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The observed rate of global warming since the 1970s has been pro-
posed as a strong constraint on equilibrium climate sensitivity (ECS)
and transient climate response (TCR) — key metrics of the global
climate response to greenhouse-gas forcing. Using CMIP5/6 mod-
els, we show that the inter-model relationship between warming and
these climate sensitivity metrics (the basis for the constraint) arises
from a similarity in transient and equilibrium warming patterns within
the models, producing an effective climate sensitivity (EffCS) gov-
erning recent warming that is comparable to the value of ECS gov-
erning long-term warming under CO> forcing. However, CMIP5/6
historical simulations do not reproduce observed warming patterns.
When driven by observed patterns, even high ECS models produce
low EffCS values consistent with the observed global warming rate.
The inability of CMIP5/6 models to reproduce observed warming pat-
terns thus results in a bias in the modeled relationship between
recent global warming and climate sensitivity. Correcting for this
bias means that observed warming is consistent with wide ranges
of ECS and TCR extending to higher values than previously recog-
nized. These findings are corroborated by energy balance model sim-
ulations and coupled model (CESM1-CAM5) simulations that better
replicate observed patterns via tropospheric wind nudging or Antarc-
tic meltwater fluxes. Because CMIP5/6 models fail to simulate ob-
served warming patterns, proposed warming-based constraints on
ECS, TCR, and projected global warming are biased low. The results
reinforce recent findings that the unique pattern of observed warm-
ing has slowed global-mean warming over recent decades, and that
how the pattern will evolve in the future represents a major source of
uncertainty in climate projections.

climate sensitivity | global warming | climate dynamics

Equilibrium climate sensitivity (ECS) and transient cli-
mate response (TCR) are key metrics of the global-mean
surface temperature response to increasing greenhouse-gas
concentrations. They represent the warming under a doubling
of atmospheric carbon dioxide (CO2) at equilibrium and at the
time of CO2 doubling, respectively. Model values of ECS and
TCR are strongly correlated with projections of 215° century
warming (1, 2). The recent IPCC Sixth Assessment Report
(ARSG6) assessed the ranges of ECS and TCR to be substantially
more narrow than in previous Reports (2) following advances
in scientific understanding of several independent lines of ob-
servational evidence (e.g., 3). Narrower ranges of ECS and

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

TCR in turn translate to better-constrained projections of
215% century warming compared to projections based on global
climate models (GCMs), which span wider ECS and TCR
ranges (4).

One major update in IPCC AR6 was a reinterpretation
of historical energy budget constraints on climate sensitiv-
ity based on observed warming since the 1800s. While the
historical energy budget was once thought to place strong
constraints on ECS (5-7), in IPCC ARG it was assessed to pro-
vide relatively weak constraints, particularly at the high end
of the climate sensitivity range. This assessment was based
on (i) stubbornly-large uncertainty in the radiative forcing
that drove historical warming, owing primarily to uncertainty
in aerosol forcing, and (ii) work since AR5 showing that dif-
ferences between historical and future (centennial timescale)
sea-surface temperature (SST) trend patterns result in esti-
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mates of ECS that are biased low (2, 3, 8-19). This SST
pattern effect occurs because the feedbacks governing Earth’s
global radiative response per degree of global warming depend
on the spatial pattern of that warming. In particular, warming
since the 1800s has been relatively slow within key regions
of positive (destabilizing) radiative feedbacks including the
eastern tropical Pacific Ocean and Southern Ocean; in the long
term, however, these regions are expected to warm more than
the global mean, leading to a less-negative global feedback and
thus an increase in the climate’s sensitivity to greenhouse-gas
forcing (8, 9, 19-27). Thus, the value of the effective climate
sensitivity (EffCS) governing historical warming is thought to
be lower than the value of ECS governing equilibrium warming
under CO; forcing (2, 3).

Another major advance in recent years has been the de-
velopment of novel observational constraints (often referred
to as “emergent constraints”), wherein coupled GCMs are
used to find a correlation between an observable quantity and
something we wish to predict, and then the model-based re-
lationship is combined with observations of that quantity to
derive constrained predictions (28-31). Strong constraints on
ECS and TCR have been derived using the post-1970s rate of
global-mean warming (18, 32-34): because GCMs with higher
ECS and TCR values tend to overestimate the observed rate
of warming, the implication is that high values of climate sensi-
tivity are less likely. This constraint was proposed to avoid the
issues plaguing energy budget constraints based on warming
since the 1800s (32): because global aerosol radiative forcing
changes have been relatively small since the 1970s, the use
of this period substantially reduces the impact of uncertainty
in radiative forcing; and SST pattern effects are implicitly
accounted for in the use of GCMs to derive the correlation
between recent warming and ECS (or TCR).

As summarized in Forster et al. (2), studies using post-
1970s global warming as an observational constraint produce
narrow bounds on ECS (with best estimates of 2.6-2.8°C and
5-95% ranges within 1.5-4.1°C) and TCR (with best estimates
of 1.6-1.7°C and 5-95% ranges within 1.0-2.3°C). Collectively,
these studies provided the strongest constraints on ECS and
TCR of any of the main lines of evidence assessed in IPCC
ARG, and were a primary justification for assessing the upper
bounds on the ECS likely (2.5-4°C) and wvery likely (2-5°C)
ranges to be lower than in previous Reports. These narrower
ranges also suggest that GCMs with ECS values higher than
about 5°C, of which there are many (35) in the Coupled Model
Intercomparison Project phase 6 (CMIP6, ref. 36), may be
less valid for projecting future warming (e.g., 2, 37).

For such a constraint to be robust, it must exhibit two key
properties. First, because many spurious correlations between
observable and predicted quantities of interest can be found by
chance within GCMs (38), any correlation that is used as the
basis for the constraint must rest on sound physical principles
(28, 29, 31, 39). Second, the GCMs used as the basis for the
constraint must not share a common bias, relative to nature,
in their representation of this correlation (e.g., 28, 40).

For constraints on ECS and TCR based on observed post-
1970s global warming, there is a strong physical basis for the
modeled correlation: higher ECS and TCR correspond to a
less-efficient radiative response per degree of global warming
which, all else being equal, should lead to a faster rate of global
warming under greenhouse-gas forcing. And the constraints

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

have been shown to produce similar results whether using
CMIP5 or CMIP6 models (18, 32—-34), providing confidence
in their robustness.

However, recent work has found that historical simulations
of CMIP5/6 models generally fail to simulate the observed
spatial pattern of post-1970s SST trends (16, 17, 41, 42). In
particular, the models produce relatively weak spatial gradi-
ents in SST trends, with somewhat enhanced warming in the
eastern tropical Pacific Ocean and at high latitudes, while
observations show strong spatial gradients in SST trends, with
cooling in the eastern Pacific and Southern Oceans.

These model-versus-observed discrepancies in SST trend
patterns influence the radiative feedbacks that govern climate
sensitivity: when atmosphere GCMs are forced with the ob-
served post-1970s SST trends, they generally produce global
radiative feedbacks that are substantially more negative (lower
EffCS) than feedbacks produced over this period by historical
simulations of the same coupled GCMs (16, 17). This suggests
that there 4s in fact a common bias across CMIP5/6 GCMs
that could affect the modeled relationship between post-1970s
warming and climate sensitivity metrics. It is possible, for
instance, that GCMs overestimate recent warming in part due
to their biases in simulated warming patterns, with relatively
too much warming in key positive feedback regions, rather
than simply having too-high values of ECS or TCR (as is
assumed by the observational constraint). IPCC AR6 noted
this possibility, finding it more likely than not that constraints
on ECS and TCR based on observed post-1970s global warm-
ing are biased low (2); but without studies quantifying the
magnitude of this bias, no corrections could be made.

Here we evaluate the potential for SST pattern effects to
bias observational constraints on ECS and TCR via their influ-
ence on the CMIP5/6-based relationship between post-1970s
global warming and these climate sensitivity metrics. We
first reproduce constraints on ECS and TCR based on recent
warming and find similar results to the published literature.
We then analyze a subset of CMIP5/6 models that provide the
output necessary to accurately calculate radiative feedbacks
(and corresponding EffCS) over the historical period. We find
that CMIP5/6 models warm too much over recent decades in
large part due to their failure to replicate the observed post-
1970s SST trend patterns, and thus even high values of climate
sensitivity are consistent with the observed global warming
rate. We conclude that the proposed constraints on ECS and
TCR based on recent global warming are biased low. We
evaluate the robustness of our findings using energy-balance
model simulations and coupled-model (CESM1-CAMS5) simu-
lations that better replicate observed patterns via tropospheric
wind nudging or Antarctic meltwater fluxes. Finally, we dis-
cuss implications of these results for recent climate sensitivity
assessments and for 21° century warming.

The relationship between post-1970s warming and cli-
mate sensitivity

While several different time periods have been used to place
observational constraints on climate sensitivity from recent
global warming (32, 33), here we focus on 1981-2014 following
Tokarska et al. (34). We show relationships between the rate
of global-mean surface warming over this period and ECS (Fig.
la) for all GCMs that provide the necessary output on the
CMIP5/6 archives (21 CMIP5 models and 38 CMIP6 models;

Armour/Proistosescu et al.

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

13

114

115

116

17

18

19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

142

143

144

145

146

147

148

149


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

165
166
167
168
169
170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

yd Fig. 1. Relationships between equilibrium climate
r sensitivity (ECS), effective climate sensitivity (EffCS),
and the 1981-2014 warming rate in CMIP5/6 models. a,

e CMIP5/6 ECS versus warming rate using averages of all

r available ensemble members for each model (correlation
r = 0.68); colors correspond to values of ECS. b, Eight-
model subset ECS versus warming rate with ensemble
means shown as larger circles and ensemble members
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L ing rate with ensemble means shown as larger circles
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see Supplementary Information for a list). While we focus on
ECS in the main text, the full analysis using TCR produces
similar results (Supplementary Information). We calculate
warming rates by averaging over all available ensemble mem-
bers of each model’s historical simulation (extended using
RCP4.5 over years 2006-2014 for CMIP5 models), where each
ensemble member is forced by identical historical greenhouse-
gas, aerosol, volcanic, and solar forcings, and differ only in
their phasing of internal variability. CMIP5/6 model values
of ECS have been estimated using the standard approach of
extrapolating to equilibrium the regression between global
top-of-atmosphere energy imbalance and global temperature
change over 150 years of abrupt CO2 quadrupling simula-
tions, scaled by a factor of a half to account for CO2 doubling
(35, 43, 44).

We find a strong correlation between the 1981-2014 global
warming rate and ECS (Fig. 1a) or TCR (Fig. Sla). Us-
ing this regression (Methods), the observed warming rate of
0.18°C dec™* (0.15-0.21°C dec™!, 5-95% range) calculated
from HadCRUTS5 (45) gives ECS = 2.7°C (1.5-3.9°C) and
TCR = 1.6°C (1.1-2.1°C), in good agreement with previous
studies (18, 32-34).

To better understand the modeled relationship between
global warming and climate sensitivity, we consider a subset
of eight CMIP5/6 models representing all those that provide
at least three historical ensemble members and the output
necessary to accurately calculate radiative feedbacks over the
historical period: CanESM5, CNRM-CM6-1, GISS-E2-1-G,
HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-
LM, and CESM1-CAMS5. The relationships between 1981-2014
global warming rate and ECS are similar for this eight-model
subset (Fig. 1b) to those found in the full CMIP5/6 ensemble
(Fig. 1la). For each model, there is substantial spread in
warming rates across ensemble members due to internal climate
variability (Fig. 1b), raising two key questions: (i) What factors
control the variability in warming rates across model ensemble

Armour/Proistosescu et al.

Warming over 1981-2014 (K/dec)

shows observational estimates (5-95% range) of observed
warming rate (HadCRUTS, ref. 45) and EffCS (19). See
Supplementary Information for a list of models used.

T
03 04 0.5 0.6

members? And, (ii) do CMIP5/6 models accurately represent
how those factors were expressed in observations over the
period 1981-20147

Each of the eight models in our subset has a corresponding
CMIP6 piClim-histall simulation wherein the same atmosphere
GCM (AGCM) was run with fixed pre-industrial SSTs and sea-
ice concentrations (SICs) while all radiative forcing agents were
varied as in the corresponding CMIP6 historical simulations.
The piClim-histall simulations were performed as part of the
Radiative Forcing Model Intercomparison Project (RFMIP,
ref. 46) for CMIP6, while we perform our own piClim-histall-
style simulation for CESM1-CAMS5 following the same protocol.
From these simulations, the historical effective radiative forcing
(ERF) can be diagnosed from top-of-atmosphere radiation
anomalies relative to pre-industrial conditions (17, 47), with a
small correction for land warming (2, 48) (Methods). Using
the standard model of global energy balance,

N = AT + ERF, 1]

where N is the global top-of-atmosphere radiation anomaly and
T is the global near-surface air temperature anomaly (both
relative to pre-industrial), we diagnose the global effective
radiative feedback A (< 0 for a stable climate) from linear
regression of N — ERF against T over the period 1981-2014
for each ensemble member (Methods). From this, we calculate
EffCS for the period 1981-2014 as,

ERF2x
e, 2]

where ERF2x is the effective radiative forcing from CO2 dou-
bling (35, 44) (Methods). EffCS is largely set by the value of
A both because it is in the denominator in equation (2) and
because A varies fractionally more than does ERF2y across
models (35). EffICS can be interpreted as the equilibrium
warming that would occur in response to CO2 doubling if the
value of A calculated over the period 1981-2014 applied to that
equilibrium state.

EffCS = —
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We find that there is a large spread in EffCS for the period
1981-2014 across ensemble members of each GCM (small dots
in Fig. 1c). Moreover, differences in EffCS explain a large
fraction of the variance (72 = 0.61) in the 1981-2014 warming
rate across all ensemble members of our eight-model subset;
those with EffCS values near 2°C tend to produce warming
rates in line with observations, while those with higher values
of EffCS warm too much (Fig. 1d).

The high correlation between EffCS and the global warming
rate can be understood by making the approximation N = kT
in equation (1), where k is the ocean heat uptake efficiency
representing all processes setting the amount of global ocean
heat uptake per degree of global warming (e.g., 49-51); a
larger value of k corresponds to a more efficient uptake of heat
by the deep ocean and thus less surface warming. Then, the
rate of warming can be approximated as (e.g., 52),

dr _ d(ERF)/dt 3]
dt E—X

Calculating x from regression of N against T" over 1981-2014,
and given d(ERF)/dt and X as calculated above, equation
(3) explains 83% of the variance in the 1981-2014 warming
rate across all ensemble members of our CMIP5/6 model
subset. Most of the explanatory power comes from variations
in A: holding x and d(ERF)/dt fixed at ensemble-mean values,
equation (3) still explains 58% of the variance across ensemble
members. That is, variations in A (and thus EffCS) largely
govern the global warming rate, with variations in s playing a
secondary role. There is little correlation between A and k on
the timescales considered here (Methods), so we treat them
as independent for our purposes.

Using the regression between EffCS and the 1981-2014
warming rate derived from the eight-model subset (Fig. 1d),
the observed warming rate of 0.18 (0.15-0.21) °C dec™ ' im-
plies EffCS = 2.3 (1.9-2.7)°C. While on the low end of the
CMIP5/6 models (Fig. 1d), this implied value of EffCS is in
good agreement with a recent observational estimate (19) of
EffCS = 2.0 (1.5-3.1)°C based on global energy imbalance
calculated from a merged satellite dataset (53) in combination
with ERF estimates from IPCC AR6 (2) and HadCRUT5 tem-
perature observations over 1985-2014. The CMIP5/6-based
relationship between EffCS and warming rate thus compares
well with observations.

Importantly, EffCS may be different from ECS, which is
given by ERE

2x
oy (4]
owing to the fact that the radiative feedback A\ governing
recent warming may be different from the radiative feedback
A2x governing the equilibrium response to CO2 doubling if
warming patterns differ between the two timescales. Given
that ECS is a measure of the equilibrium climate response to
COq, forcing, it is worth considering why it is highly correlated
with the rate of transient warming over 1981-2014 in CMIP5/6
models (Figs. 1a,b). The reason appears to be that values of
ECS and ensemble-mean EffCS are nearly identical for each
of the CMIP5/6 models (Fig. 1c); EffCS is similar to but
slightly smaller than ECS for most of the GCMs, with a high

correlation between them (r? = 0.70).

These findings are consistent with the fact that the spa-
tial patterns of historical warming (setting EffCS over 1981-
2014) and equilibrium warming under abrupt CO2 forcing

ECS = —
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(setting ECS) are similar in CMIP5/6 models (Figs. 2a,b) (17);
both are characterized by relatively weak spatial gradients
in SST trends. That is, the relationship between ECS and
the 1981-2014 warming rate, which forms the basis for the
observational constraint, reflects similar patterns of transient
and equilibrium warming within the coupled CMIP5/6 models,
corresponding to a relatively small pattern effect (i.e., values
of EffCS governing recent warming are comparable to values
of ECS governing long-term warming).

As noted in the introduction, the observed SST trend pat-
tern over 1981-2014 (Fig. 2c) is distinct from patterns sim-
ulated by the coupled CMIP5/6 models (17, 41, 42). With
strong warming in the western tropical Pacific Ocean (a region
of negative feedbacks) and cooling in the eastern Pacific and
Southern Oceans (regions of positive feedbacks), the observed
pattern should favor a low value of EffCS (8, 9, 14, 16, 17, 19—
27) and thus a reduced global warming rate (equation (3)).
This observed pattern of warming is also distinct from the
long-term warming pattern we expect under CO; forcing (2),
suggesting that the relationship between EffCS (governing
recent warming) and ECS (governing long-term warming) in
nature may be different from that simulated by CMIP5/6
models. In the next section, we consider how model SST trend
biases may, in turn, bias the warming-sensitivity relationship
which forms the basis for the observational constraint.

Impact of model SST trend biases on the warming-
sensitivity relationship

To quantify the impact of the SST trend pattern on global
warming rate, we make use of amip simulations wherein the
same subset of eight AGCMs are run with prescribed time-
evolving observed SSTs and SICs while all radiative forcing
agents are varied as in the corresponding historical simulations.
The amip simulations refer to the Atmospheric Model Inter-
comparison Project (AMIP II) DECK experiments performed
as part of CMIP6 (36); we perform our own amip-style simu-
lation for CESM1-CAMS5. In combination with the REFMIP
simulations, these simulations allow us to calculate A\ and Ef-
fCS using regression over the period 1981-2014 as described
above (see also refs. 14, 17, 19).

Across the eight AGCMs, the observed 1981-2014 SST trend
pattern produces an average value of EffCS = 2.1°C (range
1.3-3.2°C) — in good agreement with EffCS derived from global
energy budget observations (19) and implied by the observed
global warming rate (Figs. 1c,d). This EffCS value is lower
than the average EffCS simulated by the same coupled GCMs
over 1981-2014. With identical atmospheric physics in AGCM
and coupled GCM versions of each model, EffCS differences
are due only to differences in observed and simulated SST and
SIC trend patterns (14, 17, 19).

For the coupled GCMs with low values of ECS (GISS-
E2-1-G, MIROC6, NorESM2-LM), 1981-2014 EffCS val-
ues are similar for AGCM and coupled GCM simulations
(Fig. 1c). However, for all other GCMs in our sub-
set (CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL-
CM6A-LR, CESM1-CAMS5), 1981-2014 EffCS values in
AGCMs are substantially lower than they are in the same
coupled GCMs, with AGCM values being at the edge of or
even below the range of EffCS values generated by internal
variability in the coupled model historical simulations. This
suggests that the observed SST trend pattern (Fig. 2c¢) reflects
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an extreme phase of internal variability, a forced response not
captured by the coupled GCMs, or a combination of both
(17, 42). A possible reason for the larger differences between
AGCM and coupled GCM values of EffCS in high-ECS models
is that ECS differences across models stem largely from model
differences in cloud feedbacks in the eastern tropical Pacific
and Southern Oceans (35). Thus, observed cooling in these
regions over 1981-2014 reduces the value of EffCS more for
models with higher ECS, while leaving the value of EffCS
relatively unchanged for models with lower ECS. Further ex-
amination of CESM1-CAMS5 shows that the regression of local
SST trends onto either the global warming trend or EffCS over
1981-2014 across ensemble members highlights the eastern
tropical Pacific and Southern Oceans as key regions governing
the warming rate and EffCS (Fig. S2).

The larger values of EffCS in the coupled GCMs relative to
AGCMs suggests that at least a portion of the reason the cou-
pled GCMs overestimate warming over 1981-2014 is that they
fail to simulate the observed SST trend patterns — rather than
simply having too-high values of ECS (or TCR). Moreover,
it suggests that if the coupled GCMs were able to correctly
simulate the observed warming patterns, they would produce
lower values of EffCS (as shown by their AGCM simulations)
and thus reduced 1981-2014 warming rates. In other words,
CMIP5/6 models share a common bias in their ability to sim-
ulate the observed SST trend pattern which increases their
values of EffCS and thus their rate of warming over recent
decades — directly biasing their simulated relationship between
warming rate and ECS on which observational constraints are
based.
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CESM1 w/ Antarctic
meltwater 1981-2013

CMIP5/6 1981-2014

Fig. 2. Sea-surface temperature (SST) trends in
CMIP5/6 models and observations. SST trend patterns
for a, CMIP5/6 models over years 1-150 following abrupt
CO- quadrupling (CMIP5/6 abrupt-4xCO2 simulation from
which ECS is calculated). b, CMIP5/6 models over 1981-
2014 (CMIP5/6 historical from which EffCS is calculated).
¢, Observations over 1981-2014 (from amip). d, CESM1-
CAMS over 1981-2014. e, CESM1-CAMS over 1981-2014
with Southern Hemisphere high latitude wind nudging. f,
CESM1-CAM5 over 1981-2013 with Antarctic meltwater
fluxes.

Correcting for SST trend pattern biases in observa-
tional constraints

We next estimate the global-mean warming each GCM would
produce if it correctly simulated the observed 1981-2014 SST
trend pattern. To do so, we multiply the value of EffCS de-
rived from the AGCM simulations by the regression coefficient
between the EffCS and the 1981-2014 warming rate derived
from all ensemble members in the eight-GCM subset (dia-
monds in Fig. 1d; Methods). The results suggest that each
of the eight CMIP5/6 models would have produced warming
near the observed warming rate had it simulated the observed
SST trend pattern. Thus, once biases in SST trend patterns
are accounted for, there is little correlation between the 1981-
2014 warming rate and ECS (Fig. 3a). The average warming
rate correction across the eight GCMs is —0.09°C dec™!, with
larger reductions in warming rates (and EffCS) for models
with higher ECS (Figs. 1c and 3a).

We conclude that observed warming is consistent with a
wide range of ECS values, and that by failing to account for
biases in coupled GCM SST trend patterns, the proposed
observational constraint biases estimates of ECS toward low
values. Similar results hold if we instead use the regression
between 1981-2014 EffCS and warming rate derived from each
GCM separately to estimate the warming rate consistent with
AGCM EffCS values, but uncertainties are larger owing to
larger uncertainty in the regression, particularly for models
with few ensemble members (Figs. S3-4).

As another method to estimate warming rates in the eight
GCMs when correcting for biases in SST trend patterns, we
use equation (3) with values of A derived from each model’s
AGCM simulation (Methods). Once again, the results suggest
that each of the eight CMIP5/6 models would have produced
warming near the observed warming rate had they simulated
the observed SST trend pattern, leaving little correlation
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Fig. 3. Relationships between equilibrium climate sensitivity (ECS) and the
1981-2014 warming rate with (diamonds) and without (circles) accounting for
observed warming patterns. ECS vs warming rate for a, CMIP5/6 eight-model
subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds
showing corrected warming rates estimated using AGCM values of EffCS and the
relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confi-
dence ranges from uncertainty in the fit. b, CMIP5/6 eight-model subset, with circles
showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected
warming rates estimated using AGCM values of A and equation (3), with horizontal
lines showing uncertainty ranges reflecting the spread in x across ensemble mem-
bers. ¢, Relationship between ECS and warming rate in two-layer EBM simulations
with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS (19) (Fig. S6), with a median of 2°C
and horizontal lines showing 5-95% confidence ranges illustrating 1.5-3.1°C. Gray
shading shows observational estimates (5-95% range) of observed warming rate
(HadCRUTS, ref. 45).

between the 1981-2014 warming rate and ECS (Fig. 3b). The
average warming rate correction across the eight GCMs is
—0.05°C dec™! with a larger impact for models with higher
ECS, once again. This supports our conclusion that observed
warming is consistent with a wide range of ECS values, and
that the proposed observational constraint biases estimates
of ECS toward low values; similar results hold for constraints
on TCR (Figs. S1,4). It also suggests that observed global
warming has been slowed by the unique SST trend pattern
over recent decades (Fig. 2¢) and that warming would have
been more rapid had the pattern been more similar to that
simulated by CMIP5/6 models (Fig. 2b).

Simulations with a two-layer energy balance model (EBM).
The results presented so far rely on diagnostic interpreta-
tion of CMIP5/6 output and on inferences of GCM warming
rates had they correctly simulated the observed 1981-2014
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SST trend pattern and associated EffCS. Here we evaluate
the robustness of this interpretation within the context of a
widely-used energy balance model (EBM, refs. 54-56) which
represents the Earth as two interacting layers — one represent-
ing all surface components of the climate system, including the
near-surface atmosphere, ocean mixed layer, cryosphere, and
land; and one representing the ocean below the mixed layer.
The EBM predicts the surface temperature response to ERF
through a representation of the efficiency of radiative response
(governed by A), the efficiency of ocean heat uptake, and the
efficacy of ocean heat uptake which allows feedbacks to change
over time as in coupled GCMs (Methods). This EBM was used
extensively in IPCC ARG, including for constraining global
temperature projections (see climate model “emulators” in
refs. 2, 4). Here it provides a predictive physical model with
all of the necessary ingredients to test the robustness of the
above results derived from diagnostic analyses of CMIP5/6
models.

We fit the EBM parameters to the CMIP5/6 abrupt{zC0O2
simulations of all models used in the analysis above (Methods;
Supplementary Information). For each CMIP5/6 model pa-
rameter set, we run the EBM over the period 1850-2014 using
the timeseries of historical ERF calculated as an average over
the eight-model subset as described above, and we calculate
EffCS over 1981-2014 using equations (1) and (2). We also run
the EBM under an abrupt increase in ERF representing CO2
quadrupling (to calculate EBM values of ECS using regression
over 150 years, as in the CMIP5/6 models).

The EBM produces features similar to the CMIP5/6 anal-
ysis seen in Fig. 1. There is a strong correlation between
the 1981-2014 warming rate and ECS, with lower ECS values
being more consistent with observations (Figs. 3c and S5).
This correlation is explained by the fact that 1981-2014 EffCS
values, governing warming over that period, are similar to
ECS values (Fig. S5); EfCS tends to be slightly smaller than
ECS owing to the ocean heat uptake efficacy parameter being
larger than one for most CMIP5/6 models (Supplementary
Information), allowing feedbacks under transient warming to
be slightly more negative than at equilibrium. Differences in
EffCS explain a large fraction of the variance in the 1981-2014
warming rate (r? = 0.88); values of EffCS near 2°C tend to
produce warming rates in line with observations, while higher
values of EffCS produce too much warming (Fig. S5). The
remaining variations in EBM warming rates come from differ-
ences in ocean model parameters (Methods), but differences
in forcing do not contribute here because we have used the
same historical ERF for all parameter sets. The regression
between EffCS and the 1981-2014 warming rate also nearly
matches that found from the eight-model subset, and agrees
well with the relationship between EffCS and the 1981-2014
warming rate derived from observational constraints (Fig. S5).

We next consider how EBM simulations of the 1981-2014
warming rate change when we introduce a linear trend in A
(Methods), representing an idealization of trends in A over
recent decades as simulated by AGCMs forced by observed
warming patterns (8, 14, 17, 19, 25), such that EffCS over 1981-
2014 becomes equal to the value EffCS = 2.0°C (with bounds of
1.5 to 3.1°C also tested) estimated from global energy budget
observations (19). This produces a substantial decrease in
EffCS for high ECS models, but little change in EffCS for low
ECS models (diamonds in Fig. S5), similar to differences seen

Armour/Proistosescu et al.

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

436

437
438
439
440
441
442
443
444
445

446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469

470

471

472

473

474

475

476

477

478

479


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

530

532

533

534

535

536

537

538

539

540

in coupled GCM and AGCM versions of CMIP5/6 models
(Fig. 1c). The result is that the EBM produces warming near
the observed rate for all CMIP5/6 model parameter sets, in
line with expectations based on the regression between EffCS
and warming rate (Figs. 3c and S5). The average warming
rate correction across the subset of eight models is —0.06°C
dec™!, with larger reductions in warming rates (and EffCS)
for models with higher ECS, similar to our analysis using
CMIP5/6 models above.

The relationship between ECS and the warming rate when
imposing observed EffCS within the EBM is shown in Fig. 3c.
Each CMIP5/6 model parameter set produces warming near
the observed 1981-2014 warming rate, with little correlation
between warming rate and ECS. These results show that the
low value of EffCS produced by the observed 1981-2014 SST
trend pattern implies warming in line with the observed global
warming rate, regardless of the value of ECS. This supports
our interpretation that observed warming is consistent with
a wide range of ECS values once accounting for the observed
SST trend pattern and its associated low EffCS. Similar results
hold for comparisons of warming rates and TCR (Fig. S5).

Simulations with a coupled GCM nudged toward observed
warming patterns. Finally, we evaluate the robustness of our
results using two sets of CESM1-CAMS5 simulations wherein
the coupled model is nudged toward the observed 1981-2014
SST trend pattern in physically-plausible ways. The first set of
simulations, performed by Dong et al. (57) based on methods
developed in Blanchard-Wrigglesworth et al. (58), involves
nudging Southern Hemisphere tropospheric winds (above the
boundary layer) poleward of 40°S to match the ERA-Interim
Reanalysis over the period 1981-2014; five ensemble members
were run, which we average together for comparison to the
CESM1-CAMS5 ensemble mean response. The second set of
simulations, performed by Dong et al. (52) and Pauling et
al. (59), involves adding meltwater to the Southern Ocean
subsurface to represent discharge due to mass imbalance of the
Antarctic ice sheet over 1981-2013 (an effect not represented in
CMIP5/6 historical simulations); nine ensemble members were
run, which we average together for comparison to the CESM1-
CAMS5 ensemble mean response. In both sets of simulations,
the SST trend pattern more closely matches observations, with
some cooling in the Southern Ocean and eastern tropical Pa-
cific Ocean and with warming in the western Pacific Ocean
becoming relatively larger (Figs. 2e,f); see ref. (57) for a dis-
cussion of the atmospheric teleconnection pathways by which
these southern high latitude forcings influence tropical SST
patterns.

Using equations (1) and (2) as before, we find that both
sets of simulations produce smaller values of EffCS than the
ensemble mean of CESM1-CAMS5 historical simulations (Fig.
1¢), bringing EffCS nearer to that estimated from global energy
budget observations (19). In turn, both sets of simulations
show reduced global warming rates (Fig. 1d) that are more in
line with observations. The relationship between EffCS and
warming rate in these simulations also approximately follows
expectations based on the regression between EffCS and warm-
ing rate derived from either the eight-model subset (Fig. 1d)
or CESM1-CAMS5 (Fig. S3). However, despite similar changes
to EffCS, Antarctic meltwater forcing produces a larger re-
duction in global warming rate than Southern Hemisphere
wind forcing in this model owing to an increase in ocean heat
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uptake efficiency (k) that works together with feedback (\)
changes to slow the warming (52). Similar results hold for
comparisons of warming rates and TCR (Figs. S1,4). These
findings support the interpretation above that EffCS (rather
than ECS or TCR) governs the global warming rate over 1981-
2014, and that when coupled GCMs more accurately replicate
observed SST trend patterns, they produce lower EffCS and
thus slower global warming, in line with observations.

Discussion and conclusions

The results presented here suggest that high-sensitivity
CMIP5/6 models produce too much post-1970s warming in
part due to their failure to simulate observed SST trend pat-
terns, which in turn leads to model values of EffCS that are
too high compared to the observed EffCS of around 2°C over
this period. Because GCMs with high values of ECS and TCR
are able to produce values of EffCS near 2°C when forced by
observed SSTs over 1981-2014 (Figs. 1c, Slc), we estimate
that even those high-sensitivity GCMs could produce global
warming rates in line with observations if they were able to
better simulate observed SST trend patterns (Figs. 1d, 3a,b).
This is a bias in the GCM-based relationship between post-
1970s warming and climate sensitivity metrics which causes
the proposed observational (or “emergent”) constraint to be
biased toward low values of climate sensitivity. While pub-
lished constraints (18, 32-34) may still reflect useful lower
bounds on ECS and TCR, we find that they are consistent
with wide ranges of ECS and TCR extending to higher values
than previously recognized. While not a focus here, model
biases in historical radiative forcing (e.g., 60, 61) could also
impart biases in the modeled warming-sensitivity relationship
on which the observational constraint is based.

It is worth considering the implications of these results
for the recent climate sensitivity assessments that substantial
narrowed climate sensitivity uncertainty for the first time in
decades by estimating very likely ranges of around 2-5°C for
ECS (2, 3) and 1.2-2.4°C for TCR (2). That the observed rate
of recent warming cannot be used to constrain climate sensitiv-
ity means we must rely on other lines of evidence. Sherwood
et al. (3) employed a Bayesian framework to combine sev-
eral independent lines of evidence for ECS, with paleoclimate
observations and process understanding of climate feedbacks
providing strong constraints on the high end. Importantly,
that assessment did not use observational (or “emergent”)
constraints based on recent warming, so our findings do not
affect that assessed ECS range.

However, without employing a formal Bayesian framework,
ARG relied on observational constraints based on global tem-
perature changes as the strongest constraint on the upper ends
of the ECS and TCR ranges (while many different lines of
evidence support the lower ends of the ranges). Together with
the recent result that the climate response to the Mt. Pinatubo
eruption also does not provide a reliable observational con-
straint on ECS (62), our findings suggest that the upper end of
the climate sensitivity range is less well supported than it was
within ARG, particularly for TCR which relied more heavily on
this type of observational constraint. There still remain other
observational constraints providing evidence against high ECS
values, most notably those based on proxy-estimated cooling
at the Last Glacial Maximum (2), but for now the Bayesian
framework of Sherwood et al. (3) may provide the most robust
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support for a 2-5°C very likely range of ECS. A final implica-
tion is that the evaluation of model ECS, TCR, and future
warming based on their performance in historical simulations
(e.g., 34, 63, 64) must also account for different sea-surface
temperature trend patterns between observations and models,
with our results suggesting that even high sensitivity models
are compatible with observed warming. This too suggests that
testing in paleoclimate settings (e.g., 65) may provide a more
useful evaluation of model climate sensitivity and long-term
warming.

Important questions remain, including: (i) why do CMIP5/6
models fail to replicate observed warming patterns over recent
decades, and how can this model bias be corrected? And, (ii)
for how long will the observed pattern of warming over recent
decades continue into the 21°° century? Model-observation
discrepancies may be due to model deficiencies in simulating
internal variability and/or historical forced responses. Pale-
oclimate proxy and instrumental data suggest that tropical
Pacific multidecadal variability may be substantially larger
than that produced by coupled GCMs (e.g., 66—68), which
seems consistent with the observed 1981-2014 SST trend pat-
tern resembling an extreme phase of the Interdecadal Pacific
Oscillation mode of variability (e.g., 41, 42, 68, 69). Alter-
natively, several other model deficiencies have been proposed
to contribute to the SST trend pattern over recent decades
including: model biases in trends in the Southern Annular
Mode, potentially due to a misrepresentation of ozone deple-
tion (e.g., 57, 70, 71); missing Antarctic meltwater fluxes (e.g.,
52, 57, 59, 72); a misrepresentation of tropospheric aerosol
forcing, which can affect Pacific trade winds (e.g., 73); model
biases in Atlantic Ocean SSTs that limit the ability of the
Atlantic basin to affect Pacific trade winds (74); model bi-
ases in the transient response of the tropical Pacific to CO2
forcing (e.g., 75, 76) or volcanic forcing (16); and limitations
associated with model resolution (e.g., 77).

Our findings do not depend on the source of the discrepancy
between CMIP5/6-simulated and observed warming patterns
because radiative feedbacks and EffCS depend only on SST
and SIC patterns, regardless of how those patterns arise (e.g.,
78, 79). But implicit in our use of AMIP simulations to
estimate how the SST trend pattern has influenced global
warming rates is that the pattern itself is largely independent
of ECS. Recent studies argue that models with more-positive
subtropical low-cloud feedbacks (and thus higher ECS) may
better replicate the observed cooling of the eastern tropical
Pacific (e.g., 80), at least when resulting from Southern Ocean
cooling (52, 57). This potential link between ECS and the
SST trend pattern would further support our finding that high
ECS models can produce low values of EffCS, and thus slow
global warming rates.

The results presented here suggest that changes in EffCS
have the capacity to substantially affect the global warming
rate and that a low value of EffCS driven by a unique SST trend
pattern has slowed global-mean warming over recent decades,
relative to what it would have been had the pattern been more
spatially uniform. However, more work is needed to determine
whether CMIP5/6 models with high ECS (above ~ 4°C) are
capable of producing the observed SST trend pattern and
associated low EffCS needed to bring their simulated global
warming rates in line with observations over recent decades.
It would be valuable to perform similar wind nudging and/or
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Antarctic meltwater flux simulations, shown here for CESM1-
CAMS5, using high ECS models.

These results reinforce previous findings that global warm-
ing will depend on how the SST trend pattern evolves in
the future (e.g., 52, 81-83). Our findings suggest that if the
observed 1981-2014 pattern continues over the 215° century,
then the value of EffCS governing future warming will remain
near 2°C. This would produce 21%° century global warming
near the lower end of IPCC ARG projections (Fig. S7), which
assume a very likely range of ECS of 2-5°C (2). However, if
enhanced warming of the eastern tropical Pacific and Southern
Oceans were to emerge in the future — a pattern projected
by GCM simulations of the 21%° century and supported by
paleoclimate proxy evidence (e.g., 2, 84) — then EffCS would
increase, resulting in an increase in the rate of global warming
(Fig. S7). The degree to which EffCS could increase depends
on the magnitude of the warming in the the eastern tropi-
cal Pacific and Southern Oceans, and on the magnitude of
the radiative feedbacks in those regions. Because observed
post-1970s warming has a unique spatial pattern that does
not appear to be representative of the long-term response to
greenhouse-gas forcing, it does not preclude the possibility that
high values of EffCS are possible for the future, potentially
leading to future warming near or even above the upper end of
IPCC ARG projections if ECS turns out to be on the high end.
How the pattern of warming will evolve in the future thus
represents a major source of uncertainty in climate projections.

Developing improved understanding of the causes of the
observed SST trend pattern over recent decades and better
constraints on how those patterns will evolve in the future is a
major challenge for climate science with direct implications for
how we interpret the historical warming record and project 215
century warming. We could, for instance, see an increase in
the climate’s sensitivity to greenhouse-gas forcing if SST trend
patterns evolve to become more similar to those projected
by models. For now, climate model biases in historical SST
trend patterns suggest that caution is needed in the use of
models to derive observational (or “emergent”) constraints
on climate sensitivity or future warming based on the rate of
global warming over recent decades.

Materials and Methods

Linear regression methods. We use ordinary least squares (OLS)
regression to calculate 1981-2014 warming rates and the regression
of climate sensitivity metrics (ECS, TCR) against 1981-2014 warm-
ing rates using ensemble-mean values (Figs. 1a,b and Sla,b). To
estimate ECS and TCR from the warming-sensitivity relationships
(Figs. 1la, Sla), we calculate a linear fit of ECS (or TCR) versus
1981-2014 warming rate and use the parameters of that fit to esti-
mate ECS (or TCR) given the observed warming rate (HadCRUTS5,
ref. 45) over 1981-2014. Uncertainties in ECS and TCR reflect
5-95% confidence ranges of fit parameter values.

For the calculation of the effective feedback A from the regression
of N — ERF against T (equation (1)), the presence of error in the
predictor variable biases OLS regression toward zero (regression
dilution). To correct for this, we use Deming regression, a total least
squares regression method, to calculate A. We estimate the ratio
of error variances (variance of global average top-of-atmosphere
radiation and variance in global average surface temperature) to
be approximately 10 W2m~4K~2 based on AGCM simulations
using sea-surface temperatures fixed at pre-industrial conditions.
‘We use OLS regression for all regressions based on the two-layer
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EBM, which does not represent internal variability. Within CESM1-
CAMS5, moderate correlations between EffCS and warming rate over
1981-2014 are found when using the CAMS5 Green’s function (22)
combined with SST trend patterns to estimate radiative feedback
and EffCS (Fig. S2).

Effective radiative forcing. Historical effective radiative forcing
(ERF) is calculated for each of the eight models in our subset
using RFMIP (46) simulations. The historical ERF is diagnosed as
the global top-of-atmosphere radiation anomaly in piClim-histall
simulations (wherein SSTs and SICs are fixed to pre-industrial
values while all radiative forcing agents are varied as in the corre-
sponding CMIP6 historical simulations) relative to piClim-control
simulations (wherein SSTs, SICs, and all radiative forcing agents
are fixed to pre-industrial values). A small correction (2, 48) is
made to remove the radiative response to global near-surface air
temperature change T (mostly land warming) by subtracting A2x T,
where A2y is estimated from abrupt{zCO2 simulations (35). For all
RFMIP simulations, the ensemble mean is used when more than one
member of the simulation exist. CMIP5/6 model values of effective
radiative forcing for CO2 doubling (ERF2yx ) have been estimated
using the standard approach of extrapolating to zero global tem-
perature change the regression between global top-of-atmosphere
energy imbalance and global temperature change over 150 years of
abrupt CO2 quadrupling simulations, scaled by a factor of a half to
account for CO2 doubling (35, 44).

Correcting for SST trend pattern biases. For the first method of es-
timating the warming each GCM would produce if it correctly
simulated the observed 1981-2014 SST trend pattern (Fig. 3a), we
first calculate a linear fit (OLS regression) of EffCS versus 1981-
2014 warming rate from all ensemble members of the eight-GCM
subset (Fig. 1d). We then use that fit to estimate the warming
rate given EffCS derived from each AGCM simulation (diamonds
in Figs. 1d, 3a). Uncertainties (horizontal lines in Fig. 3a) reflect
5-95% confidence ranges of fit parameter values.

For the second method of estimating the warming each GCM
would produce if it correctly simulated the observed 1981-2014 SST
trend pattern (Fig. 3b), we use equation (3) with values of A derived
from each model’s AGCM simulation. In the eight-model ensemble
considered here, the average correlation between A\ and k across
historical ensemble members is small (average r? = 0.25), and
models disagree on the sign of the correlation. Without a deeper
understanding of how variations in A and k are related, we assume
they can be varied independently and use ensemble-mean values of
K for each model in this estimate. To evaluate the degree to which
variations in x could affect the results, uncertainties (horizontal
lines in Fig. 3b) are generated by using the highest and lowest values
of k from the ensemble members of each model in this calculation.

Two-layer energy balance model. The two-layer energy balance
model (EBM, refs. 54-56) evolves surface temperature according to
the following equations:
dT
CE = AT + ERF — ex(T — Tp),

4T (5]
Co—— =~(T — Tp),

0~ = 0)

where T is the temperature anomaly of the upper layer, represent-
ing the global surface temperature anomaly; Tj is the temperature
anomaly of the lower layer; ERF is the effective radiative forcing,
as above; C is the effective heat capacity of the upper layer (rep-
resenting the ocean mixed layer, land, and atmosphere); Cp is the
effective heat capacity of the lower layer (representing the ocean
below the mixed layer); v represents the efficiency of vertical heat
transport between upper and lower layers; and ¢ is the efficacy
of ocean heat uptake, which allow effective radiative feedbacks to
change over time as represented by coupled GCMs. Note that in
the limit of Cy > C, such that deep ocean temperature Ty does not
change much, these equations reduce to equation (3) with k = e7.

We fit the two-layer EBM parameters to the abrupt{zCO2 sim-
ulations of all CMIP5/6 models used in the analysis above using
the fitting scheme developed by Lutsko and Popp (85), which was
based on Geoffroy et al. (56) (see Supplementary Information for
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parameter values). To simulate historical warming consistent with
observational constraints on EffCS, we run the model using a wide
range of linear trends in A over the period 1981-2014 (starting from
initial values of X as fit to CMIP5/6 models and changing linearly
with time) and calculate EffCS over this period (using equation
(1)) for each. We then select the simulations that correspond to
EffCS values of 2.0°C, 1.5°C, and 3.1°C (50%, 5%, and 95% inter-
vals of the observationally constrained EffCS from ref. (19). See
Supplementary Information for details regarding the 215 century
EBM simulations under different assumptions about how EffCS will
evolve in the future.
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Supporting Information Text
Tables S1 and S2

Tables S1 and S2 show relevant parameters for CMIP5 and CMIP6 models, respectively. This includes the number of historical
ensemble members used in the analysis in the main text; equilibrium climate sensitivity (ECS); transient climate response
(TCR); and two-layer energy balance model (EBM) parameter values. Also noted are which models are included in our
eight-model subset.

The relationship between post-1970s warming rate and transient climate response

Fig. S1 shows the equivalent of Fig. 1 in the main text, but for the relationship between TCR and the 1981-2014 warming rate
or effective climate sensitivity (EffCS). TCR values are calculated from the global temperature change near year 70 (time of
COg doubling) of CMIP5/6 1%/yr CO2 ramping simulations (1pctC0O2). See Fig. S4 for the relationships between TCR and
the 1981-2014 warming rate when accounting for observed sea-surface temperature (SST) trend patterns.

The relationship between SST trend patterns, EffCS, and global warming rate in the CESM1-CAM5 large ensemble

Fig. S2 shows regressions between local SST trend patterns and either global warming rates or EffCS over 1981-2014. Also
shown is the relationship between EffCS and warming rate over 1981-2014 when using the CAM5 Green’s function of Zhou et
al. (22) combined with SST trend patterns to estimate radiative feedback and EffCS (Fig. S2¢), rather than regression methods
as in Fig. 1d of the main text.

Correcting for warming rates using model-specific relationships between EffCS and warming rates over 1981-
2014

Figs. S3 and S4c,d show the equivalent of Figs. 1d and 3a in the main text, but using model-specific relationships between
EffCS and warming rates over 1981-2014 in the estimate of the warming rate in each model had it simulated the observed SST
trend pattern.

Two-layer energy balance model (EBM) simulations

Figure S5 shows the equivalent of Fig. 1 in the main text, but for the EBM response to historical (to 2014) and RCP8.5 (to
2100) ERF as described in the Methods. Figure S7a shows the EBM response to historical and RCP8.5 ERF over 1850-2100
using parameters fit to CMIP5/6 models (see Methods, and Tables S1-2). We also run the EBM under a linear increase in ERF
representing 1% /yr CO2 ramping simulations (to calculate EBM values of TCR, as in the CMIP5/6 models).

Figure S6a shows EffCS within the EBM, illustrating that EffCS values are near ECS values for each ensemble member.
EffCS is calculated from the linear regression of global radiative response and global surface warming (Methods) within
running 34-year windows (the length of the period 1981-2014), and EffCS values vary over time depending on the degree of
disequilibrium between the upper and lower ocean layers owing to the efficacy of ocean heat uptake parameter (Methods). To
illustrate the impact of changing EffCS on projected warming, we introduce a linear trend in the radiative feedback A such that
EffCS = 2°C over the period 1981-2014 for each CMIP5/6 parameter set (Fig. S6b), with this value of EffCS chosen to match
observed energy budget constraints and amip simulations (see main text). This produces the 1981-2014 warming rates shown
by the diamonds in Fig. S5 and Fig. 3c.

We also perform several extensions of these simulations with various hypothetical evolutions of A and EffCS over the period
2015-2100. We consider three scenarios: (i) A remains constant over the period 2015-2100, thus maintaining EffCS ~ 2°C
(Fig. S6b); (ii) A is linearly returned to CMIP5/6 model values by 2050 (reversing the linear A trend applied over 1981-2014
in approximately the same number of years) (Fig. S6¢); and (iii) A is linearly returned to CMIP5/6 model values by 2100
(reversing the linear A trend applied over 1981-2014 but more slowly) (Fig. S6d). Figure S7 shows the EBM temperature
response in each of these scenarios.
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Table S1. CMIP5 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCOZ2 simulations

Model ECS(K) TCR(K) | CWyrm—2K—1) Co Wyrm—2K-1) X (Wm—2K-1) ~Wm~2K-1) e  ERFay (Wm—2)
ACCESS1-0 (1) 3.90 1.77 8.9 83 -0.81 0.71 155 3.6
ACCESS1-3 (1) 3.63 1.60 10.1 114 -0.81 0.72 1.62 35
bee-csmi-1 (1) 2.91 1.76 8.8 57 -1.28 0.58 1.27 3.6

CCSM4 (6) 2.94 1.80 7.8 72 -1.40 0.81 1.36 4.2
CESM1-CAMS5* (40) 3.32 2.07 8.7 144 122 0.60 119 43
CNRM-CMS5 (1) 3.28 1.97 8.7 96 112 0.51 0.92 35
CSIRO-Mk3-6-0 (10) |  4.36 1.69 9.3 77 -0.66 0.71 1.80 3.4
CanESM2 (5) 3.71 2.30 8.3 77 -1.05 0.54 1.28 4.1
GFDL-CM3 (3) 4.03 1.76 9.9 76 0.78 0.71 1.39 3.4
GFDL-ESM2G (1) 2.34 1.21 6.5 104 -1.48 0.80 117 3.5
GFDL-ESM2M (1) 2.46 1.37 8.9 113 -1.38 0.86 1.23 3.6
GISS-E2-H (5) 2.43 1.78 105 86 -1.64 0.70 1.27 4.1
GISS-E2-R (6) 2.28 1.48 6.1 135 2.03 1.07 1.44 46
HadGEM2-ES (4) 4.64 2.43 8.3 99 -0.60 0.49 1.57 3.4
inmem4 (1) 2.05 1.29 9.1 277 157 0.69 1.82 3.0
IPSL-CM5A-LR (4) 4.05 1.97 8.6 100 -0.79 0.57 1.14 3.3
IPSL-CM5B-LR (1) 2.64 1.44 9.7 68 -1.07 0.63 1.43 3.0
MIROCS (5) 2.70 1.47 9.7 163 -1.58 0.74 1.20 44
MPI-ESM-LR (3) 3.66 2.01 9.2 78 -1.20 0.62 1.43 4.7
MRI-CGCMS3 (1) 2.61 1.52 10.1 70 -1.30 0.60 1.25 3.5
NorESM1-M (1) 2.93 1.39 9.9 122 -1.15 0.76 157 3.6
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Table S2. CMIP6 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCO2 simulations

Model ECS(K) TCR(K) | CWyrm—2K-1) Co Wyrm—2K-1) X(Wm—2K-1) ~Wm—2K-1) &  ERFax (Wm—2)
ACCESS-CM2 (3) 4.72 2.10 9.0 93 -0.71 053 155 40
ACCESS-ESM1-5 (20) 3.87 1.95 9.0 97 -0.72 0.60 1.73 35
AWI-CM-1-1-MR (5) 3.16 2.06 8.3 57 122 0.46 1.49 4.1
BCC-CSM2-MR (3) 3.02 1.72 6.5 64 -1.20 0.84 1.37 3.8
BCC-ESM1 (3) 3.26 177 8.9 98 -0.91 0.52 1.39 3.3
CAMS-CSM1-0 (7) 2.29 1.73 10.2 61 -1.87 0.47 1.29 44
CanESMS5* (25) 5.64 2.74 8.0 80 -0.65 0.52 1.07 3.8
CESM2 (11) 5.15 2.06 8.7 75 -0.69 0.66 1.89 45
CESM2-WACCM (3) 468 1.98 8.5 89 0.74 0.69 157 4.1
CMCG-CM2-SR5 (1) 3.52 2.09 8.9 79 -1.06 0.41 1.27 4.0
CNRM-CM6-1* (30) 4.90 2.14 7.6 147 0.74 0.50 1.00 36
CNRM-CM6-1-HR (1) 4.33 2.48 8.2 95 -0.92 0.55 0.72 3.7
CNRM-ESM2-1 (10) 4.79 1.86 75 100 -0.63 0.59 0.91 2.9
E3SM-1-0 (3) 5.31 2.99 8.6 44 -0.63 0.35 1.50 3.7
EC-Earth3 (73) 4.10 2.30 8.1 37 -0.81 0.42 1.42 3.7
EC-Earth3-Veg (8) 4.33 2.62 8.4 40 -0.82 0.40 1.42 3.8
FGOALS-f3-L (3) 2.98 1.94 9.3 88 -1.41 0.53 158 47
FGOALS-g3 (5) 2.88 1.54 7.8 98 -1.30 0.69 1.30 4.0
GISS-E2-1-G* (12) 2.71 1.80 6.7 144 -1.47 0.84 1.10 4.1
GISS-E2-1-H (25) 3.12 1.93 8.9 86 -1.15 0.61 1.20 3.7
HadGEM3-GC31-LL* (5) 5.55 2.55 8.0 77 -0.63 0.51 1.22 3.7
HadGEM3-GC31-MM (4) | 5.42 2.58 8.3 73 -0.66 0.58 1.03 3.6
INM-CM4-8 (1) 1.83 1.33 6.4 26 -1.68 0.78 1.31 3.1
IPSL-CM6A-LR* (32) 4.56 2.32 8.2 63 0.75 0.41 1.33 3.7
KACE-1-0-G (3) 4.48 1.41 9.0 120 -0.71 0.74 1.31 3.8
MIROG-ES2L (11) 2.66 1.55 10.6 185 -1.56 0.67 0.93 4.1
MIROC6* (50) 2.60 1.55 8.9 175 -1.38 0.65 1.32 3.9
MPI-ESM-1-2-HAM (3) 2.96 1.80 9.5 113 -1.44 0.64 1.34 45
MPI-ESM1-2-HR (8) 2.98 1.66 8.9 84 -1.33 0.66 1.50 43
MPI-ESM1-2-LR (10) 3.00 1.84 9.5 114 -1.40 0.59 1.23 44
MRI-ESM2-0 (6) 3.13 1.64 8.7 96 -1.21 0.85 1.43 4.1
NESM3 (5) 4.77 2.72 5.6 105 -0.78 0.46 0.97 3.7
NorCPM1 (29) 3.05 1.56 9.9 108 -1.18 0.78 155 4.0
NorESM2-LM* (3) 2.56 1.48 5.6 119 1.71 0.86 1.99 5.0
NorESM2-MM (3) 2.50 1.33 6.0 114 -1.74 0.79 1.66 4.8
SAMO-UNICON (1) 3.72 2.27 7.3 100 -1.09 0.79 1.24 4.3
TAiESM1 (1) 4.31 2.34 8.8 97 0.93 0.63 1.34 4.4
UKESM1-0-LL (18) 5.36 2.79 8.0 80 -0.67 0.52 112 3.7
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Fig. S1. Relationships between transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014 warming rate in CMIP5/6 models. a,
CMIP5/6 TCR versus warming rate using averages of all available ensemble members for each model (2 = 0.46); colors correspond to values of ECS. b, Eight-model
subset TCR versus warming rate with ensemble means shown as larger circles and ensemble members shown as smaller dots. ¢, Eight-model subset TCR versus EffCS over
1981-2014 with ensemble means shown as larger circles and ensemble members shown as smaller dots; diamonds show EffCS values from AGCM simulations forced by
observed SST trend patterns. In b,c, open circles show CESM1-CAMS5 simulations with wind nudging or meltwater forcing as described in the main text. Blue lines show fits
calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates (5-95% range)
of observed warming rate and EffCS as described in the main text.
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Fig. S2. The relationship between SST trend patterns, EffCS, and 1981-2014 warming rate in the CESM1 large ensemble. a, Regression between local SST trends
and global warming rates across ensemble members. b, Regression between local SST trends and EffCS values (calculated as described in main text) across ensemble
members. ¢, Green’s function-estimated EffCS (calculated using the CAM5 Green’s function of Zhou et al. (22) convolved with SST trend pattern of each ensemble member )
versus warming rate over 1981-2014, with ensemble mean shown as larger circles and ensemble members shown as smaller dots (r? = 0.36). Blue lines show fit calculated
using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates (5-95% range) of
observed warming rate and EffCS as described in the main text.
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Fig. S3. Relationships between effective climates sensitivity (EffCS) over 1981-2014 and 1981-2014 warming rate in individual CMIP5/6 models. a, CanESMS5. b,
CNRM-CM6-1. ¢, GISS-E2-1-G. d, HadGEM3-CG3-LL. e, IPSL-CM6A-LR. f, MIROC6. g, NorESM2-LM. h, CESM1-CAM5. Ensemble means shown as larger circles and
ensemble members shown as smaller dots. Also shown are EffCS and warming rates in CESM1-CAM5 simulations with wind nudging or meltwater forcing (see main text). Blue
lines show fits calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates
(5-95% range) of observed warming rate (HadCRUT5) and EffCS (see main text). Diamonds show EffCS values from AGCM simulations forced by observed warming patterns,
with the corresponding warming rates estimated from the regression between EffCS over 1981-2014 and warming rate for each model (blue line).
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Fig. S4. Relationships between climate sensitivity metrics and the 1981-2014 warming rate with (diamonds) and without (circles) accounting for observed warming
patterns. TCR vs warming rate for a, CMIP5/6 eight-model subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected warming
rates estimated using AGCM values of EffCS and the relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confidence ranges from uncertainty in the
fit. b, CMIP5/6 eight-model subset, with with circles showing uncorrected warming rates (Fig. S1b) and diamonds showing corrected warming rates estimated using AGCM
values of A\ and equation (3), with horizontal lines showing uncertainty ranges reflecting the spread in « across ensemble members. ¢, CMIP5/6 ECS vs warming rate, with
corrected warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S3), with
horizontal lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. 1b. d, CMIP5/6 TCR vs warming rate, with corrected
warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S2), with horizontal
lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. S1b. Gray shading shows observational estimates (5-95% range)
of observed warming rate as described in the main text.
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Fig. S5. Relationships between equilibrium climate sensitivity (ECS), transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014
warming rate in the two-layer energy balance model (EBM). a, ECS versus warming rate; colors correspond to values of ECS. b, TCR versus warming rate. ¢, ECS versus
EffCS over 1981-2014; diamonds show an EffCS value corresponding to an observational estimate of 2°C. d, TCR versus EffCS over 1981-2014; diamonds show an EffCS
value corresponding to an observational estimate of 2°C. e, EffCS over 1981-2014 versus warming rate; diamonds show warming rates simulated by the EBM when using an
EffCS value corresponding to an observational estimate of 2°C over 1981-2014, which are in good agreement with the regression slope (blue line with dashed blue lines
showing 5-95% ranges of fit parameters). f, Relationship between TCR and warming rate with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS as described in main text, with a median of 2°C and horizontal lines showing 5-95% confidence ranges showing 1.5-3.1°C. Gray
shading shows observational estimates (5-95% range) of observed warming rate and EffCS as described in the main text.
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Fig. S6. Two-layer energy balance model (EBM) effective climate sensitivity (EffCS) under historical and RCP8.5 radiative forcing, either with CMIP5/6 model
parameters or with prescribed changes in EffCS. a, EffCS using CMIP5/6 parameters; colors correspond to values of ECS. b, EffCS using CMIP5/6 parameters but with
EffCS = 2°C over 1981-2100. ¢, EffCS using CMIP5/6 parameters but with EffCS = 2°C over 1981-2014 and EffCS returning to CMIP5/6 values by 2050. d, EffCS using

CMIP5/6 parameters but with EffCS = 2°C over 1981-2014 and EffCS returning to CMIP5/6 values by 2100.
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Fig. S7. Two-layer energy balance model (EBM) global surface temperature response to historical and RCP8.5 radiative forcing, either with CMIP5/6 model
parameters or with prescribed changes in effective climate sensitivity (EffCS). a, Temperature anomaly using CMIP5/6 parameters; colors correspond to values of ECS.
b, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2°C over 1981-2100. ¢, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2°C over
1981-2014 and EffCS returning to CMIP5/6 values by 2050. d, Temperature anomaly using CMIP5/6 parameters but with EffCS = 2°C over 1981-2014 and EffCS returning to

CMIP5/6 values by 2100. Black lines show observed global surface temperature anomaly from HadCRUTS5 over 1981-2014, and all anomalies are plotted with respect to the
average over 1981-2014.
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