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Abstract

Sound-soft fractal screens can scatter acoustic waves even when they have zero sur-
face measure. To solve such scattering problems we make what appears to be the first
application of the boundary element method (BEM) where each BEM basis function
is supported in a fractal set, and the integration involved in the formation of the BEM
matrix is with respect to a non-integer order Hausdorff measure rather than the usual
(Lebesgue) surface measure. Using recent results on function spaces on fractals, we
prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic
scattering in Rt! (n = 1, 2) when the scatterer, assumed to be a compact subset of
R" x {0}, is a d-set for some d € (n — 1, n], so that, in particular, the scatterer has
Hausdorff dimension d. For a class of fractals that are attractors of iterated function
systems, we prove convergence rates for the Hausdorff BEM and superconvergence
for smooth antilinear functionals, under certain natural regularity assumptions on the
solution of the underlying boundary integral equation. We also propose numerical
quadrature routines for the implementation of our Hausdorff BEM, along with a fully
discrete convergence analysis, via numerical (Hausdorff measure) integration esti-
mates and inverse estimates on fractals, estimating the discrete condition numbers.
Finally, we show numerical experiments that support the sharpness of our theoretical
results, and our solution regularity assumptions, including results for scattering in R?
by Cantor sets, and in R by Cantor dusts.
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1 Introduction

A classical problem in the study of acoustic, electromagnetic and elastic wave prop-
agation is the scattering of a time-harmonic incident wave by an infinitesimally thin
screen (or “crack”). In the simplest configuration the incident wave propagates in R”*!
(typically n = 1, 2) and the screen I' is assumed to be a bounded subset of the hyper-
plane ' = R" x {0}. In standard analyses the set I" is assumed (either explicitly or
implicitly) to be a relatively open subset of I'o, with smooth relative boundary oT". But
in a recent series of papers [3, 15, 17, 19] it has been shown how well-posed bound-
ary value problems (BVPs) and associated boundary integral equations (BIEs) for the
acoustic version of this screen problem (with either Dirichlet, Neumann or impedance
boundary conditions) can be formulated, analysed and discretized for arbitrary screens
with no regularity assumption on I'. In particular, this encompasses situations where
either 0" or I itself has a fractal nature. The study of wave scattering by such fractal
structures is not only interesting from a mathematical point of view, but is also rele-
vant for numerous applications including the scattering of electromagnetic waves by
complex ice crystal aggregates in weather and climate science [46] and the modelling
of fractal antennas in electrical engineering [52]. In applications the physical object
generally only exhibits a certain number of levels of fractal structure; nonetheless,
fractals provide an idealised mathematical model for objects that have self-similar
structure at multiple lengthscales.

Our focus in this paper is on the Dirichlet (sound soft) acoustic scattering problem
in the case where T itself is fractal.! We shall assume throughout that, for some
n—1<d < n, T is acompact d-set (i.e., [ is compact as a subset of ', and
is a d-set as defined in Sect. 2.1) which in particular implies that I" has Hausdorff
dimension equal to d. More specifically, our attention will be on the special case
where I' is the self-similar attractor of an iterated function system of contracting
similarities, in particular on the case where I satisfies a certain disjointness condition
(described in Sect. 2.3), in which case I" has (as a subset of R”) empty interior and
zero Lebesgue measure. An example in the case n = 1 is the middle-third Cantor set,
which is a d-set for d = log2/log 3; an example in the case n = 2 is the middle-third
Cantor dust shown in Fig. 1, which is a d-set for d = log4/1log 3. For such I", well-
posed BVP and BIE formulations for the Dirichlet scattering problem were analysed
in [15], where it was shown that the exact solution of the BIE lies in the function
space Hr_l/2 ={u € HY?>(I'y) : suppu C T} [15, §3.3]. The assumption that
d > n — 1 implies that this space is non-trivial, and that for non-zero incident data the
BIE solution is non-zero, so the screen produces a non-zero scattered field. Our aim
in this paper is to develop and analyse a boundary element method (BEM) that can
efficiently compute this BIE solution.

One obvious approach, adopted in [19] (and see also [3, 35, 40]), is to apply a con-
ventional BEM on a sequence of smoother (e.g. Lipschitz) “prefractal” approximations
to the underlying fractal screen, such as those illustrated in Fig. 1 for the middle-third

1 We note that our methods and results apply, with obvious modifications, to the analogous (yet simpler)
problem in potential theory, in which the Helmholtz equation is replaced by the Laplace equation.
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Fig. 1 The first five standard prefractal approximations, I'g, ..., I'4, to the middle-third Cantor dust I',

defined by I'g := [0, 1]2, Iy :=s(Ty—1), n € N, where s is defined by (3) and (125) with M = 4 and
p=1/3

Cantor dust.” (In this example each prefractal is a union of squares.) When I'" has empty
interior (as in the current paper) this is necessarily a “non-conforming” approach, in
the sense that the resulting discrete approximations do not lie in H. 1 2, the space
in which the continuous variational problem is posed. This is because conventional
BEM basis functions are elements of L ('), the intersection of which with H. 1245
trivial. This complicates the analysis of Galerkin implementations, since Céa’s lemma
(e.g., [47, Theorem 8.1]), or its standard modifications, cannot be invoked. In [19] we
showed how this can be overcome using the framework of Mosco convergence, prov-
ing that, in the case of piecewise-constant basis functions, the BEM approximations
on the prefractals converge to the exact BIE solution on I' as the prefractal level tends
to infinity, provided that the prefractals satisfy a certain geometric constraint and the
corresponding mesh widths tend to zero at an appropriate rate [19, Thm. 5.3]. How-
ever, while [19] provides, to the best of our knowledge, the first proof of convergence
for a numerical method for scattering by fractals, we were unable in [19] to prove any
rates of convergence.

In the current paper we present an alternative approach, in which the fractal nature
of the scatterer is explicitly built into the numerical discretization. Specifically, we
propose and analyse a “Hausdorff BEM”, which is a Galerkin implementation of
an Hp 1 2—conforming discretization in which the basis functions are the product of
piecewise-constant functions and HA |r, the Hausdorff d-measure restricted to I". A
key advantage of the conforming nature of our approximations is that convergence of
our Hausdorff BEM can be proved using Céa’s lemma. Furthermore, extensions that we
make in Sect. 3 of the wavelet decompositions from [36] to negative exponent spaces
allow us to obtain error bounds quantifying the convergence rate of our approximations,
under appropriate and natural smoothness assumptions on the exact BIE solution.
While these smoothness assumptions have not been proved for the full range that we
envisage (see Proposition 4.9), the convergence rates observed in our numerical results
in Sect. 6 support a conjecture (Conjecture 4.8) that they hold.

Implementation of our Hausdorff BEM requires the calculation of the entries of the
Galerkin linear system, which involve both single and double integrals with respect
to the Hausdorff measure H?. To evaluate such integrals we apply the quadrature
rules proposed and analysed in [30], in which the self-similarity of I" is exploited to
reduce the requisite singular integrals to regular integrals, which can be treated using
a simple midpoint-type rule. By combining the quadrature error analysis provided in

2 For recent overviews of the conventional BEM literature for Lipschitz or smoother screens see [19] or
[2, 21, 34].
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[30] with novel inverse inequalities on fractal sets (proved in Sect. 5.3) we are able to
present a fully discrete analysis of our Hausdorff BEM, subject to the aforementioned
smoothness assumptions.

An outline of the paper is as follows. In Sect. 2 we collect some basic results that
will be used throughout the paper on Hausdorff measure and dimension, singular
integrals on d-sets, iterated function systems, and function spaces; in particular, in
Sect. 2.4 we introduce the function spaces H’(I") that are trace spaces on d-sets that
will play a major role in our analysis, and recall connections to the classical Sobolev
spaces H}. established recently in [9]. In Sect. 3 we recall from [36] the construction,
forn — 1 < d < n, of wavelets on d-sets that are the attractors of iterated function
systems satisfying the standard open set condition, and, for n — 1 < d < n, the
characterisations of Besov spaces on these d-sets (which we show in “Appendix A”
coincide with our trace spaces H (") for positive 7) in terms of wavelet expansion
coefficients. We also extend, in Corollary 3.3, these characterisations, which are crucial
to our later best-approximation error estimates, to H’ (I") for a range of negative ¢ via
duality arguments.

In Sect. 4 we state the BVP and BIE for the Dirichlet screen scattering problem,
showing, in the case when I is a d-set, that the BIE can be formulated in terms of a ver-
sion S of the single-layer potential operator which we show, in Propositions 4.7 and 4.9,
maps H/ =% (I") to H!*(T"), for |t| < t4 and a particular d-dependent t; € (0, 1/2],
indeed is invertible between these spaces for |f| < € and some 0 < € < f;. (The
spaces H'“(I") C Ly(I') € H%(I") form a Gelfand triple, with ILp(I") the space of
square-integrable functions on I' with respect to d-dimensional Hausdorff measure as
the pivot space, analogous to the usual Gelfand triple H'/2(I") ¢ L,(I') ¢ H~/*(I")
in scattering by a classical screen I' that is a bounded relatively open subset of I's.)
Moreover, as Theorem 4.6, we show the key result that, when acting on L, (I") (which
contains our BEM approximation spaces), S has the usual representation as an integral
operator with the Helmholtz fundamental solution as kernel, but now integrating with
respect to d-dimensional Hausdorff measure.

In Sect. 5 we describe the design and implementation of our Hausdorff BEM,
and state and prove our convergence results, showing that, at least in the case that
I" is the disjoint attractor of an iterated function system with n — 1 < dimg(I") <
n, all the results that are achievable for classical Galerkin BEM (convergence and
superconvergence results in scales of Sobolev spaces, inverse and condition number
estimates, fully discrete error estimates®) can be carried over to this Hausdorff measure
setting (we defer to “Appendix B” the details of our strongest inverse estimates, derived
via a novel extension of bubble-function type arguments to cases where the elements
have no interior).

In Sect. 6 we present numerical results, for cases where I is a Cantor set or Cantor
dust, illustrating the sharpness of our theoretical predictions. We show that our error
estimates appear to apply also in cases, such as the Sierpinski triangle, where I' is
not disjoint so that the conditions of our theory are not fully satisfied. We also make
comparisons, in terms of accuracy as a function of numbers of degrees of freedom, with

3 Our fully discrete error estimates require, additionally, that I" is hull-disjoint in the sense introduced
below (99).
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numerical results obtained by applying conventional BEM on a sequence of prefractal
approximations to I', for which we have, as discussed above, only a much more limited
theory [19].

In Sect. 7 we offer some conclusions and suggestions for future work. In
“Appendix C” we provide a table of definitions for easy reference.

2 Preliminaries

In this section we collect a number of preliminary results that will underpin our anal-
ysis.

2.1 Hausdorff measure and dimension

For E C R" and @ > 0 we recall (e.g., from [28]) the definition of the Hausdorff
«a-measure of E,

HY(E) = lim (inf Z(diam(Ui))“) € [0, 00) U {00},

i=1

where, for a given § > 0, the infimum is over all countable covers of E by a collection
{U;}ien of subsets of R? with diam(U;) < § for each i. Where RT := [0, c0), the
Hausdorff dimension of E is then defined to be

dimy(E) := sup{a € RT : H*(E) = oo} = inf{a € RT : H¥(E) =0} € [0, n].

In particular, if £ C R" is Lebesgue measurable then H"(E) = c¢,|E|, for some
constant ¢, > 0 dependent only on n, where | E | denotes the (n-dimensional) Lebesgue
measure of E. Thus dimyg(E) = n if E C R" has positive Lebesgue measure.

Asin [37, §1.1] and [50, §3], given 0 < d < n, aclosed set I' C R” is said to be a
d-set if there exist ¢p > ¢; > 0 such that

ar! <HYCNB,(x) <cr?, xel, 0<r<l, (N

where B,(x) C R”" denotes the closed ball of radius r centred on x. Condition (1)
implies that I" is uniformly locally d-dimensional in the sense that dimg(I"'N B, (x)) =
d forevery x € I"and r > 0. In particular (see the discussion in [28, §2.4]) (1) implies
that 0 < H4(I" N Bg(0)) < oo for all sufficiently large R > 0, so that dimg(I") = d.

2.2 Singular integrals on compact d-sets

Our Hausdorff BEM involves the discretization of a weakly singular integral equation
in which integration is carried out with respect to Hausdorff measure. In order to derive
the basic integrability results we require, we appeal to the following lemma, which is
[12, Lemma 2.13] with the dependence of the equivalence constants made explicit.

@ Springer
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Lemma 2.1 LetO <d < nandletT" C R" be a compact d-set, satisfying (1) for some
constants 0 < ¢1 < ¢p. Let x € T and let f : (0, 00) — [0, 00) be non-increasing
and continuous. Then, for some constants Co > C1 > 0 depending only on c, ¢3, n,
and the diameter of T,

diam(T")

diam(T")
cd [ s [ gar-snaimy scad [ e,
0 r 0
(2)
Remark2.2 If ' C R”" is compact and the right-hand inequality in (1) holds, i.e.,
HAT N By(x)) < cor?, forx € T, 0 < r < 1, then, following the proof of [12,

Lemma 2.13], we see that the right-hand bound in (2) holds, with C, depending only
on ¢y, n, and the diameter of I".

From the above lemma we obtain the following important corollary.

Corollary2.3 Let O < d < n and let I" be a compact d-set. Let x € I" and o € R.
Then

() frlx=y7*dHY(y) < coand [ [ Ix — y|7* dH!(y)dH (x) < oo if and only
ifa <d;
(i) [p[log|x — yl|dH(y) < oo and [ [ |log|x — y||dH4 (y)dH (x) < oo.

Remark 2.4 Corollary 2.3(i) is related to the more general correspondence between
Hausdorff dimension and so-called “capacitary dimension”—see, e.g., [50, §17.11].

2.3 Iterated function systems

The particular example of a d-set we focus on in this paper is the attractor of an iterated
function system (IFS) of contracting similarities, by which we mean a collection
{s1,s2,...,5m}, for some M > 2, where, foreachm = 1,..., M, s, : R* — R",

with |5, (x) — s, (V)| = pm|x — ¥, x, y € R”, for some p,;, € (0, 1). The attractor of
the IFS is the unique non-empty compact set I" satisfying

M
I =s(), where s(E):= U sm(E), ECR". 3)
m=1

We shall assume throughout that I satisfies the open set condition (OSC) [28, (9.11)],
meaning that there exists a non-empty bounded open set O C R” such that

s(0)C O and s,(0)Ns(0) =0, m#m. 4

Then [50, Thm. 4.7] I" is a d-set, where d € (0, n] is the unique solution of
M
> o) =1. )
m=1
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For a homogeneous IFS, where p,, = p € (0,1) form = 1, ..., M, the solution of
5)is

d = log(M)/log(1/p). ©)

Returning to the general, not necessarily homogeneous, case, the OSC (4) also implies
(again, see [50, Thm. 4.7]) that I is self-similar in the sense that the sets

L = sm (), m=1,..., M, @)
which are similar copies of I, satisfy
HIT NTy) =0, m#m'. ®)

That is, I" can be decomposed into M similar copies of itself, whose pairwise intersec-
tions have Hausdorff measure zero. For many of our results we make the additional
assumption that the sets I'y, ..., ['y; are disjoint, in which case we say that the IFS
attractor I is disjoint. We recall that if I" is disjoint then it is totally disconnected [28,
Thm. 9.7]. Examples of IFS attractors that are disjoint are the Cantor set (Sect. 6.1)
and Cantor dust (Fig. 1 and Sect. 6.2), while examples that satisfy the OSC but are not
disjoint include the Sierpinski triangle (Sect. 6.5(ii)) and the unit interval [0, 1]. The
latter is the attractor of the IFS (124) with p = 1/2, showing that IFS attractors, while
self-similar, need not be fractal. A compendium of well-known fractal IFS attractors
can be found at [41].
The next result relates disjointness to the OSC.

Lemma 2.5 Let I" satisfy (3). Then T is disjoint if and only if (4) is satisfied for some
open set O satisfying I' C O.

Proof If O satisfies the OSC and I' C O then for m’ # m we have I';, N T, =
Sm(T) N sy () C 5,(0) N sy (0) = B, s0 Ty, ..., [y are disjoint. Conversely,
if I'1, ..., 'y are disjoint then O := {x : dist(x, ") < ¢} D T satisfies the OSC,
providede < min,, ., (dist(I'y,, ') /(2 maxy, pm), since thens(0) = Uy, (0) C
Upf{x @ dist(x, ) < pme} C {x : dist(x,T") < ¢} = O, and there cannot exist
x € 5;(0) N 5,7 (0) for m # m’ since otherwise dist(Iy,, T'py) < dist(x, T'y) +
dist(x, T'yyy) < (om + pwr)e < 2e max,, py,, which would contradict the definition of
e. O

The following lemma, which shows that I" is disjoint only if d < n, motivates the
restriction of our results in large parts of Sect. 3 to the case d < n.

Lemma 2.6 Suppose that I satisfies (3) and the OSC (4) holds for some bounded open
O CR" ThenT C O, with equality if and only if d = dimyg(I") = n. If T is disjoint
then 0 < d < n.

Proof_ Argui&g ason [19, p. 8@], I c 0, and, Lf d < n, then the L@esgue_ measure
of s(0), [s(0)| < Ym_, p110] < Yom_; 20| = [O], so that s(0) # O, so that
(sinceI' =s(I"), ' # O.
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Suppose now that d = n. Arguing as above and on [19, p. 809], |s(O)| =
Sy lsm(O) = M prl0O] = |0| so that |s(0)| = |O|. As claimed in [19,
p. 809] this 1mphes that s(O) = O. To see this, note that s(O) C O, so that
s(0) = s(0) c O. Thus, if s(0) ;é 0, there exists x € O\s(O) so that, for
some y € O near x and some € > 0, B(y) € O\s(0) C O\s(0), which contra-
dicts |O| = |s(0)|. Further, since I" is the unique fixed point of s, s(0) = O implies
" = 0, and that I" is not disjoint then follows from Lemma 2.5. O

2.4 Function spaces on subsets of R"

Here we collect some results on function spaces from [9, 17, 36]. Our function spaces
will be complex-valued, and we shall repeatedly use the following terminology relating
to dual spaces.* If X and Y are Hilbert spaces, X* is the dual space of X,and I : ¥ —
X* is a unitary isomorphism, we say that (Y, I) is a unitary realisation of X* and
define the duality pairing (-, )y xx by (y, X)yxx := Iy(x),fory € Y, x € X. Having
selected a unitary realisation (Y, I) of X*, we adopt (X, I*) as our unitary realisation
of Y*,where I*x(y) := (y, x)yxx,sothat (x, y)xxy = (¥, X)yxx,fory € Y, x € X.
For s € R let H*(R") denote the Sobolev space of tempered distributions ¢ for
which the norm [|@|| s @y = (fn (1 + £ [§(€)[2 dg)"/? is finite®. We recall that
(H*(R™))* can be unitarily realised as (H *(R"), ™), where I : HS(R") —
(H*(R™)* is given by I ¢ (W) := [pu ¢(E)Vr(§) dE for ¢ € H*(R") and ¢ €
H*(R"), so that the resulting duality pairing (-, -) g—s®#)x g5 ®n) €xtends both the
L, (R™) inner product and the action of tempered distributions on Schwartz functions
(see, e.g., [17, §3.1.3]). For an open set 2 C R” we denote by 1-73(9) the closure
of C3°(2) in H*(R"), and for a closed set E C R" we denote by H}; the set of all
elements of H®(R") whose distributional support is contained in E. These two types
of spaces are related by duality. Where E€ := R" \ E denotes the complement of E
and 1 denotes orthogonal complement in H* (R") (H;*, ) is aunitary realisation of
(H*(E)1)* [17, §3.2], where Zo(W) :=15¢(¥) f0r¢ € H;' and voe H* (ES)L,
so that the associated duality pairing is just the restriction to Hp" X HX(EC)l of
(*» ) H—s (R")x 55 Ry - Note also that, if £ C 2 C R" and E is compact, 2 is open, then,
as a consequence of [38, Lemma 3.24], H jg is a closed subspace of HS (2). In addition
to the spaces just introduced we use, at some points, the standard Sobolev space H* (£2),
for 2 C R" openands € R, defined as the space of restrictions to €2 of the distributions
¢ € H*(R"), equipped with the quotient norm ||u|l gs (@) = infyeps®r) @l g5 @)

plo=u
(see [38], [17, §3.1.4]).
Fix 0 < d < nandlet ' C R” be H¢-measurable. We denote by L, (I") the space
of (equivalence classes of) complex-valued functions on R” that are measurable and

4 For notational convenience we follow the convention of [17, 19] and work throughout with dual spaces
of antilinear functionals rather than linear functionals.

5 Here ¢ is the Fourier transform of ¢, normalised so that $(£) = (27r) /2 Jan e 6%y (x)dx, foré € R",
when ¢ € L1 (R").
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square integrable with respect to H¢ |1, normed by

12
1 f e = ( /F |f<x>|2dH"<x>) .

Similarly, Lo (I") denotes the space of functions on R” that are measurable and essen-
tially bounded with respect to |, normed by || f L., := €ss sup,cgn | f(x)]. In
practice we shall view L, (I") and Lo (I") as spaces of functions on I', by identifying
elements of 1Ly (T") and Lo (I") with their restrictions to I'. The dual space (ILp(I"))*
can be realised in the standard way as (ILp(T"), I), where I : Ly(I') — ILo(I")*
is the Riesz map (a unitary isomorphism) defined by ]If(f) = (f, f)]Lz(r) =
Jo F) ) dH ().

Now assume that I" is a d-set and that 0 < d < n. Then function spaces on R" and
I" are related via the trace operator trr of [50, §18.5]. Defining trr(¢) = ¢|r € Lao(I')
for ¢ € Cgo (R™), one can show [50, Thm 18.6] that if

which we assume through the rest of this section, and 0 < d < n, then trr extends to
a continuous linear operator

trr : H*(R") — Lo(I)
with dense range. This trivially holds also for d = n, since the embedding of H*(R")

into L, (R"), for s > 0, and the trace trr : Ly(R") — IL(I") are both continuous with
dense range. Setting

> 0, 9

we define the trace space H' (") := trp (H*(R")) C L,(I"), which we equip with the
quotient norm

1y = inf s (R
Il f g ol el 75 @y
rro=f

This makes H'(I') a Hilbert space unitarily isomorphic to the quotient space
H*(R™)/ker(trr). Clearly,

H' () € H'(T') C La(T), (10)
fort’ > t > 0, and the embeddings are continuous with dense range. As explained in
[9, Rem. 6.4] (H'(T") is denoted th,o(r) in [9, §6]), for the case 0 < d < n, under

the further assumption that r < 1, H'(I") coincides (with equivalent norms) with the
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Besov space Bé,z(l") of [37]. Arguing in the same way, using [37, Theorem VI.1] and
that H*(R") coincides with the Besov space B;yz(R”) (e.g., [37, p. 81),° this holds
also ford = n.

For t > 0 we denote by H'(I") the dual space (H’(I"))*. Since (10) holds, and
the embeddings are continuous with dense range, also H™'(I") C H~(T), for ¢ >
t > 0, and this embedding is continuous with dense range. Further, via the Riesz map
I:Ly(I'") — Lo(I")* introduced above, Ly (I") is continuously and densely embedded
in H(T"), for t > 0. Setting HYT) = L,(I), and combining these embeddings, we
then have that H” (T") is embedded in H'(T") with dense image for any 7, ¢ € R with
t' > t, and that if g € H'(T") for some ¢ > 0 and f € L,(I") then

(f, @m—myxm ) = (fs ©L.)- (11)

Suppose that (9) holds. By the definition of H'(I"), trr : H*(R") — H/'(I') is a
continuous linear surjection with unit norm. Its Banach space adjoint trr-* : H™*(I") —
(H*(R™))*, defined by trr " y(x) = y(trrx), for y € (H' (I')*, x € HS(R"), is then
a continuous linear injection with unit norm, and composing trr-* with the unitary
isomorphism (7 ~*)~! produces a continuous linear injection

tf =) ofrr* : HT/(I) - HS(R")
with unit norm, which satisfies’

(0, 0 ) s @yx - @y = (0@, fhweryxa—+ry. f €H (D), ¢ € H'(R").
(12)

In particular, when f € ILp(I") we have that
(@, 0T f) s @nyx s &y = (trr@, fLy1)- (13)

Since H* (F:) C ker(trr) the range of tr} is contained in H, =%, which is the
annihilator of H*(I'“) withrespect to (-, -) g—s ®nyx 55 &) [17, Lemma 3.2]. Key to our
analysis will be the following stronger result. This is proved, for the case 0 < d < n,
in [9, Prop. 6.7, Thm 6.13], and the arguments given there (we need only the simplest
special case m = 0) extend to the case d = n, with the twist that, to justify the existence
of a bounded right inverse Er o in Step 2 of the proof of [9, Prop. 6.7], we need to use
(as above) that H*(R") = B;yz(R") and [37, Thm. VL3 on p. 155]. Figure 2 shows
the main relations between these function spaces.

6 Our standard notation for Besov spaces on R” is that of, e.g., [51].

7 We omit in our notation for trr : HS(R™) — H/(T") any dependence on s. This is justified since, for
every s > %, trrg = | forg € C(‘)’O(]R”), and Cgo(]R”) is dense in H¥ (R"). Likewise, we omit any
dependence on ¢ in our notation for trF :HH(I") — H~*(R"). To see that this is justified, in particular that
the values of the tr}- operators coincide where their domains intersect, denote tr. : H~Y(T) - H*R")

temporarily by trf. , to make explicit the domain. Then, fort’ >t >0, tr”li’t,f =ty f.forf € H~ (') C

H~ (I'), as a consequence of (12).
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H(I) < LyI) ¢ HYI)

trr T ltr;

HS (FC)J_ HI:S
N N
HYRY) C  LyR") C  HR")

Fig. 2 The main function spaces introduced in §2.4 and their relations. Here ' C R” is a d-set with
O<d<nt=s— % € (0, 1), both arrows represent unitary isomorphisms. Where we write A C B,
the function space A is densely and continuously embedded in B. Where N separates A and B vertically,
the space A is a closed subspace of B

Theorem 2.7 Let " C R" be a d-set for some 0 < d < n. Let ”Ed <s < "Ed +1, so
thatt = s—”gd € (0, 1). Thenker(trr) = ﬁS(FC), S0 thattrrlgS(rL-)l . H (rot -
H' (") is a unitary isomorphism. Accordingly, the range of tr}. is equal to Hy.*, and

€ (0, 1).
(14)

tf : H'(T') - Hy° s a unitary isomorphism, where t =5 —

Furthermore, tri-(Lp(I)) is dense in Hy.*.

2.5 Function spaces on planar screens

For the screen scattering problem, we define function spaces on the hyperplane I's, :=
R" x {0} and subsets of it (for example, on the compact subset I' C "o, that forms the
screen) by associating I', with R” and I" with the set [ c R" suchthat T =T x {0}
and applying the definitions above, so that H* (') := H*(R"), H*(I") := H* ()
etc., and, when I' C 'y is a d-set, H (") := H’(f‘). In the latter case, the operator
trr : HS(R") — H'(I") naturally gives rise to an operator trr : H*(I'so) — H'(I").
For open sets @ C R"*! (e.g. the exterior domain D := R"+1\ I') we work with the

classical Sobolev spaces® W! () and W' (Q, A), normed by ”””%}Vl(sz) = ”””%2(9) +
IVullZ, gy and g1 g o) = N7, + 1Vul7, ) + | Aullf, g respectively, and

their “local” versions W11°¢(2) and W11°¢(Q, A), defined as the sets of measurable
functions on € whose restrictions to any bounded open Q' C Q are in W!(Q')
or WY, A) respectively. We denote by yE o wlU*) - H'Y?(I'y) and 8;5 :
WH(U*, A) - H™'/2(I'y) the standard Dirichlet and Neumann trace operators from
the upper and lower half spaces U* := {x € R"*!, £x,,1 > 0} onto the hyperplane
I"'o, where the normal vector is assumed to point into U * in the case of the Neumann

trace. Explicitly, the traces are the extension by density of y* (1) (x) := lim oy u(x)
x'eU*

8 Qur notation follows [38]. Given an open set 2 C R wl (R2) is the Sobolev space whose norm is
defined “intrinsically”, via integrals over €2, while H! (£2) is defined (see Sect. 2.4) “extrinsically” as the set
of restrictions to  of functions in H'! (R"“). These spaces coincide if €2 is Lipschitz (e.g., [38, Theorem
3.16]), in particular if Q = Rt1 , but not in general, in particular not, in general, for Q = D.
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FE E, Es

Eqy E(12 Eq3) Ew1) Eppg) Eegs) Egyy  Esg Eass)

Fig. 3 Illustration of the sets Ep, m € Iy, £ = 0,1,2, with E = [0, 1], for the IFS s1(x) = 0.4x,
s2(x) = 0.15x + 0.5, s3(x) = 0.25x + 0.75, associated with a Cantor-type set with M = 3

and 9 u(x) == 1im y_, 52 (x') foru € Cg°(R"*1)| = and x € T'oo. We note that
7 + n

eU

X
ifu e WHR™ 1) then y ¥ (uly+) =y~ (uly-) [15, §2.1]. Finally, let C§%. denote the
set of functions in C§° (R"*+1) that equal one in a neighbourhood of I".

3 Wavelet decompositions

The spaces H (I') were defined in Sect. 2.4 for ' C R" a general d-setwith0 < d < n.
In the case where I' is a disjoint IFS attractor (in the sense of Sect. 2.3, in which case,
by Lemma 2.6, d < n), it was shown in [36] that, whenn — 1 < d = dimg(I") < n,
the spaces HI (I") can be characterised in terms of wavelet decompositions for r > 0.7
This, more precisely an extension of this characterisation to negative ¢, will be central
to our BEM convergence analysis later. In the current section we recap the notation and
main results from [36] that we will need, initially assuming only thatn — 1 <d <n
and that the OSC is satisfied.

Let I be the attractor of an IFS {sy, ..., s/} as in (3), and assume that the OSC (4)
holds. Following [36], for £ € N we define the set of multi-indices I, := {1,..., M }K =
m=my,my,....mp), 1 <m<M,[=1,2,...,¢},andfor E C R"andm € Iy
we define Ey, = 8y, 08, 0. . .08y, (E). We also set I := {0} and adopt the convention
that Eg := E. (We will use these notations especially in the case E =I".) For § = N
and S = Ny := N U {0} we use the notation

Is = J 1 (15)

LeS
and, form = (my,...,my), set m_ := (my,...,mp_1) if £ € N with £ > 2, and
set m_ := 0if £ = 1. An example of use of the notation E,, is shown in Fig.3.
Note that this notation extends that of (7) where the sets I'y, ..., I"3; were introduced,

corresponding to the case £ = I" and £ = 1 here.

9 More precisely, [36] showed that the Besov spaces B(f 4 (I'), as defined in [36, §6] (and see Definition A.1
below), can be characterised in this way for ¢ > 0 and 1 < p, g < oo, provided I" preserves Markov’s
inequality, which holds in particular (see Remark A.6) if d > n — 1. We show in “Appendix A” (see
Corollary A.4 and Remark A.6) that, for t > 0, H' (I") = B,2 ‘2(1") with equivalence of norms if I is a d-set
with d > n — 1, so that this characterisation carries over to our trace spaces H’ (I").
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Let Wy be the space of constant functions on I', a one-dimensional subspace of
L, (I") spanned by

xo = 1r/HI D)2,
More generally, for £ € N let

Wy :={f € Lp(T') : Vm € Iy, Ac;, € C such that
f(x) = cm for H?-ace. x € Ty} C Lo(D).

Since Hd(Fm N ) = 0 for m # m’ (a consequence of (8) (self-similarity)), Wy is
a M*-dimensional subspace of I, (I") with orthonormal basis

{xmtmer,
where

1
() = | T X € T (16)
0, otherwise.

Clearly Wog € Wy € W, C --- C Ly(I'). But the bases we introduced above
are not hierarchical, in the sense that the basis for Wy, | does not contain that for
W,. Following [36] we introduce hierarchical wavelet bases on the W, spaces by
decomposing

-1
We =Wo (@(WF—H e Wm) : (17)

=0

where Wy 1 © W, denotes the orthogonal complement of Wy in W/ 1. As already
noted, Wy is one-dimensional, with orthonormal basis {yo}, where {9 = xo. The
space W1 © Wy is (M — 1)-dimensional, and an orthonormal basis {¢/""},,=1. .. m—1
of W; & Wy can be obtained by applying the Gram-Schmidt orthonormalization
procedure to the (non-orthonormal) basis {J”’}m=1 m—1 defined by

.....

(HAT,)) !, for H%-a.e. x € Ty,
Y (x) = —(HY(Tpy1) !, forH%-ae.x €Ty, m=1,...,M—1,
0, otherwise,

(18)

For £ € N the space Wy,1 © W, is (M — 1)M*)-dimensional, and an orthonormal
basis of W,11 © Wy (see Fig.4) is given by (Y }mer,, m=1,..,M—1, Where

Y= (HY () Py os b osyl ooiosl, m=1,2,...,M—1, mel,.

¢ my—1 mj
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15 %—
——— — —— a4t @

P )l — —
° wZ ——— =i S w%

25 L . 6 L L L ,
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

°
&

Fig.4 Graphs of the orthonormal basis functions ¥ 1 1,02 of W1 ©Wy (left) and v,y , m € I1, of W) 6 W
(right) for the IFS of Fig. 3. The black lines are the components of the attractor I'. Where the values of ¥ L
1//2, and ¥,;, on I are not shown explicitly, the values are zero, i.e. the graphs coincide with the black lines

Hence, recalling (17) and setting 1//6" =y™"™form=1,2,..., M — 1, we obtain the
following orthonormal basis of W:

Vol Ul tmer, vepo....o-1). meq1....m—13-

These bases are hierarchical, in the sense that the basis for W, contains that for
W,. Furthermore, as noted in [36, p. 334] (and demonstrated in the proof of Theo-
rem 5.1 below), elements of L, (I") can be approximated arbitrarily well by elements
of Wy as £ — oo, which implies that

(Y0} UV Ymel,, teNg, me(l,...M—1)

is a complete orthonormal set in Ly (I'). Hence every f € LL,(I") has a unique repre-
sentation

M—1 oo
f=Bovo + Z DO B (19)

—1 (=0 mel,
with
Bo = Bo(f) := (f, Y0,y and By = By, (f)
=(f,YypL,a), mely, £eNg,mefl, ..., M —1}, (20)
and

M—1 oo 1/2
1/ oy = <|ﬁ0|2 +Y > |ﬁ$|2> :

m=1 £=0 mel,

The next result, which combines Theorems 1 and 2 in [36], provides a characteriza-
tion of the space H' (I') C L, (I") (introduced after (9)) forn —1 < d = dimyg(I') < n
and 0 < ¢ < 1 in terms of the wavelet basis introduced above, under the assumption

@ Springer



A Hausdorff-measure boundary element method...

that T is a disjoint IFS attractor. This assumption ensures that the piecewise-constant
spaces Wy are contained in H(I") for all # > 0 (see [36, Thm. 2]). In the statement of
Theorem 3.1 the set J,, is defined for v € Z by

Jy = {m € Iy, : 27" < diam(I)y,) <27V}, 1)

and vg is defined to be the unique integer such that 0 € J,,, i.e. such that 27" <
diam(I") < 27"0*! Note that'”

o o
U »=U
=0

V=g

with disjoint unions on bth sides, 50 P2 _Zmelu F(m) = > im0 2omer, F(m)
whenever the convergence is unconditional, as is the case, for instance, for (19). For
convenience we introduce in this theorem a norm || - ||; that is different, but trivially

equivalent to that used in [36], which was | o|+ Y~/ (320200 22 Y ey, 1Bl )1/2.

Theorem 3.1 ([36, Thms 1 & 2]) Let T be a disjoint IFS attractor withn — 1 < d =
dimyg(I") < n, andlet0 <t < 1. Then

H'(D) = {f € La(D) & |1l < 00},

with
M—-1 oo 1/2
1Lf 1l = (Iﬁol2 +y > 2y |ﬁ,’,’:|2) :
m=1 v=1g melJ,
where By and {B,,;} are the coefficients from (19). Furthermore, || - ||; and || - ||mr )

are equivalent. If f € H'(T") then (19) converges unconditionally in H' (T").

Remark 3.2 (Fractional norms in the homogeneous case) In the homogeneous case
where p,, = p foreachm =1, ..., M, we have

M—-1 oo 1/2
£l = (Iﬁol ZZ 2Oy Iﬂ,’,,"|2> :
m=1 £{=0

mely

where v(€) = [(£1log(1/p) —log(diam(I")))/log 27, which is equivalent to the norm

2 e —2Zt mi2 2
(Iﬁol ZZO Z|ﬂm|> :

mely

10 As an example of these definitions, suppose that I" is the (disjoint) attractor of the IFS illustrated in
Fig. 3, in which case diam(I"y,) = diam(E;,), where Eyy, is as defined in Fig. 3, in particular diam(I"g) =
diam(I") = 1. Then vg = 0, Jo = {0}, J1 =¥, Jo = {1, 3}, and J3 = {(1, 1), 2}, so that, since Iy = {0}
and I} ={1,2,3}, [p=Jpand JoUJy UJy ClpUI} C JoUJ UJrU J3.
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If p € (0, 1/2] then the function v(£) is injective and I, = Jy (), £ € No.

Theorem 3.1 has the following important corollary, which is obtained by duality. In
this corollary and subsequently (see, e.g., [16, Remark 3.8]), given an interval Z C R
we will say that a collection of Hilbert spaces {H; : s € T}, indexed by Z, is an
interpolation scale if, for all s,t € 7 and 0 < n < 1, (Hs, H;) is a compatible
couple (in the standard sense, e.g. [4, §2.3]) and if the interpolation space (Hj, Ht)n“
coincides with Hy, for 6 = (1 — n)s + nt, with equivalent norms. We will say that
{Hj : s € 1} is an exact interpolation scale if, moreover, the norms of (Hy, H;), and
Hy coincide, forall s, € Zand0 < n < 1.

Corollary 3.3 Let I' and t satisfy the assumptions of Theorem 3.1.
@) If{Bo} YU {Bmtmer, teng, met,...m—1y C C satisfy

M—-1 oo 1/2
(|ﬂ0|2 +Y >y |ﬁ$|2) < o0 (22)
m=1 v=1g melJ,

then

M—-1 oo
= Bovo + Z SO B, (23)

m=1 =0 mel,

converges in H™!(I").
(ii) Each f € H™ (") can be written in the form (23) (with convergence in H'(I")),
where

Bo = (f, Yo)u—)xm ) and
Bm = (f  ¥m)u—r(yxmray. me€lg, LeNo, me{l,....M -1}  (24)

satisfy (22). (By (11) these definitions coincide with (20) when f € 1o(T").)
(iii) The norms || - lg-(r) and

M—1 oo 1/2
Lfll=s o= (|ﬁo|2 +y Yy |ﬁ,’::|2) . feHTD),
m=1 meJ,

=1 v=wp

are equivalent on H™'(T").
(iv) The duality pairing (-, -)g— (ryxmr (ry can be evaluated using the wavelet basis as

M—-1 oo

(f, @y ry = PoBy + Z Z Z BB,

m=1v=vomeJ,

1 Here, and subsequently, (H, Hy )y denotes the standard complex interpolation space, (Hs, Hy)(y] in the
notation of [4]; equivalently, the K - or J-method real interpolation spaces denoted (Hs, Hy)y 2 in [4, 16],
which are the same Hilbert spaces (Hs, Hy)[;), with equal norms, if the K - and J-methods are appropriately
normalised (see [16, Remark 3.6] and [18]).
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forg = Biro+Yom—| 30 Y ey, B/ € HI (I). With this pairing, H™' (I')
provides a unitary realisation of (H' (I"))* with respect to the norms ||-||; and ||-|| ;.
(v) Equipped with the norm || - ||, {H" (I')}_1 <z <1 is an exact interpolation scale.

Proof Fort € R we can define the weighted ¢, sequence space

b :={B = {Bo} U B tmery, teNo, me1,...Mm—1y : IBllgr < 00},

where
M—1 oo 1/2
1Bl = (Iﬂo|2+ Yoy oy |ﬁ,’::|2) . Be,
m=1 v=1 melJ,

which is a Hilbert space with the obvious inner product. The dual space of ' can be
unitarily realised as h~7, with duality pairing

M—1 oo
(B.B)o-rxpr = PoBy+ D D > Bupm. BebhT . p el
m=1 v=

v=vo meJ,

Furthermore, Theorem 3.1 implies that the space H'(I") is linearly and topologically
isomorphic to b’ for 0 < ¢ < 1 (unitarily if we equip H'(T") with || - ||;). Hence
by duality H~*(T") is also linearly and topologically isomorphic to b~ for the same
range of ¢ (unitarily if we equip H~(I") with || - ||_;). From these observations parts
(1)—(iv) of the result follow, noting, in the case of (iv), that f is a continuous antilinear
functional on H (I").

For (v) we note that by [16, Thm. 3.1] {h7};<g is an exact interpolation scale.
The corresponding statement about {H*(I")}_;; <1, equipped with the norm | - ||,
follows from Theorem 3.1 and parts (i)—(iii), combined with!2 [16, Cor. 3.2] and the
fact that HO(I") = Ly (") is unitarily isomorphic to f)o. Explicitly, in [16, Cor. 3.2],
given —1 < 19 < 11 < 1 we take H; = HY((T),j=0,1,X = {0} U {(v,m,m) :
mel;, ¢t e Ng, me{l,..., M — 1}}, u to be the counting measure on X', A4 to be
the map taking f € H% (") to the sequence B defined by (20) or (24) (as appropriate),
and w;(0) = 1, w;((v, m, m)) = 227, o

A basic interpolation result is that if Xo D X; and Yy D Y; are Hilbert
spaces, with X| and Y] continuously embedded in Xo and Y, respectively, and
A : X; — Y; is a linear and topological isomorphism, for j = 0, 1, then, for
0<0 <1, A(Xo, X1)g) = (Yo,Y1)g and A : (Xo, X1)9 — (Yo, Y1)g is a lin-
ear and topological isomorphism. This is immediate since ((X¢, X1)o, (Yo, Y1)p) and
((Yo, Y1)o, (X0, X1)g) are, in the terminology of [ 16, §2], pairs of interpolation spaces
relative to (X, Y) and (Y, X), respectively, where X = (Xo, X1), Y = (Yo, Y1) (e.g.,
[4, Theorem 4.1.2]).

12 There is an inaccuracy in the statement of [16, Cor. 3.2]; the map A : £(H) — ) in that corollary needs
to be injective as well as linear for the corollary to hold (see [18]). This injectivity follows automatically
from the other conditions on A when (as in the application we make here) H] C Hy, with continuous
embedding, since then = (H) = Hj.
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Remark 3.4 Theorem 3.1 and Corollary 3.3, together with the above interpolation
result applied with A taken as the identity operator, imply that, if " satisfies the
assumptions of Theorem 3.1, then {H'(I")}_; ;< is an interpolation scale also when
H'(I") is equipped with the original norm || - || (or indeed any other equivalent
norm).

We include the following corollary, although we will not use it subsequently,
because it may be of independent interest. Note that the range of s does not extend
tos = —(n — d)/2 since, by [32, Thm 2.17], Hli # {0} fors < —(n — d)/2, but
Hl__(n_d)/2 = {0} so that (e.g., [16, Theorem 2.2(iv)]) (HIE Hr—(n—d)/2>0 = {0} for
alls e Rand0 <6 < 1.

Corollary 3.5 Suppose that T satisfies the assumptions of Theorem 3.1. Then
{HL Y~ (1—d)j2—1<s<—(n—d)/2 Is an interpolation scale.

Proof Apply the basic interpolation result above with A = trf and Xo = H™"(I),
X, =H" (@), Yy = H* Y = Hl?"/, forsome 0 < t' <t < 1, where s and ¢ are
related by (14) and similarly t" = s — (n —d)/2; note that A : X; — Y; is alinear and
topological isomorphism, for j = 0, 1, by Theorem 2.7. This gives, for0 < n < 1,
where X, := (Xo, X1), and Y¥;; := (Yo, Y1),, that A(X;)) =Y, and A : X, = V),
is a linear and topological isomorphism. But, by Remark 3.4, X, = H~""(I'), with
equivalent norms, where t* := (1—n)r+nt’, so that A(X,)) = tr*Ii(]HI_’* ) = HF_‘Y*,
by Theorem 2.7, where s* := t* + (n —d)/2 = (1 — n)s + ns’. Thus ¥,, = Hr_s*;
moreover, the norms on Y, and Hp " are equivalent since the norms on X, and
H~""(I") are equivalent and the mappings tr: : X, — Y, and tr : H™""(I") — HF_S*
(Theorem 2.7) are both linear and topological isomorphisms. O

4 BVPs and BIEs

In this section we state the BVP and BIE that we wish to solve. We consider time-
harmonic acoustic scattering of an incident wave u’ propagating in R"*! (n = 1,2)
by a planar screen I', a subset of the hyperplane I'o, = R” x {0}. We initially consider
the case where I" is assumed simply to be non-empty and compact, for which a well-
posed BVP/BIE formulation was presented in [19, §3.2]. We later specialise to the
case where I" is a d-set for some n — 1 < d < n, and then further to the case where
I" is a disjoint IFS attractor.

Our BVP, stated as Problem 4.1 below, is for the scattered field u, which is assumed
to satisfy the Helmholtz equation

Au + k*u =0, (25)
in D := Rt! \I', for some wavenumber k > 0, and the Sommerfeld radiation condi-
tion

du(x)

; —iku(x) = o(r~"?),  r:=|x| — oo, uniformlyin % := x/|x|. (26)
;
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We assume that the incident wave u’ is an element of W !-1o¢(R+1) satisfying (25) in
some neighbourhood of ' (and hence C in that neighbourhood by elliptic regularity,
see, e.g.,[26, Thm 6.3.1.3]); for instance, ut might be the plane wave ut(x) = ek?x for
some ¥ € R"*!, |#] = 1. To impose a Dirichlet (sound-soft) boundary condition on
I" we stipulate that'? o (u +u') € W(} (D), the closure of C3°(D) in W(D), for every
o € Cg}. For the traces on 'y, this implies that yE@u + ul)|y+) e ﬁl/z(l“").
(Here, and in what follows, I'“ will denote I'so \ T", the complement of I" in ',
rather than its complement in R+ which we have denoted by D.) This motivates
the following problem statement, in which P denotes the orthogonal projection

P HY2(Tw) — HY2(TL. (27)

Note that if 01,07 € Cgor then oy = o> on some open set G D I, so that, for

u e WHD), yE (o1 — onulys) € Hior © H'(I) so that Py*((oy —
o2)uly=) = 0.

Problem4.1 Let I' C I'ec be non-empty and compact. Given k > 0 and g €
HY2(T)L, findu € C* (D)NW1¢(D) satisfying (25) in D, (26), and the boundary
condition

PyE(oulys) = g, (28)

for some (and hence every) o € C&OF. In the case of scattering of an incident wave

u', g is given specifically as
g =—Py=(ou'[y=). (29)

The next result reformulates the BVP as a BIE. In this theorem S : H. 12
C%(D) N W hloe(R"+1) denotes the (acoustic) single-layer potential operator, defined

by (e.g., [15, §2.2])
SY(x) = (y (@ P(x, M=), V) g2y xi-12(ra): X €D, (30)

where ¥ denotes the complex conjugate of ¥,'* ®(x, y) := e* = /(4x|x — y|)
(n=2), ®(x,y) := (/49 H" (klx — y) (2 = 1), H}" is the Hankel function of the
first kind of order zero (e.g., [1, Equation (9.1.3)]), and o is any element of C&OF with
x ¢ supp o. The = in (30) indicates that either trace can be taken, with the same result.

13 The condition o +ul) e Wd (D), for every o € C&OF, is equivalent to the (perhaps more familiar)
requirement that u + ul e WOI'IOC(D). Here Wol’loc(D) is the closure of C8°(D) in Wl'IOC(D) equipped
with its usual topology, so that WS’IOC(D) ={ewhlepy: yve W(} (D), forall x € Cgo(]R”"'])}.
One point of multiplying by the cut-off function o is that, foru € W1°¢(D), ou € W1(D), so that, taking

traces, y = (ou) € H'/>(I's0), which is in the domain of the orthogonal projection operator P defined in
(29) which plays a key role subsequently.

14 ¢ Y elr('sw) C H*1/2(roo), ¥ is the usual complex conjugate, and this definition of the complex
conjugate is extended to H_l/z(l“oo) by density.
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In the case when I' is the closure of a Lipschitz open subset of I'o and ¢ € L, (T") the
potential can be expressed as an integral with respect to (Lebesgue) surface measure,
namely

Sve) = [ @ v ;. xeD. G1)
r
The operator S : Hp. 12 g 2(I¢)L denotes the single-layer boundary integral
operator

Sy == PyE(@Syly+). ¥ e Hp ", (32)

whereo € C, 8‘} is arbitrary, which is continuous and coercive (see Lemma 4.3 below).

Theorem 4.2 ([15, Thm. 3.29 and Thm. 6.4]) LetT" C I'oo be non-empty and compact.
Then Problem 4.1 has a unique solution satisfying the representation formula

ulx) = —-S¢x), xeD, (33)

where ¢ = 3 (ouly+) — 8, (cu|y-) € Hlfl/z (with o € C&OF arbitrary) is the
unique solution of the BIE

S¢ = —¢, (34)

with g given by (29) in the case of scattering of an incident wave u'.

Define the sesquilinear form a(-, -) on Hr_l/2 X Hr_l/2 by
a(‘pa ‘/f) = (Sd)a w)ﬁl/Z([‘c)J_xHFl/z
~1/2
= SOV iy G0V € HE (35)

Then the BIE (34) can be written equivalently in variational form as: given g €
(H'Y2(r¢)L, find ¢ € H."/* such that

—1/2
a(¢, Iﬂ) = —(g, ¢>H1/2(Fw)XH—I/2(Fw), for all w € HF / . (36)

This equation will be the starting point for our Galerkin discretisation in Sect. 5.
The definition, domain and codomain of S may seem exotic. But, as noted in [19,

§3.3], given any bounded Lipschitz open set 2 C I's, containing I', the sesquilinear
1/2 1/2

form a(-, -) is nothing but the restriction to H. '~ x Hy, /* of the sesquilinear form
a®(-, ) defined on H=1/2(Q) x H~'/2(Q) by
aQ(¢a Ip) = <SQ¢7 W)Hl/z(Q)xﬁfl/Z(Q), ¢’¢ c ﬁ71/2(9)’ (37)
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with §2 : H=1/2(Q) - HY%(Q) the single-layer boundary integral operator on the
Lipschitz screen €2, defined in the standard way (e.g., [14, §2.3]), so that

% (x) = /Q O, PO ds(y),  x €L, (38)

for ¢ € L,(S2). The continuity and coercivity of a**(-, -) (e.g., [14]) therefore implies
the continuity and coercivity of a(-, -), as the following lemma ( [14], [15, §2.2]) states.

e . . . —-1/2
Lemma 4.3 The sesquilinear form a(-,-) is continuous and coercive on Hp. 2 %

Hp 1 2, specifically, for some constants C,, ¢ > 0 (the continuity and coercivity
constants) depending only on k and diam(T"),

@@, )| = Callglyorn 1Ny, 10, @) = @Bl o, 6,9 € H 1 G9)

r

Having computed ¢ by solving a Galerkin discretisation of (36), we will also
evaluate u(x) at points x € D using (33) and (30). Further, recall that (e.g., [13,
Eqn. (2.23)], [38, p. 294])

elklx\

u(x):m—n/z(um()%)+0(|x|*‘)), as |x| — oo,

uniformly in X := x/|x|, where u®® € C*°($") is the so-called far-field pattern of u
and $" is the unit sphere in R”*!. We will also compute this far-field pattern, given
explicitly ( [13, Eqn. (2.23)], [38, p. 294]) as

u® @) = —(yT(0d (%, ), O 2y H-12(T) X €S, (40)
where o is any element of Cg- and

ik(n—Z)/2

DX (R, y) = —
)= 5 iy

exp(—ik% - y), %e€8" yeR"*L (41)

Note that ®°(., y) is the far-field pattern of ®(, y), for y € R*+1,

The following lemma provides conditions under which a compact screen I' C ',
produces a non-zero scattered field. We note that a sufficient condition for H. 12 # {0}
is that dimyg(I") > n — 1 [32, Thm 2.12], and that when I" is a d-set this is also a

necessary condition [32, Thm 2.17].

Lemma 4.4 ([15, Thm 4.6]) Suppose that u', which is C* in a neighbourhood of T,
is non-zero on I'. Then the solution of Problem 4.1 with g given by (29) is zero if and

only if H-'* = {0},
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4.1 The BIE on d-sets in trace spaces

Suppose now that I is a compact d-set with n — 1 < d < n. The assumption that
d > n — 1 ensures that I" produces a non-zero scattered field under the conditions of
Lemma 4.4. Furthermore, the condition d > n — 1 is equivalent to (9) with s = 1/2,
so that the results in Sect. 2.4 apply with s = 1/2 and

t:rd:l—"_de(o,l]. (42)

It then follows from (30) and (13) that for W € L, (I") the potential S has the following
integral representation with respect to Hausdorff measure:

Stri W (x) =/d>(x,y)\IJ(y)de(y), x € D. (43)
r

Proposition 4.5 Forevery W € LLoo(T") it holds that Stri. W C(R"Y. Precisely, the
function

Flx) = /F O (x, W (y) dH (),

is well-defined for all x € R"*! and is continuous, and Strp¥(x) = F(x) forx € D.

Proof 1t is clear that F(x) is well-defined for x € D since the integrand is then in
Loo(I), as ®(x, y) is continuous for x # y, and HA() < oo as I' is a bounded
d-set. For some constant C > 0, |®(x, y)| < Cf(|x — y|), forx,y € R x #£ y,
where f : (0, 00) — (0, c0) is decreasing and continuous, given explicitly by (see
[1, Equations (9.1.3), (9.1.12), (9.1.13), (9.2.3)])

) 14 |log(r)], 0 <r <1,
f)= {rl/z, r>1,

whenn = 1,by f(r) :=r~!,r > 0, when n = 2. Thus F(x) is also well-defined for
x € I" by Corollary 2.3 and since ¥ € L (I"). To see that F' is continuous, for ¢ > 0
let

. (b(xvy)s |X_Y|>Ev
De(x, y) = { ®(0, £8), |x — y| < e,
where é € R"*! is any unit vector, and let F,(x) := Jr @elx, MW(y) dH4(y), for
x € R""!. Then, for every ¢ > 0, &, € C(R*"! x R**1), so that F, € C(R"*!).
Further, for x € R"*!, noting Remark 2.2, we have that
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Ht4(T) c Ly(T) c H—te(T)
trp ltrf‘
gl/Q(FC)J— S = tI‘FStr; H;1/2

PT
Hl/g(r ) S:P’YiUS
OO\ S
'Y:t

Wl(Rn+1) Wl,loc(RnJrl)
Fig.5 Schema of relevant function spaces and operators fors = 1/2,t =15 :=1/2 — %
|F(x) — Fe(x)] = 2C||‘I"||]LOO(I‘)/ _ flx—yhdHA(y)
I'NBg(x)
2e
=< 2CC2II‘PIILW(F)/ r frydr — 0 (44)
0

as ¢ — 0, uniformly in x € R""! 5o that also F € C(R"*!). Thus also St} ¥ €
WILC (R™*1) is continuous, in the (usual) sense that it is equal almost everywhere with

respect to n 4+ 1-dimensional Lebesgue measure to a continuous function (the function
F), by (43). O

Noting that trp : HY2(I'*)+ — H%(T") and trf c H™(I') — Hr_l/2 are unitary
isomorphisms (see Theorem 2.7), if we define S : H%(I") — H (") by

S = trr S trf: (45)

then S is continuous and coercive, with the same associated constants as S (the con-
stants in Lemma 4.3). Furthermore, it follows from (35) and (12) that

a(trf W, uf0) = (SW, ) gy 1y ry o W € HT(D), (46)

and the variational problem (36) can be equivalently stated as: given g € HY 2(reyt,
find ¥ € H~% (T") such that
(S"IJ, \i)th (T)xH™"d (T") = — (trrg, li)th (M)xH'd (") for all CI} (S H_td (F),
(47)

and the solutions of (47) and (36) are related through ¢ = trf.W. A schematic showing
the relationships between the relevant function spaces and operators is given in Fig. 5.

Since, as an operator on H'2(I'y), ker(trr) = ﬁl/z([“') (Theorem 2.7), so that
trr Pp = trrgp, ¢ € H'/?>(I'so), and recalling (14), (27) and (32), we see that (with
the + again indicating that either trace can be taken, with the same result)
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SW = trry T ((0StEWw)|y+), W e H (), (48)

with o € C( arbitrary.
The following integral representation for S will be crucial for our Hausdorff BEM
in Sect. 5.

Theorem 4.6 Let I' be a compact d-set withn — 1 < d < n. For ¥ in Lo ('),
SW(x) = / O (x, VVU()AHY(y),  for H%-a.e.x €T. (49)
r

Proof Let ¥ € Loo(I') C Ly(I') ¢ H%(I"), so that S¥ € H“(I") C Ly(T). For
arbitrary o € C§-, we have that

SW =trr (¥ (0 Hlys)) (50)

by (48), where f := St W € C2(D) N Wlloe(R1+1y Now, where F is defined as
in Proposition 4.5, f(x) = F(x) for almost all x € R+ (forx € D by (43)), and
F € C(R"*!) by Proposition 4.5. Further, if G € W!(R"t1) N C(R"*!) it is easy to
see that trry T (G|y=) = G|r. Thus SW = F|r in L, ("), and the result follows. O

The definition and mapping properties of trr and try., noted in Sect. 2.4, combined
with the representation (48), enable us to extend the domain of S to H~'(I'), for
ty <t < 2tg, or restrict it to H™/(I"), for 0 < ¢ < 14, as stated in the following key
result.

Proposition 4.7 Let I" be a compact d-set withn — 1 < d < n. For |t| < tg, S :
H!~% (") — H!*(T") and is continuous.

Proof Let Q C I'og be any bounded open set containing T', so that (see Sect. 2.4) Hp
is a closed subspace of H*(2) for every s € R. The claimed mapping property of S
follows from (48) since trp : H*(R") — H/ (I andtrf : H/(I') — H* C H™(Q)
are continuous for s > (n — d)/2 (i.e. t > 0), with s and ¢ related by (9), and since
the mapping ¢ +— yE(cSP)|y+) : ﬁS(Q) — Ht(I'y) is continuous for s € R
(e.g., [14, Thm 1.6]). O

We now make a conjecture concerning the mapping properties of S~!. To the best
of our knowledge there are no results in this direction in the case d < n, but the
conjecture can be seen as an extension of known results in the case d = n, since the
conjecture is known to be true in the case that I' =  for some bounded Lipschitz
domain €2 C I'eo, in which case d = n (so 74 = 1/2). For in this case the single
layer BIO S€, defined below (37), is invertible as an operator from H'’ “V2(Q) to
H't1/2(Q) for |t| < 1/2—see [49, Thm 1.8] for the case n = 1 and [43, Theorem
4.11% for the case n = 2—which implies that S : H' ~% (I") — H*% (T") is invertible,
by the fact that H*(I") = H®(") for s > 0 (see [11]), Theorem 2.7, and the fact that

lf Temporarily denoting S Q@ by S to indicate the dependence on k, [43, Theorem 4.1] gives that Sy :
Hi=1/2 Q) — H"H/Z(Q) is Fredholm of index zero for || < 1/2 when the wavenumber is purely
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H () = Hé (see, e.g., [38, Thm 3.29]). A further motivation for our conjecture is
that its truth implies convergence rates for our BEM (defined and analysed in Sect. 5)
that are evidenced by numerical experiments in Sect. 6 for cases withn — 1 < d < n.

Conjecture 4.8 If I is a compact d-set withn — 1 < d < n and |t| < tg, then
S:H'~" (") — H'™(T) is invertible, and hence (by Proposition 4.7 and the bounded
inverse theorem) a linear and topological isomorphism.

While we are not able to prove Conjecture 4.8 in its full generality, in the case
where I is a disjoint IFS attractor, in which case, by Lemma 2.6, d < n, we can prove
that S is invertible for a range of ¢, using Corollary 3.3 and results from function space
interpolation theory.

Proposition 4.9 Let T" be a disjoint IFS attractor withn — 1 < d = dimg(T") < n.
Then there exists 0 < € < tg such that S : H' =" (") — H'™4(T") is invertible for
[t] < e.

Proof We recall the following result from [39, Prop. 4.7], which quotes [45]. Suppose
E; and F; are Banach spaces, E; C Ep and F| C Fj with continuous embeddings,
and T : E; — Fj is a bounded linear operator for j = 0, 1. Let Eg9 = (Eo, E1)g be
defined by complex interpolation, and similarly Fy,so T : E9 — Fp and is bounded,
for0 < 0 < 1. Assume that T : Eg, — Fpy, is invertible for some 6y € (0, 1). Then
T : Ey — Fp is invertible for 6 in a neighbourhood of 6.

The claimed invertibility of S : H! =% (I") — H'*%(I") in a neighbourhood of t = 0
then follows by taking 0 < 7 < #; and applying the above result with

Eo=H"""T), E\=H""T), Fo=H""T), F=H"®D),
and 6y = 1/2, so that Eg, = H(T") and Fy, = H'"“ ("),

recalling that (i) S : H' =" (I") — H'*™(I") is bounded for || < t; (Proposition 4.7);
(i) S : H™"(I") — H"(T") is invertible (Lemma 4.3); (iii) {H'(I")}};|<1 is an interpo-
lation scale (Corollary 3.3); and (iv) t; € (0, 1/2),s0t —t; € (—2t4,0) C (—1,0)
andr + 14 € (0, 2t7) C (0, 1), for |7] < 2. m]

Remark 4.10 (Solution regularity in the H{. scale) The mapping properties of tr. in
Theorem 2.7 and the relationship (45) between S and S imply that, if $ € H. 2 s the
solution of the BIE (34), then SW = —trpg, where ¥ := (tr*li)’lqs € H~%(T"). Thus
if, forsome 0 < ¢t < t4,S : H'~%(I") — H'*(T") is invertible and trr g € H' ™ ("),

Footnote 15 continued

imaginary, say k = i. (We are defining S; here by (38) with k = i; equivalently, arguing, e.g., as in [14, §3],
S; is the pseudodifferential operator on €2 with symbol o (x, &) = 1/(2/1 + |£]2), in the notation of [43,
Theorem 4.1].) Since S — S is compact as an operator from 170(1“) = L2(F) — HI (I') and by duality
also from H~ Ly > L2(T) = HOT) (see, e. g., the argument on [13, p. 122]) and so, by interpolation
(see, e.g., [23, Thm. 10] and [16, Cor. 4.7, 4.10]) from H'~1/2(I") — H'*/2(T") for |r| < 1/2, it follows
that Sy = Sj + (S —_Si) is Fredholm of index zero as a mapping from H'= 2ry -» HH'I/Z(F) for
1] < 1/2. Since S : H~1/2(Q) — H'T1/2(Q) is coercive and so invertible by Lax-Milgram for ¢ = 0,
S is injective and so invertible for 0 < ¢t < 1/2; indeed, invertible also for —1/2 < t < 0, since Sk the
adjoint of Sy, is invertible for this range and S]’: = JSiJ, where J maps ¢ to its complex conjugate.
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then, again using the mapping properties of trf. from Theorem 2.7, the solution ¢ =
tri.W of the BIE (34) satisfies

—1/2 :
¢ € HZ'*Y' . with Il 17240 = Cllrr gl r Gb

for some constant C > 0 independent of ¢ and g. In the case of scattering of an
incident wave ', in which g is given by (29), we have that trrg = —trry £ ((ou’)|y+)
e H' (") forall 0 < ¢ < t4, since u'isC®ina neighbourhood of I". Hence, in this
case, if ' is a disjoint IFS attractor withn — 1 < d = dimy (") < n, then (51) holds
for 0 < t < €, where € is as in Proposition 4.9, and, if Conjecture 4.8 holds, then (51)
holds for 0 < ¢ < t; whenever I is a compact d-set withn — 1 < d < n.

5 The Hausdorff BEM
We now define and analyse our Hausdorff BEM. To begin with, we assume simply

that I' is a compact d-set for somen — 1 < d < n.
Given N € N let {Tj}?’:1 be a “mesh” of I', by which we mean a collection

of H“-measurable subsets of I’ (the “elements”) such that ’Hd(Tj) > ( for each
j=1,...,N,HUT; N T;)=0for j # j’,and

N
r=Jr.
j=1

Define the N-dimensional space of piecewise constants
Vn :={f e L) : f|T_/. =cjforsomec; €C, j=1,...,N} CL(I') (52)
and set
Vy i=tri(Vy) € H /2. (53)

Our proposed BEM for solving the BIE (34), written in variational form as (36),
uses Vi as the approximation space in a Galerkin method. Given g € (H 172(pey)+
we seek ¢y € Vi such that (with a defined by (35))

A(PN, UN) = —(& UN)HI2(T o) x H-1/2(T o) » forall yy € Vy. (54)

Let {7} | be a basis for Vy, and let {¢! = trf £}, be the corresponding
basis for V. Then, writing ¢y = Zj»v:l Cj e/, (54) implies that the coefficient vector
¢=1(c1,...,cy)T € CV satisfies the system

AZ=b, (55)
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where, by (46), (11), and (49), the matrix A € C¥*V has (i, j)-entry given by

Aij=a(el, é) =a (tr’l‘ifj, tr;fi) = (SF, F)aa ey
= S, fFHm,

_ /F /F (. y) £ () FT00) dH () dH (x),
(56)

and, by (13), the vector b € CV hasith entry given by

bi = =8, €) 1Py = —(rgs fOLm) = —/rtrrg(X)fi(X) dH? (x).
(57

For the canonical IL, (I")-orthonormal basis for V y, where fJ' |Tj — (Hd (Tj))—l /2
and f/|p\7; :=0,j=1,....N,

Ay = (HAT) AT / / O ) AHI AR, (58)
T; JT;

bi = —(H*(T;)~/? / trpg (x) dH? (x). (59)

T;
Once we have computed ¢ by solving (55) we will compute approximations to

u(x) and u™>(x), given by (33)/(30) and (40), respectively. Each expression takes the
form'®

J (@) = (@, B) 11720y x H-12(T o) (60)

for some ¢ € (ﬁ 12(peyy+. Explicitly, where o is any element of C{)”OF (with x not in
the support of o in the case u(x)),

¢ =—Pys(ov|y,). (61)

with v = ®(x,-) in the case that J(¢) = u(x), v = ®>°(x,-) in the case that
J(¢) = u®(x); note that each v is C* in a neighbourhood of I'. In each case we
approximate J(¢) by J(¢n) which, recalling (13), is given explicitly by

16 Note that if y e Hy'? and ¢f e H'Y2(Too) then (0F. )i 120y =
(0. W) 112 (1 oy x H-1/2 () Where @ := Pyt e (HY/2())L, since (¢, V) 2oy x H=1/2(Tae) = 0
fory € Hy.'/* and ¢ € H'/2(r9),
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N
J(pn) = <¢a(b_N>H|/2(FOO)><H_'/2(FOO) = ch (o, ej)H]/z(roo)XH_]/z(rOO)
j=1
N o N
= ch(trrfﬂ, LT = ch / trro f7 dHY. (62)
j=1 j=1 7T

For the canonical 1L, (I")-orthonormal basis for Vy,

N

N
J = —’/ trpe dHY. 63
(éN) jX_;(Hd(Tj))l/z T (63)

The following is a basic convergence result.

Theorem 5.1 Let I' be a compact d-set for some n — 1 < d < n. Then for each
N € N the variational problem (54) has a unique solution ¢y € Vy and ||¢p —
dnllg-12ry = 0 as N — oo, where ¢ € HI:]/Z denotes the solution of (34),
provided that hy := max = . n diam(7}) — 0 as N — oo. Further, where J (-) is
given by (60) for some ¢ € (HYV>(T)L, J(pn) — J(¢) as N — oo.

Proof The well-posedness of (54) follows from the Lax—Milgram lemma and the
continuity and coercivity of S : Hp V2 (H'Y2(r)L. Furthermore, by Céa’s
lemma (e.g., [47, Theorem 8.1]) we have the following quasi-optimality estimate,
where C,, o > 0 are as in (39):

C,
— _ <% inf | — . . 64
¢ —dnllg-112ry) = L ¢ —¥Nnla-120y) (64)

Hence to prove convergence of ¢y to ¢ it suffices to show that infy, ey, ll¢ —
Ynllg-12q,) — 0as N — oo, which, by the definition of Vi and the fact that
trf. : H™%(') — Hp 2 is a unitary isomorphism, is equivalent to showing that
infyyevy ||(tr”Ii)_1¢ — Unlg-qy — 0as N — oo. Furthermore, since Lo (T")
is continuously embedded in H~%(I") with dense image it suffices to show that
infyyevy IV — Wy, ) — 0as N — oo for every fixed ¥ € L, (I"). To show the
latter we note that the space C(I") of continuous functions on I' (equipped with the
supremum norm) is continuously embedded in L, (I") with dense image (continuity
is obvious and density follows by the density of Cg°(R") in H 1/2(R™) and that (see
Sect. 2.4) trp : H'/2(R") — L,(I") is continuous and has dense range). Then, given
€ > 0and ¥ € LLy(I'), there exists U e C(T") such that ||& — ‘TJ||L2(F) < €/2, and by
the uniform continuity of U and the fact that & N — 0as N — oo there exists N € N
and Wy € Vy such that |\Tl(x) — WUy (x)| < €/(2/HA()) for H%-a.e. x € T, which
implies that ||\Tl — WYyl < €/2, from which it follows that [|W — Wy |1, ) < €
by the triangle inequality. That also J(¢n) — J(¢) is clear since J(-) is a bounded
linear functional. O

@ Springer



A Hausdorff-measure boundary element method...

Ey

Ey Ey Es

Eay Ea2) Eug By Eez) Ees) Egy  Be2 Ees

Fig.6 Toillustrate the definition K,,, we show, asin Fig. 3, the sets Ey,,m € 1y, £ =0, 1,2, with E = [0, 1],
for the IFS s1(x) = 0.4x, s2(x) = 0.15x + 0.5, s3(x) = 0.25x + 0.75. Let I" be the attractor of this IFS.
Then I'yy = Ejp N T so that diam(Ty,) = diam(E,,) for each m. The sets E;, highlighted with thick
lines are those with indices m € K»; for example, diam(I'3) = diam(E3) = 1/4, so that (3, m) € K>,
m =1, 2,3, and diam(I') = diam(E,) < 1/4, so that also 2 € K

5.1 Best approximation error estimates

We now assume that IT" is the attractor of an IFS of contracting similarities satisfying
the OSC, as in Sect. 2.3. In this case, one possible choice of BEM approximation
space could be Vy = Wy, for some £ € Ny (recall the definitions in Sect. 3), so
that {Tj}?’:1 = {TCm}lmer, and N = M¢*. However, since the spaces W, are defined
by refinement to a certain prefractal level, if the contraction factors p1, ..., py are
not all equal the resulting mesh elements may differ significantly in size when £ is
large. This motivates the use of spaces defined by refinement to a certain element size.
Recalling the notations of Sect. 3 (in particular, J,, is defined in (21) and vy below
(21)), for v > v let

X, == span({¥0} U (¥ mes,, vepro....v) me(l,...M—1}) = span({Xm}mek,). (65)
where
K, :={m € Iy : diam(I'y,) < 27" and diam(I',_) > 27"}. (66)

Note that both of these spanning sets for X, are orthonormal bases, and that X, C
Xy, for vy < v </, giving that

X, = span({x0} U {xm : m € In, diam(I'y,_) = 27"}) (67)

(but with this spanning set not linearly independent). Note also that, for v > vy,
{I'm : m € K,} is a mesh in the sense introduced at the beginning of this section.
Figure 6 illustrates the definitions of X, and K, showing the meaning of K, for a
particular IFS for which diam(I") = 1 so that vy = 0; for this same IFS we have that
Ko =K ={1,2,3}.

Proposition 5.2 Let T" be a disjoint IFS attractor withn — 1 < d = dimyg(I") < n.
Then for —1 <t < 1 and v > vy the orthogonal projection operator P, : Lo(I') —
Xy C Lo(T) defined by

M—-1 v
Pof=Bovo+ . >, > B (68)

m=1 v'=yymelJ,
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with the coefficients given by (20), extends/restricts to a bounded linear operator
P, : H'(I') — X, C H(T"), and there exists C > 0, independent of v and f, such
that

IPy fllrry < Cll fllmeery, v =>vo, fe€H(D). (69)

Furthermore, for —1 < t; < ty < 1 there exists ¢ > 0, independent of v and f, such
that

If =Py fllgny < 27" fllgngy, v =vo, feH2D). (70

Proof The boundedness result follows from Theorem 3.1 and Corollary 3.3, noting
that

M-1 v 1/2
Py £l = (Iﬂo|2+ >y 2y |ﬂ,’,’:|2> < I/

m=1 v'=yy meJ,

. . . I e v
which gives (69) with C = Supy e (ry\ 0} —p— X SUPw e (0)\(0) %.

For the approximation result, we note, where ¢ > 0 denotes a constant independent
of v and f, not necessarily the same at each occurrence, that

If =Py fllgn @y =
H1(I)

172
22 Y Iﬁ}’,ZI2>

v+1 mer/

00 1/2
Z 272v’(t27t1)22v’t2 Z |/3m |2)
m

m=1 v'=v+1 me]v/
M-1

00 1/2
(T3 20 3 i)
'=v+1

m=1v'= melJ,

< 2727 Fllgn ).
O

Let X, := trj.(X,)). (Recall that the choice of s > (n —d)/2 in the definition of trf:
makes no difference to the definition of X,.) Since X,, C L(I") we have X, C H}.
forall s < —(n —d)/2. Then the following best approximation error estimate follows
immediately, on application of trf., from Theorem 2.7 and Proposition 5.2 applied
with —1 <t < <O0.
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Corollary 5.3 Let " be a disjoint IFS attractor withn — 1 < d = dimyg(I") < n, and
suppose that —(n —d)/2 — 1 < 51 < so0 < —(n — d)/2. Then there exists ¢ > 0,
independent of v and , such that

0 =Yl <27, vz, Y € HEL (D)

vEXyY

Remark 5.4 The above corollary holds also for larger values of s;, but is then a trivial
result since, as noted above Corollary 3.5, Hlfz = {0} forsp > —(n —d)/2.

Corollary 5.3 can be rephrased with 27" replaced by a more general element size
h, and X, replaced by

Yy = trf(Yp), (72)
where
Y = span({xm}meL;)- (73)
and Lj, := {0} for h = diam(I"), while, for 2 < diam(I"),
Ly = {m € Iy : diam(T',) < h and diam(T',_) > h}. (74)

This framework is a natural one for numerics—we specify 2 > 0 and consider all
those components which have diameter less than or equal to 4 but whose “parent” (in
the IFS structure) has diameter greater than /. The change from < to < and > to > in
moving from K, to Ly is intentional, so that the definition of Lj allows components
that are equal to / in diameter; & is an upper bound for, and may be equal to, the
maximum element diameter 4y = maxper, diam(I'y,). Note that the set { xm}mer,
is an orthonormal basis for Y, and, if x,, € Yy, then x,,_ € Yy, so that

Y, = span({)(o} U{xm : m € Iy, diam(I'y,_) > h}) (75)

(this spanning set not linearly independent). We assume in the following corollary and
subsequently that /2, an upper bound for &y < diam(I"), satisfies

0 < h < diam(T"). (76)
Except where indicated explicitly otherwise, results through the rest of the paper

hold for all £ in this range. The following corollary, a best approximation result for the
spaces Yy, follows from the inclusion X,, C Y}, for some suitable v, and Corollary 5.3.

Corollary 5.5 Under the assumptions of Corollary 5.3 we have that
: _ R §2—81 R 52
b =l < B e, V€ B )
for some constant ¢ > 0 independent of h and .
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Proof 1t is enough to show (77) for0 < h < diam(I")/2, since the result trivially holds
for larger & (just take v/, = 0 on the left hand side). Thus, given 0 < i < diam(I")/2,
let v = [log(1/h)/log(2)] — 1, so that 27"~! < h < 27V and v > vy. Then, if
m € K,, which implies that diam(I",,_) > 27, it follows that diam([",_) > #h,
so that x,, € Y. Thus X, C Y, which implies that X, C Y, so that, where
¢ > 0 denotes a constant independent of 4 and v, not necessarily the same at each
occurrence,

inf — Yl < inf — 51 < 02*‘)(52*5'1) 0 < chs2—s1 5.
Nl = Yl < ind Y =l 11 11
O

5.2 Galerkin error estimates

We now use the best approximation error results proved above to give an error bound
for the Galerkin approximation to the BIE (34) when the solution ¢ is sufficiently
smooth. Note that, combining the results of this theorem with inverse estimates that
we prove as Theorem 5.10 below, we extend (78) to a bound on |[¢p — ¢ || ol for a

range of s1 in Corollary 5.12 below.

Theorem 5.6 Let I" be a disjoint IFS attractor withn — 1 < d = dimyg([") < n. Let ¢
be the unique solution of (34) and let ¢y be the unique solution of (54) with Vy = Yy,
with Yy, defined as in (72). Suppose that ¢ € H}. for some —1/2 < s < —(n —d)/2.
Then, for some constant ¢ > 0 independent of h and ¢,

I6 = dwll o1 < b2l g (78)

Furthermore, let ¢ € (H'>(T))* be such that the solution ¢ € Hy."'* of (36), with
—g replaced by ¢ € (H'>(T)L, also lies in the space H. Then the linear functional

J() on Hr_l/z, defined by J (V) := (g, E>H1/2(FW)XH—1/2(FOO), Ve Hr_l/z, satisfies

17 (@) — J(@w)] < k™ g 12z (79)

for some constant ¢ > 0 independent of h, ¢, and .

Proof We first note that, in the general notation introduced at the start of this section,
to get Vy = Y, we can take {Tj}?/:1 = {'m}mer, - Then to obtain (78) we simply
combine the best approximation error bound (77) (for s1 = —1/2 and 5o = s) with
the quasioptimality estimate (64).

The bound (79) follows by a standard superconvergence argument, as used in e.g.
[33, 44]. Since the kernel ®(x, y) of the integral operator R densely defined on
H~12(Q) by (38), satisfies ®(x, y) = ®(y, x) for x # y, it follows from (37) and

since a(-, -) is the restriction of a%3(-, -) to Hlfl/z X Hlfl/z, that

a(u,¥) =a(,v), v,y e H ' (80)
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/

(recall that the overline denotes complex conjugation). Now ¢ € H /2 s the solution

of (36) with —g replaced by ¢, i.e.

—1/2
a(@, V) = (@ V) gy i1y, ¥ € Hy

Then, by (80), Galerkin orthogonality (that a(¢ — ¢n, ¥n) = 0, for all Yy € Vi by
(36) and (54)), and Lemma 4.3, for any ¢y € Vi we have, where ¢ > 0 denotes some
constant independent of &, ¢, and ¢, not necessarily the same at each occurrence,

[T(P) — TN = (@, @ — ON) 121y x 12T )|
=la(¢. ¢ — ¢n)| = lal¢ — ¢n. 7]
=la(¢ — ¢n. T — N
<cllg = owll ol = enll e (81)

Choosing ¢y to be the solution of (54) with —g replaced by ¢, it follows by (78) that

17 (@) — J(@w)] < ch* T 2@l s T2 g = ch™ Tl s 18 i
proving (79). O

Importantly, as observed above (60), both u(x) and u°°(x) can be written as J (¢),
where J (-) is abounded linear functional of the form treated in Theorem 5.6, explicitly
with ¢ given by (61), where v = ®(x, -) in the case that J(¢) = u(x) and v =
®°°(x, -) in the case that J(¢) = u®°(%); in each case v is C* in a neighbourhood of
r.

Remark 5.7 (Range of exponent s in the convergence rates) By Proposition 4.9 and
Remark 4.10, there exists € € (0, 4] (with t; = 1/2 — (n — d)/2) such that, if
0 <t <e€andtrrg € H'™(T"), then, where s = —1/2 41, ¢ € H} and (78) holds
with the same value of s. If also trrg € H'*%(I"), then ¢ € H} and (79) holds with
s = —1/2+t. Inthe case of scattering when g is given by (29), trrg € H' ™% (T") for all
0 <t <e, andalso trrg € HY4(IN) forall 0 < ¢ < €, if ¢ = PyT(ov|y=), where
o€ C&"F and v is C* in a neighbourhood of T". (As noted above, ¢ has this form for
the linear functionals needed to compute u(x), for x € D, and the far-field u® (%),
for x € $".) If Conjecture 4.8 holds then we may take € = #4. Thus, in the scattering
case, if Conjecture 4.8 holds, then (78) holds for all —1/2 < s < —(n — d)/2, and
the same is true for (79) if ¢ = Pyi(avlui) and v is C* in a neighbourhood of T".

Remark 5.8 (Convergence rates when T is a disjoint homogeneous IFS) Suppose that,
in addition to the assumptions of Theorem 5.6, I" is homogeneous, with p,, = p for
m=1,...,M, for some 0 < p < 1. Then, taking h = ,oz diam I, i.e. using the
approximation space Vy = tr}-(span ({ Xmme 1()), Theorem 5.6 implies that

l6 = onll2 < ep T2l 17@) = T @] < o VNl l1E .
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(Here and below ¢ > 0 denotes some constant independent of ¢, ¢, and ¢, not
necessarily the same at each occurrence.) If ¢ € Hp for all s < —(n — d)/2
we can take s = —(n — d)/2 — € for arbitrarily small ¢ in the first of the above
estimates, and the same holds for the second of the above estimates if also ¢ sat-
isfies ¢ € H} for the same range of s. (If Conjecture 4.8 holds this smoothness
of ¢ and ¢ is guaranteed for all scattering problems by Remark 5.7 if ¢ satisfies
the conditions in that remark.) Then, recalling that d = log(1/M)/log p, we get
s+1/2=Wd+1—-n)/2—€=(1/2)(log(1/M)/logp + 1 —n — 2¢), so that, for
each e > 0,

¢
plfnfk
_ _ < R
I = dnlly-12 = c i 11 - r-arr2=e.

1—n—2e\ ¢

) 11l y-o-arrz=e I E1l y-r-dryz=e.

(82)

17 (@) — T (@) SC('O

In the case n = 1 (e.g. I' a Cantor set, see (124), for which M = 2), the fact that
€ > 0 can be taken arbitrarily small means that in numerical experiments we expect
to see errors in computing ¢y and J(¢y) that tend to zero roughly like M~¢/? and
M~* respectively, independent of the parameter p, if the above bounds are sharp.

In the case n = 2 (e.g. I' a Cantor dust, see (125), for which M = 4), we expect
errors in computing ¢y and J(¢y) that tend to zero roughly like (M p)~Y% and
(M p)~* respectively, if the above bounds are sharp. Note that in this case we need
p > 1/M to ensure d = log(1/M)/log(p) > 1 = n — 1, and that these predicted
convergence rates, as a function of ¢, decrease as d approaches 1 with M fixed. For
the Cantor dust with p = 1/3 (the “middle-third” case) we predict convergence rates
of roughly (3/4)%/? and (3/4)", respectively.

Remark 5.9 (Connection to standard BEM convergence results) The results of The-
orem 5.6, because they require that d < n, do not apply when I is the closure of a
Lipschitz domain (so that d = dimg (I") = n), for which case standard regularity and
convergence results (e.g., [25, 48, 49] and see the discussion above Conjecture 4.8)
predict that ¢ € Hp and that the bounds (78) and (79) hold for all s < 0. Note that
these convergence rates for standard BEM are those predicted by taking the formal
limit as d — n~ in the results of Theorem 5.6. In Sect. 6 we will compare results
for the cases where I' is a Cantor set or Cantor dust, the attractor of the IFS (124) or
(125), respectively, with results for standard BEM. If we take the parameter p = 0.5
in each of (124) and (125) then the attractor is just I' = [0, 1]", with n = 1 or 2.
As we note in Sects. 6.1 and 6.2, the relative errors [|¢ — ¢n || ,-1/2/ 9]l ,-1/2 for our

new Hausdorff-measure BEM for the Cantor set and Cantor dust with p = 0.49 are
almost the same as relative errors for the limiting case p = 0.5, when I = [0, 1]", for
standard BEM with a uniform mesh and the same number of degrees of freedom.
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5.3 Inverse estimates and conditioning

The following inverse estimate follows almost immediately from the wavelet charac-
terisation of the spaces H (") for —1 < ¢ < 1 in Theorem 3.1 and Corollary 3.3.
In “Appendix B” we show, by an alternative, lengthier argument, closer to standard
arguments based on “bubble functions” (e.g. [24]), that the estimate (84) holds in fact
for all # > 0, and for the full range 0 < d < n; moreover, for any 7 > 0, the constant
¢; in the estimate can be chosen independently of # for 0 < ¢t < T.

Theorem 5.10 Let " be a disjoint IFS attractor withn — 1 < d = dimy (") < n, and

suppose that —1 < t; < tp < 1. Then, for some constant ¢ > 0 independent of h and
W,

IWhllgn @y < ch" 21 Whllga oy, Yn € Ya. (83)
In particular, if 0 < t < 1, then, for some constant ¢c; > 0 independent of h and ¥y,
IWhllL, )y < cch 1 Wnlla— ). Wn € Y. (34)
Proof Since Y, C Y for0 < b’ < h < diam(I"), it is enough to show this result for
0 < h < diam(I")/2. So suppose 0 < h < diam(I")/2 and ¥}, € Y. Then, arguing
as in the proof of Corollary 5.5, we have that Y, C X1, with v > vy such that

27v=l <} < 27V Then, since ¥, = P,+1¥),, and where the coefficients are given
by (20) with f replaced by ¥y,

M—1 v+1 12
1@l = <|ﬁ0|2+ Doy oy |ﬁ£’,,’|2>

m=1 v'=yy meJ,
M—1 v+l 1/2
> min(],z<”+”(’2“))<|/30|2+ Yoo M |f3£|2>
m=1 v'=yy meJ,,

= min(1, 27 TD@Y g, |,
Noting that, where s = 1, — 11 € (0, 2),

min(1, 2=VHD) = 2=OFDs i g, 20 FDsy > 2= DS i (g, 2200+D)
> 275 min(1, 2200+ D)y,

(83) follows by the equivalence of the norms || - || and || - [|gs ) for —1 < s < 1. The
bound (84) is the special case of (83) witht, = 0 and t} = —t. O

One application of the above result is to extend the bound (78) on ||¢p — ¢n|| H

for s = —1/2 to a larger range —1/2 < s < —(n — d)/2, by applying the following
proposition in the case that ¢y, = ||/ || H
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Proposition 5.11 Suppose that —(n — d)/2 — 1 <r < 51 < s < —(n —d)/2,
Y e Hliz, Vi € Yy, and ¢y > 0, and that

1Y = Ynllag < *h™ ey,

for some constant ¢* > 0 independent of h, V¥, and {ry,. Then

Iy — ¢h||H;v1 < Ch*™" (Cw+||W||H;2> and ”’»”h“H;Q <C <c¢ + IWHH;z) )
(85)

for some constant C > 0 independent of h, Vr, and Yy,

Proof Asin the proof of Theorem 5.10, since Y, C Yy forO < A’ < h < diam(T"), itis
enough to show this result for 0 < 4 < diam(I")/2. So suppose 0 < h < diam(I")/2
and Y5, € Y. Recalling (14), let ¥ := (u}) "'y € H2HO=D/2(T') and W), :=
(trit)_lllfh € Y. Then, for every E, € Yy, using (14) and the inverse inequality
(83),

1V = Wl o

=¥ — ‘I’h||]1-]151+(n—d)/2(r) < ¥ - Eh||15151+(n—d)/2(r) +I1Ep — \Ilh”HH‘F(ﬂ—d)/z(l“)

< ¥ = Enllgsi+a-azpy + ch" I Er — Wnllgr+a-a2

< W — Enllgsi+o-ay2 gy + ch (I = Epllgr+o-a2 ey + 1Y — ¥allar)

() ( r

< ||\I/ — Eh ||H3-1+(n7¢1)/2(1—w) + ch™™ ||\Ij - :h”HH’(”*d)/z(]") + CC*hSZ_SIC]//. (86)
Let v > vg be such that 27V~! < h < 277, so that, by (67) and (75), X, C Y,
and, where P, is as defined in Proposition 5.2, let &, := P,W¥ € X,. Then, for
r < s < sz, by Proposition 5.2 (specifically by (69) when s = s2, (70), applied with
t1=s+m—d)/2andt, = s+ (n—d)/2, whenr < s < s7), and again using (14),

19 = Enllgn-ony < C27 I gy < G227 h27 Yl e
< 207 Yl e

This bound, applied with s = r and s = 51, combined with (86), gives the first bound
in (85). The second bound follows on taking s; = s3. O

The first claim of the following corollary follows immediately from the above result.
The second (cf. [25, Thm. 1.4], [22], [20, Thm. 3.2.4]) combines our earlier results
with standard Aubin-Nitsche lemma arguments.

Corollary 5.12 Suppose that T satisfies the conditions of Theorem 5.6 and that ¢ and
¢n are as defined in Theorem 5.6. Suppose also that —1/2 <51 <sp < —(n—d)/2
and that ¢ € Hi?. Then, for some constant ¢ > 0 independent of h and ¢,

I = Pnllg < k2Bl and Ngnllge < clldll . 87)
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If Conjecture 4.8 holds, then (87) holds also for —1 + (n — d)/2 < 51 < —1/2 <
s < —(n—d)/2.

Proof The first claim follows from Theorem 5.6 and Proposition 5.11 applied with
r=—1/2andcy = ¢ IIH;z. Suppose now that Conjecture 4.8 holds and —1 + (n —
d))2 <51 <—1/2<s) < —(n—d)/2.Forp € H31 (')t ¢ H/2("'™), define
the bounded linear functional J,(-) on H 172 by

Jo(¥) = (‘va>H1/2(I‘M)xH*1/2(Fw) = (%W)Hﬂl(rm)xml(rm)a (/NS Hﬁl/z(r)-

Recalling from Sect. 2.4 that H™1 (T isa unitary realisation of the dual space of
H{' with respect to the duality pairing (-, -) g—s; (Tao) x H1 (T )» We have that

J —
16— nllyn = sup @O
T gedn ooy 19la—1r)

Given g € H™ (oL, let¢ Hp 12 denote the solution of (36) with —g replaced by
¢. Noting that, by Theorem 2.7, trr¢ € H—51~"=d/2(T") with ||tr[‘§0||H—s17(n7d)/2(l—~) =
@l =51 (1) it follows from Remark 4.10 that ¢ € Hp , with ”CHH‘”“(FOC) <
Cllell g—si (r,,)- for some constant C > 0 independent of ¢. It follows from (78) and
(81) that, for some constant ¢’ > 0 independent of ¢, h, and ¢,

s1—1

[T (@ — dn)| < /2 Il 2 ||€||Hr—1—sl < Ch 11l o2 Il =51 (o)

so that ||¢ — ¢N||Hl§1 < Ch*27% ||¢||H1§z. m|

Another application of Theorem 5.10, specifically (84), is to prove bounds on the
condition number of the matrix in our Galerkin BEM. Let N := #Lj, and suppose that
{f"}lN=1 = {xm:m € Ly}, ie. ', f2, ..., fNis a particular ordering of the L, (I")-
orthonormal basis { ), : m € Lj,} of Yy, and let {¢! = trys f"}lN=1 be the corresponding
basis for Y,. Then the Galerkin method using the N-dimensional space Vy = Y}, leads
to the Galerkin matrix A € CV*V given by (58). The following theorem bounds the
2-norm, || - ||2, of this matrix and its inverse. The bound for || A||; is in terms of ||S||2, the
norm of S as an operator on IL, (I"), and recall that #; is defined in (42). The numerical
results reported at the end of Sect. 6.2 suggest that these bounds are sharp in their
dependence on 4 and d.

Theorem 5.13 Let I" be an IFS attractor satisfying the OSC withn — 1 < d =
dimg(I") < n. Then, with Vy = Yj, as described above, the Galerkin matrix A €
CNXN defined in (58) satisfies

IAll2 < [IS]l2.
If also T is disjoint then, for some ¢ > 0,

lat Ad| = ch*d|a|3, foralld = (ai,...,an)T € CV, (88)
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so that also
AT 2 < e th2a, (89)

In particular, (88) and (89) hold with ¢ = ozc,;z, where o is the coercivity constant
from (39) and c;, is the constant from (84) when t = 14.

Proof Ford = (ay, ...,ay)’ € CN and b = (b1, ..., by)T € CV it holds that
b AG = (SW, U)oy,

where W, = SN a4, f1, Uy, = SN by £, so that

bH Ad| (S, Ty
lAl=  sup ——=-= sup —— 2Ol gy,
apectoy lall2 1l G gechvoy  llall2 1512
as |WillLyy = ldla and |@yllL,ey = [Bll2, since {f1, ..., £V} is Lo(I)-

orthonormal. Similarly, it follows from (11), (46), Lemma 4.3, and Theorem 2.7 that

laf Ad| = |(SWh, W)L, r)| = la(trf Wy, triwy,)|

= o luf Wl 1 = o 19 (90)
r

fd ()

The bound (88), with ¢ = actf, follows, if ' is disjoint, by applying Theorem 5.10
with ¢ = #4. The bound (89) then follows from (88) in the standard way, using the fact
that |a” Aa| < |la|2 | Aa|. O

5.4 Numerical quadrature and fully discrete error estimates

To evaluate the Galerkin matrix (58) and right-hand side entries (59) we use the
quadrature routines from [30]. These are applicable when I" is a disjoint IFS attractor
withn — 1 < d = dimg(I") < n, and we assume throughout this section that I" is of
this form.

As in the previous two sections we focus on the case where Vy = Y (with ¥,
defined as in (72)), for some & € (0, diam(I")], and we use the canonical orthonormal
basis for Vi (i.e., trf. applied to the functions x,, from (73) and (16)) so that A and
b are given by (58) and (59). It follows from (58) that the Galerkin matrix entries are
the double integrals

-1/2 —1/2 ..
Aij = byl um(,/)/r (»)fr QDA el N OD
m(i m(j

where m(1), ..., m(N) is an ordering of the elements of L; (corresponding to the
order of f1,..., £V in Sect. 5.3), and for brevity we have written j, = H% (')
form € Iy,. Recall from Sect. 3 that m € Iy, means that either m = 0, in which case
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I =To=Tand um = HYT), orm = (my, ..., mg) for some £ € N, in which
case Um = p;’“ ~~pf,lllHd(F).

For i # j the integrand in (91) is continuous, because, by assumption, the compo-
nents of I" are disjoint. In that case, to evaluate (91) we use the composite barycentre
rule of [30, Defn 3.5]. In our context, this means partitioning the BEM elements I'y, ;)
and I"y (), which have diameter approximately equal to £, into a union of self-similar
subsets of a possibly smaller approximate diameter O < hp < h, writing the integral
in (91) as a sum of integrals over the Cartesian products of these subsets, and approx-
imating these integrals by a one-point barycentre rule. Specifically, we approximate

12 12
= Fm@iy Fm(j)

S0 taktw®Gonxw).  ijEL . N.i#]. (92)

m(i) m(j)
neLhQ n’eLhQ

Aij %Ag

where, fori €1,..., N,
Lm . {m(i)}, ho > diam(Iy,()),
ho {ne€Lny: TuClmp), ho <diam(Tmg)),

describes the partitioning of I'y,(;) and, for n € Iy,

Xn

x dH? (x)
= ‘/}"dw = M;I/ )Cde()C)
Ca

Ly

is the barycentre of I', with respect to the measure . (Note that x,, is not necessarily
an element of I';,.) The similarities can be written as s,, (x) = p;; A X + vy, for some
v € R™ and some orthogonal A,, € R"*" (A,, = %1 in the case n = 1), and then,
writing n = (ny, ..., ng), we find (see [30, Prop. 3.3]) that

M 1, M
Xp = Sp, os,,zo...osnz([l— Zp,‘,llHAm} (Zp,‘flvm>)
m=1 m=1

the formula that we use for calculation of x, in Sect. 6.
For i = j the integral (91) is singular. To evaluate it we adopt the singularity
subtraction approach of [30, §5], writing

A=l [ [ (@) + @l ) @t a3
(i)

mi)

where

1
__10g|x_)’|7 l’l:l,
cI)sing(xv y) = { 271T N

drlx—y|”
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and ®reg := ® — Dyiyp. The integral of Preg has a continuous integrand and can be
evaluated using the composite barycentre rule, viz.

/ f Preg (e, W AHINAHI) ~ 3 Y st reg i, ). (OF)

Gy Y Tma) m(i) n,ELm(i)

The integral of ®gjng over I'yy(;y X i) is singular, but, using the self-similarity of
I' and the symmetry and homogeneity properties of ®ging, namely the fact that, for
m=1,..., M,

Dgino(x, ¥) — o= 1o n=1,
Psing (S (X), Sm (V) = { Smi)(—lci)~ (?é’ y)g . n=2
m sing\ X5 V), =2,

it can be written (see [30, Thm 4.6]) as

/ / q)sing(xs y) de(y)de(x)
m(i) m(i)

-1 M 1
( Z Pm ) Z (_ Eﬂ,zn(i)pid log(om)

m=1

= /l:(m(:) m) /l;

m #m

(L) £

Ding (x, y) dH (y)dH? <x)), n=
(m(i),m')
—1 M M
/ / Daing(x, y) dH (»)dH! (x), n = 2.
m'=1 Cn(iym 4T
m m

(m(i),m’)

95)

The integrals appearing in (95) all have continous integrands and can be evaluated
using the composite barycentre rule (as in [30, Eqn (47)]), viz.

/ / cI)sing (x, y) de (y)de (x)
Laniy,m) r(m(i),m’)

XYY ekt Psing (X, ). (96)

. N
nEL;’né(:),m) n/eLEIm(t),m )

Let Ag denote the resulting approximation of A;;, obtained by combining (93)—(96).

Assuming the data g is sufficiently smooth, the right-hand side entries (59) are reg-
ular single integrals and can be evaluated by a single integral version of the composite
barycentre rules described for double integrals above, as in [30, Defn 3.1]). Explicitly,
we use the approximation

1/2
bi = — iy / trrg(0) dHI () ~ b2 = —pp P D patrrga). 97)
Cim (i) m(i)
neLy
ho
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Having computed AQ = [Ag]f\/j:1 ~ Aand b2 = (bQ, A bg)T ~ l; we solve,
instead of (55), the perturbed linear system A9¢9 = b2. Provided this is uniquely
solvable (for which see Corollary 5.17 below), our fully discrete approximation to ¢
is ¢1% = Z?’Zl chej.

Provided ¢ € (H/2(I'))* is sufficiently smooth, we approximate J (¢), given by
(60), by an approximation J Q(qb,%) defined in a similar way to (97). Using (63), we
have that

N

—1/2
@)~ 10w =Y cipnly [ urpant ~ 100
j=1 L)
N
—1/2
= Py D HatrreCm), (98)
j=1 ner
where, for every ¥y = Z?’:l djel € Vy,
N
—1/2
JOWN) =Y dittp s Y patrre(en). (99)
j=1 —

The following quadrature error estimates follow from results in [30], specifically
[30, Prop. 5.2, Thms 3.6(iii), 5.7 & 5.11]. Following the terminology of [30], we say
an IFS attractor I' is hull-disjoint if the convex hulls Hull(I'y), ..., Hull(T'3;) are
disjoint, which holds if and only if the OSC holds for some open set O D> Hull(T")
(cf. Lemma 2.5, the proof of which works in the same way for hull-disjointness as
for disjointness). The assumption of hull-disjointness permits analysis of the singular
quadrature rules in [30] by Taylor expansion. (The point here is that while the barycen-
tre x,, of a component I'y, may not lie in [',,, it must lie in Hull(T';,).) However,
numerical experiments suggest that hull-disjointness is not essential for the applica-
bility of the quadrature rules in [30] (see [30, §6]). We also suspect that the estimates
(103) and (102) may not be sharp in their ~#-dependence—see [30, Rem. 5.10] and
the discussion around [30, Fig. 7]. In Remark 5.19 we describe modifications to our
quadrature rule which may improve its efficiency.

Theorem 5.14 Let I" be an IFS attractor satisfying the OSC withn — 1 < d =
dimy(I') < n. Suppose that 0 < hg < h, and let A;j, As, b; and biQ be as in
OD-97), and J(-) and J Q(.) be as defined by (60) and (99), respectively, for some
¢ € (H'/2T)*

(1) Suppose that trrg = Glr, for some G that is twice boundedly differentiable in
some open neighbourhood of Hull(I"). (For the scattering problem this holds with
G = —u', if u' satisfies the Helmholtz equation in a neighbourhood of Hull(T").)
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Then, fori =1,..., N,

172
bi — le| < /’l2Q|G|2,Hull(F)Mm/(i)
and hence b — b2, < h2Q|G|2,Hull(F)Hd(F)]/2’ (100)

where |G |2, Hull(r) := MaXyeHul() MaXgens | DG (x)].
|oe|=2
(ii) Suppose thattrre = V|r, where V is twice boundedly differentiable in some open
neighbourhood of Hull(T"). (For ¢ given by (61) this holds with V. = —v if v is C*®
in a neighbourhood of Hull(I").) Then, for —1/2 < s < —(n — d) /2, there exists
a constant C > 0, independent of h, hg, and V, such that, for all yy € Vy =Yy,

[TWN) = T2 W) < Chph* YDV | ey 19 L . (101)

(iii) Suppose that T is hull-disjoint. Then there exists a constant C > 0, independent
of h and hg, such that, fori, j=1,..., N,

0 n 12 12
|Aij - Aij' = Cth nﬂm(i)ﬂm(j)s
and hence  ||A — Ay < Choh™"H(T). (102)

If; further, T is homogeneous, then there exists a constant C > 0, independent of
h and h g, such that

o 0 2 p—(n+1),,1/2 172
|Aij = Al < Choh™ " iy o

1A = AC|ly < Chh™ " FDHAD). (103)

and hence

Proof In what follows, when applying results from [30] we are taking A, I’ and ' in
[30] to be respectively g, (i), and I'y,(jy from the current paper. For (i), noting
that

—-1/2
m(i)

Ibi = b2 = 1

)

[ G dH () = D 1aG(xa)
T
eL

m(i)
ho
the first estimate in (100) follows from [30, Thm 3.6(iii)], and the second then
follows from the fact that ZlN:l Mm@y = H? (). For (ii), given ¥y € Vy let
U= ()1, .... )n)T € CN denote the coefficient vector of its expansion with
respect to the basis (¢!, ..., eV). By the orthonormality of the basis (f!, ..., fV)in
L, (I"), the inverse estimate (84) and the isometry property (14), given 0 < ¢t < 1 we
can bound

> _ &4 _ a4 . _
1l = ) Ynlie < ch ™ IR " Wyllg—rry = ch f||wN||H,,,%.
I

(104)
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Then, to prove (101), using (63), (99), [30, Thm 3.6(iii)], (104), and the Cauchy-
Schwarz inequality,

IJ(n) — J2(Yn)| =

N
) ju;,}ﬁ< fr Vo driea - Y unvm))‘
j=1 m(j)

m(j)
neLhQ

IA

ROV 2wy (R TN 1112
h2 h—t V d F 1/2
cthioh™ |V |2,1anr) (HE(I)) IWNIIH,,J?I.

r

IA

For (iii), the first estimates in (102) and (103) follow from [30, Prop 5.2] for the
off-diagonal terms and [30, Thms 5.7 & 5.11] for the diagonal terms. The factors of
h=@+D and A~ come from the fact that, in the notation of [30, Thms 5.7 & 5.11],
Rr pun equals diam(I") times a constant independent of diam(I"). We note that, since
we are allowing C to be k-dependent, we can use the “k diam(I") < cqgc” estimates
in [30, Thms 5.7 & 5.11], since, given k > 0, the constant ¢, can be chosen as large
as is required. To derive the second estimate in (102) (a similar argument gives the
second estimate in (103)), note that, with || - ||r denoting the Frobenius norm,

N N 1/2
1A — A%l < JA— Al < CW‘"(Z Zumwmm) = Choh™"H!(I").
i=1 j=1

m}

Remark 5.15 (Value of H?(I')) The proposed quadrature formulas require the val-
ues of i, = HY( ), which are easily computed in terms of HAT) as pum =
p,‘f“ e p,‘wad(F), for all m € In. For n = 1, the Hausdorff measure of a class of
Cantor sets is shown to be ¢ (I') = 1in[27, Thm. 1.14-1.15]; see, e.g., [54] for more
recent related results. However, for n > 1 the exact value of the Hausdorff measure of
even the simplest IFS attractors is known only for d < 1 (see, e.g., [53]), i.e. for the
cases that are not relevant for scattering problems (recall, as discussed above Lemma
4.4, that H. 172 - {0} and ¢ = O ford < n — 1). A simple implementation technique
which avoids working with an unknown value for % (I") and produces the correct
solution ¢y is just to set H?(I") = 1in all calculations. This is equivalent to introduc-
ing a “normalised Hausdorff measure” Hf(o) = H4(-)/HY (), so that Hf(r‘) =1,
and using it throughout in the BEM in place of H4(-).

To study the influence of the quadrature error on the BEM solution we first adapt
the first Strang lemma to our setting.

Proposition 5.16 Let I" be a disjoint IFS attractor withn — 1 < d = dimg(I") < n.
Assume that the unique solution ¢ of (34) belongs to H}. for some —1/2 < s <
—(n—d)/2, sothat0 < s+ 1/2 < ty. Let Vy = Y}, so that N = dim(Vy). Let o be
the coercivity constant of (39) and c;, the constant in the inverse inequality (84) when
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t = tg. Assume that A2 € CN*N and Eg € CV are approximations of the Galerkin
matrix A and the right-hand side vector b in (58)—(59) satisfying

|A—AC|, <h®E, and ||b—b2|] <h'atsT2E, (105)

forsome(O < E5 < oz/ctzd, and Ey, > 0. Then the perturbed linear system A2¢ € = b2

N 0

is invertible and the corresponding solution 4)1% = j=1¢; e/ € Vy satisfies the

error bound

c
I = 08l = o (Ealolg + )2 (106)

where ¢y = 27:1 cjef € Vn is the Galerkin solution given by (54), ag = a —
EAclzd, and C > 0 is a constant independent of h, ¢, E,, Ep, and N.

Proof As in the proof of Theorem 5.14, given ¥y € Vy let 1} € CV denote the
coefficient vector of its expansion wjth respect to the basis e',...,eN).Let B(yry) 1=
=& YN H 20 yxH-12(Ty) = Vb and denote the perturbed sesquilinear form

and antilinear functional by a2y, ¥y) = ¥ ACE and BC(yy) := vHb2, for
En, ¥n € V. The first bound in (105) gives

laEn, Yn) —aEn, Yl = [pH (A — A
< |A = AL 1211V 112

. -
< h“Eacyli§l2llyn g2

< Eacylénll 2Nl e, VEN, YN € Vi, (107)

From this and the coercivity of a(-, -) in (39) follows the coercivity of the perturbed
form, and hence the invertibility of A2:

a2 W, ¥l = la@Wn, ¥l — laWn, ¥a) — a2 Wn, ¥a)l

> agllYwl? 1pe V¥ € V.
r
The second bound in (105), combined with (104) for t = 74, gives

1B = B = v (b - 59)]
< 116 = bC1a1v 2 < Eper i M2 InIE, 1ps ¥in € Vi (108)
r

Now ¢ € Vy is the solution of a2 (¢, ¥i) = BC(Yy), Yy € V. Strang’s first
lemma (e.g. [6, ITI.1.1]), applied in the special case that V = S}, (in the notation of [6,
III.1.1]), combined with (107) and (108), gives
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Ién = S5 112
1 ( la(on, ¥n) — a2y, ¥n)l |B(wN)—BQ(wN)|)
—\| sup sup

YNEVN

+
ag IIWNIIHr—l/z YN eV IWNIIHF—I/Z

< S (EAhtd Il + Ebhs“/z).
oQ

Applying (104) with t = —s — (n — d)/2, we obtain that

C .
lpn — @1 12 < ﬁ(a_s_n_d Eallgnllm + Eb>hﬁ“/2,

r 2

and the bound (106) follows on applying Corollary 5.12 with s, = s. O

By combining Theorem 5.6, Proposition 5.16 and the quadrature error bounds
in Theorem 5.14, we can complete the convergence analysis of our fully discrete
Hausdorff BEM for a hull-disjoint IFS attractor.

Corollary 5.17 Let ' be a hull-disjoint IFS attractor withn — 1 < d = dimg(T") < n.
Assume that the unique solution ¢ of (34) belongs to H{. for some —1/2 < 5 <
—(n — d)LZ. Let Vy = Yp. Let the entries of the Galerkin matrix A (58) and right-
hand side b (59) be approximated with the quadrature formulas outlined in (91)—(97).
Let g satisfy the assumptions of Theorem 5.14(i), and suppose that

hg < Coh™, (109)

for some sufficiently small Cy > 0, independent of h o and h. Then the approximated
linear system is invertible and the fully discrete solution ¢>1% satisfies the error bound

16 = 651l -1 < (1Dl +1Glomanery)n* 72, (110)
for some C > 0 independent of h, ¢, and G.

If, further, T' is homogeneous the above result holds with (109) replaced by the
weaker condition

thCth/2+l. (111)
Proof The two conditions (109) and (111) can be written as
d
ho < Coh™r ™, (112)

where p = 0 in the general case, and p = 1 when I is also homogeneous. By
Theorem 5.14(i) and (iii) our quadrature formulas achieve (105) with

1 —d—1— _g—]4n=d
Ep=Cihy "h™ 7177 By = Cohph™ 7 Glapnry.  (113)
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for some constant C independent of both & and /. Hence (112) implies that E 4 is
bounded independently of %, and, furthermore, by choosing the constant C¢ in (112)
to be sufficiently small, one can ensure that £4 < o/ (2c,2d), so that the discrete system

is invertible by Proposition 5.16, with g := a — E AC,Zd > /2. The assumption of
(112) also ensures that Ej, is bounded independently of &, with

2d gy n—d . 2d g yn—d
Ep < C*Céh‘” G < C*C2Q(d1am(F)) TGl ey,

since & < diam(I") and % — s+ % + 1 > 0 for both p = 0 and p = 1. Then, by
(1006),

lon — 62 =2 = CI@lag + Gl ey 2172, (114)

for some C > 0 independent of &, ¢, and G, and by combining this with (78) we
deduce (110). O

Under a stronger condition on &g we can also prove a superconvergence result for

the fully discrete approximation J Q () Ig ), given by (99), to the linear functional J (¢)
given by (60) (cf. [42, Thm. 4.2.18]). The significance of this result for the computation
of u(x) and u® (%) is as spelled out in and above Remark 5.7.

Corollary 5.18 Suppose that T, ¢, Vy = Y}, and g are defined, and satisfy the same
assumptions, as in Corollary 5.17. Let J and J© be defined by (60) and (99) and
suppose that ¢ satisfies the assumptions of Theorem 5.14(ii). Suppose also that ¢ € H?,
where £ is the solution of (54) with —g replaced by ¢, and suppose that

hQ < C/th+s+3/2, (115)

for some sufficiently small C /Q > 0, independent of h and hg. Then the approximated
linear system is invertible and

1T(¢) — J2(92)]
< C(||¢||H;(||c||H; + el 12y + 1V 2 man)

+ U0l + 1V eI G 2.y )2, (116)

for some constant C > 0 independent of h, ¢, ¢, ¢, G, and V.
If, further, T' is homogeneous the above result holds with (115) replaced by the
weaker condition

Proof The two conditions (115) and (117) can be written as

dts+1/2

ho EC/Qh ETRAAS (118)
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where p is as in the proof of Corollary 5.17. We first note that, for every Co > 0,
since s > —1/2, (118) implies (112) provided C’Q is sufficiently small. Thus, if (118)
holds with C’, sufficiently small, then the approximated linear system is invertible by
Corollary 5.17. Next we estimate

17(@) - I2@2)
< |J(@) = J (@M + 1T (@n) = J @D + 1T (92) — T2 ($9)]
< ch* ol lclas + el mac oy — o9 I e

+ Cthh”(”_d)/zl V|2, Huli(r) ||¢,8 Il 3.

by (79) and Theorem 5.14(ii). We note moreover that ||¢Ig||ng < C1(||¢||ng +

|G|2,Hul(r)), for some constant C; > 0 independent of ¢, G, and h, as a conse-
quence of Corollary 5.17 and Proposition 5.11, so that (118) implies that the last term
in the above equation is

2 (d+s+1/2)+2 —d)/2
=< CC1(C/Q)2h‘+P( R/ IVI2Hun) (@l ag + G2 Hunr))

. 2 D)1 12 (d+1/2)+(n—d) /2
< CC1(Cp)*(diam(I))" 7~ DHH i @HUDFO=DR 1y ) Gy (1
+IGlo.munry) A>T,
recalling that s > —1/2 so thats(ﬁ —D+1+ %(d +1/2)+m—d)/2>0
for both p = 0 and p = 1. Further, arguing as in the proof of Corollary 5.17, the

conditions (105) are satisfied with E4 and Ej given by (113), for some constant Ci
independent of /& and & . If also (118) holds then

EA S C*(C/Q)1+ph5+l/2
and

2 (d+s+1/2)+1—s+(n—d)/2
Ep < C*(C’Q)zhlﬂ)( HHDH =D G e
2 2
< CH(Clp)*(diam (1))~ 89 T WHDH2HO=D2 Gy oy b+,

(119)

recalling that s < —(n —d)/2, 50 that (2 = 175)(—=8) + 175 (d + 1/2) + 1/2+ (n —

d)/2 > Ofor p =0, 1. Thus, if C/Q is chosen sufficiently small so that E4 < a/(2ct2d)
for 0 < h < diam(I"), it follows from Proposition 5.16 that

lon — ¢18||H;1/2 < Gl + |G oy,

for some constant C; > 0 independent of %, ¢ and G. The bound (116) follows by
combining the above inequalities. O
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Remark 5.19 (Reduced quadrature) The quadrature rule defined by (92) uses the
same maximum mesh width /¢ for all off-diagonal elements A;;, i # j. Since the
magnitude of the integrand ® (x, y) and its derivatives blows up as one approaches the
diagonal x = y, and decays away from it, it is possible to save computational effort,
while maintaining the error bounds (102) and (103), and hence the error estimates
(110) and (116). To achieve this we increase the quadrature mesh width (and hence
potentially decrease the number of quadrature points) for the computation of A;; when
the elements I'y,(;y and 'y, () are sufficiently well-separated spatially. In more detail,
from [30, Prop 5.2] we have that, for i # j, the error in the quadrature approximation
(92), with & g replaced by a local quadrature mesh width ¢ ; ;, satisfies

|Aij = AZ| < Cimiyim(hhy i ;T (Rij),
for some constant C independent of i and j, where

1+ (kR)n/2+l )
T(R) = T and Rij = dlSt(Hu]](Fm(,')), Hu]l(Fm(j))).

Given h g, one can therefore maintain the bounds (102) and (103) by replacing /¢ in
(92) by

1/2
max g T (Rpg)
hoi:i=ho | —274 P4’ >h
0.i,j Q( T(Rij) Z o

If the quantities R;; are not known exactly, but satisfy
R <Rij <R}, i#] (120)

for some known quantities R,.; > 0 and R; < 00, then one can maintain (102) and
(103) by replacing h o in (92) by

Lo 12

ho,i,j = hgmax (M) A1) = hg. (121)
Y(R;;)

Here we are using the fact that Y (R) is a monotonically decreasing function of R, and

the max(-, 1) is needed to ensure that hp ; j > hg (so that we are not increasing the

computational effort unnecessarily) because the quantity inside the square root may be

smaller than 1. (This holds in particular if R;; = 0, in which case we are interpreting

1/T(R;;) as 1/Y(0) = 1/00 = 0.)

In our numerical results in Sect. 6 we will compute A lQ/ as described above, choosing
ho.i,;j according to (121) with '

Rl-; = max(dist(Xpm i), Xm(j)) — diam(Tp)) — diam(Tp(j)), 0) (122)
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and
Ri_; = dist(Xm(iy» Xm(j))> (123)

which satisfy (120).

6 Numerical results

In this section we present numerical results that illustrate our methods and assess the
sharpness of our theoretical predictions. The Hausdorff BEM (55) has been imple-
mented in the Julia language [5] and the code is available at https://github.com/
AndrewGibbs/IFSintegrals. In all examples described in this section, we consider
the scattering of plane waves, i.e. the datum g is as in (29) with ul(x) = e and
|[¢#] = 1. We validate our implementation against a different method in Sect. 6.4,
but in the rest of our experiments we use as a reference solution a more accurate
Hausdorff-BEM solution with a large number of degrees of freedom Nf. Most of
our experiments are for homogeneous attractors, in which case Nyt = M ‘! for some
Lref € N. For Cantor sets (M = 2) we choose lof = 15, so that Nyf = 32768.
For Cantor Dusts (M = 4) we choose £t = 8, so that N = 65536. Since we do
not use any matrix compression, the memory required to store the Galerkin matrices
grows like N2, with N = M* when the attractor is homogeneous. Thus, while many
of our experiments were run on a standard laptop, some (in particular, the calculation
of reference solutions) required the use of the Myriad High Performance Computing
Facility available at University College London, which has computing nodes available
with 1.5TB of RAM.

Our implementation uses the quadrature rules described in Sect. 5.4. Precisely,
we approximate the right-hand side in the linear system and linear functionals of
the solution (the scattered field and far field) using the quadrature rules (97) and
(98), respectively. We approximate the diagonal matrix elements A;; by (93)—(96). To
approximate A;; with i # j we use (92) with h¢ replaced by hg; ; > hgp given
(in terms of &) by (121)—(123). All these quadrature rules depend on the parameter
hg. We choose hg = Cgh, where Cp > 0 is a constant independent of 2. While the
requirement hg = Coh is weaker (i.e. it requires fewer quadrature points) than the
conditionshg < Coh!*4/2 (see (111))andhg < Coh'*¥ (see (109)) required by our
theory, our numerical experiments suggest that, in practice, hg = Cgh is sufficient
to achieve our theoretical convergence rates, even when using the reduced quadrature
of Remark 5.19. Except where indicated otherwise, in the simulations reported below
for homogeneous attractors we use Cp = p? for cases with k < 20, Cg = p* when
20 <k < 50.

We measure the accuracy of our BEM solutions in the H. /2 horm. These Hp 172
norms are computed by expressing them in terms of a single-layer BIO with wavenum-
ber k = i, which we denote S, as in [19, Table 1]. Practically, we achieve this by
assembling an approximation A€ to the Galerkin matrix A' for the operator Si,
analogous to (91), with k = i and Nyt degrees of freedom, using quadrature approxi-
mations analogous to (93)—(96) and (92), choosing /o the same as for the reference
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Fig.7 Scattering in R2 by a middle-third Cantor set screen (a subset of the line segment [0, 1] x {0}) with
wavenumber k = 50 and incident plane wave direction 9 = (1, —1)/+/2, showing the total (left panel) and
scattered (right panel) fields computed using our Hausdorff BEM with ¢ = 10 and quadrature parameters
as in Sect. 6.1

solution, with the reduced quadrature formulae (121)—(123) applied asif k = 1. (While
the quadrature convergence analysis in [30, §5] was presented only for £ > 0, one can
check that the relevant results also extend, mutatis mutandis, to the case k = i.) Next,
we view 4)1% as an element of the larger space Vy, ., and define v as the coefficient

vector of 4’1% — ¢>1%ref in Vy,;. Then, arguing as in [19, Table 1] (and see Footnote 15),
it follows that

0 g 2 _ i,Q 0 o_ 0
198 = 08 2y = 2{S"@OF 08008 ~ 08

=201 Al ~ 207 A1 95,
6.1 HF” 2-norm convergence, Cantor set (n = 1)

We consider first the case where n = 1 (corresponding to scattering in R?) and
I' C ' = Ris a “middle-(1 — 2p) Cantor set” screen (e.g., [28, p. 71, eqn. (91)]),
for some 0 < p < 1/2. Precisely, I is the attractor of the disjoint homogeneous IFS
with M = 2,

six) = px,  s2x)=1-p+px, xeR, (124)

a d-set with d = dimg(I") = log2/log (1/p). We denote by ¢, the Hausdorff-BEM
solution “at level £7, for £ € Ny, i.e. with h = p( and N = 2¢.

In Fig.7 we show an example of the total and scattered fields for the middle-third
case (p = 1/3). In Fig.8 we present plots of the relative errors in the Hausdorff-
BEM solution for £ =0, 1, ..., 14, measured in Hr_l/2 norm, using ¢;s as reference
solution, for various p and k values. In all cases the incident wave is the plane wave
ul (x) = k¥ with ¥ = (1, —1)/+/2. The experiments in Figs.7 and 8 are carried
out, as indicated in the second paragraph of this section, using the quadrature rules
described in Sect. 5.4, with the reduced quadrature of Remark 5.19, and with hp =
p?h fork = 0.1 and ho = p* h for k = 50. This means that the off-diagonal entries
of the BEM matrix require up to 16 and 256 evaluations of the Helmholtz fundamental
solution for k = 0.1 and k = 50, respectively.

In Remark 5.8 we noted that our theoretical analysis suggests we should expect
convergence approximately like 2~¢/2 for the BEM solution, which is what we observe
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Fig.8 Hr_ 1/2 telative errors for Hausdorff-BEM solutions on Cantor sets

in the numerical results (for each error convergence plot we also plot C2~¢/?>—the
black dashed lines—choosing the constant C so that the two curves coincide for the
largest value of £). Higher wavenumbers give different pre-asymptotic behaviour (in
particular, the approximation is not accurate for small values of £) but do not affect
the asymptotic rates for large ¢, see Fig. 8.

For p = 0.5 our Hausdorff BEM coincides with classical piecewise-constant BEM
on a uniform mesh applied to the Lipschitz screen that is the unit interval [0, 1];
our implementation uses the special choice (93)—(96) of quadrature rules to evaluate
the matrix entries (which is simply the composite midpoint rule for the off-diagonal
entries). Running our Hausdorff-BEM code with p = 0.5 we observe error curves (not
reported here) that are almost identical to those for p = 0.49. Hence, at least in this
case, the piecewise-constant Hausdorff-BEM approximation of the integral equation
on a fractal (the Cantor set with p = 0.49) is no less accurate, for the same number
of degrees of freedom, than a classical piecewise-constant BEM approximation on an
adjacent, more regular set (the interval [0, 1]).

6.2 HF” 2 norm convergence, Cantor dust (n = 2)

We consider next the case where n = 2 (corresponding to scattering in R3) and
I' C T'oo = R?is a “middle-(1 — 2p) Cantor dust” for some 0 < p < 1/2, defined
by the disjoint homogeneous IFS with M = 4,

st ) =p0,y),  s200, ) =1 —=p,0) + p(x, y),
s36, ) =0—=p, 1 =p)+px, V), (125)
4, ) =0, 1=p)+p(x,y),  (x,y) € R,
a d-set with d = dimy(I") = log4/log(1/p), see Fig. 1. Such a screen generates
a non-zero scattered field if and only if p > 1/4 (see [15, Example 8.2] and the

discussion before Lemma 4.4). In Fig.9 we present results similar to those in Fig. 8,
albeit for a more restricted range of ¢ and a lower value of & in the right-hand panel,
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Fig.9 Hl: 1/2 telative errors for Hausdorff-BEM solutions on Cantor dusts

due to the increased computational cost associated with the change from M = 2
(Cantor set) to M = 4 (Cantor dust). The Hausdorff-BEM solution ¢, corresponds to
a mesh of N = 4¢ elements of diameter 7 = +/2p". The incident wave is the plane
wave u! (x) = e*?* with 9 = (0, 1, —1)/+/2. As indicated at the beginning of this
section, we use the quadrature rules described in Sect. 5.4, with the reduced quadrature
of Remark 5.19, and with hgp = pzh for both kK = 0.1 and kK = 5. As a result, the
off-diagonal entries of the BEM matrix require up to 256 evaluations of ®.

In Remark 5.8 we noted that our theoretical analysis suggests we should expect
convergence approximately like (4p)~¢/2, whereas the convergence we observe in
Fig.9 appears to be faster than this, especially for lower values of p. In fact, these
numerical results are consistent with the theoretical bounds being sharp, as we now
explain. The issue is that the convergence rate (4p)~¢/? is slow, so the reference
solution (with £ = 8) used in Fig.9 is still quite far from the exact solution ¢ of the
integral equation, which affects the shape of the error plot. Let us assume that the
Galerkin error bound (82) holds with € = 0 and in fact is exact, i.e.

I¢ = ell 12 = Ca’, LEN, (126)

fora := (4,0)_1/2 € (l/ﬁ, 1) and some C > 0. Then, by the triangle inequality,

Cat(1 —a~ Y < |l — dull -1 < Cat(+a'"Y, ¢, eNywitht <0,
(127)

and, for any given ¢/ € N, (126) imposes no constraint on ¢y — ¢g/||H71/2, for
r

£=0,...,¢ —1,beyond (127); in particular, it may be that either the lower bound or
the upper boundin (127) is attained. InFig. 10 we plot [|¢p¢ —¢g|| ,,-1/2, for£ =1, ..., 7,
r

together with the upper and lower bounds of (127) for a suitable C and ¢’ = 8. This
plot makes clear that the values we compute for ||¢, — @3l -1/ are consistent with
r

@ Springer



A Hausdorff-measure boundary element method...
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Fig. 10 Relative HF_ 12 etrors for Hausdorff-BEM solutions on Cantor dusts using ¢g as the reference
solution, and the bounds from (127) with ¢/ = 8, for k = 0.1 and different contraction factors p
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Fig. 11 HIT 12 errors for Hausdorff-BEM solutions on Cantor dusts: the norm of the difference ¢y — ¢y

between consecutive levels decays like (4p)_£/ 2

(127) and so with (126). (This reasoning, i.e. the bounds (127), also explains the little
“dip” at the right endpoints of the error curves for the Cantor set experiments in Fig. 8.)

In Fig.11 we plot, as a better test of the sharpness of our theory, the norm
e — det1l o1/ for £ = 0,...,7, of the difference between Galerkin solutions

r
at consecutive levels £. We observe, for each choice of p and k, that, for large enough
£ (how large depending on p and k), ||¢¢ — de+1 ||H71/2 = cal = c(4p) =2, for some
r

constant ¢ > 0, also depending on p and k, in agreement with (127) with £’ = £ + 1.
Moreover, since [|[¢ — ¢yl gol2 = 0 as £ — oo by Theorem 5.6, this observed

convergence implies that

at,
1—a

o0
6 = el o1 = D Nbm = bm vz =

m={

confirming, experimentally, the convergence rates for the Cantor dust case predicted
in Remark 5.8, and confirming the predicted dependence of these convergence rates
on p.

For p = 0.5 our Hausdorff BEM coincides with a piecewise-constant BEM on a
uniform mesh applied to the screen [0, 1]>; our implementation uses the quadrature
rules (93)—-(96) (which reduce to a composite product midpoint rule for the off-diagonal
entries). As similarly reported for the Cantor set in Sect. 6.1, running our Hausdorff-
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Fig. 12 The norm of the Hausdorff-BEM Galerkin matrix and its inverse. Here —27; ~ —0.262

BEM code with p = 0.5 we observe error curves (not reported here) that are almost
identical to those for p = 0.49.

For this Cantor dust example we also compare numerical results with the theoretical
predictions of Theorem 5.13. In Fig. 12 we plot the norms of the Hausdorff-BEM
Galerkin matrix A and its inverse against £ (the matrix dimension is N = 4%y for
p = 1/3 and different values of k. We observe that || A ||, is approximately independent
of £ and h = +/2p*, and that, for £ > 2, [A~ ||, = (pM)t = (4p)t = pl-Dt =
c*h1=4 = ¢*h=24 where ¢* = 2@=1/2 and 1, is defined by (42), in agreement with
Theorem 5.13. (We note that —2¢t; =1 —d =1 —log4/log3 ~ —0.262.)

6.3 Convergence of the scattered field

We now study the convergence of the Hausdorff-BEM approximation of the field
scattered by I', for the same scatterers (Cantor sets and dusts), wavenumbers, incident
waves and quadrature parameters considered in Sects. 6.1 and 6.2. The near field
at x € R"*! and far-field pattern at £ € $”" are computed using (98), choosing
¢ = ®(x,-) and ¢ = P>(x,-) respectively, using the same hp values used to
construct the associated BEM system.

In Fig. 13 we show L errors in the near- and far-field for scattering by Cantor sets
and Cantor dusts, obtained by computing the maximum error over a suitable set of
sample points. In more detail, define the parameter NV (k) := 10 max(k, 2), which is
always an even integer for the values of k in our experiments. For the near-field, when
n = 1 we sample at 4\ points on the boundary of the square (—1, 2) x (—1.5, 1.5),
and when n = 2 we sample at /% points on a uniform grid on the square (—1, 2) x
(—1,2) x{—1} (recall that I" C [0, 1] x [0, 1] x {0}). For the far-field, whenn = 1 we
sample at A points on the circle $!, and when n = 2 we sample at %[ x N points on
the sphere $2, chosen such that the points form a uniform grid in spherical coordinate
space [0, 7] x [0, 27 ].

For Cantor sets, we observe that near- and far-field errors converge to zero with
rates 27¢, precisely as predicted by the theory in (82). For Cantor dusts, we observe
convergence that is apparently faster than the predicted theory, similar to the observa-
tion made in relation to Fig. 9, which was explained in Sect. 6.2. Applying the same
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Fig. 13 Convergence of the scattered near- and far-field for Cantor sets and dusts, measured as ||uy —
Ugop 1L oo /Nty | Loy and [luf® — uz’fef ”LOO/”uZoef | 2o » respectively, with £¢ = 15 for Cantor sets and

Lref = 8 for Cantor dusts
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Fig. 14 Incremental convergence of the scattered near- and far-field for Cantor dusts, measured as |ju, —
ugi1llLy and [lug® — ”ZOH Il Lo - respectively

reasoning as in Sect. 6.2 to achieve a robust comparison with the theoretical error
bounds, in Fig. 14 we plot |[uy — ue+1lL,, and [|ug® —ugs, ||, against €. Both agree
with the predicted convergence rate of (o M) ™.

6.4 Comparison against “prefractal BEM”

In this section we compare the approximations produced by our Hausdorff BEM with
those produced by the method of [19]. This provides a stronger validation of our Haus-
dorff BEM than the experiments so far presented, which compare our Hausdorff-BEM
approximations against higher-accuracy approximations produced using the same
Hausdorff-BEM code. We shall refer to the method of [19] as “prefractal BEM”, since
it involves applying a standard BEM approximation on a prefractal approximation of
I, which is the closure of a finite union of disjoint Lipschitz open sets. For brevity we
focus only on the case of scattering by Cantor sets. In this case, for the prefractal BEM
we take as prefractals the sequence of sets ro — [0, 1], ro .— s(l"(e’l)), L eN,
where s is as in (3) for the IFS (124).

For each ¢ € Ny we denote by u° the prefractal-BEM approximation to the far-
field pattern x>, computed on the prefractal I'() using a standard piecewise-constant
Galerkin BEM with one degree of freedom for each connected component of T'(©),
Quadrature was carried out using high-order Gauss and product Gauss rules, and
quadrature parameters were chosen so that increasing quadrature accuracy did not
noticeably change the results presented below. This leads to a total number of degrees
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Fig. 15 Absolute L errors of Hausdorff-BEM (ul?o, blue curves) and prefractal-BEM (ﬁ?o, red curves)
approximations of the far-field pattern u® for scattering by three Cantor sets with k = 0.1 (left panels) and
k = 50 (right panels) and ¢ = (1/2, —+/3/2). In all cases lper = 13

of freedom N (¢) = 2¢, which is the same number of degrees of freedom used in our
Hausdorff BEM at level £. As before, we write u;° to denote the approximation to the
far-field pattern for the Hausdorff BEM, which is computed as described in Sect. 6.3,
except that now we use smaller values of the quadrature parameter i (as detailed
below), to ensure that the results presented are not polluted by effects of insufficiently
accurate quadrature, so our focus is on the Galerkin error per se.

In Fig. 15 we show L errors in the far-field pattern between the two methods for
p = 0.1, 1/3 and 0.49, with incident direction ¥ = (1/2, —+/3/2) and wavenumbers
k =0.1and k = 50 (with hp = p®h for k = 0.1 and hg = p3h for k = 50 for
the Hausdorff BEM), obtained by computing the maximum error over 300 equally-
spaced observation angles in $'. For each method we calculate the errors in two
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Fig. 16 Ratio of errors of Hausdorff-BEM (u‘l’g) and prefractal-BEM (it]og) approximations of the far-
field pattern u® with ¢ = 10 for scattering by Cantor sets with k = 0.1, k = 30 and k = 50 and
v = (1/2, —\/§/2), for a range of values of p € (0, 1/2), measured in the Lo (left panel) and Ly (right
panel) norms on $L. A value below 1 indicates that the Hausdorff BEM is more accurate, while a value
above 1 indicates that the prefractal BEM is more accurate. In both cases £ = 13

different ways, using, firstly, a Hausdorff-BEM reference solution, and, secondly, a
prefractal-BEM reference solution; in both cases the reference solution is computed
with £ = 13. In all cases, it is clear that both methods are converging to the same
solution, validating both methods. Indeed, it appears that both methods converge at
the same 2~¢ rate. However, the results suggest that the relative accuracy of the two
methods is dependent on the value of p, with the two methods having essentially the
same accuracy for p = 0.49, the prefractal BEM being more accurate for p = 1/3,
and the Hausdorff BEM being more accurate for p = 0.1. To investigate this further
we carried out similar experiments for more values of p, plotting the ratio of the errors
obtained (measured in the L, and L, norms) with £ = 10 in Fig. 16. We observe that:

e for p between 0.4 and 0.5 the two methods are very similar in accuracy;

e for p between 0.3 and 0.4 the prefractal BEM appears to be more accurate, signif-
icantly so, by a factor > 100, for p =~ 1/3 (this appears to be due entirely to some
unexpected enhanced accuracy of the prefractal BEM for p &~ 1/3);

e for p between 0 and 0.3 the Hausdorff BEM appears to be more accurate, signifi-
cantly so, by a factor > 1000, for the lowest value of p;

e the ratio of the errors for the two methods appears to be essentially independent
of k for the range of k tested. To illustrate this we have also included in Fig. 16
results for k = 30 (computed with hp = p3h), alongside the results for k = 0.1
and k = 50; we observe that the results for all three k values are almost identical.

These observations about the accuracy of the two methods (particularly the “spike” in
Fig. 16 near p = 1/3) merit further investigation, but we leave this to future work.

6.5 Non-homogeneous or non-disjoint IFS attractors

We now consider two IFS attractors that are not Cantor sets/dusts, both for n = 2:
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Fig. 17 The scattered field

induced by a plane wave, with 0.2
wavenumber k = 50 and
direction vector 0.15
¥ = (0, 1, —1)/+/2, incident on o1
the “non-homogenous dust" of ’
[30, Fig. 8b, eq. (70)], plotted on 0.05
three faces of a cube, computed
with mesh parameter 0
h = hget = ~/2/16384. The 0.05
scatterer, which is a subset of the ’
plane R2 x {0}, is shown in 0.1
black. Further details are given
in Sect. 6.5 -0.15
-0.2
) Non-homogeneous dust, relative errors Non-homogeneous dust, absolute increment errors
10 T T T T T T
k=01 k=01
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Fig. 18 H. 172 forms of the errors for the two IFS attractors described in Sect. 6.5. Top left: ||¢, —
Phyes IIHF—1/2/||¢h,ef IIHr—l/z, bottom left: [|¢g — Py, IIHF—1/2/||¢sz IIHF—1/2, top right: ||y — ¢h/4”Hr_l/2
(see Footnote 17), bottom right: [|¢y — ¢y ||H,1/2

r

(1) the “non-homogeneous dust”, shown in Fig. 17, and defined in [30, Fig. 8b, eq. (70)]
(with M = 4, p = p» = p3 = 1, p4 = 1 and Hausdorff dimension d ~ 1.20);

(ii) the Sierpinski triangle [19, §6.3] (with M = 3, 51 (x) = $x, 52(x) = $x + (%, 0),
53(x) = Lx + (4, ¥2) and Hausdorff dimension d = log 3/ log2 ~ 1.58);
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Both satisfy the OSC (4) and are hence d-sets for the stated values of d. But only
(ii) is homogeneous, and only (i) is disjoint and satisfies the assumptions of the
Hausdorff-BEM convergence theory of Sect. 5.2. Figure 18 shows the H. 12 horms of
the Hausdorff-BEM errors computed against a fixed reference solution (left column)
and the norms of the differences between Hausdorff-BEM solutions on consecutive
meshes as in Fig. 11 (right column), for a range of wavenumbers.!” For the Sierpinski
triangle (ii) we use meshes of N = 3¢ elements of diameter 2~¢ and we plot the errors
against the level ¢ for £ = 0, ..., 9, using a reference solution with £ = 10, i.e.
Nret = 310 = 59049. For (i), since the IFS is non-homogeneous the BEM mesh is not
parametrised by the level £ but rather by the mesh size h = 4, j=0,...,5, giving
the number of degrees of freedomas N = 1, 7, 40, 217, 1159, 6160, respectively. The

reference solution has 7 = hye = % = & and Nps = 75316. For quadrature, for

(i) weuse hg = % and for (ii) hg = %.

For (i), as we found for the homogeneous Cantor dust in Sect. 6.2, at first sight the
convergence in the top-left panel of Fig. 18 appears slightly faster than the theoretical
rate K1 ="+4)/2 predicted by Theorem 5.1. As before, this apparent mismatch is due
to the limited accuracy of the reference solution; when we plot incremental errors (in
the top right panel) we see much clearer agreement with the theory. Example (ii) is
not covered by our convergence theory, but if our theory were to extend to this case
our predicted convergence rate of 11 ~"T49)/2 would evaluate to (2/3)¢. Similarly to
what we observed for (i), the relative errors in the bottom left panel of Fig. 18 converge
slightly faster than (2/3)¢, while the increments in the bottom right panel converge
approximately in agreement with (2/3)¢. However, we leave theoretical justification
of this empirical observation for future work.

7 Conclusions and future work

In this paper we presented and analysed a piecewise-constant Galerkin BEM for acous-
tic scattering in Rt =1,2, by a sound-soft planar screen I' C ['oo = R" x {0}.
Our BEM is defined whenever the screen I is a compact d-set, forsomen—1 < d < n,
which includes cases where I is fractal. It is based on an integral equation formu-
lation in which integration is carried out with respect to Hausdorff measure 7¢. For
any compact d-set we proved that the method converges as the mesh width 4 tends
to zero (see Theorem 5.1). Regarding the relationship between mesh width and wave-
length, in our numerical results presented in Sect. 6 we observe the same behaviour
one obtains for a conventional BEM on a smooth scatterer: as & decreases towards zero
there is a pre-asymptotic phase until 4 reaches the wavelength scale, beyond which

17 In Sect. 6.2 we motivated the study of the errors ||y — ¢y ||H,1 /2 between consecutive levels with

r

the bound (127). In the case of non-homogeneous IFSs, denoting by ¢, the Hausdorff-BEM solution

corresponding to a mesh of size &, assuming that the theoretical error bound (78) is sharp, i.e. ||[¢p —

¢h”H’1/2 = Ch® for some C > 0 and a = (1 —n + d)/2, it follows that Ch"‘(l —(W'/m°) <
r

o =l 172 < Ch®(1+ (W' /h)®) for 0 < h’ < h. In the example (i), two consecutive meshes have
T

h'/h = 1/4; thus we expect theoretically that ||¢), — ¢y, HH_1 /2 is approximately proportional to ~%.
r
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one observes the predicted asymptotic behaviour. In the case where I is the disjoint
attractor of an IFS satisfying the OSC, the “elements” in the BEM are self-similar
subsets of I", and in Sect. 5.4 we showed how the Galerkin integrals can be evaluated
using quadrature rules from [30]. In this case we also proved fully-discrete conver-
gence rates, under certain regularity assumptions on the integral equation solution
(see Theorem 5.6, Corollaries 5.17 and 5.18). Specifically, we showed that the BEM
solution converges like O (h*+t1/2y as h — 0, and the near- and far-field solutions like
O (h**1), assuming ¢ € H} for some s > —1/2. We proved the existence of such
an s in Remark 5.7, using Proposition 4.9, but our numerical results in Sect. 6 suggest
that, for sufficiently smooth data, it may hold that ¢ € H} forall s < —(n —d)/2,
i.e. for all s such that the space H}. is non-trivial. Guided by these observations, we
formulated Conjecture 4.8, which is a statement about the range of Sobolev spaces on
which the Hausdorff-measure integral operator S (defined in (15)) is invertible.

Proving or disproving Conjecture 4.8 is the main outstanding theoretical question
relating to the paper. Other avenues for future research include:

e The extension of our analysis to non-disjoint fractal screens, such as the Sierpinski
triangle screen considered in Sect. 6.5. Singular quadrature rules for such cases
(generalising those described in Sect. 5.4) have been presented recently in [29],
but extending our BEM convergence analysis will require a suitable generalisation
of the wavelet approximation theory of [36], which is yet to be worked out.

e The extension of our convergence rate analysis to the case d = n. This requires
somewhat different techniques to the case d < n, and will be presented in a
separate article [11].

e The generalisation of our Hausdorff BEM to scattering by non-planar fractal struc-
tures. Results in this direction were presented recently in [10].

e The extension to Neumann problems. Theoretical results relating to integral equa-
tion formulations of Neumann screen problems were presented in [15]. These show
that the Neumann boundary condition is “weaker” than the Dirichlet condition, in
the sense that Neumann screens do not scatter waves unless Hll/ 2 # {0}, which
requires in particular that I' C I'oo = R” has positive n-dimensional Lebesgue
measure. Hence, in the context of scattering by screens that are attractors of IFS
satisfying the OSC, only the case d = n is relevant. A specific example would
be scattering by a sound-hard Koch snowflake screen. However, the development
of a BEM for such Neumann problems using a mesh of fractal elements (as we
consider in the current paper for the Dirichlet case) is complicated by the fact
that non-trivial piecewise polynomials on such meshes cannot be continuous, and
hence cannot be HIE/ 2-conforming. Thus a different approach is required, perhaps
involving a discontinuous Galerkin discretization. We remark that a rigorous con-
vergence analysis for a prefractal BEM approach to the related impedance problem
was presented in [3].

e A more detailed investigation into the relative accuracy of our Hausdorff BEM
and the alternative prefractal BEM of [19], extending the preliminary analysis of
Sect. 6.4. For many problems the Hausdorff BEM appears to be more accurate than
the prefractal BEM. However, the comparison between the two is rather subtle: for
the examples we considered in Sect. 6.4, while both methods appear to converge
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at the same rate, for the same number of degrees of freedom the Hausdorff BEM
can be over 1000 times more accurate than the prefractal BEM, or 100 times less
accurate, depending on the fractal simulated. As yet we do not understand why.

e The combination of our Hausdorff BEM with accelerated linear algebra via a tech-
nique such as H-matrix compression or the fast multipole method. This would
allow the simulation of larger problems with finer mesh widths, permitting the
calculation of higher accuracy solutions and/or the study of higher frequency prob-
lems.
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A Besov spaces on d-sets

In this appendix we show that the spaces denoted by BL Y (I"), and defined in terms
of atoms in [36, section 6], coincide with the spaces denoted by Bg’ q,O(F) defined
in [9, Def. 6.3], under the assumptions ¢ > 0, 1 < p,g < 00, and I" being a d-set,
0 < d < n, preserving Markov’s inequality in the sense of [36, §4] (or see [37, p. 34],
and note Remark A.6 below). As a consequence (see Corollary A.4) we have that our
space H* ("), defined in Sect. 2.4, coincides with Bgt’z (I") under the same assumptions
onoand I'.18

We start by rephrasing the above mentioned definition of BY"?(T") in terms closer
to the notation used in [8], which we want to use to make the announced connection.
In order to do that, we need first to recall the notion of atom as used in [36]. For each
v € Np, consider the family of cubes

n
oV = n[z—“m,-, 27Vmi+ 1)), meZ.

i=1

18 We recall (see the discussion in Sect. 2.4 and [9, Rem. 6.4]) that, for 0 < a < 1, H*(I") also coincides
with the Besov space Bg () of [37].
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Then, given «, p, d, and K as in Definition A.1 below, an («, p)-atom a” associated
with Q" is any a"" € CK(R") such that

suppa’™ C 30",
|DPa"(x)| < 27V@-IFI=d/p) -y e R |8 < K,

where for a cube Q C R” and a scalar r > 0 the cube r Q is defined to have the same
centre x as Q and side length r times thatof Q,i.e.,r Q := {xgp+r(x—xp) : x € Q}.
The following definition of BY*?(T") is the second, equivalent, definition of [36,

§6].

Definition A.1 Leta > 0,1 < p,q < oo, and I" be a d-set, 0 < d < n, preserving
Markov’s inequality. Assume that N 3 K > |a] Then f € BLY(I) iff

o0
f= Z Z AYMa"™,  convergence in L, (I), (128)

v=0 meZ"
for some family of («, p)-atoms a”” and numbers A = (A"")eN,, mez» satisfying

1/q

o0 q/p
1Mllp,,, = Z(ZMWO < o0, (129)

v=0 \meZ"

the norm of f in BY'?(I") being defined as the infimum of the left-hand side of (129)
taken over all possible representations (128) of f.

In [8], atoms are also considered, but the definition is different: for each v € Ny,
consider the family of cubes

n

Qun =127 (mi = 1),27"(m; + D], meZ".

i=1

Then, given s € R, 0 < p < 00, K € Ng, and ¢ > 1, an (s, p)k.0 c-atom a,,;,
associated with Q,,, is any continuous function with (classical) partial derivatives up
to the order K such that

supp aym C cQum,
|DPay, ()| <27 6-Bl=n/p) -y e R, (B8] < K.

Remark A.2 1tiseasily seen that, foreachv € Ngandm € Z", Q,, C 30" C 2Q .
And from this it is straightforward to show that:

l.Lete > 0,1 < p <00,0<d <mn,andN 3> K > |«]. Any (, p)-atom

associated with OV is an (« + ”;d, D)k .0.2-atom a,,, associated with Q.
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2. Let0<d <n,s > %,1§p<oo,N9K> Ls—"_dJ.Any(S,p)K+LO’1_

[z
”;d, p)-atom associated with Q"

atom associated with Q,,, is an (s —

PropositionA.3 Leta > 0,1 < p,q < oo, and T be a d-set, 0 < d < n, preserving
Markov’s inequality. Then the space ]B%Z’ q,O(F) defined in [9, Def. 6.3] coincides with

the space B (') of Definition A.1 above, with equivalence of norms.

Proof Consider N 3 K > o + %. We have, in particular, that K > |« . Given

f e BL(I"), we have (128) with (129) for some family of («, p)-atoms "™ and
numbers A" such that

1Allb,, < 20715245

On the other hand, since K > o + =4 and 0 > —a — 2=2_ it follows from [8,

Thm. 2.3, Rem. 2.4 and Thm. 2.5] and part 1 of the above Reﬁlark A.2 that

o n—d
+7
g = E E A" e Bz,q P (R™)

v=0 meZ"

@ n—d
with convergence in the sense of B, ;, " (R") and

IIgIIBHn%I(R") = clltlp,, (130)

P.q

for some constant ¢ > 0 independent of f. From elementary embeddings and the
linearity and continuity of the trace operator trr from [9, Prop. 6.2],

o0 o0
trrg = Z Z AV Mrpa”" = Z Z AY"a"™|p,  convergence in L,(I),
v=0 meZ" v=0 meZ

the latter equality being justified by the arguments in [9, Rem. 6.4] and the fact that
each "™ is continuous. But then trr- g must be the same as f (recall the representation
(128) and the fact that " |r and "™ define the same class in L ,(I"). So, we have
proved that f also belongs to IBZ’ q,O(F)' Additionally, using (130),

T = DY P 2 s
Bpgq © RY

n—d
To see the opposite inclusion, given f € IB%‘I",,q’O(F), choose g € B, , " (R") such
that f = trrg and

Il uese = 207 s o0 (131)

p.q
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Since K+1 > a+ ";d and0 > —a— ";d, it follows from [8, Thm. 2.3 and Thm. 2.5]
that

n—

0 d
a+
: P n
g:E E Avm@ym, convergencein B, ,  (R"),

v=0 meZ"

for some family of (« + %, P)K+1.0.1-atoms a,,,, and numbers 1,,, which we can
choose to satisfy the estimate

1/q

00 q/p
> ( > mml’) <clgl yyn-a (132)
B,, 7 R")

v=0 \meZ" P4

for some constant ¢’ > 0 independent of f. Again using elementary embeddings and
the linearity and continuity of the trace operator trr from [9, Prop. 6.2],

o o0
f=trrg = Z Z Aomttray, = Z Z Avm@um|r,  convergence in IL,(I").

v=0 meZ" v=0 meZ"

But then we see from part 2 of the above Remark A.2 that we have what is needed
to conclude that f also belongs to BY(I"). Moreover, from (131) and (132) it also
follows that

/ /
I fllgraqy = lgl gpn=a =2\ fliBe  (r)-
P (n P4,
Bpg & RY

O

Corollary A4 Leta > 0andT bead-set, 0 < d < n, preserving Markov’s inequality.
Then H*(T") = Bozl'z(l") with equivalence of norms.

Proof Our space H*(I") coincides with the spaces H%‘qo(l") = F‘;’Z’O(F) defined in
[9, Def. 6.3]. Moreover, since (for all s € R) the Triebel-Lizorkin space F2S,2(R")
coincides with the Besov space Bé’z (R™), with equivalent norms, it follows, inspecting
the definitions of F%‘,z,o(l‘) and ]B%‘Q"Z’O(F) in [9, Def. 6.3], that ]Fg,z,o(r) = Bg,z,o(FL
also with equivalence of norms, and the result follows immediately from the previous
proposition. O

Remark A.5 Characterizations of trace spaces in terms of atomic representations, like
the one given in Proposition A.3 above, are not new. With a somewhat different
approach and in the larger setting of the so-called h-sets, they can already be seen
in [7, Prop. 3.5.4].

Remark A.6 If ' C R" is ad-setand d > n — 1, then the hypothesis that I" preserves
Markov’s inequality is automatically satisfied [37, Thm. 3 on p. 39].

@ Springer



A. M. Caetano et al.

B Inverse estimates

In this appendix we prove that the inverse estimate (84), established for 0 < < 1in
Theorem 5.10, holds in fact for the extended range 0 < ¢ < J,forany J € N, moreover
with a constant in the inverse estimate that is independent of . Our proof is modelled
on standard inverse estimate arguments for negative exponent Sobolev spaces, e.g. [24,
Theorem 4.6], with the important difference that it is, of course, impossible to support
the smooth “bubble functions” (in the terminology of [24, §4.3]), that are a key tool
in the arguments of [24] and in the proof of earlier inverse estimate results, inside an
element I';, C I', as I has empty interior. In the case that I is a disjoint IFS attractor,
it turns out that, to carry through an analogous argument, it is enough to replace the
bubble function by a smooth function supported in a carefully chosen neighbourhood
of I'y, (the function oy, € CG°(R") in the proof below). The assumption that I is a
disjoint IFS attractor implies that I is a d-set with 0 < d < n (see Lemma 2.6), but,
in contrast to Theorem 5.10, we make no additional constraint on d. We continue to
assume in this appendix that # lies in the range (76), i.e. that

0 < h < hg :=diam(I"),

and to use the notations of the main part of the paper, notably L, xm, and Y}, defined
by (74), (16), and (73), respectively.

Theorem B.1 Suppose that T is the attractor of an IFS, satisfying (3), that T'y,..., Ty
are disjoint (i.e., I is disjoint), and that J € N. Then there exists c; > 0 such that,
for every Y, € Yy,

IVnlyy < crh™ IYnllg—rry, 0<t<J. (133)
Proof Let

Pmin 1= IlninM,oj and co:=H(D).

.....

Since I'y,..., ')y are disjoint, I" satisfies the OSC for some open set O D I' by Lemma
2.5. By a standard mollification we can construct a 0 € Cy°(R") supported in O
such that o = 1 in a neighbourhood of I'. For each m = (my,...,my) € Ly, let

Pm ‘= 1_[5':1 Pmjs
hm = pmho = diam(I'y) € (Ominh, hl, (134)

and

- -1 —1 —1
Om =0 08, 08, 008,

and note that, as a consequence of the OSC, the supports of o, and o, are disjoint,
form # m'.
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Now suppose that 0 < ¢ < J, and define s in terms of ¢ by (9). For m € L, noting
(13) and (16), we have that

172 dj2
C()//Om/-

(135)

(Oms T Xm ) s Ry x - Ry = (T Oy Xim)Ly(T) = H T/ =

Clearly (133) holds for ¥, = 0. Now suppose that i, € Y, \ {0}, so that, for some
coefficients a = (am)mer,, we have

Yp = Z Am Xm

melLy,

and
12
2
1nlamy = llalz = | D laml

meLy

Define uy, € Y5 C H~*(R") and v;, € H*(R") by

up =ty = Z amtfxm and vy = Z AmOom.-

meLy meLy

Then, since the supports of the o, are disjoint and again noting (13), we have, using
(135) and (134), that

1/2 2 dJ2 1/2 2 2
(Whs un) s geyx s @y = - Y lam|2om = ¢y’ (pminh /o)™ all3.
meLy

(136)

For j € Ng and m € Ly, using standard properties of Fourier transforms (e.g., [31,
Prop. 2.2.11]),

i
loml1%s ony = 02 /R (1+16P) Bond)P d

= [ (1+16/0mP) P g

Rn

n—

2j 2
5 Pm HOHH./'(R")’

since pp, < 1, so, using that p,; € (Pmink/ho, h/ho] by (134), and again that the
supports of the o,, are disjoint,

2 2 2
0nll 3y ey = D laml* lom 13, gy
meLy
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107115, gy (Omint /70)" = Nlall3, if j = n/2,

SV U012, o (/R0 a2, if j < n/2
||G||HJ(R")( / 0) ”a”z» 1 .] <n/ .

In particular this applies for j = 0, L, where L := [max(J 4+ (n — d)/2,n/2)], so
that L > max(s, n/2). Hence, and applying Holder’s inequality to the definition of
the H*(R") norm and noting that ||o || yony < llo[l gz (nys

1-s/L L 2L)—1 —
lonlls eny < 10l pyorg 108150t oy < 101z ny S~ (/7)™ a2
(137)

Now, recalling from Sect. 2.4 that tr{. : H() — H*(R") has unit norm,

(v, un) gs ®ryx H-s @ |

\

”vfh”H—’(l") = ”uh”H—S(Rn) = sup
ve Hs (R")\{0} ol s gy

[{Vns un) s ®nyx 1= ®")
lop Il s ()

Combining this inequality with (136) and (137) and recalling (9) we obtain that

1/2
C 2
IWallarry > ——2—— 052 (h/ho)! llall2,

- ”O' ”HL(]R”)
and the result follows on recalling that ||a|l2 = [[¥n [|lL,@)- m|
C Table of definitions
Symbol/terminology Defined/introduced
I', oo Section 1
HY, dimy, |E| (Lebesgue measure), d-set Section 2.1
IFS, OSC, homogeneousLself—similar, disjoint Section 2.3
H*(Txo), HS., HS(2), HS () Sections 2.4 and 2.5
Lo (), Lo (), HY (), trr, tr? Sections 2.4 and 2.5
wl@), whlee() % oF C3r Section 2.5
1g, In, Ing: U'm> We, xm»> Y0, Vs Jvsvos |- lle Section 2.3
u',T¢, P, S, S, ¢,a(,-),a(, ), $%, u>®, &2, §" Section 4
tq,S Section 4.1
{Tj}?’:l,vN, VN, dn, A, G b, J Section 5
X, Ky, Py, X0, Yy, Yy, Ly, h Section 5.1
ct Section 5.3
A2,52,20 49 JC Hull Section 5.4
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