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Abstract

Given the increasing aging population and rising living standards in China, developing an
accurate and straightforward thermoregulation model for the elderly has become increasingly
essential. To address this need, an existing one-segment four-node thermoregulation model for
the young was selected as the base model. This study developed the base model considering
age-related physical and physiological changes to predict mean skin temperatures of the elderly.
Measured data for model optimization were collected from 24 representative healthy Chinese
elderly individuals (average age: 67 years). The subjects underwent temperature step changes
between neutral and warm conditions with a temperature range of 25-34°C. The model’s
demographic representation was first validated by comparing the subjects’ physical
characteristics with Chinese census data. Secondly, sensitivity analysis was performed to
investigate the influences of passive system parameters on skin and core temperatures and
adjustments were implemented using measurement or literature data specific to the Chinese
elderly. Thirdly, the active system was modified by resetting the body temperature set points.
The active parameters to control thermoregulation activities were further optimized using the

TPE (Tree-structured Parzen Estimator) hyperparameter tuning method. The model’s accuracy



was further verified using independent experimental data for a temperature range of 18-34°C
for Chinese elderly. By comprehensively considering age-induced thermal response changes,
the proposed model has potential applications in designing and optimizing thermal management
systems in buildings, as well as informing energy-efficient strategies tailored to the specific

needs of the Chinese elderly population.
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Nomenclature

Abbreviations

ARMSE Average root mean squared error

BMI Body mass index

BSA Body surface area

PMV-PPD Predicted mean vote and predicted percentage of dissatisfied
RH Relative humidity, %

RMSE Root mean square error

TPE Tree-structured Parzen Estimator

Symbols

A Body surface area of the human body, m?

BF, The blood flow rate of the skin layer, L/h

BF B, Basal blood flow at the neutral thermal condition, L/h
Chl The specific heat of blood, J/(kg-k)

Ci The specific heat of the ith layer, J/(kg-k)

Cj The specific heat of the jth node, J/(kg-k)

Cal The vasodilation coefficient for the core layer, L/(h-°C)
Cres Convective heat dissipation, W/m?

Cst The vasoconstriction coefficient for the core layer, 1/°C
Cow The sweating coefficient for the core layer, W/°C-m?



Eres Evaporative heat dissipation, W/m?

Err, The input signal of the core layer, °C

Errg The input signal of the skin layer, °C

F, The temperature change rate of the core layer, “C/s

F; The temperature change rate of the skin layer, °C/s

Iy Height of the model, m

M Metabolic rate, met, 1 met = 58.15 W/m?

qi Thermal production of metabolism of the ith layer, W/m?
q; Thermal production of metabolism of the jth node, W/m?®
r The radius to body center, m

T The radius from the ith layer to body center, m

7 The distance from the jth node to the center of the model, m

T Radius of the outer boundary of the ith layer, m

RMSE, genger ~ RMSE of the nth condition of males or females, *C?

Sal The vasodilation coefficient for the skin layer, L/(h-°C)
Sst The vasoconstriction coefficient for the skin layer, 1/°C
Ssw The sweating coefficient for the skin layer, W/°C-m?

Ty The temperature of blood, °C

T, Core temperature, °C

T; The temperature of the body tissue at the ith layer, °C

T; The temperature of the body tissue at the jth node, °C

T Skin temperature, °C

Tsetc Set point of the core layer at the neutral state, °C

Tset s Set point of the skin layer at the neutral state, °C

Tk k The measured mean skin temperature at the kth minute, °C
Tork The model output mean skin temperature at the kth minute, °C
Ty The temperature of the jth node at the time z, °C

Vi Volume of the ith layer, m*

W External work, W/m?

Wi Blood perfusion rate per cubic meter, m¥/(s-m?)

Ai Thermal conductivity coefficient at the ith layer, W/(m-k)
A Thermal conductivity coefficient at the jth node, W/(m-k)



Pbl The density of blood, kg/m?

pi The density of the ith layer, kg/m®
p; The density of the jth node, kg/m®
At The time interval, s

Ar The spatial discrete spacing, m

T Time, s

t—1 The last time, s

Subscripts

bl Blood

c Core layer

dl Vasodilation

i The body tissue at the ith layer

j The body tissue at the jth node
j*+1 The next/downstream node
j-1 The last/upstream node

res Respiration

S Skin layer

st Vasoconstriction

sw Sweating

1. Introduction

1.1 Background

The aging population is growing worldwide [1,2]. The United Nations predicted that the
percentage of the elderly (over 60 years old) in China will reach 30.4% and 38.9% in 2035 and
2050, respectively [3]. The aging society has become a major challenge for economic growth
and social care because of the declining capacity of the elderly to work and sustain themselves
[1,4]. It has been reported that the elderly spend the majority of their time indoors [5]. However,

given the current situation, existing dwelling stocks are not capable of providing enough



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

protection against heat for the elderly in summer [6]. Low air-conditioner use was found in the
elderly’s dwellings [5,7,8] and overheating in built environments was a rising problem for
elderly people due to the increasing frequency and intensity of warm summers [9-11]. One of
the causes of indoor overheating in summer is that elderly people have lower abilities to detect
high temperatures so their thermal sensation votes are lower than those of non-elderly adults
[5,7,12,13]. Thus, they can accept a wider range of indoor temperatures with higher acceptable
upper limits which can be higher than 30°C [12,14-17], surpassing the upper limit of the
minimum mortality temperature which ranges from 18-30°C [18,19]. Given the current
situation of unfavorable thermal conditions, the elderly are facing challenges in subjective
environmental evaluation [20]. To address this issue, evaluating thermal environments based
on objective parameters (e.g. skin temperature) has been found reliable. Skin temperature has
been widely recognized as a thermal comfort indicator [7,21,22]. Thus, investigating
fundamental characteristics of skin temperature responses based on thermal balance has been a
research topic [23]. Thermoregulation models have been developed as effective tools to predict
overall [24] and local skin temperatures [25,26]. The models can be further used for heatstroke

prediction [27], predicting physiological status [28], predicting core temperature [29], etc.

1.2  Literature review of thermoregulation models of the elderly

Thermoregulation models are based on physiology, thermodynamics and thermobalance theory
to predict both skin and core temperatures [30]. Thermoregulation models consist of two
systems: the passive system and the active system [31,32]. The passive system of the human
body includes a geometric abstraction of the human body and an abstraction of the
thermophysical interaction between the skin and the thermal environments. In the human body,
heat is produced by metabolic and muscle activity. Then heat is transferred from the interior to

the skin by thermal conduction and blood convection. The heat dissipation to ambient
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environments is through convection, radiation, respiration, and perspiration. In comparison, the
function of the active system is to keep the body’s core temperature within a narrow range. This
is accomplished by the autonomic nervous system’s control of thermoregulatory activities,
including sweating, shivering, vasoconstriction, and vasodilation. The activities are controlled
by both active coefficients (to determine the intensity of the thermoregulatory activities) and
set point temperatures (to trigger the thermoregulatory activities and determine intensity) [33].
Most of the prevailing thermoregulation models are established for non-elderly adults (aged <
60) and further incorporate reduced functions in thermoregulation activities and physiological
changes in elderly people [30]. The existing thermoregulation models for the elderly can be
divided into three categories according to the number of segments and nodes: one-segment
single-node models, one-segment multi-node models, and multi-segment multi-node models.

Examples of segmentations and node distributions of these models are shown in Fig. 1.

One-segment single-node model One-segment multi-node model Multi-segment multi-node model

Fig. 1. Diagram of the segmentation and layering of thermoregulation models.

1.2.1 One-segment single-node thermoregulation model

A representation of the one-segment single-node model is Fanger’s PMV-PPD (predicted mean

vote and predicted percentage of dissatisfied) index [34]. The PMV value is calculated using
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the thermal load multiplied by a thermal sensation transmission coefficient [35,36], where skin
temperature is set to be linearly related to the difference between the metabolic rate (M, W/m?)

and the external work (W, W/m?), as shown in Eq. (1).

T, = 35.7 — 0.028(M — W) 1)

Where T, is skin temperature, “C. For example, when the metabolic rate is 1.1 met (1 met =
58.15 W/m?) and the external work is 0 during office activities, the corresponding skin
temperature is fixed at 34.1°C regardless of environmental parameters. However, studies have
found that skin temperature is related to ambient air temperatures [7,37] and air speeds [38].
Additionally, its active system is quite straightforward. Regular heat loss through sweating is
linearly proportional to the metabolic rate regardless of actual skin temperature and no other
regulative activity is controlled. Thus, the PMV-PPD index cannot reflect the influences of
thermal environments and active parameters on skin temperature. Moreover, the index is
primarily effective under steady-state and uniform conditions [39]. In this regard, it is

challenging to assess thermal comfort using the PMV-PPD index for the elderly.

1.2.2 One-segment multi-node thermoregulation model

One-segment multi-node thermoregulation models simplify the human body into a multi-layer
cylinder. One of the most well-known models is Gagge’s two-node model [40,41], which treats
the human body as a double-layer cylinder composed of core and skin layers [40,42]. Based on
Gagge’s two-node model, Ji et al. [43] proposed an improved thermoregulation model for the
elderly group considering the age-related changes in the active system. The age-related
attenuation coefficients and the threshold values (set points) were proposed to reflect the

deterioration in thermoregulatory functions of the elderly.
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Another optimized individualized one-segment three-node thermoregulation model [44] was
established based on an existing three-node model [45] with layers of core, bare skin, and
clothed skin. Individualization of the model was achieved by integrating the effects of age,
gender, height, and weight on passive parameters. The passive parameters include body surface
area, body fat percentage, fat thickness, basal metabolic rate, etc. The active system activities
were modified by skin surface area. With a similar aim, the model was further modified by
dividing the body into core, muscle, fat (subcutaneous), epidermis, and dermis with their

respective thermal properties [46].

From the above research, it can be seen that age influences the basal metabolic rate, body
density, body fat percentage, cardiac output, vascular activity, etc. The previous studies to
modify one-segment multi-node models for the elderly mainly focus on either the active system
[43] or the passive system [44,46]. The first type overlooked the effects of physical parameters
including gender, fat percentage, height, weight, etc., while the second type ignored decreased
thermoregulatory activities among the elderly. However, few studies have been able to draw on
any comprehensive research into a combined consideration of the passive and the active

systems.

1.2.3 Multi-segment multi-node thermoregulation model

In multi-segment models, the passive system is divided into several body segments. Each
segment is a concentric cylinder or sphere. The prevailing human thermoregulation models are
the Stolwijk model [47], the Fiala model [48-50], the Tanabe model [51], the Huizenga model
[52], etc. The models are established using data from young adults. These models have diverse
body segmentation and different control equations for active systems. Based on the existing
thermoregulatory models for the young, the models for the elderly are usually modified with

some age-related changes. The passive parameters mainly include body weight, height, body
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surface area, fat percentage or thickness, metabolic rate, cardiac output, skin blood flow,
segment length and radius, heart rate, and muscle thickness [53-59]. As for the active system,
the parameters were optimized in a variety of ways. Novieto [53] modified the sweating,
shivering, and vasomotor signal coefficients with a genetic algorithm. Takahashi et al. [54]
considered age effects on brown adipose tissue thermal production, sweating, cardiac output,
skin blood flow, and shivering by multiplying respective aging factors. In comparison, Rida et
al. [55] and Coccarelli et al. [59] focused on the threshold temperatures for the active system,

including maximum vasodilation, maximum vasoconstriction, and the sweating threshold.

The multi-segment multi-node models are capable of predicting local skin temperatures.
However, the utilization of multi-segment multi-node models in estimating the thermal
responses of elderly individuals requires more fundamental data to improve the accuracy. For
example, detailed blood flow measurements are required for model input, including artery, vein,

superficial vein, and arteriovenous anastomosis blood flow for each body part [54,55].

1.3 Aims and objectives

In the review of the existing thermoregulation models for the elderly, it has been observed that
the PMV-PPD method is easy to use but may have certain limitations when estimating the
dynamic thermal responses. Multi-segment multi-node thermoregulation models have more
detailed segmentation; however, modifying these models requires a large quantity of
fundamental data about the elderly. In comparison, one-segment multi-node models have many
advantages over the other two types of models, including simpler model configuration, fewer
computational procedures, fewer input parameters, and the ability to explain the heat transfer
characteristics inside the human body. Thus, this study aims to develop and validate a new one-
segment multi-node thermoregulation model for the elderly. The novelty of the model is a

comprehensive consideration of the passive and active parameters and an introduction to a more
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explainable optimization method of the active parameters. The objectives are: 1) To
demonstrate demographic representation and define the applicable population of the proposed
model; 2) To use sensitivity analysis to quantify the influence of passive parameters and adjust
those values using measurement or literature data; 3) To optimize the active system by resetting

body temperature set points and optimizing active parameters.
2. Modeling theory and data acquisition

An existing model verified with groups of young Chinese (average age 24 years) [60] was used
as the base model. This model [60] was established by simplifying the human body into a four-
layer cylinder, representing the core, muscle, fat and skin. A central blood node exchanges heat
with every layer. The passive system followed the thermal balance theory in the forms of heat
conduction, convection, radiation and evaporation. The active system determines signal inputs
for the core and skin; thus the signals can be used as the inputs of each layer to control blood

flow, sweating and shivering.

2.1 Theory and configuration of the base model

2.1.1 Thermal balance theory

As the basis of the thermal balance theory of the human body, the basic energy equation (Eqg.

2) followed the classic Pennes bio-heat equation [61]:

or?2 1 or

9°T; 10T, o,
L + q; + coippiwp (Tpr — T;) = pic; = ?

Where the subscripts i and i represent blood and the ith layer of body tissue, respectively. 4; is

the thermal conductivity coefficient at the ith layer, W/(m-k); T; is the temperature of the body

o%r; | 1 6Tl-)

tissue at the ith layer, °C; r; is the radius from the ith layer to body center, m; A; (6r2 -

10
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shows thermal conduction along the radius direction, W/m?; g; is thermal production of
metabolism of the ith layer, W/m?; ¢,,; and c; are the specific heat of blood and the ith layer,
respectively, J/(kg-k); p; and p; are the density of blood and the ith layer, respectively, kg/m?;
wy, is the blood perfusion rate per cubic meter, m%/(s-mq); T, is the temperature of blood, °C;

co1PoiWh1 (Tpr — T;) is the heat convective exchange by blood circulation between the central
blood and the ith layer, W/m?; 7 is time, s; and p;c; % is heat storage of the ith layer with time,

W/m3,
2.1.2 Model configuration

In the physical model of the human body, the temperature distribution is the same in the vertical
radius direction and the heat transfer process occurs along the radius direction. The structure of
the passive system is shown in Fig. 2, which is adapted from the base model [60]. The human
body was abstracted into one cylinder (one segment) and four lumped layers: core, muscle, fat
and skin. The central blood pool performs heat convection exchange with four nodes through
arterial and vein blood flow. Between the adjacent two layers, heat is transferred by heat
conduction. Metabolic heat is produced in three ways: basal metabolism, activity thermogenesis

and shivering thermogenesis.

11
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Fig. 2. Model configuration and thermal exchange processes of the model (adapted from [60]). I};:
Height of the model, m; 7, ;: Radius of the outer boundary of the ith layer, m.

The dimension of the model is determined by Egs. (3) and (4).
4

L, = A%/4m ) V; 3)
2

(4)

Where [, is the height of the model, m; and 7 ; is the radius of the outer boundary of the ith
layer, m; A is the body surface area of the human body, m?; V; is the volume of the ith layer,

m3,

The active system activities are controlled with Egs. (5)—(14), which are associated with input
signals. As shown in Table 1, input signals of the core and skin layers Err. and Err, (°C) are
closely related to core and skin set points Tse, . and Tse¢ s ("C), Which are the temperatures of
the core and skin layers at the neutral state. From the control expressions, it can be seen that the

active parameters include C4;, Sg;1, Cst s Sst, Csy and Cg,,. The symbols C and S mean

12
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coefficients of the core layer and the skin layer, respectively. The subscripts 4, st and sw mean
vasodilation, vasoconstriction and sweating activity, respectively. The modification of set
points and active parameters of the elderly are shown in Section 4.

Table 1. The mathematical expression of the control mechanisms of active system activities.

Terms in the active system activities Mathematical expression Eg. No.
)

a1

The input signal of the core layer receptor when F. > 0 Erry = Te — Tsec (

i . Male: Err, = T, — Tyerc (6)
The input signal of the core layer when F, < 0 Female: Err, = T, — Ty o + 1800 X F, )
The input signal of the skin layer receptor when F; > 0 Errg =Ts — Tes ®)

Male: Erry = Ty — Tyers 9

The input signal of the skin layer when F, < 0
Female: Erry = Ty — Ty s + 1800 X Fy (10)

BFB; + DL

— S Errg/10 11
B == s %2 ()
Skin blood flow DL = max{0, CyErr, + Sq Errs} (12)
ST = max{0, —CyErr, — Sy ET73} (13)
Sweating Egy = (CowETT, + Sg Erry)2ET7s/10 /4 (14)

Note: F, is the temperature change rate of the core layer, °C/s; F; is the temperature change rate
of the skin layer, °C/s; Err, is the input signal of the core layer, °C; Err; is the input signal of
the skin layer, °C; T, and T,  are the core layer temperature and set point, respectively, °C; T
and T, s are the skin layer temperature and set point, respectively, “C; BF; is the blood flow
rate of the skin layer, L/h; BF B, is basal blood flow at the neutral thermal condition with 11.89
L/h for the young group. Cy4; and S,; are the vasodilation coefficients for the core and skin layer,
respectively, L/(h-°C). C,; and S; are the vasoconstriction coefficients for the core and skin
layer, respectively, 1/°C. C,, and S, are the sweating coefficients for the core and skin layer,
respectively, W/°C-m?,

2.1.3 Numerical discretization

This study follows the same numerical discretization method used in the basic model and is
further explained and illustrated in detail. As the numerical distribution of temperature in the
actual heat transfer process is continuous, the space and time of the thermoregulation models
are discretized using the finite difference method. This model is based on differential equations
and is calculated with discrete nodes at spacing Ar=0.002 m along the radius direction and at
time interval At=1 s. Such values satisfy the stability of the numerical solution and reduce the

computation time. On this basis, the discrete equations are established for each internal and

13
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boundary node combining the Taylor series expansion method. Under steady-state conditions,

the energy equation is Eq. (15) :

9°T; 10T,
i) ar'z + EW + q] + Cblpblwbl(Tbl — 7}) =0 (15)

] J

Where subscript j represents the jth node; 7; is the distance from the jth node to the center of
the model, m; 4; is the thermal conductivity coefficient at the ith node, W/m-K; T; is the

temperature of the body tissue at the jth node, °C.

The internal nodal heat transfer energy equation is expressed in Egs. (16) and (17):

ATZ T'+1 - T'_l T'+1 - T'_]_
Ty = — (A - Ny P I +gq; 16
] le ] ZT}AT ] Ar2 q}) ( )
Trovj+1 = Tr-1,j-1 Trvj41 = Tr-1,j-1 At 24;At
T, = A At——= TtV juan T 4 s i — 4 (1= )Ty
T,] ] ZT}AijCj ) AT'Z,D]‘C]' Qr-1,j c¢; ( Arzpjcj) T-1,j (17)

Where T, ; is the temperature of the jth node at the time 7, °C; Ar is the spatial discrete spacing,
0.002 m; g; is thermal production of metabolism of the jth node, W/m?; subscripts ;,, and ;_;
are the next and last inner node; p; is the density of the jth node, kg/m?; ¢; is the specific heat

of the jth node, J/(kg-k); subscript ._ is the last time, s.

For the three boundary layers (core-muscle layer, muscle-fat layer and fat-skin layer) and at the
poles, the discretization of the boundary layers for steady and transient processes are shown in

Egs. (18)-(19):

Aj-1 Aj-1 i1 Aj+1 -1+ G, A1 Ao A A

T: =(—T;_ ——T;_ —T: A
=Gzl anar gz it g it T Q2 2rAr © Ar? erAr) (18)
oT;
J
or lr=0 = Cres + Eres (19)

14
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Where q;_; and q;,, are the intensity of the internal heat source at the upstream node and the
downstream node of the boundary node, respectively, W/m?; Aj—1 and 4;,, denote the thermal

conductivity of the upstream node and the downstream node, respectively, W/m-K. C,.s and

E,s are the convective and evaporative heat dissipation, W/m?.
2.2  Data acquisition from the elderly for model optimization

To establish and modify the model, measured data needed to be collected from the Chinese
elderly. The data acquisition was done in a well-controlled climate chamber. The characteristics
of the climate chamber and the adjacent preparation room have been described in detail in
existing studies [62—64]. To properly activate the thermal regulatory responses of the human
body and collect a variety of skin temperatures under transient conditions, warm-neutral-warm
temperature step change experiments were designed. The air temperature was determined to be
25°C with 50% relative humidity (RH) as the neutral environment [65], while the warmer
temperatures were 28, 30, 32 and 34°C with 60% RH. Air speed was kept at < 0.1 m/s.
Accordingly, there were three stages in the experimental sessions as shown in Fig. 3. Stage 1
was designed as a warm condition with one of the four levels (28, 30, 32, or 34°C) for 30
minutes. Then stage 2 started when the subjects moved back to the preparation room (25°C)
and lasted for 60 minutes. Then, elderly subjects moved to the climate chamber again for

another 30 minutes with an air temperature in stage 3 the same as that in stage 1.

| I, N|
| | 1
-30 -10 0 30 Stage 2 90 120 min
Preparation room
Condition 1 25°C
Condition 2 25°C
Condition 3 25°C
Condition 4 25°C

Fig. 3. Experimental protocols.

15
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Ten local skin temperatures were continuously measured throughout the whole experimental
process at 30-second intervals. The instruments used for measuring skin temperatures were skin
temperature sensors (Type: TMC6-HE) with a measuring range of —40—100°C and an accuracy

of £0.21°C. The mean skin temperatures were calculated by weighting the following ten sites:

head (0.06), chest (0.12), abdomen (0.12), back (0.12), upper arm (0.08), lower arm (0.06),

hand (0.05), upper leg (0.19), calf (0.13) and foot (0.07) [66].

2.3 Subjects and demographic representation

There were 24 elderly participants who were within the normal range (18.5-30.0 kg/m?) [67]
of body mass index (BMI). The participants were between 60 and 74 years old. The ethics
approval number is CCNU-IRB-2019-002. Written informed consent was obtained from every
participant. Every participant experienced all the experimental protocols. A key element of the
thermoregulation model is its demographic representation which confines its applicable
population and corresponding anthropometric characteristics. As the scope of the present model
applied to the Chinese elderly, the demographic representation was verified by comparing the
demographic (age) and physical (weight, height, fat percentage and BMI) parameters of the
experimental subjects to those from the census. Since age is not normally distributed in the
elderly population (60+ years), the standard age of this study was defined as the 50th percentile
(median) of the elderly population. According to the 2022 Chinese census data [68] and
cumulative distribution by age group shown in Fig. 4, 66 years was the median age. The results
in Table 2 showed that the relative differences between subjects’ data and national data were
all lower than 4%. The good fit between the census data and the data of the modelling subjects
allows the prediction model to be representative of the Chinese elderly population, maximizing

its applicability and having lower prediction bias due to group differences.
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Fig. 4. Age distribution of the census.

Table 2. Comparison between subjects’ anthropometric data in the present study and national census
data in 2022 [69].

Body mass Fat

Data source Gender '(A‘%Zr) Ylge)'ght Z'Tf)'ght index percentage
Y ’ (kg/m?) (%)
Male 67.3x1.4 66.1£2.9 1.63+0.02 24.8£1.0 23.6x1.0
Subjects’ data
Female 66.3+1.0 58.1+2.3 1.51+0.02 24.2+0.7 34.3+1.2
. Male 66 68 1.65 25.0 233
National data [69]
Female 66 60 1.54 25.1 33.0

Note: The subjects’ data are presented with mean + standard deviation. The national data are presented
with the median age and average weight, height, body mass index and fat percentage values for the
median age.

3. Optimization of the passive system

Due to the variation in age-related decay of the thermoregulation abilities of the elderly, the
passive system was optimized by sensitivity analysis and the corresponding parameters were

adjusted by measurement or literature data.
3.1 Sensitivity analysis of passive parameters

All the passive parameters of the base model are divided into two types. The first type was
initially adjusted according to the physical data of elderly subjects. Thus, height, weight, gender
and clothing insulation were directly changed in the model. The second type cannot be directly
measured so the quantified effects including basal metabolic rate, body surface area (BSA), fat

percentage, basal skin blood flow and cardiac output are unknown. As a result, these parameters
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need further sensitivity analysis to evaluate their influence on skin and core temperatures. In
the present study, sensitivity analysis adopted a local approach belonging to the one-factor-at-
a-time method [70]. Thus, only one variable is altered while all the others are stable. In Table
3, the values indicate changes compared to the base case (Chinese young adults) [60] that were
determined from existing literature quantifying age-related physiological changes. Relative
changes of “0” mean no change from the base model. The relative changes in BSA were
determined by the results using different calculation methods in the references [54,58,60].

Table 3. Input parameters and values for sensitivity analysis.

Parameter Unit  Base case value Relative changes from base case  Reference
Basal metabolic rate  W/m? 44 0, —10%, —20%, —30% [43]
Male: 0.0057 X H+0.0121xW+0.0882 -15%, —10%, —5%, 0, +5%

2 5 5 B s B
BSA m Female: 0.0073xH+0.0127xW-0.2106 ~ +10%, +15% [5458,60]
Fat percentage % 34.3 for females and 23.6 for males 0, +10%, +20%, +30% [53,69]
Basal skin blood 0, —10%, —20%, —30%, —40%,
flow L/h 11.89 ~50% [71]
Cardiac output L/h 285 0, =10%, —20%, —30%, —40% [58]

Note: BSA, body surface area; H, height (m); W, weight (m).

A thermoneutral condition and a warm condition were selected as the environmental conditions
for sensitivity analysis: indoor operative temperature of 26°C or 34°C, RH of 60%, air speed of
0.1 m/s, clothing insulation of typical summer clothing 0.5 clo. The simulation time was 1 hour

and the results for the 60th minute were analyzed and shown in the following section.

3.2  Sensitivity analysis results and interpretation

Sensitivity analysis results of mean skin temperatures and core temperatures are shown in Fig.
5. It can be seen that for both males and females, higher body fat percentages can result in lower
mean skin temperatures. This result is consistent with the existing finding that higher fat layer
thickness can reduce heat conduction from inside to outside the body. This is also the reason
that elderly people have lower skin temperatures than the young group. The lower cardiac
output can result in lower thermal exchange due to blood circulation. Similarly, as a branch of
blood output from the heart, skin blood flow has the same way of influencing mean skin

temperature by reducing the heat exchange between the skin layer and ambient environment.
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In comparison, core temperatures rose with body fat percentage, as a result of less heat
dissipated from and more heat retained within the human body. For the reduced cardiac output
and skin blood flow, less heat can be circulated from the central blood to each layer and from
the skin layer to the surroundings. From the results above it can be seen that all the analyzed
parameters have apparent influences on the physiological responses of the elderly, although the
influence of body surface area is not as great as those of the other parameters. This identifies
the importance of selecting accurate parameters for the elderly with the values needing to be

carefully determined to represent the age-related physiological changes of the elderly.
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Fig. 5. Sensitivity analysis results.

3.3 Optimized passive system parameters

As a consequence of the sensitivity analysis’s findings, the following values were adjusted for

Chinese elderly people. The values were directly measured or obtained from published research.

*  Body weight of 66 kg for males and 58 kg for females.
*  Body height of 1.63 m for males and 1.51 m for females.

* Body fat percentage of 23.6% for males and 34.3% for females according to the
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measurement statistics for the subjects.

* BSA was obtained from the equations customized for the Chinese elderly [58].

e A 20% reduced metabolic rate from [53,58,72] with 0.8 met (1 met = 58.15 W/m?) when
sitting.

*  Skin blood flow reduced to 8.9 L/h, 25% lower than for young adults [54].

*  Cardiac output reduced to 223.2 L/h for Chinese elderly [58].

4. Optimization of the active system

After changing all the passive systems in the model, the active system was then optimized. The

corresponding set points and active parameters were modified as stated above.
4.1 Modification of body temperature set points

The body temperature set point is a key element in the active system because the error signals
were all calculated based on the set points, as shown in Section 2.1.2. When the body
temperature is at the set point temperature, the thermal sensation is neutral and the body has no
significant active system responses, i.e. no significant sweating or shivering activities.
Meanwhile, the cardiac output and skin blood flow remain at basal blood flow levels. Under
this condition, the body’s heat- and cold-sensitive neurons are in a state of equilibrium. The set
points for male and female elderly were separately calculated in the present model. Linear
regressions of thermal sensation vote against air temperature were performed to obtain the
neutral air temperatures at thermal sensation votes equal to 0. The obtained neutral temperatures
were 26.7°C for males and 26.5°C for females. The neutral temperatures were input into the
model as environmental settings. Meanwhile, sensible sweating and shivering were set to zero.

After calculating the temperature of each layer for 3,600 seconds, the set points in layers were
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obtained, as shown in Table 4. Compared with the young group, the elderly have lower neutral
skin temperature and lower neutral core temperature; as found in previous studies [73,74].

Table 4. Set points (°C) of layers of the elderly model and the base model.

Agegroup  Gender Core Muscle Fat Skin :):I%r;tgal

Elderly Male 36.6 36.5 36.0 34.2 36.4
Female 36.4 36.3 35.7 33.6 36.2

Young [60] Male 36.9 36.5 35.3 34.2 36.7
Female 36.7 36.4 35.1 33.8 36.5

4.2  Optimization of active parameters

Under neutral and warm environments, the main thermoregulatory activities include
vasodilation, vasoconstriction and sweating. In this way, the parameters to be optimized include

Cat, Sans Cst» Sst» Csw and Cgy,, a@s introduced in Section 2.1.2.

4.2.1 Target function

An optimal combination of active parameters enables the model to perform with high prediction
accuracy. As a result, the target function should first be determined to evaluate model
performance. Root mean square error (RMSE) has been a frequently used evaluation method
for thermoregulation models [33,54,75,76]. RMSE quantifies model performance using the
differences between predicted and measured values. In this study, the error was evaluated using

Egs. (20) and (21).

120

RMSE = Z(Tsk,k — Toer)?/120 (20)
k=1

%:1 RMSEn,gender

2 (21)

ARMSEjenger =

where Ty, is the model output mean skin temperature at the kth minute, °C; Ty is the

measured mean skin temperature at the kth minute, °C; RMSE is the mean squared error of the
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model per condition, °C?; RMSE, genger is the RMSE of the nth condition of males or females,
°C?; ARMSE jp 4 (average root mean squared error) is the target function to determine model

performance, i.e. the mean of RMSE for the four conditions (n = 1-4) for males or females, °C?.

4.2.2 Selection of the optimization algorithm

This study selected a hyperparametric optimization search method. Among the methods used
in deep learning, TPE (Tree-structured Parzen Estimator) is a hyperparameter tuning method
based on Bayesian optimization. The core idea of TPE is to use a priori knowledge to gradually
narrow down the hyperparameter search and finally get the optimal combination of
hyperparameters. The method has higher efficiency and accuracy compared with traditional

grid search and random search methods [77].

4.2.3 Results and interpretation

The change ranges of the active parameters were first defined. For each parameter, ranges
between —50% and +50% of the original values were determined and the TPE search was
conducted in 1% steps. The model was optimized for 100 trials and the results are shown in Fig.
6. The TPE algorithm can adaptively adjust the exploration range to achieve a stabilized
ARMSE after 40 iterations. The accuracy can achieve the best performance within 75 iterations.

The calculated ARMSE is 0.1°C for females and 0.4°C for males.

16
©  Objective Value

— Best Value

14

(C)
¢ error (°C)

Trial (time) Trial (time)

(a) Male elderly (b) Female elderly
Fig. 6. Average root mean squared error results of the tested 100 rounds.
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Fig. 7. Parameter importance on the results of average root mean squared error.

Fig. 7 further interprets the relative importance of the passive parameters on the ARMSE results.
For both males and females, the core vasodilation coefficients and the core sweat coefficients
have been the most influential factors. In other words, the changes in these parameters have
greater influence on the model prediction accuracy than other parameters. Moreover, the model
performance for males is also influenced by skin vasoconstriction coefficients. This is because
elderly males have higher neutral skin temperature (34.2°C) than females (33.6°C). Under the
same thermal condition, vasoconstriction is more easily triggered in males. The optimum

combination of the active parameters is shown in Table 5.

Table 5. Optimum active parameters.

Age group Gender Csw Ssw Cal Sal Cst Sst
Male 168.17 7.56 3467 413 0.63 0.93

The elderly Female 85.85 3.29 3714 270 0.49 0.92
Theyoung [s0]  Male 117.60 1080  61.90  3.97 0.63 0.63
young Female 58.80 5.40 61.90  3.97 0.63 0.63

Note: Cqw, the sweating coefficient for the core layer, W/ °C-m?; Sq, the sweating coefficient for the
skin layer, W/ °C-m?; Cq, the vasodilation coefficient for the core layer, L/(h-°C); S, the vasodilation
coefficient for the skin layer, L/(h-°C); Cs, the vasoconstriction coefficient for the core layer, 1/°C; Ss,
the vasoconstriction coefficient for the skin layer, 1/°C.
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5. Model validation

5.1 Validation data

The model was validated with a set of published data [63] originating from thermal comfort
experiments in a climate chamber under temperature ramps. Sixteen healthy gender-balanced
elderly people participated in the experiments and experienced both thermal conditions. The
average physical data for this group of elderly people were: age 64 years, weight 61.4 kg, height
1.6 m, BMI 23.9 kg/m? and body fat percentage 27.3%. The subjects were dressed in summer
apparel with an average thermal resistance of 0.55 clo. A temperature ramp-up condition (from
18 to 34°C within 150 min) and a temperature ramp-down condition ( from 34 to 18°C within
150 min) were tested. During the studies, relative humidity was around 55% and nearly no wind
(roughly 0.05 m/s). Measured mean skin temperatures were calculated from the four local skin
temperatures with corresponding weights: chest 0.3, upper arm 0.3, thigh 0.2 and calf 0.2.
Before the test started, the participants rested in the preparation room for half an hour to
evaporate all sweat and eliminate the influences of previous thermal experiences. As shown in
the study [63], the room setting temperature rose or decreased by 2°C every 15 minutes.
Accordingly, the above-mentioned parameters and the recorded air temperature settings were
input into the developed thermoregulation model. In this way, the simulation of the temperature

ramps was achieved by inputting a series of temperature conditions and periods.

5.2 Validation process and model performance

The validation of the model was achieved by inputting thermal conditions and periods in
Section 5.1 of the temperature ramps into the model. In this way, the thermal conditions were
simulated. The other parameters were the same as the validation experiment scenarios. The

metabolic rate was set as 0.8 met and the clothing insulation was set as 0.55 clo. Relative

24



10

11

12

13

14

15

16

17

18

19

humidity was kept at 55%. In this way, the model can simulate and output a series of skin
temperature results with time. By changing the temperature change direction and preset genders,
the model output can also demonstrate gender differences under different thermal conditions.
The predicted skin temperatures were compared with the actual measured data and the original
model in Fig. 8. Fig. 8 (a) and (b) represent the results of the ramp-down thermal condition (34—
18°C) for males and females, respectively. Results show the optimized model’s prediction
results were closer to the measured data with less overall bias than the original model prediction,
indicating a better prediction performance of the optimized model in this study. Similar results
can also be found in Fig. 8 (c) and (d) under the ramp-up thermal condition (18-34°C) for males
and females, respectively. The optimized model prediction results were also closer to the
measured data and more prediction data fell into the 95% confidence interval. As a result, Fig.
8 shows the higher performance of the optimized model for the elderly than the original model
for the young. To quantify the model performance and compare it with other thermoregulation
models for the elderly, RMSE was calculated to evaluate the deviation between the actual and
predicted mean skin temperature. The calculated RMSE ranged from 0.10 to 0.35°C under the
four scenarios, which is a range lower than other models for the elderly, including the 0.58—
0.83°C of the joint system thermoregulation model [54] and 0.2-0.4°C of a modified Stolwijk
model [76]. The results indicate a good prediction ability for the developed thermoregulation

model.
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6. Discussion

6.1 Advantage and improvement over the existing models

The proposed model’s applicability for the elderly in China was demonstrated and it effectively
predicted mean skin temperatures with strong performance. The optimization involves a
thorough consideration of various age-related parameters within both the passive and active
systems. This includes factors such as physical parameters, physiological changes, metabolic

rates and thermal regulatory mechanisms that are known to differ across different age groups.

The developed model in this study inherits the advantages of the original model with not many
input parameters and quick calculation. That is, the model does not need to consider complex
local parameters. The user only needs to set the environmental parameters according to the

application population and modify the human physical parameters when necessary.

The model innovatively incorporates a holistic optimization of both passive and active
parameters, introducing a more interpretable optimization approach for the active parameters
by leveraging the TPE algorithm. This algorithm seamlessly combines global search and local
fine-tuning characteristics in optimizing the human thermoregulation model. Compared with

existing optimization methods, including changing threshold temperature for thermoregulation
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activities [43,56], optimizing the active system with a genetic algorithm [53] and optimizing
only passive parameters but not active parameters [58], the TPE algorithm possesses several
advantages: high computational efficiency, the ability to avoid getting stuck in local optima,
fine-grained searches once potential optimal regions are found and stronger interpretability by

determining the importance of each parameter.

6.2 Limitations and future work

Due to ethical and health considerations, a significant portion of the available data has been
collected from older individuals who are in good health. Thus, the model was modified and
verified only for healthy elderly people. However, it is important to acknowledge that various
health conditions can impact a person’s thermoregulatory functions. A database for unhealthy

elderly with different levels of frailty requires further consideration.

In this study, the modulation of cardiac and cutaneous blood flow was primarily achieved
through the implementation of vasoconstriction and vasodilation mechanisms. However, it is
essential to acknowledge the intricate nature of blood circulation within the human body. The
regulatory processes extend beyond simple vascular adjustments and encompass various factors,
including hormonal influences and individual health conditions. It is imperative to recognize
that this research provides a focused perspective on blood flow control, with limitations arising

from the limited exploration of detailed mechanisms governing blood circulation.

The validation of the thermoregulation model for the elderly encountered certain limitations
that warrant consideration. One notable challenge was the scarcity of comprehensive datasets
specifically tailored to the elderly population, which affected the model’s ability to generalize
across diverse age and BMI groups within this demographic. The reliance on existing literature

and limited real-world data for model validation introduced constraints in accurately simulating
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diverse scenarios. Moving forward, addressing these limitations through the acquisition of more
extensive and diverse datasets will be essential for enhancing the overall robustness and

applicability of the thermoregulation model for the elderly.

6.3 Application

Human thermophysiological response underpins thermal sensation in transient environments.
By comprehensively considering the age-induced thermal response changes within the
applicable population, the model is able to provide a more accurate representation of the thermal
comfort and energy efficiency requirements for different age groups, particularly the elderly.
This information can be invaluable in designing and optimizing various systems, such as
building HVAC systems or personal thermal management devices, to ensure optimal comfort
and well-being for individuals across the age spectrum. Real-time and long-term monitoring
and analysis are efficient methods for securing comfort conditions and may be used in the

healthcare sector.

7. Conclusions

With the growing need to improve the quality of life and well-being of the increasing elderly
population, this study aimed to develop a thermoregulation model for the Chinese elderly based
on an existing one-segment four-node base model for a younger group. By incorporating age-
related physical and physiological parameters, the model comprehensively captured and
adjusted the model’s passive and active parameters. The main findings of the study are shown

as follows:

*  The demographic representation of the model was verified. A good match between
census data and elderly subjects was found, with an average age of 67 and 66 years,

respectively. The relative differences between census data and subject data were all
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lower than 4% in terms of weight, height, BMI and fat percentage. The finding implies
the demographic representation of the model to be applied to the Chinese elderly
population.

*  The influences of passive parameters on mean skin temperature and core temperature
were quantified by sensitivity analysis. To take the age-related changes into account,
the passive parameters were adjusted to fit the elderly’s physiological characteristics.
The modified physical parameters include weight, height and fat percentage while the
adjusted physiological parameters include BSA, metabolic rate, skin blood flow and
cardiac output.

* To optimize the active system, body temperature set points were reset according to
thermal responses under neutral thermal environments. The elderly have 0.3°C lower
neutral core temperature. The active parameters were subsequently optimized with the
TPE hyperparameter tuning method which is based on Bayesian optimization. The
results show lower ARMSE values below 0.4°C and the optimized active parameters

show reduced thermal regulatory responses for the elderly.

The developed model was verified by the published data with temperature ramps. The
prediction results show good agreement with the measured data with the RMSE range of 0.10
to 0.35°C. This research can help to understand the thermal responses of the elderly and can
show building managers and operators how to balance thermal comfort and energy efficiency

in elderly residences and care homes.
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