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Abstract
As more and more promising applications of magnetic nanoparticles in complicated 
environments are explored, their flow properties in porous media are of increasing interest. 
We here propose a hybrid approach based on the multiparticle collision dynamics method 
extended to porous media via friction forces and coupled with Brownian dynamics 
simulations of the rotational motion of magnetic nanoparticles’ magnetic moment. We 
simulate flow in planar channels homogeneously filled with a porous medium and verify 
our implementation by reproducing the analytical velocity profile of the Darcy–Brinkman 
model in the non-magnetic case. In the presence of an externally applied magnetic field, 
the non-equilibrium magnetization and friction forces lead to field-dependent velocity 
profiles that result in effective, field-dependent permeabilities. We provide a theoretical 
expression for this magneto-permeability effect in analogy with the magneto-viscous effect. 
Finally, we study the flow through planar channels, where only the walls are covered with a 
porous medium. We find a smooth crossover from the Poiseuille profile in the center of the 
channel to  Brinkman–Darcy flow in the porous layers. We propose a simple estimate of 
the thickness of the porous layer based on the flow rate and maximum flow velocity.

Keywords  Ferrofluid flow · Multiparticle collision dynamics · Particle-based methods · 
Porous media · Darcy’s law

1  Introduction

Dynamics and flow of magnetic nanoparticles (MNPs) suspended in non-magnetic viscous 
carrier fluids (ferrofluids) have been studied intensively over the last decades (Socoliuc 
et al. 2022; Felicia et al. 2016; Ilg and Odenbach 2008; Rosensweig 1985). These studies 
have almost exclusively focused on spatially homogeneous solvents. In many applications, 
however, one is interested in the flow through composite materials. Prominent examples 
are the transport through sand or other granular matter (Sahimi 2011). On a coarse-grained 
level, transport phenomena through such materials can be described via a porous medium 
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approach (Sahimi 2011; Plessis and Masliyah 1991). Similarly, the porous medium 
approach is also frequently used in biomedical applications to describe transport through 
biological tissues and cancerous cells (see e.g. Khaled and Vafai 2003; Tucci et al. 2021; 
Al Sariri and Penta 2022; Mosharaf-Dehkordi 2019 and references therein).

Although MNPs find more and more promising biomedical and technical applications 
(Socoliuc et  al. 2022; Colombo et  al. 2012; Felicia et  al. 2016), to date, only a handful of 
studies address the flow properties of MNPs through porous media. One of the experimental 
studies on ferrofluid flow through sands and sediments observed a strong dependence on 
external magnetic fields (Borglin et al. 2000). Similarly, experiments on the internal convection 
of ferrofluids flowing through a capillary tube filled with porous media showed that external 
fields could significantly enhance the thermal conductivity (Shafii and Keshavarz 2018). 
Also, the efficiency of ferrofluids for oil displacements in a sand-filled pipe was investigated 
experimentally and compared to finite-element simulations (Dou et al. 2022).

Fluid dynamic simulation of ferrofluids has also been performed to investigate their 
use as displacing fluid in fractured porous media (Huang et  al. 2017). Other finite-
element or finite-volume simulations have addressed some particular flow (Huang et  al. 
2021; Guerroudj et al. 2023) and heat transfer (Abbas et al. 2021) properties of ferrofluid 
flow through porous media. A porous medium approach was also used in finite-volume 
simulations of magnetic drug targeting of MNPs, coupling channel flow to adjacent tumor 
region via the permeable endothelium layer (Ne’mati et al. 2017). These simulation studies 
relied on highly simplified constitutive models, typically neglecting internal rotations and 
corresponding non-equilibrium magnetization components.

In addition to classical fluid dynamics simulations such as finite-volume and finite-
element methods, the Lattice Boltzmann scheme has been successfully used to describe 
flow through porous media (Dardis and McCloskey 1998). In these simulations, explicit 
scatterers for fluid motion are placed at fixed locations within the simulation cell. Using 
this method, ferrofluid permeation into a randomly structured porous medium has been 
simulated and shown to be sensitive to an applied magnetic field (Hadavand et al. 2013). 
As an alternative simulation approach, an extension of the highly versatile multi-particle 
collision dynamics method (MPC) (Malevanets and Kapral 1999) to transport in porous 
media has been proposed in Ref. Matyka (2017) for non-magnetic fluids. In the latter, the 
effect of porous media on fluid transport is simply modeled as local damping, leading to 
very efficient simulation methods. Note that the Lattice Boltzmann methods put forward 
in Refs. Dardis and McCloskey (1998), Hadavand et al. (2013) resolve the detailed fluid 
dynamics in the vicinity of individual grain boundaries. On the other hand, the MPC 
modeling proposed in Ref. Matyka (2017) is suitable for a more coarse-grained level of 
description where the porous medium can be considered to be locally homogeneous.

Here, we use similar ideas to simulate ferrofluid flow through porous media via a 
MPC method that is coupled to Brownian dynamic simulations of the MNP dynamics 
to model their internal rotations. In the absence of porous media, this approach was 
proposed and validated in Ref. Ilg (2022), showing the correct incorporation of a reliable 
constitutive model for dilute ferrofluids. We here show how this model can be extended 
via friction forces to model ferrofluid flow through porous media. In the absence of an 
external magnetic field, we reproduce the Darcy–Brinkman velocity profile and clarify 
the interpretation of and relationship between the model parameters. Simulations of 
driven flow through planar channels show that flow properties can be manipulated by 
external magnetic fields. In particular, we observe an effective permeability that increases 
with increasing field strength before reaching a limiting value. Using kinetic theories of 
ferrofluids, we provide a theoretical expression of this magneto-permeability effect in close 
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analogy with the magneto-viscous effect. Finally, we study driven flow through planar 
channels where only the channel walls are covered with a layer of porous material, with no 
porous medium present in the center region of the channel.

2 � Modeling

2.1 � Continuum Level

Darcy’s law predicts the flow velocity v through a porous medium when a pressure gradient 
�p is applied as Sahimi (2011)

where � is the dynamic viscosity of the fluid. The empirical proportionality coefficient K is 
known as permeability of the porous medium. For isotropic porous media K = KI , with I 
the identity matrix, so that v = −(K∕�)�p . In a finite domain, the Darcy–Brinkmann model 
provides a better description than Darcy’s law (Khaled and Vafai 2003). This model can 
be formulated as the stationary Navier–Stokes equation supplemented with an additional 
damping term proportional to an empirical parameter �,

The density and kinematic viscosity of the fluid are denoted by � and � = �∕� , respectively. 
The phenomenological parameter � governs the strength of the damping term and is related 
to the permeability coefficient by � = �∕K . We here consider Reynolds numbers that are 
small enough so that the Forchheimer correction (Khaled and Vafai 2003) is irrelevant.

For spatially homogeneous porosity, i.e., a position-independent � , the exact solution of 
Eq. (2) for one-dimensional channel flow v(r) = v(y)ex reads (Dardis and McCloskey 1998)

where L denotes the width of the channel and no-slip boundary conditions on the channel 
walls have been assumed. The parameters appearing in the flow profile Eq. (3) are given by 
c = −(��)−1

dp

dx
 and

From Eq. (4) and the above relation � = �∕K , we find that the permeability can also be 
expressed as K = 1∕r2 . These relations will be useful for later analysis.

Note that for weak damping, we recover the usual Poiseuille profile from Eq (3), 
v(y) = −(2��)−1

dp

dx
y(L − y) +O(r2) . Conversely, increasing r leads to stronger and stronger 

deviations from the parabolic velocity profile.
The amount of fluid transported per unit time through a cross-section of the channel 

(known as volumetric flow rate in the three-dimensional case) is obtained from 
V̇ = ∫ L

0
vx(y)dy . For the velocity profile (3), we obtain V̇ = cL[1 − tanh(L∗)∕L∗] with 

reduced channel width L∗ = rL∕2 . As expected, the flow rate is proportional to the 

(1)v = −
1

�
K ⋅ �p,

(2)�∇2v − �v =
1

�
�p.

(3)v(y) = c

(
1 −

cosh(r[y − L∕2])

cosh(rL∕2)

)
,

(4)r2 = �∕�.
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applied pressure gradient. For L∗ ≫ 1 we find V̇ ≈ c[L − 2∕r] corresponding to a plug 
flow, whereas for L∗ ≪ 1 we recover the equivalent of the Hagen–Poiseuille law for two-
dimensional channels, V̇ ≈ −(dp∕dx)L3∕[12𝜌𝜈](1 +O((L∗)2)).

2.2 � Mesoscopic Level: Particle‑based Model

Over the past decades, several particle-based methods for simulating fluid flow have been 
explored (see e.g., Noguchi et al. 2007 and references therein). Contrary to more traditional 
fluid dynamics simulations, these mesoscopic methods are very flexible, straightforward to 
implement, and naturally include thermal fluctuations. In the present study, we employ one 
of these methods known as multi-particle collision dynamics (MPC) (Malevanets and Kapral 
1999). One of the advantages of the MPC method is that viscoelastic fluids can be modeled 
rather straightforwardly (Gompper et al. 2009). In particular, we have already proposed and 
successfully tested an MPC implementation of ferrofluid flow using a reliable constitutive 
model (Ilg 2022). To make the paper self-contained, we provide a short description of the 
standard MPC method, before specifying the extension to porous media.

Within the MPC method, the fluid is represented by a collection of N identical particles, 
each with mass m. If ri and vi denote the position and velocity of particle i, i = 1,… ,N , 
particle dynamics is split into a streaming and a collision step. In the streaming step, 
particles are advanced for a time Δt as

where fi(t) is the total force acting on particle i at time t. While Eqs. (5),(6) are formally 
identical to those used in molecular dynamics simulations, the crucial idea of MPC as a 
mesoscopic method is to include in fi only external and body forces and to disregard inter-
particle interactions in the streaming step. Instead, inter-particle interactions are accounted 
for via momentum exchange in the collision step. In this collision step, all particles i 
residing at time t in the same collision cell Ci are updated simultaneously as

In Eq (7), VCi
(t) denotes the center of mass velocity of the collision cell Ci and R = R(�) a 

matrix describing rotations around a randomly chosen axis by an angle ±� . Equation (7) 
models the effect of collisions among particles as rotations of their relative velocities. A 
local thermostat is present in Eq. (7) and described by the factor �th =

√
T∕TCi

 , where TCi
 

is the instantaneous kinetic temperature of the collision cell Ci and T a prescribed bath tem-
perature. We use a two-dimensional square grid, so the collision cells are squares of side 
length a. Using a spatially fixed grid of collision cells violates Galilean invariance. There-
fore, we follow common practice (Ihle and Kroll 2001) and in each step shift the grid of 
collision cells by a vector with independent random components in [−a∕2, a∕2].

Besides the time step Δt which determines the mean-free path � = Δt
√
kBT∕m , the 

mean number of particles per collision cell Q is the other crucial parameter in the MPC 
model (Malevanets and Kapral 1999; Noguchi and Gompper 2008). Due to the importance 

(5)ri(t + Δt) = ri(t) + vi(t)Δt +
Δt2

2m
fi(t)

(6)v�
i
(t) = vi(t) +

Δt

m
fi(t),

(7)vi(t + Δt) = VCi
(t) + �thR ⋅ [v�

i
(t) − VCi

(t)].
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of angular momentum conservation, we here follow our earlier work (Ilg 2022) and imple-
ment the angular momentum-conserving algorithm (denoted as MPC-DR in Ref. Noguchi 
and Gompper 2008), where the rotation angle � is not a free parameter but chosen as

where R = A1∕A2 with angular A1 =
∑

j∈Cj
[rj × ṽj]z and projected A2 =

∑
j∈Cj

rj ⋅ ṽj 
relative velocities before collision, ṽj = v�

j
− VCj

.
The simplified collision rules between particles (7) do not resolve individual collisions, 

but ensure local conservation laws are obeyed. Therefore, the MPC method is numerically 
very efficient and hence can simulate hydrodynamic behavior on time and length scales 
larger than Δt and a (Malevanets and Kapral 1999; Noguchi et al. 2007).

In the form described so far, the MPC method has been successfully applied to various 
flow problems for viscous and viscoelastic fluids (Gompper et  al. 2009), including 
ferrofluids (Ilg 2022). In order to describe flow through porous media, however, we need 
to introduce the effect the porous medium exerts on the fluid via inelastic collisions. Here, 
we follow the ideas put forward in Ref. (Dardis and McCloskey 1998) that on a mesoscopic 
level, the interaction of the fluid with the porous medium can be described as a local 
damping of the fluid velocity. Within the MPC method, this approach can be implemented 
straightforwardly as an additional friction force acting on the particles (Matyka 2017),

where �(r) is a (possibly position-dependent) friction coefficient. For � = 0 we recover the 
original MPC model, whereas 𝜉 > 0 describes velocity damping due to porous media. For 
the case of pressure-drive flow that we consider in the following, the force on particle i can 
be written as fi = ffric

i
+ fext , where the external force due to an applied pressure gradient is 

fext = −�−1�p.
Eqs (5) – (9) describe the MPC model of non-magnetic fluid flow through porous media. 

This model has essentially been proposed in Ref Matyka (2017), where instead of adding 
the friction force (9), particle velocities are rescaled by a factor (1 − �Δt∕m).

2.3 � Hybrid MPC–BD Model for FF Flow

For magnetic fluids, the stationary momentum balance equation (2) must be supplemented 
by additional Kelvin–Helmholtz forces (Rosensweig 1985),

where H and M denote the magnetic field and the magnetization, respectively. We assume 
the fluid to be non-conducting; therefore, we must also satisfy the magnetostatic Maxwell 
equations

where B = �0(H +M) denotes the magnetic induction and �0 the permeability of free 
space. For a thorough description of ferrofluid hydrodynamics see e.g., Ref. Rosensweig 
(1985).

(8)cos � =
1 − R

2

1 + R2
,

(9)ffric
i

(t) = −�(ri(t))vi(t),

(10)�fM = (M ⋅ �)H +
1

2
� × (M ×H),

(11)� ×H = 0, � ⋅ B = 0,
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To evaluate the force density (10), one needs to employ a model to calculate the 
field- and flow-dependent magnetization M . Unfortunately, even after 50 years of 
research, there is no commonly agreed magnetization equation available in the literature 
(see e.g., Leschhorn and Lücke 2006; Fang, 2022 and references therein). Therefore, we 
here consider dilute conditions where there is less controversy and adopt the classical 
kinetic model of Martsenyuk et  al. (1974) that has been studied frequently since (Ilg 
et al. 2002; Soto-Aquino et al. 2011; Ilg and Odenbach 2008).

To make the paper self-contained, we briefly present the MPC implementation of 
this model proposed in Ref. Ilg (2022). Further details can be found in the original 
reference. In this model, one considers the rotational dynamics of an individual MNP 
within the rigid-dipole approximation under the influence of external magnetic fields 
and flow. From the balance of magnetic, flow, and random torques, one finds that the 
orientation of the magnetic moment of particle i evolves to first order in the time step 
ΔtB by

with

where �Ci
 and hCi

 are one half the local vorticity of the flow and the dimensionless magnetic 
field, respectively, both evaluated at the center of collision cell Ci . The Brownian relaxation 
time of a MNP is denoted by �B and ΔWi are independent, three-dimensional Wiener 
increments over a time interval ΔtB . In the simulations presented here, we use a weak 
second order stochastic Heun scheme, where Eqs. (12) and (13) serve as predictor step.

With the magnitude of the magnetic moment � of a single MNP, the instantaneous 
local magnetization in collision cell Ci can be calculated as

where NCi
(t) is the number of MPC particles in collision cell Ci at time t and n denotes the 

number density of MNPs. We calculate the magnetization M in all collision cells according 
to Eq. (14) and use kernel-smoothing methods to find a discretization of the magnetization 
field M(r;t) . From the discretized magnetization field, we calculate spatial gradients via 
finite-difference approximations and are thus able to evaluate the Kelvin–Helmholtz force 
density (10) within each collision cell. Further details on the method are given in Ref. Ilg 
(2022).

Note that we do not explicitly include the effect of the porous medium on the 
rotational motion of the MNPs. While it is plausible that inelastic collisions of fluid 
and MNPs with obstacles lead to an effective damping of the translational motion, their 
effect on rotations is less obvious, especially since we later consider rotational motion 
of MNPs on time scales long compare to fluid motion (by choosing 𝜏B ≫ Δt ). One 
possibility would be to model this effect as an additional rotational friction. In this case, 
all results presented below still hold when adjusting �B correspondingly for given � . Due 
to the uncertainties associated with such modeling, we chose to consider �B constant in 
this initial study.

(12)ui(t + ΔtB) =
ui(t) + Δ�i × ui(t)

‖ui(t) + Δ�i × ui(t)‖

(13)Δ�i =
�
�B�Ci

+
1

2
ui × hCi

�ΔtB
�B

+
1√
�B

ΔWi,

(14)MCi
(t) =

n�

NCi
(t)

∑

j∈Ci

uj(t),
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3 � Non‑magnetic Fluid Flow Through Porous Media

All numerical results and parameter values presented below are reported in dimensionless 
form, with the particle mass m and the linear size of the collision cell a as basic units, 
together with the reference thermal energy kBTref . Consequently, the units for time are 
tref = a

√
m∕kBTref and the units for the diffusion coefficient and kinematic viscosity are 

Dref = a
√
kBTref∕m.

First, we consider non-magnetic fluids, i.e., the MPC particles experience no other 
external forces except friction forces (9) and external pressure gradients, fi = ffric

i
+ fext.

3.1 � Self‑diffusion in Unbounded Domain, No External Forcing

To study self-diffusion under equilibrium conditions, no pressure gradient is applied, 
fext = 0 . Furthermore, to study self-diffusion in an unbounded domain, we consider 
in this section a periodic system without any walls present. Under these conditions and 
for the two-dimensional angular momentum-conserving collision model adopted here, 
the diffusion coefficient was calculated using molecular chaos assumption (Noguchi and 
Gompper 2008) as

with sK = 1 −
3

2Q
+ e−Q(3∕Q + 1 − Q∕2)∕2 . Figure 1a shows the diffusion coefficient as a 

function of the average number of MPC particles per collision cell Q for two selected 
temperatures.

We perform MPC simulations for a two-dimensional periodic system of size 
30 × 30  and different values for Q. From the particle mean-square displacement, 
⟨[ri(t) − ri(0)]

2⟩ = 4Dt , we extract the diffusion coefficient D from a least-square fit and 
verified that the X- and Y-components of the displacement agree with each other within 
numerical accuracy. Figure 1a shows that Eq. (15) provides a good representation of the 
numerical results, even though some quantitative discrepancies can clearly be discerned 

(15)D =
kBTΔt

m

(
1

sK
−

1

2

)
,

Fig. 1   a Diffusion coefficient D vs Q for regular MPC fluid ( � = 0 ). Top and bottom correspond to tem-
peratures T = 0.5 and T = 0.1 , respectively. The dashed lines are the theoretical result Eq. (15). b Diffusion 
coefficient for MPC fluid in porous medium versus friction coefficient � for Q = 50 , Δt = 1 , and T = 0.1 . 
The dashed line corresponds to Eq. (16)
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for small up to moderate values of Q. For this model, similar deviations from the theo-
retical predictions have been reported in Ref. Noguchi and Gompper (2008) and attrib-
uted to the limitations of the molecular chaos assumption.

Equation (15) has been derived for a standard MPC fluid. We are not aware of a 
corresponding result for an MPC fluid in a porous material. Heuristically, we can describe 
the effect of local damping in the MPC scheme for porous materials by an effective time 
step �t in the free-streaming step (Matyka 2017), �t = (1 − �Δt∕m)Δt . We assume that 
the reasoning presented in Ref. (Noguchi and Gompper 2008) leading to Eq. (15) remains 
otherwise unaltered. In particular, we assume that collisions occur sufficiently fast so that 
they are not affected by local friction effects. Thus, we suggest an approximation to the 
MPC diffusion coefficient for spatially homogeneous porous media as

with the same expression for sK as given after Eq. (15). Figure 1b shows the variation of 
the effective diffusion coefficient with increasing value of the friction coefficient � . The 
agreement of the numerical results with Eq. (16) is satisfactory. In particular, we find that 
the effective diffusion coefficient decreases approximately linear with increasing � as pre-
dicted by Eq. (16).

3.2 � Channel Flow

In the following, we consider the pressure-driven channel flow of a fluid through a 
porous medium. Within the MPC model, an applied pressure gradient dp∕dx in flow 
direction is realized by the external force fext = f extex acting on every particle, where 
f ext = −�−1dp∕dx.

To determine suitable values for f ext , we calculate the flow rate V̇ by numerical inte-
gration over the flow profile and verify that this quantity varies linearly with f ext in the 
parameter regime studied here. We consider a planar channel of widths L = 32 and 64 
and length 50. From Fig.  2 we find V̇∕f ext approaches a limiting value with decreas-
ing f ext . Within statistical uncertainties, we find the same limiting value for f ext ≲ 10−3 . 
Therefore, we will use in the following f ext = 10−3 unless stated otherwise.

(16)D� =
kBTΔt(1 − �Δt∕m)

m

(
1

sK
−

1

2

)

Fig. 2   The flow rate divided 
by the strength of the driving 
force, V̇∕f ext , is shown versus 
f ext on a semi-logarithmic scale. 
Symbols denote simulation 
results obtained for parameters 
T = 0.1 , Δt = 0.2 , Q = 100 , and 
� = 0.005 . Dashed line indicates 
the limiting value for weak driv-
ing forces
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Having chosen a suitable value for f ext , we perform a series of MPC simulations for 
different values of the friction coefficient � and analyze the resulting velocity profiles. For 
all conditions investigated, we find that the numerical velocity profiles are well-described 
by the analytical profile for the Darcy–Brinkman model, Eq. (3). Fitting the numerical 
profiles to Eq. (3), we extract two fit parameters, c and r , from which the model parameters 
can be determined as follows. First, as shown in Sec.  2.1, c is related to the damping 
parameter � in the Darcy–Brinkman equation (2) by � = f ext∕c . Next, the permeability K is 
directly linked to the parameter r by K = 1∕r2 . Finally, the kinematic viscosity is given by 
� = �∕r2.

Figure  3 shows the extracted damping parameter � and permeability K over a wide 
range of values for the friction coefficient � in the MPC model. Within numerical accuracy, 
we find that the Darcy–Brinkman damping parameter � is equal to the friction coefficient 
� used in the MPC model. Therefore, the newly introduced friction coefficient in the MPC 
model can be identified with the more familiar damping parameter in the Darcy–Brinkman 
approach. For a derivation of this result at least for inviscid fluids, see Appendix  A. 
From Fig. 3b, we find that the permeability K decreases with increasing � . Except at very 
small values of � , we find that the decrease can be described as K ∼ 1∕� to a very good 
approximation. It is interesting to note that the relations � = � and K = k0�

−1 also hold for 
a corresponding Lattice Boltzmann implementation of flow through porous media (Dardis 
and McCloskey 1998), where the density of scatterers plays the role of �.

For small values of � , large uncertainties in model parameters extracted from fits to Eq. 
(3) are found. In this regime, the velocity profiles are close to parabolic, leading to ambi-
guities in the two-parameter fit to Eq. (3).

As a consistency test, we plot in Fig. 4a the parameter r governing the velocity profile 
(3) parametrically versus the damping parameter � that we determined for different values 
of the friction coefficient. In agreement with Eq. (4), we find from our simulations r ∼ �1∕2 . 
Note that this relation was also confirmed in Lattice Boltzmann simulations (Dardis and 

Fig. 3   a The damping parameter � in the Darcy–Brinkman equation (2) extracted from fits to the veloc-
ity profile is shown versus the friction coefficient � in the MPC model for non-magnetic fluids. Note that a 
double-logarithmic scale is used. Open black squares and filled blue circles correspond to Δt = 1.0 and 0.2, 
respectively. The dashed line indicates the relation � = � . b Permeability parameter K versus MPC friction 
coefficient � on a double-logarithmic scale. The same model parameters have been chosen and the same 
symbols are used as in (a). Dashed lines shows the power-law relation K = k0�

−� with exponent � ≈ 0.99 
and prefactor k0 ≈ 0.13 for Δt = 1.0 and � ≈ 1.02 and k0 ≈ 0.30 for Δt = 0.2
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McCloskey 1998), while an earlier MPC implementation (Matyka 2017) recovered this 
relation only over a rather limited interval of �.

From the relations � = � and K = k0�
−1 extracted from Fig.  3, we conclude that the 

kinematic viscosity � = �K (see Sec. 2.1) is given by � = k0 , independent of the friction 
coefficient. In the absence of porous media, we have already established the value of the 
kinematic viscosity � = 0.114 ± 0.001 for Δt = 1.0 in Ref. Ilg (2022). Since the current 
model reduces for � = 0 to a pure MPC fluid, we have performed some simulations for 
� = 0 and fitted the resulting velocity to a parabolic profile expected for Poiseuille flow. 
Thereby, we confirm the value of � obtained earlier for the current choice of parameters 
and Δt = 1.0 and find in addition � = 0.320 ± 0.001 for Δt = 0.2.

In Fig. 4b, we show the kinematic viscosity � obtained from fits to the velocity profile 
(3) via the relation � = �∕r2 in Sec. 2.1. From Fig. 4b, we indeed find that � is independent 
of the friction coefficient within statistical uncertainties, consistent with our conclusions 
above. Therefore, we can identify � with the kinematic fluid viscosity in the absence of a 
porous medium.

4 � Ferrofluid Fluid Flow Through Porous Media

In this section, we consider ferrofluid flow for the same conditions as studied in Sec. 3.2, 
i.e., the steady-state flow through planar channels filled with porous media. As before, we 
assume spatially homogeneous porous materials so that the friction coefficient � in the 
MPC method, Eq. (9) is constant, independent of the position throughout the channel. 
Here, we employ the hybrid MPC-BD model of fluctuating ferrohydrodynamics and 
include the Kelvin–Helmholtz force into the momentum balance as described in Sec. 2.3.

Assuming that the rotational relaxation of MNPs is slow compared to fluid motion, we 
choose �B = 100 and set ΔtB = Δt.

Figure  5 shows velocity profiles obtained from MPC-BD simulations for selected 
parameter values of Δt = 0.2 , n∗ = 0.005 , using � = 0.01 and � = 0.02 . As found earlier, 

r

Fig. 4   a The parameter r is shown parametrically versus � for different friction coefficients and non-mag-
netic fluids. The same color coding is used as in Fig. 3. Dashed lines are power-law fits r ∼ �b with expo-
nents b ≈ 0.49 and 0.50 for Δt = 1.0 and 0.2, respectively. b The kinematic viscosity � extracted from fits to 
the velocity profile (3) versus the friction coefficient � in the MPC model. The same color coding is used as 
in Fig. 3. The dashed lines indicate the kinematic viscosity determined in the absence of a porous medium 
( � = 0)
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with increasing friction � , the flow velocity is reduced and deviates more strongly from the 
parabolic Poiseuille profile found in the absence of porous media. In addition, we observe 
that the external magnetic field also influences the flow profile. In particular, we find that 
increasing the magnetic field leads to a reduction of the overall velocity, corresponding to 
an increase in the effective viscosity of the fluid. This so-called magneto-viscous effect is 
well-known for magnetic nanoparticles suspended in viscous solvents (Ilg and Odenbach 
2008).

Here, we analyze this phenomenon quantitatively for the flow through porous media. To 
this end, we fit the velocity profiles that we obtain numerically from the MPC-BD simula-
tions to the profile (3) resulting from the Darcy–Brinkman model. For all parameter values 
investigated, we find that Eq. (3) provides an accurate description of our numerical results. 
Therefore, we can proceed with our analysis of the fitted coefficients c and r . First, we 
extract the damping parameter � from the amplitude c of the profile (3) via the relation 
� = f ext∕c found in Sec. 2.1, where f ext = −�−1dp∕dx.

Fig. 5   The velocity profiles vx(y) 
across the channel are shown 
for ferrofluid flow through a 
porous medium with h = 0 (open 
squares) and h = 5 (filled circles) 
for Δt = 0.2 , n∗ = 0.005 . Top 
curves correspond to � = 0.01 , 
bottom ones to � = 0.02 . Dashed 
lines show fits to the profile (3) 
in the Darcy–Brinkman model

Fig. 6   a The effective damping parameter � in the Darcy–Brinkman equation (2) extracted from fits to the 
velocity profile is shown versus the applied magnetic field strength h. The same model parameters are cho-
sen as in Fig. 5 with � = 0.01 (lower) and � = 0.02 (upper). b Effective permeability parameter Keff versus 
magnetic field strength h. The same model parameters have been chosen, and the same symbols are used as 
in (a). Dashed lines show the theoretical result (18) explained below
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From Fig. 6a, we find that the effective damping parameter � for ferrofluid flow is inde-
pendent of the magnetic field strength and still given by the MPC friction coefficient � as 
in the non-magnetic/field-free case. Thus, within statistical uncertainty, the friction coef-
ficient � in the MPC model is equal to the damping parameter � in the Darcy–Brinkman 
model (2) also in the magnetic case. In Fig. 6b, we show the effective permeability Keff 
obtained from the parameter r in the fitted velocity profile (3) versus the magnetic field 
strength h for different values of the friction coefficient � . We observe that Keff increases 
with increasing field strength, reaching a limiting value for large h.

In order to explain this finding, we use Eq. (4) to define the effective viscosity �eff and 
evaluate this quantity with the values for the damping parameter � and the fit parameter r 
that we have determined. In Fig. 7a, we show the viscosity change Δ�eff(h) = �eff(h) − �(0) , 
scaled with the viscosity �(0) at zero field. We verified that �(0) agrees with the viscosity 
� obtained in Sec. 3.2 for non-magnetic fluids with otherwise identical model parameters. 
From Fig. 7a, we find that the relative viscosity change does not depend on the value of the 
friction coefficient � . Furthermore, the increase of Δ�eff(h)∕�(0) is well-described by the 
classical result for ferrofluids (Martsenyuk et al. 1974),

where L(h) = coth(h) − h−1 denotes the Langevin function and � the magnetic volume 
fraction. Therefore, the magneto-viscous effect can be seen in porous media in very much 
the same manner as in viscous solvent.

It should be mentioned that the model of Martsenyuk et al. (1974) employed here can be 
justified only for dilute ferrofluids. Therefore, in future applications, smaller values for the 
number density n should be chosen with corresponding smaller viscosity changes. Here, 
we have chosen larger values of n to better illustrate the field-dependent effects captured by 
the simulation method.

Having rationalized the effective viscosity, we replot in Fig. 7b the effective permeability 
Keff from Fig. 6b not versus the magnetic field h but versus �eff(h) . Multiplying Keff with 
the friction coefficient � , all data fall nicely on the diagonal, showing that the effective 

(17)
Δ�eff(h)

�(0)
=

3

2
�

hL2(h)

h − L(h)
,

Fig. 7   a The relative change of the effective viscosity, Δ�eff(h)∕�(0) , versus the applied magnetic field 
strength h. The model parameters are chosen as in Fig. 6. Dashed line shows a fit to Eq. (17). b The perme-
ability K scaled with the friction coefficient � is shown versus the effective viscosity �eff for the same data as 
in panel (a) and in Fig. 6b. The dashed line shows the relation �K = �eff
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permeability of ferrofluid flow through porous media is given by Keff(�, h) = �eff(h)∕� , 
which is well approximated by

with � the kinematic viscosity in the absence of magnetic fields. In the absence of a 
magnetic field, we recover K = Keff(�, h = 0) , where we made use of the equality � = � . 
For increasing magnetic field strength h, we find that the effective permeability Keff 
increases monotonically to approach an asymptotic value for h ≫ 1 . In analogy to the 
well-known magneto-viscous effect, one might speak of a corresponding “magneto-
permeability effect” in ferrofluid flow through porous media. From Fig. 6b, we observe that 
the magneto-permeability effect for the present model is well-described by Eq. (18).

We close this section by considering the most important dimensionless groups determining 
the nature of fluid flow. First, the Reynolds number is defined as Re = UL∕� , where U is a 
characteristic flow velocity and L the channel width. For the present choice of parameters 
U ≈ 0.1 for L = 64 (see Fig. 5), so that we find typical Reynolds numbers Re ≈ 20 , well in 
the laminar regime. Next, the Schmidt number Sc = �∕D is a measure for the importance 
of viscous versus molecular diffusion. For Q = 100 ≫ 1 , we find D ≈ TΔt∕2 ≈ 0.01 so 
that Sc ≈ 30 , indicating that we are indeed operating in the relevant regime for fluids, where 
collisions dominate over kinetic transport. Finally, the Mach number is defined as Ma = U∕cs , 
where cs =

√
5kBT∕3m denotes the speed of sound. In our case, we find typically 

Ma ≈ 0.25 . It is well-known that particle-based methods like MPC do not strictly obey the 
incompressibility condition. The smaller the Mach number, the better incompressibility is 
restored. Finally, for viscoelastic fluids like ferrofluids, the Weissenberg number Wi = �BU∕L 
gives the ratio of viscous to elastic forces. Here, we typically find Wi ≈ 0.2 and therefore the 
simulations are performed in the Newtonian regime.

5 � Flow Through Channels with Walls Covered by Porous Media

In this section, we consider again driven flow through a parallel channel. This time, 
however, the porous medium is only present within a layer of width �p on both walls, 
whereas the fluid is unperturbed in the center.

Within the MPC scheme described in Sec.  2.2, this situation can be implemented 
conveniently by a position-dependent friction coefficient �(r) in Eq. (9). The porous lay-
ers are described by setting �(r) = � for y ≤ �p or y ≥ L − �p and � = 0 in the center, 
�p < y < L − �p.

Figure 8 shows typical simulation results of the velocity profile obtained in such a situa-
tion. From Fig. 8, we observe a smooth transition between a parabolic Poiseuille profile in 
the center and a more flat Darcy–Brinkman profile in the porous layers. These observations 
are in qualitative agreement with earlier simulations (Matyka 2017). In the center region, 
the magnetic field increases the effective viscosity, therefore slowing down the flow. In the 
porous region, however, the magnetic field is found to have a much smaller effect on the 
flow.

In a simplified description, we can approximate the velocity as constant, v = v0 , within 
the porous layers of width �p , and a parabolic profile in the center of the channel. Insisting 

(18)Keff(�, h) =
�

�

[
1 +

3

2
�

hL2(h)

h − L(h)

]
,
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on a continuous velocity profile at the interface between the two at y = �p and y = L − �p , 
we arrive at

with L the channel width. The quantity u can be expressed in terms of the maximum veloc-
ity vmax in the channel center as u = (vmax − v0)∕[(L∕2)

2 − �p(L − �p)] . The flow rate 
V̇ = ∫ L

0
vx(y)dy for the flow profile (19) can be calculated as

For constant v0 < vmax , increasing the width �p of the porous layer leads to a proportional 
decrease in the flow rate.

In view of possible applications, it might be useful to be able to estimate the 
thickness of the porous layer �p without the need to determine the detailed flow profile. 
We assume one can measure the total flow rate V̇ and the centerline velocity vmax . In 
our simulations, we obtain vmax from fitting a parabola to the flow profile in the center 
region. Furthermore, we approximate the velocity within the porous layer by Darcy’s 
law (1), v0 = −(K∕�)dp∕dx = f ext∕� . Knowing the channel width L, we can then 
determine the thickness of the porous layer within the simple model (19) by solving 
Eq. (20) for �p.

Vertical dot-dashed lines in Fig.  8 indicate the value of �p obtained in this way, 
while dashed lines show the corresponding approximate profile (19). Note that 
changing the magnetic field strength alters the flow profile, but the estimate for �p 
remains unchanged within numerical accuracy. From Fig. 8, it is apparent that Darcy’s 
law captures the mean velocity, but approximating the flow as constant within the 
porous layer is a rather crude approximation. Consequently, the layer thickness is 
underestimated by around 15–30% within the parameter range investigated. In spite of 

(19)v
x
(y) ≈

{
v0 for y < �p or y > L − �p

v0 + u[y(L − y) − �p(L − �p)] for �p ≤ y ≤ L − �p

(20)V̇ =
1

3
(2vmax + v0)L −

4

3
(vmax − v0)�p.

Fig. 8   Flow profile in a parallel channel where walls is covered with a porous layer, indicated by the gray-
shaded regions. Black and blue symbols correspond to h = 0 and h = 5 , respectively. In panels a and b, the 
width of the porous layer is �p = 0.2L and 0.3L, respectively. The model parameters are chosen as T∗ = 0.1 , 
Δt = 0.2 , Q = 100 , � = 0.02 , f ext = 0.0002 . The dot-dashed lines indicate the estimated value for �p based 
on Eq. (20), and dashed lines show the corresponding simplified profile (19)
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this inaccuracy, such a simple estimate might be a useful first step in determining the 
thickness of porous layers.

6 � Conclusions

In this communication, we propose an extension of the hybrid MPC-BD scheme 
developed in Ref. Ilg (2022) to describe fluctuating ferrohydrodynamics in porous 
media by additional friction forces. We performed numerous computer simulations and 
validated the model and its implementation in several ways and over a considerable 
range of parameters. In particular, we verified that the newly introduced friction 
coefficient is identical to the damping parameter in the Darcy–Brinkman model. Using 
an Irving–Kirkwood approach, we argue that this identity is expected, at least on large 
enough scales where hydrodynamics emerges from the MPC model. We also verified 
the expected dependence of the permeability on the friction coefficient. Therefore, the 
current MPC model can serve as an alternative to the Lattice Boltzmann implementation 
proposed in Ref. Dardis and McCloskey (1998) for the non-magnetic case. We mention 
that our implementation of the MPC method for non-magnetic fluids improves on an 
earlier approach (Matyka 2017), which suffered from a number of misconceptions 
concerning model parameters.

In the present work, we benefit from the flexibility of the MPC approach and couple 
the stochastic rotational motion of MNPs to the MPC scheme for flow through porous 
media. From simulations of channel flows, we find a “magneto-permeability effect” in 
porous media, i.e., the field-dependent change of the effective permeability. This effect 
is analog to the traditional magneto-viscous effect in ferrofluids (Ilg and Odenbach 
2008) and can be described theoretically in the same manner.

As an application of the method, we consider the flow through a planar channel with 
walls covered by a layer of porous material. In this situation, a parabolic velocity profile 
develops in the center of the channel, as is well-known for Poiseuille flow of viscous 
fluids. On approaching the porous layers, the parabolic profile gives way to the more 
plug-like flow, which is typically observed in porous materials. We propose a simple 
method to estimate the thickness of the porous layer, based only on the total flow 
rate and the centerline velocity. Such rough estimates might be useful in a number of 
practical applications.

The present study can be extended in various ways. First, the extension to fully three-
dimensional flows and more complicated geometries is straightforward, thanks to the 
flexibility of the MPC method. These extensions, together with a generalized model 
to describe non-dilute ferrofluids, have already been explored for flow in non-porous 
media (Ilg 2022). From a more conceptual point of view, future studies are needed to 
investigate the role of porous media on the rotational motion of nanoparticles. Once 
these effects are better understood, they can then be included within the present hybrid 
MPC-BD scheme. A further extension of the present work could be the investigation 
of strongly heterogeneous, e.g., fractured porous media and to revisit earlier studies 
(Huang et  al. 2021) with a more reliable constitutive model. The current approach is 
also well-suited to be incorporated within multi-scale simulation schemes (Boccardo 
et al. 2020; Al Sariri and Penta 2022), which are needed e.g., to study the highly inter-
esting phenomenon of colloidal deposition in porous media (Bizmark et al. 2020; Ger-
ber et al. 2020).
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Appendix A: Friction and Damping

The MPC equations for the streaming step (5), (6) can be interpreted as a discretization 
of their continuum counterpart

We restrict the following discussion to the inviscid limit and neglect collisions, which cor-
responds to neglecting interparticle interactions.

Following the classical Irving-Kirkwood procedure (Irving and Kirkwood 1950), 
we define hydrodynamic fields by suitable averages in terms of particle configurations. 
In particular, the mass density can be defined by �(r;t) = ⟨∑N

i=1
mi�(r − ri(t))⟩ and the 

momentum density by g(r;t) = ⟨∑N

i=1
pi�(r − ri(t))⟩ , with the Dirac delta function �(r) . 

Through these definitions, the partial derivative �g∕�t can be expressed as

Inserting Eqs. (A1), (A2) and relating fext to the pressure gradient �p , we find

with �kin = ⟨∑N

i=1
m−1pipi�(r − ri(t))⟩ . For simplicity we assumed mi = m . For a New-

tonian fluid, the kinetic stress tensor is given by �kin = −(�kin∕2)[�v + (�v)T ] . Including 
collisions will add collisional contributions to the stress tensor but will otherwise leave Eq. 
(A4) unchanged. Relating the momentum density to the velocity field, g = �v , and con-
sidering the stationary state, we find that Eq. (A4) agrees with Eq. (2), where the damping 
parameter � is given by �∕m . Therefore, in the hydrodynamic limit, the MPC model equa-
tions including friction forces recover the Darcy–Brinkman model.
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