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Abstract

Extreme precipitation events (EPEs) are among the most pervasive weather hazards in the western
Himalayan region (WHR), posing widespread damage to life, infrastructure, and agriculture. This
study investigates the synoptic and large-scale characteristics linked to winter precipitation
extremes over the WHR. EPEs are identified as events surpassing the 95" percentile threshold. A
composite analysis is employed using two reanalyses—ERAS5 and IMDAA to elucidate the
synoptic conditions conducive to EPEs. Our findings suggest that EPEs in the WHR are linked to
an intensified subtropical westerly jet, characteristically shifted to south than normal. Enhanced
kinetic energy in the upper troposphere, attributed to increased baroclinic instability, reinforces
moisture convergence and strengthens synoptic scale circulation, triggering deep convection and
supporting EPEs. Notably, the interplay of pronounced Rossby waves sinking over the region,
coupled with regional orography, significantly modulates the intensity of western disturbances
(WDs) during extremes. Employing clustering analysis, we observed that the strongest EPEs are
linked to anomalous vorticity in the upper to middle troposphere, together with deep convection
via highly strengthened WDs, suggesting a potential role of large-scale influences. Using
Lagrangian method, we identify that Arabian Sea is primary moisture source for EPEs in WHR.
We further delved into the role of large-scale connections and EPEs through quasi-resonant
amplification (QRA) analysis in the WHR using ERA5 data. The findings unveil the association
of QRA with notably magnified, quasi stationary mid-latitude planetary waves characterized by
wavenumbers 6/7/8 (baroclinic waves), contributing to precipitation extremes. Remarkably,
distinct fingerprints of meridional temperature gradients, indicative of QRA, are linked to EPEs.
Furthermore, this investigation discerns distinctive QRA patterns associated with varying clusters
of extreme event intensities. Overall, our results emphasize the crucial role of QRA in amplifying
planetary waves and promoting extreme precipitation in the WHR, underscoring the vulnerability
of the region to evolving climate conditions and providing insights into the underlying physical

mechanisms.

Keywords: Extreme precipitation events, western disturbances, western Himalayas, baroclinic

instability, Rossby waves, Quasi-resonant amplification
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1. Introduction

The Western Himalayan region (WHR, Figure 1a) significantly influences the hydro-
meteorological conditions and climate variability in north India and adjoining regions. The diverse
and topographic landscape of the WHR encompasses forests, cultivated areas, wetlands, glaciers,
and urbanized zones (Figure 1b). This further affects the land-atmospheric exchange processes and
precipitation variability (e.g. Singh et al. 1995; Beniston 2003; Anders et al. 2006; Dimri 2012;
Hunt et al. 2018a; Nischal et al. 2022). In winter (December to February; DJF), western
disturbances (WDs) —extratropical synoptic weather systems, contribute to a significant amount of
annual precipitation to the region (e.g. Hunt et al. 2018a; Nischal et al. 2022). Moving eastward
along upper tropospheric sub-tropical westerlies, these synoptic-scale eddies gather moisture from
the Arabian Sea and encounter the regional orography across the WHR (e.g. Madhura et al. 2015;
Hunt et al. 2018a). This intensifies the WDs and results in heavy precipitation (Ramaswamy 1956).

Winter precipitation in the WHR sustains the crucial glacial mass equilibrium, influencing
regional river discharge and streamflow (Hasson et al. 2014). Given the vulnerability to
precipitation variability, any key fluctuations could severely impact regional freshwater
availability downstream in this vital glacier-dependent watershed, in turn, affecting millions (e.g.
Messerli et al. 2004). Moreover, changing climate hold profound implications for this ecosystem
and winter precipitation patterns (Tewari et al. 2017; Hunt et al. 2020), including the anticipated
increase in hydroclimatic variability, modified precipitation patterns and intensified extremes
(Miller et al. 2012; Madhura et al. 2015; Krishnan et al. 2019). Additionally, the steep topography
of the WHR increases its susceptibility to intense surface runoff during extreme precipitation
events (EPESs), enhancing the risk of avalanches, landslides, and floods, thus, rendering the WHR
as a high-risk zone (Bookhagen and Burbank 2010; Priya et al. 2016; Acharya et al. 2023).
Numerous instances of EPEs over the WHR have illustrated massive losses through cloudbursts
induced by terrain-locked deep convective systems in valleys, and flash floods triggered by
extratropical disturbances (Dimri et al. 2017; Houze et al. 2017; Hunt et al. 2021).

Recent studies suggest a rise in the frequency and intensity of winter EPEs in the WHR
(Madhura et al. 2015, Shekhar et al. 2017, Krishnan et al. 2019, Rao et al. 2021; Nischal et al.
2023). Some attributable factors include a warming climate (Ballesteros-Céanovas et al. 2018),
growing prevalence of atmospheric rivers (Nayak et al. 2021) and, increased WD variability

through enhanced upper-level baroclinicity (Madhura et al. 2015). However, empirical evidence
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is insufficient to firmly establish a trend in WD frequency, suggesting potential changes in
intensity. The disastrous impacts of EPEs extend to both natural and anthropogenic ecosystems,
resulting in damage to life, infrastructure, crops, and power networks, sparking serious concerns
about their impacts on human lives (Dimri et al. 2021; Sati and Kumar, 2022). For instance, Figure
1c (Disastrous Weather Events catalogue by India Meteorological Department) illustrates the
human mortality rate linked to winter extreme snowfall events over the WHR since the 1980s.
Goklany (2009) suggested improvement in monitoring, forecasting, and preparedness for these
events to potentially lower mortality rates, as evident in recent years (see Figure 1c). Furthermore,
a holistic understanding of the associated dynamics and thermodynamics of EPEs can improve the
accuracy of early warning systems which eventually helps in effective risk mitigation. Winter
precipitation over the WHR is modulated to a large extent by various localized, synoptic and large-
scale meteorological processes including variations in the sub-tropical westerly jet and WD
activity, as well as more localized features such as cloudbursts. While the precipitation extremes
and their associated dynamics have been relatively well-documented for the summer monsoon
season (Priya et al. 2016; Revadekar et al. 2016; Vellore et al. 2016; Hunt et al. 2018b; Aggarwal
et al. 2022), winter precipitation extremes and their causal mechanisms have received
comparatively less attention (Madhura et al. 2015; Hunt et al. 2018b; Krishnan et al., 2019).
Additionally, most available literature focuses on case studies, highlighting location or event-
specific EPEs (e.g. Norris et al. 2015), underscoring the importance of in-depth research to address
the potential ramifications of winter EPEs.

Recent research has also emphasized the critical role of large-scale planetary atmospheric
dynamics in characterizing such weather extremes. Studies conducted by Petoukhov et al. (2013),
Coumou et al. (2014), and Mann et al. (2018) shed light on Quasi-Resonant Amplification (QRA),
a phenomenon linked to climate change associated Arctic warming i.e. Arctic amplification (AA).
QRA occurs when these quasi-stationary atmospheric waves become trapped in a latitudinal
waveguide (turning points around 30°N and 45°N), creating a zonally directed waveguide for
specific wave numbers. When the waveguide is (almost) circumglobal, wave energy is efficiently
trapped and waves constructively interfere with the forcing, leading to resonance and the growth
of trapped planetary waves that are excited by thermal or orographic forcing (Petoukhov et al.
2013). This phenomenon contributes to weakening/meandering of mid-latitude westerlies,
enhancing the possibility of weather extremes. Francis and Vavrus (2012) found that rapid Arctic

warming weakens the poleward thickness gradient, decelerating large-scale Rossby waves. This,
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in conjunction with enhanced wave amplitudes and elongated meridional flow, contributes to more
frequent atmospheric blocking patterns and mid-latitude weather extremes. Zonal wavenumbers
6-8 have been known to resonate and amplify during summer extremes (e.g. Petoukhov et al. 2013;
Mann et al. 2018). However, the influence of QRA on winter extremes over WHR is not
investigated yet. Additionally, it has been observed that the strength of AA is relatively stronger
during winter (e.g. Cohen et al. 2014), thus emphasizing the possible influence of QRA
occurrences.

In this work, we investigate the synoptic and large-scale characteristics, including
dynamical, thermodynamic, and moisture convective processes, associated with winter
precipitation extremes in the WHR using high-resolution climate datasets. Collaterally, the study
also evaluates the potential of recently released high-resolution Indian Monsoon Data Assimilation
and Analysis (IMDAA) reanalysis in capturing these extremes over the WHR as well as their
underlying mechanisms. At the end, we analyze the QRA characteristics to understand the
potential links between planetary scale waves (induced by AA) and winter EPEs. This sheds light
on how high-latitude dynamics influence EPEs in the WHR. Such understanding of precipitation
extremes over high mountain region and their associated physical mechanisms is crucial for

interpreting climate-change scenarios of extremes.

2. Data and Methods

2.1. Data

The study of precipitation extremes over the WHR requires high-resolution datasets, as the
complex and heterogeneous Himalayan orography results in substantial spatial variability of both
mean and extreme precipitation (Andermann et al., 2011). Here, we conducted an analysis of
winter (DJF) EPEs using multiple high-resolution gridded datasets from different sources over the
WHR (27.5-37.5°N and 72.5-80.5°E, see Figure 1a), from 1979 to 2019 except for Integrated
MultisatellitE Retrievals (V3) for Global Precipitation Measurement (GPM-IMERG) dataset
which spans 2000 onwards. To obtain daily precipitation observations, we used the India
Meteorological Department's (IMD) dataset, which is based on measurements from 6955 rain
gauge stations spread throughout the Indian subcontinent, interpolated to a resolution of
0.25°x0.25° (Pai et al. 2014). Nevertheless, the density of stations in the WHR is low. We also
utilized the GPM-IMERG dataset, a high-resolution merged satellite product that combines

microwave and infrared observations from the GPM satellite constellation with gauge observations
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using the Day-1 IMERG algorithm (Huffman et al. 2015). IMERG is available from 2000 onwards
at half-hourly temporal and 0.1° spatial resolution. The satellite product has been incorporated, as
previous studies have evaluated its performance for studying precipitation extremes over complex
topographies (Liu et al. 2020; Nepal et al. 2021).

Additionally, we used a recently released regional reanalysis dataset, IMDAA, which has
a high spatial resolution of 12 km and covers the South Asian domain. IMDAA was developed
through a collaboration between the National Centre for Medium Range Weather Forecasting, the
UK Met Office, and IMD, using a unified atmospheric model and the four-dimensional variational
(4D-Var) data assimilation technique (Rani et al. 2021). The dataset provides better representation
of orographic features due to its high resolution (Nischal et al. 2022). Lastly, we employed the
state-of-the-art global reanalysis ERA5, developed by the European Centre for Medium Range
Weather Forecasts (fifth generation), which has a resolution of 0.25°%0.25°. We also considered
daily values of various meteorological variables from IMDAA and ERADS, such as air temperature,
specific humidity, vorticity, and three-dimensional wind components, at different pressure levels.
Additionally, ERA5 and IMDAA-based WD tracks from Nischal et al. (2022) were utilized to
identify and filter out the WD centers during EPEs over the WHR. Daily averages of outgoing
longwave radiation (OLR) data from KALPANA-1 satellite (0.25°x0.25°) for 2004-2019 have
also been used.

2.2. Methodology

2.2.1. Composite analysis of extremes

A wide discrepancy in precipitation patterns is observed among different datasets over the WHR
(Baudouin et al. 2020; Nischal et al. 2022). Thus, we focus on analyzing how different datasets
depict precipitation extremes over the WHR. Considering that the selected datasets are generated
with different input data and dissimilar developmental methods, a strong agreement between any
two of them indicates they are likely to be close to reality (Baudouin et al. 2020; Nischal et al.
2022). We also explore the fidelity of the newly-developed high-resolution IMDAA reanalysis in
representing WH precipitation extremes during the winter season. It is to be noted that high
resolution (spatial and temporal) as well as comparatively long temporal coverage provides the
possibility of relatively better depiction of precipitation extremes (Rani et al. 2021; Nischal et al.

2022). Additionally, its ability to simulate both small and large-scale atmospheric dynamics (as it
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represents the complex interplay between topography and mountain meteorology) during winter
(Nischal et al. 2022) and summer (Saini and Attada, 2023) precipitation is credible.

We have selected datasets from different sources with at least daily precipitation records
and high spatial resolution (< 25 km) for the analysis. Extreme days are defined as those when the
average regional (27.5°N-37.5°N and 72.5°E-80.5°E) precipitation exceeds the 95™ percentile
threshold (Fig. 2a). This threshold is calculated by considering the precipitation values (including
zero precipitation) across all the grid points in the region during the investigation period.
Conversely, we classify the remaining days as non-extreme days. We further examined the
composites of different atmospheric variables for extreme minus non-extreme days in the ERA5
and IMDAA reanalysis, using IMD-identified (observation-based) days in ERA5 and IMDAA's
own identified days. Due to its shorter time span, IMERG was exclusively utilized for analyzing
precipitation characteristics and not for further composite analysis. Nonetheless, it is noteworthy
that the identified extreme and non-extreme days in IMERG exhibit similarities to other datasets
for the period 2000-2019.

2.1.2. k-means clustering algorithm

In this study, we also seek to identify distinct weather regimes associated with extreme
precipitation over the WHR, for which we use k-means clustering. Neal et al. (2020) previously
used a similar technique to identify different weather patterns over India. The k-means clustering
algorithm (Hartigan and Wong, 1979) is an iterative unsupervised vector quantification algorithm
that groups a given set of n-dimensional (vector) points into distinct non-overlapping clusters (k),
based on nearest possible cluster centroid value. The algorithm uses the Euclidean distances of
each point in the cluster to measure similarities between them. The cluster points are grouped such
that the sum of square of the distances for each point to the cluster mean or centroid gets
minimized. The objective function, F, that the k-means clustering algorithm seeks to minimize is
defined thus:

n
F= Y22 Iy — w2 (1)
where x; ; is a point vector in cluster j and 7y is the center of cluster j, having n; points. Firstly, the

algorithm initializes the k-cluster centers randomly and each x point vector is grouped to a certain

cluster j based on the closest cluster centroid value. Following this, the centroid values are
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recalculated according to the means of all assigned points in each cluster and the algorithm keeps
iterating until convergence.

Three clusters were deemed to be most appropriate for this analysis, enough to explain a
sufficient amount of the variance associated with precipitation extremes over the region (following
Hunt et al. 2018a and heuristic ‘elbow method’ developed by Hardy, 1994). The clustering has
been carried out over the region (72.5-80.5°E, 27.5-37.5°N) for the following variables:
Geopotential Height (GPH), vertical velocity, Potential Vorticity (PV), divergence, and cloud

cover fraction.
2.1.3. Lagrangian parcel tracking for Moisture sources

To identify possible moisture pathways associated with an EPE, we employed a Lagrangian parcel
tracking approach developed by Hunt et al. (2018b). This involves decomposing the atmosphere
above the event of interest into uniformly spaced parcels, which are subsequently backward-
advected from the region of interest using ERA5 wind data. Following the determination of the
start date, time, and location of interest, we extract the three-dimensional wind vector at this point.
The parcels undergo back-advection with 20-minute integration time, by changing the signs of
wind vector components using a set of spherical equations (see more details in Hunt et al. 2018b).
Due to limited reanalysis resolution, the resulting point may lack precise data coordinates in space
or time. To mitigate this, local reanalysis fields are recalculated for the correct time through cubic
spline interpolation. Subsequently, we employ a tricubic method (Lekien and Marsden 2005) to
estimate the wind vector at the desired location. This iterative process continues, returning to the
initial step with updated time, location, and winds, persisting for the specified integration duration.
Here, we have back-advected forty parcels, equally spaced between 925 and 500 hPa for 10 days

using local, contemporaneous ERA-5 winds at hourly temporal scale.
3. Results and Discussion

3.1. Precipitation extremes

Figure 2(a) depicts the percentile distributions for daily precipitation exceeding the 80" percentile
in different datasets over the WHR. Each line on the figure corresponds to a distribution that
encompasses all the grid points across the study region (approximately 1850 grids). To ensure a
fair comparison, the datasets have been re-gridded to a common spatial resolution of 0.25°. The

findings indicate that a substantial proportion of winter precipitation in the WHR is sourced from
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events surpassing the 80" percentile. Despite some differences, precipitation distribution shows a
consistent pattern across all datasets. IMERG tends to underestimate comparatively lower
percentiles but performs better than ERAS at higher percentiles. IMD and IMDAA are often quite
similar to each other. Excessive precipitation, surpassing the 95th percentile, in such hilly terrains
can contribute to increased regional runoff, potentially causing downstream floods that can
subsequently impact the Rabi crops sown during winter (e.g. Haritashya et al. 2006; Arora et al.
2016). Thus, 95" percentile has been chosen as the threshold for categorizing precipitation

extremes and non-extremes.

Figure 2b illustrates how the composited region-wide precipitation anomalies during
extremes evolve over time in the WHR. The notable anomalies are detectable from day -6 to day
-2, with a more pronounced and remarkable increase occurring from day-2 to day 0. Following
day 0, the anomalies decline sharply until day +2. The entire life cycle of these EPEs generally
lasts roughly 4-5 days; similar to lifecycle of WDs (see Dimri et al. 2016). The evolution structure
appears to exhibit a slight asymmetry between the advancing and decaying stages, suggesting that
comparatively more robust characteristics and mechanisms are evident during the growing phase
(e.g. Xu et al. 2022). The advancing phase also appears to be slightly slower than the decay phase,
which aligns with the observed asymmetric precipitation footprints associated with a WD. This
suggests the significant impact of WD characteristics on the winter precipitation in the WHR. A
substantial rise in precipitation amounts during extremes is observed over the region as
demonstrated by different datasets. WDs, suggested to be primary baroclinic cyclonic storms,
develop and intensify through the release of energy via the atmospheric baroclinic response and
their interaction with WHR orography (Hunt et al. 2018a), potentially contributing to precipitation
extremes. Therefore, we also explored the temporal evolution of the composited region-wide
anomalies for baroclinic instability using the baroclinic instability criterion (C), based on vertical
wind shear and potential temperature (Phillips, 1954) in the upper (200 hPa) and lower troposphere
(700 hPa), following Madhura et al. (2015). The baroclinic instability criterion (C) is defined thus:

— fz(uzoo—u7oo)9500
BgH (8200—6700)

)

Here, ‘f” denotes the Coriolis parameter, ‘6’ is potential temperature, ‘u’ refers to the zonal wind
speed, ‘B’ is the meridional gradient of Coriolis parameter, ‘g’ is the acceleration due to gravity

and H is vertical height (m) between the 200 and 700 hPa pressure levels.
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The evolution structure demonstrates a rise of baroclinic instability in the region four days
preceding the occurrence of extreme precipitation. This enhancement becomes notably
pronounced two days prior to the event and reaches its peak intensity one day prior. As the extreme
precipitation day approaches, there is a notable and very sharp decrease in the baroclinic instability
in the region, which continues to diminish until the following day. These findings indicate that
enhanced baroclinicity serves as a leading indicator for the occurrence of such extremes. This
increase in baroclinic response of the atmosphere can contribute to intensification of WDs and
result in enhanced precipitation, provided sufficient atmospheric moisture is available. The
growing baroclinicity can possibly influence the vertical component of relative vorticity and cause
intense convection in the moist middle and upper troposphere, ultimately contributing to
precipitation extremes (e.g. Para et al. 2019).

Higher positive anomalies for precipitation amounts are observed in the geographical
distribution of composited precipitation anomalies on day 0 for all four datasets (Figure 2c-f). The
highest differences are evident along the WHR foothills, where the climatological precipitation
maxima are situated (Nischal et al. 2022); however, diversity in precipitation patterns among
different datasets is quite evident. Regarding the geographical distribution, IMDAA and ERA5
reanalyses exhibit close agreement, indicating heavy precipitation across the entire orographic
band- specifically lower Himalayas and foothills. However, IMD places heavy precipitation more
towards the north and northwest, while IMERG indicates it in the foothills and lower elevations.
It is noteworthy that IMD encounters challenges due to the lack of weather stations, leading to
estimates derived from downslope extrapolation (Kishore et al. 2016). Satellite-based microwave
retrievals, on the other hand, often faces difficulties in accurately assessing precipitation over
snow-covered areas and estimating cold season orographic precipitation (e.g. Derin et al. 2016).
Generally, differences in data generation sources and development algorithms create such
variabilities among datasets (Baudouin et al. 2020; Nischal et al. 2022). Nonetheless, it is clear
that precipitation extremes induce widely distributed heavy precipitation over the region, and it is

crucial to understand their physical mechanisms.
3.2. Possible Mechanisms

To better understand the physical processes for precipitation extremes in the WHR, a diagnosis of
synoptic and large-scale characteristics was performed. Composite anomalies for extreme minus

non-extreme days were analyzed to gain insight into the associated physical conditions.
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3.2.1. Synoptic Characteristics
a) Geopotential height, potential vorticity and winds

GPH anomalies are distinctive signatures of deep synoptic cyclonic troughs (Cannon et al., 2014;
2015), also known as WDs. Increased variability in upper and middle tropospheric GPH is
associated with increased winter WD activity and precipitation (e.g. Lang and Barros, 2004;
Cannon et al., 2015). Here, we present the composite maps of upper (200 hPa) and mid-
tropospheric (500 hPa) GPH anomalies for precipitation extremes minus non-extremes in ERA5
and IMDAA (Figure 3a-d). At both levels, there is a marked negative GPH anomaly, with a
minimum situated just west of the WHR at roughly 34°N-68°E (200hPa). The troughs formed are
considerably more intense at 200 hPa than in the mid-troposphere. IMDAA and ERA5 exhibit a
consistence in trough placement. The locations of WD centers (20°-40°N, 60°-82°E) during EPEs
in ERA5 and IMDAA reveals that the majority of these centers are situated west of the WHR,
aligning with the trough placements in respective datasets (Figure 3a-b). Notably, both ERA5 and
IMDAA exhibit a concentrated pattern for WD centers, although minor disparities can be observed

in terms of the precise locations of these centers within the datasets.

Positive PV in the upper-level corresponds to cyclonic circulation, while negative values
usually suggest anticyclonic circulation. Moreover, a prominent meridional gradient of upper-level
PV can strengthen the background flow, facilitating the expansion of cyclonic circulations to lower
levels too (Hoskins 1997; Hoskins et al. 2007; Attada et al. 2022). The upper-tropospheric
(300hPa) PV composite anomalies, depicted in Figure 3(e-f), illustrate the presence of strong
positive PV anomalies along the WHR, providing conditions that support moist convection. The
reduced atmospheric stability through higher PV flux have been linked to initiation of enhanced
convection through Rossby wave-breaking (Attada et al. 2022). In particular, the interaction of
WDs and stronger PV can help in the growth of WDs through moist baroclinic instability via

orographic interactions during extremes.

Further, we examined meridionally-averaged (27.5-37.5°N), zonally distributed vertical
structures of composited GPH anomalies (Figure 4a-b). A robust pressure trough, slightly tilted
eastwards, is evident across the western Himalayan longitudes, with a core at centered at about
300 hPa. Such strong negative GPH anomalies are indicative of intense synoptic trough formation
and the strengthening of potent cyclonic disturbances, and the structure is consistent with that of

strong WDs (Hunt et al. 2018a). The interaction between the vertically-tilted deep trough and
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regional topography induces orographic lifting of the flow, further intensifying the WDs through
moist baroclinic instability. This process leads to heavy precipitation over the region, provided
sufficient moisture supply is available (Lang and Barros, 2004; Cannon et al. 2014; Baudouin et
al. 2021). Furthermore, we analyzed the differences in vertical wind speed between extreme and
non-extreme days using a vertical-longitudinal cross section (Figure 4c). A stronger ascent
indicating increased deep convection during extremes is observed over the WHR, with a maximum
at about 450 hPa, located over steep orography, underscoring the crucial contribution of orographic
forcing to the moist flow. In general, advancing WDs are associated with a pronounced ascent at
the forefront, followed by a large-scale descent in the rear (Hunt et al., 2018a). During EPEs, these
ascent and descent patterns become more intense, underpinning the essential role played by intense

WDs during such events.

As WDs are carried to the WHR along the subtropical jet, the latitudinal position of the jet
in turn affects the location and interactivity of WDs with orography, thus affecting precipitation
patterns and intensity over the region (Krishnan et al. 2019). Thus, we examined the latitude-
pressure cross-sections of zonally averaged (72.5°-80.5°E) zonal wind (200 hPa) composites
during extremes and non-extremes (Figure 4d-e). Both ERA5 and IMDAA composites show that
during extremes, the subtropical jet intensifies and shifts further south from its mean position over
the WHR in winter. This affects WD activity through enhanced atmospheric baroclinicity and

reduced stability, favoring the development of precipitation extremes.
b) Cloud cover and outgoing longwave radiation (OLR)

Dimri (2013) reported that subzero temperatures on snow-covered surfaces during winter hinder
convective activity necessary for deep cloud activity over the WHR. Consequently, migrating
WDs account for the majority of cloud cover in the region (Hatwar et al. 2005; Madhura et al.
2015; Sankar et al. 2021). Figure 5a-d displays composite anomalies based on ERA5 and IMDAA
data, revealing changes in TCC and OLR across the WHR, respectively. During extremes, TCC
experiences a widespread increase of up to 48%, indicating intensified precipitation.
Simultaneously, OLR values exhibit a regionwide decrease, peaking in the zone of maximum
observed precipitation, indicating the presence of deeper convection and higher cloud tops. Similar
patterns are evident for OLR in satellite dataset KALPANA-1 (Figure S1). As OLR exhibits a
clear sky dependence on surface feedback during winter, these negative anomalies signify the

influence of stronger WDs contributing to increased precipitation (Dimri 2013).
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c) Transient eddy kinetic energy and baroclinic instability

The variability of the large-scale circulation over the WHR and surrounding regions is
characterized by higher-frequency transient eddies (i.e. WDs), which largely grow through the
conversion of available potential energy into kinetic energy via baroclinic instability (Pedlosky,
1972; Chang and Orlanski, 1993). We investigated the variations in 200 hPa eddy kinetic energy
(EKE) in IMDAA and ERADS to highlight the localized impacts of winter westerly wave activity
and subsequent energy transformation/exchange processes in the atmosphere. EKE is commonly
described as the kinetic energy associated with the time-varying component of the horizontal
velocity field.

EKE =~ + v'?) €)
u=u+uandv=v +7

where, u and v are horizontal velocity components, u'and v’ denote time-varying velocity
components whereas, u and v represent the time mean velocity components. As our focus in this
study is towards understanding the role of kinetic energy associated with synoptic transient eddies
in driving precipitation extremes over the WHR, a Lanczos filter of 2-10 days has been applied to
the anomalies of horizontal velocity fields. Composite anomalies for EKE (Figure 6a-b) indicate
the accumulation and availability of regions with positive and negative Kinetic energy in the
atmosphere, indicating a Rossby wave train pattern. Increased EKE over the WHR indicates the
existence of strong WDs, as we have already seen. This increase in EKE provides evidence for the
presence of intense WDs over the region. The interplay of these WDs with strong PV gradients
potentially fuels their growth through moist baroclinic instability. This, in turn, intensifies

convection and EKE, ultimately resulting in substantial contributions to heavy precipitation.

It is well established that the subtropical jet is associated with strong upper-atmospheric
baroclinicity and a large meridional temperature gradient, which help in the growth and
maintenance of WDs (Singh and Agnihotri, 1977). A baroclinically unstable environment over the
WHR favors a further intensification of these WDs and can lead to heavy precipitation (Hunt et al.
2018a,b; Sankar et al. 2021; Rao et al. 2022). Here, we explored the baroclinic nature of the
atmosphere during EPEs using the baroclinic instability criterion (C) described earlier (Equation
1). Figure 6(c-d) depicts the differences in mean baroclinic instability between composites of

precipitation extremes and non-extremes. The anomalies depict a baroclinic wave train, with a
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pronounced indication of baroclinic instability over the WHR. Baroclinic instability has been
proposed as a potential mechanism for release of energy from available potential energy in the
atmosphere, thereby aiding in the growth and intensification of WDs (e.g. Rao and Rao, 1971).
Hence, the presence of positive anomalies over the WHR implies an increased baroclinic activity,
which indicates a stronger WD activity in the area, leading to heavy precipitation (e.g. Madhura et
al. 2015). Given that the wave train extends far - beyond the WHR in both ERA5 and IMDAA,
this indicates potential links to large-scale phenomenon that might contribute to a consistent

intensification of WDs during precipitation extremes.
d) Moisture Transport Dynamics

Baroclinic instability is the primary driver of WDs, but their intensity might not always correlate
with the intensity of observed precipitation levels, as it is contingent on moisture availability. Some
winter disturbances with strong winds and temperature fluctuations may result in less intense
precipitation, while slower-moving, less intense baroclinic lows may carry moisture over long
distances, causing more prolonged precipitation. Catastrophic EPEs sometimes involves a long
preconditioning process, accumulating moisture advected from distant sources within a subsident
non-precipitating environment (e.g. Turato et al. 2004). The moisture then gets released in a
concentrated area, such as the WHR, with moisture flux convergence arising out of a sudden
synoptic forcing consequent to baroclinic development and the concomitant role of local
orography. Winter precipitation over the WHR is primarily contributed through moisture
advection from the Arabian Sea with secondary contributions from the Mediterranean, Caspian,
and Red Seas (Dimri et al., 2015; Barlow et al. 2005). Here, we investigate moisture supply to the
WHR during precipitation extremes through the examination of composite anomalies for vertically

integrated moisture transport (VIMT; kg mts ).

VIMT = é 00 qvap @)

surface

where, q is specific humidity, V is the horizontal wind, and dp is the vertical incremental change

in pressure.

The composited anomalies in moisture transport, computed from surface to 300 hPa in
ERAS5 and IMDAA reanalysis, utilize surface pressure as the lower boundary, offering a more
robust approach, particularly in the context of the complex topography of the WHR. Our analysis

highlights the Arabian Sea to be a major moisture supply source to these extremes, which is
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consistent with the findings of Hunt et al. (2018b) using back trajectory analysis (Figure 7a-b).
Furthermore, a correlation analysis of these daily VIMT anomalies with the frequency of
precipitation extremes over the WHR exhibits a strong correlation for moisture transport from the
Arabian Sea (Figure 7c-d). Notably, both ERA5 and IMDAA produced almost identical results for
VIMT and correlation analysis, indicating our findings are robust. Examining lead/lag composites
of VIMT anomalies unveils a moisture flow from distant westward sources up to 4-5 days prior
the event. Subsequently, moisture contributions become more pronounced from relatively nearby
sources, especially the Arabian Sea, as the event day approaches (Figure S3). This suggests that
an increase in the synoptic variability of WD associated westerly moisture transport on daily
timescales is an essential precursor of precipitation extremes. The dynamics of moisture

contributions for different intensity extreme events is further discussed in section 3.2.2.

Further, we utilize a Lagrangian approach (discussed in section 2.1.3) to investigate the
moisture sources for three intense extreme precipitation events observed over the WHR. The
selected cases under examination occurred at the following locations and dates: (a) 32.25°N,
76.5°E, 12 Dec 2017; (b) 32.75°N, 75.75°E, 5 Feb 2013; and (c) 33.25°N, 74.75°E, 5 Dec 2006.
For each case study, we computed forty parcel trajectories backward for 10 days using local,
contemporaneous ERA-5 winds (one-hourly data) and examined specific humidity along the
trajectories (Figure 8). The findings unveil that air parcels are dispersed across Europe and North
Africa, extending into neighbouring moisture sources, ten days preceding the event.
Predominantly, these parcels originate near the North Sea and the Mediterranean Sea and are
subsequently transported as boundary layer parcels distributed over the Black Sea, Caspian Sea,
and the Arabian Gulf. Notably, there is substantial mid-/lower-tropospheric convergence
associated with the events, indicative of the passage of a WD. Examination of specific humidity
profiles along these trajectories highlights a significant moisture contribution from distant sources
such as the North Sea (part of North Atlantic Ocean), Mediterranean Sea, and Black Sea. However,
a noteworthy proportion of moisture is observed to originate specifically from the Arabian Sea.
Overall, it can be suggested that the temporal scales of moisture accumulation may vary
significantly depending on the scale of the precipitating event, with sources of moisture ranging
from more to less remote, leading to corresponding variations in the temporal scales for moisture

advection.
3.2.2. Classification of Extremes: k-means clustering
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An important aspect of our study is to attempt to categorize winter precipitation extremes over the
WHR. Such classification can provide useful insights into the different types of driving dynamics
for extremes, specifically the underlying synoptic and large-scale mechanisms. To achieve this,
we have applied k-means clustering algorithm to various dynamic parameters over extreme days,
following Hunt et al. (2018a). The parameters incorporated in our analysis are: GPH, vertical
velocity, PV, divergence, and cloud cover fraction (72.5-80.5°E, 27.5-37.5°N). The first step is to
construct a standardized distribution for each field by computing standardized anomalies at each
grid point over the study region for the entire multi-level (1000-100 hPa) time series of the extreme
precipitation days, since the given fields have different statistical distributions. The anomaly fields
have been re-gridded vertically to produce voxels with equal volumes to maintain homogeneity
and prevent overpopulating lower altitudes with higher level density. Before clustering, the multi-
dimensional array values in the field are unraveled and then concatenated into a single vector.
Cluster mean vectors are then obtained by running the algorithm on this single vector and we then
reconstruct the original three-dimensional fields from these. Here, we have classified the

precipitation extremes into three clusters.

The vertical structures of various dynamic field clusters constructed using ERA5 are
presented in Figure 9. The columns separate different clusters, arranged in increasing order of GPH
anomaly in the atmosphere. Type 1, 2 and 3 clusters are separated by intensity in all the clusters
where type 1 shows the weakest intensity extremes and type 3 shows strongest types of extremes,
though being least common among all clusters. Type 2 which shows the extremes associated with
relatively intermediate intensity, compared to other two clusters, seem to be the most common
class of extremes over the WHR. Crucially, all clusters are somewhat dynamically similar,

implying the presence of a common dynamical source of precipitation (i.e. WDs).

The zonally distributed vertical structure of GPH anomalies in the type 1 cluster shows a
very weak, though vertically tilted trough over the region of interest, with a minimum over 66°E.
A deepening of the trough aligned with a slight eastward shift in the location of the depression
minimum can be observed as we move from type 1 to type 3 clusters. The depressions in type 2
and 3 clusters are identical to those associated with the WDs over the region (Dimri and Chevuturi
2016; Hunt et al. 2018a). The differences in their magnitudes indicate the strength of the WD in
type 3 extremes being associated with the much intense WDs than type 2. Vertical wind in all three
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clusters shows ascent over the region followed by a descent to the west, a pattern that intensifies

as we move from type 1 to type 3.

A prominent upper-level maximum for PV over the study region can be observed in type
2 (situated at about 200-250 hPa), and type 3 clusters (located at about 400 450 hPa), whereas it
is almost non-existent in type 1. These structures in the upper troposphere have characteristics
resembling those of baroclinic instabilities elsewhere in the atmosphere, and of WDs themselves
(Molinari et al. 1995; Robinson, 1989; Hunt et al. 2018a). The maximum in PV along the elevated
topography of the WHR in turn leads to orographic forcing (as we see in the vertical velocity
composites), thus supporting intense precipitation over the region. The zonally distributed
structures of divergence in the type 2 and 3 clusters are also baroclinic, as concluded earlier. The
ascending and descent patterns observed earlier are favored with upper-level divergence (~200-
250 hPa) ahead and convergence behind, identical to what we observe for a typical WD. These
convergence patterns and pronounced ascent, on interaction with the regional orography, ensure
favorable environment for triggering precipitation extremes. The patterns of cloud cover fractions
confirm this inference as we observe highly intensified cloud cover over the WHR in type 2 and 3

clusters, whereas type 1 cluster again shows relatively weaker patterns.

Further, we have tried to understand how these dynamical classifications relate to the
observed precipitation patterns during extremes over the region. The patterns for mean
precipitation during the extreme days for each cluster has been presented in Figure 9(p-r). As
expected, type 1 cluster is associated with small-scale precipitation with weaker intensity, mostly
reaching up to 12-24 mm/day. Type 3 cluster provides evidence of widely distributed large-scale
precipitation with strong intensity (24-36 mm/day), whereas type 2 shows an intermediate kind of
response. Overall, it becomes clear that the type 2 and type 3 clusters show strong evidence of
association with WD structures and may be related to intense and very intense WDs. Lead-lag
composites of VIMT anomalies have been constructed to elucidate moisture contributions from
their sources for various event types. The results reveal that type 1 events exhibit a relatively
greater moisture flow from distant westward sources preceding the events, in contrast to type 2
and 3 events (Figure S4-S6). Additionally, more intense events display a notably higher moisture
supply from relatively nearby sources, particularly the Arabian Sea, as the event day approaches.
The substantial variations in precipitation magnitudes between type 2 and 3 clusters suggest the
existence of additional factors, beyond the presence of robust WDs, that potentially contribute to
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the enhancing the intensity of these WDs. Therefore, our subsequent investigation will concentrate

on comprehending the large-scale attributes linked to EPEs across the WHR.
3.2.3. Large scale characteristics
a) Response of Rossby wave source to precipitation extremes

The role of large-scale circulation in producing precipitation extremes over north Indian region
during winter has been suggested to be linked with co-existence of jet with an upper-tropospheric
quasi-stationary Rossby wave train (e.g. Hunt et al. 2018b). During winter, upper-tropospheric
convergence and strong vertical motion in the subtropics generate anomalous vorticity (Nie et al.
2019). This upper-level vorticity source, denoted as Rosshy wave source (RWS), sets off Rosshy
wave trains which circulate the tropical heating to extratropical atmospheric circulation
(Sardeshmukh and Hoskins, 1988; Nie et al. 2019). Here, we have investigated the patterns of
these RWSs during precipitation extremes over the WHR and surrounding regions. The RWS
function is defined thus:

6(a _ _ _
5 Vv V{ =—-¢(D—-vx.V( 5)

where, —{,D denotes the vortex stretching (relates to local strong divergence), the second term on
the left-hand side is the advection of vorticity gradient by rotational wind (caused by large-scale
divergent flow), which is related to Rossby wave propagation. The two right-hand side terms are

forcing terms, together comprising the RWS.

The examination of RWS composite anomalies for precipitation extremes (Figure 10a)
indicates that the WHR experiences strong negative anomalies in RWS, while adjacent regions
show weak RWS, an amplification of the climatological patterns as observed by Nie et al. (2019)
for winter RWS over the region. This suggests that strong WDs — themselves Rossby wave-like
features — are dissipating over the WHR. During winter, Rossby wave sinks generated over the
WHR are associated with negative anomalies for vortex stretching and positive anomalies for
advection of vorticity gradient (e.g. Shimizu and de Albuquerque, 2010; Nie et al. 2019). This
implies that large-scale divergent flow is the primary factor responsible for the generation of wave
sinks in this region (see Ding et al. 2023). The interplay of anomalous PV flux, possibly from
higher latitudes, with WDs in the vicinity of the WHR helps to strengthen the WDs associated
local vortices. This contributes to intensified low-pressure systems and extreme precipitation.

Therefore, the interaction of large-scale planetary circulation patterns and WDs over the
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orographic regimes of the WHR influences the wintertime precipitation intensities in this region.
Nonetheless, it is important to note that the western Himalayan topography has a significant

influence on the variability patterns related to these Rossby wave trains.
b) Wave activity flux (WAF)

Large-scale, quasi-stationary high amplitude anomalies in the atmosphere can contribute to
abnormal weather patterns by affecting migratory weather systems and meridional flow
exchanges. The release of energy as a stationary Rossby wave train by these anomalies can
potentially result in the formation of atmospheric blocking patterns, with converging WAF often
indicating the development of a blocking anticyclone. Thus, converging/diverging patterns in
WAF linked to stationary Rossby waves on a meandering zonal mean flow can aid in
comprehending the underlying dynamics governing the genesis of these large-scale circulation
anomalies (Takaya and Nakamura, 1997). Additionally, the zonally asymmetric mean flow aids
the growth of these anomalies by converting available potential energy to kinetic energy via
baroclinic instability processes. The meridional eddy fluxes of momentum and heat play a key role
in the maintenance and forcing of atmospheric flow, and the Eliassen-Palm (EP) flux can be used
as a diagnostic tool to study their interaction. The composites of zonally averaged EP flux during
extreme and non-extreme days have been examined (Fig. 10b-c). The propagation of Rossby wave
groups, resembling the time-averaged life cycle of nonlinear baroclinic waves (Simmons and
Hoskins, 1980; Hoskins, 1983), was observed to move upwards from the surface at lower levels
and turn equatorward above 400 hPa. This pattern of EP cross sections has been found to be linked
with northward PV flux at lower levels and southward PV flux with strong wind shear in the upper
troposphere. Significantly, the flux is much stronger during extreme days as compared to non-
extreme days, indicating a stronger baroclinicity during extreme events that facilitates the
development and sustenance of cyclonic systems. Furthermore, a deceleration of zonal wind is
observed over the mid-latitudinal troposphere, which is much stronger during extreme events (Fig.
10d-e; contours).

Stronger EP convergence is also noted over almost the entire troposphere from 20° N
towards the poles, with EP divergence on the poleward side at lower levels (Fig. 10d-e). This
convergence is primarily related to energy flux and indicates that waves tend to slow down the
zonal mean flow with zonal energy being transformed into wave energy (Smith et al. 2022). The

deceleration is found to be much more pronounced during extreme events, indicating a higher
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baroclinicity with more decelerated and/or meandering jet, and more energy available to fuel the
persistence of cyclonic systems. The weakening/deceleration of mid-latitude westerlies has been
linked to Arctic-sea loss due to Arctic warming, indicating an increased risk of extreme weather
events (Smith et al. 2022). This generates decelerated quasi-stationary wave patterns that point to
the existence of atmospheric blocking patterns characterized by a robust zonal flow both to the
north and south of the blocking systems, and a shift from a zonal to a meridional flow pattern
during initialization and decaying stages. During extreme days between 0-90°E and 20-80°N, a
seemingly omega type of blocking pattern emerges, featuring a three-point vortex system (tripole)
with an anticyclonic point vortex (high) situated on the poleward side of two cyclonic point
vortices (Fig. 11a). This three-point vortex system can become stationary and guide the
equatorward movement of cold polar air masses when the speeds become equal with the prevailing

mid-latitudinal westerly winds (Detring et al. 2020).

The upper-tropospheric (200 hPa) WAF introduced by Takaya and Nakamura (2001) can
be employed to investigate the instantaneous propagation of both migratory and stationary quasi-
geostrophic waves on a zonally asymmetric basic flow for precipitation extremes. This study
focuses only on the horizontal components of the WAF (Fig. 11b), which is formulated using the
stream function (y) and the horizontal components of the basic flow wind vector (U and V). A
circumglobally propagating WAF appears to be strengthening from an anomalous RWS, linked to
an omega blocking pattern situated over the North Pacific. The flux propagates towards the
northeast, eventually passing over the central-eastern region of North America, the pattern being
consistent with the Pacific/North American teleconnection (Berry 1995). Subsequently, the WAF
splits, with one branch turning equatorward into the tropical Atlantic and other penetrating into
northern latitudes towards Arctic region. The former branch of WAF follows a similar path to
migrating WDs, growing stronger as it moves through Mediterranean region and propagates across
Middle East, Iran, Irag, Afghanistan, Pakistan, finally penetrating into the WHR. The latter branch
weakens over the mid-Arctic Ocean but gains strength as it reaches the western parts of Eurasian
continent, corresponding to the enhances stream function (Fig. 11b) and GPH anomalies (Fig. 11a),
finally reaching the WHR. As demonstrated, EPEs over the WHR are notably influenced and
amplified by both mid-latitude and higher latitude systems, implying the role of large-scale

mechanisms.

¢) Role of Quasi-resonant amplification
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Atmospheric blocking patterns have been previously connected to longitudinally extended, slow
or stationary quasi-stationary waves (QSW) in the atmosphere (Kautz et al. 2022). Quasi-resonant
amplification (QRA), a specific type of QSW, is characterized by a double-peaked westerly jet
profile with stronger westerlies in subtropical and subpolar regions and weaker ones in
midlatitudes. A circumglobal jet profile with turning points at around 30°N and 45°N can
efficiently guide and enhance waves with k=6/7/8, leading to resonance. When these trapped
waves are excited by thermal or orographic forcing, they grow in amplitude. The waveguide
condition depends on the zonal wave number k and the shape of the zonal mean zonal wind (@)
profile, linked to meridional temperature gradients in the lower troposphere through the thermal
wind relationship (Petoukhov et al. 2013; Mann et al. 2018). Here, we investigated the previously
unexplored association between QRA and winter EPEs in the WHR. Zonal wave number spectra
for the meridional wind fields at 300 hPa over 30° to 45°N (Fig. 12a) depict the peak in amplitudes
for wavenumbers 6-8 during extremes compared to climatology, indicating the favorable
conditions for the QRA occurrence (Petoukhov et al. 2013, Coumou et al. 2014, and Mann et al.
2018). Moreover, we explore the zonal wave zonal mean spectra for three types of EPES previously
classified via cluster analysis (Fig. 12b). Type 1 events, characterized by weak intensity
precipitation, show amplitudes related to wavenumber 6 exclusively. Type 2 events, characterized
by intermediate precipitation intensity, exhibit maximum amplitudes for wavenumbers 6, followed
by 7 and 8 equally. Finally, type 3 events, with the most intense precipitation, display maximum
amplitudes for wavenumber 8, followed by 7 and then 6, suggesting a highly meandering wave
pattern during such extreme precipitation events. Additionally, the presence of a smaller-scale
structure can be inferred from this pattern, which, in turn, can contribute to intensified quasi-

geostrophic uplift due to the larger vorticity gradients observed.

Fig. 12(c-e) illustrates the interannual variability for the amplitudes of monthly mean
Fourier components of 300 hPa meridional winds during individual winter months associated with
wave numbers k=6,7 and 8, averaged over the latitudinal range of 30-45°N using ERA5 data
between 1979-2019. Linear regression (trend lines not shown in the plot) suggests moderate
positive trend in most of the month-wise amplitudes in each category, except for January in wave
numbers 7 and 8, which showed a slight negative trend. Based on 1.5 SD amplitudes, years
depicting the possible QRA characteristics were identified. It is further noteworthy that nearly all

the identified QRA years exhibit a notable increase in either intensity or frequency, or both, of
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EPEs (Fig S2). These findings support the possible association between QRA phenomena and the
magnitude or occurrence rate of such winter precipitation extremes over the WH. Further, the
selected years were examined for QRA fingerprint behavior using 1000-hPa meridional
temperature anomalies (Fig. 12f-h). In general, the QRA fingerprint pattern displays negative
values in the subtropics, followed by a rise to neutral values around mid-latitudes, then a decline
towards negative values through 50°N, and pronounced positive values again at higher subpolar
latitudes (e.g. Mann et al 2018). The QRA fingerprints associated with wave number 6 months
were slightly distorted for January and February but well depicted for December. For wave
numbers 7 and 8, the identified years through 1.5SD amplitudes displayed a pronounced QRA

fingerprint.

Further, we observed the double-peaked westerly jet profile using 300hPa zonally averaged
(30-80°E) zonal winds for the selected years in each wave number type, in agreement with QRA
characteristics, with stronger westerlies in subtropics as well as subpolar regions and, weaker
westerlies in midlatitudes (Fig. 12i). Coumou et al. (2014) reported that the frequency of QRA-
linked weather extremes has increased as a response to AA, which is driven by feedback
mechanisms such as anthropogenic greenhouse warming and ice-albedo feedback. The amplified
warming has a more profound effect on the polar boundary of the waveguide. Due to the thermal
wind relationship between upper-level westerlies and lower tropospheric temperatures, this AA
may reduce upper-level midlatitude westerlies (1), increasing the likelihood of QRA occurrences.
The findings in our study suggest that QRA characteristics affect atmospheric dynamics and jet
propagation, ultimately impacting winter precipitation over the WHR by altering Rossby wave
characteristics.

3.4 Exploring QRA associated EPEs: Case study

Lastly, we investigated three instances of extreme precipitation over the last two decades, which
persisted for at least three consecutive days and exceeded the 95" percentile threshold each day
individually and given, that they fall into QRA years (Fig. 13). Additionally, we investigated if
these events were linked to QRA characteristics. It is worth noting that the selected years align
with those identified through the Fourier transform series based on 1.5 SD (standard deviation)
amplitudes. The selected case studies include extreme precipitation occurrences on 2-5 December
2006, 3-6 February 2013, and 10-12 December 2017. Figure 13 (a-i; shaded) shows the spatial

distribution of precipitation anomalies before, during, and after the occurrence of EPEs over the
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WHR. During the EPEs, widely distributed precipitation anomalies reaching up to 16 mm/day can
be observed in certain regions, with little or no precipitation before and after the events. These
heavy precipitation events are supported by presence of strong positive PV flux, which move away
from the region as the event duration surpasses (Figure 13a-i; contours). The analysis of QRA
characteristics associated with the events illustrates the presence of QRA fingerprint in all selected
events, with the December 2017 events exhibiting the most pronounced fingerprint than the
February 2013 event (Fig. 13j). This suggests that the meridional temperature profile has a
substantial impact on the QRA fingerprint for these events, with Arctic-amplified warming
projecting onto this latitudinal anomaly pattern. Moreover, the events were associated with a
prominent wave 6/7/8 pattern in the zonal mean zonal wave spectra, with the December 2017 event
having the strongest amplitudes and the February 2013 event having weaker amplitudes (Fig. 13K).
The anomalies for 300hPa meridional winds also indicated the presence of wavenumber 6/7/38
patterns, implying a connection to QRA characteristics (Fig. 13I-n). Lastly, the events also
depicted the presence of a double-peaked westerly jet profile associated with QRA, with the
February 2013 event having the least pronounced profile (Fig. 130). Overall, the findings suggest
that the observed EPEs over the WHR are associated with QRA characteristics, which may be

influenced by Arctic amplified warming.
4. Summary and Conclusion

Winter precipitation over the WHR is crucial for agricultural sustenance and recharging the
western Himalayan glaciers. However, the projected rise in precipitation extremes with respect to
climate change signal is a key matter of concern. Our study focuses on examining the associated
synoptic and large-scale characteristics, including the impact of planetary scale dynamics, that
contribute to extreme precipitation in the WHR. We aim to contribute to a much needed and deeper
understanding of the fundamental physical mechanisms underlying these extremes. The key

inferences from our study is as follows:

e The majority of winter precipitation in the WHR is sourced from higher percentiles, with
a substantial contribution from EPEs, amplifying the region's susceptibility to

precipitation-related hazards.

e During EPEs, the primary wave guide for WDs - the sub-tropical westerly jet - intensifies

and shifts southward and helps in developing much stronger baroclinicity, consistent with
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structures of strengthened WDs. This implies that synoptic dynamics play a key role in the
increased variability of precipitation patterns over the WHR. The influence of local
thermodynamics on precipitation intensification can be ascertained through the presence

of higher kinetic energy and deeper convective activity during these events.

The analysis of potential moisture sources through the Lagrangian approach reveals that
intense EPEs over the WHR are associated with diverse moisture sources, spanning from
the North Sea and Mediterranean Sea to the Arabian Sea. Besides the established westward
advection of moisture, our study underscores the pivotal role of the Arabian Sea as a
significant moisture source for intense precipitation extremes in the WHR. The observed
strong positive correlations between the frequency of precipitation extremes and moisture
transport from the Arabian Sea highlight its crucial influence on such EPEs. Overall, the
diverse moisture origins identified through our Lagrangian approach, emphasizes the
intricate interplay of regional and distant moisture sources (with potentially varying
temporal scales of transport) in shaping the dynamics of extreme precipitation over the
WHR.

The classification of different types of precipitation extremes carried out using k-means
clustering reveals that intense and very intense WDs are associated with heavy
precipitation observed over the region, supported by high anomalous vorticity and deeper

convection in the atmosphere.

Enhanced atmospheric instability during EPEs may be caused by the interplay of WDs with
strong positive PV fluxes, possibly from higher latitudes, in the upper troposphere. This
can help in further strengthening the WDs in these orographic regimes through moist
baroclinic instability processes. The large-scale divergent flow resulting from these
interactions can also potentially lead to the formation of Rossby wave sinks in the region,

indicating the influence of large-scale planetary circulation patterns.

Large-scale, quasi-stationary anomalies can contribute to extreme precipitation in the
WHR by decelerating the mean flow and generating blocking patterns that enhance the
meridional flow exchanges. Such a phenomenon can contribute to further intensification

of passing WDs over the WHR and lead to persistent extreme precipitation patterns.
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e Climate change associated arctic amplification may have a pronounced influence on the
intensities of winter precipitation over the WHR through the QRA mechanism. Changes in
meridional temperature gradients affect upper tropospheric wind profiles via the thermal-
wind relationship. Extreme meandering QSW patterns in the wavenumber range 6/7/8
demonstrate the role of planetary-scale dynamics in influencing precipitation intensity in
the third pole's sub-regions (WHR), underscoring the influence of large-scale mechanisms.

e The newly developed high-resolution reanalysis, IMDAA, realistically represents the
regional precipitation distribution, trends as well as dynamical and thermodynamic

contributions for precipitation extremes over the region.

In summary, our analysis highlights the importance of planetary, synoptic, and mesoscale
processes as crucial drivers of extreme precipitation in the WHR. We observed that synoptic-scale
dynamics become stronger during these events, which is further bolstered by local
thermodynamics and large-scale Rossby wave dynamics. These factors work together to create
conditions that promote the formation of intense weather systems with deeper convection and

increased precipitation.
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986  Figure 1: Topographic map of the western Himalayan region (WHR; a), Land Use Land Cover map (b) for
987  the region from NRSC, Bhuvan (Indian Space Research Organisation). Figure 1c shows human mortality
988  rate due to extreme snowfall events over the WHR during the winter season between 1980-2020.
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Figure 2: Percentile distribution of winter (DJF) Precipitation (unit: mm/day) in IMD, IMDAA and ERA5
datasets during 1979-2019 and from 2001-2019 in GPM-IMERG over the WHR (a), daily scale evolution of
regionally averaged precipitation anomalies during extreme precipitation days (b; solid lines). Dashed

lines in (b) represent the regionally averaged baroclinic instability index anomalies during precipitation

extremes. (c-f) Spatial distribution of composite precipitation anomalies (precipitation observed during

extreme days (exceeding 95 percentile) minus non-extreme days) for winter precipitation.
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1039  Figure 4: Vertical structure of DJF geopotential height composite anomalies (a-b, unit: m) averaged
1040  latitudinally over 27.5°-37.5°N in ERA5 and IMDAA respectively and, vertical velocity (c, unit: Pa/s) in ERA5
1041  from 1979-2019. The longitudinal bounds of the study region have been represented by dashed lines in
1042  grey (a-c). The panels (d) and (e) show the vertical structures for composite anomalies of zonal wind
1043  (U200) speed during extremes (shaded, unit: m/s) and non-extremes (contours, unit: m/s). Grey areas
1044  indicate the presence of orography.
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Figure 8: Forty parcels back trajectories (first column) initialized in atmospheric columns for selected
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respectively.
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1141  Figure 10: Winter composites (extremes minus non-extremes) for Rossby wave source anomalies (a; unit:
1142  s2) and, latitude-pressure cross-sections for zonally averaged Eliassen-Palm (EP) flux (b-c; vectors; unit:
1143  m3s?), westerly wind acceleration (b-c; contours; unit: ms2) and, EP divergence (d-e; unit: ms2) in ERA5
1144  during 1979-2019.
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Figure 12: Zonal wave number spectra for the 300 hPa meridional wind averaged zonally over 30°-45°N
for all identified precipitation extreme day composites in comparison to climatology (a) and; for extreme
days composites associated with different clusters (b) in ERA5 dataset between 1979-2019. The filled area
around the lines represents a 99% confidence interval. Interannual trends for the amplitudes of monthly
mean Fourier components of the zonal wave spectra during DJF months associated with wave numbers
6/7/8. The dotted lines indicate 1.55D amplitudes for different months (c-e). QRA fingerprint evaluated
using 1000-hPa meridional temperature anomalies during DJF months associated with wave numbers
6/7/8 for the years identified from 1.55D amplitudes in Fourier time series (f-h) and, zonally averaged 300
hPa zonal wind profiles for the same (i).
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Figure 13: Spatial distribution of precipitation anomalies (shaded) before, during, and after the occurrence
of precipitation extremes for individual case studies (10-12 December 2017(a-c), 3-6 February 2013 (d-f)
and, 2-5 December 2006 (g-i)) from GPM-IMERG and, 300 hPa isentropic potential vorticity (a-i, contours;
unit: PVU) for the events (before, during, and after) from ERA5. 1 PVU (potential vorticity units) here is
equivalent to 10® km?/kg/s. QRA fingerprint (j) evaluated using 1000 hPa meridional temperature
anomalies for individual case studies and their composite (black line). Zonal wave number spectra for the
300 hPa meridional wind averaged zonally over 30°-45°N for all three events in comparison to climatology
(k), composited 300 hPa meridional wind anomalies for the selected events (I-n) and, zonally averaged
300 hPa zonal wind profiles for the same (o).
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