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A B S T R A C T

The static energy encodes all possible information about the thermodynamics and potential energy (and all
related forces) of stratified geophysical fluids. In this paper, we develop a systematic methodology, called static
energy asymptotics, that exploits this property for constructing energetically and thermodynamically consistent
sound-proof approximations of the equations of motion. By approximating the static energy to various orders of
accuracy, two main families of approximations are (re-)derived and discussed: the pseudo-incompressible (PI)
approximation and the anelastic (AN) approximation. For all approximations, the background and available
potential energies (in Lorenz sense) can be constructed to match their exact counterparts as closely as feasible
and to be expressible in terms of the exact (as opposed to ad-hoc) thermodynamic potentials. For hydrostatic
motions, the AN approximation (of which the Boussinesq approximation is a special case) has the same
structure as that of legacy Seawater Boussinesq primitive equations. The energetics of such models could
therefore be made transparently traceable to that of the full Navier–Stokes equations at little to no additional
cost, thus allowing them to take full advantage of the Gibbs Sea Water (GSW) library developed as part of
the new thermodynamic standard for seawater TEOS-10.
1. Introduction

Since their inception in the late 60’s, numerical ocean models
have almost exclusively relied on the so-called Seawater Boussinesq
approximation (SBA thereafter). Unlike the standard Boussinesq ap-
proximation, the SBA makes use of the full nonlinear equation of state
for seawater and therefore retains the adiabatic and isohaline com-
pressibility effects resulting from its pressure dependence. Doing so is
essential because these nonlinearities appear to be crucial for correctly
simulating the relative layering of ocean water masses, e.g., Nycander
et al. (2015), IOC, SCOR, IAPSO (2010). The nonlinearities most im-
portant dynamically are: the cabbeling nonlinearity, which is associated
with the temperature dependence of the thermal expansion coefficient
and responsible for the densification upon mixing, and the thermobaric
nonlinearity, which is associated with the pressure dependence of the
thermal expansion coefficient and responsible for making colder parcels
more compressible than warmer ones (McDougall, 1987).

Although the SBA has received much attention, its accuracy, exact
justification, as well as its energetic and thermodynamic consistency,
have remained poorly understood and sources of confusion. Concep-
tually, the construction and justification of the SBA used in numerical

∗ Corresponding author.
E-mail address: r.g.j.tailleux@reading.ac.uk (R. Tailleux).

ocean models a priori involves a two-step process: (1) the first one per-
taining to the coarse-graining of the un-averaged equations of motion;
(2) the second one pertaining to the sound-proofing of the equations. So
far, most approaches have generally assumed that (2) should be carried
out before (1), as it is easiest to implement and understand, but the
opposite view also exists. For instance, McDougall et al. (2002) have
argued that the divergence-free velocity field used by the SBA should
be interpreted as the Favre averaged velocity field 𝐯𝜌 = 𝜌𝐯∕𝜌, thus
regarding the SBA as being primarily the result of the coarse-graining
procedure rather than of the Boussinesq sound-proofing step. Clarifying
the issue is important for establishing the accuracy of the SBA, because
in McDougall’s interpretation, the continuity equation ∇⋅𝐯𝜌 = 0 is exact
in a steady-state, whereas it is only approximate in the conventional
interpretation.

In this paper, our main aim is to clarify the key ingredients (and
those that are not) of any construction of energetically and thermody-
namically consistent approximations, defined here as approximations
that admit an energy conservation principle and thermodynamic po-
tentials traceable in a rigorous and physically transparent way to
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their exact counterparts, and whose description of irreversible pro-
cesses/diabatic effects remains in agreement with the second law of
thermodynamics. To that end, we address the issue in the context of
the un-averaged compressible Navier–Stokes equations, as how coarse-
graining affects energetics and thermodynamics is currently much less
understood. Note that in the literature, the concept of energetically and
thermodynamically consistent models is also occasionally understood
as models predicting the evolution of coarse-grained motions whose
turbulent closures are consistent with energy conservation and the sec-
ond law of thermodynamics. Those models may also include prognostic
equations for subgrid scale energy reservoirs, e.g., Eden et al. (2014),
Eden (2015, 2016).

Following relatively recent progress (Young, 2010; Tailleux, 2010b,
2012; Eden et al., 2014; Eden, 2015, 2016), the SBA is now understood
to admit a well defined energy conservation principle, although one
that requires the construction of ad-hoc thermodynamic potentials.
One of the main results of this paper is that this undesirable feature
stems from the un-necessary character of some of the approxima-
tions/simplifications made by the SBA. Indeed, we find that it is always
possible to construct SBA-like approximations whose thermodynamics
can be expressed in terms of the exact thermodynamic potentials. The
approximations that we propose, unlike the legacy SBA, can therefore
take full advantage of the Gibbs Seawater Library (GSW) developed as
part of the new international thermodynamic standard TEOS-10 (IOC,
SCOR, IAPSO, 2010).

It has long been observed that the SBA can be regarded as being
isomorphic to the fully compressible hydrostatic equations of motion
written in pressure coordinates (de Szoeke and Samelson, 2002). This
result is important, because it implies that SBA-model can in principle
be made fully compressible and therefore more accurate simply by re-
interpreting height as pressure and implementing a few other changes
without fundamentally altering the architecture of existing codes, as
discussed and tested by Losch et al. (2004) for instance. The use of
pressure coordinates is much less natural for the oceans than it is for the
atmosphere, however, since it requires considering a prognostic equa-
tion for the bottom pressure (which is difficult to observe) rather than
for the free surface (observable by satellite altimetry). For this reason,
there is a strong incentive to continue searching for alternative ways to
improve on the SBA that retain standard coordinates. To that end, there
appears to be a wealth of sound-proof approximations to choose from.
The anelastic system (Ogura and Phillips, 1962; Lipps and Hemler,
1982) has been initially derived for dry air modelled as an ideal
perfect gas and adiabatic conditions. Scinocca and Shepherd (1992)
have obtained a Hamiltonian formulation of the anelastic system, which
has later been extended to accommodate arbitrary multicomponent
thermodynamics (Pauluis, 2008). Vasil et al. (2013), Tort and Dubos
(2014b), Cotter and Holm (2014) have developed variational formu-
lations for these systems that enable to trace back their conservation
properties to symmetries of an adequate Lagrangian. Durran (1989,
2008) has proposed a different approximation, known as the pseudo-
incompressible (PI) approximation in an atmospheric context. Arbitrary
thermodynamics and diabatic effects (i.e. molecular conduction and
diffusion) have been consistently introduced in this system (Klein and
Pauluis, 2012). In an oceanic context, Dewar et al. (2016) have pro-
posed two types of ‘‘semi-compressible’’ approximations with a consis-
tent treatment of diabatic effects, the type-I approximation coinciding
with the PI system and type-II with the anelastic system.

Most recently, Eldred and Gay-Balmaz (2021) have devised varia-
tional formulations of the PI and anelastic systems that extend Vasil
et al. (2013) and Tort and Dubos (2014b) by including diabatic effects
that previously had to be dealt with directly at the level of the equations
of motion (Pauluis, 2008; Klein and Pauluis, 2012; Dewar et al., 2016).
Based on the existing literature, the problem of how to construct
energetically and thermodynamically consistent sound-proof approxi-
mations to the equations of motion appears to be largely understood,
2

at least in the context of the un-averaged equations of motion. In
most cases, however, such approaches require a significant amount of
mathematical background, e.g. differential geometry and variational
principles with non-holonomic constraints. In the context of the SBA,
the methods developed by Tailleux (2012), Eden et al. (2014), Eden
(2015, 2016) to achieve energetics and thermodynamic consistency are
arguably much simpler, but unfortunately not sufficiently general to be
easily extended to the pseudo-incompressible or anelastic approxima-
tions. As a result, there is still a strong incentive to look for alternative
approaches that can make the process of constructing consistent ap-
proximations more physically intuitive while keeping the maths as
elementary as feasible. The main aim of this paper is to reformulate the
mathematical apparatus of Eldred and Gay-Balmaz (2021) in a much
simpler unifying formalism, where the main vehicle of the various
levels of approximations is the so-called static energy. This concept,
which should be more familiar to both oceanographers and atmospheric
scientists, is found to allow for a transparent discussion of both the
energetics and accuracy of Boussinesq-like approximations. The hope is
that by demystifying energetics and thermodynamic consistency issues
it might facilitate the adoption of more straightforwardly consistent
and/or more accurate approximations by numerical ocean modellers
and others.

The paper is organised as follows: Section 2 introduces the topic by
first reminding the reader of where to locate all the information about
the thermodynamics and energetics in the compressible Navier–Stokes
equations. This leads us to identify the static energy as the most natural
variable in which to encode all thermodynamic information about the
fluid, and therefore the one to approximate. Section 3 shows how to
construct the pseudo-incompressible approximation. Section 4 discusses
the construction of a modernised anelastic approximation. Section 5
discusses the construction of modernised versions of the Boussinesq
and anelastic approximations for seawater within a single unifying
framework. Section 6 discusses the impact of the approximation on
the partitioning of the potential energy into available potential energy
(APE) and background potential energy (BPE), as per Tailleux (2018)
local formulation of Lorenz (1955) theory of available potential energy.
Section 7 summarises and discusses the results.

2. Energy conservation and structure of static energy

To understand how to construct energetically and thermodynami-
cally consistent approximations, it is first important to understand how
the equations of motion encode the information about thermodynamics
and potential energy. It is also important to understand how this infor-
mation might get partially lost or scrambled in the simplification or
approximation process underlying the construction of idealised models
or of sound-proof approximations, or even through the use of non-
canonical variables. Indeed, this is necessary for identifying possible
information recovery strategies. The following sections discuss and
illustrate these issues.

2.1. Remark on energy conservation in the Navier–Stokes equations

We take as our ground-truth and reference model the Navier–Stokes
equations for compressible seawater approximated as a two-constituent
fluid, which may be written
𝐷𝐯
𝐷𝑡

+ 2Ω × 𝐯 + 1
𝜌
∇𝑝 = −∇𝛷 + 𝐅, (1)

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐯) = 0 or equivalently ∇ ⋅ 𝐯 = 𝐷
𝐷𝑡

ln 𝜈, (2)

𝐷𝜂
𝐷𝑡

= 𝜂̇ = −1
𝜌
∇ ⋅ (𝜌𝐉𝜂) + 𝜂̇𝑖𝑟𝑟 (3)

𝐷𝑆
𝐷𝑡

= 𝑆̇ = −1
𝜌
∇ ⋅ (𝜌𝐉𝑆 ), (4)

= 𝑇 (𝜂, 𝑆, 𝑝) = 𝜕ℎ , 𝜇 = 𝜇(𝜂, 𝑆, 𝑝) = 𝜕ℎ (5)

𝜕𝜂 𝜕𝑆
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𝜈 = 𝜈(𝜂, 𝑆, 𝑝) = 𝜕ℎ
𝜕𝑝

(6)

Here, ℎ = ℎ(𝜂, 𝑆, 𝑝) is the specific enthalpy, 𝐯 = (𝑢, 𝑣,𝑤) is the three-
dimensional velocity field, 𝜌 is density, 𝜈 = 1∕𝜌 is the specific volume,
𝑝 is pressure, 𝛷 = 𝑔𝑧 is the geopotential, Ω is Earth rotation vector,
𝑔 is the acceleration of gravity, 𝑧 is height, 𝑆 is salinity, 𝜂 is specific
entropy, with 𝐉𝑆 and 𝐉𝜂 the molecular fluxes of salt and entropy,
respectively. The term 𝜂̇𝑖𝑟𝑟 ≥ 0 represents the irreversible rate of specific
entropy production, which the second law of thermodynamics requires
to be non-negative. Finally, 𝐅 = 𝜌−1∇ ⋅ 𝐒 is the viscous force, where 𝐒
is the deviatoric stress tensor.

Consistency with the second law of thermodynamics is associated
with the evolution equations for specific entropy and salinity (3) and
(4) through the specification of the phenomenological laws for the
molecular diffusive fluxes 𝐉𝜂 and 𝐉𝑆 , as well as with the constraint that
𝜂̇𝑖𝑟𝑟 ≥ 0 be positive. From non-equilibrium thermodynamics theory, we
know that the molecular diffusive fluxes act to relax the fluid towards a
resting state (𝐯 = 0) with homogeneous in-situ temperature 𝑇 = constant
and relative chemical potential 𝜇 = constant. The simplest way to
achieve this is via assuming that the molecular fluxes of 𝜂 and 𝑆 be
linearly related to the generalised forces ∇𝑇 ∕𝑇 and ∇𝜇∕𝑇 as follows

𝐉𝜂 = −𝐿𝜂𝜂
∇𝑇
𝑇

− 𝐿𝜂𝑠
∇𝜇
𝑇

(7)

𝑆 = −𝐿𝜂𝑠
∇𝑇
𝑇

− 𝐿𝑠𝑠
∇𝜇
𝑇

(8)

with 𝐿𝜂𝜂 , 𝐿𝑠𝑠, 𝐿𝜂𝑠 and 𝐿𝑠𝜂 to be determined empirically from laboratory
measurements. Energy conservation can be shown to impose that the
following quantity

𝜌[𝐯 ⋅ 𝐅 + 𝑇 𝜂̇ + 𝜇𝑆̇] = −∇ ⋅ (𝜌𝐉𝐸 ) (9)

be equal to the divergence of an appropriately defined energy flux 𝐉𝐸 .
This in turn constrains the non-viscous irreversible entropy production
to take the form

𝜂̇dif f𝑖𝑟𝑟 = 𝐿𝜂𝜂
|∇𝑇 |2

𝑇 2
+ 𝐿𝑠𝑠

|∇𝜇|2

𝑇 2
+ (𝐿𝑠𝜂 + 𝐿𝜂𝑠)

∇𝑇 ⋅ ∇𝜇
𝑇 2

(10)

which is non-negative provided that

𝐿𝜂𝜂 > 0, 𝐿𝑠𝑠 > 0, 𝐿𝜂𝜂𝐿𝑠𝑠 − 𝐿𝜂𝑠𝐿𝑠𝜂 ≥ 0. (11)

inally, the Onsager reciprocity relationship allows for the simplifi-
ation 𝐿𝜂𝑠 = 𝐿𝑠𝜂 . As shown in the following, the main effect of a
ound-proof approximation is to modify the form of the in-situ temper-
ture and relative chemical potential entering the phenomenological
aws (7) and (8) but not the laws themselves.

As is well known, in addition to being consistent with the second
aw of thermodynamics, the Navier–Stokes equations are built to satisfy
he law of energy conservation, the conserved total energy per unit
ass being 𝐸𝑡𝑜𝑡 = 𝐸𝑘 + 𝐸𝑝, with 𝐸𝑘 = 𝐯2∕2 the kinetic energy (KE),

nd

𝑝 = 𝛷(𝑧) + ℎ −
𝑝
𝜌
= 𝛷(𝑧) + ℎ − 𝑝 𝜕ℎ

𝜕𝑝
(12)

he potential energy (PE), itself the sum of gravitational potential
nergy 𝛷(𝑧) = 𝑔𝑧 and internal energy 𝑒 = ℎ − 𝑝∕𝜌. Note that the
avier–Stokes equations contain only information about the three par-

ial derivatives of ℎ,
𝜕ℎ
𝜕𝑝

= 𝜈 = 1
𝜌
, 𝜕ℎ

𝜕𝜂
= 𝑇 , 𝜕ℎ

𝜕𝑆
= 𝜇, (13)

eaning that they are only sufficient to recover ℎ up to an irrelevant in-
egration constant. (Note though that while 𝜈 and 𝑇 are unambiguously
efined, 𝜇 is only defined up to an arbitrary constant; it follows that ℎ is
undamentally defined only up to a linear function of 𝑆, see IOC, SCOR,
APSO, 2010). Partial loss of information about ℎ commonly occurs

in many systems of equations used in practice, however. This is the
case, for instance, when restricting attention to adiabatic and isohaline
3

motions (𝜂̇ = 𝑆̇ = 0), for which knowledge of the thermohaline
derivatives of ℎ (𝑇 and 𝜇) is no longer formally needed for integrating
the equations forward in time. In this case, the Navier–Stokes equations
reduce to the Euler equations (assuming that viscous processes are also
neglected), and only contain enough information to recover ℎ (or 𝑒) up
o an indeterminate function of (𝜂, 𝑆). In the literature, the latter are
ften referred to as energy Casimirs, e.g., Shepherd (1993).

Physically, it is important to remark that specific enthalpy acts
s a thermodynamic potential encoding all possible thermodynamic
nformation only if formulated in terms of its canonical variables
𝜂, 𝑆, 𝑝) (Alberty, 1994). It follows that thermodynamic information
ay also be lost when using expressions of specific enthalpy formulated

n terms of non-canonical variables such as potential temperature 𝜃 or
onservative Temperature 𝛩 in place of entropy as ℎ = ℎ̂(𝑆, 𝜃, 𝑝) or

̃ (𝑆,𝛩, 𝑝), as is usually preferred in oceanographic practice. To avoid
osing information in that case, it becomes necessary to also supply
he passage relations 𝜂 = 𝜂̂(𝑆, 𝜃, 𝑝) or 𝜂 = 𝜂̃(𝑆,𝛩, 𝑝) allowing one to
econstruct ℎ in terms of its canonical variables, e.g., IOC, SCOR, IAPSO
2010). This is needed, for instance, to compute variables such as in-situ
emperature 𝑇 , whose expression is

= 𝜕ℎ
𝜕𝜂

= 𝜕ℎ̂
𝜕𝜃

/

𝜕𝜂̂
𝜕𝜃

, (14)

which clearly requires knowledge of both ℎ̂ and 𝜂̂. In practice, the loss
of thermodynamic information affecting widely used systems of equa-
tions such as the standard Seawater Boussinesq approximation used by
ocean modellers and discussed next may therefore have multiple origins
that one needs to be aware of, as it is obviously a pre-requisite for
identifying information recovery strategies.

2.2. Motivating problem: seawater Boussinesq approximation

To make the above ideas more concrete, it is useful to discuss the
particular case of the Seawater Boussinesq approximation (SBA) used
in a majority of numerical Ocean General Circulation Models (OGCMs)
and the main focus of this paper. Its governing equations are

𝐷𝐮
𝐷𝑡

+ 𝑓𝐤 × 𝐮 + ∇ℎ

(

𝛿𝑝
𝜌𝑏

)

= 𝐅ℎ (15)

𝜕
𝜕𝑧

(

𝛿𝑝
𝜌𝑏

)

= 𝑏𝑏𝑜𝑢, (16)

𝑏𝑏𝑜𝑢 = 𝑏𝑏𝑜𝑢(𝑆, 𝜃, 𝑧) = −
𝑔(𝜌 − 𝜌𝑏)

𝜌𝑏
(17)

∇ ⋅ (𝜌𝑏𝐯) = 0 (18)

𝐷𝑆
𝐷𝑡

= −∇ ⋅ 𝐅𝑆 ,
𝐷𝜃
𝐷𝑡

= −∇ ⋅ 𝐅𝜃 (19)

𝜌 = 𝜌(𝑆, 𝜃, 𝑝𝑏(𝑧)) (20)

where 𝜌𝑏 is the constant Boussinesq reference density, which in the
NEMO OGCM is generally chosen to be 𝜌𝑏 = 1026 kgm−3, 𝑝𝑏 = −𝜌𝑏𝑔𝑧
is the Boussinesq pressure, 𝛿𝑝 = 𝑝 − 𝑝𝑏(𝑧). As 𝜌𝑏 is constant, the
continuity equation is of course equivalent to the usual form ∇ ⋅ 𝐯 = 0.

emaining notations are: 𝐮 = (𝑢, 𝑣) is the horizontal component of
he coarse-grained 3D velocity field 𝐯 = (𝑢, 𝑣,𝑤); ∇ℎ is the horizontal
omponent of the ∇ operator; 𝑓 is the Coriolis parameter; 𝐤 is the
nit normal vector pointing upward; 𝐅ℎ is the horizontal component of
he turbulent viscous force; 𝐅𝑆 and 𝐅𝜃 are the parameterised turbulent
luxes of salt and heat.

Although (15)–(20) has formed the basis for a majority of OGCMs,
hat they admit an energy conservation principle was only clarified
elatively recently by Young (2010), Tailleux (2012), and Eden (2015)
mong others, building upon previous ideas by Ingersoll (2005) and
auluis (2008). Starting from the kinetic energy equation,

𝐷 𝐮2 + ∇ ⋅ (𝛿𝑝𝐯) = 𝜌 𝑏 (𝑆, 𝜃, 𝑧)𝐷𝑧 + 𝜌 𝐅 ⋅ 𝐮, (21)
𝑏𝐷𝑡 2 𝑏 𝑏𝑜𝑢 𝐷𝑡 𝑏 ℎ
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obtained by taking the scalar product of (15) with 𝐮 combined with (16)
multiplied by 𝐷𝑧∕𝐷𝑡, the key step here is to recognise that the term
𝑏𝑏𝑜𝑢𝐷𝑧∕𝐷𝑡 is the Lagrangian derivative of a pseudo potential energy
𝐸𝑝,𝑏𝑜𝑢, so that (21) may be rewritten in the form

𝑏
𝐷
𝐷𝑡

(

𝐮2
2

+ 𝐸𝑝,𝑏𝑜𝑢

)

+ ∇ ⋅ (𝛿𝑝𝐯) = 𝜌𝑏
(

𝛶𝑆
𝐷𝑆
𝐷𝑡

+ 𝛶𝜃
𝐷𝜃
𝐷𝑡

+ 𝐅ℎ ⋅ 𝐮
)

(22)

where the Boussinesq pseudo potential energy 𝐸𝑝,𝑏𝑜𝑢 and the thermo-
dynamic efficiencies 𝛶𝑆 and 𝛶𝜃 are defined by

𝐸𝑝,𝑏𝑜𝑢 = −∫

𝑧

𝑧⋆
𝑏𝑏𝑜𝑢(𝑆, 𝜃, 𝑧̃) d𝑧̃, (23)

𝛶𝑆 = −∫

𝑧

𝑧⋆

𝜕𝑏𝑏𝑜𝑢
𝜕𝑆

(𝑆, 𝜃, 𝑧̃) d𝑧̃, (24)

𝜃 = −∫

𝑧

𝑧⋆

𝜕𝑏𝑏𝑜𝑢
𝜕𝜃

(𝑆, 𝜃, 𝑧̃) d𝑧̃, (25)

where 𝑧⋆ is an arbitrary reference depth. Eq. (22) defines an energy
onservation principle for 𝐮2∕2 + 𝐸𝑝,𝑏𝑜𝑢 for inviscid motions in the

absence of diabatic sources/sinks of 𝜃 and 𝑆, but is unsatisfactory
because 𝐸𝑝,𝑏𝑜𝑢 represents only one chunk of the total potential energy,
whose determination is rendered ambiguous by the arbitrariness of 𝑧⋆
and whose link to its exact counterpart is unclear. While progress has
been made towards resolving these issues, existing ideas still remain
largely ad-hoc and lacking in generality, however, thus motivating the
considerations developed in subsequent sections.

2.3. Importance of static energy

To ensure that the full energy conservation can be recovered from
the equations of motion, we find it essential to explicitly articulate
the connections between aspects of the momentum balance equations
and potential energy. In this paper, this is achieved by expressing the
pressure-geopotential gradient force 𝜌−1∇𝑝 + ∇𝛷, potential energy 𝐸𝑝,
nd dynamics/thermodynamics coupling in terms of the static energy

𝐹𝐶 (𝜂, 𝑆, 𝑝, 𝛷) = ℎ(𝜂, 𝑆, 𝑝) +𝛷, (26)

y means of the following relations:

1
𝜌
∇𝑝 + ∇𝛷 =

𝜕𝛴𝐹𝐶
𝜕𝑝

∇𝑝 +
𝜕𝛴𝐹𝐶
𝜕𝛷

∇𝛷 = 𝐅𝑑𝑦𝑛, (27)

𝐸𝑝 = 𝛷 + ℎ −
𝑝
𝜌
= 𝛴𝐹𝐶 − 𝑝

𝜕𝛴𝐹𝐶
𝜕𝑝

, (28)

∇𝛴𝐹𝐶 −
𝜕𝛴𝐹𝐶
𝜕𝜂

∇𝜂 −
𝜕𝛴𝐹𝐶
𝜕𝑆

∇𝑆
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

=
𝜕𝛴𝐹𝐶
𝜕𝑝

∇𝑝 +
𝜕𝛴𝐹𝐶
𝜕𝛷

∇𝛷
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

, (29)

here in the case of a fully compressible fluid, the partial derivatives
f 𝛴𝐹𝐶 are
𝜕𝛴𝐹𝐶
𝜕𝑝

= 𝜈 = 1
𝜌
,

𝜕𝛴𝐹𝐶
𝜕𝛷

= 1,
𝜕𝛴𝐹𝐶
𝜕𝜂

= 𝑇 ,
𝜕𝛴𝐹𝐶
𝜕𝑆

= 𝜇. (30)

Notice that in Eq. (26), (𝑝, 𝜂, 𝑆,𝛷) are independent coordinates in
an augmented state space that extends the standard thermodynamic
state space (𝑝, 𝜂, 𝑆). By a standard abuse of notations, we use the same
notation for these independent variables and for the corresponding
fields.

In the literature, the identity (29) is sometimes called the Crocco–
Vazsonyi theorem (Crocco, 1937; Vazsonyi, 1945) (referred as the
CVT thereafter) and is key for connecting the dynamics (27) to the
thermodynamics. Physically, it implies that the momentum balance
equations, whose standard dynamical form is

𝐷𝐯
𝐷𝑡

+ 2Ω × 𝐯 +
𝜕𝛴𝐹𝐶
𝜕𝑝

∇𝑝 +
𝜕𝛴𝐹𝐶
𝜕𝛷

∇𝛷 = 𝐅 (31)

may also be written in thermodynamic form as follows:

𝐷𝐯 + 2Ω × 𝐯 + ∇𝛴𝐹𝐶 = 𝐅 +
𝜕𝛴𝐹𝐶 ∇𝜂 +

𝜕𝛴𝐹𝐶 ∇𝑆, (32)
4

𝐷𝑡 𝜕𝜂 𝜕𝑆
referred to as the Crocco equations thereafter. As shown throughout
this paper, the three identities (27), (28), and (29) greatly facilitate
understanding of energy conservation issues. The key idea of this
paper is to argue that to understand the energetics and thermodynamic
consistency of any given approximation to the equations of motion, it is
essential to understand how said approximation affects these identities.

To proceed, let us first establish that energy conservation is actually
attached to the structure of 𝛴𝐹𝐶 rather than to its explicit form, as
this will prove essential to obtain a general principle applicable to both
the approximated and non-approximated equations of motions. In the
following, we therefore only assume that: (1) 𝛴𝐹𝐶 is some general
function of (𝜂, 𝑆, 𝑝,𝛷); (2) that the density entering the continuity
quation Eq. (2) relates to the pressure derivative of 𝛴𝐹𝐶 via
𝜕𝛴𝐹𝐶
𝜕𝑝

= 1. (33)

hus, taking the scalar product of (32) with 𝐯, using the facts that by
efinition 𝐯 ⋅ ∇𝐶 = 𝐷𝐶∕𝐷𝑡 − 𝜕𝐶∕𝜕𝑡 = 𝐶̇ − 𝜕𝐶∕𝜕𝑡 for any scalar field
(𝐱, 𝑡) and that 𝜕𝛷∕𝜕𝑡 = 0, yields

𝐷
𝐷𝑡

(

𝐯2
2

+ 𝛴𝐹𝐶

)

=𝐅 ⋅ 𝐯 +
𝜕𝛴𝐹𝐶

𝜕𝜂
𝜂̇ +

𝜕𝛴𝐹𝐶

𝜕𝑆
𝑆̇ +

𝜕𝛴𝐹𝐶

𝜕𝑡
−

𝜕𝛴𝐹𝐶

𝜕𝜂
𝜕𝜂
𝜕𝑡

−
𝜕𝛴𝐹𝐶

𝜕𝑆
𝜕𝑆
𝜕𝑡

=𝐅 ⋅ 𝐯 +
𝜕𝛴𝐹𝐶

𝜕𝜂
𝜂̇ +

𝜕𝛴𝐹𝐶

𝜕𝑆
𝑆̇ +

𝜕𝛴𝐹𝐶

𝜕𝑝
𝜕𝑝
𝜕𝑡

.

(34)

Next, multiplying the result by (𝜕𝛴𝐹𝐶∕𝜕𝑝)−1 = 𝜌, accounting for the
continuity equation Eq. (2), yields

𝜕
𝜕𝑡
(𝜌𝐸𝑡𝑜𝑡𝑎𝑙)+∇ ⋅

[

𝜌
(

𝐯2
2

+ 𝛴𝐹𝐶

)

𝐯
]

= 𝜌
(

𝐅 ⋅ 𝐯 +
𝜕𝛴𝐹𝐶
𝜕𝜂

𝜂̇ +
𝜕𝛴𝐹𝐶
𝜕𝑆

𝑆̇
)

(35)

with 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘 + 𝐸𝑝, with 𝐸𝑘 = 𝐯2∕2 and

𝐸𝑝 = 𝛴𝐹𝐶 − 𝑝
𝜕𝛴𝐹𝐶
𝜕𝑝

. (36)

Eq. (35) makes it clear that 𝐸𝑡𝑜𝑡𝑎𝑙 is conserved in the absence of viscous
(𝐅 = 0) and diabatic (𝜂̇ = 𝑆̇ = 0) effects. For total energy conservation to
hold in the general case, it is necessary to make the extra assumption
that the right-hand side of (35) may be written as the divergence of
some flux 𝐉𝐸 including viscous and diffusive effects, viz.,

𝜌
(

𝐅 ⋅ 𝐯 +
𝜕𝛴𝐹𝐶
𝜕𝜂

𝜂̇ +
𝜕𝛴𝐹𝐶
𝜕𝑆

𝑆̇
)

= −∇ ⋅ (𝜌𝐉𝐸 ). (37)

Physically, Eq. (37) in turn constrains the form of 𝜂̇𝑖𝑟𝑟 in terms of
the molecular fluxes 𝐉𝜂 and 𝐉𝑠 as well as with the gradients of ∇𝑇
and ∇𝜇 to ensure consistency with the second law of thermodynamics,
e.g., see Pauluis (2008), Tailleux (2010a) and Woods (1975). Note that
(35) may alternatively be written in the form
𝜕(𝜌𝐵𝐹𝐶 )

𝜕𝑡
+ ∇ ⋅ (𝜌𝐵𝐹𝐶𝐯) = 𝜌

𝐷𝐵𝐹𝐶
𝐷𝑡

= −∇ ⋅ (𝜌𝐉𝐸 ) +
𝜕𝑝
𝜕𝑡

(38)

where

𝐵𝐹𝐶 = 𝐯2
2

+ 𝛴𝐹𝐶 (39)

is the standard Bernoulli function attached to 𝛴𝐹𝐶 . Eq. (38) is the
appropriate form of the energy conservation principle for establishing
the Bernoulli theorem, namely that 𝐵𝐹𝐶 is conserved along adiabatic,
isohaline, inviscid, steady fluid parcel trajectories.

3. Pseudo-Incompressible (PI) approximation

To summarise, we established that under the conditions stated
above, the equations of motion formulated in terms of the static energy
𝛴𝐹𝐶 (𝜂, 𝑆, 𝑝,𝛷) as per (31) or (32), together with the continuity equation
Eq. (2), the entropy and salinity budgets (3)–(4) and the constraint (33)
conserve the total energy 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘 + 𝐸𝑝, with the potential energy
being given by

𝐸𝑝 = 𝛴𝐹𝐶 − 𝑝
𝜕𝛴𝐹𝐶 (40)

𝜕𝑝
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regardless of the exact form of 𝛴𝐹𝐶 . As a consequence, the same result
must hold for any approximation to the equations of motion obtained
by any structure-preserving approximation of 𝛴𝐹𝐶 , thus providing a
systematic procedure to derive such approximations, baptised here
static energy asymptotics. In this section, this approach is illustrated
by re-deriving the pseudo-incompressible (PI) approximation (Durran,
1989, 2008; Dewar et al., 2016; Eldred et al., 2022) via replacing 𝛴𝐹𝐶
by an approximation 𝛴𝑃𝐼 defined in terms of the leading order terms
of a Taylor series expansion around the reference pressure 𝑝𝑅(𝛷) as
follows:

𝛴𝐹𝐶 = ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) + 𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷))(𝑝 − 𝑝𝑅(𝛷)) +𝛷
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛴𝑃𝐼

+𝑅𝑃𝐼 , (41)

where 𝛿𝑝 = 𝑝 − 𝑝𝑅(𝛷) is the assumed small pressure anomaly and
𝑅𝑃𝐼 = 𝑂(𝛿𝑝2) the residual term. Importantly, Eq. (41) shows that 𝛴𝑃𝐼 =
𝛴𝑃𝐼 (𝜂, 𝑆, 𝑝, 𝛷) retains the same functional form as 𝛴𝐹𝐶 and hence that
the above results must apply. Evaluating the (𝜂, 𝑆, 𝑝, 𝛷) derivatives of
𝛴𝑃𝐼 yields
𝜕𝛴𝑃𝐼
𝜕𝑝

= 𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷)) = 𝜈⋆ = 1
𝜌⋆

, (42)

𝜕𝛴𝑃𝐼
𝜕𝛷

= 1 +
𝜌𝑅(𝛷)𝛿𝑝
𝜌2⋆𝑐

2
𝑠⋆

, (43)

𝜕𝛴𝑃𝐼
𝜕𝜂

= 𝑇 (𝜂, 𝑆, 𝑝𝑅(𝛷)) + 𝛿𝑝
𝜕𝜈⋆
𝜕𝜂

= 𝑇⋆ + 𝛿𝑝
𝜕𝜈⋆
𝜕𝜂

= 𝑇𝑃𝐼 , (44)

𝜕𝛴𝑃𝐼
𝜕𝑆

= 𝜇(𝜂, 𝑆, 𝑝𝑅(𝛷)) + 𝛿𝑝
𝜕𝜈⋆
𝜕𝑆

= 𝜇⋆ + 𝛿𝑝
𝜕𝜈⋆
𝜕𝑆

= 𝜇𝑃𝐼 , (45)

and show that these remain close to the derivatives of 𝛴𝐹𝐶 , with
elatively minor impact on 𝜌, 𝑇 , and 𝜇, the main effect being the

actual pressure 𝑝 being replaced by the reference pressure 𝑝𝑅(𝛷) and
he presence of a small correction 𝑂(𝛿𝑝), where 𝜌𝑅(𝛷) = −𝑑𝑝𝑅∕𝑑𝛷

denotes the reference density in hydrostatic equilibrium with 𝑝𝑅, while
𝑐𝑠⋆ = (𝜕𝜌∕𝜕𝑝)−1∕2(𝜂, 𝑆, 𝑝𝑅(𝛷)) is the speed of sound evaluated at 𝑝𝑅(𝛷).
Generally, the star subscript refers to quantities evaluated at the refer-
ence pressure 𝑝𝑅(𝛷) instead of the full pressure 𝑝. Note that the linearity
of 𝛴𝑃𝐼 in 𝑝 makes 𝜈⋆ = 𝜕𝛴𝑃𝐼∕𝜕𝑝 independent of 𝑝, which filters sound
waves out due to the resulting decoupling of density and pressure. As a
result, the above approximation affects the Crocco theorem, momentum
balance equation, and continuity equation as follows:

∇𝛴𝑃𝐼 − 𝑇𝑃𝐼∇𝜂 − 𝜇𝑃𝐼∇𝑆 = 1
𝜌⋆

∇𝑝 +
𝜕𝛴𝑃𝐼
𝜕𝛷

∇𝛷, (46)

𝐷𝐯
𝐷𝑡

+ 2Ω × 𝐯 + 1
𝜌⋆

∇𝑝 +
𝜕𝛴𝑃𝐼
𝜕𝛷

∇𝛷 = 𝐅, (47)

𝜕𝜌⋆
𝜕𝑡

+ ∇ ⋅ (𝜌⋆𝐯) = 0, (48)

oting that, per (33) applied to 𝛴𝑃𝐼 instead of 𝛴𝐹𝐶 , 𝜌 must also be
eplaced by 𝜌⋆ in the tracer equations for specific entropy and salinity
3) and (4). Since 𝛴𝑃𝐼 has the same functional structure as 𝛴𝐹𝐶 , it
ollows that the results derived in the previous section apply and hence
hat the associated approximations of motion conserve the total energy
𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘 + 𝐸𝑝,𝑃 𝐼 , with

𝑝,𝑃 𝐼 = 𝛴𝑃𝐼 −
𝑝
𝜌⋆

= ℎ(𝜂, 𝑆, 𝑝𝑅) −
𝑝𝑅
𝜌⋆

+𝛷 = 𝑒(𝜂, 𝑆, 𝑝𝑅) +𝛷 (49)

provided that the diabatic terms 𝜂̇ and 𝑆̇ are constrained to satisfy

⋆[𝐅 ⋅ 𝐯 + 𝑇𝑃𝐼 𝜂̇ + 𝜇𝑃𝐼 𝑆̇] = −∇ ⋅ (𝜌⋆𝐉𝐸 ). (50)

In that case, (49) shows that the approximation to the potential energy
𝐸𝑝,𝑃 𝐼 is close to its exact counterpart, and hence that the energetics
of the PI approximation is traceable to that of the fully compressible
equations. Eq. (49) shows that for the PI approximation to be consistent
with the second law, it is sufficient to replace 𝑇 , 𝜇, and 𝜌 by 𝑇𝑃𝐼 , 𝜇𝑃𝐼 ,
nd 𝜌⋆ in the expressions for the diabatic terms 𝜂̇ and 𝑆̇, as previously
5

ound by Klein and Pauluis (2012) and Eldred and Gay-Balmaz (2021).
3.1. Remarks on the choice of 𝑝𝑅(𝛷)

Physically, the accuracy of the PI approximation is determined by
the magnitude of the residual 𝑅𝑃𝐼 in (41), which may be rewritten in
the following equivalent forms:

𝑅𝑃𝐼 =ℎ(𝜂, 𝑆, 𝑝) − ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) − 𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷))(𝑝 − 𝑝𝑅(𝛷))

=∫

𝑝

𝑝𝑅(𝛷)
[𝜈(𝜂, 𝑆, 𝑝̃) − 𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷))] d𝑝̃ = ∫

𝑝

𝑝𝑅(𝛷) ∫

𝑝̃

𝑝𝑅(𝛷)
𝜈𝑝(𝜂, 𝑆, ̃̃𝑝) d ̃̃𝑝d𝑝̃.

(51)

ecause 𝜈𝑝 = −1∕(𝜌2𝑐2𝑠 ) < 0 where 𝑐𝑠 is the speed of sound, it follows
hat 𝑅𝑃𝐼 is also negative. Moreover, it is also easily shown that 𝑅𝑃𝐼 is
uadratic in 𝛿𝑝 at leading order, viz.,

𝑃𝐼 ≈ −
(𝑝 − 𝑝𝑅(𝛷))2

2𝜌2⋆𝑐
2
𝑠⋆

, (52)

nd hence that its magnitude is directly controlled by the choice of
𝑅(𝛷) and its distance to 𝑝. The reader familiar with the local theory of
PE will may recognise that 𝑅𝑃𝐼 is approximately equal to the opposite
f the available compressible energy (ACE) denoted by 𝛱1 in Tailleux
2018). As a consequence,

𝑃𝐼 = ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) +𝛷 +
𝛿𝑝
𝜌⋆

= 𝛴𝐹𝐶 − 𝑅𝑃𝐼 ≥ 𝛴𝐹𝐶 , (53)

which establishes, perhaps counter-intuitively, that 𝛴𝑃𝐼 represents an
overestimate of the true 𝛴𝐹𝐶 . The construction of 𝛴𝑃𝐼 requires identify-
ing a suitable reference pressure 𝑝𝑅(𝛷), but how best to do so in practice
is rarely discussed. The fact that 𝑅𝑃𝐼 is sign definite suggests, however,
that 𝑝𝑅(𝛷) should be defined to minimise the volume integral of 𝑅𝑃𝐼 . In
the case where the denominator 𝜌2⋆𝑐2𝑠⋆ can be treated as approximately
constant, this would amount to defining 𝑝𝑅(𝛷) as the horizontal-mean
pressure.

3.2. Degenerate energy conservation principles and uniqueness issues

As is well known, the energy associated with the law of energy
conservation for fully compressible fluids described by the NSE is 𝐸𝑡𝑜𝑡 =
𝐸𝑘 + 𝐸𝑝, and therefore represents the fundamental form of energy
against which to assess the energy conservation principles attached to
any approximation to the equations of motion. The main aim of this
section is to demonstrate that a degenerate energy conservation princi-
ple may occasionally be obtained in the context of the approximations
discussed in this paper, which is important to be understood and be
aware of for correctly interpreting some results of the literature.

As shown below, an alternative energy conservation principle may
be shown to exist in the PI approximation because

𝛴𝑃𝐼 = ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) + 𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷))𝛿𝑝 +𝛷 = 𝛴̂𝑃𝐼 (𝜂, 𝑆, 𝛿𝑝,𝛷) (54)

(from Eq. (41)) can alternatively be interpreted as a function of (𝜂, 𝑆,
𝛿𝑝,𝛷) (denoted with a hat). Since 𝛿𝑝 = 𝑝−𝑝𝑅(𝛷) is a function of 𝑝 and 𝛷
only, the pressure-geopotential gradient force can therefore be written
equivalently as

𝜕𝛴𝑃𝐼
𝜕𝑝

∇𝑝 +
𝜕𝛴𝑃𝐼
𝜕𝛷

∇𝛷 =
𝜕𝛴̂𝑃𝐼
𝜕𝛿𝑝

∇𝛿𝑝 +
𝜕𝛴̂𝑃𝐼
𝜕𝛷

∇𝛷, (55)

the (𝛿𝑝,𝛷) partial derivatives of 𝛴̂𝑃𝐼 being given by

𝜕𝛴̂𝑃𝐼
𝜕𝛿𝑝

=
𝜕𝛴𝑃𝐼
𝜕𝑝

= 1
𝜌⋆

, (56)

𝜕𝛴̂𝑃𝐼
𝜕𝛷

= 1 −
𝜌𝑅(𝛷)
𝜌⋆

+
𝛿𝑝𝜌𝑅(𝛷)
𝜌2⋆𝑐

2
𝑠⋆

, (57)

while in contrast its thermodynamic derivatives remain unaffected

𝜕𝛴̂𝑃𝐼 =
𝜕𝛴𝑃𝐼 = 𝑇𝑃𝐼 ,

𝜕𝛴̂𝑃𝐼 =
𝜕𝛴𝑃𝐼 = 𝜇𝑃𝐼 . (58)
𝜕𝜂 𝜕𝜂 𝜕𝑆 𝜕𝑆
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From (55), it follows that the PI momentum balance equations may
alternatively be written in the form

𝐷𝐯
𝐷𝑡

+ 2Ω × 𝐯 + 1
𝜌⋆

∇𝛿𝑝 +
𝜕𝛴̂𝑃𝐼
𝜕𝛷

∇𝛷 = 𝐅, (59)

hich from the same structural arguments developed previously im-
lies the existence of a degenerate form of energy conservation for the
seudo total energy 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘 + 𝐸𝑝,𝑝𝑠𝑒𝑢𝑑𝑜, with

𝑝,𝑝𝑠𝑒𝑢𝑑𝑜 = 𝛴̂𝑃𝐼 − 𝛿𝑝 𝜕𝛴̂
𝛿𝑝

= 𝛴̂𝑃𝐼 −
𝛿𝑝
𝜌⋆

= ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) +𝛷. (60)

However,

𝛴𝑃𝐼 − 𝑝
𝜕𝛴𝑃𝐼
𝜕𝑝

≠ 𝛴̂𝑃𝐼 − 𝛿𝑝
𝜕𝛴̂𝑃𝐼
𝛿𝑝

(61)

o that 𝐸𝑝,𝑝𝑠𝑒𝑢𝑑𝑜 and 𝐸𝑝,𝑃 𝐼 differ, specifically by the term 𝑝𝑅(𝛷)∕𝜌⋆.
owever, as the latter quantity may be shown to satisfy the conser-
ation law

⋆
𝐷
𝐷𝑡

(

𝑝𝑅(𝛷)
𝜌⋆

)

= ∇ ⋅ (𝑝𝑅(𝛷)𝐯), (62)

it follows that the conservation principle for 𝐸𝑘+𝐸𝑝,𝑝𝑠𝑒𝑢𝑑𝑜 simply results
from adding (62) to the conservation principle for the correct energy
𝐸𝑘+𝐸𝑝,𝑃 𝐼 . This particular example highlights that achieving a flux form
conservation law for an energy-like quantity is not sufficient to estab-
lish the energy conservation principle satisfied by the approximation
considered: one also needs to be able to relate the energy-like quantity
obtained to that of the fully-compressible energy, a point that many
authors do not appear to be aware of, see Eq. (26) of Dewar et al. (2016)
for instance.

4. Anelastic approximation (AN) revisited

In the PI approximation, the density 𝜌⋆ = 𝜌(𝜂, 𝑆, 𝑝𝑅(𝛷))1 becomes
decoupled from pressure but still responds to changes in salinity and
entropy. It therefore remains time-dependent, unlike in the Boussinesq
approximation. In the anelastic (AN) approximation, which we revisit
in this section, the density is further approximated to be a static
function of 𝛷 only, 𝜌‡(𝛷). The attendant static energy 𝛴𝐴𝑁 is obtained
by further approximating 𝛴𝑃𝐼 as follows

𝛴𝐴𝑁 = ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) +
𝛿𝑝
𝜌‡

+𝛷, (63)

nd is obtained by replacing 𝜌⋆ = 𝜌(𝜂, 𝑆, 𝑝𝑅(𝛷)) by 𝜌‡(𝛷) in (41).
er (33), the continuity equation applies to 𝜌‡(𝛷), viz.: ∇ ⋅ (𝜌‡𝐯) = 0.
hysically, this approach unifies (i) the standard anelastic approxi-
ation where 𝜌‡ = 𝜌𝑅(𝛷) is a general function of 𝛷 (Ogura and
hillips, 1962; Pauluis, 2008; Eldred and Gay-Balmaz, 2021) and (ii)
‡ = 𝜌𝑅 = constant, corresponding to a modernised form of Boussinesq
pproximation.

The AN approximation 𝛴𝐴𝑁 retains the same (𝜂, 𝑆, 𝑝, 𝛷) functional
ependence characterising 𝛴𝐹𝐶 and 𝛴𝑃𝐼 . Its partial derivatives are:
𝜕𝛴𝐴𝑁
𝜕𝑝

= 1
𝜌‡

, (64)

𝜕𝛴𝐴𝑁
𝜕𝛷

= 1 + 𝜌𝑅
(

𝜈‡ − 𝜈⋆
)

+ 𝛿𝑝
d𝜈‡
d𝛷

, (65)

𝜕𝛴𝐴𝑁
𝜕𝜂

= 𝑇⋆, (66)

𝜕𝛴𝐴𝑁
𝜕𝑆

= 𝜇⋆, (67)

1 By density, we always mean the density field that obeys the continuity
quation Eq. (2).
6

(with 𝜈‡ = 𝜌−1‡ ) and can be seen to remain close to the derivatives
f 𝛴𝑃𝐼 , albeit with a loss of accuracy due to the absence of the small
orrection 𝑂(𝛿𝑝) and to 𝜌⋆ ≠ 𝜌‡.

The fact that 𝛴𝐴𝑁 has the same structure as 𝛴𝐹𝐶 or 𝛴𝑃𝐼 means that
provided that its diabatic and viscous terms satisfy the constraint

𝜌‡[𝐅 ⋅ 𝐯 + 𝑇⋆𝜂̇ + 𝜇⋆𝑆̇] = −∇ ⋅ (𝜌‡𝐉𝐸 ) (68)

analogous to (9), it must conserve the total energy 𝐸𝑘+𝐸𝑝,𝐴𝑁 , with the
AN potential energy being given by

𝐸𝑝,𝐴𝑁 = 𝛴𝐴𝑁 − 𝑝
𝜕𝛴𝐴𝑁
𝜕𝑝

= ℎ(𝜂, 𝑆, 𝑝𝑅(𝛷)) −
𝑝𝑅
𝜌‡

+𝛷 = 𝐸𝑝,𝑃 𝐼 + 𝑝𝑅(𝜈⋆ − 𝜈‡).

(69)

Eq. (69) shows that 𝐸𝑝,𝐴𝑁 differs only from 𝐸𝑝,𝑃 𝐼 by the energy error
term 𝛥𝐸𝑝,𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 = 𝑝𝑅(𝜈⋆ − 𝜈‡). This error can be minimised by defining
𝜈‡ as the temporally and horizontally averaged value of 𝜈⋆ for instance.

Eqs. (64)–(67) show that the CVT can be written in the standard
form

∇𝛴𝐴𝑁 − 𝑇⋆∇𝜂 − 𝜇⋆∇𝜇 = 1
𝜌‡

∇𝑝 +
𝜕𝛴𝐴𝑁
𝜕𝛷

∇𝛷. (70)

However, a more convenient and concise expression of the CVT can
be obtained by taking advantage of the possibility of regarding 𝛴𝐴𝑁 =
̂𝐴𝑁 (𝜂, 𝑆, 𝛿𝑝∕𝜌‡, 𝛷) as a function of (𝜂, 𝑆, 𝛿𝑝∕𝜌‡, 𝛷) instead, for which
he (𝜂, 𝑆,𝛷) derivatives can be shown to be

𝜕𝛴̂𝐴𝑁
𝜕𝜂

=
𝜕𝛴𝐴𝑁
𝜕𝜂

= 𝑇 (𝜂, 𝑆, 𝑝𝑅(𝛷)) = 𝑇⋆, (71)

𝜕𝛴̂𝐴𝑁
𝜕𝑆

=
𝜕𝛴𝐴𝑁
𝜕𝑆

= 𝜇(𝜂, 𝑆, 𝑝𝑅(𝛷)) = 𝜇⋆, (72)

𝜕𝛴̂𝐴𝑁
𝜕𝛷

= 1 − 𝜌𝑅(𝛷)𝜈(𝜂, 𝑆, 𝑝𝑅(𝛷)) = 1 −
𝜌𝑅(𝛷)
𝜌⋆

= −
𝑏𝐴𝑁
𝑔

(73)

where 𝑏𝐴𝑁 is recognised as the ‘buoyancy’ defined relative to 𝜌𝑅(𝛷),
hich differs from the traditional Boussinesq buoyancy as further
iscussed below. It follows that the CVT (70) may be rewritten in the
orm

𝛴̂𝐴𝑁 − 𝑇⋆∇𝜂 − 𝜇⋆∇𝑆 = ∇
(

𝛿𝑝
𝜌‡

)

−
𝑏𝐴𝑁
𝑔

∇𝛷. (74)

Eq. (74) differs from (70) in that the density 𝜌‡ is now absorbed within
the anomalous pressure gradient term, while only the buoyancy 𝑏𝐴𝑁
multiplies ∇𝛷, thus making it possible to rewrite the standard form of
momentum balance in the form
𝐷𝐯
𝐷𝑡

+ 2Ω × 𝐯 + ∇
(

𝛿𝑝
𝜌‡

)

−
𝑏𝐴𝑁
𝑔

∇𝛷 = 𝐅. (75)

The resulting diabatic anelastic system coincides with the one derived
by Eldred and Gay-Balmaz (2021), Eq. (4.36). A key advantage is to
make the form of hydrostatic balance similar to that of the standard
Boussinesq approximation even in the case where 𝜌‡ depends on 𝑧, as
further discussed in the next section.

5. Modernised anelastic and Boussinesq seawater approximations

As established previously, the AN approximation provides an ener-
getically and thermodynamically consistent model with realistic ther-
modynamic potentials that closely resemble their exact counterparts.
In the context of hydrostatic ocean modelling that has been tradition-
ally studied using legacy SBA primitive equations models discussed in
Section 2(b), the AN approximation takes the form (reverting to using
𝑧 rather than 𝛷, which is more standard in oceanographic practice)

𝐷𝐮
𝐷𝑡

+ 𝑓𝐤 × 𝐮 + ∇ℎ

(

𝛿𝑝
𝜌‡

)

= 𝐅ℎ, (76)

𝜕
(

𝛿𝑝
)

= 𝑏𝐴𝑁 , (77)

𝜕𝑧 𝜌‡



Ocean Modelling 188 (2024) 102339R. Tailleux and T. Dubos

∇

w
p
m
p
𝜌
a
p

e
(
i
o
(
a
t
c

𝐸

a

𝛴

w
r
i

t
c

𝜌

W

𝛴

A

𝛱

w
r
𝛱
o
𝑝
i

t

𝛴

o
c

𝛴

𝑏𝐴𝑁 = −𝑔
(

1 − 𝜌𝑅𝜈⋆
)

, (78)

⋅ (𝜌‡𝐯) = 0, (79)

𝐷𝑆
𝐷𝑡

= 𝐅𝑆 ,
𝐷𝑆
𝐷𝑡

= 𝐅𝜃 , (80)

here 𝜌‡(𝑧) does not need to coincide with 𝜌𝑅(𝑧) = −𝑝′𝑅(𝑧)∕𝑔. In
ractice, however, it seems natural to equate the two to avoid using
ultiple reference densities. While in the standard SBA the reference
ressure has been commonly approximated as 𝑝𝑅(𝑧) = −𝜌𝑏𝑔𝑧, with
𝑏 = constant, arguments developed in next section suggest that 𝑝𝑅(𝑧)
nd 𝜌𝑅(𝑧) could be advantageously defined in terms of the reference
rofiles entering the local theory of available potential energy (APE).

Mathematically, the AN model (76)–(80) can be verified to have
ssentially the same structure as that of the legacy SBA model (15)–
20), and hence that it can be solved algorithmically and numerically
n exactly the same way regardless of whether 𝜌‡ is taken as constant
r function of 𝑧. The subtle difference between (76)–(80) and (15)–
20) is that in (78) 𝑏𝐴𝑁 represents the non-approximated buoyancy
dvocated by Young (2012) and Tailleux (2012). Further advantages of
he AN model are: (1) the form of potential energy entering its energy
onservation principle, viz.,

𝑝,𝐴𝑁 = ℎ(𝑆, 𝜃, 𝑝𝑅(𝑧)) +𝛷(𝑧) −
𝑝𝑅(𝑧)
𝜌𝑅(𝑧)

(81)

is traceable to its exact counterpart without the need to introduce ad-
hoc thermodynamic potentials, an undesirable feature of the legacy
SBA models; (2) the physical basis for specifying the reference density
profile 𝜌𝑅(𝑧) that it uses is much clearer than that for specifying the
constant Boussinesq reference density 𝜌𝑏 used by legacy SBA models.
For this reason, the above AN model is more capable of exploiting the
new capabilities offered by the Gibbs Sea Water library developed as
part of TEOS-10 to its full extent. Although 𝜌‡ could also be chosen as
a constant reference Boussinesq density 𝜌𝑏, this simplification offers no
advantage over using a depth-dependent 𝜌𝑅(𝑧) consistent with 𝑝𝑅(𝑧).
This clearly shows, therefore, that some of the approximations made
as part of the legacy Seawater Boussinesq approximation deteriorate
its energetics without leading to real simplifications or computational
benefits compared to the modernised version proposed here and to the
anelastic system.

6. Dynamics/thermodynamics partitioning of energy

It is now well established that energy comes in at least two different
flavours, heat-like versus work-like, or available versus non-available,
or available (APE) and background (BPE), as justified by Lorenz (1955)
theory of available potential energy (APE) for instance. Since according
to thermodynamics, ‘work’ and ‘heat’ represent fundamentally distinct
forms of energy, which in APE theory are regarded as dynamically
active and inert respectively, it follows that any discussion of energetics
and thermodynamics consistency cannot be complete without under-
standing how sound-proof approximations individually affect the active
and passive forms of energy.

To express the above idea in the present framework, we assume
that it is possible to meaningfully decompose the static energy into
dynamically active (𝛴dyn) and passive (𝛴heat ) components as follows:

𝛴𝐹𝐶 (𝜂, 𝑆, 𝑝, 𝛷) = 𝛴dyn(𝜂, 𝑆, 𝑝, 𝛷) + 𝛴heat (𝜂, 𝑆). (82)

Since 𝛴heat is independent of 𝑝 and 𝛷, it follows that only 𝛴dyn is
dynamically relevant for predicting the pressure-geopotential gradient
force entering the standard form of momentum balance equations,

1
𝜌
∇𝑝 + ∇𝛷 =

𝜕𝛴dyn

𝜕𝑝
∇𝑝 +

𝜕𝛴dyn

𝜕𝛷
∇𝛷, (83)

thus justifying the dynamically irrelevant character of 𝛴heat . In the
following, we briefly discuss the two main approaches for defining
7

𝛴dyn and 𝛴heat proposed so far, and how these are affected by the
most drastic AN approximation. Eq. (83) shows that to be physically
acceptable, any construction of 𝛴dyn should only require knowledge of
𝜕𝛴∕𝜕𝑝 and 𝜕𝛴∕𝜕𝛷 (regardless of how 𝛴 is defined), possibly combined
with knowledge of the whole stratification at some point in time (such
as provided by initial conditions).

For the sake of clarity and consistency with existing literature, we
switch back to using height/depth 𝑧 as vertical coordinate.

6.1. Available potential energy (APE) theory

From a theoretical viewpoint, the most rigorous and physically-
based partitioning of 𝛴𝐹𝐶 is arguably the one rooted in APE theory.
In this approach, 𝛴dyn is defined as the departure of 𝛴𝐹𝐶 from its
equilibrium value defined as the one it would have in a suitably defined
notional reference state characterised by the reference pressure 𝑝0(𝑧)
nd 𝜌0(𝑧), that is,

heat = ℎ(𝜂, 𝑆, 𝑝0(𝑧𝑅)) + 𝑔𝑧𝑅 (84)

here 𝑧𝑅 = 𝑧𝑅(𝜂, 𝑆) is the fluid parcel’s reference position. Eq. (84) thus
epresents a local form of background potential energy (BPE), which
n Lorenz (1955) was only defined as a volume-integrated quantity.

Because in a state of rest, the density of a fluid parcel must match
hat of the background reference state, 𝑧𝑅 must be a solution of the so-
alled level of neutral buoyancy (LNB) equation (Tailleux, 2013, 2018)

(𝜂, 𝑆, 𝑝0(𝑧𝑅)) = 𝜌0(𝑧𝑅). (85)

ith 𝛴heat defined as per (84), we have

dyn = 𝛴𝐹𝐶 − 𝛴heat = 𝛱1 +𝛱2 +
𝑝 − 𝑝0(𝑧)

𝜌
(86)

where 𝛱1 and 𝛱2 are so-called available compressible energy (ACE)
density and APE density respectively,

𝛱1 = ℎ(𝜂, 𝑆, 𝑝) − ℎ(𝜂, 𝑆, 𝑝0(𝑧)) +
𝑝0(𝑧) − 𝑝

𝜌
(87)

𝛱2 = ℎ(𝜂, 𝑆, 𝑝0(𝑧)) − ℎ(𝜂, 𝑆, 𝑝0(𝑧𝑅)) + 𝑔(𝑧 − 𝑧𝑅). (88)

s shown by Tailleux (2018), these may be written as

1 = ∫

𝑝

𝑝0(𝑧)
∫

𝑝′

𝑝

𝜕𝜈
𝜕𝑝

(𝜂, 𝑆, 𝑝′′) d𝑝′′d𝑝′ (89)

𝛱2 = −∫

𝑧

𝑧𝑅
𝑏(𝜂, 𝑆, 𝑧′) d𝑧′ (90)

here 𝑏(𝜂, 𝑆, 𝑧) = −𝑔[1 − 𝜌0(𝑧)𝜈(𝜂, 𝑆, 𝑝0(𝑧))] is the buoyancy defined
elative to the reference density 𝜌0(𝑧). This establishes, therefore, that
1, 𝛱2, and therefore 𝛴dyn can be constructed only from the knowledge

f 𝜈(𝜂, 𝑆, 𝑝), 𝑔, as well as from one state of the system from which
0(𝑧) and 𝜌0(𝑧) are constructed (for instance by using the adiabatic and
sohaline re-arrangement technique discussed by Saenz et al., 2015).

Let us now seek to understand how the AN approximation affects
he dynamics/thermodynamics partitioning of 𝛴𝐴𝑁 ,

𝐴𝑁 = ℎ(𝜂, 𝑆, 𝑝𝑅(𝑧)) + 𝑔𝑧 +
𝛿𝑝
𝜌‡

. (91)

By considering the value of 𝛴𝐴𝑁 in the Lorenz background reference
state, in which 𝑧 = 𝑧𝑅 and 𝑝 = 𝑝0(𝑧𝑅), it is easily realised that 𝛴𝐴𝑁,ℎ𝑒𝑎𝑡
can be made to coincide with its exact counterpart (84) simply by
choosing 𝑝𝑅(𝑧) = 𝑝0(𝑧), thus providing a natural solution to the problem
f how to define 𝑝𝑅(𝑧) in the PI and AN approximations. With such a
hoice, the dynamical component of 𝛴𝐴𝑁 becomes

𝐴𝑁,𝑑𝑦𝑛 = 𝛴𝐴𝑁 − 𝛴𝐴𝑁,ℎ𝑒𝑎𝑡 = 𝛱2 +
𝑝 − 𝑝0(𝑧)

𝜌‡
, (92)

where the expression for 𝛱2 is the same as its exact counterpart. By
comparing (92) with its exact counterpart (86), it is seen that the AN
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approximation results in the disappearance of the ACE component 𝛱1,
while also approximating the compressible work term (𝑝 − 𝑝0(𝑧))∕𝜌 by
(𝑝 − 𝑝0(𝑧))∕𝜌‡. To avoid the proliferation of reference density profiles,
the most logical choice is to use 𝜌‡ = 𝜌0(𝑧), which provides a natural
solution for how to choose 𝜌‡.

6.2. Potential/dynamic enthalpy partitioning

We briefly remark that another kind of partitioning is based on
defining 𝛴heat as the ‘potential’ value of 𝛴𝐹𝐶 referenced to the ocean
surface at 𝑧 = 0, viz.,

𝛴ℎ𝑒𝑎𝑡 = ℎ(𝜂, 𝑆, 𝑝𝑅(0)) +𝛷(0), (93)

(de Szoeke, 2000; Young, 2010; Nycander, 2010) where 𝑝𝑅(𝑧) is an
arbitrary hydrostatic reference pressure field defining the reference
density field via 𝜌𝑅(𝑧) = −𝑝′𝑅(𝑧)∕𝑔. If 𝑝𝑅(0) = 𝑝𝑎 and 𝛷(0) = 0, where 𝑝𝑎
is the mean surface atmospheric pressure, 𝛴heat then coincides with Mc-
Dougall (2003)’s potential enthalpy, the currently recommended vari-
able for defining heat content in the oceans following the adoption of
TEOS-10 (IOC, SCOR, IAPSO, 2010; Pawlowicz et al., 2012). With 𝛴heat
defined as per (93), the expression for 𝛴dyn can easily be verified to be

𝛴dyn = 𝛱1 + ℎ‡(𝜂, 𝑆, 𝑧) +
𝑝 − 𝑝𝑅(𝑧)

𝜌
(94)

with 𝛱1 = ℎ(𝜂, 𝑆, 𝑝)−ℎ(𝜂, 𝑆, 𝑝𝑅(𝑧))+(𝑝𝑅(𝑧)−𝑝)∕𝜌 ≥ 0 the ACE defined in
terms of 𝑝𝑅(𝑧) rather than 𝑝0(𝑧), and ℎ‡ the so-called dynamic enthalpy,
defined by

ℎ‡ = ℎ(𝜂, 𝑆, 𝑝𝑅(𝑧))−ℎ(𝜂, 𝑆, 𝑝𝑅(0))+𝛷(𝑧)−𝛷(0) = −∫

𝑧

0
𝑏(𝜂, 𝑆, 𝑧′) d𝑧′ (95)

with 𝑏(𝜂, 𝑆, 𝑧) = −𝑔[1−𝜌𝑅(𝑧)𝜈(𝜂, 𝑆, 𝑝𝑅(𝑧))] the buoyancy defined relative
to the reference density 𝜌𝑅(𝑧). It is easily seen that (93) and (94)
only differ from their APE-based counterparts by the use of a constant
reference level located at the surface in place of the parcels’ resting
position, as well as in the choice of reference density/pressure profiles.
Similarly as for the APE-based BPE, the AN approximation does not
affect the thermodynamic component of 𝛴𝐴𝑁 , so that 𝛴𝐴𝑁,ℎ𝑒𝑎𝑡 =
𝛴heat . The AN approximation only affects the dynamical component by
getting rid of 𝛱1 in (94), so that

𝛴𝐴𝑁,𝑑𝑦𝑛 = ℎ‡ +
𝛿𝑝
𝜌‡

. (96)

he potential/dynamic enthalpy based partitioning of 𝛴𝐴𝑁 , however,
acks any of the advantageous attributes and clear physical interpre-
ation of the BPE/APE based partitioning; its usefulness is therefore
uestionable.

. Summary and discussion

The main result of this paper is that it is possible to write the equa-
ions of motion for a general compressible two-constituent stratified
luid, as well as for a large class of thermodynamically and energetically
onsistent sound-proof approximations of such equations, under the
eneric form

= 𝛴(𝜂, 𝑆, 𝑝, 𝛷), (97)

= 𝜕𝛴
𝜕𝛷

, 𝜌−1 = 𝜈 = 𝜕𝛴
𝜕𝑝

, 𝑇 = 𝜕𝛴
𝜕𝜂

, 𝜇 = 𝜕𝛴
𝜕𝑆

, (98)

𝐷𝐯
𝐷𝑡

+ 2𝜴 × 𝐯 = −𝜈∇𝑝 + 𝐵∇𝛷 + 𝐅, (99)

∇ ⋅ 𝐯 = 𝐷
𝐷𝑡

ln 𝜈, (100)

𝐷𝜂
𝐷𝑡

= −𝜈∇ ⋅
(

𝜌𝐉𝜂
)

+ 𝜂̇𝑖𝑟𝑟 = 𝜂̇, (101)

𝐷𝑆 = −𝜈∇ ⋅
(

𝜌𝐉
)

= 𝑆̇, (102)
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𝐷𝑡 𝑠
𝐅 ⋅ 𝐯 + 𝑇 𝜂̇ + 𝜇𝑆̇ = −𝜈∇ ⋅
(

𝜌𝐉𝐸
)

, (103)

𝑇 𝐉𝜂 = −𝐿𝜂𝜂∇𝑇 − 𝐿𝜂𝑠∇𝜇, (104)

𝐉𝑠 = −𝐿𝜂𝑠∇𝑇 − 𝐿𝑠𝑠∇𝜇. (105)

s shown in this paper, such equations conserve total mass defined as
he volume integral of

(

𝜕𝛴
𝜕𝑝

)−1
, total salinity defined as the volume

integral of
(

𝜕𝛴
𝜕𝑝

)−1
𝑆 and total energy defined as the volume integral

of
(

𝜕𝛴
𝜕𝑝

)−1
𝐸𝑡𝑜𝑡, where 𝐸𝑡𝑜𝑡 = 𝐯2∕2 +𝛴 − 𝑝𝜕𝛴∕𝜕𝑝. Furthermore, they are

onsistent with the second law of thermodynamics. This result holds
ecause the sound-proof approximations considered in this paper only
lter the form of 𝛴 but not its dependence on the core (𝜂, 𝑆, 𝑝,𝛷)

variables. This result is important, because it demonstrates that it
is possible to formulate sound-proof approximations in a way that
makes their energetics and thermodynamics parallel that of the fully
compressible Navier–Stokes equations, whose feasibility had remained
unclear until now. For instance, Huang et al. (2001) argued that the
Boussinesq equations are fundamentally affected by significant energy
errors, but the present results establish that this can easily be avoided
by adopting the above formalism and the proposed modernisation of
the Boussinesq system.

This work underscores the fundamental importance of static energy
for elucidating the energetics and thermodynamics of sound-proof ap-
proximations to the equations of motion. Physically, this is because the
static energy encapsulates all fundamental information about the poten-
tial energy and pressure-geopotential gradient force that it generates,
so that energetically and thermodynamically consistent approximations
can be simply constructed by approximating the static energy to various
orders of accuracy while respecting a few simple rules. From a practi-
cal standpoint, this approach naturally gives rise to two well-known
important types of consistent approximations: pseudo-incompressible
(PI) and (modernised) anelastic (AN), but which are here re-derived
more transparently and succinctly while also clarifying some aspects
that are not generally discussed, such as that pertaining to the choice
of reference states.

The proposed approximation procedure is similar in many respects
to Hamilton’s Principle Asymptotics (HPA) advocated by Holm et al.
(2002) and leveraged by many authors, e.g. Vasil et al. (2013), Tort and
Dubos (2014b,a), Dubos and Voitus (2014), Dubos (2018). Holm et al.
(2002) argue that approximations should be developed directly at the
level of the Lagrangian from which the adiabatic equations of motion
derive via Hamilton’s least action principle, because this guarantees the
existence of conservation laws whenever they should hold, i.e. when
the Lagrangian presents the required symmetries. For the adiabatic part
of the equations of motions, our method is thus a special case of HPA,
limited to approximations of the Lagrangian that modify only static
energy, thus motivating the name Static Energy Asymptotics (SEA) used
in this paper to refer to our method. While more restrictive than the full
HPA, SEA is also more comprehensive in that it deals consistently with
diabatic processes. SEA is thus a stripped-down version of HPA applied
to variational principles including diabatic processes, circumventing
the advanced mathematical machinery used by Eldred and Gay-Balmaz
(2021).

In the context of numerical ocean modelling, the PI and AN ap-
proximations are both superior to the standard SBA; their potential
energy and thermodynamic potentials are nearly identical to their exact
counterparts so that their energetics is more easily comparable to that
of the fully compressible equations and do not require the introduction
of artificial and ad-hoc thermodynamic potentials. The PI and AN
approximations can therefore leverage the full power the Gibbs Sea
Water (GSW) library developed as part of the new TEOS-10 equation of
state (IOC, SCOR, IAPSO, 2010; Pawlowicz et al., 2012). Both approx-

imations only affect the local APE density by removing its available
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compressible part 𝛱1 but leave the local BPE unaffected. In contrast,
how to define the local BPE for the SBA is much less clear, given that
closing its energetics requires the construction of ad-hoc potentials. In
relation to previous work, our seawater PI approximation (which is
essentially a special case of the ‘‘atmospheric’’ PI approximation with
seawater thermodynamics) provides a physically more transparent and
more systematic foundation for the PI models that Dewar et al. (2016)
proposed to improve on existing SBA-based OGCMs. As to our seawater
AN approximation, it unifies the modernised-Boussinesq and anelastic
approximations into a single framework, some of its elements being
found in previous works by Pauluis (2008), Young (2010), Tailleux
(2012). Importantly, it shows that to construct a seawater anelastic
approximation, linearisation of the equation of state is not necessary,
as previously established by Pauluis (2008) but in contrast to what was
assumed in Ingersoll (2005). From a practical viewpoint, implementa-
tions of the PI models would require non-trivial alterations to existing
OGCM codes and remains to be attempted. In contrast, the seawater
generalised AN approximation has essentially the same mathematical
structure as that of the standard SBA, so that its practical implementa-
tion should be straightforward. As doing so would significantly improve
the energetics and thermodynamics of existing OGCMs at little to no
additional cost, we recommend that efforts should be devoted in the
future to adopt it. A natural choice of reference pressure and density
profiles would be the analytical profiles entering the formulation of the
analytical form of thermodynamic neutral density proposed in Tailleux
(2021).

We believe that our findings can demystify a traditionally intricate
and obscure aspect of atmospheric and ocean modelling. The issue
of whether an approximation to the equations of motion is energet-
ically and thermodynamically consistent has often been perceived as
arcane, lacking systematic and general rules. We hope that our work
will help atmospheric and ocean modellers realise that this issue is
simpler than previously assumed, and that our findings will contribute
to enhancing the physical realism of atmospheric and oceanic models,
thus addressing the concerns raised by Lauritzen et al. (2022).
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