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ABSTRACT: Two aspects of ensemble localization for data assimilation are explored using the simplified nonhydrostatic
ABC model in a tropical setting. The first aspect (i) is the ability to prescribe different localization length scales for differ-
ent variables (variable-dependent localization). The second aspect (ii) is the ability to control (i.e., to knock out by localiza-
tion) multivariate error covariances (selective multivariate localization). These aspects are explored in order to shed light
on the cross-covariances that are important in the tropics and to help determine the most appropriate localization configu-
ration for a tropical ensemble–variational (EnVar) data assimilation system. Two localization schemes are implemented
within the EnVar framework to achieve (i) and (ii). One is called the isolated variable-dependent localization (IVDL)
scheme and the other is called the symmetric variable-dependent localization (SVDL) scheme. Multicycle observation sys-
tem simulation experiments are conducted using IVDL or SVDL mainly with a 100-member ensemble, although other en-
semble sizes are studied (between 10 and 1000 members). The results reveal that selective multivariate localization can
reduce the cycle-averaged root-mean-square error (RMSE) in the experiments when cross-covariances associated with
hydrostatic balance are retained and when zonal wind/mass error cross-covariances are knocked out. When variable-dependent
horizontal and vertical localization are incrementally introduced, the cycle-averaged RMSE is further reduced. Overall, the best
performing experiment using both variable-dependent and selective multivariate localization leads to a 3%–4% reduction in
cycle-averaged RMSE compared to the traditional EnVar experiment. These results may inform the possible improvements to
existing tropical numerical weather prediction systems that use EnVar data assimilation.

KEYWORDS: Tropics; Data assimilation; Ensembles

1. Introduction

Ensemble–variational (EnVar) data assimilation methods
have recently gained traction and have been widely tested in
several operational global and regional numerical weather
prediction (NWP) systems (Buehner et al. 2013; Clayton et al.
2013; Wang et al. 2013; Gustafsson et al. 2014; Hu et al. 2017;
Montmerle et al. 2018; Singh and Prasad 2019; Bédard et al.
2020; Kadowaki et al. 2020) and in research case studies focus-
ing on extreme weather events (Schwartz et al. 2013; Shen
et al. 2016; Lu et al. 2017; Gao et al. 2019; Kutty et al. 2020).
The main idea relies on using ensemble-derived background er-
ror statistics to replace the climatological error statistics used in
the variational approach. Often, a hybrid EnVar approach is
adopted by weighting the ensemble-derived and climatological
error statistics with respective weights that depend on the en-
semble size (Hamill and Snyder 2000). Where the ensemble is
sufficiently large, one might solely rely on ensemble-derived

error statistics by placing full weight on it in the variational
algorithm.

Most studies reported a benefit from using EnVar data as-
similation, either in the hybrid or pure EnVar form, as op-
posed to traditional three-dimensional or four-dimensional
variational (3D-Var or 4D-Var) approaches. They attributed
the benefit broadly to the flow dependency introduced by the
ensemble-derived error statistics. This flow dependency generi-
cally encompasses time appropriateness of error variances and
flow consistency of spatial covariances, as well as flow consis-
tency of multivariate error relationships (i.e., cross-covariances
between different variables in the model). The benefit stemming
from each component has yet to be clearly distinguished. Shen
et al. (2016) and Lu et al. (2017) highlighted through tropical cy-
clone case studies that using ensemble-derived error statistics
yielded more realistic multivariate error cross-covariances, par-
ticularly in the vicinity of the cyclone vortex. Johnson et al.
(2015) and Gao et al. (2019) found, through case studies over
the United States and China, that using ensemble-derived er-
ror statistics resulted in more dynamically coherent analyses
of mesoscale convective systems. In these case studies, the
flow consistency of multivariate error relationships from the
ensemble-derived error statistics was found to be a key con-
tributor leading to the improvements in the quality of the
analysis and subsequent forecasts.
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While capturing appropriate multivariate error relationships
may help to retrieve a dynamically consistent and balanced anal-
ysis, sampling noise may also contaminate the error covariances.
This is because the ensemble size is usually far smaller than the
degrees of freedom of the state, and therefore, the estimated er-
ror covariance matrix will be rank-deficient. Houtekamer and
Mitchell (2001) suggested using a Schur product of a correlation
matrix (referred to as a localization matrix) with the ensemble-
derived background error covariance matrix to apply spatial
covariance localization and mitigate spurious long-range correla-
tions. This is widely adopted in traditional EnVar implementa-
tions (e.g., in Wang et al. 2008), especially in most operational
weather prediction centers adopting EnVar techniques. How-
ever, there are two potential limitations with current traditional
approaches. First, the same spatial localization is usually
applied to all variables, irrespective of their characteristic
length scales associated with the system dynamics. For ex-
ample, Huang et al. (2021) and Caron and Buehner (2022)
specified variable-independent localization scales. This as-
sumption of the same spatial localization was shown to be
rather unrealistic (Lei et al. 2015), especially at convective
scales (Destouches et al. 2021; Necker et al. 2023). The error
cross-covariance localization should ideally also reflect a mix of
the characteristic length scales of the variables involved, but
again, this is not usually done in traditional EnVar implementa-
tions. Second, in traditional EnVar schemes, the ability to do
multivariate localization (the knocking out of correlations be-
tween variables) is not currently implemented, so multivariate
error relationships between all variables are determined by the
spatially localized ensemble. In the absence of a reasonable physi-
cally based constraint, some of the ensemble-derived relation-
ships may be useful, as seen in tropical cyclone case studies (Shen
et al. 2016; Lu et al. 2017) and over Southeast Asia (Lee and
Barker 2023). However, other cross-covariances and their charac-
teristic length scales may not be well represented by a limited-
size ensemble and are likely to be dominated by sampling noise.
It is possible that these cross-covariances are noninformative and
may predominantly be introducing noise to the analysis yet can-
not be removed using traditional localization frameworks.

In the tropics, the disadvantages of the abovementioned
two potential limitations may become more apparent given
the nature of convective weather and less balanced flow in the
region. One would desire, for instance, the flexibility to pre-
scribe smaller localization length scales for convection-related
variables, which may typically involve vertical wind and hy-
drometeors, following Destouches et al. (2021). Additionally,
appropriate multivariate localization may also be required
since it is not trivial to specify multivariate error relationships
for the tropics, particularly between mass (e.g., temperature
and pressure) and wind variables. Some operational systems
prescribe geostrophic balance or linear balance in their back-
ground error covariance model (e.g., Lorenc et al. 2000), but
in the tropics, this procedure effectively treats the mass and
wind variables univariately since the Coriolis parameter is small
there. It remains to be seen if all multivariate error relationships
estimated by an ensemble are physically meaningful or even re-
quired in the tropics. In this light, an improved EnVar imple-
mentation for the tropics should allow for variable-dependent

localization (a concept suggested by Necker et al. 2020) and a
way to constrain the multivariate error relationships (keeping
some cross-covariances and not others), which we term as selec-
tive multivariate localization. Notwithstanding this, neither have
been explored in the tropics yet.

To this end, one possible modification to traditional EnVar is
to use scale-dependent localization (Buehner and Shlyaeva 2015;
Huang et al. 2021; Caron and Buehner 2022), which allows the
localization length scales at different scales to be specified inde-
pendently. Therefore, the large-scale and small-scale errors are
allowed to have different error characteristics. However, in these
studies, for each scale, all variables still share the same localization
length scales. Wang and Wang (2023) further extended this to in-
clude both variable-dependent localization and scale-dependent
localization, for a few tornadic supercell case studies over the
United States. They introduced an approach to modify traditional
EnVar and found that further applying variable-dependent locali-
zation was beneficial to see storm maintenance. Another possible
modification was proposed by Stanley et al. (2021) to construct
separate localization functions for the multivariate error cross-
covariances (within a bivariate Lorenz-96 system with coupled
data assimilation), but this has yet to be applied to the EnVar
framework. Additionally, the approach does not allow one to se-
lect specific cross-covariances to be retained.

In this study, we implement and explore two approaches to
grant the ability to apply variable-dependent and selective
multivariate localization within the EnVar data assimilation
framework. The first approach is termed as the isolated variable-
dependent localization (IVDL) scheme. The second approach is
termed as the symmetric variable-dependent localization (SVDL)
scheme. Details are given in section 2, along with their similarities
or novelties vis-à-vis existing schemes. Both schemes allow for
variable-dependent localization; IVDL is not only more computa-
tionally efficient but also is less flexible than SVDL. By design,
the IVDL scheme implicitly determines the multivariate localiza-
tion, while the SVDL scheme explicitly prescribes the multivari-
ate localization on top of spatial localization. This study aims to
answer the following questions:

1) How many ensemble members are sufficient to show a
significant degree of “signal” in the covariances, but still
benefit from localization of sampling noise?

2) Which multivariate error relationships in the ensemble-
derived error covariances are important/beneficial for
EnVar data assimilation in the tropics?

3) Is variable-dependent spatial localization beneficial for
EnVar data assimilation in the tropics?

Section 2 describes the design and implementation of IVDL
and SVDL schemes. A simplified nonhydrostatic convective-
scale model, the ABC model (Petrie et al. 2017), is used for this
study. A tropical configuration of the ABC model (a longitude–
height dry model, without diabatic processes) with data assimila-
tion is set up to demonstrate the two schemes. Section 3 provides
further details on the model and data assimilation framework.
Section 4 describes the experiments and gives guidance on the
ensemble size (question 1). When it comes to deciding on a suit-
able ensemble size, we consider the linear independence of the
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ensemble members and sampling error. Section 5 evaluates the
two schemes through empirical experiments. Due to the cheaper
computational cost, we use only the IVDL scheme to explore se-
lective multivariate localization by controlling which multivariate
error relationships are retained (question 2), but we use both
schemes to explore variable-dependent spatial localization (ques-
tion 3). Section 6 discusses and concludes the results of this study.

2. Variable-dependent and selective multivariate
localization applied with IVDL and SVDL

This work builds on the implementation in Lee et al. (2022,
hereafter L22), who introduced hybrid EnVar data assimila-
tion via the alpha control variable approach (Lorenc 2003) for
the ABC model (section 3). We shall follow their notation for
consistency. For the pure EnVar approach, a given alpha con-
trol variable transform Ua acts on an alpha control vector xak

to give an alpha field (i.e., ak 5 Uaxak), which controls the
linear combination of ensemble perturbations x′kt . There is
one alpha control variable (and hence one alpha field) per en-
semble perturbation member. The analysis increment dx at
time t is then

dx 5 ∑
N

k51
x′kt + ak, (1)

where N is the number of ensemble members, k is the ensemble
member index, and + is the Schur product. The implied localiza-
tion matrix L in the variational algorithm is L 5 UaUaT, so
changing the design of Ua is key to controlling the application
of variable-dependent and selective multivariate localization.
Following Eq. (15) from L22 for the pure EnVar approach, the
implied background error covariance matrix is therefore

Be 5 (UaUaT) + (Xf
tX

fT
t ), (2)

where X
f
t is the matrix whose columns contain the ensemble

perturbations x′kt divided by
��������
N2 1

√
.

a. The IVDL scheme

We first describe the implementation of IVDL. In appendix
B of L22, a proof of equivalence between their approach in
designing Ua and the traditional EnVar approach of Wang
et al. (2008)}who presented it slightly differently}is pro-
vided. L22 further showed that their choice of Ua does full
intervariable localization (where no multivariate error cross-
covariances are retained). In Wang et al. (2008), the length of
xak for each ensemble member k is given by the number of
horizontal grid points Ng, whereas in L22, the length of xak is
further multiplied by the number of prognostic variables Nvar.
This obviously influences the dimensions of Ua [the number
of columns of Ua must match the length of xak and the num-
ber of rows must match the length of the state perturbations
x′kt for the Schur product in Eq. (1)]. Here, we reproduce the
parts of the L22 proof to illustrate how variable-dependent
and selective multivariate localization can be implemented.
For an arbitrary state with three one-dimensional (horizontal)
physical variables (e.g., p, q, and r) per grid point (x 2 R

3Ng ),

the alpha control variable transform implied by Wang et al.
(2008) can be mathematically represented by the choice
Ua 5 Ũ

a
:

Ũ
a
5

Ua
p

Ua
q

Ua
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

in contrast to the approach in L22, which takes the choice
Ua 5 Ûa:

Ûa 5

Ua
p 0 0

0 Ua
q 0

0 0 Ua
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (4)

Here, 0 is an Ng 3 Ng null matrix and Ua
p , Ua

q , and Ua
r can

each have the form of an eigenvector matrix scaled by the
square root of the eigenvalue matrix associated with the
eigendecomposition of a spatial correlation (localization)
matrix for a specified length scale ha. For example, Ua

r 5 FrL
1/2
r ,

where Fr contains the eigenvectors and Lr contains the eigenval-
ues for variable r. For this study, we have used a Gaspari–Cohn
localization function (Gaspari and Cohn 1999; see L22 for de-
tails) to prescribe the correlation matrix.

Note that Eq. (3) presents a mathematically consistent in-
terpretation of the approach in Wang et al. (2008). In their
implementation, they use recursive filters instead of the
eigen-approach mentioned above and apply the same trans-
form to each variable, i.e., Ua

p 5 Ua
q 5 Ua

r . This precludes the
possibility of using a different length scale for each variable
(although this can be relaxed if required). In the L22 ap-
proach, however, a different spatial correlation matrix for
each variable is used to achieve variable-dependent localiza-
tion but forces full multivariate localization. Note that extra
memory cost is required to store the eigenvectors and eigenval-
ues for each variable. In our implementation, this is the case
even if, e.g., two variables share the same ha; the same eigenvec-
tors and eigenvalues are stored twice}once for each variable.

Next, we show how selective multivariate localization can
be achieved in the IVDL scheme. Equation (4) shows the
most primitive form of Ua. This can be considered one limit-
ing/extreme case where full intervariable localization is im-
plied because of its design. In L22, they further highlighted
that it was possible to extend Eq. (4) to include selective mul-
tivariate localization by introducing a mapping matrix Î com-
prising scaled blocks of either null or identity matrices (Ûa Î;
see below). We refer to this extension using the variants of Î
as selective multivariate localization because we can select
which block matrices of Î are identity matrices and which are
null matrices. If all block matrices in Î are identity matrices,
we get the other limiting/extreme case where all error cross-
covariances are retained (no intervariable localization). Here,
Î is given in this case by

Î 5
1��
3

√
INg

INg
INg

INg
INg

INg

INg
INg

INg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)
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where INg
is the Ng 3 Ng identity matrix and 3 is the number of

variables whose cross-covariances are retained (allNvar5 3 varia-
bles in this case). We can then choose Ua to be given by

Ua 5 Ua Î 5
1��
3

√
Ua

p Ua
p Ua

p

Ua
q Ua

q Ua
q

Ua
r Ua

r Ua
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (6)

One can compute the implied localization matrices L using Ũ
a

and Ûa Î, from Wang et al. (2008) and L22 (Ũ
a
Ũ

aT
and

Ûa Î ÎÛaT, respectively), to see that they are equivalent (proven
elementwise in appendix B of L22).

Now, consider a variant of Î where only p and q cross-covariances
are retained in the localization scheme, and Î is then given by

Î 5

1��
2

√ INg

1��
2

√ INg
0

1��
2

√ INg

1��
2

√ INg
0

0 0
1��
1

√ INg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
: (7)

Here, we have partitioned the variables into two groups with
two parameters and one parameter, respectively, where varia-
bles p and q are allowed to be correlated in the assimilation,
but each is uncorrelated with r. With this setup, many permuta-
tions of selective multivariate localization are possible, depending
on how the sets are determined. Each set of variables is treated
independently in xak (i.e., as a partition) by knocking out se-
lected multivariate error cross-covariances. We can verify that
the implied localization matrix L of Eq. (7) is given by

L 5 Ûa Î ÎÛaT 5

Ua
pU

aT
p Ua

pU
aT
q 0

Ua
qU

aT
p Ua

qU
aT
q 0

0 0 Ua
rU

aT
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

demonstrating how selective multivariate localization can be
achieved. This approach can be extended in an obvious way
to grouping/isolating any number of variables.

One should also note that with the current approach}using
eigenvectors decomposed from correlation matrices}special
care must be taken when dealing with periodic domains since
the correlation matrix is circulant and may not be positive
semidefinite. The implication is that if the localization length
scales for p and q are different and any eigenvectors associated
with negative eigenvalues are truncated, Ua

pU
aT
q and Ua

qU
aT
p (the

associated off-diagonal blocks) will not strictly be cross-correlation
matrices (not shown). The off-diagonal block matrices with this
extra symmetry are explored with SVDL in the next section.

Here, we have described IVDL in detail to provide clarity on
how one might technically implement it in an NWP system. This
approach is outlined in Wang and Wang (2023) and is referred
to as basic scale-dependent localization variable-dependent
localization Basic-SDLVDL (with scale-dependent aspects in
their case), but they implemented and tested a variant minor
extension scale-dependent localization variable-dependent lo-
calization (MinorE-SDLVDL) instead. Mathematically, Basic-

SDLVDL and MinorE-SDLVDL are equivalent (Wang and
Wang 2023). Prior to this study, L22 had already discussed the
technical implementation of IVDL (although not named
IVDL then) and the approach to apply alpha fields to one or
all variables, along with the proof of equivalence. Another
more computationally efficient approach has since been pro-
posed by Menetrier (https://doi.org/10.5281/zenodo.7547230).

b. The SVDL scheme

We note that while the full localization matrix is always sym-
metric, the off-diagonal blocks of L are not themselves symmetric
if the localization length scales (and hence transforms) for p and
q are different (i.e., Ua

pU
aT
q Þ Ua

qU
aT
p ). Buehner and Shlyaeva

(2015) also found the asymmetry in their between-scale cross-
covariances when applying scale-dependent localization. This is
not necessarily a criticism of the existing approaches but is rather
a prompt to pose the question if imposing extra symmetry in Ua

could improve the performance of a multivariate localization
scheme.

In SVDL, the full localization matrix is specified explicitly:

L 5

Lp,p Lp,q Lp,r

Lq,p Lq,q Lq,r

Lr,p Lr,q Lr,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

and this is made, by construction, to have all block correlation
matrices symmetric, e.g., Lp,q 5 LT

p,q. SVDL can be considered
a “brute force” approach}all block correlation matrices (in-
cluding off-diagonal ones) within Eq. (9) are fully prescribed.
The eigendecomposition is then performed on the full locali-
zation matrix (instead of blocks of it like in IVDL) to retrieve
Ua 5 L1/2 to use in the variational algorithm. Due to the appli-
cation of the eigendecomposition on the full localization
matrix, the computational cost of the SVDL approach is esti-
mated to be O[(NgNvar)3] compared to NvarO(N3

g) for IVDL if
based solely on the computational complexity of eigendecom-
position. For a small Nvar, this may still be acceptable even for
a full NWP system, although this needs further testing.

To prescribe the off-diagonal correlation matrices (e.g.,
Lp,q), the average correlation length scale h

a
of two associated

variables (p and q in this example) is computed, which is then
used as the length scale in the Gaspari–Cohn localization
function to construct Lp,q. Other approaches may also be con-
sidered instead of using h

a
, e.g., computing localization func-

tions separately and taking their average. As the off-diagonal
matrices are constructed like autocorrelation matrices, they are
symmetric, unlike in IVDL. Additionally, each off-diagonal ma-
trix pair (e.g., Lp,q and Lq,p) uses exactly the same h

a
to construct

the localization function, so the full localization matrix is auto-
matically symmetric. Furthermore, to apply selective multivariate
localization, one could set selective off-diagonal correlation matri-
ces of L to 0, similar to Eq. (8).

It is also important to note that in SVDL, L is constructed with
block correlation matrices (or with 0 in selected off-diagonal
blocks) but may not be a correlation matrix as a whole. The
implication is that without further adjustment, it is not possible
to guarantee positive semidefiniteness. Stanley et al. (2021)
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proposed how one might prescribe the off-diagonal correlation
matrices such that the implied L is positive semidefinite.
SVDL does not use their approach; this is to maintain flexibil-
ity to prescribe some of the off-diagonal blocks to 0. This also
means that an extra step is required to guarantee positive
semidefiniteness. Following L22, any negative eigenvalues are
truncated and the remaining eigenvalues are rescaled (e.g., by
a uniform factor given by the ratio of the original sum of
eigenvalues to the sum of eigenvalues after truncation) to re-
store the original total variance. Figure 1 shows how variable-
dependent localization can be explicitly prescribed in SVDL,
ensuring that the off-diagonal block matrices are symmetric.
After decomposing the original localization matrix and recon-
structing, the implied localization matrix is not identical to the
original. Even with rescaling, the truncation of negative eigen-
values has the effect of damping, particularly on the cross cor-
relations. The kurtosis of the correlations is also slightly
altered. This effect is more severe for periodic domains where
circulant matrices may be involved. There may be alternatives
to using a uniform factor to rescale, but they are not investi-
gated here.

SVDL allows full control of the localization, including multivar-
iate error cross-covariances, but is computationally expensive. As

mentioned, it does enforce symmetry in the off-diagonal correla-
tion matrices unlike previous approaches (IVDL or in Wang and
Wang 2023) and allows the specification of null matrices on cer-
tain cross-correlation components unlike in Stanley et al. (2021).
Nevertheless, it remains to be seen if symmetry is beneficial as
there may not be a physical justification (see section 3b for
figures illustrating selective multivariate localization with IVDL
and the differences between IVDL and SVDL). Due to the
expensive}but flexible}formulation of SVDL, one could also
easily apply a cross-localization weight factor to diminish the er-
ror cross-covariances, similar to that discussed in Stanley et al.
(2021), but this is not investigated here.

3. Model and data assimilation framework

a. Development of the ABC-DA system

To evaluate variable-dependent and selective multivariate lo-
calization for the tropics, we use the ABC model (Petrie et al.
2017), which solves a modified set of the compressible Euler
equations. This model uses a vertical slice formulation (a two-
dimensional longitude–height plane) and contains only dry dy-
namics. It is named after its key parameters: the pure gravity
wave frequency A, the controller of acoustic wave speed B, and

FIG. 1. Full localization matrix [Eq. (9)] with variable-dependent localization using SVDL for a one-dimensional pe-
riodic domain of 50 points and three variables (p, q, and r; localization length scale of 5, 10, and 15 points, respec-
tively). (top left) The original matrix is prescribed explicitly, whereas (top right) the implied matrix is reconstructed
from eigenvectors after truncating negative eigenvalues and rescaling. Autocorrelations and cross correlations with re-
spect to the midpoint (index 25) of variable p are shown for the (bottom left) original matrix and (bottom right) im-
plied matrix. The black dotted lines in the bottom panels are at value 1, which is the desired value of the peak
correlations.
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the constant of proportionality between pressure and density per-
turbationsC. Additionally, a Coriolis parameter f can be set based
on the desired latitudinal position of the chosen longitude–height
plane. This allows for a deep tropical environment to bemimicked
by selecting a very small value for f. In this configuration, a value
of f5 1025 s21 is used. This corresponds approximately to a value
of f at a latitude of 48N. The other model parameters are also set
as A 5 0.02 s21, B 5 0.01, and C 5 104 m2 s22. There are five
prognostic variables: zonal wind u, meridional wind y , vertical
wind w, scaled density perturbation r̃′ (a pressure-like variable),
and buoyancy perturbation b′ (a potential temperature–like vari-
able), which govern the model dynamics. The ABC model is thus
sufficiently complex as a multivariate dynamical system, while re-
taining simplicity to expedite research and development.

The associated data assimilation was introduced in Bannister
(2020), supporting incremental 3D-Var and 3D-Var first guess
at appropriate time (3D-Var-FGAT). The system is solely
based on variational data assimilation. Initial implementation
had an arguably crude form of generating an ensemble by con-
sidering multiple latitudinal slices from a three-dimensional op-
erational model’s output file (a version of the Unified Model).
This was used for calibrating the background error covariance
matrix, and no ensemble-based methods (e.g., ensemble Kalman
filter or square root filters) were implemented. Further deve-
lopment of the ABC-DA system by L22 introduced hybrid
ensemble–variational data assimilation via the alpha control
variable transform approach (Lorenc 2003). Concurrently, L22
also introduced other ensemble generation and propagation ap-
proaches. The random field perturbations method (Magnusson
et al. 2009) was used to cold start an ensemble, and the ensemble
bred vectors (EBV) method (Balci et al. 2012) was introduced to
propagate the ensemble at each data assimilation cycle}this was
computationally cheaper than the traditional ensemble
Kalman filter or square root filters and did not suffer from
filter collapse (see L22 for details). This parallel-run en-
semble was necessary to support hybrid 3D-Var and hy-
brid 3D-Var-FGAT in the ABC-DA system. From the
ensemble forecasts, the error modes x′kt can be computed
and used with Ua as in Eq. (1). Using these newly imple-
mented features in the ABC-DA system, L22 showed that
hybrid 3D-Var outperformed 3D-Var and pure EnVar
methods in the ABC-DA configured for the tropical envi-
ronment. However, for the purpose of this study, we will
focus on the pure EnVar framework.

b. Illustration of IVDL and SVDL

Before exploring the research questions using variable-
dependent and selective multivariate localization in assimila-
tion experiments, we illustrate how IVDL and SVDL can
control the localization with ABC model variables. First, se-
lective multivariate localization is illustrated using IVDL. For
demonstration, the state variables have been grouped into
two sets: (i) u and y ; (ii) w, r̃′, and b′. This means that varia-
bles in the same set retain their cross correlations (and thus
cross-covariances after the Schur product with the ensemble-
derived error covariances), but variables in different sets
have cross correlations knocked out by localization. Figure 2

shows the implied localization functions with respect to u and
r̃′ points. It is clear that only u and y cross correlations are re-
tained in the first set, and w, r̃′, and b′ cross correlations are re-
tained in the second set. Between variables of different sets, no
cross correlations are retained by the design of Ua. Other group-
ing options have been implemented in the ABC-DA system,
which we use to isolate important multivariate error relationships
(see section 5a). This will enable us to explore question 2 on
which multivariate error relationships are beneficial for EnVar
data assimilation in the tropics.

Next, variable-dependent localization is illustrated using both
IVDL and SVDL. For demonstration, only the vertical localiza-
tion length scale is changed between variables. Figure 3 shows
the comparison of IVDL- and SVDL-implied localization func-
tions with respect to u and b′ points. There are subtle differences
in Figs. 3a and 3b due to the truncation of negative eigenvalues in
SVDL. Additionally, note how there are differences in the u–b′

and b′–u cross correlations using IVDL (Figs. 3c,d; left), which is
due to the asymmetry in the off-diagonal block matrices. Using
SVDL on the other hand (Figs. 3c,d; right), the u–b′ and b′–u
cross correlations are identical. As discussed in section 2b,
it is not known a priori whether the extra symmetry im-
posed by SVDL is beneficial to data assimilation, but SVDL
is certainly more flexible than IVDL. This will enable us to
explore question 3 on whether variable-dependent spatial
localization is beneficial for EnVar data assimilation in the
tropics.

4. Description of the experiments

a. Setup for the ABC-DA system

To evaluate the performance of IVDL and SVDL in data
assimilation to learn about tropical multivariate covariances
and the best localization settings, we conduct a series of
hourly cycling observation system simulation experiments
(OSSEs) similar to those in L22. To represent the incomplete-
ness of the observation network in an NWP system, only u, y ,
and r̃′ are observed at a set of points in a subdomain (longitu-
dinal distance between 50 and 500 km; height between 9 and
14 km, i.e., the upper portion of vertical slice of 546-km length
by 16-km height). The observation operator used is bilinear
interpolation. This setup is more akin to an NWP system with
only satellite-related point observations (e.g., satellite-derived
wind) that are available in the upper troposphere and strato-
sphere. This setup may also accentuate the impact of selective
multivariate localization because unobserved variable
fields are updated solely on localized multivariate error
cross-covariances. At each cycle, 100 observations of each
of the abovementioned variables are assimilated. The ob-
servations are sampled from a “truth” run (using a time
step of 4 s) with the same values of A, B, and C, but with
added Gaussian noise based on the observation error stan-
dard deviation. For this setup, the observation error stan-
dard deviations are 0.1, 0.1, and 1.5 3 1024 m s21,
respectively. All observations are valid at the analysis
time of each cycle and all experiments use the same
observations.
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The random field perturbations method (section 3.1 of L22) is
first used to generate a 1000-member ensemble set (i.e., the pairs
of states are sampled from a 150-day truth run with hourly out-
puts; 243 150 5 3600 available states). The number of available
states has to be sufficiently large to avoid repetition in the pairs
of states drawn (with replacement back into pool) by the random
field perturbations method. The new 1000-member ensemble is
centered around one randomly chosen ensemble analysis from
the last cycle of the experiment labeled EBVd in L22 (cold start)
and allowed to spin up for 75 cycles (75 h) so that the system
would have lost memory of the cold start initialization using ran-
dom field perturbations. At each cycle, the ensemble perturba-
tions are updated using the EBV method, similar to L22. No
inflation is used, but by definition of the EBV method, a scaling
based on a fixed factor divided by the max norm of the

perturbations from the previous cycle (see Balci et al. 2012 or
L22 for details) is used to get the updated perturbations. After
spinning up for 75 cycles, the ensemble perturbations from
the last spinup cycle are used for the start of the experiments,
computed according to the number of ensemble members chosen
for a particular experiment (these are subsets of the 1000-member
ensemble; see section 4b). For example, for a 1000-member en-
semble, 999 perturbations are computed using the member-
minus-mean approach; for a 100-member ensemble, the first
100 members are retained and 99 perturbations are computed.
Each experiment in section 5 is run for 100 cycles.

b. Guidance on ensemble size for experiments

Since the pure EnVar approach is used for the experi-
ments (i.e., no climatological error statistics are used), we

FIG. 2. Implied localization functions with respect to a point (yellow cross) using IVDL for cross correlations of all variables with respect
to (a) u and (b) r̃′. The state variables have been grouped into two sets: (i) u and y ; (ii) w, r̃′, and b′ to illustrate selective multivariate
localization.
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conduct further analysis to provide guidance on the ensemble
size that is suitable for the tropical ABC-DA system. First, we
assess the degree of orthogonality of the ensemble, by comput-
ing the linear independence of each successive ensemble pertur-
bation with respect to previous perturbations at the start of the

experiment (i.e., only the perturbations from the first cy-
cle, even though they get updated throughout the experi-
ment run), following Bannister et al. (2017, manuscript
submitted to Geosci. Model Dev.). We do this separately
for each variable, and so, the results can differ for each

FIG. 3. Implied localization functions with respect to a point (yellow cross) using (left) IVDL and (right) SVDL for
autocorrelations of (a) u and (b) b′ and cross correlations of (c) b′ with respect to u and (d) u with respect to b′. The
vertical localization length scales are larger in b′ to illustrate variable dependence.
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one. Given the full set of 999 perturbations and ignoring time in-
dices for brevity, the Gram–Schmidt procedure is used to suc-
cessively compute a set of orthonormalized vectors x̂′k,

x̂′k 5
1

N̂k

x′k

|x′k| 2 ∑
k21

j51
h x′k

|x′k| , x̂
′ jix̂′ j

( )
, (10)

where |?| denotes the inner product, ha, bi 5 at b, and N̂k is
chosen to ensure that each successive perturbation x̂′k has
unit length. If N̂k is small, then the newly orthogonalized vector
x̂′k has only a small component that is linearly independent
from the previously considered vectors of index 1, … , k 2 1.
The magnitude of N̂k is thus a measure of the degree of linear
independence of the ensemble perturbation x̂′k.

Figure 4 shows the degree of linear independence for each
successive ensemble perturbation for the five prognostic vari-
ables at the start of the experiment. It reflects the capability
of each new random field perturbation to sufficiently explore
the additional direction in the subspace. This is more likely
if the system dynamics develop with strong nonlinearities
within the first hour (since we are using 1-h forecast ensemble
perturbations from a randomly generated analysis ensemble).
Based on Fig. 4, and using the 20-member rolling average in
red, we note that the degree of independence of each succes-
sive ensemble perturbation varies for each variable. We use
the N̂k 5 0:3 level to help decide on whether a sufficient level
of linear independence is reached. For w, the degree of inde-
pendence remains above 0.3 threshold until after the 400th

FIG. 4. Degree of linear independence N̂k of each successive ensemble perturbation for all five prognostic variables.
Perturbations are valid at the start of the experiments. An arbitrary threshold of 0.3 is indicated by a gray dotted line.
The 20-member rolling averages are indicated in red.
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member. On the other hand, for y , this occurs at about the
40th member. For u and r̃′, the threshold is met after the 100th
member, and for b′, the threshold is met at the 120th member.
This suggests that nonlinearities largely develop in the w field
when computing the “truth” run, which are captured by the
random field perturbations method, and/or are evolved within
the first hour. The nonlinearities captured by the random field
perturbations method in other variables are weaker. The results
suggest that if the ensemble size is larger than about 100, most
of the ensemble perturbations would virtually be linear combi-
nations of others and thus have limited impacts on EnVar data
assimilation [since the analysis increment is a linear combina-
tion of perturbations, Eq. (1)]. This method does not, however,
give any indication that the sampling error is sufficiently small
for localization to be unnecessary. The results do highlight
though how each field has its own characteristics based on the
system dynamics, so variable-dependent localization in particu-
lar should be worth exploring.

We further conducted a sensitivity test to the number of en-
semble members using the OSSE framework described above.
We tried experiments with 10, 50, 100, 200, and 1000 mem-
bers. Horizontal and vertical localization are not applied in
this sensitivity test to reveal the impacts of sampling noise on
the (raw) ensemble-derived error covariances. The runs are
evaluated using the RMSE with respect to the truth run. This
was the approach taken in Bannister (2020, 2021) and L22 to
assess the performance of their experiments. It is also a
straightforward metric to measure the deviation of the fore-
casts from the truth run.

Figure 5 contains the time series of RMSE for each variable
over the 100 cycles and a summary of the cycle-averaged
RMSE for each variable compared to the free background
run (FreeBG, which is the reference forecast without any
data assimilation starting from the cold start background
state). It shows that in general, the cycle-averaged RMSE
decreases as the number of ensemble members increases,

FIG. 5. All panels except bottom right show time series of root-mean-square analysis errors for the ensemble sensi-
tivity experiments (10, 50, 100, 200, and 1000 members) and FreeBG. No localization is used in these experiments.
The vertical yellow lines are the analysis times. Analysis errors are defined with respect to the “truth” run, computed
every 10 min within the respective assimilation windows for experiments and every hour for the FreeBG. The bottom
right panel shows the ratio of the cycle-averaged RMSE for each experiment with respect to the FreeBG for the five
ABC model variables.
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particularly for u and r̃′. The error reduction is about 2%–

4% depending on the variable when the ensemble size is
increased from 10 to 1000. The highest cycle-averaged RMSE
is seen in the runs with 10 and 50 members, respectively, as
expected due to the lack of localization to address sam-
pling error. Also, the reduction in cycle-averaged RMSE
between the runs with 200 and 1000 members is small com-
pared to that between the runs with 10 and 50 members,
for almost all variables. For w, the decrease in RMSE with
an increasing number of ensemble members is less pro-
nounced beyond 50 members. As w is highly nonlinear, it
is unsurprising that the FreeBG deviates from the truth

run more rapidly than the other variables and so the error
increases over time.

Also, note the different cycle-averaged RMSE patterns for
u and y . This difference may be due to the two-dimensional
nature of the ABC model (no latitude dependence). In this
setup, vorticity (­y /­x) is associated with y and divergence (­u/­x)
is associated with u. We would expect vorticity and divergence to
have different time scales, which are indeed observed in the dif-
ferent cycle-averaged RMSE patterns for u and y .

Next, we examine the raw ensemble-derived error covarian-
ces between u and r̃′ using the ensemble perturbations drawn
from the first cycle of the sensitivity test. Figure 6 shows how a

FIG. 6. Raw ensemble-derived error autocovariances of (left) u, (center) cross-covariances of u with respect to r̃′, and (right) autocovar-
iances of r̃′ as a function of the number of ensemble members N (increasing from top to bottom). Negative values have contours that are
dashed, and contour intervals are nonuniform to elucidate any features. The covariances are computed with respect to a point (yellow
cross) near the center of the domain. The ensemble perturbations are drawn from the first cycle of the sensitivity test.
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selection of covariance structures changes as the number of en-
semble members is increased. It shows that the ensemble-
derived error covariances become less noisy, particularly in the
u–u and r̃′–r̃′ autocovariances. Notably, the ensemble size
threshold at which the covariance structures start to appear
consistent is 100 members. Above the threshold (i.e., 200 and
1000 members), the structures do not differ substantially. We
also note that with 1000 members, the u–u autocovariances
contain wavelike patterns which result in nonnegligible longer-
range spatial covariances. These patterns have previously been
seen in Bannister (2020) and L22, albeit for r̃′ autocovariances
instead. The wavelike patterns suggest that the main error modes
in the ABC-DA system could be strongly influenced by periodic
waves resonating in the domain, as also noted by L22 (i.e., they
are real features rather than artifacts of sampling error).

Given the results in Figs. 5 and 6, and weighing the computa-
tional costs of running very large (1000-member) ensembles, a
suitable ensemble size of 100 is used in further experiments to ex-
plore the possibilities of variable-dependent and selective multi-
variate localization. This number of members is large enough to
show coherent structures in the unlocalized covariances, but still
shows evidence of sampling errors.

5. Results from data assimilation experiments using
localization

a. Exploring the importance of multivariate error
relationships

In this section, we run EnVar data assimilation experiments
to test different multivariate localization options. All data as-
similation experiments start with the same initial background
and ensemble perturbations as the 100-member experiment in
section 4b. The observations are also the same. The details of
the selective multivariate localization experiment variants are
listed here. As a reminder, variables that are in different
groups do not retain cross-covariances with variables in other
groups. For example, in experiment 1c below, localization is
used to ensure that u and y errors are made to be completely
uncorrelated with w, r̃′, and b′ errors.

1a) One set: limiting case where all multivariate error
cross-covariances are retained, as in traditional EnVar
implementations.

1b) Five sets: limiting case where no multivariate error cross-
covariances are retained (full intervariable localization).

1c) Two sets: (i) u and y and (ii) w, r̃′, and b′.

1d) Two sets: (i) y , w, r̃′, and b′ and (ii) u.
1e) Two sets: (i) u, y , w, and b′ and (ii) r̃′.
1f) Two sets: (i) u, w, r̃′, and b′ and (ii) y .
1g) Three sets: (i) u, r̃′, and b′, (ii) y , and (iii) w.

For this subsection, all variables use the same horizontal
localization length scales of 20 km and use the IVDL scheme
(see first row of Table 1 and section 5b for justification of
choice). No vertical localization is used, following appendix C
of L22 which showed that the vertical localization of r̃′ and b′

could result in hydrostatic imbalances. Here, IVDL is first
used to enable selective multivariate localization; variable de-
pendence is incorporated in the next subsection.

To demonstrate the impact of selective multivariate locali-
zation on the analysis, the analysis increments for the first cy-
cle of experiments 1a, 1b, 1c, 1d, and 1g are plotted in Fig. 7.
These experiments represent the diverse possibilities and the
implications of choosing a different number of sets and/or dif-
ferent number of variables in each set (experiments 1e and 1f
are not shown as they are similar to 1d; partitioning into two
sets: four variables and one variable). A comparison of suc-
cessive experiment pairs allows for the impact of specific mul-
tivariate error relationships to be disentangled. For example,
comparing experiments 1a and 1d reveals the impact of isolat-
ing u. Note that since EBV is used to propagate the ensemble
(without data assimilation), the analysis increments shown are
for the control member which assimilates the observations.
Here, the impact of u observations on all other variables through
the error cross-covariances is substantial; the analysis increments
in experiment 1d are less widespread than in 1a, especially over
unobserved regions. For the full intervariable localization limiting
case (experiment 1b), there are analysis increments for observed
variables only, as expected. The r̃′ analysis increment patterns
are broadly similar to those from experiments where r̃′ is not in-
fluenced by u observations [i.e., experiments 1c, 1d, and 1e (latter
not shown)]. Similarly, the y increment patterns are broadly simi-
lar to those from experiments 1f (not shown) and 1g. When y is
isolated in experiment 1g, the impact on the analysis increments
of other variables is subtle due to relatively small error cross-
covariances associated with y . Note that the widespread analysis
increments in experiment 1a do not yet reveal if the multivariate
error relationships associated with u are meaningful or undesir-
able. Unlike the midlatitudes, where the multivariate error cova-
riances may be explained largely by geostrophic and hydrostatic
theories, the essential multivariate error covariances in the
tropics are not well known.

TABLE 1. Horizontal and vertical localization length scales hahoriz and havert for the experiments to evaluate variable-dependent
localization. “NIL” means no localization is used in the relevant direction (horizontal, vertical). IVDL refers to the isolated
variable-dependent localization scheme (section 2a) and SVDL refers to the symmetric variable-dependent localization scheme
(section 2b).

Experiment Multivariate localization Scheme u y w r̃′ b′

1a–1g See text IVDL 20 km, NIL 20 km, NIL 20 km, NIL 20 km, NIL 20 km, NIL
2a One set: (i) u, y , w, r̃′, b′ SVDL 50 km, NIL 50 km, NIL 20 km, NIL 20 km, NIL 20 km, NIL
2b One set: (i) u, y , w, r̃′, b′ SVDL 20, 5 km 10, 2 km 10, 2 km 20 km, NIL 20 km, NIL
2c Two sets: (i) u, y and (ii) w, r̃′, b′ IVDL 50 km, NIL 50 km, NIL 20 km, NIL 20 km, NIL 20 km, NIL
2d Two sets: (i) u, y and (ii) w, r̃′, b′ IVDL 50, 5 km 50, 5 km 20 km, NIL 20 km, NIL 20 km, NIL
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To identify important/beneficial multivariate error rela-
tionships in the ensemble-derived error covariances, we an-
alyze the performance of each experiment over the course
of 100 cycles, benchmarked against two limiting cases: (i)
where all multivariate error cross-covariances are retained
(experiment 1a) and (ii) where no multivariate error cross-
covariances are retained (experiment 1b). Experiments that
have smaller cycle-averaged RMSE than benchmark (i)
suggest that certain multivariate error cross-covariances are
not important and may be introducing more noise into the
analysis than signal. Likewise, experiments that perform
better than benchmark (ii) suggest that certain multivariate

error cross-covariances are important/beneficial for EnVar
data assimilation in the tropics. The experiments which
isolate individual variables (1d, 1e, and 1f) are plotted in
Fig. 8. The remaining experiments (1c and 1g) are plotted
in Fig. 9.

The most salient feature from both figures is that the experi-
ments have similar cycle-averaged RMSE to either experiment
1a or 1b (the two limiting cases), for all variables except w.
This may be unsurprising based on the comparison of analysis
increments in Fig. 7. Experiments 1c, 1d, and 1e have similar
values as experiment 1b (except w), while experiments 1f and
1g have similar values as 1a. Note that experiment 1b has

FIG. 7. Analysis increments from the first cycle of experiments 1a, 1b, 1c, 1d, and 1g (shown from left to right; see row 1 of Table 1), for
the five prognostic variables (shown from top to bottom). All experiments start with the same background ensemble, assimilate the same
observations (of u, y , and r̃′, which are equally spaced within the yellow box), and use the same spatial localization. Selective multivariate
localization is applied with IVDL; variables are partitioned into sets (see text for description), demarcated by underscores (e.g., u_wyr̃′b′
refers to experiment 1d).
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smaller cycle-averaged RMSE than 1a for all variables ex-
cept w. The key points from the seven experiments are as
follows.

• Experiments that remove the r̃′–b′ error cross-covariances
(1b and 1e) lead to a substantially larger RMSE for w.

• Experiments that remove the u–r̃′ error cross-covariances
(1b, 1c, 1d, and 1e) lead to a notably smaller RMSE for
two observed variables u and r̃′ and one unobserved vari-
able b′.

The first point relates to hydrostatic imbalances in the anal-
ysis. From the prognostic equations for w, there are source
and sink terms which relate to b′ and the vertical gradient of
r̃′. Any imbalance between the two will result in changes to w
as the system evolves. Clearly, this imbalance is undesirable,
as seen from the experiments. Lorenc (2003) previously dis-
cussed this issue in the context of mass–wind balance. Here, we
find that maintaining signals of hydrostatic balance where the
ensemble forecasts are hydrostatically balanced}by retaining
the r̃′–b′ error cross-covariances}is important/beneficial for
the tropical ABC-DA system. Vetra-Carvalho et al. (2012)

previously showed that for regions (in the United Kingdom)
where convection was weak, hydrostatic balance holds very
well. However, in regions where moist convection was involved,
hydrostatic balance was not preserved. To generalize our re-
sults for the tropics, moist processes would need to be consid-
ered in the ABC model (Zhu and Bannister 2023), but that
version does not yet have data assimilation incorporated. Not-
withstanding the limitations, the tropical dry dynamics repre-
senting vertical wind (dry convection) and the mass–wind
interactions are still relevant to explore within the ABC-DA
system.

The second point relates to mass–wind sampling errors in
the analysis. As discussed previously, there is no clear mass–
wind balance relationship for the tropics and many centers
implicitly treat mass and wind variables univariately in their
climatological background error covariance matrices. Here,
we find that explicitly treating the mass and wind variables
univariately in EnVar data assimilation (by knocking out co-
variances between u and r̃′) is beneficial for the tropical
ABC-DA system. From Fig. 6, it appears that even with
100 members, the mass–wind error relationship still contains

FIG. 8. As in Fig. 5, but for experiments 1a (EnVar; limiting case), 1b (EnVar-ivl; limiting case), 1d (EnVar-vwrb_u),
1e (EnVar-uvwb_r), and 1f (EnVar-uwrb_v) compared to the FreeBG.
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some sampling noise. Referencing earlier results from Fig. 7,
the impact of u observations on other mass variables (r̃′ and b′)
is likely negative when u-related error cross-covariances are
retained. The results suggest that the mass–wind error rela-
tionship prescribed directly from a 100-member ensemble is
not beneficial for the tropical ABC-DA system. It remains a
challenge to find a scale-dependent balance between mass and
wind errors for the tropics (e.g., handling the larger scales
based on large-scale balances, but handling the smaller scales
based on convective-scale balances, if they exist at all). Until
then, our results suggest that they should be treated entirely
univariately.

We further examined if other multivariate error relation-
ships are important/beneficial in experiments 1f and 1g, but
isolating y and w does not have a substantial impact on the
analysis increments nor cycle-averaged RMSE. We further
repeated experiments 1a, 1c, 1d, and 1e two more times with
different random seeds for the observations (not shown), ar-
riving at the same conclusions. There is limited additional
benefit of repeating the other experiments, since they would
yield similar results (as seen above) which would lead to the

same conclusions. The abovementioned two points there-
fore suggest that (i) where dry dynamics are concerned, hy-
drostatic balance is important for EnVar data assimilation
in the tropics and (ii) treating mass and wind errors univari-
ately is also beneficial for EnVar data assimilation in the
tropics.

b. Exploring the benefits from variable-dependent spatial
localization

Next, we explore the benefits of variable-dependent locali-
zation for EnVar data assimilation in the tropics by assimilat-
ing with different localization length scale values for different
model variables. Thus far, all experiments have included only
horizontal localization of uniform length scales. For some of
the subsequent experiments, we use both horizontal and verti-
cal localization of length scales hahoriz and ha

vert, respectively
(see section 2 for localization function details, but applied sep-
arately for each spatial dimension). As before, the details of
the variable-dependent localization experiment variants are
listed here:

FIG. 9. As in Fig. 5, but for experiments 1a (EnVar; limiting case), 1b (EnVar-ivl; limiting case), 1c (EnVar-uv_wrb),
and 1g (EnVar-urb_v_w) compared to the FreeBG.
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2a) As in experiment 1a, but applying SVDL and changing
horizontal localization for horizontal wind variables only.

2b) As in experiment 1a, but applying SVDL and varying
horizontal and vertical localization for wind variables.

2c) As in experiment 1c, applying IVDL but changing hori-
zontal localization for horizontal wind variables only.

2d) As in experiment 1c, applying IVDL but changing hori-
zontal and vertical localization for horizontal wind varia-
bles only.

For reference, Table 1 shows a summary of hahoriz and havert
used for the experiments. The default length scales for experi-
ments 1a–1g were determined based on the horizontal distance
between adjacent observations (’23 km), following L22. Ex-
periments 2a and 2c implement variable-dependent horizontal

localization only. This is to assess if the flexibility granted by
horizontal localization alone is beneficial. Experiments 2b and
2d further implement variable-dependent vertical localization
to assess if it is also beneficial. Experiments using SVDL (2a
and 2b) retain all multivariate error relationships, so they are
compared to experiment 1a as the benchmark. Experiments us-
ing IVDL (2c and 2d) require that variables in the same set use
the same hahoriz (see issues with periodic domains highlighted in
section 2a), and they are compared to experiment 1c as the
benchmark. Experiment 1c is also suitable to be the benchmark
since it was the best performing out of the selective multivariate
localization experiments.

Figure 10 shows how variable-dependent localization changes
the analysis increments for the first cycle for experiments 1a, 2a,

FIG. 10. As in Fig. 7, but for experiments 1a (NoVarDep), 2a (SVDL-VarDepH), 2b (SVDL-VarDepHV), 2c (IVDL-VarDepH), and 2d
(IVDL-VarDepHV).
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2b, 2c, and 2d. As expected, the u and y analysis increments in
experiments 2a and 2c have broader structures than before since
hahoriz is larger. Similarly, when vertical localization is further in-
troduced in experiments 2b and 2d, the u and y analysis incre-
ments are confined to the observed regions. Note how the w, r̃′,
and b′ analysis increments are similar between experiments
2c and 2d despite changes to the vertical localization length
scales of the wind variables. This highlights how both variable-
dependent and selective multivariate localization can be simul-
taneously applied to the ensemble-derived error covariances
(using IVDL) to constrain the observation impact on specific
variables.

Next, we examine the impacts of variable-dependent localiza-
tion on the cycle-averaged RMSE. Figure 11 shows that the
cycle-averaged RMSE for experiment 2a (when u and y use dif-
ferent hahoriz from the rest of the variables) is marginally smaller
than 1a for most variables. The oscillations in the u and r̃′

RMSE evolution are also marginally more pronounced, likely
related to the gravity waves (and their associated frequencies)
within the domain. Similar results are seen comparing experi-
ment 2c with 1c (Fig. 12); using different hahoriz for both u and y

leads to marginally improved forecasts, despite both experi-
ments omitting error cross-covariances between u and r̃′ (unlike
in experiment 2a, which uses SVDL). When variable-dependent
vertical localization is further introduced in experiments 2b and
2d, the cycle-averaged RMSEs in general are further reduced,
even for b′ which is unobserved. Across all experiments, we
find that 2d leads to the smallest cycle-averaged RMSE, about
3%–4% smaller (for u, r̃′, and b′) compared to experiment 1a
(the benchmark) which uses the widely adopted traditional lo-
calization approach. We have further repeated experiments 1a
and 2d two more times with different random seeds for the
observations. We have also repeated the experiments using
a 50-member ensemble instead of a 100-member ensemble
to ensure the conclusions are not heavily dependent on en-
semble size. Figure 13 shows that the cycle-averaged RMSE
differences of u, r̃′, and b′ within groups of experiment 1a
or 2d configurations are much smaller than the differences
between runs of experiment 1a and their respective 2d
configurations.

We use a paired t test and a Kolmogorov–Smirnov test to
quantify the statistical significance. The two tests compare the

FIG. 11. As in Fig. 5, but for experiments 1a (EnVar; limiting case), 2a (EnVar-VarDepH), and 2b (EnVar-VarDepHV)
compared to the FreeBG.
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distributions of the pairs of experiments 1a and 2d using a
100-member ensemble (three samples). The paired t test as-
sumes that the cycle-averaged RMSE follows a normal distri-
bution, while the Kolmogorov–Smirnov test does not. For a
small sample size, it is useful to use both tests. Using the
paired t test, the p values for u, r̃′, and b′ are much less than
0.01, while the p values for y and w are 0.301 and 0.0163,
respectively. Using the Kolmogorov–Smirnov test, the
Kolmogorov–Smirnov statistics for u, r̃′, and b′ are each 1,
with a p value of 0.1. For y and w, the Kolmogorov–Smirnov
statistic is each 0.667, with a p value of 0.6. A p value of less
than 0.1 indicates that the result is statistically significant
at the 90% confidence level. Note that experiments with
50-member ensemble are omitted from the statistical signifi-
cance tests as they are repeats of the 100-member ensemble
experiments (same corresponding observations) and are there-
fore not independent samples from the 100-member experi-
ments. Overall, the results show that experiment 2d produces
a smaller cycle-averaged RMSE than 1a, which is statistically
significant at the 90% confidence level (at least) for u, r̃′, and
b′ but not statistically significant for y and w.

6. Conclusions

a. Summary and key results

In this study, the benefits of retaining or rejecting multivari-
ate error relationships and controlling the localization length
scales separately for each variable in ensemble–variational
(EnVar) data assimilation in the tropics are explored. This is
conducted using a simplified nonhydrostatic model, the ABC
model. Two approaches are implemented within the EnVar
framework of the ABC model, which we refer to as the iso-
lated variable-dependent localization (IVDL) and symmetric
variable-dependent localization (SVDL) schemes. These grant
the ability to (i) prescribe different spatial localization length
scales for different variables and (ii) control (i.e., knockout by
localization) multivariate error cross-covariances. The IVDL
determines the multivariate localization in an implicit way,
while the SVDL prescribes the multivariate localization in an
explicit way.

Using IVDL and SVDL in multicycle observation system
simulation experiments (OSSEs) with the ABC-DA system,
we explore which multivariate relationships in the ensemble-

FIG. 12. As in Fig. 5, but for experiments 1c (EnVar-uv_wrb), 2c (EnVar-VarDepH), and 2d (EnVar-VarDepHV)
compared to the FreeBG.
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derived error covariances are important/beneficial and the
benefits of variable-dependent spatial localization for EnVar
data assimilation in the tropics.

Using up to 1000 ensemble members (generated at each cy-
cle as ensemble bred vectors), we first decide on a suitable en-
semble size to test the localization methods (question 1 posed
in section 1). We compute the degree of linear independence
of each successive ensemble perturbation. This provides an in-
dication of whether the ensemble bred vectors suitably span
the subspace. This analysis shows that each variable has dif-
ferent characteristics due to the system dynamics. The fact
that the degree of independence is different for each variable
suggests that variable-dependent spatial localization is justifi-
able. We further show that for the ABC-DA system, increasing
the number of ensemble members results in a decrease in the
cycle-averaged root-mean-square error (RMSE) in the OSSEs.
We find that the threshold at which covariance structures start
to appear consistent (but still have appreciable sampling error)
is about 100 members for the ABC model. This ensemble size is
used for most of the remaining experiments.

Further experiments reveal the following:

• Using selective multivariate localization is beneficial, particu-
larly when covariances associated with hydrostatic balance
are retained and when the zonal wind errors are decoupled
from the mass (scaled density perturbation) errors in the
background error covariances (question 2). These lead to

reduced cycle-averaged RMSE in corresponding experi-
ments. The results suggest that when tropical dry dynamics is
concerned (as with the ABC model), hydrostatic balance can
still be important even at convective scales. There is also little
basis for retaining the mass–wind error covariances that are
presented by the ensemble, which we believe could introduce
more sampling noise than useful signal in the error cross-
covariances, even with as many as 100 ensemble members.

• Using variable-dependent localization is beneficial for EnVar
data assimilation in the tropics, albeit to a smaller extent
compared to selective multivariate localization (question 3).
For this particular setup, we show that using different hori-
zontal length scales for wind and mass variables (longer
length scales for wind) reduces the cycle-averaged RMSE,
perhaps because they are more optimal for this system.

• The best-performing experiment uses both variable-dependent
localization and selective multivariate localization (retaining
covariances associated with hydrostatic balance and omitting
covariances associated with mass–wind error relationships). It
leads to a 3%–4% smaller cycle-averaged RMSE than the ex-
periment using a traditional EnVar setup, where there is often
little control over multivariate localization nor over separate
localization length scale for each variable. This is of the same
order of magnitude improvement that is typical of upgrades
to, for instance, the EnVar system of Environment and
Climate Change Canada (e.g., Caron and Buehner 2022).

FIG. 13. Comparison of the cycle-averaged RMSE for experiments 1a (crosses) and 2d (pluses) for all five prognos-
tic variables. Each experiment is run three times with different random seeds for the observations (blue, red, and
green) and using a 50- or 100-member ensemble (a total of six runs).
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b. Discussion and future work

In section 2b, we highlighted how SVDL allows for extra
symmetry to be enforced in the off-diagonal block matrices. Al-
though there is no mathematical need for such extra symmetry
in L (only that L as a whole is symmetric), we thought that this
could be nonetheless investigated as a plausible option. Com-
paring experiments 2a with 1a and 2c with 1c shows that vari-
able-dependent spatial localization using SVDL and IVDL,
respectively, reduces the RMSE of respective benchmarks by
about the same percentages. From other further experiments
(not shown), there also does not appear to be additional benefits
of having symmetric off-diagonal block matrices using SVDL
compared to IVDL. For computational efficiency, it may be
more prudent to implement IVDL over SVDL, especially over
nonperiodic domains (see section 2a for this caveat). This is be-
cause the potential lack of positive semidefiniteness in circulant
block matrices only arises in IVDL because of periodic bound-
ary conditions, but they frequently arise in SVDL regardless of
boundary conditions.

A more complete study of the optimal horizontal and vertical
length scales, and the correlation shapes for variable-dependent
localization, is beyond the scope of this paper. In the above ex-
periments, the specific length scale and correlation function
choices for wind variables led to improved forecasts, but this
could be because the initial choices for experiments 1a and 1c
were severely suboptimal. To briefly explore this further, we ap-
ply the empirical optimal localization approach of Necker et al.
(2023) to find the optimal tapering factors}the factors for pop-
ulating the optimal localization matrix for a given ensemble
size. The optimal tapering factors are computed using the mean
of middle five vertical levels, 28–32, and with respect to the mid-
dle horizontal grid point as a simple test. The 1000-member
background ensemble and 100-member subsamples from the
first cycle of the 1000-member experiment (section 4b) are used.
The cutoff length of the optimal tapering factor curve with re-
spect to the middle horizontal grid point is about 150 km for u,
80 km for r̃′, and 40 km for b′ (not shown), corresponding to
horizontal localization length scales of 75, 40, and 20 km, re-
spectively (half of cutoff length), based on the commonly
used Gaspari–Cohn localization function (Necker et al. 2023).
The optimal tapering factor curves for y and w were too
noisy, owing to the limited number of vertical levels used in
this simple test. This simple test suggests that the initial
choices were moderately suboptimal for some variables.
Nonetheless, the key point from these experiments is that
variable-dependent localization can be beneficial}the impacts
are sizeable even in a simplified multivariate system. These re-
sults support the findings by Necker et al. (2023), Lei et al.
(2015), and Wang and Wang (2023), who found that the locali-
zation length scales depend on the variable. Future work may
focus on identifying suitable correlation functions and length
scales, as above, to implement with variable-dependent locali-
zation to achieve further improvements in the forecasts.

There are still many avenues to explore with regard to
localization. It has been shown that scale-dependent localiza-
tion is useful in general (Caron and Buehner 2022; Wang and
Wang 2023), although its performance in the tropics is still

questionable (Caron and Buehner 2022), and so requires fur-
ther study. The localization function is not necessarily best
specified as a fixed function of distance. Anderson (2012) for in-
stance showed that the localization function is a function of the
sample correlation itself in addition to the ensemble size. This
issue may be dealt with using adaptive localization schemes
such as those proposed by Bishop and Hodyss (2007, 2009).
These schemes define the localization function from the ensem-
ble itself, but these schemes are quite expensive to apply.

One limitation of this study is that the ABC model is a dry dy-
namics model and so does not represent moist processes, even
though moist processes are obviously important for convective-
scale data assimilation. However, as mentioned in section 5a, the
tropical dry dynamics representing vertical wind (dry convection)
and the mass–wind interactions are still interesting and relevant
to explore as these are captured by the ABC model. Another
limitation relates to the lower dimensionality of the ABC model
(two-dimensional plane), so divergence and vorticity are only re-
lated to either zonal or meridional wind. Despite the limitations,
this study could still pave the way for further work in testing
IVDL and SVDL in full NWP systems, especially in the tropics,
to assess their feasibility and benefits in applying variable-
dependent or selective multivariate localization to improve
EnVar data assimilation. Should computational costs permit,
one might even combine this work with that of Buehner and
Shlyaeva (2015) to have scale-dependent, variable-dependent,
and selective multivariate localization altogether.
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