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The observed rate of global warming since the 1970s has been pro-
posed as a strong constraint on equilibrium climate sensitivity (ECS)
and transient climate response (TCR) – key metrics of the global
climate response to greenhouse-gas forcing. Using CMIP5/6 mod-
els, we show that the inter-model relationship between warming and
these climate sensitivity metrics (the basis for the constraint) arises
from a similarity in transient and equilibrium warming patterns within
the models, producing an effective climate sensitivity (EffCS) gov-
erning recent warming that is comparable to the value of ECS gov-
erning long-term warming under CO2 forcing. However, CMIP5/6
historical simulations do not reproduce observed warming patterns.
When driven by observed patterns, even high ECS models produce
low EffCS values consistent with the observed global warming rate.
The inability of CMIP5/6 models to reproduce observed warming pat-
terns thus results in a bias in the modeled relationship between
recent global warming and climate sensitivity. Correcting for this
bias means that observed warming is consistent with wide ranges
of ECS and TCR extending to higher values than previously recog-
nized. These findings are corroborated by energy balance model sim-
ulations and coupled model (CESM1-CAM5) simulations that better
replicate observed patterns via tropospheric wind nudging or Antarc-
tic meltwater fluxes. Because CMIP5/6 models fail to simulate ob-
served warming patterns, proposed warming-based constraints on
ECS, TCR, and projected global warming are biased low. The results
reinforce recent findings that the unique pattern of observed warm-
ing has slowed global-mean warming over recent decades, and that
how the pattern will evolve in the future represents a major source of
uncertainty in climate projections.
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Equilibrium climate sensitivity (ECS) and transient cli-1

mate response (TCR) are key metrics of the global-mean2

surface temperature response to increasing greenhouse-gas3

concentrations. They represent the warming under a doubling4

of atmospheric carbon dioxide (CO2) at equilibrium and at the5

time of CO2 doubling, respectively. Model values of ECS and6

TCR are strongly correlated with projections of 21st century7

warming (1, 2). The recent IPCC Sixth Assessment Report8

(AR6) assessed the ranges of ECS and TCR to be substantially9

more narrow than in previous Reports (2) following advances10

in scientific understanding of several independent lines of ob-11

servational evidence (e.g., 3). Narrower ranges of ECS and12

TCR in turn translate to better-constrained projections of 13

21st century warming compared to projections based on global 14

climate models (GCMs), which span wider ECS and TCR 15

ranges (4). 16

One major update in IPCC AR6 was a reinterpretation 17

of historical energy budget constraints on climate sensitiv- 18

ity based on observed warming since the 1800s. While the 19

historical energy budget was once thought to place strong 20

constraints on ECS (5–7), in IPCC AR6 it was assessed to pro- 21

vide relatively weak constraints, particularly at the high end 22

of the climate sensitivity range. This assessment was based 23

on (i) stubbornly-large uncertainty in the radiative forcing 24

that drove historical warming, owing primarily to uncertainty 25

in aerosol forcing, and (ii) work since AR5 showing that dif- 26

ferences between historical and future (centennial timescale) 27

sea-surface temperature (SST) trend patterns result in esti- 28
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mates of ECS that are biased low (2, 3, 8–19). This SST29

pattern effect occurs because the feedbacks governing Earth’s30

global radiative response per degree of global warming depend31

on the spatial pattern of that warming. In particular, warming32

since the 1800s has been relatively slow within key regions33

of positive (destabilizing) radiative feedbacks including the34

eastern tropical Pacific Ocean and Southern Ocean; in the long35

term, however, these regions are expected to warm more than36

the global mean, leading to a less-negative global feedback and37

thus an increase in the climate’s sensitivity to greenhouse-gas38

forcing (8, 9, 19–27). Thus, the value of the effective climate39

sensitivity (EffCS) governing historical warming is thought to40

be lower than the value of ECS governing equilibrium warming41

under CO2 forcing (2, 3).42

Another major advance in recent years has been the de-43

velopment of novel observational constraints (often referred44

to as “emergent constraints”), wherein coupled GCMs are45

used to find a correlation between an observable quantity and46

something we wish to predict, and then the model-based re-47

lationship is combined with observations of that quantity to48

derive constrained predictions (28–31). Strong constraints on49

ECS and TCR have been derived using the post-1970s rate of50

global-mean warming (18, 32–34): because GCMs with higher51

ECS and TCR values tend to overestimate the observed rate52

of warming, the implication is that high values of climate sensi-53

tivity are less likely. This constraint was proposed to avoid the54

issues plaguing energy budget constraints based on warming55

since the 1800s (32): because global aerosol radiative forcing56

changes have been relatively small since the 1970s, the use57

of this period substantially reduces the impact of uncertainty58

in radiative forcing; and SST pattern effects are implicitly59

accounted for in the use of GCMs to derive the correlation60

between recent warming and ECS (or TCR).61

As summarized in Forster et al. (2), studies using post-62

1970s global warming as an observational constraint produce63

narrow bounds on ECS (with best estimates of 2.6-2.8◦C and64

5-95% ranges within 1.5-4.1◦C) and TCR (with best estimates65

of 1.6-1.7◦C and 5-95% ranges within 1.0-2.3◦C). Collectively,66

these studies provided the strongest constraints on ECS and67

TCR of any of the main lines of evidence assessed in IPCC68

AR6, and were a primary justification for assessing the upper69

bounds on the ECS likely (2.5-4◦C) and very likely (2-5◦C)70

ranges to be lower than in previous Reports. These narrower71

ranges also suggest that GCMs with ECS values higher than72

about 5◦C, of which there are many (35) in the Coupled Model73

Intercomparison Project phase 6 (CMIP6, ref. 36), may be74

less valid for projecting future warming (e.g., 2, 37).75

For such a constraint to be robust, it must exhibit two key76

properties. First, because many spurious correlations between77

observable and predicted quantities of interest can be found by78

chance within GCMs (38), any correlation that is used as the79

basis for the constraint must rest on sound physical principles80

(28, 29, 31, 39). Second, the GCMs used as the basis for the81

constraint must not share a common bias, relative to nature,82

in their representation of this correlation (e.g., 28, 40).83

For constraints on ECS and TCR based on observed post-84

1970s global warming, there is a strong physical basis for the85

modeled correlation: higher ECS and TCR correspond to a86

less-efficient radiative response per degree of global warming87

which, all else being equal, should lead to a faster rate of global88

warming under greenhouse-gas forcing. And the constraints89

have been shown to produce similar results whether using 90

CMIP5 or CMIP6 models (18, 32–34), providing confidence 91

in their robustness. 92

However, recent work has found that historical simulations 93

of CMIP5/6 models generally fail to simulate the observed 94

spatial pattern of post-1970s SST trends (16, 17, 41, 42). In 95

particular, the models produce relatively weak spatial gradi- 96

ents in SST trends, with somewhat enhanced warming in the 97

eastern tropical Pacific Ocean and at high latitudes, while 98

observations show strong spatial gradients in SST trends, with 99

cooling in the eastern Pacific and Southern Oceans. 100

These model-versus-observed discrepancies in SST trend 101

patterns influence the radiative feedbacks that govern climate 102

sensitivity: when atmosphere GCMs are forced with the ob- 103

served post-1970s SST trends, they generally produce global 104

radiative feedbacks that are substantially more negative (lower 105

EffCS) than feedbacks produced over this period by historical 106

simulations of the same coupled GCMs (16, 17). This suggests 107

that there is in fact a common bias across CMIP5/6 GCMs 108

that could affect the modeled relationship between post-1970s 109

warming and climate sensitivity metrics. It is possible, for 110

instance, that GCMs overestimate recent warming in part due 111

to their biases in simulated warming patterns, with relatively 112

too much warming in key positive feedback regions, rather 113

than simply having too-high values of ECS or TCR (as is 114

assumed by the observational constraint). IPCC AR6 noted 115

this possibility, finding it more likely than not that constraints 116

on ECS and TCR based on observed post-1970s global warm- 117

ing are biased low (2); but without studies quantifying the 118

magnitude of this bias, no corrections could be made. 119

Here we evaluate the potential for SST pattern effects to 120

bias observational constraints on ECS and TCR via their influ- 121

ence on the CMIP5/6-based relationship between post-1970s 122

global warming and these climate sensitivity metrics. We 123

first reproduce constraints on ECS and TCR based on recent 124

warming and find similar results to the published literature. 125

We then analyze a subset of CMIP5/6 models that provide the 126

output necessary to accurately calculate radiative feedbacks 127

(and corresponding EffCS) over the historical period. We find 128

that CMIP5/6 models warm too much over recent decades in 129

large part due to their failure to replicate the observed post- 130

1970s SST trend patterns, and thus even high values of climate 131

sensitivity are consistent with the observed global warming 132

rate. We conclude that the proposed constraints on ECS and 133

TCR based on recent global warming are biased low. We 134

evaluate the robustness of our findings using energy-balance 135

model simulations and coupled-model (CESM1-CAM5) simu- 136

lations that better replicate observed patterns via tropospheric 137

wind nudging or Antarctic meltwater fluxes. Finally, we dis- 138

cuss implications of these results for recent climate sensitivity 139

assessments and for 21st century warming. 140

The relationship between post-1970s warming and cli- 141

mate sensitivity 142

While several different time periods have been used to place 143

observational constraints on climate sensitivity from recent 144

global warming (32, 33), here we focus on 1981-2014 following 145

Tokarska et al. (34). We show relationships between the rate 146

of global-mean surface warming over this period and ECS (Fig. 147

1a) for all GCMs that provide the necessary output on the 148

CMIP5/6 archives (21 CMIP5 models and 38 CMIP6 models; 149

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Armour/Proistosescu et al.
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Fig. 1. Relationships between equilibrium climate
sensitivity (ECS), effective climate sensitivity (EffCS),
and the 1981-2014 warming rate in CMIP5/6 models. a,
CMIP5/6 ECS versus warming rate using averages of all
available ensemble members for each model (correlation
r = 0.68); colors correspond to values of ECS. b, Eight-
model subset ECS versus warming rate with ensemble
means shown as larger circles and ensemble members
shown as smaller dots. c, Eight-model subset ECS versus
EffCS over 1981-2014 with ensemble means shown as
larger circles and ensemble members shown as smaller
dots; diamonds show EffCS values from AGCM simula-
tions forced by observed SST and SIC trend patterns. d,
Eight-model subset EffCS over 1981-2014 versus warm-
ing rate with ensemble means shown as larger circles
and ensemble members shown as smaller dots; diamonds
show warming rates estimated based on EffCS values from
AGCM simulations using the regression between EffCS
and warming rate calculated from the eight-model subset
(blue line). In b-d, open circles show CESM1-CAM5 simu-
lations with wind nudging or meltwater fluxes as described
in the text. Blue lines show fits calculated using ordinary
least squares regression, with dashed blue lines showing
5-95% ranges of fit parameters (Methods). Gray shading
shows observational estimates (5-95% range) of observed
warming rate (HadCRUT5, ref. 45) and EffCS (19). See
Supplementary Information for a list of models used.

see Supplementary Information for a list). While we focus on150

ECS in the main text, the full analysis using TCR produces151

similar results (Supplementary Information). We calculate152

warming rates by averaging over all available ensemble mem-153

bers of each model’s historical simulation (extended using154

RCP4.5 over years 2006-2014 for CMIP5 models), where each155

ensemble member is forced by identical historical greenhouse-156

gas, aerosol, volcanic, and solar forcings, and differ only in157

their phasing of internal variability. CMIP5/6 model values158

of ECS have been estimated using the standard approach of159

extrapolating to equilibrium the regression between global160

top-of-atmosphere energy imbalance and global temperature161

change over 150 years of abrupt CO2 quadrupling simula-162

tions, scaled by a factor of a half to account for CO2 doubling163

(35, 43, 44).164

We find a strong correlation between the 1981-2014 global165

warming rate and ECS (Fig. 1a) or TCR (Fig. S1a). Us-166

ing this regression (Methods), the observed warming rate of167

0.18◦C dec−1 (0.15-0.21◦C dec−1, 5-95% range) calculated168

from HadCRUT5 (45) gives ECS = 2.7◦C (1.5-3.9◦C) and169

TCR = 1.6◦C (1.1-2.1◦C), in good agreement with previous170

studies (18, 32–34).171

To better understand the modeled relationship between172

global warming and climate sensitivity, we consider a subset173

of eight CMIP5/6 models representing all those that provide174

at least three historical ensemble members and the output175

necessary to accurately calculate radiative feedbacks over the176

historical period: CanESM5, CNRM-CM6-1, GISS-E2-1-G,177

HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-178

LM, and CESM1-CAM5. The relationships between 1981-2014179

global warming rate and ECS are similar for this eight-model180

subset (Fig. 1b) to those found in the full CMIP5/6 ensemble181

(Fig. 1a). For each model, there is substantial spread in182

warming rates across ensemble members due to internal climate183

variability (Fig. 1b), raising two key questions: (i) What factors184

control the variability in warming rates across model ensemble185

members? And, (ii) do CMIP5/6 models accurately represent 186

how those factors were expressed in observations over the 187

period 1981-2014? 188

Each of the eight models in our subset has a corresponding 189

CMIP6 piClim-histall simulation wherein the same atmosphere 190

GCM (AGCM) was run with fixed pre-industrial SSTs and sea- 191

ice concentrations (SICs) while all radiative forcing agents were 192

varied as in the corresponding CMIP6 historical simulations. 193

The piClim-histall simulations were performed as part of the 194

Radiative Forcing Model Intercomparison Project (RFMIP, 195

ref. 46) for CMIP6, while we perform our own piClim-histall- 196

style simulation for CESM1-CAM5 following the same protocol. 197

From these simulations, the historical effective radiative forcing 198

(ERF) can be diagnosed from top-of-atmosphere radiation 199

anomalies relative to pre-industrial conditions (17, 47), with a 200

small correction for land warming (2, 48) (Methods). Using 201

the standard model of global energy balance, 202

N = λT + ERF, [1] 203

whereN is the global top-of-atmosphere radiation anomaly and 204

T is the global near-surface air temperature anomaly (both 205

relative to pre-industrial), we diagnose the global effective 206

radiative feedback λ (< 0 for a stable climate) from linear 207

regression of N − ERF against T over the period 1981-2014 208

for each ensemble member (Methods). From this, we calculate 209

EffCS for the period 1981-2014 as, 210

EffCS = −ERF2×

λ
, [2] 211

where ERF2× is the effective radiative forcing from CO2 dou- 212

bling (35, 44) (Methods). EffCS is largely set by the value of 213

λ both because it is in the denominator in equation (2) and 214

because λ varies fractionally more than does ERF2× across 215

models (35). EffCS can be interpreted as the equilibrium 216

warming that would occur in response to CO2 doubling if the 217

value of λ calculated over the period 1981-2014 applied to that 218

equilibrium state. 219
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We find that there is a large spread in EffCS for the period220

1981-2014 across ensemble members of each GCM (small dots221

in Fig. 1c). Moreover, differences in EffCS explain a large222

fraction of the variance (r2 = 0.61) in the 1981-2014 warming223

rate across all ensemble members of our eight-model subset;224

those with EffCS values near 2◦C tend to produce warming225

rates in line with observations, while those with higher values226

of EffCS warm too much (Fig. 1d).227

The high correlation between EffCS and the global warming228

rate can be understood by making the approximation N = κT229

in equation (1), where κ is the ocean heat uptake efficiency230

representing all processes setting the amount of global ocean231

heat uptake per degree of global warming (e.g., 49–51); a232

larger value of κ corresponds to a more efficient uptake of heat233

by the deep ocean and thus less surface warming. Then, the234

rate of warming can be approximated as (e.g., 52),235

dT

dt
= d(ERF)/dt

κ− λ
. [3]236

Calculating κ from regression of N against T over 1981-2014,237

and given d(ERF)/dt and λ as calculated above, equation238

(3) explains 83% of the variance in the 1981-2014 warming239

rate across all ensemble members of our CMIP5/6 model240

subset. Most of the explanatory power comes from variations241

in λ: holding κ and d(ERF)/dt fixed at ensemble-mean values,242

equation (3) still explains 58% of the variance across ensemble243

members. That is, variations in λ (and thus EffCS) largely244

govern the global warming rate, with variations in κ playing a245

secondary role. There is little correlation between λ and κ on246

the timescales considered here (Methods), so we treat them247

as independent for our purposes.248

Using the regression between EffCS and the 1981-2014249

warming rate derived from the eight-model subset (Fig. 1d),250

the observed warming rate of 0.18 (0.15-0.21) ◦C dec−1 im-251

plies EffCS = 2.3 (1.9–2.7)◦C. While on the low end of the252

CMIP5/6 models (Fig. 1d), this implied value of EffCS is in253

good agreement with a recent observational estimate (19) of254

EffCS = 2.0 (1.5–3.1)◦C based on global energy imbalance255

calculated from a merged satellite dataset (53) in combination256

with ERF estimates from IPCC AR6 (2) and HadCRUT5 tem-257

perature observations over 1985-2014. The CMIP5/6-based258

relationship between EffCS and warming rate thus compares259

well with observations.260

Importantly, EffCS may be different from ECS, which is261

given by262

ECS = −ERF2×

λ2×
, [4]263

owing to the fact that the radiative feedback λ governing264

recent warming may be different from the radiative feedback265

λ2× governing the equilibrium response to CO2 doubling if266

warming patterns differ between the two timescales. Given267

that ECS is a measure of the equilibrium climate response to268

CO2 forcing, it is worth considering why it is highly correlated269

with the rate of transient warming over 1981-2014 in CMIP5/6270

models (Figs. 1a,b). The reason appears to be that values of271

ECS and ensemble-mean EffCS are nearly identical for each272

of the CMIP5/6 models (Fig. 1c); EffCS is similar to but273

slightly smaller than ECS for most of the GCMs, with a high274

correlation between them (r2 = 0.70).275

These findings are consistent with the fact that the spa-276

tial patterns of historical warming (setting EffCS over 1981-277

2014) and equilibrium warming under abrupt CO2 forcing278

(setting ECS) are similar in CMIP5/6 models (Figs. 2a,b) (17); 279

both are characterized by relatively weak spatial gradients 280

in SST trends. That is, the relationship between ECS and 281

the 1981-2014 warming rate, which forms the basis for the 282

observational constraint, reflects similar patterns of transient 283

and equilibrium warming within the coupled CMIP5/6 models, 284

corresponding to a relatively small pattern effect (i.e., values 285

of EffCS governing recent warming are comparable to values 286

of ECS governing long-term warming). 287

As noted in the introduction, the observed SST trend pat- 288

tern over 1981-2014 (Fig. 2c) is distinct from patterns sim- 289

ulated by the coupled CMIP5/6 models (17, 41, 42). With 290

strong warming in the western tropical Pacific Ocean (a region 291

of negative feedbacks) and cooling in the eastern Pacific and 292

Southern Oceans (regions of positive feedbacks), the observed 293

pattern should favor a low value of EffCS (8, 9, 14, 16, 17, 19– 294

27) and thus a reduced global warming rate (equation (3)). 295

This observed pattern of warming is also distinct from the 296

long-term warming pattern we expect under CO2 forcing (2), 297

suggesting that the relationship between EffCS (governing 298

recent warming) and ECS (governing long-term warming) in 299

nature may be different from that simulated by CMIP5/6 300

models. In the next section, we consider how model SST trend 301

biases may, in turn, bias the warming-sensitivity relationship 302

which forms the basis for the observational constraint. 303

Impact of model SST trend biases on the warming- 304

sensitivity relationship 305

To quantify the impact of the SST trend pattern on global 306

warming rate, we make use of amip simulations wherein the 307

same subset of eight AGCMs are run with prescribed time- 308

evolving observed SSTs and SICs while all radiative forcing 309

agents are varied as in the corresponding historical simulations. 310

The amip simulations refer to the Atmospheric Model Inter- 311

comparison Project (AMIP II) DECK experiments performed 312

as part of CMIP6 (36); we perform our own amip-style simu- 313

lation for CESM1-CAM5. In combination with the RFMIP 314

simulations, these simulations allow us to calculate λ and Ef- 315

fCS using regression over the period 1981-2014 as described 316

above (see also refs. 14, 17, 19). 317

Across the eight AGCMs, the observed 1981-2014 SST trend 318

pattern produces an average value of EffCS = 2.1◦C (range 319

1.3-3.2◦C) – in good agreement with EffCS derived from global 320

energy budget observations (19) and implied by the observed 321

global warming rate (Figs. 1c,d). This EffCS value is lower 322

than the average EffCS simulated by the same coupled GCMs 323

over 1981-2014. With identical atmospheric physics in AGCM 324

and coupled GCM versions of each model, EffCS differences 325

are due only to differences in observed and simulated SST and 326

SIC trend patterns (14, 17, 19). 327

For the coupled GCMs with low values of ECS (GISS- 328

E2-1-G, MIROC6, NorESM2-LM), 1981-2014 EffCS val- 329

ues are similar for AGCM and coupled GCM simulations 330

(Fig. 1c). However, for all other GCMs in our sub- 331

set (CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL- 332

CM6A-LR, CESM1-CAM5), 1981-2014 EffCS values in 333

AGCMs are substantially lower than they are in the same 334

coupled GCMs, with AGCM values being at the edge of or 335

even below the range of EffCS values generated by internal 336

variability in the coupled model historical simulations. This 337

suggests that the observed SST trend pattern (Fig. 2c) reflects 338
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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Fig. 2. Sea-surface temperature (SST) trends in
CMIP5/6 models and observations. SST trend patterns
for a, CMIP5/6 models over years 1-150 following abrupt
CO2 quadrupling (CMIP5/6 abrupt-4xCO2 simulation from
which ECS is calculated). b, CMIP5/6 models over 1981-
2014 (CMIP5/6 historical from which EffCS is calculated).
c, Observations over 1981-2014 (from amip). d, CESM1-
CAM5 over 1981-2014. e, CESM1-CAM5 over 1981-2014
with Southern Hemisphere high latitude wind nudging. f,
CESM1-CAM5 over 1981-2013 with Antarctic meltwater
fluxes.

an extreme phase of internal variability, a forced response not339

captured by the coupled GCMs, or a combination of both340

(17, 42). A possible reason for the larger differences between341

AGCM and coupled GCM values of EffCS in high-ECS models342

is that ECS differences across models stem largely from model343

differences in cloud feedbacks in the eastern tropical Pacific344

and Southern Oceans (35). Thus, observed cooling in these345

regions over 1981-2014 reduces the value of EffCS more for346

models with higher ECS, while leaving the value of EffCS347

relatively unchanged for models with lower ECS. Further ex-348

amination of CESM1-CAM5 shows that the regression of local349

SST trends onto either the global warming trend or EffCS over350

1981-2014 across ensemble members highlights the eastern351

tropical Pacific and Southern Oceans as key regions governing352

the warming rate and EffCS (Fig. S2).353

The larger values of EffCS in the coupled GCMs relative to354

AGCMs suggests that at least a portion of the reason the cou-355

pled GCMs overestimate warming over 1981-2014 is that they356

fail to simulate the observed SST trend patterns – rather than357

simply having too-high values of ECS (or TCR). Moreover,358

it suggests that if the coupled GCMs were able to correctly359

simulate the observed warming patterns, they would produce360

lower values of EffCS (as shown by their AGCM simulations)361

and thus reduced 1981-2014 warming rates. In other words,362

CMIP5/6 models share a common bias in their ability to sim-363

ulate the observed SST trend pattern which increases their364

values of EffCS and thus their rate of warming over recent365

decades – directly biasing their simulated relationship between366

warming rate and ECS on which observational constraints are367

based.368

Correcting for SST trend pattern biases in observa- 369

tional constraints 370

We next estimate the global-mean warming each GCM would 371

produce if it correctly simulated the observed 1981-2014 SST 372

trend pattern. To do so, we multiply the value of EffCS de- 373

rived from the AGCM simulations by the regression coefficient 374

between the EffCS and the 1981-2014 warming rate derived 375

from all ensemble members in the eight-GCM subset (dia- 376

monds in Fig. 1d; Methods). The results suggest that each 377

of the eight CMIP5/6 models would have produced warming 378

near the observed warming rate had it simulated the observed 379

SST trend pattern. Thus, once biases in SST trend patterns 380

are accounted for, there is little correlation between the 1981- 381

2014 warming rate and ECS (Fig. 3a). The average warming 382

rate correction across the eight GCMs is −0.09◦C dec−1, with 383

larger reductions in warming rates (and EffCS) for models 384

with higher ECS (Figs. 1c and 3a). 385

We conclude that observed warming is consistent with a 386

wide range of ECS values, and that by failing to account for 387

biases in coupled GCM SST trend patterns, the proposed 388

observational constraint biases estimates of ECS toward low 389

values. Similar results hold if we instead use the regression 390

between 1981-2014 EffCS and warming rate derived from each 391

GCM separately to estimate the warming rate consistent with 392

AGCM EffCS values, but uncertainties are larger owing to 393

larger uncertainty in the regression, particularly for models 394

with few ensemble members (Figs. S3-4). 395

As another method to estimate warming rates in the eight 396

GCMs when correcting for biases in SST trend patterns, we 397

use equation (3) with values of λ derived from each model’s 398

AGCM simulation (Methods). Once again, the results suggest 399

that each of the eight CMIP5/6 models would have produced 400

warming near the observed warming rate had they simulated 401

the observed SST trend pattern, leaving little correlation 402
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Fig. 3. Relationships between equilibrium climate sensitivity (ECS) and the
1981-2014 warming rate with (diamonds) and without (circles) accounting for
observed warming patterns. ECS vs warming rate for a, CMIP5/6 eight-model
subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds
showing corrected warming rates estimated using AGCM values of EffCS and the
relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confi-
dence ranges from uncertainty in the fit. b, CMIP5/6 eight-model subset, with circles
showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected
warming rates estimated using AGCM values of λ and equation (3), with horizontal
lines showing uncertainty ranges reflecting the spread in κ across ensemble mem-
bers. c, Relationship between ECS and warming rate in two-layer EBM simulations
with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS (19) (Fig. S6), with a median of 2◦C
and horizontal lines showing 5-95% confidence ranges illustrating 1.5-3.1◦C. Gray
shading shows observational estimates (5-95% range) of observed warming rate
(HadCRUT5, ref. 45).

between the 1981-2014 warming rate and ECS (Fig. 3b). The403

average warming rate correction across the eight GCMs is404

−0.05◦C dec−1 with a larger impact for models with higher405

ECS, once again. This supports our conclusion that observed406

warming is consistent with a wide range of ECS values, and407

that the proposed observational constraint biases estimates408

of ECS toward low values; similar results hold for constraints409

on TCR (Figs. S1,4). It also suggests that observed global410

warming has been slowed by the unique SST trend pattern411

over recent decades (Fig. 2c) and that warming would have412

been more rapid had the pattern been more similar to that413

simulated by CMIP5/6 models (Fig. 2b).414

Simulations with a two-layer energy balance model (EBM).415

The results presented so far rely on diagnostic interpreta-416

tion of CMIP5/6 output and on inferences of GCM warming417

rates had they correctly simulated the observed 1981-2014418

SST trend pattern and associated EffCS. Here we evaluate 419

the robustness of this interpretation within the context of a 420

widely-used energy balance model (EBM, refs. 54–56) which 421

represents the Earth as two interacting layers – one represent- 422

ing all surface components of the climate system, including the 423

near-surface atmosphere, ocean mixed layer, cryosphere, and 424

land; and one representing the ocean below the mixed layer. 425

The EBM predicts the surface temperature response to ERF 426

through a representation of the efficiency of radiative response 427

(governed by λ), the efficiency of ocean heat uptake, and the 428

efficacy of ocean heat uptake which allows feedbacks to change 429

over time as in coupled GCMs (Methods). This EBM was used 430

extensively in IPCC AR6, including for constraining global 431

temperature projections (see climate model “emulators” in 432

refs. 2, 4). Here it provides a predictive physical model with 433

all of the necessary ingredients to test the robustness of the 434

above results derived from diagnostic analyses of CMIP5/6 435

models. 436

We fit the EBM parameters to the CMIP5/6 abrupt4xCO2 437

simulations of all models used in the analysis above (Methods; 438

Supplementary Information). For each CMIP5/6 model pa- 439

rameter set, we run the EBM over the period 1850-2014 using 440

the timeseries of historical ERF calculated as an average over 441

the eight-model subset as described above, and we calculate 442

EffCS over 1981-2014 using equations (1) and (2). We also run 443

the EBM under an abrupt increase in ERF representing CO2 444

quadrupling (to calculate EBM values of ECS using regression 445

over 150 years, as in the CMIP5/6 models). 446

The EBM produces features similar to the CMIP5/6 anal- 447

ysis seen in Fig. 1. There is a strong correlation between 448

the 1981-2014 warming rate and ECS, with lower ECS values 449

being more consistent with observations (Figs. 3c and S5). 450

This correlation is explained by the fact that 1981-2014 EffCS 451

values, governing warming over that period, are similar to 452

ECS values (Fig. S5); EffCS tends to be slightly smaller than 453

ECS owing to the ocean heat uptake efficacy parameter being 454

larger than one for most CMIP5/6 models (Supplementary 455

Information), allowing feedbacks under transient warming to 456

be slightly more negative than at equilibrium. Differences in 457

EffCS explain a large fraction of the variance in the 1981-2014 458

warming rate (r2 = 0.88); values of EffCS near 2◦C tend to 459

produce warming rates in line with observations, while higher 460

values of EffCS produce too much warming (Fig. S5). The 461

remaining variations in EBM warming rates come from differ- 462

ences in ocean model parameters (Methods), but differences 463

in forcing do not contribute here because we have used the 464

same historical ERF for all parameter sets. The regression 465

between EffCS and the 1981-2014 warming rate also nearly 466

matches that found from the eight-model subset, and agrees 467

well with the relationship between EffCS and the 1981-2014 468

warming rate derived from observational constraints (Fig. S5). 469

We next consider how EBM simulations of the 1981-2014 470

warming rate change when we introduce a linear trend in λ 471

(Methods), representing an idealization of trends in λ over 472

recent decades as simulated by AGCMs forced by observed 473

warming patterns (8, 14, 17, 19, 25), such that EffCS over 1981- 474

2014 becomes equal to the value EffCS = 2.0◦C (with bounds of 475

1.5 to 3.1◦C also tested) estimated from global energy budget 476

observations (19). This produces a substantial decrease in 477

EffCS for high ECS models, but little change in EffCS for low 478

ECS models (diamonds in Fig. S5), similar to differences seen 479
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in coupled GCM and AGCM versions of CMIP5/6 models480

(Fig. 1c). The result is that the EBM produces warming near481

the observed rate for all CMIP5/6 model parameter sets, in482

line with expectations based on the regression between EffCS483

and warming rate (Figs. 3c and S5). The average warming484

rate correction across the subset of eight models is −0.06◦C485

dec−1, with larger reductions in warming rates (and EffCS)486

for models with higher ECS, similar to our analysis using487

CMIP5/6 models above.488

The relationship between ECS and the warming rate when489

imposing observed EffCS within the EBM is shown in Fig. 3c.490

Each CMIP5/6 model parameter set produces warming near491

the observed 1981-2014 warming rate, with little correlation492

between warming rate and ECS. These results show that the493

low value of EffCS produced by the observed 1981-2014 SST494

trend pattern implies warming in line with the observed global495

warming rate, regardless of the value of ECS. This supports496

our interpretation that observed warming is consistent with497

a wide range of ECS values once accounting for the observed498

SST trend pattern and its associated low EffCS. Similar results499

hold for comparisons of warming rates and TCR (Fig. S5).500

Simulations with a coupled GCM nudged toward observed501

warming patterns. Finally, we evaluate the robustness of our502

results using two sets of CESM1-CAM5 simulations wherein503

the coupled model is nudged toward the observed 1981-2014504

SST trend pattern in physically-plausible ways. The first set of505

simulations, performed by Dong et al. (57) based on methods506

developed in Blanchard-Wrigglesworth et al. (58), involves507

nudging Southern Hemisphere tropospheric winds (above the508

boundary layer) poleward of 40◦S to match the ERA-Interim509

Reanalysis over the period 1981-2014; five ensemble members510

were run, which we average together for comparison to the511

CESM1-CAM5 ensemble mean response. The second set of512

simulations, performed by Dong et al. (52) and Pauling et513

al. (59), involves adding meltwater to the Southern Ocean514

subsurface to represent discharge due to mass imbalance of the515

Antarctic ice sheet over 1981-2013 (an effect not represented in516

CMIP5/6 historical simulations); nine ensemble members were517

run, which we average together for comparison to the CESM1-518

CAM5 ensemble mean response. In both sets of simulations,519

the SST trend pattern more closely matches observations, with520

some cooling in the Southern Ocean and eastern tropical Pa-521

cific Ocean and with warming in the western Pacific Ocean522

becoming relatively larger (Figs. 2e,f); see ref. (57) for a dis-523

cussion of the atmospheric teleconnection pathways by which524

these southern high latitude forcings influence tropical SST525

patterns.526

Using equations (1) and (2) as before, we find that both527

sets of simulations produce smaller values of EffCS than the528

ensemble mean of CESM1-CAM5 historical simulations (Fig.529

1c), bringing EffCS nearer to that estimated from global energy530

budget observations (19). In turn, both sets of simulations531

show reduced global warming rates (Fig. 1d) that are more in532

line with observations. The relationship between EffCS and533

warming rate in these simulations also approximately follows534

expectations based on the regression between EffCS and warm-535

ing rate derived from either the eight-model subset (Fig. 1d)536

or CESM1-CAM5 (Fig. S3). However, despite similar changes537

to EffCS, Antarctic meltwater forcing produces a larger re-538

duction in global warming rate than Southern Hemisphere539

wind forcing in this model owing to an increase in ocean heat540

uptake efficiency (κ) that works together with feedback (λ) 541

changes to slow the warming (52). Similar results hold for 542

comparisons of warming rates and TCR (Figs. S1,4). These 543

findings support the interpretation above that EffCS (rather 544

than ECS or TCR) governs the global warming rate over 1981- 545

2014, and that when coupled GCMs more accurately replicate 546

observed SST trend patterns, they produce lower EffCS and 547

thus slower global warming, in line with observations. 548

Discussion and conclusions 549

The results presented here suggest that high-sensitivity 550

CMIP5/6 models produce too much post-1970s warming in 551

part due to their failure to simulate observed SST trend pat- 552

terns, which in turn leads to model values of EffCS that are 553

too high compared to the observed EffCS of around 2◦C over 554

this period. Because GCMs with high values of ECS and TCR 555

are able to produce values of EffCS near 2◦C when forced by 556

observed SSTs over 1981-2014 (Figs. 1c, S1c), we estimate 557

that even those high-sensitivity GCMs could produce global 558

warming rates in line with observations if they were able to 559

better simulate observed SST trend patterns (Figs. 1d, 3a,b). 560

This is a bias in the GCM-based relationship between post- 561

1970s warming and climate sensitivity metrics which causes 562

the proposed observational (or “emergent”) constraint to be 563

biased toward low values of climate sensitivity. While pub- 564

lished constraints (18, 32–34) may still reflect useful lower 565

bounds on ECS and TCR, we find that they are consistent 566

with wide ranges of ECS and TCR extending to higher values 567

than previously recognized. While not a focus here, model 568

biases in historical radiative forcing (e.g., 60, 61) could also 569

impart biases in the modeled warming-sensitivity relationship 570

on which the observational constraint is based. 571

It is worth considering the implications of these results 572

for the recent climate sensitivity assessments that substantial 573

narrowed climate sensitivity uncertainty for the first time in 574

decades by estimating very likely ranges of around 2-5◦C for 575

ECS (2, 3) and 1.2-2.4◦C for TCR (2). That the observed rate 576

of recent warming cannot be used to constrain climate sensitiv- 577

ity means we must rely on other lines of evidence. Sherwood 578

et al. (3) employed a Bayesian framework to combine sev- 579

eral independent lines of evidence for ECS, with paleoclimate 580

observations and process understanding of climate feedbacks 581

providing strong constraints on the high end. Importantly, 582

that assessment did not use observational (or “emergent”) 583

constraints based on recent warming, so our findings do not 584

affect that assessed ECS range. 585

However, without employing a formal Bayesian framework, 586

AR6 relied on observational constraints based on global tem- 587

perature changes as the strongest constraint on the upper ends 588

of the ECS and TCR ranges (while many different lines of 589

evidence support the lower ends of the ranges). Together with 590

the recent result that the climate response to the Mt. Pinatubo 591

eruption also does not provide a reliable observational con- 592

straint on ECS (62), our findings suggest that the upper end of 593

the climate sensitivity range is less well supported than it was 594

within AR6, particularly for TCR which relied more heavily on 595

this type of observational constraint. There still remain other 596

observational constraints providing evidence against high ECS 597

values, most notably those based on proxy-estimated cooling 598

at the Last Glacial Maximum (2), but for now the Bayesian 599

framework of Sherwood et al. (3) may provide the most robust 600
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support for a 2-5◦C very likely range of ECS. A final implica-601

tion is that the evaluation of model ECS, TCR, and future602

warming based on their performance in historical simulations603

(e.g., 34, 63, 64) must also account for different sea-surface604

temperature trend patterns between observations and models,605

with our results suggesting that even high sensitivity models606

are compatible with observed warming. This too suggests that607

testing in paleoclimate settings (e.g., 65) may provide a more608

useful evaluation of model climate sensitivity and long-term609

warming.610

Important questions remain, including: (i) why do CMIP5/6611

models fail to replicate observed warming patterns over recent612

decades, and how can this model bias be corrected? And, (ii)613

for how long will the observed pattern of warming over recent614

decades continue into the 21st century? Model-observation615

discrepancies may be due to model deficiencies in simulating616

internal variability and/or historical forced responses. Pale-617

oclimate proxy and instrumental data suggest that tropical618

Pacific multidecadal variability may be substantially larger619

than that produced by coupled GCMs (e.g., 66–68), which620

seems consistent with the observed 1981-2014 SST trend pat-621

tern resembling an extreme phase of the Interdecadal Pacific622

Oscillation mode of variability (e.g., 41, 42, 68, 69). Alter-623

natively, several other model deficiencies have been proposed624

to contribute to the SST trend pattern over recent decades625

including: model biases in trends in the Southern Annular626

Mode, potentially due to a misrepresentation of ozone deple-627

tion (e.g., 57, 70, 71); missing Antarctic meltwater fluxes (e.g.,628

52, 57, 59, 72); a misrepresentation of tropospheric aerosol629

forcing, which can affect Pacific trade winds (e.g., 73); model630

biases in Atlantic Ocean SSTs that limit the ability of the631

Atlantic basin to affect Pacific trade winds (74); model bi-632

ases in the transient response of the tropical Pacific to CO2633

forcing (e.g., 75, 76) or volcanic forcing (16); and limitations634

associated with model resolution (e.g., 77).635

Our findings do not depend on the source of the discrepancy636

between CMIP5/6-simulated and observed warming patterns637

because radiative feedbacks and EffCS depend only on SST638

and SIC patterns, regardless of how those patterns arise (e.g.,639

78, 79). But implicit in our use of AMIP simulations to640

estimate how the SST trend pattern has influenced global641

warming rates is that the pattern itself is largely independent642

of ECS. Recent studies argue that models with more-positive643

subtropical low-cloud feedbacks (and thus higher ECS) may644

better replicate the observed cooling of the eastern tropical645

Pacific (e.g., 80), at least when resulting from Southern Ocean646

cooling (52, 57). This potential link between ECS and the647

SST trend pattern would further support our finding that high648

ECS models can produce low values of EffCS, and thus slow649

global warming rates.650

The results presented here suggest that changes in EffCS651

have the capacity to substantially affect the global warming652

rate and that a low value of EffCS driven by a unique SST trend653

pattern has slowed global-mean warming over recent decades,654

relative to what it would have been had the pattern been more655

spatially uniform. However, more work is needed to determine656

whether CMIP5/6 models with high ECS (above ∼ 4◦C) are657

capable of producing the observed SST trend pattern and658

associated low EffCS needed to bring their simulated global659

warming rates in line with observations over recent decades.660

It would be valuable to perform similar wind nudging and/or661

Antarctic meltwater flux simulations, shown here for CESM1- 662

CAM5, using high ECS models. 663

These results reinforce previous findings that global warm- 664

ing will depend on how the SST trend pattern evolves in 665

the future (e.g., 52, 81–83). Our findings suggest that if the 666

observed 1981-2014 pattern continues over the 21st century, 667

then the value of EffCS governing future warming will remain 668

near 2◦C. This would produce 21st century global warming 669

near the lower end of IPCC AR6 projections (Fig. S7), which 670

assume a very likely range of ECS of 2-5◦C (2). However, if 671

enhanced warming of the eastern tropical Pacific and Southern 672

Oceans were to emerge in the future – a pattern projected 673

by GCM simulations of the 21st century and supported by 674

paleoclimate proxy evidence (e.g., 2, 84) – then EffCS would 675

increase, resulting in an increase in the rate of global warming 676

(Fig. S7). The degree to which EffCS could increase depends 677

on the magnitude of the warming in the the eastern tropi- 678

cal Pacific and Southern Oceans, and on the magnitude of 679

the radiative feedbacks in those regions. Because observed 680

post-1970s warming has a unique spatial pattern that does 681

not appear to be representative of the long-term response to 682

greenhouse-gas forcing, it does not preclude the possibility that 683

high values of EffCS are possible for the future, potentially 684

leading to future warming near or even above the upper end of 685

IPCC AR6 projections if ECS turns out to be on the high end. 686

How the pattern of warming will evolve in the future thus 687

represents a major source of uncertainty in climate projections. 688

Developing improved understanding of the causes of the 689

observed SST trend pattern over recent decades and better 690

constraints on how those patterns will evolve in the future is a 691

major challenge for climate science with direct implications for 692

how we interpret the historical warming record and project 21st
693

century warming. We could, for instance, see an increase in 694

the climate’s sensitivity to greenhouse-gas forcing if SST trend 695

patterns evolve to become more similar to those projected 696

by models. For now, climate model biases in historical SST 697

trend patterns suggest that caution is needed in the use of 698

models to derive observational (or “emergent”) constraints 699

on climate sensitivity or future warming based on the rate of 700

global warming over recent decades. 701

Materials and Methods 702

703

Linear regression methods. We use ordinary least squares (OLS) 704

regression to calculate 1981-2014 warming rates and the regression 705

of climate sensitivity metrics (ECS, TCR) against 1981-2014 warm- 706

ing rates using ensemble-mean values (Figs. 1a,b and S1a,b). To 707

estimate ECS and TCR from the warming-sensitivity relationships 708

(Figs. 1a, S1a), we calculate a linear fit of ECS (or TCR) versus 709

1981-2014 warming rate and use the parameters of that fit to esti- 710

mate ECS (or TCR) given the observed warming rate (HadCRUT5, 711

ref. 45) over 1981-2014. Uncertainties in ECS and TCR reflect 712

5-95% confidence ranges of fit parameter values. 713

For the calculation of the effective feedback λ from the regression 714

of N − ERF against T (equation (1)), the presence of error in the 715

predictor variable biases OLS regression toward zero (regression 716

dilution). To correct for this, we use Deming regression, a total least 717

squares regression method, to calculate λ. We estimate the ratio 718

of error variances (variance of global average top-of-atmosphere 719

radiation and variance in global average surface temperature) to 720

be approximately 10 W2m−4K−2 based on AGCM simulations 721

using sea-surface temperatures fixed at pre-industrial conditions. 722

We use OLS regression for all regressions based on the two-layer 723
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EBM, which does not represent internal variability. Within CESM1-724

CAM5, moderate correlations between EffCS and warming rate over725

1981-2014 are found when using the CAM5 Green’s function (22)726

combined with SST trend patterns to estimate radiative feedback727

and EffCS (Fig. S2).728

Effective radiative forcing. Historical effective radiative forcing729

(ERF) is calculated for each of the eight models in our subset730

using RFMIP (46) simulations. The historical ERF is diagnosed as731

the global top-of-atmosphere radiation anomaly in piClim-histall732

simulations (wherein SSTs and SICs are fixed to pre-industrial733

values while all radiative forcing agents are varied as in the corre-734

sponding CMIP6 historical simulations) relative to piClim-control735

simulations (wherein SSTs, SICs, and all radiative forcing agents736

are fixed to pre-industrial values). A small correction (2, 48) is737

made to remove the radiative response to global near-surface air738

temperature change T (mostly land warming) by subtracting λ2×T ,739

where λ2× is estimated from abrupt4xCO2 simulations (35). For all740

RFMIP simulations, the ensemble mean is used when more than one741

member of the simulation exist. CMIP5/6 model values of effective742

radiative forcing for CO2 doubling (ERF2×) have been estimated743

using the standard approach of extrapolating to zero global tem-744

perature change the regression between global top-of-atmosphere745

energy imbalance and global temperature change over 150 years of746

abrupt CO2 quadrupling simulations, scaled by a factor of a half to747

account for CO2 doubling (35, 44).748

Correcting for SST trend pattern biases. For the first method of es-749

timating the warming each GCM would produce if it correctly750

simulated the observed 1981-2014 SST trend pattern (Fig. 3a), we751

first calculate a linear fit (OLS regression) of EffCS versus 1981-752

2014 warming rate from all ensemble members of the eight-GCM753

subset (Fig. 1d). We then use that fit to estimate the warming754

rate given EffCS derived from each AGCM simulation (diamonds755

in Figs. 1d, 3a). Uncertainties (horizontal lines in Fig. 3a) reflect756

5-95% confidence ranges of fit parameter values.757

For the second method of estimating the warming each GCM758

would produce if it correctly simulated the observed 1981-2014 SST759

trend pattern (Fig. 3b), we use equation (3) with values of λ derived760

from each model’s AGCM simulation. In the eight-model ensemble761

considered here, the average correlation between λ and κ across762

historical ensemble members is small (average r2 = 0.25), and763

models disagree on the sign of the correlation. Without a deeper764

understanding of how variations in λ and κ are related, we assume765

they can be varied independently and use ensemble-mean values of766

κ for each model in this estimate. To evaluate the degree to which767

variations in κ could affect the results, uncertainties (horizontal768

lines in Fig. 3b) are generated by using the highest and lowest values769

of κ from the ensemble members of each model in this calculation.770

Two-layer energy balance model. The two-layer energy balance771

model (EBM, refs. 54–56) evolves surface temperature according to772

the following equations:773

C
dT

dt
= λT + ERF − εγ(T − T0),

C0
dT0

dt
= γ(T − T0),

[5]774

where T is the temperature anomaly of the upper layer, represent-775

ing the global surface temperature anomaly; T0 is the temperature776

anomaly of the lower layer; ERF is the effective radiative forcing,777

as above; C is the effective heat capacity of the upper layer (rep-778

resenting the ocean mixed layer, land, and atmosphere); C0 is the779

effective heat capacity of the lower layer (representing the ocean780

below the mixed layer); γ represents the efficiency of vertical heat781

transport between upper and lower layers; and ε is the efficacy782

of ocean heat uptake, which allow effective radiative feedbacks to783

change over time as represented by coupled GCMs. Note that in784

the limit of C0 � C, such that deep ocean temperature T0 does not785

change much, these equations reduce to equation (3) with κ = εγ.786

We fit the two-layer EBM parameters to the abrupt4xCO2 sim-787

ulations of all CMIP5/6 models used in the analysis above using788

the fitting scheme developed by Lutsko and Popp (85), which was789

based on Geoffroy et al. (56) (see Supplementary Information for790

parameter values). To simulate historical warming consistent with 791

observational constraints on EffCS, we run the model using a wide 792

range of linear trends in λ over the period 1981-2014 (starting from 793

initial values of λ as fit to CMIP5/6 models and changing linearly 794

with time) and calculate EffCS over this period (using equation 795

(1)) for each. We then select the simulations that correspond to 796

EffCS values of 2.0◦C, 1.5◦C, and 3.1◦C (50%, 5%, and 95% inter- 797

vals of the observationally constrained EffCS from ref. (19). See 798

Supplementary Information for details regarding the 21st century 799

EBM simulations under different assumptions about how EffCS will 800

evolve in the future. 801
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Supporting Information Text14

Tables S1 and S215

Tables S1 and S2 show relevant parameters for CMIP5 and CMIP6 models, respectively. This includes the number of historical16

ensemble members used in the analysis in the main text; equilibrium climate sensitivity (ECS); transient climate response17

(TCR); and two-layer energy balance model (EBM) parameter values. Also noted are which models are included in our18

eight-model subset.19

The relationship between post-1970s warming rate and transient climate response20

Fig. S1 shows the equivalent of Fig. 1 in the main text, but for the relationship between TCR and the 1981-2014 warming rate21

or effective climate sensitivity (EffCS). TCR values are calculated from the global temperature change near year 70 (time of22

CO2 doubling) of CMIP5/6 1%/yr CO2 ramping simulations (1pctCO2 ). See Fig. S4 for the relationships between TCR and23

the 1981-2014 warming rate when accounting for observed sea-surface temperature (SST) trend patterns.24

The relationship between SST trend patterns, EffCS, and global warming rate in the CESM1-CAM5 large ensemble25

Fig. S2 shows regressions between local SST trend patterns and either global warming rates or EffCS over 1981-2014. Also26

shown is the relationship between EffCS and warming rate over 1981-2014 when using the CAM5 Green’s function of Zhou et27

al. (22) combined with SST trend patterns to estimate radiative feedback and EffCS (Fig. S2c), rather than regression methods28

as in Fig. 1d of the main text.29

Correcting for warming rates using model-specific relationships between EffCS and warming rates over 1981-30

201431

Figs. S3 and S4c,d show the equivalent of Figs. 1d and 3a in the main text, but using model-specific relationships between32

EffCS and warming rates over 1981-2014 in the estimate of the warming rate in each model had it simulated the observed SST33

trend pattern.34

Two-layer energy balance model (EBM) simulations35

Figure S5 shows the equivalent of Fig. 1 in the main text, but for the EBM response to historical (to 2014) and RCP8.5 (to36

2100) ERF as described in the Methods. Figure S7a shows the EBM response to historical and RCP8.5 ERF over 1850-210037

using parameters fit to CMIP5/6 models (see Methods, and Tables S1-2). We also run the EBM under a linear increase in ERF38

representing 1%/yr CO2 ramping simulations (to calculate EBM values of TCR, as in the CMIP5/6 models).39

Figure S6a shows EffCS within the EBM, illustrating that EffCS values are near ECS values for each ensemble member.40

EffCS is calculated from the linear regression of global radiative response and global surface warming (Methods) within41

running 34-year windows (the length of the period 1981-2014), and EffCS values vary over time depending on the degree of42

disequilibrium between the upper and lower ocean layers owing to the efficacy of ocean heat uptake parameter (Methods). To43

illustrate the impact of changing EffCS on projected warming, we introduce a linear trend in the radiative feedback λ such that44

EffCS ≈ 2◦C over the period 1981-2014 for each CMIP5/6 parameter set (Fig. S6b), with this value of EffCS chosen to match45

observed energy budget constraints and amip simulations (see main text). This produces the 1981-2014 warming rates shown46

by the diamonds in Fig. S5 and Fig. 3c.47

We also perform several extensions of these simulations with various hypothetical evolutions of λ and EffCS over the period48

2015-2100. We consider three scenarios: (i) λ remains constant over the period 2015-2100, thus maintaining EffCS ≈ 2◦C49

(Fig. S6b); (ii) λ is linearly returned to CMIP5/6 model values by 2050 (reversing the linear λ trend applied over 1981-201450

in approximately the same number of years) (Fig. S6c); and (iii) λ is linearly returned to CMIP5/6 model values by 210051

(reversing the linear λ trend applied over 1981-2014 but more slowly) (Fig. S6d). Figure S7 shows the EBM temperature52

response in each of these scenarios.53
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Table S1. CMIP5 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCO2 simulations

Model ECS (K) TCR (K) C (W yr m−2K−1) C0 (W yr m−2K−1) λ (Wm−2K−1) γ (Wm−2K−1) ε ERF2× (Wm−2)
ACCESS1-0 (1) 3.90 1.77 8.9 83 -0.81 0.71 1.55 3.6
ACCESS1-3 (1) 3.63 1.60 10.1 114 -0.81 0.72 1.62 3.5
bcc-csm1-1 (1) 2.91 1.76 8.8 57 -1.28 0.58 1.27 3.6

CCSM4 (6) 2.94 1.80 7.8 72 -1.40 0.81 1.36 4.2
CESM1-CAM5* (40) 3.32 2.07 8.7 144 -1.22 0.60 1.19 4.3

CNRM-CM5 (1) 3.28 1.97 8.7 96 -1.12 0.51 0.92 3.5
CSIRO-Mk3-6-0 (10) 4.36 1.69 9.3 77 -0.66 0.71 1.80 3.4

CanESM2 (5) 3.71 2.30 8.3 77 -1.05 0.54 1.28 4.1
GFDL-CM3 (3) 4.03 1.76 9.9 76 -0.78 0.71 1.39 3.4

GFDL-ESM2G (1) 2.34 1.21 6.5 104 -1.48 0.80 1.17 3.5
GFDL-ESM2M (1) 2.46 1.37 8.9 113 -1.38 0.86 1.23 3.6

GISS-E2-H (5) 2.43 1.78 10.5 86 -1.64 0.70 1.27 4.1
GISS-E2-R (6) 2.28 1.48 6.1 135 -2.03 1.07 1.44 4.6

HadGEM2-ES (4) 4.64 2.43 8.3 99 -0.60 0.49 1.57 3.4
inmcm4 (1) 2.05 1.29 9.1 277 -1.57 0.69 1.82 3.0

IPSL-CM5A-LR (4) 4.05 1.97 8.6 100 -0.79 0.57 1.14 3.3
IPSL-CM5B-LR (1) 2.64 1.44 9.7 68 -1.07 0.63 1.43 3.0

MIROC5 (5) 2.70 1.47 9.7 163 -1.58 0.74 1.20 4.4
MPI-ESM-LR (3) 3.66 2.01 9.2 78 -1.20 0.62 1.43 4.7
MRI-CGCM3 (1) 2.61 1.52 10.1 70 -1.30 0.60 1.25 3.5
NorESM1-M (1) 2.93 1.39 9.9 122 -1.15 0.76 1.57 3.6
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Table S2. CMIP6 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCO2 simulations

Model ECS (K) TCR (K) C (W yr m−2K−1) C0 (W yr m−2K−1) λ (Wm−2K−1) γ (Wm−2K−1) ε ERF2× (Wm−2)
ACCESS-CM2 (3) 4.72 2.10 9.0 93 -0.71 0.53 1.55 4.0

ACCESS-ESM1-5 (20) 3.87 1.95 9.0 97 -0.72 0.60 1.73 3.5
AWI-CM-1-1-MR (5) 3.16 2.06 8.3 57 -1.22 0.46 1.49 4.1
BCC-CSM2-MR (3) 3.02 1.72 6.5 64 -1.20 0.84 1.37 3.8

BCC-ESM1 (3) 3.26 1.77 8.9 98 -0.91 0.52 1.39 3.3
CAMS-CSM1-0 (7) 2.29 1.73 10.2 61 -1.87 0.47 1.29 4.4

CanESM5* (25) 5.64 2.74 8.0 80 -0.65 0.52 1.07 3.8
CESM2 (11) 5.15 2.06 8.7 75 -0.69 0.66 1.89 4.5

CESM2-WACCM (3) 4.68 1.98 8.5 89 -0.74 0.69 1.57 4.1
CMCC-CM2-SR5 (1) 3.52 2.09 8.9 79 -1.06 0.41 1.27 4.0
CNRM-CM6-1* (30) 4.90 2.14 7.6 147 -0.74 0.50 1.00 3.6

CNRM-CM6-1-HR (1) 4.33 2.48 8.2 95 -0.92 0.55 0.72 3.7
CNRM-ESM2-1 (10) 4.79 1.86 7.5 100 -0.63 0.59 0.91 2.9

E3SM-1-0 (3) 5.31 2.99 8.6 44 -0.63 0.35 1.50 3.7
EC-Earth3 (73) 4.10 2.30 8.1 37 -0.81 0.42 1.42 3.7

EC-Earth3-Veg (8) 4.33 2.62 8.4 40 -0.82 0.40 1.42 3.8
FGOALS-f3-L (3) 2.98 1.94 9.3 88 -1.41 0.53 1.58 4.7
FGOALS-g3 (5) 2.88 1.54 7.8 98 -1.30 0.69 1.30 4.0

GISS-E2-1-G* (12) 2.71 1.80 6.7 144 -1.47 0.84 1.10 4.1
GISS-E2-1-H (25) 3.12 1.93 8.9 86 -1.15 0.61 1.20 3.7

HadGEM3-GC31-LL* (5) 5.55 2.55 8.0 77 -0.63 0.51 1.22 3.7
HadGEM3-GC31-MM (4) 5.42 2.58 8.3 73 -0.66 0.58 1.03 3.6

INM-CM4-8 (1) 1.83 1.33 6.4 26 -1.68 0.78 1.31 3.1
IPSL-CM6A-LR* (32) 4.56 2.32 8.2 63 -0.75 0.41 1.33 3.7

KACE-1-0-G (3) 4.48 1.41 9.0 120 -0.71 0.74 1.31 3.8
MIROC-ES2L (11) 2.66 1.55 10.6 185 -1.56 0.67 0.93 4.1

MIROC6* (50) 2.60 1.55 8.9 175 -1.38 0.65 1.32 3.9
MPI-ESM-1-2-HAM (3) 2.96 1.80 9.5 113 -1.44 0.64 1.34 4.5
MPI-ESM1-2-HR (8) 2.98 1.66 8.9 84 -1.33 0.66 1.50 4.3
MPI-ESM1-2-LR (10) 3.00 1.84 9.5 114 -1.40 0.59 1.23 4.4

MRI-ESM2-0 (6) 3.13 1.64 8.7 96 -1.21 0.85 1.43 4.1
NESM3 (5) 4.77 2.72 5.6 105 -0.78 0.46 0.97 3.7

NorCPM1 (29) 3.05 1.56 9.9 108 -1.18 0.78 1.55 4.0
NorESM2-LM* (3) 2.56 1.48 5.6 119 -1.71 0.86 1.99 5.0
NorESM2-MM (3) 2.50 1.33 6.0 114 -1.74 0.79 1.66 4.8

SAM0-UNICON (1) 3.72 2.27 7.3 100 -1.09 0.79 1.24 4.3
TaiESM1 (1) 4.31 2.34 8.8 97 -0.93 0.63 1.34 4.4

UKESM1-0-LL (18) 5.36 2.79 8.0 80 -0.67 0.52 1.12 3.7
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Fig. S1. Relationships between transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014 warming rate in CMIP5/6 models. a,
CMIP5/6 TCR versus warming rate using averages of all available ensemble members for each model (r2 = 0.46); colors correspond to values of ECS. b, Eight-model
subset TCR versus warming rate with ensemble means shown as larger circles and ensemble members shown as smaller dots. c, Eight-model subset TCR versus EffCS over
1981-2014 with ensemble means shown as larger circles and ensemble members shown as smaller dots; diamonds show EffCS values from AGCM simulations forced by
observed SST trend patterns. In b,c, open circles show CESM1-CAM5 simulations with wind nudging or meltwater forcing as described in the main text. Blue lines show fits
calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates (5-95% range)
of observed warming rate and EffCS as described in the main text.
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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Fig. S2. The relationship between SST trend patterns, EffCS, and 1981-2014 warming rate in the CESM1 large ensemble. a, Regression between local SST trends
and global warming rates across ensemble members. b, Regression between local SST trends and EffCS values (calculated as described in main text) across ensemble
members. c, Green’s function-estimated EffCS (calculated using the CAM5 Green’s function of Zhou et al. (22) convolved with SST trend pattern of each ensemble member )
versus warming rate over 1981-2014, with ensemble mean shown as larger circles and ensemble members shown as smaller dots (r2 = 0.36). Blue lines show fit calculated
using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates (5-95% range) of
observed warming rate and EffCS as described in the main text.
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Fig. S3. Relationships between effective climates sensitivity (EffCS) over 1981-2014 and 1981-2014 warming rate in individual CMIP5/6 models. a, CanESM5. b,
CNRM-CM6-1. c, GISS-E2-1-G. d, HadGEM3-CG3-LL. e, IPSL-CM6A-LR. f, MIROC6. g, NorESM2-LM. h, CESM1-CAM5. Ensemble means shown as larger circles and
ensemble members shown as smaller dots. Also shown are EffCS and warming rates in CESM1-CAM5 simulations with wind nudging or meltwater forcing (see main text). Blue
lines show fits calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates
(5-95% range) of observed warming rate (HadCRUT5) and EffCS (see main text). Diamonds show EffCS values from AGCM simulations forced by observed warming patterns,
with the corresponding warming rates estimated from the regression between EffCS over 1981-2014 and warming rate for each model (blue line).
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Fig. S4. Relationships between climate sensitivity metrics and the 1981-2014 warming rate with (diamonds) and without (circles) accounting for observed warming
patterns. TCR vs warming rate for a, CMIP5/6 eight-model subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected warming
rates estimated using AGCM values of EffCS and the relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confidence ranges from uncertainty in the
fit. b, CMIP5/6 eight-model subset, with with circles showing uncorrected warming rates (Fig. S1b) and diamonds showing corrected warming rates estimated using AGCM
values of λ and equation (3), with horizontal lines showing uncertainty ranges reflecting the spread in κ across ensemble members. c, CMIP5/6 ECS vs warming rate, with
corrected warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S3), with
horizontal lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. 1b. d, CMIP5/6 TCR vs warming rate, with corrected
warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S2), with horizontal
lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. S1b. Gray shading shows observational estimates (5-95% range)
of observed warming rate as described in the main text.
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Fig. S5. Relationships between equilibrium climate sensitivity (ECS), transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014
warming rate in the two-layer energy balance model (EBM). a, ECS versus warming rate; colors correspond to values of ECS. b, TCR versus warming rate. c, ECS versus
EffCS over 1981-2014; diamonds show an EffCS value corresponding to an observational estimate of 2◦C. d, TCR versus EffCS over 1981-2014; diamonds show an EffCS
value corresponding to an observational estimate of 2◦C. e, EffCS over 1981-2014 versus warming rate; diamonds show warming rates simulated by the EBM when using an
EffCS value corresponding to an observational estimate of 2◦C over 1981-2014, which are in good agreement with the regression slope (blue line with dashed blue lines
showing 5-95% ranges of fit parameters). f, Relationship between TCR and warming rate with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS as described in main text, with a median of 2◦C and horizontal lines showing 5-95% confidence ranges showing 1.5-3.1◦C. Gray
shading shows observational estimates (5-95% range) of observed warming rate and EffCS as described in the main text.
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EffCS under historical and RCP8.5 
forcing with CMIP5/6 parameters

EffCS under historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2100 

EffCS under historical and RCP8.5 forcing 
with EffCS = 2ºC over 1981-2014 and 

returning to CMIP5/6 EffCS values by 2100

EffCS under historical and RCP8.5 forcing 
with EffCS = 2ºC over 1981-2014 and 

returning to CMIP5/6 EffCS values by 2050

Fig. S6. Two-layer energy balance model (EBM) effective climate sensitivity (EffCS) under historical and RCP8.5 radiative forcing, either with CMIP5/6 model
parameters or with prescribed changes in EffCS. a, EffCS using CMIP5/6 parameters; colors correspond to values of ECS. b, EffCS using CMIP5/6 parameters but with
EffCS = 2◦C over 1981-2100. c, EffCS using CMIP5/6 parameters but with EffCS = 2◦C over 1981-2014 and EffCS returning to CMIP5/6 values by 2050. d, EffCS using
CMIP5/6 parameters but with EffCS = 2◦C over 1981-2014 and EffCS returning to CMIP5/6 values by 2100.
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EBM response to historical and RCP8.5 
forcing with CMIP5/6 parameters

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2100 

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2014 and 
returning to CMIP5/6 EffCS values by 2100

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2014 and 
returning to CMIP5/6 EffCS values by 2050

Fig. S7. Two-layer energy balance model (EBM) global surface temperature response to historical and RCP8.5 radiative forcing, either with CMIP5/6 model
parameters or with prescribed changes in effective climate sensitivity (EffCS). a, Temperature anomaly using CMIP5/6 parameters; colors correspond to values of ECS.
b, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2◦C over 1981-2100. c, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2◦C over
1981-2014 and EffCS returning to CMIP5/6 values by 2050. d, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2◦C over 1981-2014 and EffCS returning to
CMIP5/6 values by 2100. Black lines show observed global surface temperature anomaly from HadCRUT5 over 1981-2014, and all anomalies are plotted with respect to the
average over 1981-2014.
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