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Abstract

Mixed-mode (MM) buildings are designed to provide mechanical air conditioning and
natural passive cooling as regulated by occupants. This would enable the potential of
shifting the narrow comfort range in HVAC (heating, ventilation and air conditioning)
buildings to a wider range similar to NV (naturally ventilated) buildings. Recent studies
have provided evidence of higher degrees of thermal adaptation among occupants in
MM buildings. However, limited attention has been given to understanding the linkages
between these expanded ranges and the specific adaptive behaviors or contextual
factors that influence them. This paper aims to investigate the influence of occupants’
adaptive behaviors on thermal comfort in MM buildings. A one-year field study in two
MM office buildings with 5,096 valid questionnaires was conducted in Chongqing,
China, under hot summer and cold winter climatic characteristics by developing
machine learning algorithms compared with classic thermal comfort models. Results
show that incorporating adaptive behaviors as input variables enhances the performance
of machine learning algorithms, leading to improved overall model performance, while
the classic thermal comfort index PMV (predictive mean vote) presents the limited

accuracy but the best recall in most cases. This paper also demonstrates that some



energy-inefficient thermal adaptations were found in MM buildings during the HVAC
mode, such as using air conditioning in mild spring and autumn, and frequent window
openings during cooling periods of summer. It is therefore valuable for future research
to further focus on how MM buildings both incorporate positive features and reduce

negative features during the HVAC and NV modes.

Keywords: Adaptive thermal comfort, PMV, Adaptive model, Adaptive behaviors,

Machine learning

Abbreviations

AC Air conditioning

Clo Clothing level

DT Decision Tree

FN False negative

FP False positive

HVAC Heating ventilation and air conditioning
KNN K- Nearest Neighbor

Met Metabolic rate

MM  Mixed mode

NB Naive Bayes

NV Naturally ventilated

PMV  Predicted Mean Vote

RH Relative humidity

RHout  Outdoor relative humidity
SVM  Support Vector Machine

Ta Air temperature

T; Radiant temperature

To Operative temperature
Tout Outdoor air temperature
TN True negative

TP True positive
Vel Air velocity




1. Introduction

Providing thermally comfortable conditions in buildings not only benefits occupants’
health, satisfaction, productivity, and well-being [1] [2] [3], but also directly influences
building energy usage from HVAC (heating, ventilation and air conditioning) systems
[4]. It is suggested that increasing cooling setpoints by 2.8°C (22.2 to 25°C) and
decreasing heating setpoints by 1.1°C (21.1 to 20°C) can contribute to total HVAC
energy savings of 27% and 34%, respectively [5]. To better understand the essential
cause-and-effect variables behind thermal comfort, many researchers have focused on
developing empirical experiments to study human thermal perception in both well-
controlled climate chambers and real-world buildings [6]. Relevant research findings
were later employed to develop solid theories for mathematically describing thermal
comfort, which have been then successfully incorporated into international and national
standards, such as the PMV index in ISO 7730 [7] and ASHRAE 55 [8], adaptive
models in EN 16798 [9] and UK’s CIBSE Guide A [10], aPMV model in China’s GB/T
50785 [11], etc. These thermal comfort models are stipulated by the standards to
determine acceptable thermal environments for occupants and to calculate
heating/cooling loads for equipment sizing in NV (naturally ventilated) and HVAC

buildings.

However, for mixed-mode (MM) buildings with a hybrid strategy of using both natural
ventilation and mechanical devices, operable evaluation approaches are still in progress.
According to EN 15251 [12], MM buildings should be evaluated using both PMV and
adaptive approaches depending on operation modes, whereas ASHRAE 55 updated the
applicability of using the adaptive approach from “must be no mechanical cooling
system for the space” (ASHRAE 55-2004 [13]) to “no mechanical cooling system or
heating system in operation” (ASHRAE 55-2020 [8]). Although the statement “in
operation” loses the strict requirements for adopting adaptive comfort theory in
buildings, these “black or white” binary distinctions could increase the difficulty of
applying appropriate thermal comfort models in practice because turning on/off the

heating or cooling systems may occur frequently in MM buildings, making constant



switch of evaluation methods less feasible from an engineering perspective.

1.1 Adaptive thermal comfort in MM buildings

Many field studies have already been conducted around the world to investigate the
“hybrid philosophy” in relation to occupants’ thermal comfort in MM buildings, as
shown in Table 1. Most of the findings suggested that the adaptive model with a wider
temperature range is more suitable for MM buildings because MM buildings provide
more control opportunities for thermal environments, such as operating windows [14]
and adjusting clothes [15], which can positively affect occupants’ subjective
satisfactions and thermal expectations. One common criticism about using the PMV
index in HVAC buildings is that it encourages buildings to operate in a very narrow
temperature range [16] and it isolates humans from the natural rhythms of the outdoors
[17], resulting in an addiction to narrow artificial environments maintained by
avoidable energy consumptions, but this narrow range has the potential to be optimized
in MM buildings. Leaman and Bordass [ 18] compared post-occupancy evaluation (PoE)
results from 21 MM and 64 HVAC buildings in the UK and discovered that occupants
in MM buildings were more tolerant of changing indoor environments than occupants
in HVAC buildings. Thermal comfort surveys from Indonesia [19] and India [20] also
demonstrated that the upper limit and general range of comfort temperatures in MM
buildings can be extended by 2-3°C and 5°C, respectively, when compared to HVAC
buildings. Therefore, adaptive models with a more flexible and wider temperature range
are often recommended for assessing thermal environments in MM buildings,

particularly during their HVAC mode compared with fully HVAC operated buildings.

Table 1. Thermal comfort research in MM budlings.
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On the contrary, the classic PMV index received less positive attention in MM buildings
due to its limitation to maximize the potential of energy saving [29] and low predictive
accuracy in real buildings [30]. Several field studies reported that occupants’ neutral or
comfort temperatures in MM buildings during HVAC mode are generally higher (1.5°C
in [26], 2°C in [20], and 2.1°C in [29]) than PMV predicts. But a few studies have
shown that PMV can accurately predict occupants’ actual thermal sensation during the
HVAC period of MM buildings [31]. Although current standards recommend clear
guidance for evaluating thermal environments in HVAC and NV buildings (PMV [8]
for HVAC, adaptive model [10] or aPMV [11] for NV buildings), an effective and
distinct approach for MM buildings is lacking and has yet to be developed because a
simple combination of stipulations from NV and HVAC buildings may not fully
represent the actual thermal adaptations and energy-related behaviors of occupants in

MM buildings, resulting in inappropriate or misleading outcomes.
1.2 Machine learning algorithms in thermal comfort research

One of the major trends in thermal comfort research is the shift towards the
implementation of personalized models trained by machine learning algorithms [6].
Unlike traditional physical or empirical thermal comfort models that can’t be updated
or modified with extra input variables in MM buildings (age, gender, climate, season,
building type, time of day, etc.), machine learning algorithms are highly data-driven
and have the advantage of being able to accommodate new variables and patterns with
high accuracy and efficiency [32]. Many studies already employed machine learning
algorithms to investigate how specific contextual factors affect indoor thermal comfort,
such as wrist temperature [33], facial temperature [34], heartrate variability [35],

occupied time [36], gender [37], age [38], etc.

What’s more, the emergence of Internet of Things (IoT) technology or digital

transformation enables building management to learn about occupants’ thermal comfort



directly from real-world data generated through new and enormous data sources
empowered by smart sensors and devices, such as smartphone [39], wristband [33],
thermal camera [34], RGB camera [40], EEG (electroencephalogram) measurements
[41], automatic sphygmomanometer [42], etc. These cutting-edge methods have the
potential to revolutionize thermal comfort research by analyzing affluent input features
and large-volume datasets, allowing complex relationships between variables to be

identified.

Previous studies have shown that incorporating additional input dimensions from
contextual factors or IoT data collected in climate chambers or field studies can
significantly enhance the predictive performance of machine learning-based models.
For instance, most studies have reported achieving remarkable accuracy of over 60%
[43], which outperforms the predictive accuracy of classic thermal comfort models,
such as PMV with 30-40% accuracy [30]. However, merely using metric “accuracy” to
evaluate a model could be misleading due to randomness when the dataset is
imbalanced [43]. What’s more, machine learning in thermal comfort research is often
employed to enhance the predictive performance of models by embedding additional
inputs, but such inputs are typically utilized in a data-driven manner to improve model
accuracy rather than to elucidate the underlying mechanisms of thermal comfort.
Therefore, although machine learning can improve prediction, it may not necessarily
contribute to a deeper understanding of the theoretical foundations of thermal comfort.
While current studies have demonstrated that occupants in MM buildings have a wider
acceptable or neutral temperature range than in HVAC buildings due to more flexibly
adaptive approaches, there is still a need for a quantitative proof of the inner interactions
of these extra factors and how they influence occupants’ actual thermal comfort. This

will provide a more comprehensive basis for designing and operating MM buildings.

1.3 Objective of this study

To address the gaps identified in the previous sections, this research aims to investigate
the influence of occupants’ adaptive behaviors on thermal comfort in mixed-mode

buildings. It explores the specific impacts of adaptive strategies on occupants’ comfort



experiences and evaluates the effectiveness of machine learning algorithms in capturing
and predicting these dynamics compared with classic thermal comfort models. The
schematic overview of this research as presented in this paper is shown in Fig. 1,
illustrating how each aspect of our methodology contributes to achieving specific
objectives. Firstly, a one-year “right-here-right-now” field study in MM buildings with
both air conditioning and natural ventilation modes was conducted, and relevant
adaptive behaviors were recorded as extra model inputs. Secondly, the applicability of
two popular machine learning algorithms, namely naive bayes (NB) and random forest
(RF), was investigated with and without feature selection process. Their performances
were assessed and compared with classic thermal comfort models using four evaluation
metrics: accuracy, precision, recall, and F1-score. Finally, adaptive behaviors that can
provide a positive impact during the establishment of machine learning models were
selected and then examined using the Mann-Whitney test to see if there is statistical

significance of thermal environments before and after any specific adaptation was

implemented.
Objectives Methodology
Explore occupants' Data foundation and initial overview Chap.2.1 Field study

|

adaptive behaviors Chap.2.2 Data cleaning

Feature selection
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Compare machine feature
learning with traditional <€——

models Classic inputs| Chap.2.4.1 PMV index

Chap.2.4.2 Adaptive model
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— Chap.2.6 Statistical analysis
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Fig. 1 Schematic overview of research methodology in relation to objectives



2. Methodology

In this study, a one-year investigation was conducted in five offices from two MM
buildings at Chongqing University, China. The Chongqing area is situated at 29.56°N
106.55°E and is classified under the Cfa Kdppen climate type (humid subtropical),
ASHRAE climate zone 3A (warm-humid), and HSCW zone (hot summer and cold
winter) in China’s Thermal Design Code GB 50176 [44]. Chongqing is recognized as
a “furnace city” due to its high outdoor temperatures and humidity levels. The daily
average temperature exceeds 20 °C for seven months of the year, and the average
humidity values consistently remain above 80% [45]. During the winter months, the
daily mean air temperature in Chongqing typically ranges from 5 to 10 °C. The city
also experiences a low level of sunshine rate in winter, with a rate of only 13%

calculated as the length of time with sunshine over the total length of daytime [46].

The right-here-right-now field studies have been carried out in five office rooms from
two academic buildings at Chongqing University. A total of twelve subjects participated
voluntarily with payments and were asked to conduct their typical daily work activities.
Monitoring devices were positioned near each subject to gather real-time environmental
data. Subjects were required to complete and submit questionnaires hourly at least eight
times a day and nine days per month over the entire year through the online survey
platform Wenjuanxing (https://www.wjx.cn), and over 5,000 valid questionnaires were

collected.

2.1 Experimental settings
2.1.1 Environmental monitoring

According to ASHRAE Standard 55-2020 [8], the assessment of acceptable thermal
comfort in a steady state requires consideration of six significant factors, namely
metabolic rate, clothing insulation, air temperature, radiant temperature, air speed, and
humidity. Additionally, in occupant-controlled naturally conditioned spaces, the
outdoor air temperature is regarded as a crucial factor in defining acceptable thermal

conditions. This study did not include data on radiant temperature and air velocity



because: 1) the absence of any significant radiant sources in the investigated offices led
to the assumption that the radiant temperature was similar to the air temperature [47];
and 2) it was inappropriate to place an anemometer for each subject to frequently
measure air velocity and measurement of air velocity was not feasible within the frame
of the project. Given the fact that no ceiling fans or desk fans were used, the air velocity

was assumed to be at 0.1 m/s in the steady state.

The air temperature and relative humidity of both indoor and outdoor environments
were measured utilizing HOBO UX100-011 data loggers, with £0.21°C uncertainty for
air temperature and £3.5% for relative humidity. The data collection was configured
with a frequency of 10 seconds. Indoor data loggers located close to each subject while
maintaining a safe distance from potential heat sources such as computers and lamps.
Outdoor data loggers were placed exterior to each office and shielded from direct

sunshine by the implementing an anti-radiation louver ventilation hood.

2.1.2 Field Survey

This study conducted a one-year survey of thermal comfort in office environments from
December 2020 to November 2021, involving twelve master and PhD students
recruited voluntarily from five different offices in Chongqing, China (Figs. 2 and 3).
Students primarily worked in the office but also attended lectures in other classrooms
or conducted experiments outside the office. In order to gather sufficient data while
minimizing disruptions to the subjects’ daily work, they were permitted to select three
days within the first, middle, and last ten days of each month to take the online survey
during the study period. Subjects were carrying out typical office tasks from 9:00 a.m.
to 6:00 p.m., such as talking, reading, writing, and computer operation. Brief departures
from the office were allowed, such as having lunch or using the toilet. Subjects can
adjust their comfort levels by turning on/off the air conditioner, adjusting the AC set
point, changing clothing, drink hot/cold water, and opening/closing windows as needed.
After performing these adaptive behaviors, subjects were instructed to document them
in the subsequent online questionnaire, which was to be filled once per hour. The

detailed statistics of subjects are presented in Table 2.



Table 2. Statistics information of 12 investigated subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Height (cm)
Weight (kg)
BMI
Gender
Clothing level
(clo)
Metabolic rate
(met)

155 165 180 180 171 173 165 182 160 177 153 166
55 60 71 85 67 68 52 73 54 75 50 67
22.89 22.04 2191 2623 2291 2272 19.10 22.04 21.09 2394 2136 2431
F M M M M M F M M M F M
0.70+ 0.74= 0.75+ 0.65+ 0.66 0.62+ 096+ 0.76= 0.82+= 0.51+ 1.01+ 091+
030 036 043 0.17 032 030 045 026 029 031 022  0.27
1.22+ 1.22+ 1.10+¢ 1.11+ 1.11x 121+ 126 121+ 1.13£ 1.20+& 1.22+ 1.40+
024 022 010 0.13 0.11 026 027 026 0.12 0.18 025 0.13

S 0 & & 05 & &5 &
_I—I_ITIIZIITIH ===
=== =I=) ===

&

5 D B 0O

S

Office 3 Office 4 Office 5

Fig. 2 Layout of investigated offices (surveyed participants are marked in yellow)

HOBO was placed
near each subject

Fig. 3 Field-deployed instruments and occupants of Office 3



To minimize intervening with subjects, two thermal feedbacks were asked: 1) thermal
sensation (continuous ASHRAE scale from -3 cold to 3 hot [8]); 2) thermal preference
(Mclntyre scale of cooler, no change, and warmer). Additionally, metabolic rate and
clothing level were also required to be provided in each questionnaire according to the
descriptions in ASHRAE 55-2017 [8] Informative Appendix L ‘Measurements, surveys,
and evaluation of comfort in existing spaces: parts 1 and 2’. Thermal preference was
chosen as the primary predictive response in this study because it directly indicates
thermal discomfort and expresses subjects’ preferences in practice, thereby guiding the

HVAC system to take appropriate action.

2.2 Data preprocessing
2.2.1 Data cleaning

During the data collection stage, missing values and outliers could occur due to the
improper placement, insufficient power and storage space of the data logger. To
maintain the quality of the dataset, any data points that had missing values for air
temperature, relative humidity, metabolic rate, clothing value, or thermal feedback were
removed from the dataset. Outliers, which are typically distinguished by their extremely
high or low values, can emerge as a result of dubious responses or incorrect data coding
and have a significant impact on regression, model training/building, and overall
statistical analysis. As a result, it is critical to accurately identify and effectively address

outliers in order to avoid biases or inaccuracies in the results.

In thermal comfort studies, stochastic-based methods, such as the 3-Sigma rule or the
Boxplot rule, are commonly used for outlier detection. These methods consider a new
observation to be an outlier if its probability density is low relative to the statistical
distribution established from prior data. However, it has been found that the 3-Sigma
rule may fail to detect outliers, as the presence of extreme values can alter the overall
pattern of the data distribution and impact the detection process due to its reliance on
mean-based calculations [48]. In contrast, median-based approaches like the Boxplot

rule are less susceptible to this influence and tend to produce more reliable results. The



Boxplot rule was employed in this paper for outlier elimination. After removing all the
null values and outliers from the original dataset, the remaining data were utilized for

further analysis.

2.2.2 Data matching and pre-coding

The data in this study were collected from data loggers and online questionnaires. Each
questionnaire represented a single data point, which included several columns of
features for further examination. To match the air temperature and relative humidity
from the data logger with the questionnaire, the submission time of each questionnaire
was located within the timestamps of the data logger near to the subject. The average
values of environmental measurements collected one minute before and one minute
after the questionnaire’s submission time were used to match each questionnaire. For
example, if a questionnaire was submitted at 10:31:04, its environmental data would be

matched with the average measurements taken between 10:30:04 and 10:32:04.

Label encoding method was used to convert text data into numeric data during the
training processes of machine learning algorithms because it was found to achieve
higher accuracy than another commonly used method one-hot encoding on predicting
thermal comfort data [49]. To reduce the imbalanced effects of data units, the input
variables were standardized using the function StandardScaler in the Python package
Scikit-Learn package [50]. The detailed descriptions of investigated adaptive behaviors

are shown in Table 3

Table 3. Investigated adaptive behaviors and their relation to thermal comfort

Adaptive behavior  Filled value in survey Relation to thermal comfort

Change AC setpoint  Off or setpoint value =~ Impact indoor temperature, affect body temperature

Open Window Four opening levels  Impact indoor air circulation and temperature distribution, provide fresh air
Drink hot water YorN Raise body temperature, improve comfort in cool environments
Drink cold water YorN Lower body temperature, improve comfort in warm environments
Add clothe YorN Maintain body temperature, improve comfort in cool environments
Reduce clothe YorN Lower body temperature, improve comfort in warm environments
Leave office YorN Alter individual heat load and metabolic rate
Have dinner YorN Provide energy and heat, affect metabolism and body temperature regulation

Go upstairs YorN Increase metabolic rate, affect heat generation and dissipation




2.3 Machine learning algorithms

This study compared the predictive outcomes of two machine learning algorithms,
naive bayes (NB) and random forest (RF), with traditional thermal comfort models. The
NB algorithm is well-known for its quick completion and solid theoretical foundations
[51], whereas the ensemble tree method RF has recently gained popularity in the

thermal comfort community due to its favourable performance.

2.3.1 Naive Bayes

The Naive Bayes (NB) algorithm is a well-established and straightforward probabilistic
method employed in classification problems. This method is rooted in Bayes theorem
and assumes that the features involved in the classification task are independent of one
another. Despite the fact that this assumption is rarely met in real-world applications,
NB algorithm efficient and even outperforms sophisticated rules in terms of efficiency,

simplicity, and robustness to missing data and noise [51].

The Bayes theorem states that the probability of a class, given certain features, is
proportional to the prior probability of that class multiplied by the probability of the
features given that class. In a particular prediction problem, the predictor features
Xq1,Xo, ..., X7 are utilized to estimate the probability of the response category C; (k =

1, ..., K possible categories). This relationship can be formulated as follows [52]:
Cr = [, x2, 0, Xm) (D)
The NB algorithm employs the concept of conditional probability as:
P(Ci|xq, X3, ey X)), Vk=1,..,K (2)

This posterior can be represented through the Bayes Theorem as:

P(x11x21 vy X |Ck)P(Ck)
P(Cilx1, X2, oy Xm) = Pt %, u )
1, y s Am

(3)

where P(xq, x5, ..., %Xy |Cy) is the likelihood of the features given the class, P(Cy) is

the prior probability of the class, and P(xq, x5, ..., X;,) is the evidence.

The fundamental simplification in the NB algorithm is the assumption of independence



between features, meaning that the likelihood of the features given a class can be

determined as the product of the individual likelihood probabilities:

P(x1, X3, ooy X |C) = P(x1|C)P (x2|C) ... P (2| C) (4)

Then, equation (3) can be transformed by incorporating equation (4):

m
P(GY
PGl 32, wexm) = g | | PGenlC) (5)

Since the evidence term P(xq, x5, ...,X,,) is the same across all classes, the NB
classifier selects the class with the highest posterior probability as the final prediction,

given the observed features, as expressed by the following equation:

m
9= argmax PG | | PGl (©6)
kE(1,2,..K)} i

The NB algorithm has been widely applied in various domains related to energy and
buildings, including battery health management [53], investment in renewable energy
[54], and smart grid systems [55]. Despite criticisms of the NB approach for its overly
simplistic assumption of independence between features [56], there are several reasons
why it often exhibits good performance, including [51]: 1) this intrinsic simplicity often
results in low variance in the probability estimate; 2) the potential biased assumption
may not influence the outcome directly as long as the rank order is correct; and 3)

simple extension to original NB structure can further improve its performance.

To ensure reproducibility in this research, the training and testing data were split in an
8:2 proportion for each NBgefaut model training under the random state of 42 by Scikit-
Learn package (the fixed seed value of the random state ensures that the sample
splitting results are consistent [50]). Rather than using all features for the NB model,
default inputs from the classic PMV index were used to train the initial NBgefauit model
to better grasp the knowledge from prior thermal comfort research. Subsequently, one
environmental or behavioral feature from questionnaires was added to the initial inputs

to train an updated model NBupdate, and the evaluation metrics were observed to see if



they improved. If the performance was improved with the addition of a specific feature,
that feature was marked as selected and included in the final training model NBselect

(Fig. 4). The above process was carried out separately for data collected in each season.

Use PMV inputs to train
default model NB g,
performance Mgy

v

Add one new feature i to
NBefautr performance Mypqaee

Y

Mark feature / as selected

Is feature / the last
feature?

Use PMV inputs and selected
features to train NByejec,
performance M.

Fig. 4 Diagram of training NB models for one season
2.3.2 Random Forest

Random Forest (RF) is a stochastic-based machine learning algorithm that is known for
its robustness and ability to avoid overfitting of a single tree. Traditional tree-based
models suffer from the loss of generalization accuracy on unseen data, and the RF
algorithm can overcome this by combining and training multiple decision trees on
random subsets of data, then aggregating the results from each tree with selected

variables to produce a final prediction [57].

One of central hyperparameters in the RF setting is mtry, which is defined as the number
of randomly selected candidate variables from which each split is chosen, and is often

set to the square root of the input number in classification problems [58].

mtry = ﬁ (7)



where p is the number of inputs.

The splitting criterions of the RF algorithm include two main kinds: “Gini” and
“entropy”. Gini (or Gini impurity) index measures how often a randomly selected
element from the set would be labelled incorrectly if it were labelled randomly

according to the distribution of labels in the subset [59]. It is calculated through:

k

Gini = 1— Z p;? 8)

i=1
where £ is the number of classes, and p is the probability of class ;.

The entropy index explains a set’s disorder or randomness, with lower entropy

indicating greater order or structure [59]. It is calculated through Shannon entropy [60]:

k
Entropy = — Z pjlog,(p;) 9)
i=1

where £ is the number of classes, and p is the probability of class ;.

Both splitting criteria are effective in many applications [46], but Gini impurity is faster
to compute and preferable in large datasets because it is a linear measure as opposed to
Entropy's logarithmic measure. The entropy is more sensitive to changes in the
distribution of classes and is preferred for maximizing information gain at each split

[61].

The remaining tuning hyperparameters in the RF algorithm include number of trees,
maximum depth, and node size: 1) Number of trees (or estimator) determines the total
number of trees in the forest. A larger number of trees usually results in a more robust
model, but at the expense of increasing computation time and becoming too complex,
and it can begin to fit the noise in the dataset rather than the underlying patterns; 2)
Maximum depth represents the maximum depth of each tree, and small max depth
could lead to a shallow tree and poor performance on training data, whereas a large max
depth will result in overfitting and poor generalization to unseen data; and 3) Node size

(or minimum sample leaf) calculates the minimum number of samples required to arrive



at a leaf node, which serves as the final decision point, and generates a prediction at a

tree for a given input sample [62].

Above hyperparameters in the RF algorithm control the splitting principles and the
randomness of aggregating trees, thus influencing the model performance. However,
Mantovani et al. [63] discovered that the effects of tuning hyperparameters in the RF
algorithm are much smaller than other machine learning algorithms, such as support
vector machines (SVM). In building engineering, the RF algorithm has been
extensively utilized and achieved appropriate results [64][65][66], and thermal comfort
related studies are as listed in Table 4. Most of these studies reported acceptable
predictive accuracy levels ranging from 70% to 90%. In comparative performance
studies, the RF algorithm consistently demonstrated outstanding performance, often

with the highest accuracy or only a minor difference from the top-performing algorithm.

Table 4. Random forest algorithms used in thermal comfort studies

Publication Matrix RF SVM AdaBoost DT KNN NN NB Logistic PMV Specific
focus
Luo et al. Accuracy 65.1% 57.7% 61.6% 57.9% 61.7% 60.4% 523% 59.9% 43.1%  Algorithm
[49] comparison
Gao et al. Accuracy 51.41% 37.93% 42.94% 43.33% 41.43% 50.35% 40.43% 33.35% Climate
[67] F1-Score 52.93% 40.91 42.41% 43.34% 41.93% 50.67% 39.40% difference
Zhang et al. Accuracy 70.6%  47.1% 49.6% 54.6% Office
[68] building
Yu et al. Accuracy 79.4% 77.8% 80.2% Feature
[69] selection
Aryal and Accuracy 78% 77% 76% 80% Personalized
Becerik- comfort
Gerber [70] systems
Lietal. [71] Accuracy 72.0% 57.4% 67.7% Individual
Kappa 50.5% O 40.4% prediction
Farhanetal. Accuracy 52.1%  56.7% 51.1% 33.2%  Individual
[72] prediction
Vellei et al. Error 0.2 0.26 0.42 Relative
[73] humidity
influence
Lietal. [74] Accuracy 85% Facial
infrared

thermography



Chaudhuri
etal. [75]

Shetty et al.
[76]
Liu et al
[77]

Wu et al
[78]

Accuracy 92.86%
(Male)

Accuracy
(Female)

Accuracy

94.29%

97.73%

7%
43%

Accuracy
Kappa

Accuracy 70.4%

Gender
difference

Desk fan
usage
Prediction
using  wrist
temperature
Prediction
using  local
skin

temperature

In this study, 20% of the data was divided into test samples with a random state of 42,
and the grid search method under 5-fold cross-validation was used to evaluate RF
predictive performance by identifying the best parameters among the above four
hyperparameters within the range of [10, 25, 50, 100, 200] for a number of estimators,
[“Gini”, “entropy”] for criterion, [3, 5, 10, 15, 20, 25] for max depth, and [1, 2, 5, 10]
for min sample leaf. The RF models have been fed with two rounds of input features:
round one uses all features and round two uses the features selected from the NBselect

modes.

2.4 Classic thermal comfort models in standards
2.4.1 PMYV index

Developed by Fanger during 1970s, PMV (Predictive Mean Vote) index was based on
American and European experiments in well-controlled climate chambers, which views
thermal comfort as a physiological phenomenon of the human body and considers
thermal sensation to be the result of heat transfer between the human body and its
surroundings [8]. The PMV index has been widely adopted for evaluating the HVAC
operation in thermal comfort standards (ISO 7730 [7], ASHRAE 55 [8], EN 16798 [9],
CIBSE Guide A [10], and GB/T 50785 [11]). Despite its widespread acceptance, the
PMV index also faces challenges in its application to built environments [6]: 1) its two
environmental inputs, “radiant temperature” and “air velocity”, require expensive

instruments and human assistance for accurate measurement, and two personal inputs,



“clothing level” and “metabolic rate”, are often simplified or assumed due to the
difficulty in automated collection; 2) The index was designed to predict average
comfort of a large population, but usually performs poorly at an individual level; 3) It
provides limited opportunity for further adaptations or updates, as all relationships

between inputs and outcome are clearly stated.

Several thermal comfort studies have revealed that the PMV index only provides
approximately half the accuracy compared with fine-tuned machine learning algorithms,
as demonstrated in Table 1. To further assess the performance of this index, this study
uses the boundary of +0.5 to represent the hot and cold limits for evaluating thermal
comfort, which is classified as Category II in ISO and EN standards, and Category I in
American, UK, and Chinese standards. The PMV values were calculated using Python

package pythermalcomfort developed by Tartarini and Schiavon [79].

2.4.2 Adaptive model

The “one size fits all” feature of the PMV index could not only lead to poor satisfaction
at the individual level but also risk expending a significant amount of energy in
maintaining a uniform indoor environment in buildings year-round, regardless of
outdoor climates and individual preferences or adaptations. To address these limitations,
many field studies have been conducted in actual buildings to validate the adaptive
comfort concept in various climatic zones. In 1976, Humphreys performed a meta-
analysis of over 30 field surveys conducted between 1930 and 1975, utilizing over
200,000 records to further promote the adaptive principle [80]. He discovered that the
relationship between indoor preferred temperature and monthly mean outdoor
temperature was linear in naturally ventilated buildings, whereas curvilinear in heated
or cooled buildings. This linear relationship of the adaptive model in the most recent
ASHRAE 55-2020 standard was stimulated for determining acceptable indoor

temperature in naturally conditioned spaces as [8]:
Upper 80% acceptability limit = 0.31t,mq(0ur) + 21.3 (10)

Lower 80% acceptability limit = 0.31tpma(our) + 14-3 (11)



where tymaour) 18 the prevailing mean outdoor air temperature, which is a weighted-
mean value from the previous days (from 7 to 30 days [8]) with decreasing weighing

factors.

Although this linear regression-based model includes the adaptive concept that people’s
neutral temperature can vary with changes in outdoor thermal conditions, it is primarily
based on statistical analysis and does not provide detailed explanations of how the
human body is affected by its surroundings, as the PMV index does [81]. To better
examine its predictive performance, the comfort boundaries of the adaptive model in
ASHRAE 55 were also used in this paper as comparative benchmarks for the analysis

in the spring and autumn seasons.

2.5 Evaluation metrics

The performance of thermal comfort models developed using NB and RF machine
learning algorithms, as well as classic PMV/adaptive models, was evaluated using a

confusion matrix: accuracy, precision, recall, and F1-Score:

| ~ TP + TN -
Curacy = TPy FP+ TN + FN (12)
Precision = — 13
recision = TP L FP (13)
Recall = — ¥ 14
ecat = TP Y FN (14

2
F1 — score = (15)

1 + 1
Precision = Recall

where TP is true positive, FP is false positive, TN is true negative, and FN is false

negative.

Accuracy is the most commonly used evaluation metric in thermal comfort studies
(Table 1) because it indicates the fraction of successful predictions among all records
and provides a clear understanding of how frequently the established model is correct.
However, using only one index to evaluate model performance may produce misleading

results. The metric of accuracy can be misleading when the class distribution is



imbalanced, such as in a binary labeled dataset where only 1% of the data are labeled

(Y32

as “+”. If the model predicts all examples as “-”, it will still have an accuracy of 99%
[77]. To address this issue, precision can be used, which is defined as the ratio of true
positive predictions to all positive labels. In the 1% “+” example mentioned above, the
lack of true positive predictions would result in a precision of 0, as the numerator in
equation (9) would be 0. In other words, precision indicates how much the model can
be trusted when it predicts an individual as positive. Therefore, precision is frequently
prioritized in situations where false positives are costly, such as a stock trading system
in which predictive buying signals are extremely important despite missing a few
opportunities [82]. Conversely, recall measures the model’s ability to identify all
positive units in the dataset [43]. If false negatives are important, as in medical
diagnosis, where identifying all potential cases of disease is important even if it means
finding healthy people incorrectly [83], recall becomes the priority. To account for both
false positives and false negatives, the F1 score, which provides a balanced average of
precision and recall, is recommended. Therefore, indicators such as precision, recall,

and F1-score, which provide more detailed performance information, are critical in

evaluating the outcomes of machine learning algorithms [84].

As thermal preference was used as a predictive response in three classes: “warmer”,
“no change”, and “cooler” (Fig. 5, rows and columns represent actual and predicted
classes, respectively), the corresponding precision, recall, and F1 score for 3-class
problems were examined across all classes by using the unweighted mean of the metric

score.
Prediction Sum
A1

Az

Actual

Az

Sum P, P, P3 Total

Fig. 5 Confusion matrix for 3-class classification



Then the overall confusion matrix can be updated as [85]:

Xi TP
ccuracy Total (16)
3
o 1 TP
Precision (macro) = 52 — (17)
i=1
3
1 Th
Recall (macro) = —Z —_ (18)
34 A
=1
F1 -1 3 - 19
— socre (macro) = 521—-’_1 ( )
SITR TR,
i A

where TP; is the number of correct predictions in class-i, Ejj is the number of wrong
prediction j in class-i, A; is total sum of actual samples in class-i, P; is the total sum of
prediction j, and 7otal is the overall number of samples. Equations (13) to (15) denote
that these macro indices place particular emphasis on false positives, false negatives,

and their combined effects in 3-class classification problems.

In this research, the relevant calculations were also achieved by the functions
accuracy_score, precision_score, recall score, and fI _score in Python’s Scikit-Learn
package [50]. In particular, the parameter “average” in each score function was set to
“macro” to evaluate the precision, recall, and Fl-score of multi-class classification

problems by giving equal weight to each class.

2.6 Statistical analysis

To investigate the statistical significance of adaptive behaviors on thermal preference,
several statistical analyses were performed based on the Mann-Whitney test. The
Mann-Whitney test (also known as the U test) is a non-parametric test that compares
the medians of two independent samples to determine whether data from two
populations are significantly diverse [86]. It performs well on small datasets and does
not require the normality assumption in the data distribution as the parametric t-test

does [87]. The Mann-Whitney test has already been used in several thermal comfort



studies to determine whether there was a significant difference between data from two
groups, for example, between PMV and TSV [88], between comfort state and
discomfort state [89], as well as the attitudes of different bill payers toward
programmable thermostats [90]. The Mann-Whitney test carried out in this paper was

implemented using function add stat annotation in Python package statannot [91].

3. Results
3.1 Data overview

After removing null values and outliers from the original dataset (n: 5,135), a total of
5,096 data points remained available for analysis, as shown in Fig. 6. Due to
participants being in their daily work, occasional forgetfulness may result in missed
questionnaire submissions. While efforts were made to remind them, we did not force
subjects to fill out the questionnaire. The final valid response rate for collected
questionnaires is approximately 50%. Our study implemented several measures to
mitigate participant fatigue and ensure the reliability of responses. These included a
concise questionnaire design, a web-based data collection platform, limited
experimentation days, and staged monetary compensation. Analysis of abnormal
responses in Fig. 7, particularly in relation to deviations from optimal air temperature
ranges in ISO 7730, reveals a low incidence of anomalous behavior. Further
examination of individual responses, such as those from subjects 2 and 12, highlights a
correlation between elevated metabolic rates and preferences for cooler ambient
conditions. These findings collectively underscore the conscientious approach of
participants towards questionnaire completion, reinforcing the validity of our study’s

data collection process.

Table 5 summarizes the statistical information of the dataset over this one-year
experiment in four seasons. Because of the Spring Festival vacation and students’ busy
lectures or other experiment schedules, the data sums in winter and autumn are

relatively low compared with spring and summer. In general, the indoor and outdoor



temperatures are highest in the summer, lowest in the winter, and moderate in the spring
and autumn. The average values of outdoor air temperatures during autumn (14.78°C)
and winter (7.12°C) are lower compared to spring (19.28°C) and summer (27.82°C).
The five offices studied are located in MM buildings, allowing occupants to adjust their
thermal comfort through various means such as turning on/off air conditioning,
opening/closing windows, changing clothing, drinking hot/cold water, etc. Fig. 8
depicts the relationship between variables as presented in Table 5, with the matrix
diagonal showing the density plot of the three thermal preferences (“no change”,
“warmer”, and “cooler’”) through different colors. It is evident that the “No change”
preference was prevalent, while the “Warmer” preference was more commonly reported
at low indoor/outdoor air temperatures, high indoor humidity levels, and low clothing
levels. As the subjects carried out their daily office work regardless of the thermal

environment, their metabolic rates appear to remain relatively constant.

Questionnaire Collection State
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Fig. 6 Questionnaire collection state of the one-year experiment



Percent of Abnormal Votes

PN

25 A

20 4

15 A

104 10%

W Prefer cooler when Ta < 19°C
mmm Prefer warmer when Ta > 27°C

!’l:i.%\] 1.7 met: 3 votes, 100%
A} 7

12%

1.1 met: 2 votes, 25%

1.4 met: 5 votes, 62.5%
1.7 met: 1 votes, 12.5%

Subject

I 28% 1
U

Fig. 7 Percent of abnormal votes when air temperature is below 19°C or beyond 27°C

Table 5. Results of investigated environmental and subjective parameters

Parameter Winter Spring Summer Autumn
Indoor Air temperature (°C)  21.55+3.02  23.33 +2.41 26.40+1.26 22.13+£2.07
Outdoor Air temperature 7.12+1.56 19.28 £3.47 27.82 £3.47 14.78 +£3.58
0
AC setpoint (°C) 23.53+2.55 23.88+190  25.03+1.38 25.04 +3.05
Indoor humidity (%) 3578824  5891+832  58.61+8.94 54.91+10.38
Clothing level (Clo) 1.17+0.31 0.77+0.24 0.43+0.13 0.92+0.30
Metabolic rate (Met) 1.24+0.24 1.19+0.21 1.16 £ 0.20 1.15+0.16
PMV 0.12+0.71 0.08 £0.66 0.38+£0.60 -0.11+0.67
Data sum 784 2083 1643 586
PrefNerel:]ce
M\
."‘I \\
A
JASPEN
RS f
EAREY
Tout Setpoint

Fig. 8 Relationship between different variables



Fig. 9 shows the adaptive behaviors and thermal preferences among questionnaires. As
Chonggqing is located in the hot summer and cold winter (HSCW) climate zone in China,
it shows typical needs of cooling in summer and heating in winter. In these mix-mode
offices, investigated subjects turned to use air conditioning frequently in summer (73%)
and winter (96%) compared with spring and (13%) autumn (13%). Despite the fact that
the buildings were air conditioned 96% of the time in winter, the status of windows
being completely closed was only 19%. Subjects also drank water for roughly half of
the time in order to actively maintain thermal comfort, with the intake of cold water
being highest in summer (28%) and hot water highest in winter (42%). For general
thermal preference in each season, subjects in spring expressed a high level of
satisfaction of 82%, which is higher than standard requirements that “a thermal
environment that a substantial majority (more than 80%) of the occupants find
thermally acceptable” [8]. This percentage, however, is not met in the other three
seasons, with obvious cooling needs in summer (23%) and heating needs in autumn and

winter (35%) even under the operation of HVAC systems.

(a) = On mm Off (b) mmm Open mmm Half open Slightly open = Closed
100% T 100% TE% . -—
80% 1 80%
60% 1 60%
40% 1 40%
20% 1 20%
0%~ " . 0% j
Winter Spring Summer  Autumn Winter Spring Summer  Autumn
(C) W Drink hot ~ me No drink W= Drink cold (d) = Warmer = No change W= Cooler
100% 1 100%
80% 1 80%
60% 1 60%
40% 1 40%
20% 1 20%
0% - n - 0%
Winter Spring Summer  Autumn Winter Spring Summer  Autumn

Fig. 9 Distribution of adaptive behaviors and thermal preference: (a) AC on/off; (b)

windows open/close; (c) drink water; (d) thermal preference



The classic PMV index, developed by Fanger, incorporates two subjective factors,
namely “metabolic rate” and “clothing level” into its numerical calculation of thermal
comfort to represent the heat generated within the body and the heat retention/loss due
to the insulation and the air permeability of clothing [92]. Since the participants in this
study performed daily office work such as typing, reading, or talking, their metabolic
rates remained relatively constant across different seasons or thermal environments.
Therefore, the adaptation of clothing level is depicted in Fig. 10 at binned intervals of
one degree of outdoor air temperature. In Table 5, the mean values of clothing level are
1.17,0.77, 0.43, and 0.92 for winter, spring, summer, and autumn, respectively. Fig. 10
illustrates the decreasing linear relationship between outdoor air temperature and
clothing level in spring (orange color) and autumn (red color). However, during summer
and winter, the clothing level remains consistently low (green color) and high (blue

color) with limited opportunities for people to adjust.
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Fig. 10 Variations of clothing insulation in four seasons based on outdoor air
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3.2 Predictive performance of machine learning algorithms
3.2.1 Naive Bayes

Instead of randomly adding or throwing all features into the NB model, four PMV index
inputs, namely T, Clo, Met, and RH, were used to train the initial NBgefauit model, as
T: and Vel were not collected during the experiment. Table 6 shows the predictive
performance of each NBeruie model over the four seasons. Each cell in Table 6 with a
grey background indicates that the NBgeraur model predicts data from that season,
whereas cells without a grey background indicate that the NBgeraut model predicts data
from other seasons. The bold number represents the best evaluation metrics of each
NBgefaurt model across four seasons. The winter NBgerur model shows the least
generalizable potential, with only 12% accuracy in predicting spring data and 10% F1-
score in predicting summer data. However, this poor generalization did not appear
significantly among other NBgefaut models in spring, summer, and autumn, with
accuracies ranging from 53% to 81% and F1-scores ranging from 31% to 44%. Because
spring data is the most imbalanced, with 82% “no change” votes (Fig. 9d), the NBuefaut
models trained from spring, summer, and autumn data all performed best accuracy on
spring test data (81%, 75%, and 78%), posing the risk of “accuracy cheating”, in which
the model turns to generate more “no change” outcomes to improve accuracy. As
precision and recall are concerned with predictive positives and actual positives,
respectively, a trade-off between these two metrics is usually unavoidable under certain
conditions [93]. This is also supported by Table 6, which shows that the best precisions
and recalls do not appear simultaneously on test data from the same season. The high
precisions in summer test data (58%) indicate that the summer NBgefuait models are more

likely to ignore tags than add incorrect tags [94].

Table 6. The prediction power of NBgefauit model for each season

Winter test data Spring test data Summer test data Autumn test data
A P R F1 A P R F1 A P R F1 A P R F1
Winter
NB 62% 43% 41% 40% 12% 30% 34% &% 13% 25% 30% 10% 34% 32% 34% 23%
default

Spring 53% 53% 39% 31% 81% 35% 40% 37% 69% 45% 39% 37% 66% 32% 38% 34%



NBdefault

Summer

62% 47% 40% 40%
NBdefault
Autumn

54% 45% 42% 38%
NBdefault

75% 42% 41% 42% 70% 58%

78% 49% 44% 44% 67% 40%

41%

43%

41%

42%

66%

64%

50%

55%

2%

44%

2%

44%

Note: A: accuracy; P: precision; R: recall; F1: F1-score. In binary classification problems, the F1-score is always
between precision and recall. However, in multi-class classification, the final F1-score may be lower than both
precision and recall due to Simpson’s Paradox [95], which is caused by an imbalanced representation of subgroups
when attempting to interpret the overall performance of subgroups. The values presented in the shadowed

background correspond to model performance trained and predicted using the current season's data, while those in

the non-shadowed background correspond to model performance trained and predicted using data from other seasons.

Fig. 11 depicts the Pearson correlation between four NBgefaut model inputs. Winter data
has the highest sum of dependence degree (1.57 in Fig. 11a), which could threaten the
NB algorithm's fundamental assumption that each input is independent of each other,
resulting in poor model generalization of winter NBgefau in Table 6. During the winter,
the air conditioner was turned on 96% of the time to provide heating (Fig. 9a). It will
raise the indoor air temperature while significantly lowering the RH level and cause a
strong negative correlation (-0.66) between T. and RH in Fig. 11a. The high negative
correlation values between T, and Clo in spring (-0.58 in Fig. 9b) and autumn (-0.37 in
Fig. 9d) also indicate people’s active adaptive behaviors of adding and reducing the

number of clothes during cold and hot conditions.
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Fig. 11 The Pearson correlation coefficient between four NBgefauit inputs (absolute
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The changes in predictive power after adding one feature at a time to the original four
inputs of the NBgeraut model are depicted in Fig. 12, with red and green colors
representing a decrease or increase in performance and circle size indicating the change
rate. During the spring season, several features failed to influence the performance of
the NBupdaate model (no circles plotted), and two features “max Tout” and “min Tout”
contributed positively to all evaluation metrics, namely improving accuracy, precision,
recall, and F1-score simultaneously. Therefore, these two features were chosen for the
training of final spring NBsclect model. Similarly, the added features for winter, summer,

99 ¢ %% <¢

and autumn are 1) “drink cold water” (sum: 1); 2)“max Tout”, “average Tout”, “window

2 e

open”, “weather”, “go out of office”, “outdoor RH”, “drink hot water”, “stay time in

)% ¢

office”, “min Tout”, “go upstairs to enter office” (sum: 10); and 3) “weather”, “go out

of office”, “drink hot water”, “have dinner” (sum: 4).
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Fig. 12 Prediction power changes of the NBupdate model compared with the NBgefaut

model

Table 7 shows the final predictive performance of the NBsclect models after all the
selected features have been added to the NB models. The accuracy of the spring NB
model, which added two new features “max To.” and “min Tou’, remains at 81%, but
precision, recall, and Fl-score increased by 9%, 3%, and 6%, respectively. These
metrics increases for winter and autumn remain in the 1% to 2% range. However, for

the summer data, 10 new features were added to the training process, and accuracy,



precision, recall, and F1-score increased by 3%, 12%, 10%, and 14%, respectively.

Table 7. Prediction power of NBselect model for each season

Winter test data Spring test data Summer test data Autumn test data

A P R F1 A P R F1 A P R F1 A P R F1
Winter

NB 63% 43% 42% 41% 12%  33% 35% 9% 11% 19% 30% 7% 33% 31% 33% 22%
select
Spring

NB 57% 46% 41% 41% 81% 44% 43% 43% 70% 46% 40% 39% 63% 54% 45% 46%
select
Summer

NB 58% 58% 34% 27% 75% 41% 43% 41% 73% 70% 51% 55% 67% 51% 40% 37%
select
Autumn

B 57% 48% 44% 41% 78% 50% 45% 45% 65% 39% 43% 41% 64% 54% 44% 45%
select

3.2.2 Random Forest

Table 8 and Fig. 13 show the best pairs of hyperparameters of the RFa models and
RFselect models discovered by grid search, as well as their predictive performance. Table
8 shows that criteria entropy is preferred during AC-conditioned seasons (winter and
summer), whereas criteria Gini is preferred during non-AC-conditioned seasons (spring
and autumn), with the exception of season autumn from the RF.i model. This
preference for criteria entropy during AC-conditioned seasons can be attributed to the
increase in adaptive AC-related behaviors, such as frequent adjustments in temperature
setpoints and usage patterns, particularly prevalent during winter and summer. Criteria
entropy, being more sensitive to changes in class probabilities, effectively captures the
variability introduced by these adaptive behaviors. Conversely, criteria Gini, which
focuses on the majority class (or “in favor of variables with high category
frequencies”[96]), are more suitable for non-AC-conditioned seasons where adaptive
behaviors are less pronounced. The observed discrepancies between AC and non-AC
conditions underscore the importance of considering contextual factors and adaptive

behaviors in model development to improve model efficiency and predictive accuracy.

The complexity of the RFselect models is generally lower than the complexity of the RFan
models because fewer input features were utilized and the grid search results of the

number of estimators, max depth, and min sample leaf were all reduced at significant



levels in Table 8. It is noteworthy that the observed reduction in complexity of the
RFselect models compared to the RFan models is reflected not only in the utilization of
fewer input features but also in the significant adjustments identified through grid
search. For instance, the grid search results in Table 8 demonstrate notable reductions
in the number of estimators and max depth for RFect models across various seasons,
indicating a more streamlined and efficient model architecture. Specifically, the
reduction in the number of estimators from 100 to 25 in summer and the decrease in
max depth from 25 to 5 in summer highlight the simplification of the RFselect models,
aligning with the principle of Occam’s razor in favoring simpler models when achieving

comparable predictive performance.

Fig. 13 depicts the feature importance rankings from trained RF models. It is clear that
some classic PMV inputs (Ta, RH, Clo) contribute the most to model establishment and
remain at the top, followed by outdoor conditions (Tou, Weather), and adaptive
behaviors (window opening, AC adjustments, water drinking, etc.). One interesting
outcome is that the adaptative behaviors of adding and removing clothes have no
contribution to the RF models, because clothing levels during the summer are already
kept at a relatively low level and have very limited potential for further adjustments, so

the RF training process in summer ignores these two features.

Table 8. Hyperparameter optimization of the RF models using all features and selected

features during two rounds

RFa RFqetcu
Parameter Search space
Winter ~ Spring ~ Summer  Autumn Winter ~ Spring  Summer Autumn
Number of estimators  [10, 25, 50, 100, 200] 200 25 100 100 10 25 25 100
Criterion [“Gini”, “entropy”] Entropy Gini Entropy  Entropy Entropy Gini Entropy Gini
Max depth [3,5,10, 15,20, 25] 25 20 25 25 5 25 20 20

Min sample leaf [1,2,5,10] 1 2 2 1 1 2 1 1
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Fig. 13 Feature importance of RF models in four seasons

3.2.3 Performance comparison between machine learning models and PMYV index

Fig. 14 summarizes the predictive results of the RF models combined with NB models
in section 3.2.1 and PMV predictions. In general, the RF models produce the best results
(green colors). Within RF models, the RFa and RFselece models perform similarly in
summer and autumn, but in winter, the RFai models (light green) slightly outperform
RFselect models (dark green), and this trend reverses in spring. The NB models with all
features (light blue) have very poor predictive accuracy in all four seasons, as irrelevant
features can significantly affect their performance. This is consistent with Luo et al’s
[49] finding that the NB models have the lowest accuracy among all the machine
learning algorithms when evaluating 10,618 samples drawn from twelve features of the
ASHRAE global database [97]. However, after only using selected features from the
framework in this paper, the NB models exhibit competitive performance (dark blue)
similar to the RF models. The RF models, on the other hand, are more robust to the
interference from unfavorable features because each tree in the forest can choose to

give low weights to the less contributed features during training.

Classic PMV models in Fig. 14 have the lowest predictive accuracy in these 3-class

classification problems from winter to autumn (pink, 46% to 62%) when compared to



NBselect and RF models (62% to 88%). This poor performance in practice has also been
frequently criticized in thermal comfort studies as being sometimes equivalent to
random “guessing”, such as around 50% accuracy in binary classification [98], 34%
accuracy in seven-class classification [30], and 6% Cohen’s kappa coefficient in 3-class
classification [77]. The precision of the PMV models in this study is also very low in
the spring, summer, and autumn, as the PMV index is population-based and this study
only includes 12 surveyed subjects, resulting in bias due to individual sensitivity.
However, the recall of PMV in winter, spring, and autumn shows superior results, which
may lead to the final F1-score competitive (40% to 47%) to the NBselect and RF models
(40% to 45%). This low precision and high recall prediction will suffer from incorrect
label returns but will benefit from a high chance of detecting all actual positives, namely
at the cost of introducing irrelevant results to avoid missing relevant results. Therefore,
the PMV index could have many undiscovered potentials when false negatives are
critical and false positives are less important. For example, in infant care [99] or hospital
settings [100], where missing positive detections of thermal comfort can have serious
consequences, the PMV index could be used as a supplement to ensure a higher level

of recall rate for final decision making.
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100% 100% prng

Accuracy Precision Recall F1 Accuracy Precision Recall F1 NB (all)
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Fig. 14 Evaluation metrics of the NB, RF, and PMV models using all features and

selected features

Fig. 15 depicts the training speed of the NB, RF, and PMV models in seconds on a log



scale. The RF models require the longest time to train, ranging from 3.4 to 5.7 minutes.
This may be due to the search grid method used to find the best hyperparameters. On
the contrary, the NB models only take 0.04 to 0.06 seconds to train, resulting in a nearly
real-time response. This is because NB models are straightforward and based on the
mathematically well-grounded Bayes theorem with few hyperparameters to tune. The
classic PMV index, which embeds several iterations and heat balance equations to
calculate intermediate variables (such as determining clothing surface temperature),
presents calculation times ranging from 0.6 to 1.2 seconds. After reducing feature sums
from the original NB and RF training processes, the speeds of training NBselect and
RFselect models (columns 4 and 2 in Fig. 15) are slightly slower than training NBay and

RFa models (columns 3 and 1 in Fig. 15).
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Fig. 15 Model training speed of NB, RF, and PMV models with log scale in y-axis
(Results obtained using a laptop equipped with an Intel 17-8750H CPU, 2.20GHz)

3.3 Performance of the classic adaptive model in spring and autumn

The ASHRAE 55-2020 [8] standard suggests using a graphic method (adaptive model)

to evaluate thermal comfort in occupant-controlled naturally conditioned spaces with



no mechanical cooling or heating system operations with the valid prevailing mean
outdoor temperature ranging from 10°C to 33.5°C. This graphic-based adaptive model’s
x-axis was changed from monthly mean outdoor air temperature to prevailing mean
outdoor air temperature in the 2013 version of ASHRAE 55, while monthly mean
outdoor air temperature is still allowed when prevailing mean outdoor air temperature
is unavailable. The study in this paper was carried out in the hot summer and cold winter
(HSCW) zone in Chongqing, China, where the climate is moderate in spring and
autumn under high NV potentials. Therefore, Fig. 16 depicts the relationship between
the indoor operate temperature and the monthly mean outdoor air temperature during
the transition seasons of spring and autumn. Due to the high cost of collecting T, and
the lack of obvious radiance sources discovered during the investigation, T: was
assumed to be equal to Ta, resulting in the operative temperature of the adaptive model

being the same as Ta (To = (Ta + Tr)/2 in ASHRAE 55 [8]).
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Fig. 16 Indoor temperature plotted against the 80% and 90% acceptability limits in
ASHRAESS the monthly means were used to interpolate the relationships in the
adaptive model, as suggested by ASHRAE 55-2020 section 5.4.2.1.3 [8].)

In Fig. 16, spring and autumn seasons clearly show some cooling and heating demands



(x mark), as the values of outdoor air temperature in spring (blue background) are
generally higher than the values in autumn (red background). However, a few
overheating and overcooling risks emerge at the top left and bottom right when the AC
was turned on (% mark) and the indoor temperature has been raised or decreased outside
of the comfort zones. Some votes in the bottom left area indicate that people are more
tolerant of cold thermal environments in offices (o mark in the green background) and

chose not to turn on the AC even when the conditions exceeded the ASHRAE 55 limits.

To better quantify the predictive performance of the adaptive model in transition
seasons, Fig. 17 displays the evaluation metrics of the adaptive models, PMV, and the
machine learning algorithms under selected features when the AC was turned off, in
accordance with the ASHRAE 55 stipulation that no cooling or heating systems should
be in operation when referring to the adaptive model. The NB and RF models (green
colors) have the best overall performance, while the PMV (pink) still presents low
accuracy/precision but a high recall rate. The adaptive models (blue colors) show
relatively high accuracy/precision but low recall, which is the opposite of the PMV
trend. The balanced metrics F1-score of the adaptive model is also lower (32% to 37%)

than other models (41% to 46%).
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Fig. 17 Evaluation metrics of NB, RF, PMV, and adaptive models in spring and

autumn when the AC was turned off

3.4 Adaptive behaviors in winter and summer

As discussed in the introduction, while machine learning models have proven effective



in predicting thermal comfort in MM buildings, their inherent lack of interpretability
raises concerns regarding the understanding of the underlying relationships between
input variables and predictions. In order to address this interpretability aspect, the
relationships between various input variables through statistical analysis are explored
in this section. The training process of the NB model demonstrates that outdoor
conditions and several personal behavioral variables during the winter and summer
improve the overall predictive performance of machine learning algorithms. To better
illustrate their specific impacts, the features “drink water” in winter and “window status”
in summer were chosen for statistical analysis using the Mann-Whitney test when the

AC was turned on, as both features contributed positively to the model training process.

3.4.1 Drinking cold and hot water in winter

Fig. 18 displays the results of the Mann-Whitney test on thermal preference in four
seasons. Within one season, the significance levels of preference are all significant
(from p<=0.01 to p<=0.0001), with one exception of warmer and cooler preferences in
winter (ns), namely indoor environments of warmer preference and cooler preference
in winter are quite similar but people present two opposite thermal states. In Fig. 19,
the Mann-Whitney test on adaptive behaviors from winter data reveals that occupants’
comfort temperature (green color, no change) when drinking cold water (room
temperature water) is significantly higher (p<=0.0001) than when not drinking cold
water. However, when drinking hot water, the comfort temperature is significantly
lower p<=0.001 than when not drinking hot water. Therefore, the habit or adaptive
behaviors of drinking hot water may contribute to lower comfort temperatures when
compared to drinking cold water, which is beneficial for saving HVAC energy during

the winter.
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Fig. 19 Mann-Whitney test of drinking cold and hot water in winter

3.4.2 Windows status in summer

The Mann-Whitney test results on window status in Fig. 20 show that the differences

in indoor air temperatures between prefer warmer (red color) and prefer cooler (blue

color) during the windows “totally open” period are not significant (ns), whereas the

results are all significant (p<=0.0001) for three non “fotally open” periods. The



differences in comfort temperatures between period “totally open” and the other three
periods are increasing: from not significant (ns) on period “half open”, to 0.01
significant level (p<=0.01) on period “slightly open”, and finally to 0.0001 significant
level (p<=0.0001) on period “closed”. Meanwhile, the general values of comfort

temperatures (green colors) are reduced while the windows are closed more thoroughly.
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Fig. 20 Mann-Whitney test of windows status in summer

To better illustrate how windows behaviors influence indoor conditions, Fig. 21 plots
the linear regressions of outdoor and indoor air temperatures binned at one-degree
intervals at four window states. As the windows are closed more tightly, the overall
indoor temperature drops. Furthermore, as long as the windows are not completely
closed (periods “slightly open”, “half open”, and “totally open”), the indoor thermal
environments change more obviously with outdoor temperatures, with linear gradients
ranging from 0.08 to 0.12 (blue, orange, and green colors). When the windows are
closed, the indoor conditions remain much more stable, with a linear gradient of 0.02

(red color).
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Fig. 21 Linear regressions of windows status in summer

3.5 Impact of outdoor air velocity on adaptive behaviors and thermal comfort

We also extracted outdoor wind speed data from the meteorological station in
Chongqing and analyzed its influence on adaptive behavior and thermal comfort in
mixed-mode buildings. Fig. 22 illustrates the distribution of wind force levels over 365
days, with force levels 1 and 2 comprising the majority, force level 3 being less common,
and force levels 0 and 4 being even rarer. Fig. 23 displays the proportion of different
degrees of windows opening under various wind force levels. As wind force levels
increase, the proportion of “Open” and “Half open” significantly rises, while the
proportion of “Slightly open” and “Closed” decreases. This suggests that occupants in
mixed-mode buildings are more inclined to ventilate indoor spaces as outdoor wind

speed increases, enhancing their own comfort.

Fig. 24 illustrates the distribution of indoor comfort air temperatures when subjects
voted for "No change" under different wind force levels. For wind force levels 0-2,
there is minimal difference in indoor comfort temperatures across various windows

opening degrees. However, at wind force level 3, the indoor temperature when windows



are closed is notably higher than when they are open, indicating that in such conditions,
opening windows significantly lowers indoor comfort temperatures. Considering the
current lack of specific and rigid recommendations for outdoor wind speed in thermal
comfort standards, we suggest that future research could dive deeper into this aspect to

supplement and enrich the comprehensiveness of existing thermal comfort knowledge.
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Fig. 22 Distribution of outdoor wind force levels during the one-year experiment
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4. Discussion

4.1 Predictive performance of machine learning algorithms and classic thermal

comfort models

As many thermal comfort studies have already shown [6][49][69], machine learning
models (NB and RF) generally outperform traditional thermal comfort models (PMV
and adaptive) in terms of accuracy (Figs. 14 and 17). However, this paper compared
three other evaluation metrics: precision, recall, and their combined effects F1-score. It
was found that the PMV index shows highest predictive recalls in winter, spring, and
autumn even beyond well-tuned RF models that further makes its F1-score comparative
to machine learning algorithms, with only one exception from summer case in Fig. 14.
The unexpectedly high recalls observed in the PMV index can be attributed to several
factors: 1) Conservative predictions: the PMV index tends to make conservative
predictions by prioritizing the detection of actual true labels (preferences) even at the
expense of potentially predicting some wrong labels (low precisions), which may lead
to higher recall rates as the model turns to minimize false negatives (missed positive
labels); 2) Sensitive to actual votes: the PMV index may be more sensitive to

variations in actual thermal states experienced by subjects, capturing a wider range of



thermal preferences or discomfort levels across different seasons, which could
contribute to its ability to detect a larger proportion of actual true labels, resulting in
higher recall rates; 3) Inherent model characteristics: the PMV index is well-known
for its solid theoretical deduction process, which may inherently possess certain
characteristics that facilitate higher recall rates, aiming to capture a broad spectrum of
thermal states experienced by subjects; 4) Contextual factors: the specific
environmental conditions, occupants’ adaptive behaviors, and building characteristics
together may together influence the performance of the PMV index, which means that

other study may or may not find PMV with high recall.

Overall, the unexpected high recalls observed in the PMV index across different
seasons highlight its ability to effectively capture a substantial portion of actual thermal
preferences or discomfort levels among subjects. However, it's essential to
acknowledge the potential limitations of the PMV index, such as its lower precision and
the risk of predicting wrong labels, especially in situations where false positives are
costly. Consequently, combining the PMV index with customized machine learning
approaches can offer a more comprehensive evaluation of occupants' real thermal states,
leveraging the strengths of both traditional thermal comfort models and advanced

machine learning techniques.

Although random forest models generally achieve optimal performance in most
scenarios, it is important to note that they also have inherent limitations that should be
considered in practical applications [58]: 1) Interpretability: its structure is typically
complex, consisting of numerous sub-decision trees, which can be challenging to
interpret directly compared to a single decision tree or linear regression; 2) Potential
overfitting: when it becomes overly complex or when insufficient parameter tuning
techniques are employed during model training, the model turns to capture noise or
random fluctuations in the training data rather than the underlying patterns or
relationships; 3) High computational resources: its computational demands and
memory requirements can become challenging as data volume or dimension increases,

especially when resources are limited.



Adaptive models in ASHRAE-55 provide acceptability limits of 80% and 90% comfort
zones indicated by graphic methods. The 80% limits have a wider range, which means
that as the indoor temperature range extends, fewer people are satisfied. When
predicting thermal preferences with 80% and 90% limits, as shown in Fig. 17, the 80%
limits have higher accuracy and precision but lower recall and Fl-score. From an
accuracy perspective, the boundaries of 80% limits are more reasonable, but for picking

more actual positives, 90% limits could have better performance.

4.2 Generalization of machine learning algorithms

The ability to generalize results from training samples to unseen data is widely
recognized as an important capability of any model. However, the findings of a meta-
analysis [101] that gathered models from several scientific literatures and cross-
validated their performance on various public datasets show that one of the most modest
models performs the best on all other datasets, while one of the most robust models
performs nearly the worst. For the machine learning algorithm, even though it has many
techniques to avoid overfitting [102], its data-driven nature faces the lack of systematic
modeling procedures, physical fundamentals, and interactions with real-world

scenarios [6], thus creating barriers to generalization.

In this study, the NB models were trained individually using data specific to each season.
However, to testify their generalization during the prediction phase, the discussion
encompasses the scenario where each model is utilized to predict data for all four
seasons (spring, summer, autumn, and winter). Table 6 shows that the winter NBgefault
model has 62% accuracy and 40% F1-score on winter data but only 12% accuracy and
9% F1-score on spring data. What’s more, the models trained from spring, summer, and
autumn data all achieve highest accuracy on spring data (81%, 75%, and 78%). This
could be caused by the imbalanced data distribution in spring data that over 82% vote

are “no change”.

Imbalances in the dataset can lead to biased predictions, particularly affecting minority

classes and overall model performance metrics. As discussed before, the trained Naive



Bayes models exhibited varying degrees of performance across seasons, with notable
disparities observed in predictive accuracy and F1-scores when applied to different
seasons. For instance, while the winter NBgefaut model demonstrated relatively high
accuracy and Fl-score on winter data, its performance significantly decreased when
predicting spring data. This disparity in performance across seasons highlights the
impact of imbalanced data distribution, particularly evident in spring where over 82%
of votes indicated "no change." Consequently, solely relying on accuracy as an
evaluation metric may incentivize machine learning algorithms to prioritize the
majority class, potentially compromising the model's ability to generalize. By
incorporating additional metrics such as precision, recall, and F1-score, we provide a
more comprehensive assessment of model performance, mitigating the influence of

data imbalance and ensuring a more robust evaluation framework.

We have chosen to disclose this issue and trained another kind of advanced machine
learning algorithm for performance compensation, “Random Forest”, which is known
to be more robust to imbalanced data. In addition to model training process, resampling
techniques, such as oversampling or undersampling, can partially address the issue of
data imbalance. However, it's crucial to recognize that these techniques may introduce
the problem of overfitting or underfitting [ 103], exacerbating the imbalance or reducing
the representativeness of the data, respectively. Therefore, careful consideration of the
trade-offs associated with resampling techniques is necessary to effectively manage the

challenges posed by imbalanced data.

One of the central problems in machine learning is to identify relevant information
subset or feature-selection for making accurate predictions. Fig. 14 depicts that when
all features are used for NB training, the predictive accuracies in winter and summer
(34% and 39%) are even lower than PMV accuracies (46% and 62%), with only half
the accuracies of using selected features for NB training (63% and 73%). The precision
of the RF model in spring drops from 72% to 57% when all features are used without
feature-selection. These findings emphasize the importance of including the appropriate

variables in the training process of machine learning algorithms.



Another important consideration during the generalization is the response time of
model prediction. Fig. 15 shows that the RF models will take more than three minutes
to train and establish, whereas the NB models and the PMV index only take around one
second. These time differences are tolerable in situations where there will be no serious
consequences, such as young adults working in offices who feel slightly cool or warm.
However, some delays in predicting thermal state can result in life-threatening
conditions, such as hypothermia and hyperthermia to the elderly who live alone at home
[72]. Unfortunately, the classic PMV index or adaptive model are population-based that
often perform less well on individuals [6]. The machine learning algorithms thus can
provide new opportunities from adding specific features to the model establishment

with improved predictive power and acceptable training speed.

4.3 Marked features in MM buildings
4.3.1 Classic thermal comfort models for MM buildings

Generally, the PMV index and graphic-based adaptive model are recommended for
evaluating thermal environments in HVAC and NV buildings in current international
and national thermal comfort standards [7] [8] [9] [10] [11]. This is because people in
HVAC buildings are assumed to rarely adapt themselves and have few opportunities to
control their own thermal environments, whereas people in NV buildings have no
heating or cooling devices to operate. People in the study, however, actively adapted
themselves during heating and cooling periods in winter and summer by drinking water
and opening windows. This creates challenges when applying the PMV index directly
to the HVAC mode of MM buildings.

On the other hand, people in this study during spring and autumn chose to turn on/off
the AC whenever they felt thermally uncomfortable. Fig. 16 demonstrates that some
data points within the ASHRAE 55 adaptive models’ 80%/90% comfort zones were
under AC operation, implying that the MM buildings may not provide acceptable
thermal environments simply relying on the natural ventilation in Chongqing’s spring

and autumn. Furthermore, a significant proportion of comfort points in cooler



environments were identified as uncomfortable (green background) by ASHRAE 55
adaptive models, and a few overheating (red background) and overcooling (blue
background) risks emerged during the autumn and spring, respectively. The data in this

paper proves that this adaptation appears in Chongqing and office buildings as well.

4.3.2 Water drinking

Several studies have already shown that people will actively consume hot/cold water to
actively adapt to thermal environments [22][104]. This study further discovered that
during the heating season, occupants’ comfort temperatures were significantly higher if
cold water was consumed (p<=0.0001), or lower if hot water was consumed (p<=0.001),
compared to no drinking adaptations (Fig. 19). From the energy perspective, drinking
cold water here will be unfavourable because higher comfort temperatures may result
in higher heating demands from HVAC systems. Our investigated offices are all
equipped with water dispensers that can conveniently provide cold or hot liquids,
allowing occupants to choose according to their own preferences. Yu et al. [105]
conducted field studies on residents’ thermal comfort in Tibet, China, where
temperatures and humidity are extremely low, with annual average air temperature
ranging from 5.93°C to 9°C in four investigated cities. They discovered that people
there have unique ways of protecting themselves from the cold, such as frequently using
stoves in kitchens and drinking hot butter-sweet tea. These findings highlight the fact
that the adaptive opportunities provided by buildings, as well as people’s

customs/habits, will result in varying HVAC energy consumption outcomes.

4.3.3 Windows opening

Previous publications already indicated a high frequency of open windows in non-
heating/cooling periods [47]. This study further discovers that in MM buildings, the
practice of windows openings occurred extensively (over 80% of the time) even during
heating and cooling seasons. These behaviors could lead to increased air change rate
and heat transfer through building facades, causing indoor environments to

significantly fluctuate with outdoor conditions (Fig. 21), resulting in extra HVAC



energy consumption. However, as the windows are opened wider, occupants’ comfort
temperatures will rise significantly (Fig. 20). On the other hand, opening windows can
provide people with more enjoyable views and engagements with outdoor nature, as
well as adequate fresh air and indoor air movements. Several ASHRAE-sponsored field
studies [106] (6148 responses from 53 buildings) discovered that when the thermal
sensation range was -0.7 to 1.5, larger percentages of people (47% to 84%) preferred
more air movements, while smaller percentages (3% to 7%) preferred less. Therefore,
cooling or heating thermal environments with similar characteristics from NV can not
only improve occupants’ subjective satisfaction but also save the required energy of
HVAC systems by raising HVAC setpoints higher during cooling seasons. To validate
this, Chen et al. [107] proposed a CFIAC (Ceiling-fan-integrated air-conditioning)
framework offering non-uniform distributions of indoor air-speed and temperature
capable of compensating for 1.2 to 1.5 PMV scale units in the 26°C to 28°C temperature

range.

To address the challenges of optimizing energy efficiency during summer months when
occupants tend to open windows with the air conditioner on, the following potential

solutions and recommendations are proposed:

* Implement smart windows technology: install smart windows equipped with
sensors and actuators that automatically adjust opacity or ventilation based on

outdoor conditions and occupant preferences.

* Optimize the ventilation system: one reason for users opening windows is to
improve indoor air quality. Therefore, with the installation or update of mechanical
systems that provide adequate fresh air, the need for window opening behavior may

be significantly reduced.

* Enhance occupants’ awareness of energy conservation: provide occupants with
information and guidelines on energy-efticient behaviors, including the appropriate
use of windows, thermostats, and HVAC systems; encourage occupants to utilize

natural ventilation during cooler times of the day and minimize reliance on air



conditioning.
4.4 Limitation and further work

Although we tried to comprehensively evaluate both classic thermal comfort models
and machine learning algorithms for evaluating adaptive behaviors and predicting
thermal comfort in MM buildings, some limitations and future research

recommendations still remain:

1. It’s important to recognize that our study sample primarily consisted of young and
middle-aged adults working in office settings. Therefore, the generalizability of our
findings to other demographic groups, such as elderly individuals or individuals in
non-office environments, may be limited. Future research should aim to include a
more diverse range of participants to better understand how different demographic

groups adapt to microclimate modifications in various settings.

2. This paper focused specifically on the climate conditions and building practices
prevalent in Chongqing, which exhibit distinct seasonal demands for cooling in
summer and heating in winter. While the insights gained from our research are
valuable for this specific context, caution should be applied when extrapolating these
findings to regions with different climate patterns and building practices. It is
recommended that future studies consider conducting similar investigations in
different geographical locations with varying climate conditions to assess the
transferability of our models and observations. It is important to note that regions
with diverse climate patterns may have unique thermal comfort requirements, and

thus the applicability of our conclusions may vary.

3. The grid search method employed in hyperparameter tuning process of machine
learning models can be computationally intensive and may not guarantee finding the
absolute best hyperparameter combinations. Due to the vast search space and time
constraints, it is possible that alternative hyperparameter configurations with

potentially superior performance were not explored.

4. This study highlights the significance of both the number of input features and the



identification of dominant factors in achieving accurate models for understanding
adaptive thermal comfort phenomena in MM buildings. However, the widespread
use of smart devices in the future may enable data collection at any time rather than
just the moment of a questionnaire, posing challenges in intuitively understanding

the data and developing robust models for practice.

5. Future studies could address the following research questions to advance our

understanding of thermal comfort in mixed-mode buildings:

* How do specific adaptive behaviors, such as adjusting air conditioning settings or
opening windows, interact with each other in response to varying climatic

conditions?

* What are the energy implications of these adaptive behaviors in terms of heating
and cooling demand, and how do they contribute to overall building energy

consumption?

» Are there differences in the effectiveness of adaptive strategies between different

geographical regions with distinct climate patterns?

* How do occupant preferences and habits influence their adaptive behaviors, and
how can building design and operation be optimized to align with these preferences

while minimizing energy consumption?

* What are the trade-offs between occupant comfort and energy efficiency in mix-
mode buildings, and how can these be balanced through design interventions or

operational strategies?

5. Conclusions

The mixed mode of building is thought to be capable of positively extending occupants’
comfort temperature to a wider range compared to fully air-conditioned buildings. Our
study employs machine learning algorithms and classic thermal comfort models to

investigate thermal preference during a one-year field study in Chongqing, China. The



novelty of this research lies in integrating adaptive behaviors, which are difficult to
include and quantify in conventional thermal comfort models, into machine learning
algorithms to achieve a more comprehensive thermal comfort assessment and analysis
of energy-related adaptive behaviors. This contributes to providing potential criteria
and recommendations for identifying energy-inefficient behaviors in mixed-mode
buildings, thereby enhancing building energy efficiency related to occupants’
adaptations, and highlighting the potential trade-offs associated with building operation

modes. The following findings are noteworthy:

(1) The spring, summer, and autumn naive bayes models all achieve best accuracy on
spring data, with 82% voting “no change”. However, relying solely on accuracy as
the evaluation method can result in misleading results because it can be heavily
influenced by the data distribution pattern. The high accuracy of machine learning
models could be attributed to “cheating” on imbalanced data sources by giving
more weights to majority votes instead of creating useful knowledge. To avoid
falling into the trap of “accuracy cheating” during model training and evaluations,
it is essential to include additional evaluation indices such as precision, recall, and
Fl-score, which will provide a more comprehensive understanding of model

performance.

(2) In general, random forest models outperform naive bayes and classic thermal
comfort models in terms of accuracy, precision, and Fl-score. They are also
resistant to irrelevant feature disruption, but at the cost of longer training times.
However, the naive bayes models can provide training speed in real-time and are
better suited for scenarios with time constraints. The classic PMV index with a
transparent explanation between the human body and the surrounding physical
environment has limited accuracies in most cases but unexpectedly high recalls,
indicating that the PMV index has the potential to be a useful supplement for a more

comprehensive evaluation.



(3) The concept of mixed-mode buildings can embody both positive and negative
attributes of naturally ventilated and fully air-conditioned buildings. Our study
discovers that occupants in mixed-mode buildings adopt energy-inefficient
behaviors by using air-conditioning in moderate spring and autumn, with winter
occupants requiring higher temperatures due to non-hot drinking habits, and
summer occupants constantly opening windows while using air conditioning.
Therefore, the operation of mixed-mode buildings should aim to minimize the usage
of mechanical devices when outdoor conditions are moderate, while resorting to
normative heating or cooling operations during adverse weather conditions. This
will maximize the advantages of mixed-mode buildings by leveraging the strengths
of naturally ventilated and fully air-conditioned buildings, rather than amplifying

their shortcomings.
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