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The benefits of integrated pest
management for apple depend
on pest type and production
metrics
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of Reading, Reading, United Kingdom, 2Department of Agricultural, Forest and Food Sciences
(DISAFA) and Interdepartmental Centre for the Innovation in the Agro-environmental Sector
(AGROINNOVA), University of Turin, Turin, Italy

The development of integrated pest management (IPM) strategies, aimed
at reducing pesticide use, has myriad ecological and agronomic benefits
to terrestrial ecosystems and the environment, but can also lead to different
biological and economic outcomes depending on the production system. The
most common facet of IPM in apple is the reduction and/or alternative use of
pesticides but also includes cultural, mechanical and biological controls. Using
apple as a model system, we performed a meta-analysis of 55 studies from 20
countries to quantify the effects of IPM on beneficial invertebrates, pest and
disease pressure, and crop productivity (i.e., fruit yield and quality). We also
explored different feeding guilds (i.e., tissue-chewing, sap-sucking or boring/
mining herbivores, and beneficial natural enemy predators or parasitoids)
to determine whether invertebrate responses to IPM differ between feeding
strategies. By scoring IPM adoption based on the relative number of facets of IPM
used in each study, we also determined whether the level of IPM implemented
in apple farming systems alters the responses of invertebrates and pathogens.
Our results demonstrate how IPM adoption increases the performance of
natural enemies, while simultaneously reducing pest and disease pressure
overall. However, the effects of IPM on disease pressure may depend on the
level of IPM adoption because disease pressure increased when multiple facets
of IPM were adopted (i.e., as the level of IPM adoption increased). Apple quality
was not limited by IPM adoption, yet fruit yield decreased overall. While both
natural enemy feeding guilds (predators and parasitoids) responded positively
to IPM adoption, only two of the three pest feeding guilds (tissue-chewing and
sap-sucking herbivores) decreased under IPM, with boring/mining herbivores
showing no response. These results demonstrate the complex benefits and
limitations that can occur under IPM and call for economic risk assessments
based on these differences. Effective IPM strategies rely on monitoring practices
and pest/pathogen prevention but can provide real environmental value.
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apple, biological control, disease pressure, fruit production, herbivore pests, natural
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1 Introduction

Pest control in conventional fruit production is heavily dependent
on artificial chemical pesticides (including insecticides, herbicides,
fungicides, molluscicides, acaricides and nematicides), which have
adverse impacts on the environment (Stehle and Schulz, 2015;
Lamichhane et al., 2016) and pose health risks for producers and
consumers (Mesnage et al., 2014; Kim et al., 2017). Insect resistance
to pesticides has led to a vicious cycle for conventional farming
systems, termed the ‘pesticide treadmill’ (van den Bosch, 1978), that
requires increasing application rates, and thus additional costs, to
prevent higher crop losses. Plant protection products (PPPs) contain
an active substance (a chemical or micro-organism) that requires
approval for use. Due to concerns over environmental (Sanchez-Bayo
and Wyckhuys, 2019) and human health effects (European Food
Safety Authority et al, 2021) of these active substances, the
re-approvals of existing pesticides are being restricted in several
countries, including the European Union (Regulation 128/2009) and
the United States (Federal Insecticide, Fungicide, and Rodenticide
Act). In the EU, the Directive 2009/128/EC aims to achieve a
sustainable use of pesticides by reducing the risks and impacts of
pesticide use and promoting the use of Integrated Pest Management
(IPM). Moreover, the EU has adopted proposals for a new Regulation
on the Sustainable Use of PPPs, including far reaching targets to
reduce, by 50%, the use and risk of chemical pesticides by 2030, in line
with the EU’s Farm to Fork and Biodiversity strategies.

Several farming system approaches aim to limit the reliance on
chemical pesticides and to reduce their adverse impacts. These include
‘organic), zero residue’ and TPM;, which are underpinned by similar
principles and share many approaches. There are multiple definitions
for IPM, with no standardised approach, but rather crop- and region-
specific guidelines that promote ecologically-sound agricultural
practices (Prokopy and Kogan, 2009; Barzman et al., 2015). These
practices broadly rely on biological, cultural and mechanical
techniques (e.g., using beneficial organisms, crop rotations and tillage,
respectively) to prevent losses from pests, diseases and weeds, and the
extent to which they are adopted has only recently been quantified
(Creissen et al.,, 2019). IPM has the potential to deliver multiple
benefits, including biodiversity protection, reduced environmental
pollution and food contamination by synthetic pesticides, while
maintaining crop productivity and profitability (Jacquet et al., 2011;
Lechenet et al., 2017). However, IPM is a knowledge-intensive
approach to agricultural production requiring an intimate
understanding of the variables influencing pest control in
crop systems.

Transitioning from a conventional to a more IPM-based
agricultural approach can be limited by, among other things, a lack of
knowledge of appropriate and effective tools as well as presenting
economic risks for those producers who have somewhat limited
uptake and expansion potential (Alwang et al., 2019; Deguine et al.,
2021; Kansiime et al., 2021). The effective contribution of natural
enemies to help control pests through conservation biocontrol (CBC)
is fundamental to successful IPM schemes in open systems but there
is a clear lack of evidence for the potential for CBC based approaches
to deliver agronomic and economic benefits for growers, with research
endpoints limited primarily to effects on abundance of pests and
natural enemies (Kleijn et al., 2019; Johnson et al., 2021; Girling et al.,
2022). Therefore, to provide the necessary evidence to support the
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transition to more IPM-based approaches it is critical to quantify how
delivering better control by natural enemies and reducing undesirable
inputs of pesticides influences crop yield and quality (Snyder, 2019).
Ultimately, notwithstanding the political support in some parts of the
world (Kuchheuser and Birringer, 2022), uptake of IPM will
be determined in large part by its potential to maintain or improve
production and economic outcomes for farmers in the absence of
legislation or subsidies.

Fundamentally, IPM relies on understanding the ecology of pests
and beneficials within the agroecological system and how to influence
population dynamics to enhance production. The framework
presented by current EU policies and defined in the Sustainable Use
of Pesticides Directive (2009/128/EC) follows 8 key principles
(reviewed by Barzman et al., 2015): (1) prevention and suppression;
(2) monitoring; (3) decision making; (4-7) intervention (including
reduced pesticide use and non-chemical methods including CBC);
and (8) evaluation. This final step is important as it encourages
reflection and evaluation of interventions that were most successful
and establishes the notion that the system should be constantly
developed and improved.

Foraging strategies employed by invertebrates can dictate how
they respond to alternative pesticides or different management
systems (Staton et al., 2021; Thabet et al., 2021) and it is therefore
important to consider invertebrate functional groups or feeding guilds
(e.g., whether they are tissue-chewing, sap-sucking, boring or mining
herbivore pests, or whether they ecologically and/or economically
benefit us by predating or parasitising herbivore pests) when assessing
ecological responses to IPM. For example, tissue-chewing herbivores
(chewers) may respond positively to reductions in pesticide use
associated with IPM, whereas sap-sucking (suckers) and boring/
mining herbivores (borers/miners), which, due to their feeding
strategy, may avoid surface-level leaf defences, may be less responsive
to pesticide reductions in general. However, chewers and suckers that
remain on the surface of the plant to feed may be more negatively
impacted by IPM-associated increases in biological control
mechanisms compared with borers/miners that can hide within the
plant for protection. As such, the response of different guilds to
contrasting management approaches in a particular cropping system
may depend on the presence and/or relative distribution of
invertebrate feeding guilds within the population (Garratt et al., 2011).

Apples are one of the most economically important fruit crops
globally, valued at more than US$45 billion per annum (FAOStat,
2022). In 2020, apples ranked as the third-highest fruit in global
production, yielding a total of 86.4 million tons (Zaller et al., 2023).
However, organic apple production output is significantly lower than
conventional (Samnegard et al., 2019), and currently only covers
~114,000ha, 2.5% of 4.62 M ha of total apple production worldwide
(FAO, 2021; Willer et al., 2021). Apples face many significant pests
and, as a result, pesticide application can be high, as can yield losses
due to pests (Shaw et al., 2021). There is currently an overreliance on
the use of insecticides in conventional apple systems at an estimated
typical cost of €400 ha™" per annum (Cross et al., 2015). Similarly, there
are many beneficial organisms that deliver ecosystem services in apple
orchards including natural enemies of pests (Albert et al., 2017;
Cahenzli et al., 2017; Happe et al,, 2019), so the potential for better
IPM is clear (Cross et al.,, 2015; Demestihas et al., 2017). Furthermore,
there has been considerable research on IPM in apples and its
application in many different contexts, generating significant amounts
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TABLE 1 Description of four facets of IPM used to score the level of IPM adoption.

Facet of IPM Description

Cultural controls

Practices that reduce pest establishment, reproduction, dispersal and survival (e.g., crop rotation, removing debris, growing

competitive plants, changing irrigation regimes).

Mechanical / physical controls

Practices that kills/traps pests directly or makes the environment unsuitable for them (e.g., mating disruption, steam sterilisation of

the soil for disease management, insect netting).

Biological control

Uses natural enemies (predators, parasites, pathogens and competitors) to control pests (e.g., natural parasitoids/predators or fungal

spores to inhibit growth or kill invertebrate pests).

Reduced or alternative pesticides

pressure and/or plant growth stage.

The most common form of IPM strategy to limit exposure of plants to pesticides. Often applied at specific times based on pest

of relevant data (Damos et al., 2015; Akotsen-Mensah et al., 2020).
Therefore, apples offer an ideal model system as they present a key
challenge in maintaining fruit yield and quality under significant pest
and disease pressures but also have clear opportunities for control
using IPM approaches, which could inform management strategies in
other crops.

Using apples as a model system, we carried out a meta-analysis to
(i) compare IPM systems with more conventional systems; (ii)
quantify the effects of IPM on beneficial insects, pest and disease
pressure, and crop output; (iii) explore to what extent these effects are
moderated by different feeding guilds of pests and beneficials and the
intensity to which IPM is being employed (i.e., how responses differ
as IPM adoption level increases).

2 Materials and methods

2.1 Study selection and classification of
predictors

Original research articles were identified via searches on Web
of Science (BIOSIS Citation Index) following the approach by
Cooke and Leishman (2012). On 4 September 2023, we identified
studies comparing a baseline approach (i.e., conventional farming
system) with an IPM or organic approach using the search terms
‘apple’ and ‘fruit’ in combination with terms indicative of IPM
[TOPIC: (apple AND conventional AND IPM) OR (apple AND
conventional AND integrated pest management) OR (fruit AND
conventional AND IPM) OR (fruit AND conventional AND
integrated pest management)]. Inspection of titles and abstracts of
543 records identified 101 studies of potential relevance that were
obtained for detailed inspection. Our criteria for inclusion in the
analysis was that the study must incorporate facets of IPM (cultural,
mechanical, biological or reduced/alternative pesticide use; see
Table 1 for details) and compare two or more farming approaches
(most cases compared conventional and IPM, but we also included
studies that compared conventional and organic, as well as

those that compared IPM and low-IPM approaches).
Forty-eight studies were excluded because they did not meet these
criteria, resulting in 55 studies for the meta-analysis

(Supplementary Supplementary Table S1; all studies included in
reference list). Further details are provided in a PRISMA diagram
(Supplementary Figure S1). Where variability information and the
number of replicates were ambiguous, studies were excluded.
Moreover, studies that were not translated to English were excluded.
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These were included in the exclusion category ‘no clear performance
metric or comparison’ (Supplementary Figure S1).

Experimental work conducted in the extracted studies took place
across 20 countries (Supplementary Figure S2). Where possible, an
IPM score (1-4) was attributed to each farming approach based on the
level of IPM adoption, whereby approaches that incorporated all four
facets of IPM (Table 1) achieved a maximum score of four. The number
of studies and effect sizes reported for each of the four facets are shown
in Supplementary Table SI. For each pair of farming approaches,
we calculated the difference between IPM scores to determine how the
level of IPM adoption affected different response variables. The five
response variables included beneficial invertebrate performance
(natural enemy abundance and diversity, % parasitism), disease
pressure (disease incidence and severity, infection rate), herbivore
pressure (invertebrate pest abundance, infestation and damage
intensity), fruit yield (fruit abundance, volume and mass per area) and
fruit quality (soluble solids, vitamin C, moisture content, individual
fruit mass, colour, firmness and diameter). Mean values, standard
deviation (SD) and sample sizes (N) for the responses were recorded.
Where studies with missing SDs included repeated measures (e.g.,
multiple apple cultivars or data points from multiple years), a single
value was obtained by taking a mean of the repeated measures. Where
SDs were missing and not able to be calculated from multiple data
points (one study), they were imputed by averaging those from other
studies using the same response variable, which is regarded as a suitable
alternative to disregarding studies with missing SDs altogether
(Furukawa et al., 2006). Numerical data were extracted from graphical
figures using WebPlotDigitizer (Rohatgi, 2022).

2.2 Calculating effect sizes and
meta-analytic models

Meta-analyses were performed using the package ‘metafor’
(Viechtbauer, 2010) in the R statistical platform v4.1.1. The effect size
(Hedges' d) was calculated for each pair of responses for the five
variables (beneficial invertebrates, herbivore pressure, disease pressure,
fruit yield and fruit quality). This effect size measure compares two
means using a pooled SD and bias correction (Hedges and Olkin, 1985),
with positive values indicating an increase in variable responses under
IPM adoption and negative values indicating the opposite (i.e., variables
decreased under IPM adoption). Random effects meta-analytic models
(Berkey et al., 1998) were analyzed using the rma.mv function in the
‘metafor’ package, including ‘variable’ as a moderator. Study number
was included as a random factor because some effect sizes arise from the
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same study. It was uncertain whether the inclusion of studies that
incorporated organic management approaches (N=19) would confound
any effects on yield or other variables because organic approaches can
include limitations on fertility practices or alternative fertility practices
that may impact yield. Therefore, we compared two models initially; the
first incorporated studies that used both IPM and organic management
approaches and the second excluded those incorporating organic
approaches. This enabled us to determine whether the inclusion of
studies comparing organic management with more conventional
approaches influenced the overall model predictions (i.e., the overall
effects of IPM on the five selected variables). Additional models were
run, incorporating invertebrate feeding guild (including predators,
parasitoids, stem/leaf miners or borers, foliar tissue-chewers and cell-
feeders or suckers) or the Order of invertebrates (including Araneae,
Coleoptera, Dermaptera, Diptera, Hemiptera, Hymenoptera,
Lepidoptera, Mesostigmata, Neuroptera, and Trombidiformes) as
moderators. Specific invertebrate feeding guilds and Orders were
identified from 43 and 44 studies, respectively. Only those included in
two or more studies (listed above) were accounted for in analyses. Forest
plots (Supplementary Figure S3) show the distribution of effect sizes
between studies. Estimates with a lower to upper 95% confidence limit

(LCL to UCL) not spanning zero were considered statistically significant.

2.3 Publication bias

Publication bias was assessed using a funnel plot across all study
variables (Egger et al., 1997), which illustrates the overall relationship
between the effect size and sample size. Egger’s regression was applied
to determine whether funnel asymmetries were statistically significant
(Nakagawa and Santos, 2012). Moreover, comparisons between effect
sizes and year of publication were made to determine the presence of
any time-lag bias (i.e., a decline in the magnitude of the effect over
time) by including ‘Year’ as a moderator in regression models.

2.4 Accounting for changes in the level of
IPM adoption

Variables that were recorded in eight or more studies (beneficial

invertebrates, herbivore pressure and disease pressure;
Supplementary Figures S3A-C, respectively) were compared with the
level of IPM adoption using individual rma.mv models. Studies with
a score of 3 or 4 were pooled due to the low number of studies that
implemented four facets of IPM. The three selected variables were
analysed by including ‘TPM score’ (classified as an ordered factor) as
a moderator, with 1 and 3 as the lowest and highest adoption rate
values, respectively. The random effect ‘study number’ was included

in models to account for variation among studies.

3 Results
3.1 Effects of publication bias

There were no significant correlations between effect size and
sample size (Supplementary Figure 54), which indicated a lack of
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publication bias, and year of publication did not affect the overall
effect size (ty,5=—0.01, p=0.995), indicating there was no time-lag
bias either.

3.2 Effects of IPM adoption on beneficial
and herbivorous invertebrates, disease
pressure and fruit characteristics

IPM adoption within apple production systems significantly
increased beneficial invertebrate performance and decreased
herbivore pest pressure, disease pressure and fruit yield. IPM adoption
had no significant effect on fruit quality (Figure 1; full statistical
results in Supplementary Table S2). When organic approaches were
excluded from analyses, the response of the five variables to IPM
adoption remained the same and did not influence the overall model
predictions (Supplementary Figure S5).

3.3 Effects of IPM adoption on invertebrate
feeding gquilds

IPM adoption significantly increased both types of beneficial
invertebrates (predators and parasitoids), but predators increased
more than parasitoids. Moreover, IPM adoption reduced the
performance of chewing and sucking herbivore pests but had no
significant effect on mining or boring herbivores (Figure 2;
statistical results in Supplementary Table S3). The positive
response of beneficial invertebrates to IPM adoption was driven
primarily by Araneae, Hymenopteran parasitoids and
Mesostigmata (mostly consisting of predatory mites), whereas
Trombidiformes (mostly consisting of herbivorous mites) were
responsible for driving the reduction in herbivore pressure under

IPM (Supplementary Figure S6; Supplementary Table S3).

3.4 How does the level of IPM adoption
alter IPM-mediated changes in invertebrate
performance and disease pressure?

Reduced/alternative pesticides was the most common IPM
strategy or facet used by studies. By comparison, fewer studies
incorporated cultural, mechanical and biological controls, and
when studies incorporated two or more facets of IPM, they all
included reduced/alternative pesticides (Supplementary Table S1).
The variables selected for inclusion (beneficial invertebrate
performance, herbivore pressure and disease pressure) varied
significantly in their responses to the level of IPM adoption
(Figure 3). In particular, the performance of beneficial
invertebrates increased when studies implemented three or more
facets of IPM, whereas the level of IPM adoption had no
significant effect on herbivore pressure. While IPM adoption had
a negative effect on disease pressure overall (Figure 1), results
from studies that included a score of IPM adoption level showed
that disease pressure generally increased as the level of IPM
increased statistical ~ results in

adoption (Figure 3;

Supplementary Table S4).
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Beneficial invertebrates - —_—— [33,198]

Herbivore pressure - —O— [27,148]

Disease pressure 1 @ [11,83]
Fruit yield 4 @ [7.17]
Fruit quality 1 @ [6,15]

-1.0 -05 0.0 05 1.0

Effect of IPM adoption
(Hedges'd)

FIGURE 1

Effects of IPM adoption on the five response variables. Values are estimated mean effect sizes (+95% confidence intervals). Points to the left of the zero
line indicate negative impacts and points to the right indicate positive impacts. The number of studies and observations for each response variable
indicated in parentheses. Confidence intervals overlapping the zero line are not significantly different from zero (p <0.05).

Predator 4 @ [26,137]
O Parasitoid 1 L [7.36]
=
(@)]
8) Miner/borer 4 @ [9,33]
5
3
LL Chewer @ [6,44]
Sucker 1 o [18,69]
-1.0 -05 0.0 05 1.0
Effect of IPM adoption
(Hedges' d)
FIGURE 2

Effects of IPM adoption on different invertebrate feeding guilds. Beneficial invertebrates include predators and parasitoids. Herbivore pests include
mining or boring (Miner/borer), cell-feeding (Sucker) and foliar tissue-chewing (Chewer) invertebrates. Values are estimated mean effect sizes
(+95% confidence intervals). Points to the left of the zero line indicate negative impacts and points to the right indicate positive impacts. The
number of studies and observations for each response variable indicated in parentheses. Confidence intervals overlapping the zero line are not
significantly different from zero (p<0.05).
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analytic models.

Disease pressure
Response variable

Mean effect size (+ 95% confidence intervals) of IPM adoption score (i.e., studies scaled according to their level of IPM adoption) on selected response
variables (those with a study N >8). Numbers/shapes indicate IPM adoption score, with 1 and 3 as the lowest and highest adoption rate values,
respectively. Adoption level 3 includes those with three or four facets of IPM. Note: no studies that measured beneficial invertebrate performance
included four facets of IPM adoption. Bars with the same letters were not significantly different (p <0.05) according to summary statistics of meta-

T
Herbivore pressure

4 Discussion

The value of conducting a meta-analysis is that it provides the
ability to statistically combine the findings from multiple field trials
into one study. Meta-analyses can provide more precise and stable
estimates of the effects of experimental treatments, particularly in field
studies where empirical sample sizes can be low, thereby providing
increased confidence in the overarching results (Arnqvist and
Wooster, 1995). In this study, we performed a series of meta-analyses
to compare IPM apple production systems with more conventional
systems to assess the effect size on a series of response variables.

Our analysis demonstrates a series of environmental and
agronomic benefits of the adoption of IPM but, importantly for
growers, there are also some production constraints to consider. IPM
adoption benefitted apple production systems by (i) increasing the
performance of beneficial invertebrates (ii) lowering herbivore pest
pressure and (iii) lowering disease pressure generally. There was no
difference in quality between fruit from conventional and IPM
systems, however, there was a reduction in fruit yield in the IPM
systems compared to conventional. This analysis of a global dataset
indicates that there is real environmental value in adopting IPM
approaches within apple production systems, but an economic
assessment is required to determine whether the benefits of reduced
pest and disease pressure are outweighed by the reductions in yield.
Geographically, the majority of studies were undertaken in the
United States and Europe (Supplementary Figure S1), with
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surprisingly few across South America, Africa, and SE Asia, where
apple production is significant (IChan et al., 2022). Global models
would benefit from published data from these regions, enabling
economic assessments and management decisions that encompass the
global supply chain and reflect variable income, production costs and
commercial incentives.

Organic systems tend to have lower yields than conventional
systems (Seufert et al., 2012), however management trade-off studies
within apple systems have shown that IPM systems on average
produce higher yields than organic systems (Samnegard et al., 2019)
so the yield gap might be smaller for IPM adopters. When organic
treatments were excluded from the meta-analysis, overall trends (i.e.,
the effects of IPM adoption on beneficial and pest invertebrates,
disease pressure and fruit yield and quality) did not vary significantly,
but IPM reduced both herbivore pressure and fruit yield to a lesser
effect
Supplementary Figure S5). This suggests that organic production may

extent (i.e., mean sizes were closer to zero;
have a more negative impact on fruit yield compared with IPM
systems in general but may also decrease herbivore pest pressure. The
reduction in synthetic fertiliser inputs in studies with organic
treatments compared with conventional or IPM treatments may
explain these differences. However, of the 18 studies included in the
meta-analysis that implemented an organic treatment, only four and
six measured changes in yield and herbivore pest pressure, respectively
(Supplementary Table S1). Therefore, the inclusion of organic

treatment effects were unlikely to alter the overall effects of IPM
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adoption on these variables. A wider environmental and economic
assessment is needed to explore whether IPM apple systems can
demonstrate enhanced public goods and services that could offset any
reductions in yield. Available data on production metrics and disease
pressure in apple lags significantly behind that available for beneficial
invertebrate performance and pest pressure, and, as such, the research
field would benefit from additional studies quantifying fruit
production in IPM compared with non-IPM or reduced-IPM systems
to aid economic assessments.

The positive effect of IPM adoption on natural enemy (NE)
populations probably explains the simultaneous reduction in pest
pressure through improved top-down control by more abundant and
species-rich NEs (Dainese et al., 2019). Encouragingly, both NE
feeding guilds, predators and parasitoids, responded positively to IPM,
with corresponding positive responses seen across the predominantly
NE  orders
(Supplementary Figure S6), highlighting the broadly positive effects
of IPM for NEs. The most abundant NE species considered by studies
were predatory mites (e.g., Typhlodromus spp.), beetles and spiders. A

Aranea, Hymenoptera and  Mesostigmata

greater effect size was observed for predators compared with
parasitoids and this could be explained by their ecology. While
predators include groups with low to medium mobility that persist in
the cropped area (predatory mites, beetles and spiders), parasitoids are
almost exclusively alate hymenopterans which are relatively more
mobile. Therefore, the abundance of predators could be determined
by in-field management approaches as determined by IPM (Pearsons
and Tooker, 2017), while relatively mobile parasitoid populations are
more responsive to landscape context and the presence of non-crop
areas (Martins et al. 2019), beyond the direct influence of an IPM
treatment. To promote maximum pest control delivery by multiple
natural enemy guilds both in-field and landscape-scale factors should
be considered and manipulated as part of IPM (Ricci et al., 2019;
Girling et al., 2022).

Two major pest feeding guilds (suckers and chewers, of which the
wooly apple aphid (Eriosoma lanigerum) and obliquebanded leafroller
(Choristoneura rosaceana) were the most abundant species considered,
respectively) showed similar negative responses to IPM, despite the
rather variable response among individual orders. However, this was
not the case for miners/borers, for which the effect size was close to
half that of other pest guilds. The majority of miners/borers considered
were the codling moth (Cydia pomonella). With their larval stages
often protected within the leaf or stem, miners and boring pests may
be less susceptible to generalist predators, with some evidence
indicating parasitoids are a greater mortality factor (Salvo and
Valladares, 2007). Therefore, IPM approaches, which reduce pesticide
inputs and seek to boost generalist natural enemies, may be less
effective against these pests. The response to IPM varied between
different feeding guilds and Orders of pest and beneficial invertebrates
(Figure 1; Supplementary Figure S6). Therefore, IPM should
be developed to incorporate approaches, which deliver the greatest
benefits for pest control in the systems where it is deployed, i.e., by
controlling key pests directly or by promoting NE populations best
capable of controlling those pests (Barzman et al., 2015). However not
disregarding the fact that more species rich or functionally diverse
natural enemy communities often deliver greater pest control (Dainese
etal., 2019; Snyder, 2019).

Analysing the effect of the IPM adoption score on selected
response variables revealed that even low levels of IPM adoption (e.g.,
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reduced or alternative pesticides alone) are likely to be effective against
pest populations. Increasing levels of adoption of IPM strategies,
including zero residue production systems, are potentially
accompanied by positive effects on beneficial invertebrates, with even
greater increases seen when more than two facets of IPM were
adopted. However, the level of IPM adoption was positively correlated
with disease pressure, such that disease pressure was significantly
higher when studies incorporated three or more facets of IPM. This
suggests that increasing the level of IPM adoption is also likely to
be accompanied by a higher risk of pathogens and disease incidence,
including apple scab, which was represented in the majority of studies,
followed by sooty blotch and flyspeck. Thus, the development of IPM
strategies, aimed at reducing pesticide use, should be accompanied by
an increase in prevention and monitoring practices, together with
strong training of farmers and technicians in pest and disease
management strategies.

This study provides a useful overview, but further work is
needed to understand the value of IPM in apple production systems.
Methodologies for growers to explore and evaluate the economic
benefits of IPM need to be developed (Girling et al., 2022) and
viable monitoring systems are required to evaluate the effectiveness
of IPM adoption (Barzman et al., 2015; Creissen et al., 2019). In
addition, a universal approach to IPM adoption is needed to meet
targets for sustainable food production systems and build ecological
resilience within food systems to prevent future outbreaks of pests
(Ortega-Ramos et al., 2022). Innovative technologies are in
development that can help transform the way in which the food
system operates (Herrero et al., 2020), but these require trust,
incentives, and regulation for them to be widely adopted. A
collaborative effort is now needed to bring growers, researchers,
educators, advisors, industry consultants, policy makers and wider
stakeholders together to develop IPM approaches that can support
sustainable and regenerative food production systems (Baker
et al., 2020).
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