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Abstract: Segmenting plantar pressure images intelligently can provide valuable insight for people with high blood pressure, making bespoke
footwear requirements possible and resulting in more comfortable shoe designs. It is, however, difficult to extract design elements from a
segmented image dataset. To address this challenge, we propose an ML-GNN model that segments plantar pressure images using metal-earning.
The first part of the paper presents a method for extracting image features that reduce the complexity of the ML-GNN algorithm. To create the
network structure, we propose optimization meta-based learning. Using a meta-learning-based graphic neural network, we enhance our mask-
based CNN prediction model with VGG16 and CNN layers. We pre-processed the plantar pressure dataset using pressure-sensing data acquisition
and compared the results. By defining standard image segmentation indices, we demonstrate the high effectiveness of our research. We have
developed an ML-GNN model that improves the segmentation accuracy of plantar pressure images and can also be applied to other sensor image
datasets. Through our shoe-last customization approach, we enable the shoe industry to manufacture shoes more efficiently, particularly for
people with specific healthcare needs who require bespoke shoe designs. Our findings demonstrate the potential of intelligent image segmentation
to advance the field of footwear design and improve the lives of people with specific health requirements.
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1. Introduction

Consumer expectations have closely incorporated the mobile Internet and big data in the past decade. The temple design of products
has become synonymous with intelligence. The impact of intelligence on society has been profound as a new driving force for
economic and social innovation and development. Interaction design is an important component of intelligent design. Currently,
the trend in footwear interactive design is to incorporate human biological information into the interaction design [1,2]. Future
footwear manufacturing and business models will be integrated, fully customizable, and disruptive. Bionics, engineering, and
artificial intelligence are involved [3]. Intelligent design is also required for rapid industrial production. Intelligent typesetting
systems for leather, 3D foot scanning measurements, Pur-micro production lines, and intelligent cutting robots for the shoe industry
are key enablers of agile manufacturing. An accurate three-dimensional foot scanner can measure the plantar pressure distribution,
which is closely related to footwear comfort. By doing so, the comfort problem can be transformed into a segmentation problem
for imaging plantar pressure. Intelligent segmentation of the plantar pressure image can be realized, and the shoe last can be
effectively designed for comfort. This research focuses on extracting key design elements [4].

There are two main categories of traditional image enhancement techniques: time- and frequency-domain image enhancement.
Image enhancement processes gray pixel values in the image, including gray value transformations, histogram equalization
technologies, image smoothing, sharpening techniques, pseudo-color adjustments, and other techniques. In frequency domain
image enhancement, the spectrum components of the image are transformed, followed by an inverse Fourier transformation to
obtain the result. In general, a certain type of algorithm can only solve one kind of problem that appears in the image. Therefore,
in view of the complex problems of infrared images, to improve the image processing effect, multiple algorithms are often used in
combination [5]. At present, more algorithms with relatively perfect performance are being proposed. Zotin [6] proposed a fast
multiscale retinex (MSR) algorithm to solve the problem of color distortion in the image enhancement process and improved the
shortcomings of a time-consuming and slow image enhancement algorithm. However, in processing this algorithm, there are still
details that still need to be improved. Hanumantharaju et al. [7] proposed a color image enhancement technique based on an
improved MSR algorithm where the wavelet energy was used to evaluate the visual quality of the enhanced image. There are
several commonly used methods for identifying defects in non-destructive testing images, such as principal component analysis
(PCA), pulse phase methods, and signal reconstruction methods. [8].



Traditionally, image recognition involves four steps: image acquisition->preprocessing->feature extraction->recognition. This
process involves analysing images to detect patterns in objects and targets with the help of computers. Image recognition algorithms
have recently been developed that apply deep learning. Neural network image recognition is based on traditional image recognition
algorithms and neural network algorithms. In this case, the neural network refers to an artificial neural network, which means that
the neural network is not a real neural network possessed by animals but one that humans have engineered after mimicking animal
neural networks. Neural network image recognition technology combines genetic algorithms, back propagation (BP) networks,
and neural networks to form classic models, which have many applications. Image recognition systems generally use neural
networks to extract the image's features and then map the image's features to neural networks for recognition and classification [9-
11]. The feature extraction of plantar pressure images in this study mainly applies the method of deep neural networks.

2. Literature Review

In the first paper on graph neural networks, Gori et al. [12] introduced the concept, and Scarselli et al. [13] offered further
clarification. These early studies propagated neighbor information iteratively through RNNs to learn the representation of target
nodes until a stable fixed point is reached. Recent methods for data convolution have been redefined by the success of convolutional
networks in application domains such as computer vision. Bronstein et al. [14] described deep learning methods in non-Euclidean
domains, including graphs and manifolds. Although this was the first review of graph convolutional networks, their study did not
discuss several important spatial-based approaches.

Graph neural networks (GNNs) and convolutional neural networks (CNNs) can be used together for image segmentation tasks. In
this context, GNNSs can be used to model the relationships between pixels in an image as a graph, where nodes represent individual
pixels and edges represent the relationships between them. The GNN can then learn representations of these relationships and
propagate information through the graph to refine these representations. This can be particularly useful for capturing long-range
dependencies in the image, which may be difficult for CNNs to capture. Once the GNN has learned these representations, they can
be fed into a CNN to perform the actual segmentation task. The CNN can use these representations to guide its feature extraction
and produce more accurate segmentation results [15]. Overall, the combination of GNNs and CNNs allows for a more robust and
accurate approach to image segmentation, particularly in cases where long-range dependencies are important. [16]

Metalearning (ML) consists of completing the general process of machine learning and designing network structures, such as
CNNs and recurrent neural networks (RNNSs). ; selecting a distribution to initialize parameters (in practice, choosing different
network structures or parameters is equivalent to defining different functions); inputting training data, calculating the loss
according to the loss function; gradient descent, updating step by step; and obtaining the final function. However, the model needs
to be retrained when the scene is changed [17]. In addition to the network structure, the parameters are artificially designed and
called "hyperparameters”. In ML, it is expected that these configurations, such as network structure, parameter initialization,
optimizer, etc., are determined by the machine itself so that the network performance improves [18-20]. Graph convolutional
networks (GCNs) form the basis of many complex graph neural network models. There are two categories of GCN methods:
spectrally based and spatially based. In graph signal processing, spectral-based methods define graph convolution as a way of
removing noise from graph signals. Convolution of graphs is commonly described as an aggregation of neighboring feature
information. By alternating GCN layers with graph pooling modules [21-23], fine-graining can be achieved. Deep neural
architecture is the key to deep learning's success. ResNet, for example, has 152 layers for image classification. As the number of
layers increases in graph networks, however, model performance drops dramatically. Due to graph convolution, adjacent node
representations are essentially pushed closer together [24, 25].

Metalearning (ML) with graph neural networks (GNNs) for image segmentation is novel because it can rapidly adapt to new
datasets and improve segmentation accuracy with limited data. GNNs are traditionally used to segment images by modelling pixel
relationships as graphs and learning representations of those relationships. In addition, this approach can be computationally
expensive and requires a large amount of labelled data for training. Our approach can improve segmentation accuracy with fewer
labelled examples by incorporating meta-learning into the GNN model. A meta-learning framework enables a GNN to learn how
to learn, i.e., how to quickly adapt to new data with limited labelled examples. As part of our approach, we employ an image
feature extraction method to reduce the complexity of the ML-GNN algorithm and a meta-based optimization approach to create
the network structure. The ML-GNN's efficiency and accuracy for image segmentation are further improved by adding these
components. ML-GNN provides an efficient and accurate approach to image segmentation by adapting to new datasets quickly,
improving segmentation accuracy with limited data, and providing a faster and more accurate approach than existing approaches.

This work makes the following novel contributions to research:
(1) Our model leverages meta-learning techniques to adapt and generalize well to different plantar pressure image datasets.
This enables the model to learn from multiple tasks or datasets, acquiring knowledge that can be applied to improve



segmentation accuracy on new, unseen datasets. The application of meta-learning in image segmentation is a novel
approach that has the potential to enhance the performance and generalizability of segmentation models in various
domains.

(2) We propose an optimization meta-based learning method to create the network structure of our ML-GNN model. This
approach optimizes the structure of the GNN by leveraging meta-learning techniques, leading to improved segmentation
accuracy. The integration of metalearning and GNNs for image segmentation is a novel combination that has not been
extensively explored in the literature.

(3) The primary application of our model is in the field of footwear design. By accurately segmenting plantar pressure images
and extracting design elements, our model enables bespoke footwear requirements for individuals with high blood
pressure or specific healthcare needs. This aspect of our research has implications for the efficient manufacturing of shoes
and the improvement of comfort and fit, particularly for individuals with specific health requirements. While the use of
VGG16 is a standard practice in image processing, the application of our ML-GNN model to address footwear design
challenges is a novel contribution.

The remaining sections are organized as follows. The modelling of a metalearning-based graph neural network for segmenting
plantar images is presented in Section Il. In section 11, the experimental design is described, as well as the data acquisition and
processing followed by the results. Section IV presents a discussion, and our conclusions are presented in Section V.

3 Modelling

3.1. Metalearning for Neural Network Parameter Training

A meta-learning approach to neural network parameter training can be used to train the optimizer itself, making it more adaptable
to new tasks. Metalearning involves training an optimizer to learn how to learn by using a small set of tasks. Meta-training involves
learning how to update the network parameters to achieve good performance on the training tasks. Using small adjustments to the
network parameters, the optimizer can quickly adapt to new tasks once it has been meta-trained. With fewer examples, the network
can learn faster. Using a meta-learning algorithm such as MAML (Model-Agnostic Meta-Learning) or Reptile to train the optimizer
is a common way to meta-learn neural network parameters. Based on the performance of the network on a small set of tasks, these
algorithms update the optimizer's parameters. Once trained, the optimizer can quickly adapt to new tasks by fine-tuning the network
parameters or generating new parameters based on the optimizer's findings. Metalearning provides a powerful approach to quickly
adapt to new tasks and improve the efficiency of learning neural networks [26].

The purpose of meta-learning is to automatically train the function in the training task and then use this prior knowledge to train
the parameters in the model under a specific task in the test task, as shown in the following dependencies:
Fo (FM S fg) > (F‘p,ﬂ o fe.) (1)

When training a neural network, the specific general steps are preprocessing the dataset, choosing the network structure, setting
hyperparameters, initializing the parameters, choosing the optimizer, defining the loss function, and gradient descent updating the
parameters. The path of machine learning can be summarized as follows: preprocessing dataset D> select network structure N->set
hyperparameter 7 > initialization parameter 6, ->select optimizer O->define loss function L->gradient descent update parameter

6, . The path of meta-learning can be summarized as follows: learning to preprocess dataset D-> learning to select network
structure N->learning to set hyperparameter » - learning initialization parameter 8, = learning to select optimizer O-> learning
definition loss function L-> gradient descent update parameter 6, . Metalearning learns all the parametric variables that need to be
set and defined by humans. Here, the parameter variable belongs to the set, therefore:

(pe(Dz{D,N,y,HO,O,L} 2

As part of conventional deep learning, we apply gradient descent to training examples (such as classifying pictures of animal s
into one of five species) to learn optimal parameters. A meta-learning algorithm uses the task itself as a training example: to
learn optimal parameters for a particular problem type, we apply learning Algorithm 1 as follows. [27].
Algorithm 1: basic meta-learning model
REQUIRED: P(T)-distribution over task; o, /3 - step size.
OUTPUT: @
0=0
FOR i IN batch
sample_batch<-sampling (F’ (T(i )))
FOR T(j) IN samples(i)
Evaluate VHLT(j)(f(H)) subject to K samples (i)




Compute 6] =0-aV,Ly; (f(0))for sample (i)

Sampling D} :{Xj,yj} from T(j) for the meta of sample (i)
ENDFOR
UPDTAE 6= g_ﬂvT(u)~Lm)(f(ﬂ,‘)LT(')( f (9')

ENDFOR

3.2 Graphic Neural Networks for Image Feature Extraction
For a given graph, each node has a certain feature; suppose that X, represents the feature of node v, as do the edges that connect

the nodes. Let x(u,v) be the edge that represents the edge between node v and node u; the learning goal of graphic neural networks

(GNNS) is to obtain the hidden state h, (state embedding) of each node's graph perception; in other words, for each node, its hidden

state contains information from its neighbours. Therefore, it is necessary to determine how each node on the graph can be aware
of its neighbors. A GNN is implemented by iteratively updating all nodes' hidden states. The hidden state of node v is updated as

follows at time t+1:

h = T (X X [V] e [V], X e [V]) ®3)
where f (-) is the state update function of the hidden state, which in this work is also called the local transaction function. X, [v]
in the formula refers to the feature of the edge adjacent to node v, X, [v] refers to the feature of the neighbor node of node v,
and h,, [v] refers to the neighbor node at time t hidden state. By combining all f(-), an artificial neural network (ANN) was

suggested, and it is worth mentioning that it seems that the input of f is a variable-length parameter. This new formula updates

the hidden state of the central node based on the hidden state of the neighbor nodes at the current moment until very little variation
exists in the hidden state of each node and the information flow of the whole graph is stable. The neighbors of each node now
know what each knows. A second function g is needed to indicate how to adapt to upcoming tasks in addition to the state update
formula, which explains how to find hidden states. In addition to expressing local output functions g, neural networks can also
represent globally shared functions g. The process can be described as follows using neural networks:

Connect the two moments based on the graph's connection. The state of node 1 accepts the hidden state of node 3 at time T1 since
node 1 is adjacent to node 3. After Tn iterations, each node's hidden state converges, and it is followed by a g to obtain its output
0. The convergence time may differ for different graphs since convergence is determined by whether the difference between the
p-norms of the two moments is less than a certain threshold & ,||h, ,[* —||n|* < & . The input for the gradient operation is the number

of timesteps (Tn), and the plantar pressure image features (Xv) we extracted in previous steps.
Step 1: For N training tasks regarding the support set (SS) and query set (QS), a test task is applied for evaluation of the meta-
learning parameters.
Step 2: Define the network structure; initialize a meta network 6, .

Step 3: Pretrain iteratively:
1)  Assign the initial meta-parameter 6° to the m" task to obtain or
2) Optimize ™ using the SS of the m™ task based on the learning rate of a,

3) Compute the loss of the m™ task I’“(é’“) using QS

4)  Update the gradient ¢°to ¢'using the learning rate «
5) Sampleatask n,setd" =g

meta

6) Optimize the learning rate of «, and update o
7)  Compute loss I”(é“) using QS

8) Update ¢' to ¢’
9) Goto STEP 3.1 until all tasks are finished
Step 4: Fine-tune the meta network.
Step 5: Evaluate QS in meta-learning.
3.3 Metalearning-Based Graphic Neural Network
3.3.1 Optimization Meta-Based Learning



In few-shot learning, meta-learning is applied as supervised learning. Fig. 1 illustrates three types of models used in few-shot
learning, namely, the model-based method, the metric-based method, and the optimization-based method. The model-based method
is used to determine how the input data (X) can be translated into predicted values (P) and how the parameter values can be quickly
adapted based on a small number of samples. This method typically involves training a meta-model that can generate task-specific
models with different parameter values to adapt to new tasks during meta-training. During meta-testing, the task-specific models
are quickly adapted to new tasks using a small amount of task-specific data. The metric-based method measures the distance
between inputs in the batch set and the inputs in the support set, which contains a few labelled examples per class. The nearest
neighbor approach is used to classify new instances by comparing their distances to the support set. This method typically involves
learning a distance metric or embedding space that can capture the similarity between samples and using this metric to compute
distances and make predictions. The optimization-based method adjusts the ordinary gradient descent method to fit small samples
in few-shot scenarios. This approach usually involves designing specialized optimization algorithms that can effectively update
model parameters with limited data. This can include techniques such as using higher-order optimization methods, incorporating
memory-augmented neural networks, or designing adaptive learning rate schedules. The choice of which method to use in few-
shot learning depends on the specific problem, data, and constraints of the task at hand. Each method has its strengths and
weaknesses, and researchers often explore combinations of these approaches to achieve the best performance in different few-shot
learning scenarios [28].

Model Based Metric Based

Fig. 1. Meta-based learning models in the context of basic metric-based and optimization-based approaches in few-shot learning.

3.3.2 Semantic Segmentation Model

Semantic segmentation is a process that involves assigning labels to each point in an image based on the category to which it
belongs. This is achieved through pixel-level classification, where the input and output of the system are represented as one-hot
vectors for each pixel in the image. Convolutional neural networks (CNNs) are commonly used for semantic segmentation, with
full convolutional networks (FCNs) being the first to use an encoder-decoder structure and information fusion through
concatenation [29, 30]. U-Net and SegNet are two popular CNN architectures that use the encoder-decoder structure and
information fusion principles. To overcome information loss caused by multiple pooling layers, SegNet uses pooling with
coordinates to preserve location information. DeepLab V1 uses atrous convolution to control the size of the receptive field and
adds a conditional random field (CRF) to use correlation information between pixels. PSPnet fuses feature maps of shallow and
deep layers to combine semantic features with different receptive fields [31-33]. DeepLab V2 introduces atrous spatial pyramid
pooling (ASPP), which selects atrous convolutions with different rates to process feature maps and integrates information from
different levels. DeepLab V3 improves the ASPP module by adding batch normalization and global average pooling, which
emphasizes global features and overcomes weight degradation issues. DeepLab V3+ uses DeepLab V3 as an encoder and adds
Xception to reduce the number of parameters and improve the running speed [34,35].



(1) Basic Meta with Few Shots

The dual-branch network is used for few-shot segmentation, the conditional branch uses VGG to extract features and generates
weights (w, b), and the segmentation branch uses the FCN-32s structure to extract features from the query image, which is
multiplied by the parameters obtained from the conditional branch, as shown in Fig. 2. Then, the segmentation result is obtained
by the o function. Obtain a segmentation map, upsample to the image size, and use a certain threshold to generate a segmented
binary map. When outputting, to make the parameter quantity correspond to the number of channels of the feature map of the
segmentation branch, the weight hashing strategy is used to map the output 1000-dimensional vector to 4097-dimensional (w:4096,
b:1). This mapping mechanism is modelled as a fully connected layer with fixed weight parameters [36].

The segmentation branch is used to extract features from the query image, concise the result with the embedding obtained from
the conditioning branch, and then perform pixel-level segmentation. Fig. 3 shows the query images from the positive support set
using VGG16 and CNN layers. Then, in the task flow, the prototype of each category is continuously updated, as shown in Fig. 4.
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Fig. 2. Segmentation and conditioning branches using VGG and FCN-32s.
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Fig. 3. Query images from the positive support set using VGG16 and CNN layers.
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Fig. 4. Two phases of the base network combined with the convolutional network with SS.

(2) One-Shot Semantic Segmentation

The network consists of VGG-16 and two branches: guidance and segmentation. It should be noted that the two branches share
three convolution blocks. Personal understanding is that if the two branches are completely independent, then the guidance
generated by the Guidance Branch will remain unchanged,; this loses its meaning, and the author performed relevant analysis and
experiments in the final ablation experiment of the paper. After interacting with the segmentation branch, the guided feature map
can be optimized to match the corresponding real mask while optimizing the segmentation loss. The process of the training tasks

is shown in Fig. 5.
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Fig. 5. Multiple convolutional layers with guidance and segmentations based on cross-entropy.

The network is loaded with weights pretrained on the ILSVRC dataset during training. Leveraging metric learning on prototypes,
no parameters are proposed in the regularization of prototype alignment, and we make full use of the knowledge of support. It may
directly be used for few samples with weak annotations, as shown in Fig. 6.
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Fig. 6. SS (support set) and QS (query set) for VGG-16 using MAP (masked average pooling).

The same backbone is used to extract the depth features of support and query, and then masked average pooling is used to embed
different foreground objects and backgrounds into different prototypes from the features of support. Each prototype represents the
corresponding category so that each of the query images has a pixel labelled by referencing the class-specific prototype closest to
its embedding expression after obtaining the predicted mask of the query. During training, after getting the mask, use the query
feature and mask just extracted as the new "support set", use the previous support set as the new "query set", and then use the
"support set" to do the "query set" A wave of predictions, and then a loss. The prototype is compact and robust to represent each
semantic category; the mask marked block is parameter-free metric learning, and segmentation is performed by pixel-by-pixel
matching with the embedding space. Fig. 7. The support set and query set based on feature extraction for mask operation.

To perform the prototype alignment regularization, it is required to build a new support with the query and its mask and then
use this to predict the split of the original support set. Experiments have shown that it can encourage query prototypes to align their
support prototypes only during training. The feature boosting is found by:

f5n+1 — fsn Iy aL(m: ! ms)
of
Fig. 8 shows the support mask-based CNN prediction model using boosting proposed in Eqn. (4).

(4)
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4. Experimental Design and Results

4.1. Experimental Design and Data Acquisition

A Foot-Scan plantar pressure distribution test system (RSscan, Belgium) was used in this study that adopts micro pressure sensor
technology. From the perspective of biomechanics, the gait characteristics of people during walking or exercise are obtained
through dense, high-frequency pressure distribution plates. Using dynamic pressure distribution data of the sole and the heel of the
shoe, one can evaluate the biomechanical properties of shoes, such as cushioning, support, stability, etc. [37].

4.2 Experimental Design of Pressure Sensing Data Acquisition

4.2.1 Subjects and Experimental Preparation

One hundred healthy participants without flat feet (50 males, 50 females) were tested. Static and dynamic test experiments were
carried out through a wide and straight-through channel with a length of 6 meters (auxiliary 2 meters). Due to the different walking
posture dynamics of individuals, there is a great disturbance to the stability of plantar pressure in the gait test experiment. Therefore,
before the experiment, it is necessary to introduce the experimental equipment and precautions to the subjects. A sample picture
of the basic test method and posture introduction was posted on the wall on the horizontal side of the experiment, and simple gait
training was performed for all subjects. It was required to keep the eyes horizontally forward and keep the walking posture when
walking; this measure ensures the objectivity and validity of the experimental data (data available at GitHub repository:
https://github.com/zairanli/plantar).

4.2.2 Test Requirements

The "intermediate step” method of selecting the upper board method involves collecting data 4-6 times. It is necessary to collect
at least eight data collections for "one-step loading" and at least five data collections for "two-step loading" to obtain reliable "peak
pressure" and "pressure—time integration". To obtain a more reliable pressure peak and pressure time, the integral value requires
at least 6 data acquisitions. "Three-step loading™ requires at least 6 data collections. When conducting a static balance test, control
the time when testing the four states (double-open, double-closed, single-open, and single-closed). Usually, stand on two feet for
20 seconds and on one foot for 10 seconds. The valid criteria for the test are as follows: the footprints displayed on the pressure
plate are complete; during the test, the subject looks forward and goes up the plate naturally; and there is no obvious gait change
on the plate.

4.2.3 Plantar Pressure Image Acquisition Results
Most studies are usually carried out using the index system presented in Table 1, and the methods used are based on statistics.
Table 1. Plantar Pressure Data Collection Index and its Definition

Items Explanation

Standard warp peak pressure The sum of the pressure values at the corresponding time point is divided by the area of the landing site of the
corresponding area at the current time point

Standard peak force Refers to the sum of the force sensor values at the current time point in the zone

time to peak pressure The percentage position of the time points of the normalized peak pressure in the support phase

time to peak force The percentage position of the time points of the normalized peak force in the support phase

landing time Percentage of each zone's long landing time in the support phase

The most initial landing time The time point when each feature partition first hits the ground is in the support stage.

Impulse Normalized pressure or integral of pressure over time

The Foot-Scan imaging system can generate left and right foot pressure images at different times. To achieve successful image
fusion, image preprocessing is a crucial step. Different fusion algorithms require appropriate preprocessing techniques. To
accomplish this, background removal, dimensionality reduction, filtering, segmentation, and other tasks are necessary. The foot
scan experiment involved 100 volunteers aged 18 or over. To participate in the plantar pressure imaging experiment, potential
volunteers needed to have normal neurological functions without any related neurological diseases, no walking instability,
abnormal gait, intermittent claudication, or blurred vision. Additionally, they had to have normal muscle strength and tendon
reflexes, no severe foot pain conditions, and no foot ulcers. The volunteers completed relevant forms before providing medical
data. They were asked to remove their socks and report their shoe-wearing habits, age, gender, height, weight, and blood pressure.
During the test collection, volunteers walked at a normal speed for 10 repetitions. The plantar pressure imaging system divides the
plantar into 10 anatomically based divisions and provides measurement data (in discrete values), including medial, lateral, midfoot,
five metatarsal bones, foot size big toe, and the other four toes. Partial plantar pressure imaging results are presented in Fig. 9,
where the colors representing different pressures are automatically calculated and converted by Foot-Scan.

Fig. 10 presents a single image of plantar pressure (left foot), in which the line above the image is the central pressure value
automatically calculated by the system. Fig. 10(a) presents the distribution of the plantar pressure when the experiment is carried



out to the maximum contact surface of the whole foot; Fig. 10(b) presents the distribution of the plantar pressure when the subject's
forefoot touches the ground.
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Fig. 10. The dynamic change process of plantar pressure; (a) maximum state of full foot contact surface; (b) the state when the
front foot touches the ground.

4.2.4 Data Preprocessing and Feature Extraction

Traditional watershed-based and color-based segmentation methods cannot satisfy the accurate segmentation of plantar pressure
images, as shown in Fig. 11. Image segmentation yields an image that is made up of an array of segments or a series of contours

(see edge detection). An area comprises pixels that are similar in some characteristic or computed property, such as color, intensity,
or texture. The same characteristics are significantly different in adjacent areas.
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Fig. 11. Examples of watershed segmentation results.

Fig. 12 presents the color image segmentation result using the proposed ML-GNN.
-
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Fig. 12. Color-based image segmentation process; (2) original image, (b) grayscale k-clustering, (c) class-1, (d) class-2, (e) blue
kernel segmentation, (f) ML-GNN result.

4.3 Segmentation Results

The plantar pressure image set is preprocessed to reduce dimensionality and detect intermediate states, as shown in Fig. 13 and
preprocessed in Fig. 14. The results of the texture filtering segmentation, color K-means [38], ordinary watershed, and gradient
watershed segmentation of the plantar pressure imaging set are shown in Fig. 15. As mentioned above, these methods are all typical
segmentation methods used currently, and the evaluation indicators are used to compare them with the proposed morphological
segmentation method.
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Fig. 15. Various segmentation methods for comparison analysis: (a) texture-filtered segmentation, (b) normal watershed, (c)
gradient watershed, and (d) meta-learning with GNN.

4.4. Discussion

Several evaluation metrics and criteria are commonly used to evaluate the accuracy and reliability of image segmentation
algorithms. Pixel-by-pixel labelling includes two common accuracy criteria: pixel accuracy and intersection over union; commonly
used accuracy criteria include:

1) Pixel accuracy (PA): This is a simple but useful metric that measures the percentage of pixels that were marked correctly
to the total number of pixels. As an alternative metric for evaluating image segmentation, one can report the percentage of
pixels correctly classified in an image. Typically, each pixel class's accuracy is reported separately, as is the overall
accuracy.

2) The mean pixel accuracy (MPA) is the average of the PAs. Taking the average of all the classes, calculate the percentage
of pixels in each class that are correctly classified. The sensitivity curve (SC) is sometimes referred to as this curve.

3) The receiver operating characteristic (ROC) curve is a two-dimensional coordinate graph in which the horizontal axis
represents the false positive probability and the vertical axis represents the true positive probability. Based on different
judgment criteria, a curve is drawn under stimulation. As with traditional evaluation methods, the ROC curve's evaluation
method considers actual conditions, allowing intermediate states to appear, and dividing test results into categories, such



as normal, roughly normal, suspicious, roughly abnormal, and five degrees of anomaly. Thus, ROC curves appear to be
more widely applicable. If continuous values are not available rather than binary images, ROC curves cannot be used to
evaluate image segmentation algorithms. An image segmentation algorithm can be evaluated multidimensionally using the
average precision rate, recall rate, and F1 index. From an already segmented binary image, several segmented binary images
may be created. If the segmentation result is not large enough, it is difficult to obtain the ROC curve.

4) Dice coincidence rate: It is a set similarity measure function, which is the same as the similarity index. It represents the

segmentation result of the calibrated ground truth (GT), and Vseg represents the predicted segmentation result:

2><(sim(vseg Vy ))
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where sim(v Vg[) represents a similarity defined in the Euclidean distance space. It is a common practice to calculate
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the proportion of correctly classified pixels in each class and then to find the average center of all classes.

5) Mean intersection over union (MloU): Image segmentation is a measure that is based on calculating the intersections and
unions of two sets of data. This is the prediction segmentation (PS) of the true value and the predicted value in the image
segmentation problem. By dividing the true number by the sum of true, false negatives, and false positives (union). loU is
calculated on each class and averaged afterwards.

6) Frequency weighted intersection over union (FWIoU) is an improvement of MIoU. This method sets weights for each class
according to the frequency of occurrence. Due to its simple calculation and strong representation, MloU is currently the
most popular of all the metrics mentioned above. In the process of segmenting an image, it is always necessary to evaluate
the results quantitatively. To assess the algorithm's segmentation efficiency, segmentation accuracy, oversegmentation rate,
undersegmentation rate, etc., are currently available as metrics for segmentation image calculation based on calibrated
ground-truth images. As a reference image for comparing the resulting image, the GT image can be used, that is, the image
containing the theoretical segmentation result. For example, GT images are usually drawn manually by experts, and their
theoretical values can be derived. This operation can be performed by multiple experts, giving the result of multiple GT
segmentations and then averaging this value for each of the evaluation parameters. Segmentation accuracy (SA) is the
percentage of the accurately segmented area to the real area in the GT image as follows:

SA= [1—|RSR;T5|JX100% (6)

where R, represents the reference area of the segmented image roughly sketched by domain experts by hand; T, represents
the real area of the image segmented by the algorithm; and |Rs —TS| represents the number of incorrectly segmented pixels.

7) The oversegmentation rate is the ratio of pixels that are segmented outside the reference area of the GT image. The specific

calculation formula is as follows:
@)
OR = 3 )
R, +0,

where O, represents the number of pixels that should not be included in the segmentation result but appear in the

segmentation result. In other words, the pixels in O, appear in the actual segmented image but not in the theoretical
segmented image R, .

8) Ina GT image, undersegmentation is expressed as the ratio of missing pixels compared to the reference area. To calculate

undersegmentation, use the formula below:
U
UR=—> ®)
R, +0O,

where U represents the number of pixels that should be included in the segmentation result but do not appear in the

segmentation result. That is, the pixels in U appear in the theoretical segmented image but not in the actual segmented
image.
The calculation of each index is based on the mean value preservation form method, that is, the data of other indicators are obtained
by dividing each index by the value of the mean value preservation form method. Table 2 shows that the proposed ML-GNN is
superior to the compared methods.

Table 2. Evaluation Index of Segmentation Effect (Standardized To [0,1])
Index Methods

Texture Filtering Color K-means Ordinary Watershed Gradient Watershed ML-GNN



PA 0.877 0.892 0.702 0.634 1
MPA 0.765 0.812 0.792 0.629 1
MloU 1.123* 0.834 0.871 0.842 1
FWIoU 0.812 0.812 0.932 0.812 1
GT-SA 0.887 0.762 0.829 0.709 1
OR 1.123 0.912* 1.422 1.432 1
UR 0.865 1.120* 0.912 0.567 1
DICE 0.777 0.883 0.676 0.832 1

(*) Indicates that the method index is inferior to the comparison method; the mean value preservation form (this method) is
used as the standard reference value 1.

There are some limitations for this research, while our study mainly focuses on the application of our proposed method in a
controlled setting with healthy participants, we recognize the importance of investigating its applicability in populations affected
by different conditions such as obesity, diabetes, Parkinson’s disease, and others [39]. In future research, we plan to explore these
connections and assess the adaptability and effectiveness of our approach in diverse clinical contexts, including those involving
individuals with specific medical conditions. And also, individuals with large feet or unique foot shapes, which may not be
adequately represented in our training data. To address this issue, we may employ techniques such as data augmentation and
regularization to enhance the robustness of our model against variations in input data in future. On other hand, algorithm 1 with
Eqn(1), and Eqgn (3) for feature extraction need to be optimized in adapt to VGG and CNN, that we used for the middle-layers in
the proposed model [40].

5. Conclusions

In the field of design methodology, optimal design and intelligent design are hot topics. Computers, biomechanics, and artificial
intelligence are also involved in comfort research. According to preliminary research, the design of the last body shape, the
structure of the upper surface, the bottom process, the choice of materials, and the microenvironment of the shoe cavity influence
the wearing comfort of the footwear. The design of the last surface is the most influential factor. Controlling the generation of the
last surface based on the pressure dataset of dynamic foot images and fusing the results can improve the wearing comfort of
footwear products. Research directions in footwear comfort design include dynamic image preprocessing, pressure image feature
region selection, image intelligent recognition, and dataset fusion. Shoes play an important role in the design of footwear products.
The shape of the last body and the design of the sole greatly affect the comfort performance of a shoe. Measurement methods and
comfort evaluation systems of shoe last are part of the process of personalized customization in footwear manufacturing. In addition
to providing information on sports biology for footwear design, plantar pressure distribution can also predict diabetic foot changes
and prevent plantar injuries. The last body's special structure and constraints must be considered when designing it with plantar
pressure-sensing imaging data. Physiological and mechanical characteristics of the foot should be prioritized. Various fusion
algorithms should be further enhanced in future research. To study healthy gaits, plantar pressure data from the research will be
used to analyse human structure, function, and posture control. The use of dynamic image analysis of plantar pressure for
rehabilitation can be further developed into clinical applications. A variety of diseases, such as obesity, diabetes, Parkinson's
disease, and others, can affect plantar pressure. Research on functional shoe customization and precise last-making technology will
provide new opportunities for research and impetus to the traditional shoemaking industry in the future.

While our research contributes to advancements in image segmentation and footwear design, we recognize that there are certain
constraints and areas for improvement. Some limitations of our model include dataset bias and generalization to different sensor
image datasets. Although we demonstrate the effectiveness of our model on plantar pressure images, its generalizability to other
sensor image datasets should be further explored and validated. Different sensor types or data acquisition techniques may introduce
variations that can impact the model's performance. The third is the computational complexity: The proposed ML-GNN model,
combined with VGG16 and CNN layers, may have higher computational requirements compared to simpler segmentation models.
This increased complexity could limit its applicability in resource-constrained environments or real-time applications. Finally, it
is the subjectivity of image segmentation evaluation. Image segmentation evaluation can be subjective due to the absence of ground
truth annotations that precisely capture all design elements. While we employ standard image segmentation indices to measure
effectiveness, there may still be a subjective aspect to the evaluation process.
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