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Abstract 11 

Given the increasing aging population and rising living standards in China, developing an 12 

accurate and straightforward thermoregulation model for the elderly has become increasingly 13 

essential. To address this need, an existing one-segment four-node thermoregulation model for 14 

the young was selected as the base model. This study developed the base model considering 15 

age-related physical and physiological changes to predict mean skin temperatures of the elderly. 16 

Measured data for model optimization were collected from 24 representative healthy Chinese 17 

elderly individuals (average age: 67 years). The subjects underwent temperature step changes 18 

between neutral and warm conditions with a temperature range of 25–34˚C. The model’s 19 

demographic representation was first validated by comparing the subjects’ physical 20 

characteristics with Chinese census data. Secondly, sensitivity analysis was performed to 21 

investigate the influences of passive system parameters on skin and core temperatures and 22 

adjustments were implemented using measurement or literature data specific to the Chinese 23 

elderly. Thirdly, the active system was modified by resetting the body temperature set points. 24 

The active parameters to control thermoregulation activities were further optimized using the 25 

TPE (Tree-structured Parzen Estimator) hyperparameter tuning method. The model’s accuracy 26 



2 

was further verified using independent experimental data for a temperature range of 18–34˚C 1 

for Chinese elderly. By comprehensively considering age-induced thermal response changes, 2 

the proposed model has potential applications in designing and optimizing thermal management 3 

systems in buildings, as well as informing energy-efficient strategies tailored to the specific 4 

needs of the Chinese elderly population. 5 

Keywords 6 

Thermoregulation model; elderly; skin temperature; transient environments; sensitivity analysis; 7 

hyperparameter optimization method 8 
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Abbreviations  

ARMSE Average root mean squared error 

BMI Body mass index 

BSA Body surface area 

PMV-PPD Predicted mean vote and predicted percentage of dissatisfied 

RH Relative humidity, % 

RMSE Root mean square error 

TPE Tree-structured Parzen Estimator 

Symbols  

A Body surface area of the human body, m2 

𝐵𝐹s The blood flow rate of the skin layer, L/h 

𝐵𝐹𝐵s Basal blood flow at the neutral thermal condition, L/h 

𝑐bl The specific heat of blood, J/(kg·k) 

𝑐𝑖 The specific heat of the ith layer, J/(kg·k) 

𝑐𝑗 The specific heat of the jth node, J/(kg·k) 

𝐶dl  The vasodilation coefficient for the core layer, L/(h·˚C) 

𝐶res Convective heat dissipation, W/m2 

𝐶st The vasoconstriction coefficient for the core layer, 1/˚C 

𝐶sw The sweating coefficient for the core layer, W/˚C·m2 
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𝐸res Evaporative heat dissipation, W/m2 

𝐸𝑟𝑟c The input signal of the core layer, ˚C 

𝐸𝑟𝑟s The input signal of the skin layer, ˚C 

𝐹c The temperature change rate of the core layer, ˚C/s 

𝐹s The temperature change rate of the skin layer, ˚C/s 

𝑙h Height of the model, m 

M Metabolic rate, met, 1 met = 58.15 W/m2 

𝑞𝑖 Thermal production of metabolism of the ith layer, W/m3 

𝑞𝑗 Thermal production of metabolism of the jth node, W/m3 

𝑟 The radius to body center, m 

𝑟𝑖 The radius from the ith layer to body center, m 

𝑟𝑗 The distance from the jth node to the center of the model, m 

𝑟𝑠,𝑖 Radius of the outer boundary of the ith layer, m 

𝑅𝑀𝑆𝐸𝑛,𝑔𝑒𝑛𝑑𝑒𝑟 RMSE of the nth condition of males or females, ˚C2 

𝑆dl The vasodilation coefficient for the skin layer, L/(h·˚C) 

𝑆st The vasoconstriction coefficient for the skin layer, 1/˚C 

𝑆sw The sweating coefficient for the skin layer, W/˚C·m2 

𝑇bl The temperature of blood, ˚C 

𝑇𝑐 Core temperature, ˚C 

𝑇𝑖 The temperature of the body tissue at the ith layer, ˚C 

𝑇𝑗 The temperature of the body tissue at the jth node, ˚C 

𝑇𝑠 Skin temperature, ˚C 

𝑇𝑠𝑒𝑡,c Set point of the core layer at the neutral state, ˚C 

𝑇𝑠𝑒𝑡,s Set point of the skin layer at the neutral state, ˚C 

𝑇𝑠𝑘,𝑘 The measured mean skin temperature at the kth minute, ˚C 

𝑇̂𝑠𝑘,𝑘 The model output mean skin temperature at the kth minute, ˚C 

𝑇𝜏,𝑗 The temperature of the jth node at the time 𝜏, ˚C 

𝑉𝑖 Volume of the ith layer, m3 

W External work, W/m2 

𝑤bl Blood perfusion rate per cubic meter, m3/(s·m3) 

𝜆𝑖 Thermal conductivity coefficient at the ith layer, W/(m·k) 

𝜆𝑗 Thermal conductivity coefficient at the jth node, W/(m·k) 
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𝜌bl The density of blood, kg/m3 

𝜌𝑖 The density of the ith layer, kg/m3 

𝜌𝑗 The density of the jth node, kg/m3 

∆t The time interval, s 

∆𝑟 The spatial discrete spacing, m 

𝜏 Time, s 

𝜏 − 1 The last time, s 

Subscripts  

bl Blood 

c Core layer 

dl Vasodilation  

i The body tissue at the ith layer 

j The body tissue at the jth node 

j+1 The next/downstream node 

j−1 The last/upstream node 

res Respiration 

s Skin layer 

st Vasoconstriction 

sw Sweating 

1. Introduction  1 

1.1 Background 2 

The aging population is growing worldwide [1,2]. The United Nations predicted that the 3 

percentage of the elderly (over 60 years old) in China will reach 30.4% and 38.9% in 2035 and 4 

2050, respectively [3]. The aging society has become a major challenge for economic growth 5 

and social care because of the declining capacity of the elderly to work and sustain themselves 6 

[1,4]. It has been reported that the elderly spend the majority of their time indoors [5]. However, 7 

given the current situation, existing dwelling stocks are not capable of providing enough 8 



5 

protection against heat for the elderly in summer [6]. Low air-conditioner use was found in the 1 

elderly’s dwellings [5,7,8] and overheating in built environments was a rising problem for 2 

elderly people due to the increasing frequency and intensity of warm summers [9–11]. One of 3 

the causes of indoor overheating in summer is that elderly people have lower abilities to detect 4 

high temperatures so their thermal sensation votes are lower than those of non-elderly adults 5 

[5,7,12,13]. Thus, they can accept a wider range of indoor temperatures with higher acceptable 6 

upper limits which can be higher than 30˚C [12,14–17], surpassing the upper limit of the 7 

minimum mortality temperature which ranges from 18–30˚C [18,19]. Given the current 8 

situation of unfavorable thermal conditions, the elderly are facing challenges in subjective 9 

environmental evaluation [20]. To address this issue, evaluating thermal environments based 10 

on objective parameters (e.g. skin temperature) has been found reliable. Skin temperature has 11 

been widely recognized as a thermal comfort indicator [7,21,22]. Thus, investigating 12 

fundamental characteristics of skin temperature responses based on thermal balance has been a 13 

research topic [23]. Thermoregulation models have been developed as effective tools to predict 14 

overall [24] and local skin temperatures [25,26]. The models can be further used for heatstroke 15 

prediction [27], predicting physiological status [28], predicting core temperature [29], etc. 16 

1.2 Literature review of thermoregulation models of the elderly 17 

Thermoregulation models are based on physiology, thermodynamics and thermobalance theory 18 

to predict both skin and core temperatures [30]. Thermoregulation models consist of two 19 

systems: the passive system and the active system [31,32]. The passive system of the human 20 

body includes a geometric abstraction of the human body and an abstraction of the 21 

thermophysical interaction between the skin and the thermal environments. In the human body, 22 

heat is produced by metabolic and muscle activity. Then heat is transferred from the interior to 23 

the skin by thermal conduction and blood convection. The heat dissipation to ambient 24 
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environments is through convection, radiation, respiration, and perspiration. In comparison, the 1 

function of the active system is to keep the body’s core temperature within a narrow range. This 2 

is accomplished by the autonomic nervous system’s control of thermoregulatory activities, 3 

including sweating, shivering, vasoconstriction, and vasodilation. The activities are controlled 4 

by both active coefficients (to determine the intensity of the thermoregulatory activities) and 5 

set point temperatures (to trigger the thermoregulatory activities and determine intensity) [33]. 6 

Most of the prevailing thermoregulation models are established for non-elderly adults (aged < 7 

60) and further incorporate reduced functions in thermoregulation activities and physiological 8 

changes in elderly people [30]. The existing thermoregulation models for the elderly can be 9 

divided into three categories according to the number of segments and nodes: one-segment 10 

single-node models, one-segment multi-node models, and multi-segment multi-node models. 11 

Examples of segmentations and node distributions of these models are shown in Fig. 1. 12 

 13 

Fig. 1. Diagram of the segmentation and layering of thermoregulation models. 14 

1.2.1 One-segment single-node thermoregulation model 15 

A representation of the one-segment single-node model is Fanger’s PMV-PPD (predicted mean 16 

vote and predicted percentage of dissatisfied) index [34]. The PMV value is calculated using 17 

One-segment multi-node modelOne-segment single-node model Multi-segment multi-node model
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the thermal load multiplied by a thermal sensation transmission coefficient [35,36], where skin 1 

temperature is set to be linearly related to the difference between the metabolic rate (M, W/m2) 2 

and the external work (W, W/m2), as shown in Eq. (1). 3 

𝑇s = 35.7 − 0.028(𝑀 − 𝑊) (1) 

Where 𝑇s is skin temperature, ˚C. For example, when the metabolic rate is 1.1 met (1 met = 4 

58.15 W/m2) and the external work is 0 during office activities, the corresponding skin 5 

temperature is fixed at 34.1˚C regardless of environmental parameters. However, studies have 6 

found that skin temperature is related to ambient air temperatures [7,37] and air speeds [38]. 7 

Additionally, its active system is quite straightforward. Regular heat loss through sweating is 8 

linearly proportional to the metabolic rate regardless of actual skin temperature and no other 9 

regulative activity is controlled. Thus, the PMV-PPD index cannot reflect the influences of 10 

thermal environments and active parameters on skin temperature. Moreover, the index is 11 

primarily effective under steady-state and uniform conditions [39]. In this regard, it is 12 

challenging to assess thermal comfort using the PMV-PPD index for the elderly. 13 

1.2.2 One-segment multi-node thermoregulation model 14 

One-segment multi-node thermoregulation models simplify the human body into a multi-layer 15 

cylinder. One of the most well-known models is Gagge’s two-node model [40,41], which treats 16 

the human body as a double-layer cylinder composed of core and skin layers [40,42]. Based on 17 

Gagge’s two-node model, Ji et al. [43] proposed an improved thermoregulation model for the 18 

elderly group considering the age-related changes in the active system. The age-related 19 

attenuation coefficients and the threshold values (set points) were proposed to reflect the 20 

deterioration in thermoregulatory functions of the elderly.  21 
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Another optimized individualized one-segment three-node thermoregulation model [44] was 1 

established based on an existing three-node model [45] with layers of core, bare skin, and 2 

clothed skin. Individualization of the model was achieved by integrating the effects of age, 3 

gender, height, and weight on passive parameters. The passive parameters include body surface 4 

area, body fat percentage, fat thickness, basal metabolic rate, etc. The active system activities 5 

were modified by skin surface area. With a similar aim, the model was further modified by 6 

dividing the body into core, muscle, fat (subcutaneous), epidermis, and dermis with their 7 

respective thermal properties [46]. 8 

From the above research, it can be seen that age influences the basal metabolic rate, body 9 

density, body fat percentage, cardiac output, vascular activity, etc. The previous studies to 10 

modify one-segment multi-node models for the elderly mainly focus on either the active system 11 

[43] or the passive system [44,46]. The first type overlooked the effects of physical parameters 12 

including gender, fat percentage, height, weight, etc., while the second type ignored decreased 13 

thermoregulatory activities among the elderly. However, few studies have been able to draw on 14 

any comprehensive research into a combined consideration of the passive and the active 15 

systems. 16 

1.2.3 Multi-segment multi-node thermoregulation model 17 

In multi-segment models, the passive system is divided into several body segments. Each 18 

segment is a concentric cylinder or sphere. The prevailing human thermoregulation models are 19 

the Stolwijk model [47], the Fiala model [48–50], the Tanabe model [51], the Huizenga model 20 

[52], etc. The models are established using data from young adults. These models have diverse 21 

body segmentation and different control equations for active systems. Based on the existing 22 

thermoregulatory models for the young, the models for the elderly are usually modified with 23 

some age-related changes. The passive parameters mainly include body weight, height, body 24 
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surface area, fat percentage or thickness, metabolic rate, cardiac output, skin blood flow, 1 

segment length and radius, heart rate, and muscle thickness [53–59]. As for the active system, 2 

the parameters were optimized in a variety of ways. Novieto [53] modified the sweating, 3 

shivering, and vasomotor signal coefficients with a genetic algorithm. Takahashi et al. [54] 4 

considered age effects on brown adipose tissue thermal production, sweating, cardiac output, 5 

skin blood flow, and shivering by multiplying respective aging factors. In comparison, Rida et 6 

al. [55] and Coccarelli et al. [59] focused on the threshold temperatures for the active system, 7 

including maximum vasodilation, maximum vasoconstriction, and the sweating threshold. 8 

The multi-segment multi-node models are capable of predicting local skin temperatures. 9 

However, the utilization of multi-segment multi-node models in estimating the thermal 10 

responses of elderly individuals requires more fundamental data to improve the accuracy. For 11 

example, detailed blood flow measurements are required for model input, including artery, vein, 12 

superficial vein, and arteriovenous anastomosis blood flow for each body part [54,55]. 13 

1.3 Aims and objectives 14 

In the review of the existing thermoregulation models for the elderly, it has been observed that 15 

the PMV-PPD method is easy to use but may have certain limitations when estimating the 16 

dynamic thermal responses. Multi-segment multi-node thermoregulation models have more 17 

detailed segmentation; however, modifying these models requires a large quantity of 18 

fundamental data about the elderly. In comparison, one-segment multi-node models have many 19 

advantages over the other two types of models, including simpler model configuration, fewer 20 

computational procedures, fewer input parameters, and the ability to explain the heat transfer 21 

characteristics inside the human body. Thus, this study aims to develop and validate a new one-22 

segment multi-node thermoregulation model for the elderly. The novelty of the model is a 23 

comprehensive consideration of the passive and active parameters and an introduction to a more 24 
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explainable optimization method of the active parameters. The objectives are: 1) To 1 

demonstrate demographic representation and define the applicable population of the proposed 2 

model; 2) To use sensitivity analysis to quantify the influence of passive parameters and adjust 3 

those values using measurement or literature data; 3) To optimize the active system by resetting 4 

body temperature set points and optimizing active parameters. 5 

2. Modeling theory and data acquisition 6 

An existing model verified with groups of young Chinese (average age 24 years) [60] was used 7 

as the base model. This model [60] was established by simplifying the human body into a four-8 

layer cylinder, representing the core, muscle, fat and skin. A central blood node exchanges heat 9 

with every layer. The passive system followed the thermal balance theory in the forms of heat 10 

conduction, convection, radiation and evaporation. The active system determines signal inputs 11 

for the core and skin; thus the signals can be used as the inputs of each layer to control blood 12 

flow, sweating and shivering. 13 

2.1 Theory and configuration of the base model 14 

2.1.1 Thermal balance theory 15 

As the basis of the thermal balance theory of the human body, the basic energy equation (Eq. 16 

2) followed the classic Pennes bio-heat equation [61]: 17 

𝜆𝑖 (
𝜕2𝑇𝑖

𝜕𝑟2
+

1

𝑟𝑖

𝜕𝑇𝑖

𝜕𝑟
) + 𝑞𝑖 + 𝑐bl𝜌bl𝑤bl(𝑇bl − 𝑇𝑖) = 𝜌𝑖𝑐𝑖

𝜕𝑇𝑖

𝜕𝜏
 (2) 

Where the subscripts bl and i represent blood and the ith layer of body tissue, respectively. 𝜆𝑖 is 18 

the thermal conductivity coefficient at the ith layer, W/(m·k); 𝑇𝑖 is the temperature of the body 19 

tissue at the ith layer, ˚C; 𝑟𝑖 is the radius from the ith layer to body center, m; 𝜆𝑖 (
𝜕2𝑇𝑖

𝜕𝑟2 +
1

𝑟𝑖

𝜕𝑇𝑖

𝜕𝑟
) 20 
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shows thermal conduction along the radius direction, W/m3; 𝑞𝑖  is thermal production of 1 

metabolism of the ith layer, W/m3; 𝑐bl and 𝑐𝑖 are the specific heat of blood and the ith layer, 2 

respectively, J/(kg·k); 𝜌bl and 𝜌𝑖 are the density of blood and the ith layer, respectively, kg/m3; 3 

𝑤bl is the blood perfusion rate per cubic meter, m3/(s·m3); 𝑇bl is the temperature of blood, ˚C; 4 

𝑐bl𝜌bl𝑤bl(𝑇bl − 𝑇𝑖) is the heat convective exchange by blood circulation between the central 5 

blood and the ith layer, W/m3; 𝜏 is time, s; and 𝜌𝑖𝑐𝑖
𝜕𝑇𝑖

𝜕𝜏
 is heat storage of the ith layer with time, 6 

W/m3.  7 

2.1.2 Model configuration 8 

In the physical model of the human body, the temperature distribution is the same in the vertical 9 

radius direction and the heat transfer process occurs along the radius direction. The structure of 10 

the passive system is shown in Fig. 2, which is adapted from the base model [60]. The human 11 

body was abstracted into one cylinder (one segment) and four lumped layers: core, muscle, fat 12 

and skin. The central blood pool performs heat convection exchange with four nodes through 13 

arterial and vein blood flow. Between the adjacent two layers, heat is transferred by heat 14 

conduction. Metabolic heat is produced in three ways: basal metabolism, activity thermogenesis 15 

and shivering thermogenesis. 16 
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 1 

Fig. 2. Model configuration and thermal exchange processes of the model (adapted from [60]). 𝑙h: 2 
Height of the model, m; 𝑟𝑠,𝑖: Radius of the outer boundary of the ith layer, m. 3 

The dimension of the model is determined by Eqs. (3) and (4). 4 

𝑙h = 𝐴2/4𝜋 ∑ 𝑉𝑖

4

𝑖=1

 (3) 

𝑟𝑠,𝑖 = √∑ 𝑉𝑖

4

𝑖=1

/𝜋𝑙h (4) 

Where 𝑙h is the height of the model, m; and 𝑟𝑠,𝑖 is the radius of the outer boundary of the ith 5 

layer, m; A is the body surface area of the human body, m2; 𝑉𝑖 is the volume of the ith layer, 6 

m3. 7 

The active system activities are controlled with Eqs. (5)–(14), which are associated with input 8 

signals. As shown in Table 1, input signals of the core and skin layers 𝐸𝑟𝑟c and 𝐸𝑟𝑟s (˚C) are 9 

closely related to core and skin set points 𝑇𝑠𝑒𝑡,c and 𝑇𝑠𝑒𝑡,s (˚C), which are the temperatures of 10 

the core and skin layers at the neutral state. From the control expressions, it can be seen that the 11 

active parameters include 𝐶𝑑𝑙 , 𝑆𝑑𝑙 , 𝐶𝑠𝑡 , 𝑆𝑠𝑡 , 𝐶𝑠𝑤 and 𝐶𝑠𝑤 . The symbols C and S mean 12 

Fat
Muscle

Skin

Core
skin

Clothing

Core

Central 

blood

Heat conduction

between nodes

Heat convection by 

blood circulation

Heat convection

Heat radiation

Evaporation

Fat

Muscle

Skin

lh

rs,1

rs,2

rs,3

rs,4
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coefficients of the core layer and the skin layer, respectively. The subscripts dl, st and sw mean 1 

vasodilation, vasoconstriction and sweating activity, respectively. The modification of set 2 

points and active parameters of the elderly are shown in Section 4. 3 

Table 1. The mathematical expression of the control mechanisms of active system activities. 4 
Terms in the active system activities Mathematical expression Eq. No.  

The input signal of the core layer receptor when 𝐹c > 0 𝐸𝑟𝑟c = 𝑇c − 𝑇set,c (5) 

The input signal of the core layer when 𝐹c < 0 
Male: 𝐸𝑟𝑟c = 𝑇c − 𝑇set,c 

Female: 𝐸𝑟𝑟c = 𝑇c − 𝑇set,c + 1800 × 𝐹c 

(6) 

(7) 

The input signal of the skin layer receptor when 𝐹s > 0 𝐸𝑟𝑟s = 𝑇s − 𝑇set,s (8) 

The input signal of the skin layer when 𝐹s < 0 

Male: 𝐸𝑟𝑟s = 𝑇s − 𝑇set,s (9) 

Female: 𝐸𝑟𝑟s = 𝑇s − 𝑇set,s + 1800 × 𝐹s (10) 

Skin blood flow 

𝐵𝐹s =
𝐵𝐹𝐵s + 𝐷𝐿

1 + 𝑆𝑇
× 2𝐸𝑟𝑟s/10 (11) 

𝐷𝐿 = max{0, 𝐶dl𝐸𝑟𝑟c + 𝑆dl𝐸𝑟𝑟s} (12) 

𝑆𝑇 = max{0, −𝐶st𝐸𝑟𝑟c − 𝑆st𝐸𝑟𝑟s} (13) 

Sweating 𝐸sw = (𝐶sw𝐸𝑟𝑟c + 𝑆sw𝐸𝑟𝑟s)2𝐸𝑟𝑟s/10/𝐴 (14) 

Note: 𝐹c is the temperature change rate of the core layer, ˚C/s; 𝐹s is the temperature change rate 5 

of the skin layer, ˚C/s; 𝐸𝑟𝑟c is the input signal of the core layer, ˚C; 𝐸𝑟𝑟s is the input signal of 6 

the skin layer, ˚C; 𝑇c and 𝑇𝑠𝑒𝑡,c are the core layer temperature and set point, respectively, ˚C; 𝑇s 7 

and 𝑇𝑠𝑒𝑡,s are the skin layer temperature and set point, respectively, ˚C; 𝐵𝐹s is the blood flow 8 

rate of the skin layer, L/h; 𝐵𝐹𝐵s is basal blood flow at the neutral thermal condition with 11.89 9 

L/h for the young group. 𝐶𝑑𝑙 and 𝑆𝑑𝑙 are the vasodilation coefficients for the core and skin layer, 10 

respectively, L/(h·˚C). 𝐶𝑠𝑡 and 𝑆𝑠𝑡 are the vasoconstriction coefficients for the core and skin 11 

layer, respectively, 1/˚C. 𝐶𝑠𝑤 and 𝑆𝑠𝑤 are the sweating coefficients for the core and skin layer, 12 

respectively, W/˚C·m2. 13 

2.1.3 Numerical discretization 14 

This study follows the same numerical discretization method used in the basic model and is 15 

further explained and illustrated in detail. As the numerical distribution of temperature in the 16 

actual heat transfer process is continuous, the space and time of the thermoregulation models 17 

are discretized using the finite difference method. This model is based on differential equations 18 

and is calculated with discrete nodes at spacing ∆r=0.002 m along the radius direction and at 19 

time interval ∆t=1 s. Such values satisfy the stability of the numerical solution and reduce the 20 

computation time. On this basis, the discrete equations are established for each internal and 21 
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boundary node combining the Taylor series expansion method. Under steady-state conditions, 1 

the energy equation is Eq. (15) : 2 

𝜆𝑗 (
𝜕2𝑇𝑗

𝜕𝑟𝑗
2 +

1

𝑟𝑗

𝜕𝑇𝑗

𝜕𝑟𝑗
) + 𝑞𝑗 + 𝑐bl𝜌bl𝑤bl(𝑇bl − 𝑇𝑗) = 0 (15) 

Where subscript j represents the jth node; 𝑟𝑗 is the distance from the jth node to the center of 3 

the model, m; 𝜆𝑗  is the thermal conductivity coefficient at the ith node, W/m·K; 𝑇𝑗  is the 4 

temperature of the body tissue at the jth node, ˚C. 5 

The internal nodal heat transfer energy equation is expressed in Eqs. (16) and (17): 6 

𝑇𝑗 =
∆𝑟2

2𝜆𝑗
(𝜆𝑗

𝑇𝑗+1 − 𝑇𝑗−1

2𝑟𝑗∆𝑟
+ 𝜆𝑗

𝑇𝑗+1 − 𝑇𝑗−1

∆𝑟2
+ 𝑞𝑗) (16) 

𝑇𝜏,𝑗 = 𝜆𝑗∆𝑡
𝑇𝜏−1,𝑗+1 − 𝑇𝜏−1,𝑗−1

2𝑟𝑗∆𝑟𝜌𝑗𝑐𝑗
+ 𝜆𝑗∆𝑡

𝑇𝜏−1,𝑗+1 − 𝑇𝜏−1,𝑗−1

∆𝑟2𝜌𝑗𝑐𝑗
+ 𝑞𝜏−1,𝑗

∆𝑡

c𝑐𝑗
+ (1 −

2𝜆𝑗∆𝑡

∆𝑟2𝜌𝑗𝑐𝑗
)𝑇𝜏−1,𝑗 (17) 

Where 𝑇𝜏,𝑗 is the temperature of the jth node at the time 𝜏, ˚C; ∆𝑟 is the spatial discrete spacing, 7 

0.002 m; 𝑞𝑗  is thermal production of metabolism of the jth node, W/m3; subscripts 𝑗+1 and 𝑗−1 8 

are the next and last inner node; 𝜌𝑗 is the density of the jth node, kg/m3; 𝑐𝑗 is the specific heat 9 

of the jth node, J/(kg·k); subscript 𝜏−1 is the last time, s. 10 

For the three boundary layers (core-muscle layer, muscle-fat layer and fat-skin layer) and at the 11 

poles, the discretization of the boundary layers for steady and transient processes are shown in 12 

Eqs. (18)–(19): 13 

𝑇𝑗 = (
𝜆𝑗−1

∆𝑟2 𝑇𝑗−1 −
𝜆𝑗−1

2𝑟𝑗∆𝑟
𝑇𝑗−1 +

𝜆𝑗+1

∆𝑟2 𝑇𝑗+1 +
𝜆𝑗+1

2𝑟𝑗∆𝑟
𝑇𝑗+1 +

𝑞𝑗−1 + 𝑞𝑗+1

2
)/(

𝜆𝑗−1

∆𝑟2 −
𝜆𝑗−1

2𝑟𝑗∆𝑟
+

𝜆𝑗+1

∆𝑟2 +
𝜆𝑗+1

2𝑟𝑗∆𝑟
) (18) 

𝜕𝑇𝑗

𝜕𝑟
|𝑟=0 = 𝐶res + 𝐸res (19) 
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Where 𝑞𝑗−1 and 𝑞𝑗+1 are the intensity of the internal heat source at the upstream node and the 1 

downstream node of the boundary node, respectively, W/m3; 𝜆𝑗−1 and 𝜆𝑗+1 denote the thermal 2 

conductivity of the upstream node and the downstream node, respectively, W/m·K. 𝐶res and 3 

𝐸res are the convective and evaporative heat dissipation, W/m2. 4 

2.2 Data acquisition from the elderly for model optimization 5 

To establish and modify the model, measured data needed to be collected from the Chinese 6 

elderly. The data acquisition was done in a well-controlled climate chamber. The characteristics 7 

of the climate chamber and the adjacent preparation room have been described in detail in 8 

existing studies [62–64]. To properly activate the thermal regulatory responses of the human 9 

body and collect a variety of skin temperatures under transient conditions, warm-neutral-warm 10 

temperature step change experiments were designed. The air temperature was determined to be 11 

25˚C with 50% relative humidity (RH) as the neutral environment [65], while the warmer 12 

temperatures were 28, 30, 32 and 34˚C with 60% RH. Air speed was kept at ≤ 0.1 m/s. 13 

Accordingly, there were three stages in the experimental sessions as shown in Fig. 3. Stage 1 14 

was designed as a warm condition with one of the four levels (28, 30, 32, or 34˚C) for 30 15 

minutes. Then stage 2 started when the subjects moved back to the preparation room (25˚C) 16 

and lasted for 60 minutes. Then, elderly subjects moved to the climate chamber again for 17 

another 30 minutes with an air temperature in stage 3 the same as that in stage 1. 18 

 19 

Fig. 3. Experimental protocols. 20 
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Ten local skin temperatures were continuously measured throughout the whole experimental 1 

process at 30-second intervals. The instruments used for measuring skin temperatures were skin 2 

temperature sensors (Type: TMC6-HE) with a measuring range of −40–100˚C and an accuracy 3 

of ±0.21˚C. The mean skin temperatures were calculated by weighting the following ten sites: 4 

head (0.06), chest (0.12), abdomen (0.12), back (0.12), upper arm (0.08), lower arm (0.06), 5 

hand (0.05), upper leg (0.19), calf (0.13) and foot (0.07) [66]. 6 

2.3 Subjects and demographic representation 7 

There were 24 elderly participants who were within the normal range (18.5–30.0 kg/m2) [67] 8 

of body mass index (BMI). The participants were between 60 and 74 years old. The ethics 9 

approval number is CCNU-IRB-2019-002. Written informed consent was obtained from every 10 

participant. Every participant experienced all the experimental protocols. A key element of the 11 

thermoregulation model is its demographic representation which confines its applicable 12 

population and corresponding anthropometric characteristics. As the scope of the present model 13 

applied to the Chinese elderly, the demographic representation was verified by comparing the 14 

demographic (age) and physical (weight, height, fat percentage and BMI) parameters of the 15 

experimental subjects to those from the census. Since age is not normally distributed in the 16 

elderly population (60+ years), the standard age of this study was defined as the 50th percentile 17 

(median) of the elderly population. According to the 2022 Chinese census data [68] and 18 

cumulative distribution by age group shown in Fig. 4, 66 years was the median age. The results 19 

in Table 2 showed that the relative differences between subjects’ data and national data were 20 

all lower than 4%. The good fit between the census data and the data of the modelling subjects 21 

allows the prediction model to be representative of the Chinese elderly population, maximizing 22 

its applicability and having lower prediction bias due to group differences. 23 
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(a) Distribution of people over 60 years old in China in 

2022 [68] 

(b) Cumulative distribution by age group 

Fig. 4. Age distribution of the census. 1 
 2 
Table 2. Comparison between subjects’ anthropometric data in the present study and national census 3 
data in 2022 [69]. 4 

Data source Gender 
Age 

(year) 

Weight 

(kg) 

Height 

(m) 

Body mass 

index 

(kg/m2) 

Fat 

percentage 

(%) 

Subjects’ data 
Male 67.3±1.4 66.1±2.9 1.63±0.02 24.8±1.0 23.6±1.0 

Female 66.3±1.0 58.1±2.3 1.51±0.02 24.2±0.7 34.3±1.2 

National data [69] 
Male 66 68 1.65 25.0 23.3 

Female 66 60 1.54 25.1 33.0 

Note: The subjects’ data are presented with mean ± standard deviation. The national data are presented 5 
with the median age and average weight, height, body mass index and fat percentage values for the 6 
median age. 7 

3. Optimization of the passive system 8 

Due to the variation in age-related decay of the thermoregulation abilities of the elderly, the 9 

passive system was optimized by sensitivity analysis and the corresponding parameters were 10 

adjusted by measurement or literature data. 11 

3.1 Sensitivity analysis of passive parameters 12 

All the passive parameters of the base model are divided into two types. The first type was 13 

initially adjusted according to the physical data of elderly subjects. Thus, height, weight, gender 14 

and clothing insulation were directly changed in the model. The second type cannot be directly 15 

measured so the quantified effects including basal metabolic rate, body surface area (BSA), fat 16 

percentage, basal skin blood flow and cardiac output are unknown. As a result, these parameters 17 
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need further sensitivity analysis to evaluate their influence on skin and core temperatures. In 1 

the present study, sensitivity analysis adopted a local approach belonging to the one-factor-at-2 

a-time method [70]. Thus, only one variable is altered while all the others are stable. In Table 3 

3, the values indicate changes compared to the base case (Chinese young adults) [60] that were 4 

determined from existing literature quantifying age-related physiological changes. Relative 5 

changes of “0” mean no change from the base model. The relative changes in BSA were 6 

determined by the results using different calculation methods in the references [54,58,60]. 7 

Table 3. Input parameters and values for sensitivity analysis. 8 
Parameter Unit Base case value Relative changes from base case Reference 

Basal metabolic rate W/m2 44 0, −10%, −20%, −30% [43] 

BSA m2 
Male: 0.0057×H+0.0121×W+0.0882 

Female: 0.0073×H+0.0127×W-0.2106 

−15%, −10%, −5%, 0, +5%, 

+10%, +15% 
[54,58,60] 

Fat percentage % 34.3 for females and 23.6 for males 0, +10%, +20%, +30% [53,69] 

Basal skin blood 

flow 
L/h 11.89 

0, −10%, −20%, −30%, −40%, 

−50% 
[71] 

Cardiac output L/h 285 0, −10%, −20%, −30%, −40% [58] 

Note: BSA, body surface area; H, height (m); W, weight (m). 9 

A thermoneutral condition and a warm condition were selected as the environmental conditions 10 

for sensitivity analysis: indoor operative temperature of 26˚C or 34˚C, RH of 60%, air speed of 11 

0.1 m/s, clothing insulation of typical summer clothing 0.5 clo. The simulation time was 1 hour 12 

and the results for the 60th minute were analyzed and shown in the following section. 13 

3.2 Sensitivity analysis results and interpretation 14 

Sensitivity analysis results of mean skin temperatures and core temperatures are shown in Fig. 15 

5. It can be seen that for both males and females, higher body fat percentages can result in lower 16 

mean skin temperatures. This result is consistent with the existing finding that higher fat layer 17 

thickness can reduce heat conduction from inside to outside the body. This is also the reason 18 

that elderly people have lower skin temperatures than the young group. The lower cardiac 19 

output can result in lower thermal exchange due to blood circulation. Similarly, as a branch of 20 

blood output from the heart, skin blood flow has the same way of influencing mean skin 21 

temperature by reducing the heat exchange between the skin layer and ambient environment. 22 
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In comparison, core temperatures rose with body fat percentage, as a result of less heat 1 

dissipated from and more heat retained within the human body. For the reduced cardiac output 2 

and skin blood flow, less heat can be circulated from the central blood to each layer and from 3 

the skin layer to the surroundings. From the results above it can be seen that all the analyzed 4 

parameters have apparent influences on the physiological responses of the elderly, although the 5 

influence of body surface area is not as great as those of the other parameters. This identifies 6 

the importance of selecting accurate parameters for the elderly with the values needing to be 7 

carefully determined to represent the age-related physiological changes of the elderly. 8 

  
(a) Mean skin temperature under 26˚C (b) Mean skin temperature under 34˚C 

  
(c) Core temperature under 26˚C (d) Core temperature under 34˚C 

Fig. 5. Sensitivity analysis results. 9 

3.3 Optimized passive system parameters 10 

As a consequence of the sensitivity analysis’s findings, the following values were adjusted for 11 

Chinese elderly people. The values were directly measured or obtained from published research. 12 

 Body weight of 66 kg for males and 58 kg for females. 13 

 Body height of 1.63 m for males and 1.51 m for females. 14 

 Body fat percentage of 23.6% for males and 34.3% for females according to the 15 



20 

measurement statistics for the subjects. 1 

 BSA was obtained from the equations customized for the Chinese elderly [58]. 2 

 A 20% reduced metabolic rate from [53,58,72] with 0.8 met (1 met = 58.15 W/m2) when 3 

sitting. 4 

 Skin blood flow reduced to 8.9 L/h, 25% lower than for young adults [54]. 5 

 Cardiac output reduced to 223.2 L/h for Chinese elderly [58]. 6 

4. Optimization of the active system 7 

After changing all the passive systems in the model, the active system was then optimized. The 8 

corresponding set points and active parameters were modified as stated above. 9 

4.1 Modification of body temperature set points 10 

The body temperature set point is a key element in the active system because the error signals 11 

were all calculated based on the set points, as shown in Section 2.1.2. When the body 12 

temperature is at the set point temperature, the thermal sensation is neutral and the body has no 13 

significant active system responses, i.e. no significant sweating or shivering activities. 14 

Meanwhile, the cardiac output and skin blood flow remain at basal blood flow levels. Under 15 

this condition, the body’s heat- and cold-sensitive neurons are in a state of equilibrium. The set 16 

points for male and female elderly were separately calculated in the present model. Linear 17 

regressions of thermal sensation vote against air temperature were performed to obtain the 18 

neutral air temperatures at thermal sensation votes equal to 0. The obtained neutral temperatures 19 

were 26.7˚C for males and 26.5˚C for females. The neutral temperatures were input into the 20 

model as environmental settings. Meanwhile, sensible sweating and shivering were set to zero. 21 

After calculating the temperature of each layer for 3,600 seconds, the set points in layers were 22 
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obtained, as shown in Table 4. Compared with the young group, the elderly have lower neutral 1 

skin temperature and lower neutral core temperature; as found in previous studies [73,74]. 2 

Table 4. Set points (˚C) of layers of the elderly model and the base model. 3 

Age group Gender Core Muscle Fat Skin 
Central 

blood 

Elderly Male 36.6 36.5 36.0 34.2 36.4 

 Female 36.4 36.3 35.7 33.6 36.2 

Young [60] Male 36.9 36.5 35.3 34.2 36.7 

 Female 36.7 36.4 35.1 33.8 36.5 

4.2 Optimization of active parameters 4 

Under neutral and warm environments, the main thermoregulatory activities include 5 

vasodilation, vasoconstriction and sweating. In this way, the parameters to be optimized include 6 

𝐶dl, 𝑆dl, 𝐶st, 𝑆st, 𝐶sw and 𝐶sw, as introduced in Section 2.1.2. 7 

4.2.1 Target function 8 

An optimal combination of active parameters enables the model to perform with high prediction 9 

accuracy. As a result, the target function should first be determined to evaluate model 10 

performance. Root mean square error (RMSE) has been a frequently used evaluation method 11 

for thermoregulation models [33,54,75,76]. RMSE quantifies model performance using the 12 

differences between predicted and measured values. In this study, the error was evaluated using 13 

Eqs. (20) and (21). 14 

𝑅𝑀𝑆𝐸 = √∑(𝑇𝑠𝑘,𝑘 − 𝑇̂𝑠𝑘,𝑘)2/120

120

𝑘=1

 (20) 

𝐴𝑅𝑀𝑆𝐸𝑔𝑒𝑛𝑑𝑒𝑟 =
∑ 𝑅𝑀𝑆𝐸𝑛,𝑔𝑒𝑛𝑑𝑒𝑟

4
𝑛=1

4
 (21) 

where 𝑇̂𝑠𝑘,𝑘  is the model output mean skin temperature at the kth minute, ˚C; 𝑇𝑠𝑘,𝑘  is the 15 

measured mean skin temperature at the kth minute, ˚C; RMSE is the mean squared error of the 16 
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model per condition, ˚C2; 𝑅𝑀𝑆𝐸𝑛,𝑔𝑒𝑛𝑑𝑒𝑟 is the RMSE of the nth condition of males or females, 1 

˚C2; 𝐴𝑅𝑀𝑆𝐸𝑔𝑒𝑛𝑑𝑒𝑟 (average root mean squared error) is the target function to determine model 2 

performance, i.e. the mean of RMSE for the four conditions (n = 1–4) for males or females, ˚C2. 3 

4.2.2 Selection of the optimization algorithm 4 

This study selected a hyperparametric optimization search method. Among the methods used 5 

in deep learning, TPE (Tree-structured Parzen Estimator) is a hyperparameter tuning method 6 

based on Bayesian optimization. The core idea of TPE is to use a priori knowledge to gradually 7 

narrow down the hyperparameter search and finally get the optimal combination of 8 

hyperparameters. The method has higher efficiency and accuracy compared with traditional 9 

grid search and random search methods [77]. 10 

4.2.3 Results and interpretation 11 

The change ranges of the active parameters were first defined. For each parameter, ranges 12 

between −50% and +50% of the original values were determined and the TPE search was 13 

conducted in 1% steps. The model was optimized for 100 trials and the results are shown in Fig. 14 

6. The TPE algorithm can adaptively adjust the exploration range to achieve a stabilized 15 

ARMSE after 40 iterations. The accuracy can achieve the best performance within 75 iterations. 16 

The calculated ARMSE is 0.1˚C for females and 0.4˚C for males. 17 

  
(a) Male elderly (b) Female elderly 

Fig. 6. Average root mean squared error results of the tested 100 rounds. 18 
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 1 

  
(a) Male elderly (b) Female elderly 

Fig. 7. Parameter importance on the results of average root mean squared error. 2 

Fig. 7 further interprets the relative importance of the passive parameters on the ARMSE results. 3 

For both males and females, the core vasodilation coefficients and the core sweat coefficients 4 

have been the most influential factors. In other words, the changes in these parameters have 5 

greater influence on the model prediction accuracy than other parameters. Moreover, the model 6 

performance for males is also influenced by skin vasoconstriction coefficients. This is because 7 

elderly males have higher neutral skin temperature (34.2˚C) than females (33.6˚C). Under the 8 

same thermal condition, vasoconstriction is more easily triggered in males. The optimum 9 

combination of the active parameters is shown in Table 5. 10 

 11 

Table 5. Optimum active parameters. 12 
Age group Gender Csw Ssw Cdl Sdl Cst Sst 

The elderly 
Male 168.17 7.56 34.67 4.13 0.63 0.93 

Female 85.85 3.29 37.14 2.70 0.49 0.92 

The young [60] 
Male 117.60 10.80 61.90 3.97 0.63 0.63 

Female 58.80 5.40 61.90 3.97 0.63 0.63 

Note: Csw, the sweating coefficient for the core layer, W/ ˚C·m2; Ssw, the sweating coefficient for the 13 
skin layer, W/ ˚C·m2; Cdl, the vasodilation coefficient for the core layer, L/(h·˚C); Sdl, the vasodilation 14 
coefficient for the skin layer, L/(h·˚C); Cst, the vasoconstriction coefficient for the core layer, 1/˚C; Sst, 15 
the vasoconstriction coefficient for the skin layer, 1/˚C. 16 
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5. Model validation 1 

5.1 Validation data 2 

The model was validated with a set of published data [63] originating from thermal comfort 3 

experiments in a climate chamber under temperature ramps. Sixteen healthy gender-balanced 4 

elderly people participated in the experiments and experienced both thermal conditions. The 5 

average physical data for this group of elderly people were: age 64 years, weight 61.4 kg, height 6 

1.6 m, BMI 23.9 kg/m2 and body fat percentage 27.3%. The subjects were dressed in summer 7 

apparel with an average thermal resistance of 0.55 clo. A temperature ramp-up condition (from 8 

18 to 34˚C within 150 min) and a temperature ramp-down condition ( from 34 to 18˚C within 9 

150 min) were tested. During the studies, relative humidity was around 55% and nearly no wind 10 

(roughly 0.05 m/s). Measured mean skin temperatures were calculated from the four local skin 11 

temperatures with corresponding weights: chest 0.3, upper arm 0.3, thigh 0.2 and calf 0.2. 12 

Before the test started, the participants rested in the preparation room for half an hour to 13 

evaporate all sweat and eliminate the influences of previous thermal experiences. As shown in 14 

the study [63], the room setting temperature rose or decreased by 2˚C every 15 minutes. 15 

Accordingly, the above-mentioned parameters and the recorded air temperature settings were 16 

input into the developed thermoregulation model. In this way, the simulation of the temperature 17 

ramps was achieved by inputting a series of temperature conditions and periods.  18 

5.2 Validation process and model performance 19 

The validation of the model was achieved by inputting thermal conditions and periods in 20 

Section 5.1 of the temperature ramps into the model. In this way, the thermal conditions were 21 

simulated. The other parameters were the same as the validation experiment scenarios. The 22 

metabolic rate was set as 0.8 met and the clothing insulation was set as 0.55 clo. Relative 23 
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humidity was kept at 55%. In this way, the model can simulate and output a series of skin 1 

temperature results with time. By changing the temperature change direction and preset genders, 2 

the model output can also demonstrate gender differences under different thermal conditions. 3 

The predicted skin temperatures were compared with the actual measured data and the original 4 

model in Fig. 8. Fig. 8 (a) and (b) represent the results of the ramp-down thermal condition (34–5 

18˚C) for males and females, respectively. Results show the optimized model’s prediction 6 

results were closer to the measured data with less overall bias than the original model prediction, 7 

indicating a better prediction performance of the optimized model in this study. Similar results 8 

can also be found in Fig. 8 (c) and (d) under the ramp-up thermal condition (18–34˚C) for males 9 

and females, respectively. The optimized model prediction results were also closer to the 10 

measured data and more prediction data fell into the 95% confidence interval. As a result, Fig. 11 

8 shows the higher performance of the optimized model for the elderly than the original model 12 

for the young. To quantify the model performance and compare it with other thermoregulation 13 

models for the elderly, RMSE was calculated to evaluate the deviation between the actual and 14 

predicted mean skin temperature. The calculated RMSE ranged from 0.10 to 0.35˚C under the 15 

four scenarios, which is a range lower than other models for the elderly, including the 0.58–16 

0.83˚C of the joint system thermoregulation model [54] and 0.2–0.4˚C of a modified Stolwijk 17 

model [76]. The results indicate a good prediction ability for the developed thermoregulation 18 

model. 19 

  
(a) Ramp down, male (b) Ramp down, female 
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(c) Ramp up, male (d) Ramp up, female 

Fig. 8. Model performance of ramp down and up conditions for elderly males and females. CI: 1 
Confidence interval. 2 

6. Discussion 3 

6.1 Advantage and improvement over the existing models 4 

The proposed model’s applicability for the elderly in China was demonstrated and it effectively 5 

predicted mean skin temperatures with strong performance. The optimization involves a 6 

thorough consideration of various age-related parameters within both the passive and active 7 

systems. This includes factors such as physical parameters, physiological changes, metabolic 8 

rates and thermal regulatory mechanisms that are known to differ across different age groups.  9 

The developed model in this study inherits the advantages of the original model with not many 10 

input parameters and quick calculation. That is, the model does not need to consider complex 11 

local parameters. The user only needs to set the environmental parameters according to the 12 

application population and modify the human physical parameters when necessary.  13 

The model innovatively incorporates a holistic optimization of both passive and active 14 

parameters, introducing a more interpretable optimization approach for the active parameters 15 

by leveraging the TPE algorithm. This algorithm seamlessly combines global search and local 16 

fine-tuning characteristics in optimizing the human thermoregulation model. Compared with 17 

existing optimization methods, including changing threshold temperature for thermoregulation 18 
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activities [43,56], optimizing the active system with a genetic algorithm [53] and optimizing 1 

only passive parameters but not active parameters [58], the TPE algorithm possesses several 2 

advantages: high computational efficiency, the ability to avoid getting stuck in local optima, 3 

fine-grained searches once potential optimal regions are found and stronger interpretability by 4 

determining the importance of each parameter. 5 

6.2 Limitations and future work 6 

Due to ethical and health considerations, a significant portion of the available data has been 7 

collected from older individuals who are in good health. Thus, the model was modified and 8 

verified only for healthy elderly people. However, it is important to acknowledge that various 9 

health conditions can impact a person’s thermoregulatory functions. A database for unhealthy 10 

elderly with different levels of frailty requires further consideration. 11 

In this study, the modulation of cardiac and cutaneous blood flow was primarily achieved 12 

through the implementation of vasoconstriction and vasodilation mechanisms. However, it is 13 

essential to acknowledge the intricate nature of blood circulation within the human body. The 14 

regulatory processes extend beyond simple vascular adjustments and encompass various factors, 15 

including hormonal influences and individual health conditions. It is imperative to recognize 16 

that this research provides a focused perspective on blood flow control, with limitations arising 17 

from the limited exploration of detailed mechanisms governing blood circulation. 18 

The validation of the thermoregulation model for the elderly encountered certain limitations 19 

that warrant consideration. One notable challenge was the scarcity of comprehensive datasets 20 

specifically tailored to the elderly population, which affected the model’s ability to generalize 21 

across diverse age and BMI groups within this demographic. The reliance on existing literature 22 

and limited real-world data for model validation introduced constraints in accurately simulating 23 
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diverse scenarios. Moving forward, addressing these limitations through the acquisition of more 1 

extensive and diverse datasets will be essential for enhancing the overall robustness and 2 

applicability of the thermoregulation model for the elderly. 3 

6.3 Application 4 

Human thermophysiological response underpins thermal sensation in transient environments. 5 

By comprehensively considering the age-induced thermal response changes within the 6 

applicable population, the model is able to provide a more accurate representation of the thermal 7 

comfort and energy efficiency requirements for different age groups, particularly the elderly. 8 

This information can be invaluable in designing and optimizing various systems, such as 9 

building HVAC systems or personal thermal management devices, to ensure optimal comfort 10 

and well-being for individuals across the age spectrum. Real-time and long-term monitoring 11 

and analysis are efficient methods for securing comfort conditions and may be used in the 12 

healthcare sector. 13 

7. Conclusions 14 

With the growing need to improve the quality of life and well-being of the increasing elderly 15 

population, this study aimed to develop a thermoregulation model for the Chinese elderly based 16 

on an existing one-segment four-node base model for a younger group. By incorporating age-17 

related physical and physiological parameters, the model comprehensively captured and 18 

adjusted the model’s passive and active parameters. The main findings of the study are shown 19 

as follows: 20 

 The demographic representation of the model was verified. A good match between 21 

census data and elderly subjects was found, with an average age of 67 and 66 years, 22 

respectively. The relative differences between census data and subject data were all 23 
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lower than 4% in terms of weight, height, BM  and fat percentage. The finding implies 1 

the demographic representation of the model to be applied to the Chinese elderly 2 

population. 3 

 The influences of passive parameters on mean skin temperature and core temperature 4 

were quantified by sensitivity analysis. To take the age related changes into account, 5 

the passive parameters were adjusted to fit the elderly’s physiological characteristics. 6 

The modified physical parameters include weight, height and fat percentage while the 7 

adjusted physiological parameters include BSA, metabolic rate, skin blood flow and 8 

cardiac output. 9 

 To optimize the active system, body temperature set points were reset according to 10 

thermal responses under neutral thermal environments. The elderly have 0.3˚C lower 11 

neutral core temperature. The active parameters were subsequently optimized with the 12 

TPE hyperparameter tuning method which is based on Bayesian optimization. The 13 

results show lower ARMSE values below 0.4˚C and the optimized active parameters 14 

show reduced thermal regulatory responses for the elderly. 15 

The developed model was verified by the published data with temperature ramps. The 16 

prediction results show good agreement with the measured data with the RMSE range of 0.10 17 

to 0.35˚C. This research can help to understand the thermal responses of the elderly and can 18 

show building managers and operators how to balance thermal comfort and energy efficiency 19 

in elderly residences and care homes. 20 
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