterilized for 10 min using 1% NaClO, then washed five
times with pure water, and then placed at 4°C for overnight soaking. The imbibed seeds were
germinated on a piece of gauze moistened with pure water for six days, and uniformly sized
seedlings were transferred to a Hoagland nutrient solution (Hoagland & Arnon, 1950) for four
days. The seedlings were then transferred to Hoagland nutrient solution with different P
treatments: NP (normal Pi, 500 uM KH:PQu), LP (low Pi, 5 uM KH2PO.) and Po (100 uM ATP as
a P source; Gao et al,, 2017; Deng 2020). After 10 days, four replicate plants of each genotype
were used for the measurement of root functional traits, and after 15 days, four replicate
plants of each genotype were used for the measurement of P content traits and shoot
biomass. There was no observed difference in the shoot growth among B. napus plants grown
under normal Pi, low Pi and Po after 10 days. However, after 15 days, the difference in shoot
growth among different P treatments could be observed. It was the reason why the plants
were sampled for the measurement of P content traits and shoot biomass five days later. The
plants were cultivated in a greenhouse at 22°C with a 16 h / 8 h (light/dark). The nutrient
solutions were renewed every 4 days, and the pH was adjusted to 5.6.

2.2-Root secreted APase activity

The plant roots were rinsed in distilled water and transferred to centrifuge tubes containing a
culture medium with 5 mM p-NPP (pH 5.5). The seedlings were then placed in an incubator
at 35°C for 30 min. The reaction was stopped with 1 M NaOH and the absorbance was
determined at 410 nm using a microplate assay (Spark; Tecan). Root-secreted APase activity
was expressed as the amount of p-NP generated by hydrolysis of p-NPP per unit time,
including SAP and total SAP.

2.3-Root morphology traits

After measurement of root-secreted APase activity, the plant roots were washed, and then
the entire root was spread out in the water of a transparent plastic tray and scanned at 300
dpi using a flatbed scanner (Epson Perfection V700). Root images were analysed with Win-
RHIZO 2009 software (Regent Instruments Inc.) to obtain total root length (TRL), average root
diameter (ARD) and total root surface area (TRA). Finally, the plant roots were weighed to
obtain RFW after removing the water with absorbent paper, and then the roots were dried
and weighed to obtain root dry weight (RDW).
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2.4-P content traits

The plant samples were divided into shoot and root and dried under 80°C to a constant
weight for determination of the dry weight. A total of 0.05 g of dried samples were pre-
digested in glass tubes with H.SO. overnight. The tubes were then heated to 120°C for 1 h
and five drops of 30% H.O. were added every 30 min until the solution turned colourless and
transparent. The digestion was continued for an additional 30 min. The P concentration was
determined by the molybdenum blue colorimetry method (Chen et al., 2007) at 700 nm by a
microplate assay (Spark; TECAN). The total P acquisition per plant (plant P content) was
defined as the sum of shoot P content and root P content.

2.5-Statistical analyses

Two-way ANOVA with a randomized block was used to examine the effects of P treatments,
genotypes, and their interaction on root functional traits. Cluster analysis and visualisation for
total SAP, SAP and RFW of 350 B. napus genotypes were performed with the R package
‘pheatmap’. Principal component analysis (PCA) was performed with the R package
‘FactoMineR’. Pearson's correlation analysis was performed with the R package
‘PerformanceAnalytics’, and a heatmap of the correlation coefficient matrix was generated by
using the R package ‘corrplot’ package. To examine the importance of different root traits on
P acquisition, we conducted redundancy analysis (RDA) using the R package ‘vegan’ package,
and random forest analysis by using the R package ‘rfPermute’ package. Percentage increases
in the MSE (mean squared error) of variables were used to estimate the importance of these
predictors (Breiman, 2001). All R packages were used in R (version 4.2.1). To characterize the
plasticity of root traits in response to low P availability among the B. napus genotypes, the
response ratio (RR) of six traits was calculated. The RR was defined as the extent of plant traits
in response to low P or Po, and calculated as RR = > [(Ri7'— Ri)/(Ri'j’+ Ri)}/n, where R/}’ and
Rjjare root traits for a given genotype at LP/Po (/) and NP (), with j"and s being two randomly
selected individuals from four replicates of the same genotype at LP/Po and NP, respectively,
and nis the number of R/j"— Rjjvalues (Wen et al., 2020).
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3-Results

3.1-Root-secreted APase activity and root fresh weight vary
significantly in an association panel of B napus under P

deficiency

To identify genotypic differences in root-secreted APase activity, 350 diverse B. napus
genotypes were used in this study. Wide phenotypic variations were observed for root fresh
weight (RFW), root-secreted APase activity per unit RFW (SAP), total root-secreted APase
activity per plant (total SAP) and seed yield (SY) among the association panel of B. napus, with
a 3.3-fold variation in total SAP between the extremes, a 2.9-fold variation in SAP, a 4.5-fold
variation in RFW, a 31.9-fold variation in SY (Table 1). Interestingly, the cluster analyses
divided the association panel of B. napus into three main classes (Fig. 1A). Among them, Class
1 (high RFW, low SAP), Class 2 (low RFW, high SAP) and Class 3 (low RFW, low SAP) included
107, 81, and 162 B. napus genotypes, respectively (Fig. 1A).

Mean total SAP had a small difference (8.2%) between the Class 1 and Class 2 genotypes, but
mean SAP and RFW had a relatively large difference between them (Fig. 1B-D). Specifically,
Class 1 genotypes were 38.1% higher in mean SAP (Fig. 1C) but 33.3% lower in mean RFW than
Class 2 genotypes (Fig. 1D). The Class 3 genotypes had a relative smaller value in the above
three traits as compared with Class 1 and Class 2 genotypes (Fig. 1B-D). Additionally, the
Class 1 genotypes were also 30.3% higher than Class 2 genotypes and 42.5% higher than Class
3 genotypes in SY (Fig. 1E). As expected, total SAP had a positive correlation with SAP and
RFW (P < 0.001, r = 0.26 and 0.65), and there was a negative correlation between SAP and
RFW in the association panel (P < 0.001, r = -0.49; Fig. 1F). In addition, the SY was positively
correlated with total SAP and RFW (P < 0.001, r = 0.2 and 0.22) but weakly correlated with
SAP (P=ns, r=-0.05) under P deficiency (Fig. 1F). Principal component analysis (PCA) showed
that the first two components (PC1 and PC2) accounted for 56.7% and 41.6% of the total
variation, respectively (Fig.1G). The distributions of Class 1 genotypes were significantly
different from those of Class 2 and Class 3, and there was no significant difference between
Class 2 and Class 3 genotypes in PC1 (Fig. 1G, H). The distributions of the three classes
genotypes were significantly different in PC2 (P < 0.0001; Fig. 1G, H). These showed that root-
secreted APase and root morphology traits, as different P acquisition strategies, perhaps
existed in a wide range of B napus adapted to low P availabilities.
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3.2-Differences in root functional traits and P-efficient traits

between Class 1 and Class 2 B. napus genotypes

Nine Class 1 genotypes with high root biomass but low SAP and nine Class 2 genotypes with
high SAP but low root biomass were randomly selected from the association panel of 350 5.
napus to evaluate the effect of different root traits on P acquisition and plant growth. Six root
functional traits, including total SAP, SAP, root dry weight (RDW), total root length (TRL), total
root surface area (TRA) and average root diameter (ARD) of the 18 B. napus genotypes were
measured under three P treatments. Similar to the association panel of 350 B napus
genotypes, all root traits showed substantial genotypic variation among 18 B napus
genotypes (Fig. S1; Tables 2 and S2). All root traits except for ARD were significantly influenced
by the P treatment and the interaction between P treatments and genotypes (Table 2), and
they were significantly increased under the LP conditions (Figs 2 and S1). More specifically,
Class 1 genotypes showed significantly higher RDW, TRL and TRA than Class 2 genotypes
under both NP and LP conditions (Fig. 2A, D, E). In contrast, Class 2 genotypes had
significantly higher SAP than Class 1 genotypes under LP conditions, and there was a similar
tendency under NP conditions (Fig. 2B). These differences between Class 1 and Class 2
genotypes resulted in a similar total SAP under both NP and LP conditions (Fig. 2C).
Interestingly, under Po treatment, Class 1 genotypes also had significantly lower SAP than
Class 2 genotypes, but there were no significant differences in other root traits between the
two classes of genotypes, even though Class 1 genotypes exhibited higher mean values in
RDW and TRL than Class 2 genotypes (Fig. 2).

Five P content traits and shoot biomass within the 18 B napus genotypes, including shoot P
content, root P content, plant P content, shoot P concentration, root P concentration and
shoot dry weight, exhibited substantial genotypic variation across the three P treatments (Fig.
S2; Tables 2 and S2). All of these traits were significantly influenced by the P treatment (Figs
3 and S2; Table 2), and all of these traits, except for root P concentration, were significantly
influenced by the interaction between P treatments and genotypes (Table 2). Although there
was no significant difference in shoot P concentration and root P concentration between Class
1 and Class 2 genotypes under the three P treatments (Fig. 3A, B), Class 1 genotypes showed
significantly higher values in shoot dry weight and plant tissue P content than Class 2
genotypes under both NP and LP conditions (P < 0.05 to P < 0.001; Fig. 3C, D, E, F).
Interestingly, there were no significant differences in the shoot biomass and plant P content
between Class 1 and Class 2 genotypes under Po treatment (Fig. 3C- F).
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3.3-Trade-offs among root functional traits in response to P

deficiency

Principal component analysis (PCA) based on six root traits of 18 B. napus genotypes showed
that the Class 1 and Class 2 genotypes were clustered and the distributions of Class 1 and
Class 2 genotypes were significantly different in PC1 under NP and LP treatments but were
not significantly different under the Po treatment (Fig. 4). Under NP treatment, the first two
components (PC1 and PC2) accounted for 52.3% and 31.2% of the total variation, respectively
(Fig. 4A). The TRL, RDW and total SAP scored high in the PC1, while ARD, TRA and SAP scored
high in the PC2 (Fig. 4A; Table S3). The distributions of genotypes in the two classes were
significantly different in the PC1 (P < 0.01; Fig. 4D). Under LP treatment, the PC1 and PC2
accounted for 55% and 25.2% of the total variation, respectively (Fig. 4B), the PC1 primarily
comprised SAP (negative direction), TRL and RDW (positive direction), and the PC2 primarily
comprised ARD, TRA and total SAP (Fig. 4B; Table S3). Additionally, the distributions of
genotypes in the two classes were significantly different in the PC1 (P < 0.0001; Fig. 5E); the
Class 1 genotypes were mainly clustered in the direction of TRL and RDW parameters,
whereas the Class 2 genotypes tended to cluster in the direction of SAP (Fig. 4B). Under Po
treatment, the first two components accounted for 53.1% and 26.4% of the total variation,
respectively (Fig. 4C). The TRL, RDW and total SAP had high scores in PC1, and the SAP, ARD
and TRA had high scores in PC2 (Fig. 4C; Table S3).

There was a positive correlation between root morphology traits under three P treatments
(Fig. 5). TRL and RDW were significantly positively correlated with total SAP (r=0.79), but not
significantly correlated with SAP under NP treatment (Fig. 5A). Under LP conditions, the total
SAP was significantly positively correlated with RDW (P < 0.05, r = 0.60) and not significantly
correlated with root morphology traits, but SAP was significantly negatively correlated with
root morphology traits (TRL and TRA, r= -0.78 and -0.66, respectively) and RDW (r = 0.74)
(Fig. 5B). Under Po treatment, the TRL, TRA and RDW were positively correlated with total SAP
(r = 0.66 to 0.82) but weakly negative correlated with SAP (r = -0.24 and -0.25; Fig. 5C).
Overall, these results revealed that trade-offs occurred between SAP and root morphology
traits (i.e., TRL and TRA) of B. napus in response to Pi deficiency. Although Class 1 and Class
2 genotypes both arrived at the same total SAP: the Class 1 genotypes with bigger root
morphology but lower SAP, whereas Class 2 genotypes had smaller root morphology but
higher SAP. Therefore, there was genotypic variation between these groups in terms of carbon
allocation.
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3.4-Contribution of root traits to P acquisition under

different P treatments

Almost all root traits across 18 B. napus genotypes showed a positive response ratio in
response to low P (Fig. S3A; except for ARD) and Po treatments (Fig. S3B). These traits showed
different correlations with the P content traits and shoot biomass under different P treatments
(Fig. 5). At NP conditions, plant tissue P content traits and shoot dry weight were significantly
positively correlated with the TRL and RDW (r = 0.67 to 0.86), but not significantly correlated
with SAP, TRA and ARD, and only shoot P content and shoot dry weight were slightly positively
correlated with total SAP (Figs 5A, 6A-D and S4A, B). All root traits were not significantly
correlated with shoot P concentration and root P concentration (Fig. 5A). At LP conditions,
the root morphology traits (i.e., TRL and TRA) and RDW were significantly positively correlated
with the shoot P content and dry weight (r= 0.56 to 0.88; Figs 5B, 6G, H, and S4C). However,
the shoot P content and dry weight were significantly negatively correlated with SAP (r = -
0.64 and -0.66) and were not significantly correlated with total SAP and ARD (Figs 5B, 6E, F,
and S4D). All root traits except for total SAP were not significantly correlated with shoot and
root P concentration (Fig. 5B). The total SAP was significantly negatively correlated with shoot
P concentration (r = -0.58; Fig. 5B). At Po conditions, plant tissue P content and shoot dry
weight were strongly positively correlated with total SAP, TRL and RDW (r = 0.80 to 0.93), but
they were not significantly correlated with SAP and TRA (Figs 5C, 61-L, and S4E). However, the
plant P content was significantly negatively correlated with ARD (r= -0.48; Figs 5C and S4F).
The root P concentration was significantly negatively correlated with total SAP but was not
significantly correlated with other root traits (Fig. 5C).

Redundancy analysis (RDA) was used to explore the importance of root traits on P acquisition.
All three P content traits had high scores in the positive direction of RDA1 under three P
treatments (Fig. 7A-C; Table S4). Under NP treatment, all six root traits on RDA1 and RDA2
could explain 67.4% and 1.5% of the total variation of the three P-content traits, respectively
(Fig. 7A). Among these root traits, RDW and TRL were the most important factors in
promoting P uptake, which had high scores in the positive direction of RDA1 (Fig. 7A; Table
S4). Under LP treatment, all root traits in the RDA1 represented 40.3% and RDA2 represented
2.1% of the total variation of the three P-content traits, respectively (Fig. 7B). The TRL and
RDW had high scores in the positive direction of RDA1, which were important factors in
promoting P accumulation; however, the SAP had high score in the negative direction of
RDA1, which decreased the plant P accumulation (Fig. 7B; Table S4). Under Po treatment, the
explained variations of root traits on the three P-content traits in RDA1 and RDA2 were 84.9%
and 6.4%, respectively (Fig. 7C). The TRL, RDW and total SAP had high scores in the positive
direction of RDA1, which were important factors in promoting P accumulation (Fig. 7C; Table
S4). The percentage of increase of mean square error [Increase in MSE (%)] was used to
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estimate the importance degree of root functional traits to P accumulation. The TRL and RDW
had high values of increase in MSE (%) in three P treatments. The total SAP had a high value
of increase in MSE (%) but SAP had a low value of increase in MSE (%) under Po treatment (Fig.
7D, E, F).

4-Discussion

4.1-Trade-offs between root-secreted acid phosphatase

and root morphology traits

Root-secreted APases and root morphology traits have been widely studied as two distinct
strategies for P acquisition (Lyu et al., 2016; Ushio et al., 2015; Zhou et al., 2016). Root-
secreted APases are generally thought to promote P availability by hydrolyzing Po, and root
morphology traits are changed to improve P uptake through a great exploration of the soil
volume (Duff et al., 1994; Tarafdar & Claassen, 1988; Wang et al., 2018). Large phenotypic
variations in root morphology traits were observed in response to P deficiency among 5.
napus genotypes with diverse genetic backgrounds (Wang et al., 2017), but root-secreted
APase activity was not investigated. In this study, large phenotypic variations in root-secreted
Apase activity (i.e., total SAP and SAP) were also observed among an association panel of 5B.
napus under the P-deficient condition (Table 1; Table S1). Genotypes with large root biomass
had reduced SAP (Class 1 genotypes); conversely, genotypes with smaller root biomass had
enhanced SAP (Class 2 genotypes) (Fig. 1A, C, D; Table S1). This indicated that perhaps there
existed a significant difference in P acquisition strategies within the association panel of B
napus.

SAP and root morphology (i.e., TRL, TRA) of 18 B napus genotypes were significantly
increased by P deficiency (Figs 2B, D, E and S1B, D, E). Class 1 genotypes had larger root
system than Class 2 genotypes, but Class 2 genotypes had higher SAP than Class 1 genotypes
under P-deficient conditions (Figs 2B, D, E and S1B, D, E). Furthermore, SAP was negatively
correlated with TRL and TRA, especially under P-deficient conditions (r = -0.78 and -0.66;
Figs 4B and 5B). Very similar results were also reported among wheat and oilseed rape
genotypes under P-deficient soil (Duan et al, 2020; Wang et al., 2021). Both root
development and root exudates require the consumption of carbon sources; therefore, the
input of carbon resources determines the relationship between the two P acquisition
strategies. Unlike oilseed rape and wheat, the root exudates (e.g., root-secreted APase and
carboxylate) were negatively correlated with root diameter in maize and chickpea genotypes,
even among tree species (Han et al., 2021; Ushio et al., 2015; Wen et al., 2020; Yang et al.,
2022). These indicated that there were a series of different trade-offs among the root
functional traits of P acquisition in response to P deficiency in both interspecific plants and
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intraspecific plants.

Recently, root exudation was incorporated into the root economics space for a holistic
understanding of soil nutrient acquisition (Wen et al., 2021). According to the “resource
economy hypothesis”, the cost (i.e., energy and resource input) of root functional traits
regulation may limit the plant's ability to regulate these strategies simultaneously and
efficiently (Lambers et al., 2006; Raven et al., 2018; Ryan et al., 2012). In this study, under LP
treatment, Class 1 genotypes relied more on root morphology and increased the interception
of P, suggesting a preference for “resource-acquisition” strategies. In contrast, Class 2
genotypes had a strong ability to secrete APase from their roots and contributed to the
hydrolysis of Po to improve the P availability, suggesting a typical “resource-conservative”
strategy (Figs 2 and 4B). It is worth noting that the SAP, TRL and TRA were significantly induced
by Pi deficiency in both Class 1 and 2 genotypes (Figs 2B, D, E and S1B, D, E), indicating B
napus evolved different strategies to adapt to the Pi limitation conditions. The molecular
mechanisms that control the trade-offs between SAP and root morphology (i.e., TRL and TRA)
under P-deficient conditions need further research in the future.

4.2-Contribution of root functional traits to P acquisition

The root morphology traits had high plasticity in response to P deficiency stress among most
crops (Liu, 2021; Lambers, 2022; Poirier et al., 2022). In this study, the root morphology traits
of B. napus were increased by low P availability, and there was a great variation in the above
traits among 18 B. napus genotypes (Figs 2D, E, F, and S1D, E, F;, Table S2). Although there
was no significant difference in plant tissue P concentration between Class 1 and Class 2
genotypes, the Class 1 genotypes were significantly higher in plant P accumulation than Class
2 genotypes under both NP and LP treatments because the root morphology and tissue
biomass of the former was more than the latter (Fig. 3). Plant P acquisition is positively
correlated with root extension, and species with high P efficiency tend to rely on root
morphology to improve the exploration range of soil (Becquer et al., 2021; Cornish et al., 1984;
Haling et al., 2016; Lambers et al., 2006). In the present study, the plant P content was
significantly positively correlated with TRL and RDW under three P treatments (Figs 5 and 6C,
G, K, D, H, L); besides, the root biomass was positively correlated with SY among 350 B.napus
under P-deficient conditions (Fig. 1F). Redundancy and random forest analysis also showed
that TRL and RDW were very important factors for P acquisition under three P treatments (Fig.
7). Additionally, a recent report also showed SY is positively correlated with TRL under P-
sufficient or P-deficient conditions in B. napus (Duan et al., 2020). Therefore, TRL and RDW
were significant traits for P acquisition and should be the first root trait to be considered in
P-efficient breeding in B. napus.

Root-secreted APases enhance the P availability by mineralisation of Po as part of the P
acquisition strategy (Tarafdar & Claassen, 1988). However, the efficiency of secrete APases is
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different among different plant species (Lyu et al., 2016; Razavi et al., 2016). For example,
root-secreted APase activity in legumes reaches the highest rate 12 d after germination
(significantly higher than that of cereals and oilseed species), but then gradually decreases,
while the total SAP of oilseed species increases linearly with the age of the plants (Yadav &
Tarafdar, 2001). Species with high root-secreted APase activity usually have high P acquisition
ability in a Po environment (Bhadouria et al., 2023; Deng et al., 2020; Liang et al., 2010; Liu et
al., 2016; Liu et al., 2018; Mehra, et al., 2017; Zhu et al., 2020). In this study, Class 2 genotypes
had higher SAP but lower tissue P content and shoot biomass than Class 1 genotypes (Figs
2B and 3C-F). The tissue P content was significantly negatively correlated with SAP under LP
conditions (Figs 5B and 6F). This is likely due to the lack of Po in the growing media and the
consumed resources of the root-secreted APases under LP conditions in this study. However,
under Po conditions, the shoot biomass and tissue P content were not significantly different
between Class 1 and Class 2 genotypes (Fig. 3C-F). The plant tissue P content and shoot
biomass were significantly positively correlated with total SAP (r =0.80 and 0.81), like root
systems size (i.e., RDW and TRL; Fig. 5C). Overall, these results suggested that the Class 1
genotypes with larger root system were favourable genotypes to adapt to different P
availability conditions, and the Class 2 genotypes with high SAP were suitable for rich Po
conditions. Since total SAP scales with root system size (RDW/TRL), it is difficult to separate
these results, but it does highlight the trade-offs between root system size and SAP, with both
competing for carbon resources. Some genotypes have evolved preferences for carbon
allocation to root system size (Class 1 genotypes), whilst others have directed these resources
to SAP (Class 2 genotypes). Both traits remain important factors in the acquisition of Po.
Previous studies have shown that root-secreted APase activity was increased under P
deficiency in B. napus (Duan et al., 2020; Zhang et al., 2010), indicating that root-secreted
APase was also an important factor in response to low P stress in B. napus. Although there
were huge differences in SAP, RDW and TRL, there was no significant difference in the total
SAP between the Class 1 and Class 2 genotypes under LP conditions (Fig. 2). Although the
SAP had higher response ratio than total SAP in response to Po, the total SAP had the highest
response ratio in response to P deficiency compared to other root traits (Fig. S3). RDA and
random forest analysis further demonstrated that total SAP was as important for P acquisition
as RDW and TRL under Po conditions (Fig. 7C, F). However, in previous studies, root-secreted
APases promoted rhizosphere Po utilization in many crops, but these studies were only
confined to SAP and did not investigate total SAP (Deng et al., 2020; Liu et al., 2016; Liu et al.,
2018; Lu et al.,, 2016; Zhu et al., 2020). Therefore, total SAP should receive the same attention
when evaluating the Po utilization efficiency in crops.

In conclusion, the present study showed a significant genotypic variation of root-secreted
APase activity (i.e., SAP and total SAP) in an association panel of B. napus, and root system
size and SAP resulted in different P acquisition strategies across a wide range of B. napus
genotypes. Class 1 genotypes had higher root biomass and better root morphology (i.e., TRL

and TRA) than Class 2 genotypes, which increased the interception of P in the “resource-
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acquisition” strategy under P-deficiency. Conversely, Class 2 genotypes had smaller root
system but higher SAP than Class 1 genotypes, which increased P-activation in the “resource-
conservation” strategy under P-deficiency. Root morphology was important in P-acquisition
under different P-availability conditions, and total SAP was also an important factor for P-
acquisition under Po condition. These are highly valuable for breeding and selecting
genotypes with high P-acquisition efficiency.
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Figures

Fig. 1 Differences in total root-secreted APase activity per plant (total SAP), root-secreted
APase activity per unit root fresh weight (SAP) and root fresh weight (RFW) among an
association panel of 350 B. napus genotypes under P deficiency. (A-E) Cluster analysis of total
SAP, SAP and RFW (A). The box plots show the difference in total SAP (B), SAP (C), RFW (D)
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and seed yield (SY) (E) among the three Classes of genotypes. The number above the box
represents the mean of the investigated traits of each class of genotypes. (F) Pearson
correlation matrix of total SAP, SAP, RFW and SY. (G) Principal component analysis (PCA) of
total SAP, SAP and RFW. (H) PC scores of three classes of genotypes in the first two principal
components. Class 1, Class 2 and Class 3 included 107, 81, and 162 B. napus genotypes,
respectively. Seeds were germinated for six days and then transferred to a nutrient solution
without Pi for five days. The SY data were provided by Liu et al. (2023). Significant difference
based on Duncan's post-hoc analysis at P < 0.05.

Fig. 2 Box plots showing the differences of root functional traits among 18 B. napus genotypes
between Class 1 (blue) B. napus genotypes and Class 2 (red) genotypes. (A) RDW, root dry
weight; (B) SAP, root-secreted APase activity per unit root fresh weight; (C) Total SAP, total
root-secreted APase activity per plant; (D) TRL, total root length; (E) TRA, total root surface
area; (F) ARD, average root diameter. Student's t-test was used for comparisons between two
classes of genotypes (ns, not significance, *P-value < 0.05, »*P-value < 0.01, *x*P-value <
0.001). The points in the box represented the means of four biological replicates of each
genotype. Boxes with different upper-case letters and lower-case letters are significantly
different at P < 0.05 in the investigated traits of Class 1 genotypes between three P treatments
(upper-case), and Class 2 genotypes between three P treatments (lower-case). NP, normal P
(500 uM KHzPQ4); LP, low P (5 uM KHzPO.); Po (100 uM ATP).

Fig. 3 Box plots showing the differences of P accumulation traits and shoot biomass among
18 B. napus genotypes between Class 1 (blue) B napus genotypes and Class 2 (red) genotypes.
(A) Shoot P concentration, (B) root P concentration, (C) shoot dry weight, (D) shoot P content,
(E) root P content and (F) plant P content. Student's t-test was used for comparisons between
two classes of genotypes (ns, not significance, *P-value < 0.05, »*P-value < 0.01, »**P-value
< 0.001). The points in the box represented the means of four biological replicates of each
genotype. Boxes with different upper-case letters and lower-case letters are significantly
different at P < 0.05 in the investigated traits of Class 1 genotypes between three P treatments
(upper-case), and Class 2 genotypes between three P treatments (lower-case). NP, normal P
(500 puM KHzPQu); LP, low P (5 uM KH2PO4); Po (100 uM ATP).

Fig. 4 (A-C) Principal component analysis (PCA) of six root traits among 18 B. napus
genotypes from Class 1 (blue) and Class 2 (red). NP, normal P (500 uM KH2POs) (A); LP, low P
(5 uM KHzPO4) (B) and Po (100 uM ATP) (C). (D-F) The box plots showed the differences of
PC score in the first two principal components of Class 1 and Class 2 genotypes under NP (D),
LP (E) and Po (F). Student's t-test was used for comparisons between two classes of genotypes
(ns, not significance, *P-value < 0.05, »*P-value < 0.01, *x*P-value < 0.001). Total SAP, total
root-secreted APase activity per plant; SAP, root-secreted APase activity per unit root fresh

weight; RDW, root dry weight; TRL, total root length; TRA, root surface area; ARD, average
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root diameter.

Fig. 5 Pearson correlation matrix showing the relationships between the parameters
among 12 traits for 18 B. napus genotypes. (A) NP, normal P (500 uM KH-PQ.); (B) LP, low
P (5 uM KH:PO4) and (C) Po (100 uM ATP). The sizes of the squares are proportional to the
correlation coefficients, and the asterisks indicate that the trait—trait correlations are significant
(xP-value < 0.05, »xP-value < 0.01, »*P-value < 0.001). Total SAP, total root-secreted APase
activity per plant; SAP, root-secreted APase activity per unit root fresh weight; RDW, root dry
weight; TRL, total root length; ARD, average root diameter; TRA, root surface area; RPC, root
P content; SPC, shoot P content; PPC, plant P content; SDW, shoot dry weight; R [P], root P
concentration; S [P], shoot P concentration.

Fig. 6 The linear relationships between plant P content and root traits among 18 B.
napus genotypes. (A-D) NP, normal P (500 uM KH:PQ.); (E-H) LP, low P (5 uM KH:PQO.) and
(I-L) Po (100 uM ATP). The shaded area around the regression line represents the 95%
confidence interval. PPC, plant P content; Total SAP, total root-secreted APase activity per
plant; SAP, root-secreted APase activity per unit root fresh weight; RDW, root dry weight; TRL,
total root length.

Fig. 7 Difference in the importance of root traits for phosphorus acquisition in B. napus.

(A-C) Redundancy analysis of P content in relation to root functional traits under NP (A), LP
(B) and Po (C). (D-F) Random forest analysis of plant P content in relation to root functional
traits under NP (D), LP (E), and Po (F). Significance levels are as follows: * P-value < 0.05, **P-
value < 0.01. NP, normal P (500 uM KH2PQOy.); LP, low P (5 uM KH:PQ.); Po (100 uM ATP); Total
SAP, total root-secreted APases activity per plant; SAP, root-secreted APases activity per unit
root fresh weight; RDW, root dry weight; TRL, total root length; ARD, average root diameter;
TRA, root surface area; RPC, root P content; SPC, shoot P content; PPC, Plant P content; MSE,
mean squared error.
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Trade-offs between root secreted acid phosphatase and root morphology traits, and their contribution to phosphorus acquisition in

Brassica napus
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Fig. S1. Difference in root functional traits among 18 B. napus genotypes from Class 1 (blue) and Class 2 (red) under three
P treatments. (A) RDW, root dry weight; (B) SAP, root secreted APase activity per unit root fresh weight; (C) Total SAP, total
root secreted APase activity per plant; (D) TRL, total root length; (E) TRA, total root surface area; (F) ARD, average root diameter.
NP, normal P (500 uM KH,PO,); LP, low P (5 uM KH,PO,); Po (100 uM ATP). Data were means of four biological replicates
with error bars indicating SD.
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Fig. S2. Difference in P accumulation traits and shoot biomass among 18 B. napus genotypes from Class 1 (blue) and Class 2
(red) under three P treatments. (A) S [P], shoot P concentration; (B) R [P], root P concentration; (C) SPC, shoot P content; (D)
RPC, root P content; (E) PPC, plant P content; (F) SDW, shoot dry weight. NP, normal P (500 uM KH,PQO,); LP, low P (5 uM
KH,PO,); Po (100 uM ATP). Data were means of four biological replicates with error bars indicating SD.



Fig. S3
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Fig. S3. Difference in response ratio of six root functional traits among 18 B. napus genotypes in response to (A) LP
and (B) Po treatments. Total SAP, total root secreted APase activity per plant; SAP, root secreted APase activity per
unit root fresh weight; RDW, root dry weight; TRL, total root length; TRA, total root surface area; ARD, average root
diameter. Significant difference at P < 0.05 in the investigated traits.
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Fig. S4. The linear relationships between plant P content and TRA and ARD. (A-B) NP, normal P (500 uM KH,PO,), (C-
D) LP, low P (5 uM KH,PO,) and (E-F) Po (100 uM ATP). The shaded area around the regression line represents the 95%
confidence interval. TRA, root surface area; ARD, average root diameter; PPC, plant P content.



