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ABSTRACT: Explainable artificial intelligence (XAI) methods shed light on the predictions of

machine learning algorithms. Several different approaches exist and have already been applied

in climate science. However, usually missing ground truth explanations complicate their evalu-

ation and comparison, subsequently impeding the choice of the XAI method. Therefore, in this

work, we introduce XAI evaluation in the climate context and discuss different desired explana-

tion properties, namely robustness, faithfulness, randomization, complexity, and localization. To

this end, we chose previous work as a case study where the decade of annual-mean temperature

maps is predicted. After training both a multi-layer perceptron (MLP) and a convolutional neural

network (CNN), multiple XAI methods are applied and their skill scores in reference to a ran-

dom uniform explanation are calculated for each property. Independent of the network, we find

that XAI methods Integrated Gradients, layer-wise relevance propagation, and input times gradi-

ents exhibit considerable robustness, faithfulness, and complexity while sacrificing randomization

performance. Sensitivity methods – gradient, SmoothGrad, NoiseGrad, and FusionGrad, match

the robustness skill but sacrifice faithfulness and complexity for randomization skill. We find

architecture-dependent performance differences regarding robustness, complexity and localization

skills of different XAI methods, highlighting the necessity for research task-specific evaluation.

Overall, our work offers an overview of different evaluation properties in the climate science

context and shows how to compare and benchmark different explanation methods, assessing their

suitability based on strengths and weaknesses, for the specific research problem at hand. By that,

we aim to support climate researchers in the selection of a suitable XAI method.
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SIGNIFICANCE STATEMENT: Explainable artificial intelligence (XAI) helps to understand

the reasoning behind the prediction of a neural network. XAI methods have been applied in

climate science to validate networks and provide new insight into physical processes. However,

the increasing number of XAI methods’ can overwhelm practitioners making it difficult to choose

an explanation method. Since XAI methods results can vary, uninformed choices might cause

misleading conclusions about the network decision. In this work, we introduce XAI evaluation to

compare and assess the performance of explanation methods based on five desirable properties. We

demonstrate that XAI evaluation reveals the strengths and weaknesses of different XAI methods.

Thus, our work provides climate researchers with the tools to compare, analyze, and subsequently

choose explanation methods.

1. Introduction

Deep learning (DL) has become a widely used tool in climate science and assists various tasks,

such as nowcasting (Shi et al. 2015; Han et al. 2017; Bromberg et al. 2019), climate or weather

monitoring (Hengl et al. 2017; Anantrasirichai et al. 2019) and forecasting (Ham et al. 2019; Chen

et al. 2020; Scher and Messori 2021), numerical model enhancement (Yuval and O’Gorman 2020;

Harder et al. 2021), and up-sampling of satellite data (Wang et al. 2021; Leinonen et al. 2021).

However, a deep neural network (DNN) is mostly considered a black box due to its inaccessible

decision-making process. This lack of interpretability limits their trustworthiness and application

in climate research, as DNNs should not only have high predictive performance but also provide

accessible and consistent predictive reasoning aligned with existing theory (McGovern et al. 2019;

Mamalakis et al. 2020; Camps-Valls et al. 2020; Sonnewald and Lguensat 2021; Clare et al. 2022;

Flora et al. 2022). Explainable artificial intelligence (XAI) aims to address the lack of interpretabil-

ity by explaining potential reasons behind the predictions of a network. In the climate context, XAI

can help to validate DNNs and on a well-performing model provide researchers with new insights

into physical processes (Ebert-Uphoff and Hilburn 2020; Hilburn et al. 2021). For example, Gibson

et al. (2021) demonstrated using XAI that DNNs produce skillful seasonal precipitation forecasts

based on known relevant physical processes. Moreover, XAI was used to improve the forecasting

of droughts (Dikshit and Pradhan 2021), teleconnections (Mayer and Barnes 2021), and regional

precipitation (Pegion et al. 2022), to assess external drivers of global climate change (Labe and
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Table 1: Overview and categorization of research on the transparency and understandability of
neural networks. For this categorization we follow works like Samek et al. (2019); Ancona et al.
(2019); Mamalakis et al. (2022b); Letzgus et al. (2022); Flora et al. (2022)

local (e.g. Shapley values (Lundberg and Lee
2017) or LRP (Bach et al. 2015))

explanation target global (e.g. activation-maximization (Si-
monyan et al. 2014) or DORA (Bykov et al.
2022a))

post-hoc

model-aware (e.g. gradient (Baehrens et al.
2010) ,LRP (Montavon et al. 2019) or Grad-
CAM (Selvaraju et al. 2017))

components model-agnostic (e.g. LIME (Ribeiro et al.
2016) or Shapley values (Lundberg and Lee
2017))
sensitivity (e.g. gradient (Baehrens et al. 2010)
and GradCAM (Selvaraju et al. 2017))

explanation output feature contribution— salience
—attribution (e.g. Integrated Gradients
(Sundararajan et al. 2017) or LRP (Bach et al.
2015))
examples (e.g. RISE (Petsiuk et al. 2018))

ante-hoc
prototype network (Chen et al. 2019; Gautam
et al. 2022, 2023)

self-explaining network concept networks (Alvarez Melis and Jaakkola
2018)
contrastive networks (Sawada and Nakamura
2022)

Barnes 2021) and to understand sub-seasonal drivers of high-temperature summers (Van Straaten

et al. 2022). Additionally, Labe and Barnes (2022) showed that XAI applications can aid in the

comparative assessment of climate models.

Generally, explainability methods can be divided into ante-hoc and post-hoc approaches (Samek

et al. 2019) (see Table 1). Ante-hoc approaches modify the DNN architecture to improve inter-

pretability, like adding an interpretable prototype layer to learn humanly understandable representa-

tions for different classes (see e.g. Chen et al. (2019) and Gautam et al. (2022, 2023)) or constructing

mathematically similar but interpretable models (Hilburn 2023). Such approaches are also called

self-explaining neural networks and link to the field of interpretability (Flora et al. 2022). Post-hoc
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XAI methods, on the other hand, can be applied to any neural network architecture (Samek et al.

2019) and here we focus on three characterizing aspects (Samek et al. 2019; Letzgus et al. 2022;

Mamalakis et al. 2022b), as shown in Table 1. The first considers the explanation target (i.e. what

is explained) which can differ between local and global decision-making. While local explanations

provide explanations of the network decision for a single data point (Baehrens et al. 2010; Bach

et al. 2015; Vidovic et al. 2016; Ribeiro et al. 2016), e.g., by assessing the contribution of each

pixel in a given image based on the predicted class, global explanations reveal the overall decision

strategy, e.g. by showing a map of important features or image patterns, learned by the model for

the whole class (Simonyan et al. 2014; Vidovic et al. 2015; Nguyen et al. 2016; Lapuschkin et al.

2019; Grinwald et al. 2022; Bykov et al. 2022a). The second aspect concerns the components used

to calculate the explanation, differentiating between model-aware and model-agnostic methods.

Model-aware methods use components of the trained model for the explanation calculation, such

as network weights, while model-agnostic methods consider the model as a black box and only

assess the change in the output caused by a perturbation in the input (Strumbelj and Kononenko

2010; Ribeiro et al. 2016). The third aspect considers the DNN explanation output. Here we can

differentiate between methods where the assigned value of a pixel indicates the sensitivity of the

network regarding that pixel also called sensitivity methods, such as absolute gradient, as well as

methods, that display the positive or negative contribution of a pixel to predict the class, such as

layer-wise Relevance Propagation (see Section 3c) also called salience methods, and methods pre-

senting input examples leading to the same prediction. Beyond these three characteristics, recent

efforts (Flora et al. 2022) also differentiate between feature importance methods encompassing

mostly global methods, which calculate feature contribution based on the network performance

(e.g. accuracy), and feature relevance methods describing mostly local methods which calculate

contributions to the model prediction. In climate research, the decision patterns learned by DNNs

have been analyzed with local explanation methods such as LRP or Shapley values (Gibson et al.

2021; Dikshit and Pradhan 2021; Mayer and Barnes 2021; Labe and Barnes 2021; He et al. 2021;

Felsche and Ludwig 2021; Labe and Barnes 2022). However, different local explanation meth-

ods can identify different input features as being important to the network decision, subsequently

leading to different scientific conclusions (Lundberg and Lee 2017; Han et al. 2022; Flora et al.

2022). Thus, with the increasing number of XAI methods available, selecting the most suitable
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method for a specific task poses a challenge and the practitioner’s choice of a method is often

based upon popularity or upon easy-access (Krishna et al. 2022). To navigate the field of XAI,

recent climate science publications have compared and assessed different explanation techniques

using benchmark datasets, where the XAI method was assessed by comparing its predictions with

a defined target, considered as ground truth (Mamalakis et al. 2022b,a). While benchmark datasets

(Yang and Kim 2019; Arras et al. 2020; Agarwal et al. 2022) certainly contribute to the under-

standing of local XAI methods, the existence of a ground truth explanation is highly debated (e.g.,

Janzing et al. (2020); Sturmfels et al. (2020)). In the case of DNNs, ground truth explanation

labels can only be considered approximations and are not guaranteed to align precisely with the

model’s decision process or the features it utilizes (Ancona et al. 2019; Hedström et al. 2023a). For

exact ground truth, either perfect knowledge of how the model handles the available information

or a carefully engineered model would be required, which is usually not the case. Additionally,

post-hoc explanation methods are generally only approximations of a model’s behavior (Lundberg

and Lee 2017; Han et al. 2022), and the distinct mathematical concepts of the different methods

would consequently lead to distinct ground truth explanations.

Here, we address these challenges, by introducing XAI evaluation in the context of climate

science to compare different local explanation methods. The field of XAI evaluation has

emerged recently and refers to the development of metrics to compare, benchmark, and rank

explanation methods, in different explainability contexts (e.g. Adebayo et al. (2018); Hedström

et al. (2023b,a)). As discussed below in more detail, using evaluation metrics we are able to

quantitatively assess the robustness, complexity, localization, randomization, and faithfulness of

explanation methods, making them comparable regarding their suitability, their strengths, and

weaknesses (Hoffman et al. 2018; Arrieta et al. 2020; Mohseni et al. 2021; Hedström et al. 2023b).

In this work, we discuss these properties in an exemplary manner and build upon work from (Labe

and Barnes 2021). In their work, an MLP was trained with global annual temperature anomaly

maps and the network´s task was to assign the respective year or decade of occurrence. The

MLP achieves the assignment, as global-mean warming progresses. Using layer-wise relevance

propagation (LRP) they then identified the signals relevant to the network´s decision and found

the North Atlantic, Southern Ocean, and Southeast Asia as key regions. Here, we use their work
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as a case study and train an MLP as well as a CNN for the same prediction tasks (see step 1 in Fig.

1). Then, we apply several explanation methods and show the variation in their explanation maps,

potentially leading to different scientific insights (step 2 in Figure 1). We therefore introduce XAI

evaluation metrics and quantify the skill of the different XAI methods against a random baseline

in different properties to compare their performance with respect to the underlying task.

This paper is structured as follows. In Section 2 we discuss the used dataset and network types, and

briefly describe the different analysed explanation methods. Section 3 introduces XAI evaluation

and describe five evaluation properties. Then, in Section 4, we first discuss the performance of both

network types and provide a motivational example highlighting the risks of an uninformed choice

of an explanation method. Next, we evaluate different XAI methods applied to the MLP, using two

different metrics for each evaluation property, and then compare the XAI evaluation results for the

different networks (see Section 4b and c). Finally, in Section 4d, we present a guideline on using

XAI evaluation to choose a suitable XAI method. The discussion of our results and our conclusion

are presented in Section 5.

Fig. 1: Schematic of the XAI evaluation procedure. Based on an annual temperature anomaly
map as input, the network predicts the respective decade (box 1). The explanation methods (Grad
- gradient, SG - SmoothGrad applied to gradient, LRP - layer-wise relevance propagation) then
provide insights (i.e., ”shine a light”, see box 2) into the specific network’s decision. The different
explanation maps (marked in orange - Grad, green - SG, and blue - LRP) highlight different areas as
positively (red) and negatively (blue) contributing to the network decision. Here XAI evaluation can
’shine a light’ on the explanation methods and help choose a suitable method (here indicated by the
first rank) since evaluation explores the explanation maps regarding their robustness, faithfulness,
localization, complexity, and randomization properties.
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2. Data and Methods

a. Data

We analyze data simulated by the general climate model, CESM1 (Hurrell et al. 2013), focusing

on the “ALL” configuration (Kay et al. 2015), which is discussed in detail in Labe and Barnes

(2021). We use the global 2-m air temperature (T2m) maps from 1920 to 2080. The data 𝛀 consist

of I = 40 ensemble members Ω𝑖∈{1,...,𝐼}, and each member is generated by varying the atmospheric

initial conditions 𝑧𝑖 with fixed external forcing 𝜃clima. Following Labe and Barnes (2021), we

compute annual averages and apply a bilinear interpolation. This results in 𝑇 = 161 temperature

maps for each member Ω𝑖 ∈ R𝑇×𝑣×ℎ, with 𝑣 = 144 and ℎ = 95 denoting the number of longitudes

and latitudes, with 1.9◦ sampling in latitude and 2.5◦ sampling in longitude. Accordingly, the

whole dataset X ∈ RI×𝑇×𝑣×ℎ contains I×𝑇 samples. The data is split into a training Ωtr and a

test set Ωtest. More precisely, we sample 20% of the ensemble members (i.e., in total 8 ensemble

members) as a test set Xtest ∈ R0.2I×𝑇×𝑣×ℎ, and use the remaining 80% (i.e., 32 ensemble members)

for training and validation. Of these 32 ensemble members all temperature maps are split into

a training (80% of the data points, i.e. 64% of all ensemble members) and validation (20% of

the temperature maps, i.e.16% of all ensemble members) set. All temperature maps 𝑥 ∈ R𝑣𝑥ℎ are

standardized by subtracting the mean and subsequently dividing by the corresponding standard

deviation at each grid-point individually, whereby the mean xmean ∈ R𝑣×ℎ and standard deviation

xstd ∈ R𝑣×ℎ are computed over the training set only.

b. Networks

Following Labe and Barnes (2021), we train an MLP, 𝑓MLP : R𝑑 → R𝑐 with network weights

𝑊 ∈ W, to solve a fuzzy classification problem by combining classification and regression. As

input x ∈ Ω, the network considers the flattened temperature maps with dimensionality 𝑑 = 𝑣 × ℎ.

Given the goal of fuzzy classification, first, the network assigns each map to one of the 𝐶 = 20

different classes, where each class corresponds to one decade between 1900 and 2100 (see Figure

1 in Labe and Barnes (2021)). The network output 𝑓 (𝑥), thus, is a probability vector y ∈ R1×𝐶

across 𝐶 = 20 classes. Afterward, since the network can assign a nonzero probability to more than
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one class, regression is used to predict the year 𝑦̂ of the input as:

𝑦̂ =

𝐶∑︁
𝑖=1

𝑦𝑖𝑌𝑖, (1)

where 𝑦𝑖 is the probability of class 𝑖, predicted by the network y = 𝑓 (x) in the classification step,

and 𝑌𝑖 denotes the central year of the corresponding decade class 𝑖 (e.g. for class 𝑖 = 1, 𝑌1 = 1925

represents the decade 1920−1929). Accordingly, the task ensures the association of temperature

patterns to the respective year or decade. Here we train using the binary cross-entropy loss,

considering Eq. (1) only for performance evaluation.

Additionally, we construct a CNN 𝑓CNN : R𝑣×ℎ → R𝑐 that maintains the longitude-latitude grid

of the data ximg ∈ R𝑣×ℎ for each input sample (see Section 2a), unlike the flattened input used for

the MLP. The CNN consists of a 2D-convolutional layer (2dConv) with 6× 6 window size and a

stride of 2. The second layer includes a max-pooling layer with a 2×2 window size, followed by a

dense layer with 𝐿2-regularization and a softmax output layer.

c. Explainable Artificial Intelligence (XAI)

In this work, we focus on local model-aware explanation methods belonging to the group of

feature-attribution methods (Ancona et al. 2019; Das and Rad 2020; Zhou et al. 2022). For the

mathematical details, we refer to Appendix A-a.

(i) Gradient (Baehrens et al. 2010) explains the network decision by computing the first partial

derivative of the network output 𝑓 (x) with respect to the input. This explanation method feeds

backward the network’s prediction to the features in the input x, indicating the change in network

prediction given a change in the respective features. The explanation values correspond to the

network’s sensitivity to each feature, thus belonging to the group of sensitivity methods. The

absolute gradient, often referred to as Saliency map, can also be used as an explanation (Simonyan

et al. 2014).

(ii) Input times gradient is an extension of the gradient method and computes the product of the

gradient and the input. In the explanation map, a high relevance is assigned to an input feature if

it has a high value and the model gradient is sensitive to it. Therefore, contrary to the gradient as

a sensitivity method, input times gradient and other methods including the input pixel value are
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considered salience methods Ancona et al. (2019) (or attribution methods, e.g. Mamalakis et al.

(2022a)).

(iii) Integrated Gradients (Sundararajan et al. 2017) extends input times gradient, by integrating

a gradient along a line path from a baseline (generally a reference vector for which the network’s

output is zero, e.g. all zeros for standardized data) to the explained sample x. In practice,

the gradient explanations of a set of images lying between the baseline and x are averaged and

multiplied by the difference between the baseline and the explained input (see Eq. (A3)). Hence,

the Integrated Gradients method is a salience method and highlights the difference between the

features important to the prediction of x and features important to the prediction of the baseline

value.

(iv) Layerwise Relevance Propagation(LRP) (Bach et al. 2015; Montavon et al. 2019) computes

the relevance for each input feature by feeding the network’s prediction backward through the

model, layer by layer, until the prediction score is distributed over the input features and is a

salience method. Different propagation rules can be used, all resembling the energy conservation

rule, i.e., the sum of all relevances within one layer is equal to the original prediction score. In

case of the α-β-rule relevance is assigned at each layer to each neuron. All positively contributing

activations of connected neurons in the previous layer are weighted by 𝛼, while 𝛽 is used to

weight the contribution of the negative activations. The default values are 𝛼 = 1 and 𝛽 = 0, where

only positively contributing activations are considered. Contrary to that, the z-rule calculates the

explanation by including both negative and positive neuron activations. Hence, the corresponding

explanations, visualized as heatmaps, display both positive and negative evidence. The composite

rule combines various rules for different layer types. The method accounts for layer structure

variety in CNNs, such as fully connected, convolutional, and pooling layers.

(v) SmoothGrad (Smilkov et al. 2017) aims to filter out the background noise (i.e., the gradient

shattering effect, where gradients resemble white noise with increasing layer number (Balduzzi

et al. 2017)) to enhance the interpretability of the explanation. To this end, multiple noisy samples

are generated by adding random noise to the input, then the explanations of the noisy samples are

computed and averaged, such that the most important features are enhanced and the less important

features are ”canceled out”.
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(vi) NoiseGrad (Bykov et al. 2022b) perturbs the weights of the model, instead of the input feature

as done by SmoothGrad. The explanations, resulting from explaining the predictions made by the

noisy versions of the model on the same image, are averaged to suppress the background noise of

the image in the final explanation.

(vii) FusionGrad (Bykov et al. 2022b) combines SmoothGrad and NoiseGrad by perturbing both

the input features and the network weights. The purpose of the method is to account for uncertainties

within the network and the input space (Bykov et al. 2021).

(viii) Deep SHapley Additive exPlanations (DeepSHAP) (Lundberg and Lee 2017) estimates

Shapley values for the full DNN by dividing it into small network components, calculating the

Shapley values, and averaging them across all components. The idea behind SHAP (SHapley

Additive exPlanations) values is to fairly distribute the contribution of each feature to the prediction

of a specific instance considering all possible feature combinations. Following the game-theoretic

concept of Shapley values (Shapley 1951), DeepSHAP explanations satisfy properties such as

local accuracy, missingness, and consistency (Lundberg and Lee 2017) and is a salience method.

In this work, we maintain literature values for most hyperparameters of the explanation methods.

Exceptions are hyperparameters of explanation methods NoiseGrad, and FusionGrad. We adjust the

perturbation levels of the parameters, as discussed in Bykov et al. (2022b) to ensure at most 5% loss

in accuracy. All hyperparameters are presented in Table B1 (see Appendix B-a). Additionally, both

Integrated Gradients and DeepSHAP require background images as reference points to calculate the

explanations (see also Lundberg and Lee (2017) and Appendix A-a). To allow for a fair performance

comparison, for both methods we sample 100 maps containing all zero values. We note that there

are other possible reference values, e.g., natural images from training, or all-one-maps, and this

choice can affect the explanation performance. Lastly, the baseline for SmoothGrad, NoiseGrad,

and FusionGrad can be any local explanation method, and here we use the gradient explanations.

Accordingly, gradient, SmoothGrad, NoiseGrad, and FusionGrad are sensitivity methods.

3. Evaluation techniques

Due to the lack of a ground truth explanation, XAI research developed alternative metrics to assess

the reliability of an explanation method. These evaluation metrics analyze different properties an
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Fig. 2: Diagram of the concept behind the robustness property. Perturbed input images are created
by adding uniform noise maps of small magnitude to the original temperature map (left part of
Figure). The perturbed maps are passed to the network, resulting in an explanation map for each
prediction. The explanation maps of the perturbed inputs (explanation maps with grey outlines) are
then compared to (indicated by a minus sign) the explanation of the unperturbed input (explanation
map with black outline). A robust XAI method is expected to produce similar explanations for the
perturbed input and unperturbed inputs.

explanation method should fulfill and can serve to evaluate different explanation methods (Hoffman

et al. 2018; Arrieta et al. 2020; Mohseni et al. 2021; Hedström et al. 2023b). Following Hedström

et al. (2023b), we describe five different evaluation properties and based on the classification task

from Labe and Barnes (2021) we illustrate each property in a schematic diagram (See Figures 2-4).

a. Robustness

Robustness measures the stability of an explanation regarding small changes in the input image

x+𝛿 (Alvarez-Melis and Jaakkola 2018; Yeh et al. 2019; Montavon et al. 2018). Ideally, these small

changes (𝛿 < 𝜖) in the input sample should produce only small changes in the model prediction and

successively only small changes in the explanation (see Figure 2).

To measure robustness, we choose the Local Lipschitz Estimate 𝑞LLE,𝑚 (Alvarez-Melis and

Jaakkola 2018) and the Average Sensitivity 𝑞AS,𝑚 (Yeh et al. 2019) as representative metrics. Both

use Monte Carlo sampling-based approximation to measure the Lipschitz constant or the average

sensitivity of an explanation. For an explanation Φ𝑚 ( 𝑓 , 𝑐,x) ∈ R𝑑 of a XAI method 𝑚 and a given

input x, the scores are defined by:

𝑞LLE,𝑚 = max
x+𝛿∈N𝜖 (x)≤ 𝜖

∥Φ𝑚 ( 𝑓 , 𝑐,x) −Φ𝑚 ( 𝑓 , 𝑐,x+ 𝛿)∥2
∥x− (x+ 𝛿)∥2

, (2)
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Fig. 3: Diagram of the concept behind the faithfulness property. Faithfulness assesses the impact of
highly relevant pixels in the explanation map on the network decision. First, the explanation values
are sorted to identify the highest relevance values (here shown in red). Next, the corresponding
pixel positions in the flattened input temperature map are identified (see dotted arrows) and masked
(marked in black); i.e., their value is set to a chosen masking value, such as 0 or 1. Both the masked
and the original input maps are passed through the network and their predictions are compared.
If the masking is based on a faithful explanation, the prediction of the masked input ( 𝑗 , grey) is
expected to change compared to (indicated by a minus sign) the unmasked input (𝑖, black), e.g., a
different decade is predicted.

𝑞AS,𝑚 = E
x+𝛿∈N𝜖 (x)≤ 𝜖

[
∥(Φ𝑚 ( 𝑓 , 𝑐,x) −Φ𝑚 ( 𝑓 , 𝑐,x+ 𝛿))∥

∥x∥

]
, (3)

where 𝜖 defines the discrete, finite-sample neighborhood radius N𝜖 for every input x ∈ X, N𝜖 (x) =
{x+ 𝛿 ∈ 𝑋 | ∥x− (x+ 𝛿)∥ ≤ 𝜖}, and 𝑐 denotes the true class of the input sample (for more details

on intuition and calculation we also suggest the primary publications (Alvarez-Melis and Jaakkola

2018; Yeh et al. 2019)).

The robustness metrics assess the difference between the explanation of a true and perturbed image

as can be seen in Eq. (2) and (3). Accordingly, the lowest score represents the highest robustness.

b. Faithfulness

Faithfulness measures whether changing a feature that an explanation method assigned high

relevance to, changes the network prediction (see Figure 3). This can be examined through the iter-

ative perturbation of an increasing number of input pixels corresponding to high-relevance values

and subsequent comparison of each resulting model prediction to the original model prediction.

Since explanation methods assign relevance to features based on their contribution to the network’s

prediction, changing high-relevance features should have a larger impact on the model prediction

compared to features of lesser relevance (Bach et al. 2015; Samek et al. 2017; Montavon et al.

2018; Bhatt et al. 2020; Nguyen and Martı́nez 2020).
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To measure this property, we apply RemOve And Debias (also called ROAD) (Rong et al. 2022a)

which returns a curve of scores q̂ =: (𝑞1, . . . , 𝑞𝐼) for a chosen percentage range p ∈ R1×𝐼 , with 𝐼 ∈ N
being the number of percentage steps (curve visualizations can also be found in Rong et al. (2022a)).

For each curve value 𝑞𝑖, a percentage 𝑝𝑖 ∈ p, 𝑝𝑖 ∈ [0,1] of the pixels in the input x𝑛 is perturbed,

according to their value in the explanation Φ𝑚 ( 𝑓 , 𝑐𝑛,x𝑛) (starting with the highest relevance). The

predictions based on the input x𝑛 and corresponding perturbed input x̂𝑖𝑛 are compared, resulting in 1

for equal predictions and 0 otherwise. The procedure is repeated for several inputs 𝑛. Accordingly,

the ROAD score 𝑞𝑚
𝑅𝑂𝐴𝐷,𝑖

for each percentage 𝑖 corresponds to the average and is defined as:

𝑞ROAD,𝑚, 𝑖 =
1
𝑁

𝑁∑︁
𝑛=1

1𝑐𝑛 (𝑐𝑝𝑟𝑒𝑑,𝑛) with 1𝑐𝑛 (𝑐𝑝𝑟𝑒𝑑,𝑛) =


1 𝑐𝑛 = 𝑐𝑝𝑟𝑒𝑑,𝑛

0 otherwise
(4)

where 1𝑐𝑛 : C → [0,1] is an indicator function comparing the predicted class 𝑐𝑝𝑟𝑒𝑑,𝑛 = 𝑓 (x̂𝑖𝑛) of x̂𝑖𝑛
to 𝑐𝑛 = 𝑓 (x𝑛) the predicted class of the unperturbed input x𝑛. We calculate the score values for up

to 50 % of pixel replacements p of the highest relevant pixel, calculated in steps of 1%; resulting

in a curve q̂𝑚
𝑅𝑂𝐴𝐷

. For faithful explanations, this curve should degrade faster towards increasing

percentages of perturbed pixels (see Eq. (5)). The area under the curve (AUC) is then used as the

final ROAD score 𝑞𝑅𝑂𝐴𝐷,𝑚:

𝑞ROAD,𝑚 = AUC(p, q̂𝑚𝑅𝑂𝐴𝐷) (5)

Accordingly, a lower ROAD score corresponds to higher faithfulness.

Furthermore, to measure faithfulness, we consider the Faithfulness Correlation 𝑞FC,𝑚 (Bhatt et al.

2020), defined as:

𝑞FC,𝑚 = corr
𝑆∈|𝑆 |⊆𝑑

(
𝜙𝑚𝑆 , 𝑓 (x) − 𝑓

(
x[x𝑠=x𝑠]

) )
(6)

where 𝑆 ∈ |𝑆 | ⊆ 𝑑 is a set of |𝑆 | random indices drawn from all pixel indices 𝑑 in sample x and

𝜙𝑚
𝑆

:=
∑
𝑖∈𝑆Φ

𝑚
𝑖
( 𝑓 , 𝑐,x) is the sum across explanation map values 𝑖 that are part of the random subset

𝑖 ∈ 𝑆. This set of random indices 𝑆 is masked (i.e. perturbed) in the input x[x𝑆=x𝑆] , with x ∈ R𝑑

being an array filled with the perturbation values (e.g. 0 or 1), which are used to replace all indices

𝑖 in the perturbed input x[x𝑆=x𝑆] . Accordingly, the correlation of the prediction difference between

perturbed and unperturbed input 𝑓 (x) − 𝑓
(
x[x𝑠=x𝑠]

)
, and the sum across the explanation values of

14

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



the perturbed pixels 𝜙𝑚
𝑆

is calculated (see Bhatt et al. (2020) for more details and visualizations).

Unlike ROAD, the Faithfulness Correlation score increases as the faithfulness improves.

c. Complexity

Complexity is a measure of conciseness, indicating an explanation should consist of a few highly

important features (Chalasani et al. 2020; Bhatt et al. 2020) (See Figure 4). The assumption is that

concise explanations, characterized by prominent features, facilitate researcher interpretation and

potentially include higher informational value with reduced noise.

Here, we use Complexity 𝑞COM,𝑚 (Bhatt et al. 2020) and Sparseness 𝑞SPA,𝑚 (Chalasani et al.

2020) as representative metric functions, which can be formulated as follows:

𝑞COM,𝑚 = H (P(Φ𝑚)) , with P(Φ𝑚) :=
Φ( 𝑓 , 𝑐,x)∑

𝑗∈[𝑑]
��Φ( 𝑓 , 𝑐,x) 𝑗

�� (7)

𝑞SPA,𝑚 =

∑𝑑
𝑖=1(2𝑖− 𝑑 −1)Φ𝑚 ( 𝑓 ,x)

𝑑
∑𝑑
𝑖=1Φ( 𝑓 ,x)

, (8)

where H(·) is the Shannon entropy, P(Φ𝑚) is a valid probability distribution across the frac-

Fig. 4: Diagram of the concept behind the complexity property. Complexity assesses how the
evidence values are distributed across the explanation map. For this, the distribution of the
relevance values from the original explanation is compared to a “random” explanation drawn from
a random uniform distribution. Here, shown in a 1-D example, the evidence distribution of the
explanation exhibits clear maxima and minima (see maxima in red oval), which is considered
desirable and linked to increased scores. The noisy features show a uniform distribution linked to
a low complexity score.
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Fig. 5: Diagram of the concept behind the localization property. First, an expected region of
high relevance for the network decision, the region of interest (ROI), is defined in the input
temperature map (blue box). Here, the North Atlantic is chosen, as this region has been discussed
to affect the prediction (see Labe and Barnes (2021)). Next, the sorted explanation values of
the ROI, encompassing 𝑘 pixels, are compared to the 𝑘 highest values of the sorted explanation
values across all pixels. An explanation method with strong localization should assign the highest
relevance values to the ROI.

tional contribution of all features x𝑖 of x to the total magnitude of the explanation values∑
𝑗∈[𝑑]

��Φ( 𝑓 , 𝑐,x) 𝑗
��, 𝑑 is the total number of pixels in x, 𝑓 is the network function and 𝑐 is

the explained class. Sparseness is based on the Gini index (Hurley and Rickard 2009), while

Complexity is calculated using the entropy (see also Bhatt et al. (2020) and Chalasani et al. (2020),

where both metric functions are discussed in more detail). While the lower the entropy, the less

complex the explanation, a high Gini index indicates less complexity.

d. Localization

For localization, the quality of an explanation is measured based on its agreement with a

user-defined region of interest (ROI, see Figure 5). Accordingly, the position of pixels with the

highest relevance values (given by the XAI explanation) is compared to the labeled areas, e.g.

bounding boxes or segmentation masks. Based on the assumption that the ROI should be mainly

responsible for the network decision (ground truth) (Zhang et al. 2018; Arras et al. 2020; Theiner

et al. 2022; Arias-Duart et al. 2022), an explanation map yields high localization if high relevance

values are assigned to the ROI.
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As localization metrics we use the Top-𝐾-pixel metric (also referred to as Top-𝐾) (Theiner et al.

2022) which is computed as follows:

𝑞Top-𝐾,𝑚 =
| K∩ s |
| K | , (9)

where K := Φ𝑚 ∩ r|𝐾 | denotes the vector of indices of explanation Φ corresponding to the | 𝐾 |
highest ranked features with r = 𝑅𝑎𝑛𝑘 (Φ𝑚 ( 𝑓 , 𝑐,x)), and s refers to the indices of ROI (see Theiner

et al. (2022) for more details). Furthermore, we consider the Relevance Rank Accuracy 𝑞RRA,𝑚

(Arras et al. 2020):

𝑞RRA,𝑚 =
| Φ𝑚

|s| ∩ s |
| s | , (10)

where Φ𝑚
|s| := Φ𝑚 ∩ r|s| denotes the vector of indices of the explanation Φ corresponding to the

highest ranked features r|s| ∈ R1×|s| and | s | is the number of pixels in the ROI (details on the

calculation and intuition can also be found in Arras et al. (2020)). Thus, Top-𝐾 and Relevance

Rank Accuracy are the same for | 𝐾 | chosen such that it is equal to the number of pixels in the ROI

| s |. Both corresponding scores are high for well-performing methods and low for explanations

with low localization.

e. Randomization

Randomization assesses how a random perturbation scenario changes the explanation (See Figure

6). Either the network weights (Adebayo et al. 2018) are randomized or a random class that was

not predicted by the network for the input sample x is explained (Sixt et al. 2020). In both cases,

a change in the explanation is expected, since the explanation of an input x should change if the

model changes or if a different class is explained.

Here, we evaluate randomization based on the Model Parameter Randomization Test (Adebayo

et al. 2018). The score 𝑞MPT,𝑚 is defined as the average correlation coefficient between the

explanation of the original model 𝑓 and the randomized model 𝑓W over all layers 𝐿:

𝑞MPT,𝑚 =
1
𝐿

𝐿∑︁
𝑙=1

𝜌(Φ𝑚 ( 𝑓 , 𝑐,x),Φ𝑚 ( 𝑓𝑙 , 𝑐,x)) (11)
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Fig. 6: Diagram of the concept behind the randomization property. In the middle row, the original
input temperature map is passed through the network, and the explanation map is calculated based
on the predicted (grey background) decade. For the Random Logit metric (first row - 1), the
input temperature map and the network remain unchanged but the decade 𝑘 used to calculate the
explanation is randomly chosen (pink font). The resulting explanation map is then compared to
the original explanation (indicated by a minus sign) to test its dependence on the class. For the
Model Parametrization Randomization Test (bottom row - 2), the network is perturbed (see green
box) with noisy parameters (𝜃1 = 𝜃 + noise), potentially altering the predicted decade ( 𝑗 , grey).
The explanation map of the perturbed model should differ from the original explanation map if the
explanation is sensitive to the model parameters.

where 𝜌 denotes the Spearman rank correlation coefficient and 𝑓𝑙 is the true model with additive

perturbed weights of layer 𝑙 (see Adebayo et al. (2018) for further details).

We also consider the Random Logit score 𝑞RL,𝑚 (Sixt et al. 2020), which can be defined as e.g.

structural similarity index (𝑆𝑆𝐼𝑀) or Pearson correlation between an explanation map of a random

class 𝑐 (with 𝑓 (x) = 𝑐, 𝑐 ≠ 𝑐) and an explanation map of the predicted class 𝑐 (see also Sixt et al.

(2020) for further details and visualization):

𝑞RL,𝑚 = SSIM(Φ𝑚 ( 𝑓 , 𝑐,x),Φ𝑚 ( 𝑓 , 𝑐,x)). (12)

Here the metrics return scores 𝑞𝑚,𝑛 := 𝑞MPT/RL,𝑚,𝑛 with 𝑛 ∈ {1, . . . , 𝑁} for either all layers (Ran-

domization metric) 𝑁 = 𝐿 or all other classes (𝑐 ≠ 𝑐𝑡𝑟𝑢𝑒) with 𝑁 = Γ. Thus, we average across 𝐿 or

Γ to obtain 𝑞𝑚, as follows:

𝑞MPT/RL,𝑚 =
1
𝑁

𝑁∑︁
𝑛=1

𝑞𝑚,𝑛. (13)

The metric scores of randomization and robustness metrics are interpreted similarly, i.e., low metric

scores indicate strong performance.
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f. Metric score calculation

The differing scales of the evaluation metric output (e.g. Sparseness ranges between 0− 1,

Faithfulness Correlation between −1 and 1, and Local Lipschitz Estimate between 0−∞) and their

respective interpretation (e.g. for the first two metrics the best score would be 1, whereas for the

latter the best score would be 0) complicate their comparison. Therefore, following Murphy and

Daan (1985), we introduce a skill score, 𝑆, measuring the improvement in forecasts performance

𝐴 𝑓 over the performance of reference forecast, 𝐴𝑟 , relative to the perfect performance 𝐴𝑝, where

𝐴𝑝 = 0 if performance is measured by the mean-squared error (Murphy and Daan 1985; Murphy

1988). 𝑆 is given by:

𝑆(𝐴 𝑓 ) =
𝐴 𝑓 − 𝐴𝑟
𝐴𝑝 − 𝐴𝑟

. (14)

Here, we calculate the skill score 𝑆(𝑞𝑚) for an explanation method based on the metric scores

in each property. The skill score allows us to compare the performance of explanation methods

relative to a reference score 𝐴𝑟 = 𝑞𝑟 . To establish this reference score 𝑞𝑟 , we create a uniform

random baseline explanation similar to Rieger and Hansen (2020), maximizing the violation of

each property’s underlying assumptions and creating a bad-skill scenario (for details see Appendix

A-b). The skill score then measures whether an explanation method improves upon this baseline

score.

As the respective perfect score 𝑞∗ varies across metrics and takes up values of both 0 (e.g. for

Local Lipschitz Estimate) and 1 (e.g. for Sparseness), the skill score is:

𝑆(𝑞𝑚) =


1− 𝑞𝑚

𝑞𝑟
if 𝑞∗ = 0,

𝑞𝑚−𝑞𝑟
1−𝑞𝑟 if 𝑞∗ = 1

(15)

where 𝑞𝑚 ∈ R represents the raw or aggregated metric score (for details see Appendix A-b).

4. Experiments

a. Network predictions, explanations and motivating example

In the following, we evaluate the network performance and discuss the application of the expla-

nation methods for both network architectures. To ensure comparability between networks and
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Fig. 7: Motivating example visualizing the difference between different XAI methods. Shown are
the T2m-temperature map (a) for the year 2068 with the corresponding DeepSHAP (b) and LRP-𝑧
(c) explanation maps of the MLP. For both XAI methods, red indicates a pixel contributed positively,
and blue indicates a negative contribution to the predicted class. Next to the explanation maps, a
zoomed-in map of the North Atlantic region (NA, 10−80◦W, 20−60◦N) is shown, demonstrating
different evidence for DeepSHAP and LRP-𝑧.

comparability to our case study Labe and Barnes (2021), we use a similar set of hyperparameters

for the MLP and the CNN during training. A detailed performance discussion is provided in

Appendix B-a. The achieved similar performance ensures that XAI evaluation score differences

between the MLP and the CNN are not caused by differences in network accuracy.

After training and performance evaluation, we explain all correctly predicted temperature maps

in the training, validation, and test samples (see Appendix B-a for details). These explanations

are most often subject to further research on physical phenomena learned by the network (Barnes

et al. 2020; Labe and Barnes 2021; Barnes et al. 2021; Labe and Barnes 2022). We apply all XAI

methods presented in Section 2c to both networks with the exception of the composite rule of LRP,

converging to the LRP-𝑧 rule for the MLP model due to its dense layer architecture (Montavon

et al. 2019). The corresponding explanation maps across all XAI methods and for both networks

are displayed in Figures B4 and B5. Despite explaining the same network predictions, different

methods assign different relevance values to the same areas, revealing the disagreement problem

in XAI (Krishna et al. 2022).

To illustrate this explanation disagreement, we show the explanation maps for the year 2068 given

by DeepSHAP and LRP-𝑧, alongside the input temperature map in Figure 7. According to the

primary publication Labe and Barnes (2021), the cooling patch in the North Atlantic (NA), depicted

in the zoomed-in map sections of 10− 80◦W, 20− 60◦N of Figure 7, significantly contributes to

the network prediction for all decades. Thus, its reasonable to assume high relevance values in

this region. However, the two XAI methods display contrary signs of relevance in some areas,
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impeding visual comparison and interpretation. The varying sign can be attributed to DeepSHAP

being based on feature-removal and modified gradient backpropagation, while LRP-𝑧, in contrast,

being theoretically equivalent to input times gradient. Thus, the two explanations potentially

display different aspects of the network decision (Clare et al. 2022) and explanations can vary in

sign depending on the input image (see also discussions on input shift invariance in Mamalakis et al.

(2022a)). Nonetheless, we also find common features, as for example in Australia or throughout

the antarctic region. Thus, a deeper understanding of explanation methods and their properties is

necessary to enable an informed method choice.

b. Assessment of explanation methods

To introduce the application of XAI evaluation, we compare the different XAI methods applied

to the MLP and calculate their skill scores across all five XAI method properties (see Section 3).

For each property, two representative metrics (hyperparameters are listed in Appendix B-b) are

computed and compared. Each skill score is averaged across 50 random samples drawn from the

explanations of all correctly predicted inputs and we provide the standard error of the mean (SEM)

(see Appendix A-b for details). To account for potential biases resulting from the choice of the

testing period, we also compute the scores for random samples not limited to correct predictions.

We report qualitatively robust findings (not shown) compared to the scores shown here. Our results

are depicted in Figure 8.

For the robustness property, we find that all tested explanation methods result in similar, high, and

closely distributed skill scores (≥ 0.85 and ≤ 0.93) for both the Average Sensitivity metric (hatches

in Figure 8a) and Local Lipschitz Estimate metric (no hatches), where the latter shows slightly

higher values overall. For both metrics, we find that salience (earthy tones) and sensitivity meth-

ods (violet tones) show a similar robustness skill and perturbation-based methods (SmoothGrad,

NoiseGrad, and Integrated Gradients) do not significantly improve skill compared to the respective

baseline explanations (gradient and input times gradient). We relate the latter finding to the low

signal-to-noise ratio of the climate data and variability between different ensemble members, com-

plicating the choice of an efficient perturbation threshold for the explanation methods. Nonetheless,

these findings disagree with previous studies regarding suggested robustness improvements when
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Fig. 8: Barplot of skill scores based on the random baseline reference for two different metrics in
each, (a) the robustness, (b) faithfulness, (c) complexity, (d) localization, and (e) randomization
property. The different metrics are indicated by hatches or no hatches on the bar. We report the
mean skill score (as bar labels) and the standard error of the mean (SEM), indicated by the error
bars in black on each bar. The bar color scheme indicates the grouping of the XAI methods into
sensitivity (violet tones) and salience/attribution methods (earthy tones).

applying salience and perturbation-based methods (Smilkov et al. 2017; Sundararajan et al. 2017;

Bykov et al. 2022b; Mamalakis et al. 2022a).
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For faithfulness, we find pronounced skill score differences between both metrics, with ROAD

scores indicating positive skill for all methods, whereas Faithfulness Correlation scores include

negative values for the sensitivity methods (hatched violet bars in Fig. 8b). This disparity arises

from the calculation of Faithfulness Correlation metric scores using the correlation coefficient,

and the distinct interpretations of relevance values in salience maps versus sensitivity maps. Since

sensitivity maps display the network’s sensitivity towards the change in the value of each pixel (the

sign conveys the direction), the impact of the masking value depends on the discrepancy between the

original pixel value and the masking value, leading to a negative correlation. Nonetheless, across

metrics, the best skill scores ≤ 0.6 are achieved by input times gradient, Integrated Gradients,

and LRP-𝑧, followed by 𝑆(𝑞LPR-𝛼−𝛽) ≤ 0.42. Furthermore, sensitivity methods (violet tones)

achieve overall lower skill scores. Although DeepSHAP exhibits a lower faithfulness correlation

skill (which we attribute to the challenge of applying Shapley values to continuous data (Han

et al. 2022) and vulnerability towards feature correlation Flora et al. (2022)), the method still

outperforms the sensitivity methods, indicating salience (or attribution) methods provide more

faithful relevance values. However, this is due to salience methods indicating the contribution of

each pixel to the prediction as required by faithfulness. Thus, sensitivity methods inherently result

in less faithful explanations. We note that the input multiplication of salience methods can lead

to a loss of information when using standardized input pixels, as zero values in the input (i.e.,

values close to climatology) will result in zero values in the explanation regardless of the networks

sensitivity to it (see Section 2c and Mamalakis et al. (2022a) discussing ”ignorant to zero input”).

For complexity (Figure 8c), all explanation methods exhibit low Complexity scores compared

to Sparseness, indicating the explanations on climate data exhibit similar entropy to uniformly

sampled values. This similarity in entropy can be attributed to the increased variability and

subsequently low signal-to-noise ratio of climate data (Sonnewald and Lguensat 2021; Clare et al.

2022). For the Sparseness metric, skill scores show skill improvement for salience (attribution)

methods. We also find slight skill score improvements for NoiseGrad and FusionGrad, suggesting

that incorporating network perturbations may decrease explanation complexity.

To compute the results of the localization metrics, Top-𝐾 (hatches in Fig. 8d) and Relevance

Rank Accuracy (no hatches), we select the region in the North Atlantic (10−80◦W, 20−60◦N) as

our ROI, with the cooling in this region being a recognized feature of climate change Labe and
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Barnes (2021). In both metrics, all explanation methods yield low skill scores. This is consistent

with lower Sparseness skill scores in complexity (≤ 0.47) indicating that high-relevance values

are spread out, with the ROI also including fewer distinct features. In addition, high relevance in

the ROI depends on whether the network learned this specific area. Thus, our results potentially

indicate an inadequate choice of the ROI (either size or location) and show that localization metrics

can identify a learned region. Nonetheless, LRP-𝛼 − 𝛽 yields the highest skill across metrics,

indicating that attributing only positive relevance values improves the distinctiveness of features

in the NA region. Similar to complexity, salience methods (earthy tones) yield a slightly higher

localization skill than sensitivity methods (violet tones) with the exception of NoiseGrad.

Lastly, we present the randomization results (Figure 8e). For the Random Logit metric, all XAI

methods yield lower skill scores (≥ 0.1 and ≤ 0.58). This can be attributed to the network task

classes being defined based on decades with an underlying continuous temperature trend. Thus,

the differences in temperature maps can be small for subsequent years, and the network decision

and explanation for different classes may include similar features. Nonetheless, we find salience

(earthy tones) and sensitivity methods (violet tones) to yield no clear separation. Instead, XAI

methods using perturbation result in higher skill scores, with mean improvements for FusionGrad

exceeding the SEM, as well as a slight improvement for NoiseGrad and SmoothGrad over gradient

and Integrated Gradients over input times gradient. Thus, while input perturbations already slightly

improve the class separation in the explanation, also including network perturbation yields favorable

improvement. For the Model Parameter Randomization Test scores, skill scores are overall higher

(≥ 0.58 and ≤ 0.99) across all explanation methods, and sensitivity methods outperform salience

methods, the latter aligning with Mamalakis et al. (2022b). Similar to the complexity results, the

DeepSHAP skill score aligns with other salience method results. In addition, LRP-𝛼-𝛽 yields the

worst skill across metrics, potentially due to neglecting negatively contributing neurons during

backpropagation (see Eq. (A4) in Appendix A-a) and corresponding variations across classes and

under parameter randomization.

c. Network-based comparison

To compare the performance of explanation methods for the MLP and CNN networks, we

selected one metric per property: Local Lipschitz Estimate for robustness, ROAD for faithfulness,
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Sparseness for complexity, Top-𝐾 for localization, and Model Parameter Randomization Test for

randomization.

Fig. 9: Barplot of skill scores based on the random baseline reference for MLP (star hatches) and
CNN (no hatches) in each, the robustness (a), faithfulness (b), the complexity (c), localization (d),
and randomization (e) property. We report the skill score (as bar labels) and the standard error of
the mean (SEM) of all scores, indicated by the error bars in black on each bar. The bar color scheme
indicates the grouping of the XAI methods into sensitivity (violet tones) and salience/attribution
methods (earthy tones). Note that, for LRP-composite (LRP-𝑐𝑜𝑚𝑝) we only report the CNN results
(for details, see Section 4a).
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For robustness (see Figure 9a), XAI methods applied to the CNN yield strong skill score

variations, with the MLP results showing overall higher skill scores. For the CNN, LRP-composite

provides the best robustness skill. We find salience methods to exhibit slightly higher skill

scores, the exception being FusionGrad outperforming LRP-𝛼-𝛽 and DeepShap. This suggests

that due to the differences in learned patterns between CNN and MLP, including both network and

input perturbations yields more robust explanations, while the combination of a removal-based

technique (Covert et al. 2021) with a modified gradient backpropagation (Ancona et al. 2019)as

in DeepSHAP and neglecting negatively contributing neurons as in LRP-𝛼-𝛽 worsens robustness

compared to other salience methods. Moreover, explanation methods using input perturbations

improve sensitivity explanation robustness for the CNN (SmoothGrad and FusionGrad), while

methods using only network perturbations decrease robustness skill (NoiseGrad).

In the faithfulness property (see Figure 9b), salience explanation methods (Integrated Gradients,

input times gradient, and LRP) achieve higher skill for both networks, aligning with previous

research (Mamalakis et al. 2022b,a) and the theoretical differences (see Section 4b). However,

LRP-composite is the exception, adding additional insight to the findings of other studies Mamalakis

et al. (2022a), as LRP-composite sacrifices faithful evidence for a less complex (human-aligned

Montavon et al. (2019)) and more robust explanation. Moreover, perturbation-based explanation

methods (SmoothGrad, NoiseGrad, FusionGrad, and Integrated Gradients) do not significantly

increase the faithfulness skill compared to their respective baseline explanations (gradient and

input times gradient), except for Integrated Gradients for the MLP. Similar to the MLP results,

LRP-𝛼-𝛽 acts as an outlier compared to other salience methods. For the CNN also the DeepSHAP’s

faithfulness skill is decreased, contradicting theoretical claims and other findings (Lundberg and

Lee 2017; Mamalakis et al. 2022a). Since the CNN learns more clustered patterns (groups of

pixel according to the filter-based architecture), we attribute this outcome to both DeepSHAP’s

theoretical definitions (Han et al. 2022) and vulnerability towards feature correlation (Flora et al.

2022), with the latter making partitionSHAP a more suitable option (Flora et al. 2022).

In complexity, salience methods exhibit slight skill improvement over sensitivity methods across

networks, except for LRP-𝛼-𝛽 for the CNN (Figure 9c). This indicates that neglecting feature

relevance is more influential for the CNN’s explanation, leading to fewer distinct features in the ex-

26

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



planation, while the lower DeepSHAP skill further confirms the previously discussed disadvantages

of DeepSHAP for the CNN.

In localization, both MLP and CNN show similar low overall skill scores (≤ 0.33), indicating

that the size or location of the ROI was not optimally chosen for the case study. Nonetheless,

the skill scores across XAI methods are in line with the complexity results, except for the worst

and best skill scores. LRP-composite yields the lowest localization skill, further confirming its

trade-off between faithfulness and interpretability, also in the ROI. FusionGrad provides the highest

localization skill for the CNN. In contrast, LRP-𝛼-𝛽 yields the highest skill for the MLP but the

second lowest skill score for the CNN. The difference in results across networks for complexity

and localization can be attributed to differences in learned patterns (as discussed above), affecting

properties that assess the spatial distribution of evidence in the image.

Lastly, for randomization (see Figure 9e), regardless of the network sensitivity methods outper-

form salience methods, indicating a decreased susceptibility to changes in the network parameters.

While slightly lower, the randomization skill score of DeepSHAP does agrees with other salience

methods aligning with Mamalakis et al. (2022b,a).

Overall, our results show that while explanation methods applied to different network architec-

tures retain similar faithfulness and randomization properties, their robustness, complexity, and

localization properties depend on the specific architecture.

d. Choosing a XAI method

Evaluation metrics enable the comparison of different explanation methods based on various

properties for different network architectures, allowing us to assess their suitability for specific

tasks. Here, we propose a framework to select an appropriate XAI method.

Practitioners first determine which explanation properties are essential for their network task. For

instance, for physically informed networks, randomization (the Model Parameter Randomization

Test) is crucial, as parameters are meaningful and explanations should respond to their successive

randomization. Similarly, localization might be less important if an ROI cannot be determined

beforehand. Second, practitioners calculate evaluation scores for each selected property across

various XAI methods. We suggest calculating the skill score (see Section 3f) to improve score

interpretability. Third and last, the optimal XAI method for the task can be chosen based on the
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Fig. 10: Visualization of the proposed procedure to choose an appropriate XAI method. In the
spider plot (a) the mean skill scores for all properties across nine explanation methods (MLP
explanations) are visualized, according to Figure 9. The spider plot can be used as a visual aid
alongside the skill scores or ranks in each essential property to identify the best-performing XAI
method. In the plot, the best results correspond to the furthest distance from the center of the
graph. The LRP-𝑧 explanation map of the decade prediction on the temperature map of 2068 is
shown in (b) and the North Atlantic (NA) region in (c).

skill scores independently or rank of explanation method, as in previous studies (Hedström et al.

2023b; Tomsett et al.; Rong et al. 2022b; Brocki and Chung 2022; Gevaert et al. 2022).

In our case study, for example, the explanation method should exhibit robustness towards variation

across climate model ensemble members, display concise features (complexity) without sacrificing

faithfulness, and capture randomization of the network parameter (randomization). Using the

Quantus XAI evaluation library (Hedström et al. 2023b), we visualize the evaluation results for the

MLP using a spider plot (Figure 10a), with the outermost line indicating the best-performing XAI

method in each property. All methods yield similar robustness skill but differ in randomization,

faithfulness and complexity skills. LRP-𝑧 (light beige), input times gradient (ocher), Integrated

Gradients (orange), and DeepShap (brown) provide the most faithful explanations (similar to

findings in Mamalakis et al. (2022a)), with DeepShap providing a slightly worsened randomisation

and robustness skill.

Based on the different strengths and weaknesses, we would select LRP-𝑧 to explain the MLP

predictions (Figure 10b) and analyze the impact of the NA region (Figure 10c) on the network

predictions. According to the explanation, the network heavily depends on the North Atlantic

region and the cooling patch pattern, suggesting its relevance in correctly predicting the decade

in this global warming simulation scenario. However, we also stress that additionally applying a
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sensitivity method such as gradient-based SmoothGrad potentially illuminates more aspects of this

network decision, as sensitivity methods provide strong randomization, in contrast to LRP-𝑧.

5. Discussion and Conclusion

AI models, particularly DNNs, can learn complex relationships from data to predict unseen

points afterward. However, their black box character restricts the human understanding of the

learned input-output relation, making DNN predictions challenging to interpret. To illuminate the

model’s behavior, local XAI methods were developed, that identify the input features responsible

for individual predictions and offer novel insights in climate AI research (Camps-Valls et al. 2020;

Gibson et al. 2021; Dikshit and Pradhan 2021; Mayer and Barnes 2021; Labe and Barnes 2021;

Van Straaten et al. 2022; Labe and Barnes 2022). Nevertheless, the increasing number of available

XAI methods and their visual disagreement (Krishna et al. 2022), illustrated in our motivating

example (Figure 7), raise two important questions: Which explanation method is trustworthy, and

which is the appropriate choice for a given task?

To address these questions, we introduced XAI evaluation to climate science, building upon

existing climate XAI research as our case study (Labe and Barnes 2021). We evaluate and compare

various local explanation methods for an MLP and a CNN network regarding five properties,

i.e., robustness, faithfulness, randomization, complexity and localization, that are provided by

the Quantus library (Hedström et al. 2023b). Furthermore, we improve the interpretation of the

evaluation scores by calculating a skill score in reference to a random uniform explanation.

In the first experiment, we showcase the application of XAI evaluation on the MLP explanations

using two metrics for each property (Alvarez-Melis and Jaakkola 2018; Montavon et al. 2019; Yeh

et al. 2019; Bhatt et al. 2020; Arras et al. 2020; Rong et al. 2022a; Hedström et al. 2023b). Our

results indicate that salience methods (i.e., input times gradient, Integrated Gradients, LRP) yield

an improvement in faithfulness and complexity skill but a reduced randomization skill. Contrary

to salience methods, sensitivity methods (gradient, SmoothGrad, NoiseGrad, and FusionGrad)

show higher randomization skill scores while sacrificing faithfulness and complexity skills. These

results indicate that a combination of explanation methods can be favourable depending on the

explainability context. We also establish that evaluating explanation methods in a climate context

mandates careful consideration. For example, due to the natural variability in the data, the
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Sparseness metric is best suited for determining explanation complexity. Further, the Random

Logit metric is favored for classification with pronounced class separations rather than datasets

with continuous features spanning multiple classes. Lastly, we highlight the importance of the

correct identification of an ROI to ensure an informative localization evaluation and that localization

metrics enable probing the network regarding learned physical phenomena.

In the second experiment, we compare the properties of MLP and CNN explanations across

all XAI methods. Both localization and complexity evaluation show larger variations between

networks, due to differences in how the networks learn features in the input. The robustness results

exhibit similar variation, with the CNN showing higher skill scores for all input perturbation-

based methods like SmoothGrad, FusionGrad, and Integrated Gradients, contrary to the MLP, with

the exception of NoiseGrad. Independent of network architecture, explanations using averages

across input perturbations, like SmoothGrad and Integrated Gradients, do not consistently increase

and, in some cases, even decrease the faithfulness skill. Furthermore, sensitivity methods result

in less faithful and more complex explanations but capture network parameter changes more

reliably. In contrast, salience methods are less complex, except for LRP-𝛼-𝛽 explaining the

CNN. Moreover, salience methods exhibit a higher faithfulness skill and lower randomization skill

compared to sensitivity methods, consistent with findings in Mamalakis et al. (2022b,a) and in line

with salience methods presenting the contribution of each input pixel rather than sensitivity (see

Section 4b), due to input multiplication. Contrary to previous research (Mamalakis et al. 2022a),

LRP-𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 was an outlier among salience methods, sacrificing a faithful explanation for an

improved complexity skill and higher robustness. Similarly, LRP-𝛼-𝛽 and DeepSHAP stands out

as an exception among salience methods applied to the CNN due to almost consistently lower

skill scores. We attribute both findings to the mathematical definition of each method. While

LRP-𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 is optimized towards improved interpretation resulting in less feature content,

DeepSHAP is based on feature-removal and modified gradient backpropagation, and is vulnerable

towards feature correlation, for CNN features and LRP-𝛼-𝛽 neglecting negatively contributing

neurons during backpropagation.

Lastly, we propose a framework using XAI evaluation to support the selection of an appropriate

XAI method for a specific research task. The first step is to identify important XAI properties

for the network and data, followed by calculating evaluation skill scores across the properties
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for different XAI methods. Then, the resulting skill scores across XAI methods can be ranked

or compared directly to determine the best-performing method or combination of methods. In

our case study, LRP-𝑧 (alongside input times gradient and Integrated Gradients) yields suitable

results in the MLP task, allowing the reassessment of our motivating example (Figure 7) and the

trustworthy interpretation of the NA region as a contributing input feature.

Overall, our results demonstrate the value of XAI evaluation for climate AI research. Due to

their technical and theoretical differences (Letzgus et al. 2022; Han et al. 2022; Flora et al. 2022),

the various explanation methods can reveal different aspects of the network decision and exhibit

different strengths and weaknesses. Evaluation metrics allow to compare explanation methods by

assessing their suitability and properties, in different explainability contexts. Next to benchmark

datasets, evaluation metrics also contribute to the benchmarking of explanation methods. XAI

evaluation can support researchers in the choice of an explanation method, independent of the

network structure and targeted to their specific research problem.
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APPENDIX A

Additional Methodology

a. Explanations

To provide a theoretical background we provide formulas for the different XAI methods we

compare, in the following Section.

Gradient

The gradient method is the weak derivative ∇𝑥 := ∇ 𝑓 (x) of the network output 𝑓 (x) with respect

to each entry of the temperature map x ∈ X (Baehrens et al. 2010).

Φ( 𝑓 (x)) = ∇𝑥 (A1)

Accordingly, the raw gradient has the same dimensions as the input sample ∇𝑥 ,x ∈ R𝐷 .

input times gradient

input times gradient explanations are based on a point-wise multiplication of the impact of each

temperature map entry on the network output, i.e., the weak derivative ∇𝑥 , with the value of the

entry in the explained temperature map x. All explanations are calculated as follows:

Φ( 𝑓 (x)) = ∇𝑥x (A2)

with Φ( 𝑓 (x)),∇𝑥 ,x ∈ R𝐷

Integrated Gradients

The Integrated Gradients method aggregates gradients along the straight line path from the baseline

x to the input temperature map x. The relevance attribution function is defined as follows:

Φ( 𝑓 (x)) = (x−x) ⊙
∫ 1

0
∇ 𝑓 (x+𝛼(x−x)) d𝛼, (A3)

where ⊙ denotes the element-wise product and 𝛼 is the step-width from x to x.

Layerwise Relevance Propagation (LRP)
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For LRP, the relevances of each neuron 𝑖 in each layer 𝑙 are calculated based on the relevances of

all connected neurons 𝑗 in the higher layer 𝑙 +1 (Samek et al. 2017; Montavon et al. 2017).

For the 𝛼-𝛽-rule the weighted contribution of a neuron 𝑗 to a neuron 𝑖, i.e., 𝑧𝑖 𝑗 = 𝑎 (𝑙)𝑖 𝑤
(𝑙,𝑙+1)
𝑖 𝑗

with

𝑎
(𝑙)
𝑖

= 𝑥𝑖, are separated in a positive 𝑧+
𝑖 𝑗

and negative 𝑧−
𝑖 𝑗

part. Accordingly, the propagation rule is

defined by:

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

(
𝛼
𝑧+
𝑖 𝑗∑
𝑖 𝑧

+
𝑖 𝑗

+ 𝛽
𝑧−
𝑖 𝑗∑
𝑖 𝑧

−
𝑖 𝑗

)
(A4)

with 𝛼 as the positive weight, 𝛽 as negative weight and 𝛼+ 𝛽 = 1 to maintain relevance conservation.

We set 𝛼 = 1 and 𝛽 = 0

The z-rule accounts for the bounding that input images in image classification are exhibiting, by

multiplying positive network weights 𝑤+
𝑖 𝑗

with the lowest pixel value 𝑙𝑖 in the input and the negative

weights 𝑤−
𝑖 𝑗

by the highest input pixel value ℎ𝑖 (Montavon et al. 2017). The relevance is calculated

as follows:

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

𝑧𝑖 𝑗 − 𝑙𝑖𝑤+
𝑖 𝑗
− ℎ𝑖𝑤+

𝑖 𝑗∑
𝑖 𝑧𝑖 𝑗 − 𝑙𝑖𝑤+

𝑖 𝑗
− ℎ𝑖𝑤+

𝑖 𝑗

(A5)

For the composite-rule the relevances of the last layers with high neuron numbers are calculated

based on LRP-0 (see Bach et al. (2015)), which we drop due to our small network. In the middle

layers propagation is based on LRP-𝜖 , defined as:

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

𝛼
𝑎 𝑗 (𝑤𝑖 𝑗 +𝛾𝑤+

𝑖 𝑗
)∑

𝑖 𝑎 𝑗 (𝑤𝑖 𝑗 +𝛾𝑤+
𝑖 𝑗
) (A6)

The relevance of neurons in the layer before the input follows from LRP-𝛾

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

𝛼
𝑧𝑖 𝑗∑
𝑖 𝑧𝑖 𝑗

(A7)

and the relevance of the input layer is calculated based on Eq. A5.

SmoothGrad

The SmoothGrad explanations are defined as the average over the explanations of 𝑀 perturbed
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input images x+g𝑖 with 𝑖 = [1, . . . , 𝑀].

Φ( 𝑓 (x)) = 1
𝑀 +1

𝑀∑︁
𝑖=0

Φ0( 𝑓 (x+g𝑖)) (A8)

The additive noise g𝑖 ∼ N(0,𝜎) is generated using a Gaussian distribution.

NoiseGrad

NoiseGrad samples 𝑁 sets of perturbed network parameters θ̂𝑖 = η𝑖θ using multiplicative noise

η𝑖 ∼N(1,σ). Each set of perturbed parameters θ̂𝑖 results in a perturbed network 𝑓𝑖 (x) := 𝑓 (x; θ̂𝑖),
which are all explained by a baseline explanation method Φ0( 𝑓 (x)). The NoiseGrad explanation

is calculated as follows:

Φ( 𝑓 (x)) = 1
𝑁 +1

𝑁∑︁
𝑖=0

Φ0( 𝑓𝑖 (x)) (A9)

with 𝑓0(x) = 𝑓 (x) being the unperturbed network.

FusionGrad

For FusionGrad the NG procedure is extended by combining the SG procedure using 𝑀 perturbed

input samples with NG calculations. Accordingly, FG can be calculated as follows:

Φ( 𝑓 (x)) = 1
𝑀 +1

1
𝑁 +1

𝑀∑︁
𝑗=0

𝑁∑︁
𝑖=0

Φ0( 𝑓𝑖 (x 𝑗 )) (A10)

Deep SHapley Additive exPlanations (DeepSHAP) (Lundberg and Lee 2017)

The Deep SHAP Explainer, uses the concept of DeepLift (Shrikumar et al. 2016) to approximate

Shapley values. Formally, we can express the Shapley values as follows:

𝜙𝑑𝑖 ( 𝑓𝑊 , 𝑥) =
∑︁
𝑆⊂𝑑\𝑑𝑖

|𝑆 |!( |𝑑 | − |𝑆 | −1)!
|𝑑 |! [ 𝑓 (𝑥) − 𝑓 (𝑥𝑆)], (A11)

where 𝑥 is the input with features 𝑑 and individual features 𝑑𝑖 ∈ 𝑑, 𝑓 is our model and 𝑥𝑆 := 𝑥 \ 𝑑𝑖
is the masked input, only containing the features in 𝑆 ⊂ 𝑑 \ {𝑑𝑖}, all subsets that do not contain the

feature 𝑑𝑖. For DeepSHAP, the network 𝑓 is separated into individual components 𝑓𝑖 according

to the layer structure as proposed in DeepLift. Similar to Integrated Gradients, DeepSHAP uses a

reference value (here chosen as an all-zero reference image), relative to which the contributions
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of each feature are calculated. This is achieved by determining the multiplicators for each layer

according to the DeepLift multiplicators and the multiplicators are back-propagated to the input

layer (Shrikumar et al. 2016; Lundberg and Lee 2017).

For visualizations, as depicted in Figure B4 and B5 we maintain comparability of the relevance

maps Φ( 𝑓 (X𝑖,𝑡)) = 𝑅̄(𝑖,𝑡) ∈ R𝑣𝑥ℎ across different methods, by applying a min-max normalization to

all explanations:

𝑅̄𝑖 =
Imax𝑅

𝑖

max
(
𝑟 𝑗 𝑘 |𝑟 𝑗 𝑘 ∈ 𝑅𝑖∀ 𝑗 ∈ [1, 𝑣]∀𝑘 ∈ [1, ℎ]

) − Imin𝑅
𝑖

min
(
𝑟 𝑗 𝑘 |𝑟 𝑗 𝑘 ∈ 𝑅𝑖∀ 𝑗 ∈ [1, 𝑣]∀𝑘 ∈ [1, ℎ]

) (A12)

with Imin, Imax ∈ R𝑣𝑥ℎ defining corresponding minimum/maximum indicator masks, i.e., for the

minimum indicator each entry i( 𝑗 𝑘)min = 1,∀𝑟 𝑗 𝑘 < 0 and i( 𝑗 𝑘)min = 0∀𝑟 𝑗 𝑘 ≥ 0, for the maximum indicator

entries are defined reversely i( 𝑗 𝑘)max = 1,∀𝑟 𝑗 𝑘 ≥ 0 and i( 𝑗 𝑘)max = 0 otherwise. The normalization maps

pixel-wise relevance 𝑟 𝑗 𝑘 ↦→ 𝑟 𝑗 𝑘 with 𝑟 𝑗 𝑘 ∈ [−1,1] for methods identifying positive and negative

relevance and 𝑟 𝑗 𝑘 ∈ [0,1] for methods contributing only positive relevance values.

b. Evaluation Metrics

(i) Random Baseline Similar to Rieger and Hansen (2020), we establish a random baseline as

an uninformative baseline explanation. The artificial explanation Φrand ∈ Rℎ×𝑣 is drawn from

a Uniform distribution Φrand ∼ 𝑈 (0,1). Each time a metric reapplies the explanation function,

for example in the robustness metrics when the perturbed input is subject to the explanation

method, we redraw each random explanation. The only exception for the re-explanation step is the

randomization metric as it aims for a maximally different explanation. Thus, to maximally violate

the metric assumptions, we fix the explanation, emulating a constant explanation for a changing

network Φ(x, 𝑓𝜃) ≈Φ(x, 𝑓𝜃).

(ii) Score Calculation As discussed in Section 3e, we calculate the skill score according to the

optimal metric outcome. Thus, skill scores reported for the Average Sensitivity, the Local Lipschitz

Estimate, the ROAD, the Complexity, the Model Parameter Randomization Test, and the Random
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Logit metrics are calculated based on the first case of Eq. (15), while the skill scores calculation

based on Faithfulness Correlation, Top-𝐾 , Relevance Rank Accuracy, and Sparseness scores are

calculated follows the bottom case of Eq. (15).

We calculate the mean skill scores𝑄𝑚 and corresponding SEM reported in Figures 8−9 based on

the skill scores of 𝐼 = 50 explanation samples. We choose this number of samples to provide valid

statistics, while maintaining computational efficiency, for both networks. All samples are drawn

randomly from the calculated explanations (both training and test data). For each explanation

method 𝑀 , both mean skill scores 𝑄𝑚 and corresponding SEM are calculated as follows:

𝑄𝑚 =
1
𝐼

𝐼∑︁
𝑗=1
𝑞𝑚, 𝑗

s̄𝑚 =
s
√
𝐼

(A13)

with s being the standard deviation of the normalized scores 𝑞𝑚
𝑖

(see Section 3) across explanation

samples.

An exception is the ROAD metric, as discussed in Section 3, the curve used in the AUC calculation

results from the average of 𝑁 = 50 samples. Thus, we repeat the AUC calculation for 𝑉 = 10 draws

of 𝑁 = 50 samples and calculate the mean skill score and the SEM.
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APPENDIX B

Additional Experiments

a. Network and Explanation

Aside from the learning rate 𝑙 (𝑙CNN = 0.001), we maintain a similar set of the hyperparameters to

Labe and Barnes (2021) and use the fuzzy classification setup for the performance validation. To

assess the predictions of the network for each individual input we include the network predictions

for 20CRv3 Reanalysis data, i.e., observations (Slivinski et al. 2019). We measure performance

using both the 𝑅𝑀𝑆𝐸 = 𝑅 between true 𝑦̂true and predicted year 𝑦̂ as well as the accuracy on the test

set. Both the MLP and the CNN have a similar performance compared to the primary publication.

We show in Figure B3 the regression curves for the model data (grey) and reanalysis data (blue) of

A) the MLP and B) CNN (see also Figure 3c in Labe and Barnes (2021)). We train both networks

to exhibit no significant performance differences and prevent overfitting. The learning curves

for the MLP, achieving a test accuracy of AccMLP = 67± 4% and CNN with AccCNN = 71± 2%

(estimated across 50 trained networks), are shown in Figures B1 and B2 respectively. Additionally,

we consider the RMSE of the predicted years and see comparable RSME for the Test Data with

𝑅MLP = 5.1 and 𝑅CNN = 4.5.

In Figure B3 we also show the number of correct predictions for both architectures (all points on

Fig. B1: Learning curve of the MLP including accuracy (a) and loss (b). In both plots, the scatter
graph represents the training performance, and the line graph the performance on the validation
data.
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Fig. B2: Learning curve of the CNN including accuracy (a) and loss (b). In both plots, the scatter
graph represents the training performance, and the line graph the performance on the validation
data.

the regression line). In these graphs, we observe changing numbers of correct predictions across

Fig. B3: Network performance based on the RMSE of the predicted years to the true years of both
A) MLP and B) CNN (compare to Figure 3c in Labe and Barnes (2021)). The red dots correspond
to the agreement of the predictions based on the training and validation data to the actual years
and the grey dots show agreement between the predictions on the test set and the actual years, with
the black line showing the linear regression across the full model data (training, validation and test
data). In blue, we also included the predictions on the reanalysis data with the linear regression
line in dark blue.
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different years. Thus, we apply all explanation methods to the full model data Ω, to ensure access

to correct samples across all years.

We show examples of MLP and CNN across all explanation methods in figure B4 and B5.

Following Labe and Barnes (2021), we adopt a criterion requiring a correct year regression within

an error of±2 years, to identify a correct prediction. We average correct predictions across ensemble

members and display time periods of 40 years based on the temporal average of explanations (see

Figure 6 in Labe and Barnes (2021)).

In comparison, both figures highlight the difference in spatial learning patterns, with the CNN

relevance focusing on pixel groups whereas the MLP relevance can change pixel-wise. In table B1,

we list the hyperparameters of the explanation methods, compared in our experiments. We use the

notation introduced in Appendix A-a. We use Integrated Gradients with the baseline x̄ generated

per default by iNNestigate.

b. Evaluation metrics

(i) Hyperparmeters In table B2 we list the hyperparameters of the different metrics. We list only

the adapted parameters for all others (see Hedström et al. (2023b)) we used the Quantus default

Table B1: The hyperparameters of the XAI methods. Note that parameters vary across explanation
methods. We report only adjusted parameters, for all others we write −. We denote maximum and
minimum values across all temperature maps X in the dataset Ω as 𝑥max and 𝑥min respectively.

𝛼 𝛽 𝑁 𝑀 𝜎SG 𝜎NG Φ0( 𝑓 (x)) x̄

gradient − − − − − − − −
SmoothGrad − − 150 − 0.25(𝑥max − 𝑥min) − gradient −
NoiseGrad − − − 20 − 0.25 gradient −
FusionGrad − − 20 20 0.25(𝑥max − 𝑥min) 0.125 gradient −
input times gradients − − − − − − − −
Integrated Gradients − − − − − − − 0
LRP-𝛼-𝛽 1 0 − − − − − −
LRP-𝑧 − − − − − − − −
LRP-composite − − − − − − − −
DeepSHAP − − − − − − − 0
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Table B2: We show the hyperparameters of the XAI evaluation metrics based on the QUANTUS
package calculations (Hedström et al. 2023b). We consider the metrics, Average Sensitivity
(AS), Local Lipschitz Estimate (LLE), Faithfulness Correlation (FC), ROAD, Model Parameter
Randomization Test (MPT), Random Logit (RL), Complexity (COM), Sparseness (SPA), Top-𝐾
and Relevance Rank Accuracy (RRA). Note that parameters vary across metrics and we report
settings only for existing parameters in each metric (for all others we write −).

Robustness Faithfulness Randomization Complexity Localisation

Hyperparameters AS LLE FC ROAD MPT RL COM SPA TopK RRA

Normalization True True True True True True True True True True
Perturbation function N(0,0.1) N (0,0.1) Indices Linear − − − − − −
Similarity function Difference Lipschitz

Constant
Pearson

Corr. − Pearson
Corr.

Pearson
Corr. − − − −

Num. of samples/runs 10 10 50 − − − − − − −
Norm nominator Frobenius Euclidean − − − − − − − −
Norm denominator Frobenius Euclidean − − − − − − −
Subset size − − 40 − − − − − − −
Percentage range − − − 1−50% − − − − −
𝑘 − − − − − − − − 0.1𝑑 −
Perturbation baseline − − 𝑈 (0,1) 𝑈 (0,1) − − − − − −
Number of Classes − − − − − 20 − − − −
Layer Order − − − − bottom up − − − − −

values. The normalization parameter refers to an explanation of normalization according to Eq.

A12.

Faithfulness. In table B2 the perturbation function ’Indices’ refers to the baseline replacement by

indices of the highest value pixels in the explanation and ’Linear’ refers to noisy linear imputation

(see Rong et al. (2022a) for details). Please, note that the evaluation of the faithfulness property

strongly depends on the choice of perturbation baseline. Thus, we advise the reader to choose the

uniform baseline, as determined here for standardized weather data, as it most strongly resembles

noise.

Randomization. For the Model Parameter Randomization Test score calculations, we perturb the

layer weights starting from the output layer to the input layer, referred to as ’bottom up’ in table

B2. To ensure comparability we use the Pearson correlation as the similarity function for both

metrics.

Localisation. For top-𝑘 we consider 𝑘 = 0.1𝑑, which are the 10% most relevant pixels of all pixels

𝑑 in the temperature map.
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Fig. B4: MLP explanation map average over 1920− 1960,1960− 2000, 2000− 2040 and 2040−
2080 for all XAI methods. The first row shows the average input temperature map 𝑇 with the color
bar ranging from maximum (red) to minimum(blue) temperature anomaly. All consecutive lines
show the explanation maps of the different XAI methods with the color bar ranging from 1 (red)
to −1 (blue).
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Fig. B5: CNN explanation map average over 1920− 1960,1960− 2000, 2000− 2040 and 2040−
2080 for all XAI methods. The first row shows the average input temperature map 𝑇 with the color
bar ranging from maximum (red) to minimum(blue) temperature anomalies. All consecutive lines
show the explanation maps of the different XAI methods with the color bar ranging from 1 (red)
to −1 (blue).
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methods and finding biases. 2022 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), 1–8.

Arras, L., A. Osman, and W. Samek, 2020: Ground truth evaluation of neural network explanations

with CLEVR-XAI. arXiv preprint arXiv:2003.07258.

44

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Arrieta, A. B., and Coauthors, 2020: Explainable artificial intelligence (xai): Concepts, tax-

onomies, opportunities and challenges toward responsible ai. Information fusion, 58, 82–115,

https://doi.org/10.1016/j.inffus.2019.12.012.

Bach, S., A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, 2015: On pixel-wise

explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE,

10 (7), e0130 140, https://doi.org/10.1371/journal.pone.0130140.

Baehrens, D., T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller, 2010: How

to explain individual classification decisions. The Journal of Machine Learning Research, 11,

1803–1831.

Balduzzi, D., M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and B. McWilliams, 2017: The shattered

gradients problem: If resnets are the answer, then what is the question? CoRR, abs/1702.08591,

URL http://arxiv.org/abs/1702.08591, 1702.08591.

Barnes, E. A., R. J. Barnes, and N. Gordillo, 2021: Adding uncertainty to neural network regression

tasks in the geosciences. arXiv preprint arXiv:2109.07250.

Barnes, E. A., B. Toms, J. W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson, 2020:

Indicator patterns of forced change learned by an artificial neural network. Journal of Advances

in Modeling Earth Systems, 12 (9), e2020MS002 195.

Bhatt, U., A. Weller, and J. M. Moura, 2020: Evaluating and aggregating feature-based model

explanations. arXiv preprint arXiv:2005.00631.

Brocki, L., and N. C. Chung, 2022: Evaluation of interpretability methods and perturbation artifacts

in deep neural networks. CoRR, abs/2203.02928, https://doi.org/10.48550/arXiv.2203.02928,

2203.02928.

Bromberg, C. L., C. Gazen, J. J. Hickey, J. Burge, L. Barrington, and S. Agrawal, 2019: Machine

learning for precipitation nowcasting from radar images. Workshop at the 33rd Conference on

Neural Information Processing Systems, 4.

Bykov, K., M. Deb, D. Grinwald, K.-R. Müller, and M. M.-C. Höhne, 2022a: Dora: Exploring
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explanations by introducing stochasticity to model weights. Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 36, 6132–6140.
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M. M.-C. Höhne, 2023b: Quantus: An explainable ai toolkit for responsible evaluation of neural

network explanations and beyond. Journal of Machine Learning Research, 24 (34), 1–11.

Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded soil information based on

machine learning. PLoS one, 12 (2), e0169 748, https://doi.org/10.1371/journal.pone.0169748.

Hilburn, K. A., 2023: Understanding spatial context in convolutional neural networks using

explainable methods: Application to interpretable GREMLIN. Artificial Intelligence for the

Earth Systems, 2 (3), https://doi.org/10.1175/aies-d-22-0093.1.

48

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Hilburn, K. A., I. Ebert-Uphoff, and S. D. Miller, 2021: Development and interpretation of a neural-

network-based synthetic radar reflectivity estimator using goes-r satellite observations. Journal of

Applied Meteorology and Climatology, 60 (1), 3–21, https://doi.org/10.1175/jamc-d-20-0084.1.

Hoffman, R. R., S. T. Mueller, G. Klein, and J. Litman, 2018: Metrics for explainable ai: Challenges

and prospects. arXiv preprint arXiv:1812.04608.

Hunter, J. D., 2007: Matplotlib: A 2d graphics environment. Computing in Science & Engineering,

9 (3), 90–95, https://doi.org/10.1109/mcse.2007.55.

Hurley, N., and S. Rickard, 2009: Comparing measures of sparsity. IEEE, 4723–4741 pp.,

https://doi.org/10.1109/mlsp.2008.4685455.

Hurrell, J. W., and Coauthors, 2013: The community earth system model: A framework for

collaborative research. Bulletin of the American Meteorological Society, 94 (9), 1339–1360,

https://doi.org/10.1175/bams-d-12-00121.1.
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Lapuschkin, S., S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Müller, 2019:

Unmasking clever hans predictors and assessing what machines really learn. Nature communi-

cations, 10, https://doi.org/10.1038/s41467-019-08987-4.

Leinonen, J., D. Nerini, and A. Berne, 2021: Stochastic super-resolution for downscaling time-

evolving atmospheric fields with a generative adversarial network. IEEE Transactions on Geo-

science and Remote Sensing, 59 (9), 7211–7223, https://doi.org/10.1109/tgrs.2020.3032790.

Letzgus, S., P. Wagner, J. Lederer, W. Samek, K.-R. Müller, and G. Montavon, 2022: Toward

explainable artificial intelligence for regression models: A methodological perspective. IEEE

Signal Processing Magazine, 39 (4), 40–58.

Lundberg, S. M., and S.-I. Lee, 2017: A Unified Approach to Interpreting Model Predictions.

Advances in neural information processing systems, 30.

Mamalakis, A., E. A. Barnes, and I. Ebert-Uphoff, 2022a: Investigating the fidelity of explainable

artificial intelligence methods for applications of convolutional neural networks in geoscience.

Artificial Intelligence for the Earth Systems, 1–42, https://doi.org/10.1175/aies-d-22-0012.1.

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2020: Explainable artificial intelligence in

meteorology and climate science: Model fine-tuning, calibrating trust and learning new science.

International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers,

Springer, 315–339.

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2022b: Neural network attribution methods for

problems in geoscience: A novel synthetic benchmark dataset. Environmental Data Science, 1,

e8.

Mayer, K. J., and E. A. Barnes, 2021: Subseasonal forecasts of opportunity identified by an explain-

able neural network. Geophysical Research Letters, 48 (10), e2020GL092 092, https://doi.org/

10.1029/2020gl092092.

McGovern, A., R. Lagerquist, D. John Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and

T. Smith, 2019: Making the black box more transparent: Understanding the physical implications

of machine learning. Bulletin of the American Meteorological Society, 100 (11), 2175–2199,

https://doi.org/10.1175/bams-d-18-0195.1.

50

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Mohseni, S., N. Zarei, and E. D. Ragan, 2021: A multidisciplinary survey and framework for

design and evaluation of explainable ai systems. ACM Transactions on Interactive Intelligent

Systems (TiiS), 11 (3-4), 1–45.

Montavon, G., A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller, 2019: Layer-wise rele-

vance propagation: an overview. Explainable AI: interpreting, explaining and visualizing deep

learning, 193–209.

Montavon, G., S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, 2017: Explaining nonlinear

classification decisions with deep taylor decomposition. Pattern Recognition, 65, 211–222.

Montavon, G., W. Samek, and K.-R. Müller, 2018: Methods for interpreting and understanding deep

neural networks. Digital signal processing, 73, 1–15, https://doi.org/10.1016/j.dsp.2017.10.011.

Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the

correlation coefficient. Monthly weather review, 116 (12), 2417–2424.

Murphy, A. H., and H. Daan, 1985: Forecast evaluation. Probability, statistics, and decision

making in the atmospheric sciences, 379–437.

Nguyen, A., A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, 2016: Synthesizing the

preferred inputs for neurons in neural networks via deep generator networks. Advances

in Neural Information Processing Systems 29: Annual Conference on Neural Informa-

tion Processing Systems, 3387–3395, URL https://proceedings.neurips.cc/paper/2016/hash/

5d79099fcdf499f12b79770834c0164a-Abstract.html.

Nguyen, A.-p., and M. R. Martı́nez, 2020: On quantitative aspects of model interpretability. arXiv

preprint arXiv:2007.07584.

Pegion, K., E. J. Becker, and B. P. Kirtman, 2022: Understanding predictability of daily southeast

u.s. precipitation using explainable machine learning. Artificial Intelligence for the Earth Systems,

1 (4), https://doi.org/10.1175/aies-d-22-0011.1.

Petsiuk, V., A. Das, and K. Saenko, 2018: Rise: Randomized input sampling for explanation of

black-box models. arXiv preprint arXiv:1806.07421.

51

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Ribeiro, M. T., S. Singh, and C. Guestrin, 2016: ”why should i trust you?”: Explaining the

predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference

on knowledge discovery and data mining, 1135–1144.

Rieger, L., and L. K. Hansen, 2020: Irof: a low resource evaluation metric for explanation methods.

arXiv preprint arXiv:2003.08747.

Rong, Y., T. Leemann, V. Borisov, G. Kasneci, and E. Kasneci, 2022a: A consistent and efficient

evaluation strategy for attribution methods. arXiv preprint arXiv:2202.00449.

Rong, Y., T. Leemann, V. Borisov, G. Kasneci, and E. Kasneci, 2022b: Evaluating feature attribu-

tion: An information-theoretic perspective. arXiv preprint arXiv:2202.00449.

Samek, W., A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Muller, 2017: Evaluating the

visualization of what a deep neural network has learned. IEEE transactions on neural networks

and learning systems, 28, 2660–2673, https://doi.org/10.1109/TNNLS.2016.2599820.

Samek, W., G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller, 2019: Explainable AI:

interpreting, explaining and visualizing deep learning, Vol. 11700. Springer Nature.

Sawada, Y., and K. Nakamura, 2022: C-senn: Contrastive self-explaining neural network. arXiv

preprint arXiv:2206.09575.

Scher, S., and G. Messori, 2021: Ensemble methods for neural network-based weather forecasts.

Journal of Advances in Modeling Earth Systems, 13 (2), https://doi.org/10.1029/2020ms002331.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, 2017: Grad-cam:

Visual explanations from deep networks via gradient-based localization. Proceedings of the

IEEE international conference on computer vision, 618–626.

Shapley, L. S., 1951: Notes on the n-person game—ii: The value of an n-person game.(1951).

Lloyd S Shapley.

Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, 2015: Convolutional

lstm network: A machine learning approach for precipitation nowcasting. Advances in neural

information processing systems, 28.

52

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Shrikumar, A., P. Greenside, A. Shcherbina, and A. Kundaje, 2016: Not just a black box: Learning

important features through propagating activation differences. arXiv preprint arXiv:1605.01713.

Simonyan, K., A. Vedaldi, and A. Zisserman, 2014: Deep inside convolutional networks: Visual-

ising image classification models and saliency maps. 2nd International Conference on Learning

Representations, ICLR 2014, Workshop Track Proceedings, URL http://arxiv.org/abs/1312.6034.

Sixt, L., M. Granz, and T. Landgraf, 2020: When explanations lie: Why many modified bp

attributions fail. International Conference on Machine Learning, 9046–9057.

Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improve-

ments for version 3 of the twentieth century reanalysis system. Quarterly Journal of the Royal

Meteorological Society, 145 (724), 2876–2908, https://doi.org/10.1002/qj.3598.

Smilkov, D., N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, 2017: Smoothgrad: removing

noise by adding noise. arXiv preprint arXiv:1706.03825.

Sonnewald, M., and R. Lguensat, 2021: Revealing the impact of global heating on north atlantic

circulation using transparent machine learning. Journal of Advances in Modeling Earth Systems,

13 (8), e2021MS002 496, https://doi.org/10.1029/2021ms002496.

Strumbelj, E., and I. Kononenko, 2010: An efficient explanation of individual classifications using

game theory. The Journal of Machine Learning Research, 11, 1–18.

Sturmfels, P., S. Lundberg, and S.-I. Lee, 2020: Visualizing the impact of feature attribution

baselines. Distill, 5 (1), e22, https://doi.org/10.23915/distill.00022.

Sundararajan, M., A. Taly, and Q. Yan, 2017: Axiomatic attribution for deep networks. Interna-

tional conference on machine learning, PMLR, 3319–3328.

Theiner, J., E. Müller-Budack, and R. Ewerth, 2022: Interpretable semantic photo geolocation.

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 750–760.

Tomsett, R., D. Harborne, S. Chakraborty, P. Gurram, and A. Preece, ????: Sanity Checks for

Saliency Metrics. Proceedings of the AAAI conference on artificial intelligence, Vol. 34, 6021–

6029, https://doi.org/10.1609/aaai.v34i04.6064.

53

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0074.1.Unauthenticated | Downloaded 04/25/24 04:37 PM UTC



Van Straaten, C., K. Whan, D. Coumou, B. Van den Hurk, and M. Schmeits, 2022: Using explain-

able machine learning forecasts to discover subseasonal drivers of high summer temperatures

in western and central europe. Monthly Weather Review, 150 (5), 1115–1134, https://doi.org/

10.1175/mwr-d-21-0201.1.

Vidovic, M. M.-C., N. Görnitz, K.-R. Müller, and M. Kloft, 2016: Feature importance measure

for non-linear learning algorithms. arXiv preprint arXiv:1611.07567.

Vidovic, M. M.-C., N. Görnitz, K.-R. Müller, G. Rätsch, and M. Kloft, 2015: Opening the black
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