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Abstract 

 

Being the largest emitter of greenhouse gas, the electric utility industry plays a key role 

in the energy structure transition. However, the substantial investment required for the 

transition poses a huge financial challenge for them. This thesis aims to investigate the 

specific impact of energy structure transition on the electric utility industry and seeks 

to provide valuable implications.  

 

The first study examines the impact of energy structure transition on the electric utilities’ 

capital structure. It reveals that the inclusion of energy variables improves the average 

leverage prediction accuracy by 12%. Notably, wind (solar) energy negatively 

(positively) contributes to firms’ gearing. Next, firms’ leverage adjustment speed is in 

line with the dynamic trade-off theory and adjusts quickly, with a half-life of 0.67 years 

for book leverage. Therefore, electric utilities can use more loans for solar projects and 

internal accruals or alternative financing for wind projects. Effective policies should be 

implemented to encourage the development of green credit and bonds.  

 

The second study investigates whether energy structure transition affects electric 

utilities’ risk exposure. The results manifest that including the energy variables 

significantly improves the classification accuracy of systematic, idiosyncratic, and total 

risks. Both wind and solar energy show negative correlation with systematic risk. 

Meanwhile, wind (solar) energy is negatively (positively) correlated with idiosyncratic 

and total risks. Given the different impacts of wind and solar energy on systematic and 

idiosyncratic risks, a sophisticated allocation between them should be designed to 

minimise total risk. Further, electric utilities should diversify financing sources beyond 

equity for higher-risk solar projects. 

 

The third study proposes a new business model for electric supply utilities for utilising 

energy storage. The findings confirm that renting cloud energy storage can significantly 
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reduce costs and maximise profits for electricity supply utilities. The biggest saving 

reaches 24.5%. With the rapid fall in battery prices, the proposed strategy will be more 

advantageous. 
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Chapter 1: Introduction 

 

1.1. Research Background 

 

Climate change is currently one of the most extensively discussed global issues. In 

contrast to the pre-industrial times, the earth’s average temperature has risen by 1.1°C, 

and the most recent decade from 2011 to 2020 is notably one of the warmest periods on 

record. Along with rising temperatures, extreme climatic events, food security crises, 

infectious disease outbreaks, and several other events have happened, all of which are 

jeopardising the economy, and threatening the physical and mental health of billions of 

people (Hernández-Delgado, 2015; Nordhaus, 2019; United Nations, 2023a). To deal 

with these challenges, major economies have reached consensus to address climate 

change. Signed by 196 parties in December 2015, the Paris Agreement sets a long-term 

aim of limiting global temperature rise to well below 2 °C above pre-industrial levels, 

and preferably to 1.5 °C.  

 

Energy demand has been one of the foremost drivers of climate change (United Nations, 

2022). The combustion of fossil fuels, including coal, oil, and gas, for the generation of 

electricity and heat contributes to more than 75% to global greenhouse gas (GHG) 

emissions and nearly 90% of all carbon dioxide emissions (United Nations, 2023b). To 

keep global warming below 1.5 °C, global emissions must be cut by half by 2030 and 

reach net-zero by 2050 (Climate Analytics, 2022). To achieve this target, the energy 

system must transition from fossil fuels to renewable energy1. Being the single largest 

emitter of GHG emissions, the electricity industry plays a key role in the energy 

structure transition among all sectors (IEA, 2021a). Currently, burning fossil fuels for 

power generation is responsible for over 40% of all energy-related emissions (World 

 
1 A wide range of renewable energy sources mainly includes wind energy, solar energy, hydropower, 

geothermal energy, biomass energy, and others. This study primarily focuses on the two most widely 

used renewable energy sources: wind and solar energy. 
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Nuclear Association, 2022). Moreover, the electric industry accounted for 46% of the 

global increase in emissions in 2021 (IEA, 2022a).  

 

In order to meet the net-zero objective, renewable energy sources should make up 

almost 90% of worldwide electricity production by 2050, a significant increase from 

the 23% recorded in 2015, with solar photovoltaic (PV) and wind contributing to nearly 

70% (IEA, 2021a, 2016). However, such large penetration will amplify instability 

within the power grid due to the inherent fluctuation in output of renewable energy 

sources. Energy storage can play a crucial role in supporting the high penetration of 

renewable energy (Gallo et al., 2016; IEA, 2023a). It can help avoid a significant 

amount of curtailment in renewables, leading to higher energy efficiency, and a more 

flexible and stable power grid (Arbabzadeh et al., 2019). Yet, large-scale energy storage 

is still in the early stages of rapid development, and must grow at an exponential pace 

to achieve the clean energy target (IEA, 2020a).  

 

As the two primary forces to realise the energy structure transition, both renewable energy 

and energy storage require substantial investment. Indeed, over 80% of total power sector 

investment is currently allocated to renewables, grids, and storage (IEA, 2022b). 

However, the investment gap is still large. To reach net-zero targe by 2050, more than 

triple the annual clean energy investment will be needed until 2030 at $4 trillion per year 

(IEA, 2021a). Given the high capital requirements, the energy structure transition poses 

significant challenges and risks to the electric utility sector (Bird et al., 2013; Sinsel et al., 

2020). This is mainly because the electric utilities of major economies are now market 

driven after the electricity market reform in the 1990s, empowering them to make 

independent decisions rather than being subject to direct state intervention (Sioshansi and 

Pfaffenberger, 2006). Under fierce market competition, they may weigh these 

environmental investments against their impact on firm performance. Therefore, the 

energy structure transition is more of an economic challenge rather than a technical 

obstacle as substantial funding is needed for clean projects (Donovan, 2015).  
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Such significant financial requirements are likely to change electric utility firms’ 

original financing channels, thereby adjusting their capital structure. Currently, 

governments in major economics have implemented various subsidies and tax policies 

to support renewable energy investments (Murray et al., 2014; Nicolini and Tavoni, 

2017; Shen and Luo, 2015). Both debt and equity market have made commitments to 

adjust their lending portfolios and returns to boost the deployment of clean projects 

(Bank of America, 2021; Bank of England, 2021; Bolton and Kacperczyk, 2021; Wen 

et al., 2020). However, fossil fuel subsidies are rebounding (IEA, 2023b), and the 

practices of both lenders and investors are not fully in line with their commitments 

(Larcker and Watts, 2020; Li and Pan, 2022; Monasterolo and De Angelis, 2020). In 

this situation, it remains uncertain whether utilities are effectively progressing the 

energy structure transition by actually adjusting their capital structure. Few empirical 

studies examine whether the energy structure transition influences capital structure. 

Clarifying this issue is meaningful in assessing whether market mechanisms can help 

in achieving the energy structure transition and determining the extent of macro-level 

support needed. In market mechanism do have an effect, we need to understand how 

the capital structure dynamically evolves as the energy structure transition progresses. 

Do firms actively adjust financing channels to pursue funding or inertly wait for suitable 

funds? Understanding this question can help in creating appropriate incentive policies. 

 

In addition, substantial environment-related investments are often closely linked to 

firms’ risk exposure. Studies have yielded heterogeneous results based on different 

markets, samples, and measurements (Albuquerque et al., 2019; Bouslah et al., 2013; 

Oikonomou et al., 2012; Salama et al., 2011; Sassen et al., 2016). Effectively managing 

risk exposure is crucial for electric utility firms, as it ensures a stable electricity price. 

In the face of significant risk, firms may need to decrease or even temporarily halt 

investments in renewable energy to control risk. Indeed, despite their rapid growth, 

global renewable energy investments have witnessed declines in some years in the past 
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(IEA, 2018). Therefore, given the importance and distinctiveness of the electric utility 

sector, gaining a comprehensive understanding of how the energy structure transition 

impacts risk exposure, along with assessing the degree of influence, becomes essential 

for timely adjustment of financing approaches, and facilitating a smooth and efficient 

energy transition process.  

 

Finally, we need to understand how energy storage can work with the growing 

penetration of renewable energy to effectively mitigate the challenges posed by its 

inherent fluctuations. Energy storage technologies are undergoing rapid development, 

and equipment costs are continuously decreasing (IEA, 2023a). However, different 

kinds of energy storage technologies possess distinct characteristics which require 

specific application environments (Aneke and Wang, 2016; Gallo et al., 2016). No 

single energy storage technology can cater to all scenarios. Furthermore, despite the 

reduction in equipment costs, higher application costs and lower operational efficiency 

have hindered the widespread adoption of energy storage (Liu et al., 2017). Therefore, 

a suitable business model is needed which can overcome these disadvantages and fully 

capitalise on the potential benefits of energy storage technology.  

 

In summary, this thesis investigates the effects of the energy structure transition on the 

capital structure and risk exposure of electric utility industry. Furthermore, it explores 

an innovative energy storage business model that strives to promote higher energy 

utilisation efficiency to accelerate the energy structure transition. It endeavours to offer 

insights and suggestions regarding the energy structure transition for the electricity 

utility industry and governments. 

 

1.2. Development of Research Questions 

 

With the electricity market reforms, the traditional vertically integrated electric utilities 

have been split into generation, transmission, distribution, and supply sectors through 
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privatisation, restructuring, and deregulation (Sioshansi and Pfaffenberger, 2006). 

Utilities can be categorised into the four sectors based on their functions. Further, the 

business scope of large utilities often encompasses more than one sectors. The 

production and consumption of electricity energy are the responsibility of generation 

and supply sectors, respectively, which are the most market-oriented and fiercely 

competitive sectors. The other two sectors of transmission and distribution are 

responsible for power delivery. As natural monopolies, several transmission and 

distribution utilities are still public-owned enterprises in many countries. Therefore, 

when it comes to research on electric utilities, most studies tend to focus on the two 

sectors: generation and supply. 

 

As the two pillars of energy structure transition, renewable energy is the primary means 

to achieve the transition, and energy storage is the essential supporting measure to 

address fluctuations during this transition. According to the function, the generation 

sector is responsible for making investments in renewable energies. Therefore, in this 

thesis, we tried to investigate the impact of the energy structure transition on utility 

firms’ capital structure and risk exposure in the generation sector (reported in Chapters 

3 and 4, respectively). Then after that, given the high penetration of renewable energy 

in electric utilities, we then conduced an empirical analysis to explore effective ways to 

utilise energy storage in dealing with fluctuations in renewables. In fact, energy storage 

devices can be installed in any sector of the power grid according to their different types 

(Ding et al., 2019; Locatelli et al., 2015). However, as the ultimate purpose of electricity 

production is consumption, electric supply utilities need an effective business model 

which optimises energy storage device utilisation. Through this, it can effectively 

address the fluctuations in renewable energy sources, thereby improving energy 

efficiency and enhancing grid flexibility. Chapter 5 explores the construction of this 

business model for incorporating energy storage in the supply sector. Through 

conducting these three studies on both sectors, a thorough understanding of the impact 

of energy structure transition on the electric utility sector can be obtained.  
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In terms of renewable energy investment, different financing channels for energy 

structure transition have distinct costs (IEA, 2021b). According to trade-off theory, to 

maximise value, a firm must find an optimised mix of debt and equity finance, referred 

to the optimal capital structure, which can minimise its cost of capital (Kraus and 

Litzenberger, 1973). As the costs of different types of capital for renewable energy 

investments vary with environmental conditions and policies, one must also examine 

whether the capital structure of electric utility firms adjusts accordingly.  

 

Alongside the increase in renewable energy, fossil fuel use is slowing down and even 

decreasing, particularly coal. Consequently, the potential decrease in investments in 

fossil fuels might also impact the capital structure. Hence, one must further examine 

whether the effects on the capital structure stem from changes in renewable energy, 

fossil fuels, or a combination of both. Therefore, in Chapter 3, the first research question 

is: Do changes of the renewable energy and fossil fuels in the energy structure affect 

the capital structure of electric utility firms? Moreover, considering different renewable 

energy types possess their own distinct characteristics, it should be explored: Are the 

impacts of different renewable energy types on firm’s capital structure consistent? 

 

Another issue is whether electric utility firms’ capital structure actively responds to the 

changes in the energy structure. In other word, how and at what speed does firms’ 

capital structure adjust to reflect these changes? Estimating this speed can help in 

answering the last research question: Can existing capital structure theories explain the 

capital structure of the electric utility industry? Chapter 3 investigates these questions 

based on a sample of US listed electric utility companies over the period from 2010 to 

2020. Understanding how electric utility firms dynamically adjust their capital structure 

in response to changes in their energy structure is crucial for further acceleration of the 

transition and formulating appropriate policies. Crucially, it can provide the useful 

suggestions for electric utility firms to select the most suitable financing methods for 
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different kinds of renewable energy sources, thus achieving the optimal capital structure 

and maximising firm value. 

 

Furthermore, the significant investments in energy structure transition can be viewed 

as a part of a company’s corporate social responsibility (CSR) or corporate 

environmental responsibility (CER) investments. Research indicates that engaging in 

CSR or CER investments brings many benefits to firms, including increasing product 

diversity, enhancing corporate reputation, and adopting more flexible strategies 

(Albuquerque et al., 2019; Aragón-Correa and Sharma, 2003; Miles and Covin, 2000; 

Miller et al., 2020). Such advantages can lead to cost reductions, enhanced short- and 

long-term profits, and mitigation of firm risk (Hart and Ahuja, 1996; Liu and Lu, 2021; 

Oikonomou et al., 2012; Salama et al., 2011). Nevertheless, some studies indicate that 

CSR or CER investments can impose additional financial burdens on firms, leading to 

negative financial performance and increased exposure to higher risks (Barnett and 

Salomon, 2006; Bouslah et al., 2013; Palmer et al., 1995; Preston and O’Bannon, 1997; 

Sassen et al., 2016). These inconsistencies in findings might arise from two reasons. 

First, CSR encompasses multiple dimensions, and the selection of different proxies may 

result in varying estimation outcomes (Bouslah et al., 2013; Johnson and Greening, 

1999; Rehbein et al., 2004; Ruggiero and Lehkonen, 2017). Different risk indicators 

also lead to diverse results (Albuquerque et al., 2019; Bouslah et al., 2013; Oikonomou 

et al., 2012; Salama et al., 2011; Sassen et al., 2016). Therefore, as a more specific 

environmental dimension, this thesis examines the impact of the energy structure 

transition on different kinds of risk exposure. The following research questions are 

investigated in Chapter 4: Whether and how the development of renewables affects all 

different types of risks faced by firms? And do different kinds of renewable energy have 

consistent impacts on these risks? Employing a US sample of listed electric utility firms 

from 2010 to 2020, Chapter 4 aims to clarify the relationship between the energy 

structure transition and risk exposure of electric utility firms. Separately analysing the 

impact of energy structure transition on each type of risk is essential as it can provide 
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more precise information for risk management. Smaller fluctuations in risk can stabilise 

the market, facilitating a smoother and more efficient energy structure transition process. 

 

Lastly, to encourage the integration of energy storage, electric supply utilities need a 

business model that ensures profitability for them. Electric supply utilities are often 

called as electricity retailers in practice. Owing to the randomness of the electricity load, 

electricity retailers find it impossible to formulate a completely accurate electricity 

procurement plan in advance to meet customer demand. Therefore, this electricity 

deviation needs to be traded from the spot market at a higher cost (Nazari and Akbari 

Foroud, 2013). The penetration of renewable energy intensifies this imbalance. Their 

inherent fluctuations could potentially magnify the volume of electricity procured from 

the spot market, thereby leading to additional cost increases. To address this situation, 

energy storage is undergoing rapid development and deployment. By deploying 

appropriate and enough storage at scale, utilities can pre-purchase electricity during 

periods of abundant renewable energy at more cost-effective contract rates, and 

subsequently, release and use it when needed. However, energy storage technologies 

exhibit distinct characteristics and potential application scenarios (Aneke and Wang, 

2016; Gallo et al., 2016). No single technology outperforms in all aspects. This 

indicates that catering to different application scenarios requires investments in 

multiple energy storage technologies, thereby increasing investment costs. Indeed, the 

economic feasibility of energy storage business models has become one of the obstacles 

to the large-scale deployment of storage (Arbabzadeh et al., 2019; Gallo et al., 2016). 

In response to this challenge, this thesis adopts a rental approach to avoid direct 

investments in energy storage equipment and enhance economic benefits. Given the 

unpredictable nature of load demand, establishing an optimised model for determining 

the optimal amount of energy storage to be rented to maximise electricity retailers’ 

profits is a key focus of this thesis. Chapter 5 explores this business model.  
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1.3. Contributions 

 

First, as climate change accelerates, there is an increasing demand to shift from fossil 

fuels to cleaner energy sources. An increasing number of economic and financial studies 

have primarily focused on investigating the effects of diverse subjects, including 

environmental policies, climate risk, and carbon emissions, among others, on various 

samples. However, being the foremost provider of energy and largest emitter of GHG, 

the electric utility industry has received relatively less scholarly attention. Furthermore, 

many research samples exclude this industry due to its distinctive corporate 

characteristics. To fill this gap, this thesis thoroughly investigates the impact of the 

energy structure transition on the electric utility industry. The findings can provide 

useful references for policymakers, aid the financial sector in refining investment 

strategies, and empower electric utility firms to adjust their financing plans. 

 

Second, CSR investments and their impact on firms have been a long-standing research 

issue. However, using a comprehensive measure of CSR can lead to biased results 

because it encompasses various dimensions. These dimensions may have diverse or 

even contrary impact on the firm; thus, the integrated measurement of CSR may lead 

to confounding effects (Bouslah et al., 2013; Johnson and Greening, 1999; Rehbein et 

al., 2004). In response to the increasing demand for separate testing of specific 

subthemes (Bouslah et al., 2013; Busch and Lewandowski, 2018), this research focuses 

on a unique issue, the energy structure transition, which belongs to the environmental 

dimension of CSR, and tests its impact on electric utility firms’ capital structure and 

risk exposure. The findings show that the energy structure transition can affect both the 

capital structure and risk exposure of electric utility firms. This is mainly caused by the 

development of the renewable energy.  

 

Third, this thesis examines the individual impact of wind and solar energy, as they 

exhibit different characteristics. The results show that wind and solar energy has 
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opposite impacts on electric utility firms’ capital structure and risk exposure. Thus, from 

the perspective of the debt and equity markets, wind and solar energy have different 

level of risks for lenders and investors. In particular, solar (wind) has a positive 

(negative) impact on leverage, suggesting that lenders would like to invest in solar 

energy rather than wind energy. In contrast, solar (wind) has (higher) lower risk in the 

equity market, indicating that investors prefer wind energy to solar energy. Such distinct 

impacts of wind and solar energy can provide valuable insights for financing across 

different capital types, as well as informing government’s policy formulation. 

 

Fourth, this thesis explores the utilisation of energy storage to improve the profits of 

electricity retailers. Differing from previous business models for investing in energy 

storage devices by the electricity retailers (Ju et al., 2020; Sun et al., 2022; Yang et al., 

2020), this thesis’ model considers a renting strategy to acquire energy storage capacity, 

thereby avoiding significant fixed costs. The rented energy storage capacities come 

from a centralised cloud energy storage (CES) provider, which centrally invests in and 

manages a range of diverse energy storage devices. The range of energy storage options 

helps overcome the issue of no single energy storage device being capable of adapting 

to all application scenarios. Moreover, an optimisation model is developed to determine 

precise charging and discharging rental capacities for electricity retailers. This novel 

business collaboration between electricity retailers and CES suppliers maximises the 

utilisation of each party’s information and technological strengths, thus promoting 

large-scale energy storage utilisation and generating greater profits via economies of 

scale. This can further mitigate the fluctuations caused by renewable energy sources 

and enhances grid flexibility. 

 

Fifth, this thesis extends the application of machine learning in the field of finance. 

Although some finance scholars have used machine learning methods, studies have 

mainly focused on specific areas, such as bankruptcy and credit risk (Härdle et al., 2009; 

Harris, 2013; Kim and Sohn, 2010; Shin et al., 2005; Zhou et al., 2014). Most other 



25 

 

studies still rely on traditional econometric regression methods. However, regression 

methods may not effectively identify nonlinear relationships, which could lead to 

biased results (Amini et al., 2021). For instance, linear regression techniques may find 

it challenging to accurately identify relevant features while examining the impact of the 

energy structure transition on electric utility firms. This difficulty arises from the 

relatively short period of energy structure transition and the non-linear characteristics 

associated with the development of renewable energy. In contrast, machine learning 

exhibits a notable advantage in handling non-linear relationships. By utilising machine 

learning methods to dynamically capture the multifaceted effects of energy structure 

transition on electric utilities, this thesis expands its application to examining capital 

structure and firm risk. 

 

1.4. Structure of the Thesis 

 

This thesis has six chapters. Chapter 1 presents an overview research background. 

Chapter 2 discusses the theoretical framework and reviews the literature. Chapter 3 

investigates the impact of energy structure transition on electric utility firms’ capital 

structure. Chapter 4 examines the effect of energy structure transition on their risk 

exposure. Chapter 5 discusses the cost optimisation of electricity retailers with the 

integration of energy storage. Finally, Chapter 6 summarises the primary findings of 

the three studies, along with drawing conclusions and policy implications. 
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Chapter 2: Literature Review 

 

2.1. Theoretical Background 

 

“Does it pay to be green?” is a long-debated question that has not reached an agreement. 

According to neoclassical economic theory, the primary objective of any company is to 

maximise its profits and shareholders’ return (Friedman, 1970; King and Lenox, 2002). 

However, environmental investments can consume a company’s financial resources and 

generate additional costs (Haveman and Christainsen, 1981; Walley and Whitehead, 

1994). This, in turn, can diminish a company’s marginal returns (van Soest and Bulte, 

2001), and thus, its competitiveness (Hull and Rothenberg, 2008). Such outcomes 

deviate from the objectives of neoclassical economic theory.  

  

The natural resource-based view (NRBV) presents an alternative perspective (Hart, 

1995; Majumdar and Marcus, 2001; Porter and van der Linde, 1995). It argues that 

pollution is economically wasteful, signifying inefficient resource utilisation, especially 

given the limited nature of resources. Therefore, it encourages companies to proactively 

adopt environmental strategies, such as seeking alternative resources, driving green 

technological innovation, and restructuring supply chains to reduce resource wastage. 

The implementation of these strategies can increase production efficiency (Sharma and 

Vredenburg, 1998), improve employee skills and qualities (Hart and Ahuja, 1996; 

Reinhardt, 1999), and enhance corporate reputation (Miles and Covin, 2000). These 

advantages can bolster a company’s competitive advantage and promote financial 

performance (Chan, 2005; Hart, 1995; Hart and Dowell, 2010). 

 

Stakeholder theory offers another viewpoint on the positive impact of environmental 

investments on corporate performance (Clarkson, 1995; Donaldson and Preston, 1995; 

Freeman, 1984). It asserts that firms should consider the needs of all stakeholders, not 

just shareholders. These stakeholders encompass creditors, employees, customers, 
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suppliers, public interest groups, and government agencies, among others. Meeting 

their demands can create value for shareholders (Freeman, 2010). Welford et al (2008) 

found that the environment is a primary concern for stakeholders. Therefore, 

investments in environmental initiatives can yield several benefits, including building 

a strong reputation, and fostering long-term relationships with suppliers and consumers, 

which can enhance the competitiveness and financial performance of firms (Hillman 

and Keim, 2001; Lankoski, 2008). Moreover, aligning with stakeholders’ 

environmental preferences can provide companies with diversification advantages, 

leading to customer loyalty, and thus, increasing profits and reducing risks (Berman et 

al., 1999; Galdeano-Gómez et al., 2008; Rivera, 2002). 

 

However, some scholars have pointed out that the benefits of environmental protection 

activities may not fully compensate for the incurred costs (Preston and O’Bannon, 1997; 

Waddock et al., 1997). Therefore, rational managers should make a trade-off between 

environmental investments and achieving good firm performance (McWilliams and 

Siegel, 2001). 

 

2.2. Relationship between Energy Structure Transition and Capital Structure 

 

Firm value is often related to the capital structure due to the different costs of debt and 

equity. A rational optimal arrangement of debt and equity can reduce costs and enhance 

firm value. Different capital structure theories provide diverse rationales for allocating 

capital. Modigliani and Miller (1958) argue that in a perfect market, the capital structure 

is irrelevant to firm value due to the absence of any advantages derived from shifting 

between equity and debt. However, the capital structure matters in reality. Different 

capital structure theorems have been developed based on diverse relaxations of the 

assumptions. Trade-off theory demonstrates that firms can achieve an optimal capital 

structure while maximising firm value by finding the right balance between debt and 

equity financing (Fischer et al., 1989; Kraus and Litzenberger, 1973; Strebulaev, 2007). 
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Static version of trade-off theory suggests that firms can take advantage of the benefit 

of tax shield while simultaneously considering the cost of financial distress to adjust 

the debt level to the optimal point (Kraus and Litzenberger, 1973). Meanwhile, the 

dynamic version further considers the adjustment costs and claims that a debt ratio 

range is a better target for firms to make adjustments (Fischer et al., 1989; Strebulaev, 

2007). According to their difference, the static trade-off theory argues that firms adjust 

their leverage instantly when a deviation happens, resulting in an adjustment speed 

close to one. In contrast, the dynamic trade-off theory contends that the adjustment 

speed is between zero and one (Amini et al., 2021). 

 

The other two popular capital structure theories are pecking order and market timing 

theories. Both claim no optimal capital structure (Baker and Wurgler, 2002; Myers, 

2001; Myers and Majluf, 1984). Pecking order theory emphasises that firms prioritise 

using internal accruals, followed by debt and finally equity because of their increasing 

costs. It also suggests that seeking external financing is viewed negatively by the market 

due to information asymmetry, leading firms to avoid it. Market timing theory asserts 

that the decision about capital structure is simply the cumulative result of efforts to time 

the equity market. All three theories have been demonstrated as valid in certain cases, 

but have also faced criticism (Amini et al., 2021; Flannery and Rangan, 2006; Frank 

and Goyal, 2003; Huang and Ritter, 2009; Myers, 2001).  

 

Scholars argue that no single universal capital structure theory can be applied to all 

scenarios. Therefore, one must individually investigate the capital structure of each 

research sample (Akhtar, 2005; Chang et al., 2014; Frank and Goyal, 2009; Öztekin, 

2015). Clearly, the core difference between these theories lies in the assumption of a 

target leverage. Therefore, except for the static and dynamic trade-off theories, the 

adjustment speed for both pecking order and market timing theories are zero, as they 

claim no optimal capital structure (Amini et al., 2021). However, since the target 

leverage cannot be directly observed, it must be deduced from predictions. Hence, 
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confirming the key determinants becomes essential. 

 

Lots of studies have focused on the firm-level accounting and financial variables as 

well as macroeconomic ones, confirming a group of widely accepted determinants of 

capital structure (Akhtar, 2005; Amini et al., 2021; Frank and Goyal, 2009; Öztekin, 

2015; Rajan and Zingales, 1995). As environmental issues have attracted more public 

attention in recent years, scholars find that firms with environmental problems, such as 

the climate risks, tend to have lower debt levels (Ginglinger and Moreau, 2019; Nguyen 

and Phan, 2020). The increasing importance of environmental factors makes them 

unignorable in explaining capital structure; otherwise, results on the target leverage 

estimation can be biased (Amini et al., 2021).  

 

As the energy producer, energy structure of the electric utility sector is closely related 

to the amount of carbon emissions (Li et al., 2021; Matsumoto, 2015; Yu et al., 2018). 

Firms with lower emissions often attract financial institutions with lower interest, which 

enables them to achieve higher leverage (Chava, 2014; Sharfman and Fernando, 2008). 

However, the costs associated with emission reduction are often high and volatile, 

which conveys a risk signal to the market, ultimately leading to decreased borrowing 

capacity (Nguyen and Phan, 2020; Ni et al., 2022; Shu et al., 2023; Yang et al., 2022). 

Hence, carbon emissions and capital structure may have a dynamic relationship, which 

is closely linked to the emissions reduction costs at different stages. These expenses 

often include investments in renewable energy and carbon compliance costs related to 

fossil fuels, which can be effectively represented by changes in energy structure.  

 

In addition, financing for renewable energy and fossil fuels exhibits different 

characteristics. Despite gaining government financing support, renewable energy still 

faces a significant funding gap (Curtin et al., 2017; Ng and Tao, 2016). Banks play a 

crucial role in supporting renewable energy projects. Besides providing substantial 

loans, state investment banks also implement educational programs within the 
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financing sector, thereby facilitating future loans by reducing information gaps (Geddes 

et al., 2018; Moody’s Investor Service, 2019). Moreover, other debt financing sources, 

like green bonds, have gradually assumed a more significant role (Ng and Tao, 2016). 

With this continuous financial support, the risks (costs) in investing renewable energy 

have declined (Egli, 2020; In et al., 2022; Shrimali, 2021). By contrast, fossil fuels have 

faced steady or even rising costs due to increased mining and transportation expenses, 

higher pollution management costs, and additional taxes and compliance fees (In et al., 

2022; Shrimali, 2021). Consequently, their investment risk now surpasses that of 

renewables (Shrimali, 2021). Therefore, risk-averse capital may instinctively move 

away from firms heavily depending on fossil fuels.  

 

Notably, different types of renewables possess their own distinct traits. Although the 

global weighted average levelised cost of electricity (LCOE) of solar photovoltaic (PV) 

is still higher than that of onshore wind in 2020, it experienced a much larger decline 

in cost between 2010 and 2021 (IRENA, 2021). Moreover, compared with solar energy, 

wind energy usually comes with a higher risk of resource fluctuations (Shrimali, 2021). 

Consequently, the impact of different renewable energy sources on capital structure 

may also be diverse.  

 

As an important industry for fighting against climate change, whether electric utility 

firms have a target capital structure to maximise their value and adjust towards it during 

the energy structure transition is uncertain. To fill in this research gap, Chapter 3 first 

investigates whether changes of the renewable energy and fossil fuels in the energy 

structure affects electric utility firms’ capital structure. Then, given that wind and solar 

energy have distinct characteristics, this thesis further analyses whether they have 

different influences on the capital structure. Finally, the leverage adjustment speed is 

calculated to evaluate the presence of an optimal capital structure, which helps in 

examining whether existing capital structure theories can account for these changes. 
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2.3. Relationship between Energy Structure Transition and Risk Exposure 

 

Firms’ risk exposure is an important aspect of firm performance. This thesis estimates 

firm risk based on three different risk measures: total, systematic, and idiosyncratic 

risks. Total risk is a firm’s stock volatility and measured by the variance or standard 

deviation of stock returns from the past year (Bouslah et al., 2013; Jo and Na, 2012; 

Sassen et al., 2016). It consists of systematic and idiosyncratic risks (Jo and Na, 2012; 

Sassen et al., 2016). Systematic risk is a firm’s reaction to market volatilities that impact 

all stocks, whereas idiosyncratic risk refers to firm-specific uncertainties that cannot be 

explained by total market fluctuations (Bouslah et al., 2013; Luo and Bhattacharya, 

2009; Sassen et al., 2016; Sharpe, 1964). Based on modern portfolio theory, only 

systematic risk matters to asset pricing because idiosyncratic risk can be fully 

diversified away in a well-constructed market (Markowitz, 1952). Therefore, some 

corporate social responsibility (CSR) or corporate environmental responsibility (CER) 

studies exclusively concentrate on systematic risk. Nevertheless, recent research 

highlights that idiosyncratic risk is also influenced by CSR (CER), given the near 

impossibility of complete diversification in the actual market (Bouslah et al., 2013; 

Goyal and Santa-Clara, 2003; Lee and Faff, 2009; Sassen et al., 2016).  

 

A negative correlation is often observed between systematic risk and CSR (CER) 

(Albuquerque et al., 2019; Oikonomou et al., 2012; Salama et al., 2011). According to 

stakeholder theory, one important potential reason is the diversification of CSR (CER) 

products, which is attractive to stakeholders with similar preferences (Dmytriyev et al., 

2021; Donaldson and Preston, 1995; Ruf et al., 2001). Research on energy structure 

transition suggests that investments by electric utility firms in renewable energy align 

with customers who prefer green products, which encourages them to switch to greener 

energy providers (Richter, 2013). Such loyalty promotion can lead to increased profits 

and reduced systematic risk for firms (Albuquerque et al., 2019). However, the 

relationships of idiosyncratic and total risks with CSR (CER) have yielded inconsistent 
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outcomes (Bouslah et al., 2013; Cai et al., 2016; Lee and Faff, 2009; Sassen et al., 2016). 

One potential explanation suggests that environmental concerns, such as climate 

change, could send mixed signals to the market (Bouslah et al., 2013). Specifically, the 

substantial initial investment required for green projects might impede shareholders’ 

enthusiasm for further investment (Fernando et al., 2010). In addition, wind and solar 

energy exhibit different cost characteristics (GOV.UK, 2020; IRENA, 2021), which 

may lead to different effects on these risks.  

 

As comprehensive CSR or CER proxies can confound the impacts of different 

dimensions (Bouslah et al., 2013; Rehbein et al., 2004), some scholars have pointed out 

the need to divide this issue into subthemes (Busch and Lewandowski, 2018; Correia 

et al., 2021). As energy structure transition is an important subtheme in the CER 

dimension, investigating its influence on electric utility firms’ different risk types 

separately can perhaps shed light on and resolve controversies related to CSR or CER’s 

influence on different kinds of risks. Hence, Chapter 4 first assesses whether and how 

the development of renewables affects all different types of risks faced by firms. 

Furthermore, due to the distinct cost characteristics of wind and solar energy, the thesis 

separately examines their effects on each risk. 

 

2.4. Energy Storage and Electricity Retailers  

 

Due to the nature of electricity, it should be produced and consumed at the same time 

to maintain equilibrium. Otherwise, it may lead to additional maintenance costs, 

insufficient energy efficiency, and even market failure, like the California crisis (Griffin 

and Puller, 2005; Joskow, 2001; Müsgens et al., 2014). As the intermediary between the 

power producers and consumers, the key role of electricity retailers is to balance supply 

and demand. However, both consumer demand and retail electricity price are volatile. 

The larger the unbalance, the higher the cost for retailers. Therefore, retailers need to 

work carefully with both the consumer and wholesale market sides to survive under 
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tough competition. They use various techniques to improve the prediction accuracy of 

consumer load (Cecati et al., 2015; Hong et al., 2014; Xie et al., 2015). Furthermore, 

many procurement strategies are undertaken to address the electricity price volatility 

(Ciarreta et al., 2020; Hatami et al., 2009; Yang et al., 2018). They also use some 

financial tools to hedge the related risks (Boroumand et al., 2015; Deng and Oren, 2006; 

Stevenson et al., 2006).  

 

With the increasing penetration of the renewable energy, its fluctuating nature will bring 

extra maintenance cost for electricity retailers, which will be reflected in an even higher 

electricity price. Energy storage can play a crucial role in addressing this problem of 

fluctuating output of renewable energy (Gallo et al., 2016). Energy storage can help in 

avoiding a significant amount of renewables curtailment, leading to higher energy 

efficiency and a more flexible and stable power grid (Arbabzadeh et al., 2019). Based 

on the NRBV, reducing waste and improving resource utilisation can enhance a 

company’s competitive advantage and promote outstanding financial performance 

(Chan, 2005; Hart, 1995; Hart and Dowell, 2010). 

 

However, different kinds of energy storage technologies possess distinct characteristics 

which require specific application environments (Aneke and Wang, 2016; Gallo et al., 

2016). No single energy storage technology can cater to all scenarios. Therefore, the 

efficient use of energy storage is closely linked to a useful business model (Arbabzadeh 

et al., 2019; Gallo et al., 2016). Many optimisation models have been constructed to 

maximise the profit of the electricity retailers by using the energy storage system in 

different scenarios (Liu et al., 2021; Sun et al., 2022; Yang et al., 2020). All models 

verify the viability of employing energy storage to reduce costs and maximise profits 

for electricity retailers. However, all optimisation models assume that energy storage 

devices are purchased by electricity retailers. Practical obstacles, including high 

maintenance expenditure, policy constrains, and low control efficiency, may deter small 

retailers from investing in energy storage devices. To avoid the direct investment, cloud 
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energy storage (CES), a virtual energy storage service system which invests in and 

manages centralised energy storage devices, has been proposed (Liu et al., 2017).  

 

The emergence of CES provides a new option for electricity retailers to use energy 

storage. By renting energy storage capacity from CES, electricity retailers can utilise 

different kinds of energy storage devices without having to invest in all types. This 

flexible rental approach also helps avoid unnecessary fixed investments. However, 

customer demand is volatile. Therefore, retailers must figure out how they can set an 

optimal rental amount of energy storage to achieve equilibrium and simultaneously 

maximise their profits. Chapter 5 develops a business model for electricity retailers to 

determine the optimal rental amount of energy storage to maximise their profits.   
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Chapter 3: Can Energy Structure Transition Explain Capital 

Structure? Evidence from the Electric Utility Industry 

 Based on Machine Learning 

 

3.1. Introduction 

 

Climate change is one of the most intensely discussed global issues nowadays. It refers 

to global warming and the long-term shift in weather patterns. Compared with 

preindustrial times, the average temperature of the earth is 1.1 °C higher, with the most 

recent decade of 2011–2020 being one of the warmest ones in recorded history. Human 

activities have been recognised as the primary cause of climate change, primarily owing 

to the burning of fossil fuels, such as coal, oil, and gas, which produce the majority of 

greenhouse gas (GHG) (United Nations, 2022). In response, major economies have 

undertaken several efforts to tackle climate change, including the creation of the Paris 

Agreement in 2015 to undertake joint actions. According to the consensus, to slow 

down further temperature rise, the global emission level must be cut in half by 2030 

and reach net-zero by 2050 (Climate Analytics, 2022). This requires an extensive 

reform of the energy system, and switching from fossil fuels to renewables in the near 

future. For instance, fossil fuel consumption must be reduced by 6% annually between 

2020 and 2030 to achieve the aforementioned target (United Nations, 2020). 

 

Among various industries, the electric utility industry plays a critical role in the energy 

structure transition. Cumulatively, more than 40% of all energy-related CO2 emissions 

are caused by burning fossil fuels for electricity generation (World Nuclear Association, 

2022); it also accounted for 46% of the global increase in emissions in 2021 (IEA, 

2022a). Over the past decades, the electricity generation sector has undergone 

significant structural changes. Figure 3.1 shows that the global growth of traditional 

fossil fuels, particularly coal, has significantly slowed down in recent years. Renewable 
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energy sources (e.g. wind and solar energy), while not yet dominant in terms of overall 

electricity generation, are experiencing rapid development. Along with technological 

advancement, the electric utility industry may transform into a cleaner sector with more 

renewables in the near future.  

 

 

Figure 3.1. World electricity production by source (2000–2022) 

Data source: https://ourworldindata.org/grapher/electricity-prod-source-

stacked?time=2000..2022&facet=none 

 

However, this energy structure transition may also bring new challenges and even 

shocks to electric utility firms (Bird et al., 2013; Sinsel et al., 2020). From the 1990s, 

all major economies across the world including the US and the UK have gradually 

unbundled the traditional vertically integrated electricity utilities and introduced 

competition via privatisation, restructuring, and deregulation (Sioshansi and 

Pfaffenberger, 2006). Thus, energy structure transition is no longer being completely 

and directly influenced by the government’s direct intervention. Instead, firms are 

empowered to make their own decisions and strategies according to the external and 

internal factors, including government policies and regulations, the market environment, 

financing choices, operational situation, and management capabilities (Bird et al., 2013; 

Carley, 2009; Donovan, 2015; Richter, 2013; Yi and Feiock, 2014). Meanwhile, unlike 
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some industries which rely heavily on fossil fuels, with the support of advanced 

technologies, the electric utility industry can replace fossil fuels with cleaner 

renewables. This can substantially reduce GHG emissions of the electricity system.  

 

Yet, the extensive adoption of renewables remains uncertain due to the large amount of 

investments needed, and the subsequent balance costs caused by the fluctuating nature 

of renewable energy (Geddes et al., 2018). Thus, effectively and smoothly achieving 

the energy structure transition is not only a technical problem but more of an economic 

issue (Donovan, 2015). In the financial market, large landers like the Bank of America 

and the Bank of England have both committed to take actions on reducing GHG 

emissions through adjusting their lending policies and portfolios. In April 2021, the 

Bank of America (2021) announced to increase its 2019 commitment of $300 billion 

target by 2030 to $1 trillion to accelerate the transition to a low-carbon, sustainable 

economy as part of its Environmental Business Initiative. Meanwhile, the Bank of 

England (2021) is targeting a 25% reduction in the carbon intensity of its Corporate 

Bond Purchase Scheme (CBPS) portfolio by 2025, and net zero by 2050; further, the 

CBPS will tilt towards firms with stronger climate performance within their sectors. 

Investors have also expressed concerns over firms’ exposure to higher carbon emission 

risk by demanding a higher return (Bolton and Kacperczyk, 2021; Wen et al., 2020).  

 

However, in practice, the evidence is mixed as neither banks nor investors have been 

found to fully incorporate climate issues into their decision-makings (Larcker and Watts, 

2020; Li and Pan, 2022; Monasterolo and De Angelis, 2020). Hence, this has made 

funding one of the major obstacles that constrains the electric utility sector’s transition 

from fossil fuels to renewables. Consequently, firms may need to continually adjust 

their funding models to possible financing channels, which can directly affect their 

capital structures. According to Kraus and Litzenberger (1973), the trade-off theory 

suggests that if a firm wants to maximise its value, it needs to find the right mix of debt 

and equity finance to minimise the cost of capital. As both the choice of different types 
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of finance and firms’ transition to cleaner energy are heavily affected by management’s 

decisions, exploring the relationship between the two can yield interesting and valuable 

insights.  

 

This study investigates the following questions: First, do changes of the renewable 

energy and fossil fuels in the energy structure affect the capital structure of electric 

utility firms? Second, are the impacts of different types of renewable energy on firm’s 

capital structure consistent? Third, as firms’ operation may be affected by both external 

(e.g. government regulations towards emission reduction, loan requirements of 

financial institutions, and public pressure) and internal factors (e.g. changes in 

corporate strategy), how and at what speed does firms’ capital structure adjust to reflect 

these changes? Lastly, can existing capital structure theories explain the capital 

structure of the electric utility sector?  

 

To answer these questions, this study employs data of 42 listed US electric utility 

companies from 2010 to 2020. We use the machine learning approach to model the 

relationship between the energy structure transition and capital structure. Compared 

with the linear models employed by most studies, the machine learning method is more 

suitable for capturing the nonlinear relationships between independent and dependent 

variables of capital structure (Amini et al., 2021; Graham and Leary, 2011). It can also 

generate more reliable estimations for relatively small samples (Mountrakis et al., 2011). 

As the capital structure can be affected by various country, industrial, and 

macroeconomic factors (Akhtar, 2005; Chang et al., 2014; Frank and Goyal, 2009; 

Öztekin, 2015; Rajan and Zingales, 1995), focusing on the capital structure of a 

particular industry is more appropriate for greater precision and accuracy. With 42 

publicly listed firms in the electricity sector, to our knowledge, only the US has the 

most comprehensive disclosures on energy data. That is one of the main reasons why 

we focus on US firms.  
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We construct two datasets of independent variables (often called as input variables in 

machine learning). The first dataset (hereafter, Dataset 1) consists of several firm-level 

accounting and financial variables (such as firm size, growth opportunities, and 

profitability) which are widely recognised as determinants of capital structure, while 

the second dataset (hereafter, Dataset 2) includes energy structure variables in addition 

to variables in Dataset 1. The out-of-sample R-squared (hereafter, 𝑅𝑜𝑠
2 ) and root mean 

squared error (RMSE) are compared to assess whether the inclusion of the energy 

structure transition can improve the prediction accuracy of the capital structure. For 

robustness, three machine learning methods, Support Vector Regression (SVR), 

Artificial Neural Network (ANN), and Random Forest (RF), are used to verify the 

tested results. The results of all three methods consistently indicate that 𝑅𝑜𝑠
2  of Dataset 

2 are significantly higher than that of Dataset 1. This shows a sign that the energy 

structure transition may affect the capital structure of firms in the electric utility sector. 

Then Taylor expansion method is conducted to confirm the influential variables in the 

energy structure.  

 

This study’s contributions are five-fold. First, this study contributes to the broader 

literature examining the determinants of the capital structure (Akhtar, 2005; Chang et 

al., 2014; Frank and Goyal, 2009; Öztekin, 2015; Rajan and Zingales, 1995). We show 

that besides traditional accounting and financial variables, energy variables, such as 

renewable energy, can also affect the capital structure. This is consistent with prior 

findings that the environmental performance of firms does impact their capital structure 

(Ginglinger and Moreau, 2019; Nguyen and Phan, 2020; Sharfman and Fernando, 

2008).  

 

Second, this study uses energy structure, rather than the conventional carbon emission 

data or published environmental performance index to reflect the cleanness of firms’ 

operation (Nguyen and Phan, 2020; Sharfman and Fernando, 2008). To the best of our 

knowledge, this is the very first study to do so; this is considered to be a more precise 
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measurement of firms’ environmental performance. The newly constructed energy 

structure data are hand collected from the power generation data and include all 

different types of energy sources used by electric utilities. It captures the dynamic 

variation of fossil fuels and renewable energy in firms’ energy structure. A higher 

percentage of renewable energy tends to be associated with less carbon emission, and 

hence, better environment performance. Although the energy structure and carbon 

emission data can be seen as two sides of a coin in measuring firms’ environmental 

performance, the former is considered to be more accurate and objective as some 

emissions data are hard to capture and are not reported by all companies (Bolton and 

Kacperczyk, 2021). 

 

Third, by measuring the importance of each variable, this study reveals that renewable 

variables are playing a more significant role than traditional fossil fuels in determining 

the capital structure of electric utility firms. Moreover, by testing the influencing 

directions of solar and wind energy, this study reveals that they have opposing impacts 

on leverage. Solar energy positively affects leverage, whereas increased wind energy 

lowers firms’ debt level. Thus, from the perspective of the debt market, solar investment 

tends to be less risky than wind investments. Therefore, this study contributes to the 

literature examining the investment risks and costs of renewable energy (Egli et al., 

2018; Feldman and Margolis, 2019; Shrimali, 2021).  

 

Fourth, this study confirms that the leverage adjustment speed of electric utility firms 

is in line with the dynamic trade-off theory (Fischer et al., 1989; Strebulaev, 2007); and 

this happens at a much faster speed. That is, a target capital structure does exist, and 

firms may take time to adjust back to the target level when they observe a deviation. 

Moreover, the results of the prediction model of electric utility’s capital structure 

become more accurate when we consider the energy structure. This allows the more 

reliable estimation of the speed of leverage adjustment. The use of machine learning 

methods further improves the accuracy in estimating the target leverage level when 
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compared with the “downward estimation” normally obtained by the conventional 

econometric methods (Amini et al., 2021). Thus, this finding also contributes to the 

literature on leverage adjustment speed (Alti, 2006; Amini et al., 2021; Huang and Ritter, 

2009). 

 

Finally, this study adopts a novel research method, the machine learning approach, to 

capture the non-linear relationship between the determinants of capital structure. This 

allows for a more accurate estimation of the partial nonlinear relationship between the 

variables as well as the speed of adjustment to the target leverage level. Our work also 

adds an empirical case on the application of machine learning in financial problems 

(Bianchi et al., 2021; Gu et al., 2020; Henrique et al., 2018; Yao et al., 2015). We further 

use the Taylor expansion method to measure the marginal contribution of each variable 

in terms of their respective change and ranking. This provides additional examples on 

identifying the relative importance of each variable after obtaining predictions or 

classifications based on the machine learning approach (Petridis et al., 2022; Wang et 

al., 2020; Yao et al., 2015; Zhang et al., 2021). 

 

The remainder of this chapter is organised as the following. Section 3.2 undertakes the 

literature review and develops the research hypotheses. Section 3.3 introduces the 

methodology. Section 3.4 explains the data source and defines the variables. Section 

3.5 discusses the empirical results. Finally, Section 3.6 presents the conclusions of this 

study along with some useful policy implications.  

 

3.2. Literature Review  

 

3.2.1. Capital Structure Theorems  

 

The theory of modern capital structure has been set up by the famous study of 

Modigliani and Miller (1958). It states that in a perfect and frictionless capital market, 
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the capital structure is irrelevant to firm value or cost of capital because no benefit can 

be gained from switching between equity and debt in a perfect market. However, in 

practice, the capital structure matters. In general, three theorems are widely quoted to 

offer empirical explanations of capital structure decisions of firms when various 

assumptions are relaxed. 

 

According to trade-off theory, firms can achieve an optimal capital structure by finding 

the right balance between debt and equity finance. This can be further illustrated by two 

versions: static and dynamic trade-off theories. The former suggests that firms may 

adjust the debt level according to the benefit of tax shield and cost of financial distress 

to achieve the optimal capital structure and maximise firms’ value (Kraus and 

Litzenberger, 1973). Consequently, any deviation should be adjusted instantaneously to 

restore the capital structure to the optimal level (Myers, 1984). However, such 

continuous adjustments can be extremely time consuming and expensive in practice 

(Myers, 1984). Instead, a debt ratio range can be a more appropriate target for firms; 

the leverage will be adjusted back to its target only when the deviation costs exceed the 

adjustment costs (Fischer et al., 1989; Strebulaev, 2007). This is the dynamic trade-off 

theory. Regarding adjustment speed, while some studies find that firms tend to move 

back towards the target debt ratios at a slower rate (Kayhan and Titman, 2007), others 

argue that this adjustment rate can be even exceed 30% annually (Flannery and Rangan, 

2006). Such difference may be caused by the different assumptions about adjustment 

costs (Ai et al., 2021). Furthermore, the chosen method for modelling the target 

estimation also significantly impacts the speed of adjustment. Specifically, the target 

leverage predicted by machine learning model is more precise than that of linear models, 

which results in 10–33% faster speed of leverage adjustment (Amini et al., 2021). 

 

Yet, the trade-off theory has been criticised for its inability to empirically reflect the 

actual capital structure choices made by firms (Myers, 2001). In particular, as benefits 

of tax savings are large and certain, while the risks of bankruptcy are rare and 



43 

 

unquantifiable, rational firms should rely mainly on debt in their capital structure 

(Miller, 1977). For instance, highly profitable firms with substantial taxable income to 

shield should be more motivated to use increased debt finance. However, a different 

picture is observed in practice: many established, profitable firms with excellent credit 

ratings have low debt ratios, such as Microsoft and major pharmaceutical companies 

(Myers, 2001). Therefore, questions have been raised about the relationship between 

profitability of firms and leverage level (Fama and French, 2002). Some have explained 

this from the model design perspective. Still, the trade-off theory remains a dominant 

theory in explaining corporate capital structure decisions in academia (Ai et al., 2021).  

 

The second theory is the pecking order theory, which emphasises the role played by 

cost of capital and information asymmetry in firms’ financing choices (Myers, 2001; 

Myers and Majluf, 1984). Firms tend to rely first on internal accruals and use equity 

finance as the last resort. Accordingly, there is no “optimal capital structure”. The 

pecking order theory is particularly useful to explain the negative relationship between 

firms’ profitability and leverage level as firms should have more internally generated 

earnings to meet their funding gap (Shyam-Sunder and Myers, 1999). However, Fama 

and French’s (2002) empirical work pointed out that the least-levered firms tend to 

make the largest net new issues of shares, while the small, fast-growing firms are more 

likely to have large equity. This is contrary to the “order” suggested by the theory. With 

the emergence of the increased number of small and unprofitable listed firms in the US 

over the 1990s, the pecking order theory has lost its popularity. This is mainly because 

these small firms do not behave according to the order suggested by the theory (Frank 

and Goyal, 2003).  

 

Unlike the former two theories which are built on the costs of different types of finance, 

market timing theory suggests that the capital structure decision is simply the 

cumulative outcome of attempts to time the equity market (Baker and Wurgler, 2002). 

Focusing on the market-to-book ratio, Baker and Wurgler (2002) found that firm’s 
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leverage is strongly negatively related to the historical market valuations. Specifically, 

low-leverage (high-leverage) firms raise funds when their valuations were high (low). 

The impact of market valuation on the capital structure may persist for a long period, 

such as at least a decade. Consequently, there is no optimal capital structure again. 

Using the cost of equity to capture the time-varying characteristics of market conditions, 

Huang and Ritter (2009) verified the market timing theory. The authors further noted 

that when the cost of equity capital is low, publicly traded US firms are more likely to 

use equity to finance a relatively large funding gap; such a decision may create lasting 

impact on the firms’ capital structure. On average, the half-life of firms to adjust their 

leverage level is 3.7 years. Meanwhile, some argue that the impact of market timing on 

leverage is short-lived, such as at most two years (Alti, 2006). It is the cross-sectional 

differences rather than the market timing which can explain the negative relationship 

between the market-to-book ratio and leverage (Hovakimian, 2006; Mahajan and 

Tartaroglu, 2008).  

 

In summary, the core difference between different capital structure theories lies in the 

assumption of a target leverage level. The pecking order and market timing theories 

argue against the existence of an optimal capital structure and suggest that the 

adjustment speed of leverage should be zero.2 In contrast, the static trade-off theory 

suggests that a target leverage exists; when a deviation happens, firms instantly adjust 

towards it. Therefore, the expected adjustment speed should be close to one. Next, 

considering the cost of adjustment, the dynamic trade-off theory concludes that 

leverage will not adjust immediately, resulting in an adjustment speed ranging between 

zero and one (Amini et al., 2021). However, one can rarely observe the target leverage 

ratio directly in practice. This shows the need to comprehensively investigate the key 

determinants of leverage.   

 

 
2 0 and 1 are used to measure the speed of leverage adjustment. 0 means that firms will not adjust their 

leverage when a change incurs, while 1 means that firms will instantly adjust their leverage when a 

deviation happens.    
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3.2.2. Determinants of Capital Structure  

 

Through investigating the determinants of capital structure, a lot of empirical studies 

have been done to examine the validity of these capital structure theories. Rajan and 

Zingales (1995) showed that among public listed firms of G7 countries, tangibility, 

market-to-book ratio, firm size, and profitability are key determinants of the capital 

structure. Akhtar (2005) observed similar results for Australian firms. Further, the 

domestic and multinational firms can differ in their capital structure decisions. A higher  

value of collateral is associated with higher leverage for domestic firms, while 

multinationals tend to pay more attention to bankruptcy costs and the level of 

geographical diversifications. Later, using a sample of US listed firms, Frank and Goyal 

(2009) identified two additional factors which can affect firms’ capital structure 

decisions: the median industry leverage and expected inflation. Öztekin (2015) 

confirmed this in a comparative study of firms from 37 countries. Meanwhile, firms 

from developing countries can also be affected by other factors, including, asset growth, 

state control, and the largest shareholding (Chang et al., 2014). More recently, Amini et 

al. (2021) pioneered the study of employing machine learning models to examine the 

capital structure of listed firms in the US. Analysing a large sample from 1972 to 2018, 

the authors' best performing model selected the market-to-book ratio, industry median 

leverage, cash and equivalents, Z-Score, profitability, stock returns, and firm size as 

key predictors of market leverage. 

 

Over the past decade, with increased environmental awareness, a growing number of 

studies have examined whether environmental concerns are factored in firms’ capital 

structure decisions. The earlier work of Sharfman and Fernando (2008) noted that firms 

benefit from enhanced environmental risk management through a shift from equity to 

debt financing due to decreased firm risk perceived by the market. To tackle climate 

change, two influential environmental conventions, the Paris Agreement and Kyoto 

Protocol, have been adopted by major economies across the world and can significantly 
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impact firms financing decisions. Firms facing higher climate risks, like carbon-

intensive firms, tend to demand less debt finance compared with their cleaner 

counterparts (Ginglinger and Moreau, 2019; Nguyen and Phan, 2020). This reduced 

leverage is caused by both demand (less debt is requested by heavy polluters) and 

supply side reasons (bankers and bondholders increase the interest rate charged to firm 

with high climate risks) (Ginglinger and Moreau, 2019). Chang et al. (2021) found 

similar results for firms with greater environmental liabilities, noting that bank loans 

tend to account for a smaller percentage in these firms’ total loan portfolio as banks are 

more willing to invest in green innovations. 

 

Thus, with the increasing attention on environmental issues, environmental factors are 

likely to become an important determinant of capital structure (Ginglinger and Moreau, 

2019; Nguyen and Phan, 2020; Sharfman and Fernando, 2008). The omission or 

ignorance of important factors may lead to noisy target estimations and the violations 

to existing capital structure theories, as suggested by Amini et al. (2021). Therefore, we 

need a thorough understanding of the role played by environmental factors, proxied by 

the energy structure here, in determining the capital structure of electric utility firms.  

 

3.2.3. Energy Structure, Carbon Emission, and Capital Structure 

 

Energy structure often refers to as the energy generation or consumption proportions of 

various energy types. Globally, the energy structure is being gradually transformed 

from one dominated by fossil fuels to a renewable energy supported system with the 

aim of fighting against climate change (Li et al., 2021; Matsumoto, 2015). A cleaner 

energy structure with more renewables can effectively reduce carbon emissions (Li et 

al., 2021; Matsumoto, 2015; Yu et al., 2018). As the deployment of different energy 

resources may lead to different funding needs for the business, the energy structure 

adopted by firms may directly affect their capital structure.  
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Some studies have explored the relationship between carbon emission and capital 

structures (Nguyen and Phan, 2020; Shu et al., 2023). As firms with lower emissions 

generally deliver better environmental performance and have low compliance costs, 

they are preferred by the financial institutions. Attracted by the low interest offered, 

such companies are more likely to have higher leverage (Chava, 2014; Sharfman and 

Fernando, 2008). However, during the green transition process, firms may also face 

increased uncertainties due to increased R&D expenses, and additional clean and/or 

carbon trading fees (Geddes et al., 2018; Nguyen and Phan, 2020; Ni et al., 2022). This 

can increase the financial risks faced by firms, and hence, reduce their borrowing 

capacities (Shu et al., 2023; Yang et al., 2022). Therefore, the relationship between 

carbon emissions and capital structure may vary during different periods and 

development stages. This dynamic relationship can be better explained by the energy 

structure transition that drives carbon emission alterations. The cost of carbon emission 

reduction can be effectively reflected by the energy structure transition cost, which 

includes investments in renewable energy and carbon compliance cost related to the 

burning of fossil fuels. This cost is closely linked to the company’s capital structure and 

can be observed through variations in the production of different energy types.  

 

Firms may choose different energy types according to their respective costs, availability, 

stability, and cleanness. While the energy structure transition is a global social issue, 

for firms, it is more about an economic challenge as substantial funding needs to be 

allocated to effectively and efficiently achieve emission reduction targets (Donovan, 

2015). As a capital-intensive industry, the development of renewable projects requires 

large capital inputs (Egli, 2020; Geddes et al., 2018). For instance, achieving the target 

of 50% of the global energy generation from renewables by 2030 has a projected annual 

funding gap of $167 billion (Kim, 2015). However, financing for renewable projects 

has always been challenging given the various risks involved, including complex 

infrastructure, inadequate technological expertise, and the absence of credit records for 

nascent projects (Geddes et al., 2018; Polzin et al., 2015). 
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Although governments have provided various subsidies and soft loans, such as tariffs, 

grants, and tax incentives, to reduce the financing burden of firms, a large funding gap 

remains (Curtin et al., 2017; Ng and Tao, 2016). Consequently, bank credit is crucial. 

For example, from 2013 to 2019, over 100 billion euros in syndicated loans were 

provided by banks to support European renewable energy projects (Moody’s Investor 

Service, 2019). Some state investment banks even offered guidance and assistance to 

the financial sector in form of educational programmes. This has effectively reduced 

the information gap between firms and banks, making it easier for firms to get loans in 

the future (Geddes et al., 2018). Apart from banks, innovative financial instruments, 

such as green bonds, have also emerged as effective means to support the development 

of renewable projects (Ng and Tao, 2016). Moreover, for firms investing into renewable 

projects, debt financing offers lower costs compared to equity and avoids dilution of 

ownership; hence, firms prefer debt financing (Geddes et al., 2018; Umamaheswaran 

and Rajiv, 2015). Thus, when firms transition towards renewables, they may need more 

debt finance, which increase their gearing.  

 

Moreover, after years of policy and economic support, renewable projects have 

witnessed a continuous decline in risks (costs); this downward trend is expected to 

continue (Egli, 2020; In et al., 2022; Shrimali, 2021). Meanwhile, fossil fuels have 

experienced relatively stable or even increasing costs due to higher costs of mining and 

transportation, increased costs in pollution management, and additional tax and 

compliance costs levied (In et al., 2022; Shrimali, 2021). Consequently, the investment 

risk of fossil fuels now exceeds that of renewable energy (Shrimali, 2021). Therefore, 

risk-averse capital may naturally divert away from firms relying heavily on fossil fuels. 

 

Clearly, the changes in the consumption of both renewable energy and fossil fuels will 

reshape the energy structure of electric utility firms. Consequently, this transformation 

will lead to varying environmental performances, along with diverse financing costs 
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and risks, which are expected to be reflected in capital structure. However, for the 

electric utility firms who simultaneously deploy fossil and renewable projects, 

determining the key factors influencing their energy structure becomes crucial. Is it 

driven by renewable energy, fossil fuels, or a combination of both? Since both elements 

could potentially alter the environmental performance of these firms, we present the 

following hypotheses: 

 

Hypothesis I: Renewable energy can significantly affect the capital structure of electric 

utility firms. 

 

Hypothesis II: Fossil fuels can significantly affect the capital structure of electric utility firms. 

 

Moreover, different types of renewables may also have diverse impacts on firms’ capital 

structure decisions. For instance, solar and wind energy exhibit different level of 

investment risks and costs (Egli et al., 2018; Feldman and Margolis, 2019; Shrimali, 

2021). Compared with wind turbines, technological advancements in solar energy have 

reduced the global weighted average levelised cost of electricity (LCOE) of solar 

photovoltaic (PV) by a much larger percentage between 2010 and 2020 (IRENA, 2021). 

Meanwhile, wind energy generally exhibits a higher risk of resource volatility 

compared to solar energy (Shrimali, 2021). Consequently, the choice of different 

renewables may generate different impact on firms’ capital structure. Therefore, we 

propose our third hypothesis as follows:  

 

Hypothesis III: Different types of renewable energies may have diverse impacts on 

electric utility firms’ capital structure.  

 

3.3. Methodology 

 

According to previous studies, nonlinear relations have been identified between the 
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leverage and its common determinants (Amini et al., 2021; Graham and Leary, 2011). 

To gain a preliminary understanding of the relations, we draw the scatter plots for the 

book leverage and its potential accounting and energy determinants (Figure 3.2, the 

data has been normalised). The plots depict the nonlinear relationship and this is 

consistent with the literature. 

 

While the conventional regression method is limited to handling linear problems and a 

nonlinear pattern has been detected, it is reasonable to conduct the machine learning 

algorithms that can recognise both linear and nonlinear patterns automatically when the 

nonlinear relationship cannot be excluded. To provide more accurate predictions by 

capturing the potential non-linear relationship between the determinants and capital 

structure, we use machine learning to deal with the proposed problems. Machine 

learning (Zhou, 2021) is a subfield of artificial intelligence that focuses on utilising data 

and algorithms to imitate human learning, teaching computers to automatically learn 

from experience. Past data forms the foundation of machine learning, where the 

algorithms are trained on historical datasets to automatically learn and make predictions 

or decisions on new, unseen data. Various machine learning algorithms enable 

computers to analyse and interpret complex data, identify patterns, and adaptively 

improve their performance as the number of training samples increases.  

 

Machine learning techniques can be primarily categorised into supervised learning and 

unsupervised learning. Supervised learning involves training models on known input 

and output data to generate reasonable predictions for new data. Classification (for 

discrete responses) and regression (for continuous responses) are the two main 

techniques in supervised learning. Meanwhile, unsupervised learning aims to discover 

hidden patterns or structures from unlabelled data. Clustering is the most common 

unsupervised learning technique. The three machine learning approaches used in this 

study, SVR, ANN, and RF, are all supervised learning techniques. 
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Figure 3.2. Book leverage and potential determinants 

Note: The description of selected variables is given in Table 3.1. 
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The SVR model is a variation of the Support Vector Machine (SVM). First proposed in 

the 1990s, the SVM is a non-parametric learning technique for solving classification 

problems (Vapnik, 1998, 1995). As a supervised learning method, the basic concept of 

SVM is finding a hyperplane to separate training data into two categories according to 

their different features. Two separating paralleled hyperplanes are set for the nearest 

sample points, which are the support vectors, and the aim of SVM is to maximise the 

distance from the support vectors to the hyperplane. In this way, the classification 

problem is converted to a convex quadratic optimisation problem which can be solved 

by the Lagrangian function. Furthermore, the SVM is also capable of mapping the input 

data onto a high-dimensional feature space when they are not linearly separable in the 

original low-dimensional space.  

 

Moreover, the risk minimisation method of SVM makes it robust with small sample 

size. Different from other machine learning methods and the linear regression approach, 

which aim to minimise the empirical risk, the principle of SVM is based on structural 

risk minimisation. 3 Empirical risk represents the average loss of sample points, while 

for the population, this average loss becomes the true risk. The true risk encompasses 

both empirical risk and the confidence interval, which serves as an indicator of the 

model’s complexity. According to the function of confidence interval, it decreases as 

the sample size grows and increases conversely. Based on the law of large numbers, the 

empirical risk converges toward the true risk as the sample size goes to infinity 

(Luxburg & Schölkopf, 2011; Vapnik, 1991). On the contrary, with a limited sample 

size, especially a relatively small one, the empirical risk may deviate more from the 

true risk. This situation implies that the constructed model could possess weaker 

generalization abilities, rendering it less reliable. However, SVM addresses this by 

 
3 Empirical and structural risks are two important concepts in machine learning used to measure the 

model's fitting and generalisation abilities, respectively. A lower empirical risk indicates better fitting of 

the model to the training data, while structural risk considers the potential discrepancy between the 

training data and true distribution of the data. Therefore, reducing structural risk helps improve the 

model's generalisation ability (Zhang, 2011). 
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minimizing structural risk, which aims to minimising both empirical risk and the 

confidence interval at the same time (Vapnik, 1991). Consequently, SVM exhibits 

stronger performance with small sample sizes (Mountrakis et al., 2011). It is also less 

likely to have the problem of overfitting and has a stronger generalisation ability (Yu et 

al., 2020). 

 

SVR is constructed based on the same principles of SVM but changes the object of the 

optimisation problem. Since the sample in this study exhibits signs of nonlinearity and 

is relatively small, SVR is a better choice than the conventional linear regression 

method. It can recognise both linear and nonlinear relationship between the input and 

output variables, and it is also robustness with small sample size. Unlike the SVM 

which tries to maximise the margin between two paralleled hyperplanes to maximise 

the distance from the nearest sample points, the two paralleled hyperplanes of SVR are 

set to the farthest sample points. This changes the optimisation problem of SVR to 

maximise the margin so that it can minimise the distance from the farthest sample points. 

It can be explained by the following algorithm. 

 

Suppose the training samples are as follow: 

 

𝑆 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1,2, … , 𝑛}                              (1) 

 

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) ∈ 𝑅𝑚，𝑦𝑖 ∈ 𝑌 = 𝑅. 𝑥𝑖 are the input data, which include 

the accounting and energy structure variables, such as firm size, profitability, wind, 

solar, etc. 𝑦𝑖 is the leverage, which is the prediction target of the function.  

 

In the general form of SVR, the prediction function is: 

 

𝑓(𝑥) = 𝜔𝑇𝑥 + 𝑏                                          (2) 
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where 𝜔  is a weight vector and 𝑏  is a constant. 𝜔  and 𝑏  determine the direction and 

position of the hyperplane, respectively, which aims to be close to 𝑦𝑖 for each input data. 

They can be calculated by minimising the following regularised risk function: 

 

𝑅(𝑓) =
1

2
‖𝜔‖2 + 𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑓(𝑥𝑖))𝑛

𝑖=1                                     (3) 

 

Where 𝐶 is the tolerance value, which determines the width of the margin.  

 

𝐿𝜀(𝑦𝑖 − 𝑓(𝑥𝑖)) = {
0,                          |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜀 

   |𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜀,   otherwise                 
            (4) 

 

In Eq. (4), 𝐿𝜀(𝑦𝑖 − 𝑓(𝑥𝑖))  is a loss function. When 𝑦𝑖  locates within the 𝜀  tube 

(insensitive tube), it accounts for an accurate prediction of the training point so the loss 

equals zero. Then, the optimisation problem can be transformed as the following:  

 

𝑚𝑖𝑛        
1

2
‖𝜔‖2                                                                       (5) 

𝑠. 𝑡.          |𝑦𝑖 − (𝜔𝑇𝑥𝑖 + 𝑏)| ≤ 𝜀,      𝑖 = 1,2, … , 𝑛                                           (6) 

 

Slack variables (𝜉𝑖 , 𝜉𝑖
∗) are introduced to deal with otherwise infeasible constraints of 

the optimisaion problem. The values of 𝜉𝑖  and 𝜉𝑖
∗  define the positive and negative 

deviations, respectively, out of the 𝜀 tube. The optimisation function is reformulated as 

follows:  

 

𝑚𝑖𝑛        
1

2
‖𝜔‖2  + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                                                    (7) 

𝑠. 𝑡.          (𝜔𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 ,      𝑖 = 1,2, … , 𝑛                     (8) 

𝑦𝑖 − (𝜔𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖
∗,      𝑖 = 1,2, … , 𝑛                     (9) 

𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0,  𝑖 = 1,2, … , 𝑛                                               (10)  

 

Regularisation parameter 𝐶 > 0 is a constant. It determines the trade-off between the 
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training error and model robustness. The larger it is, the less fault tolerance it has. 

 

The following Lagrangian function is constructed to solve the constraint optimisation 

problem: 

 

𝐿 =
1

2
‖𝜔‖2  + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 + ∑ 𝛼𝑖((𝜔𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 − 𝜀 − 𝜉𝑖)𝑛

𝑖=1 +

∑ 𝛼𝑖
∗(𝑦𝑖 − (𝜔𝑇𝑥𝑖 + 𝑏) − 𝜀 − 𝜉𝑖

∗𝑛
𝑖=1 ) − ∑ 𝜇𝑖𝜉𝑖

𝑛
𝑖=1 − ∑ 𝜇𝑖

∗𝜉𝑖
∗𝑛

𝑖=1                                (11) 

 

where 𝛼𝑖 ≥ 0, 𝛼𝑖
∗ ≥ 0, 𝜇𝑖 ≥ 0, and 𝜇𝑖

∗ ≥ 0 are the Lagrange multipliers.  

 

Then, the dual problem can be derived as follows: 

 

𝑚𝑖𝑛  
1

2
 ∑ ∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑗
∗ − 𝛼𝑗)𝑥𝑖

𝑇𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑗 + 𝜀 ∑ (𝛼𝑖

∗ + 𝛼𝑖)
𝑛
𝑖=1 − ∑ 𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)
𝑛
𝑖=1   (12) 

𝑠. 𝑡.  ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0𝑛

𝑖=1 ,       𝑖 = 1,2, … , 𝑛                                                                                      (13) 

         0 ≤ 𝛼𝑖 ≤ 𝐶,       𝑖 = 1,2, … , 𝑛                                                                                                       (14) 

 0 ≤ 𝛼𝑖
∗ ≤ 𝐶,       𝑖 = 1,2, … , 𝑛                                                                                                       (15) 

 

The solution of the dual problem provides the value of the optimal solution to the 

original problem.  

 

For nonlinear problems, SVR introduces kernel function 𝜅(𝑥𝑖, 𝑥𝑗) to map all training 

points from the original low-dimensional space to a high-dimensional feature space. It 

can be expressed as follows: 

 

𝜅(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)                                                                    (16) 

 

where 𝑥𝑖   and 𝑥𝑗   are training points of the sample, and 𝜙(𝑥)  is the map function. The 

value of kernel function equals the inner production of two vectors in the feature space. 
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Different kernel functions have been verified as useful, but there are no commonly 

agreed criteria for choosing a proper kernel function. Following prior research (Yao et 

al., 2015; Yu et al., 2020), this study also adopts the common radial basis function (RBF) 

as the kernel function as follows:    

 

𝜅(𝑥𝑖, 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)                               (17) 

 

where 𝜎 determines the width of the RBF. 𝛾 is the gamma term. The larger it is, the 

smaller the width it has, and the more complex the model becomes, leading to less 

generalisation ability. 

 

When incorporating the kernel function, the SVR can then be written as:   

 

𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)

𝑛
𝑖=1 𝑥𝑖

𝑇𝑥 + 𝑏 = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝑛

𝑖=1 𝜙(𝑥𝑖)𝑇𝜙(𝑥) + 𝑏 = ∑ (𝛼𝑖
∗ −𝑛

𝑖=1

𝛼𝑖) 𝜅(𝑥𝑖, 𝑥) + 𝑏                                                                                                                                              (18) 

 

In SVR, parameters 𝜀, 𝐶, and 𝛾 should be deliberately set as they determine the overall 

performance of the model. Particle swarm optimisation (PSO), a popular optimisation 

technique, is conducted to choose the optimal values of these parameters that can best 

balance the trade-off between the fitting and generalisation of the model (Sudheer et al., 

2014). 

 

As one of the most widely adopted kind of machine learning techniques, SVR has been 

widely tested as a state-of-the-art predicting technology in various disciplines, such as 

the electric load forecasting (Luo et al., 2023), gas consumption forecasting (Beyca et 

al., 2019), electricity price forecasting (Mirakyan et al., 2017), stock price prediction 

(Henrique et al., 2018), and loss given default prediction (Yao et al., 2015). It has proved 

to have superior prediction ability compared with traditional linear econometric 
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methodologies (Loterman et al., 2012; Plakandaras et al., 2015; Yao et al., 2015) and 

other machine learning techniques, such as ANN (Beyca et al., 2019). One possible 

explanation is that the regression curve obtained by the SVR is mostly defined by the 

underlying support vectors, and thus, is less affected by the outliers and noise (Luo et 

al., 2023). 

 

Next, ANN and RF are also frequently used while dealing with nonlinear problems. 

ANN were originally developed to simulate the functioning of biological neural 

networks in the human brain (Bishop, 1995; Goodfellow et al., 2016). A typical neural 

network consists of three parts: an input layer, an output layer, and one or more hidden 

layers in between. They use interconnected nodes, or neurons, to process information, 

and make classifications and predictions based on inputs. In empirical tests, the ANN 

can be further divided into feed-forward and feedback recall architectures. Their 

performance depends on factors such as the number of neurons and layers, learning 

algorithm, and transfer function. This study uses the most common learning algorithm 

of ANN: the backpropagation algorithm (Wang and Ramsay, 1998). It is constructed 

based on the concept of minimising the sum of squared errors through backward 

propagation. To accomplish this, the algorithm calculates the gradient of the error for 

each weight in the network and adjusts the weights accordingly in a direction that 

reduces the error. By repeating this process iteratively, the algorithm continues to refine 

the network’s weights until a satisfactory level of accuracy is achieved.  

 

Meanwhile, RF is an ensemble machine learning method which builds multiple 

decision trees using bootstrap (Breiman, 2001). The model can be trained effectively 

by generating hundreds of thousands of decision trees. The algorithm works by 

randomly selecting a subset of the input features and bootstrapping a sample to grow 

each decision tree on this sample. This process is repeated multiple times, resulting in 

an ensemble of decision trees which generate predictions on their own. When making 

a final prediction, the new data is passed through each tree in the ensemble, and the 

https://www.sciencedirect.com/topics/engineering/backpropagation-algorithm
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output is the average estimate over all trees in the ensemble. Based on the bootstrap 

method, RF is less prone to overfitting compared to other regression methods and can 

also provide insights into the relative importance of the input features (Patel et al., 2015).  

 

3.4. Data and Variable Construction 

 

3.4.1. Data Source 

 

This study chose the US electric utility industry as the sample for the following reasons. 

The country has the largest number of electric utility firms in the world and has 

successfully implemented electricity market reform in general, resulting in a vibrant 

electricity market. Moreover, only the US has the most comprehensive disclosure of the 

energy data required in this research. The US also has one of the most well-developed 

capital markets, allowing firms to access a wide range of funding sources.  

 

The sample comprises an unbalanced panel data of 42 listed firms in the US electric 

utility industry over the period 2010–2020. Firm specific data were obtained from the 

Bloomberg. Originally, 276 firms were selected based on Bloomberg’s BICS 

classification of electric utilities and narrowing the country to the US. This number, 

however, includes both parent and subsidiary companies. After integrating subsidiary 

firms into parent companies and eliminating the non-listed firms, only 83 firms remain. 

This is consistent with the sample employed by Hughes (2000). As the focus of this 

study is the energy generation sector of electric utility firms, firms that specialise in the 

distribution and infrastructure were removed. Finally, 42 firms remained after 

eliminating firms with incomplete data. The accounting and financial data were 

obtained from Standard and Poor’s Compustat North America, while the energy data 

were extracted from the Global Power Plant Database and US Energy Information 

Administration (EIA). 
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The Global Power Plant Database is a comprehensive, open-source database of power 

plants around the world. Each power plant is geolocated and information related to its 

capacity, generation, ownership, and fuel type are disclosed. Here, we extracted plants 

in the US and manually matched them with electric utility firms in the sample. Two 

methods were used in the matching process. First, the corporate structure of each utility 

was extracted from Bloomberg and then matched with the owner of the plant to identify 

the power plants that belong to each electric utility firm.4 Second, we used information 

from Find Energy (2022), a professional website publishing the plant information of all 

US utilities. We then cross-checked data obtained from these two different channels to 

ensure consistency and accuracy.  

 

In addition, as the generation data covered in the Database only included the period 

2013–2019, we collected data from the EIA manually to extend the sample period to 

2010–2020. On the energy structure of the utility firms, we choose the power plant’s 

annual output, rather than the installed capacity as the former is considered a more 

accurate measurement for the utility’s current annual output generated by each energy 

type; for instance, many coal-fired power plants reduce their production over years and 

operate at levels well below the installed capacity. For a plant whose ownership was 

shared by two or more utilities, its production was proportionally allocated to each 

utility in cooperation. Thus, by using the actual annual output data of power plants, we 

constructed data of the output and proportion of different energy types of 42 US electric 

utility firms over the period from 2010 to 2020.  

 

 

 
4  A utility firm (say, A) may own several power plants of different energy types, such as coal-fired, 

hydroelectric, wind power plant, and so on. These power plants may either directly belong to Firm A or 

be owned by its subsidiary companies. In the Global Power Plant Database, the owner of a power plant 

is often a subsidiary firm, without indicating the parent utility firm it belongs to. To address this, we 

downloaded the cooperate structure of all 42 utility firms form Bloomberg and matched the related 

subsidiary firms back to their parent utility firms. 
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3.4.2. Variable Selection 

 

We used two datasets of independent (input) variables. The first comprised several firm-

level accounting and financial variables, including size (AT), growth opportunities 

(Tobin’s Q), profitability (EBIT/AT), tangibility (PPENT/AT), bankruptcy risk (Z-

score), and stock market conditions (Stock_return). The first four variables are widely 

accepted as firm level determinants of capital structure (Frank and Goyal, 2009; 

Ginglinger and Moreau, 2019; Nguyen and Phan, 2020). Meanwhile, machine learning 

methods have revealed the Z-score and stock return variables to be additional reliable 

determinants of capital structure (Amini et al., 2021). Table 3.1 describes the variables.  

 

Besides the financial and accounting variables, Dataset 2 also includes the energy 

variables which capture the energy structure of electric utility firms. By comparing the 

predictive power of two datasets, we can make a preliminary assessment of the role of 

energy variables in predicting the capital structure of electric utility firms. Unlike 

studies which often use the proportion of coal or renewables in the total consumption 

or generation as the proxy for energy structure (Ji and Zhang, 2019; Li et al., 2021), this 

study used the generation of each energy type of utility firms to capture changes in the 

energy structure. While the energy structure transition is mainly driven by the 

development of renewable energy, the changes in other energy sources, especially the 

reduced use of fossil fuels, also reshape the energy structure. Therefore, inclusion all 

the energy types of the electric utilities can provide a more comprehensive and accurate 

assessment of the actual energy structure. It also allows us to further analyse the 

independent importance of each energy source, particularly renewable energy.  

 

For the dependent (output) variables, we used four measures of financial leverage 

(Frank and Goyal, 2009; Nguyen and Phan, 2020): long term debts to the market value 

of total assets (LD/M), long term debts to the book value of total assets (LD/A), as they 

measure the long-term gearing level of firms, and total debts to the market value of total 
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assets (TD/M), total debts to the book value of total assets (TD/A), as they reflect the 

overall leverage level of firms. The use of different measurements for leverage is to 

ensure the robustness of the tested results; further, we included both long-term and total 

debt leverages to testify whether new Basel III regulations have affected the long-term 

debt financing for renewable energy.  

 

Table 3.1. Variable description 

Variable Description      

Accounting and financial variables (input variable) 

AT Total assets.  

EBIT/AT Ratio of earnings before interest and taxes to the total assets. 

PPENT/AT Ratio of net property, plant, and equipment to the total assets. 

Tobin’s Q 
Ratio of the sum of the year-end market capitalisation, and the difference between total 

assets and common/ordinary equity to total assets. (PRCC_F*CSHO+AT-CEQ)/AT 

Z_score 

Modified Altman Z-score which equals 3.3*EBIT/AT +1.0*Sales/ AT +1.4*Retained/ 

AT +1.2*WCAP/ AT, where EBIT is earnings before interest and taxes, Sales is total 

revenue, Retained is retained earnings, and WCAP is working capital which is the 

difference in total current assets and total current liabilities. 

Stock_returns Cumulative annual stock returns using monthly raw returns.  

Energy structure variables (input variable) 

Coal Annual generation of coal-based energy 

Gas Annual generation of gas-based energy 

Hydro Annual generation of hydroelectric power 

Nuclear Annual generation of nuclear energy 

Oil Annual generation of oil-based energy 

Solar Annual generation of solar energy 

Wind Annual generation of wind energy 

Capital structure variables (output variable) 

LD/M 

Ratio of long-term debts to the market value of assets, which equals the sum of the 

year-end market capitalisation, and the difference between book assets and 

common/ordinary equity 

TD/M 

Ratio of total liabilities to the market value of assets, which equals to the sum of the 

year-end market capitalisation, and the difference between book assets and 

common/ordinary equity 

LD/A Ratio of long-term debts to total assets 

TD/A Ratio of total liabilities to total assets 
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Table 3.2 lists the descriptive statistics of the selected variables. The mean of wind and 

solar is not only highly surpass the median but even exceeds the third quartile, 

indicating significant differences in wind and solar energy among the samples. This 

may be because the development of wind and solar energy is progressing rapidly, and 

there are substantial variations in the production of wind and solar energy among 

different companies. Furthermore, all the independent variables are not highly 

correlated, which is beneficial for machine learning in accurately identifying their 

relationships with the dependent variable. The correlation table is available upon 

request. 

 

Table 3.2. Descriptive statistics 

Variable N Mean 25th 

Percentile 
Median 

75th 

Percentile 

Standard 

Deviation 

Assets 427 32425.371  8053.372  25975.900  45530.000  30285.311  

EBIT/AT 427 0.051  0.044  0.050  0.059  0.015  

PPEN/AT 427 0.689  0.645  0.699  0.758  0.101  

Tobin’s Q 427 1.220  1.119  1.201  1.301  0.150  

Zscore 427 0.588  0.462  0.567  0.696  0.191  

Stock_return 427 0.120  0.025  0.129  0.228  0.157  

Coal 427 16972.469  2334.644  8311.292  26460.397  21108.005  

Gas 427 13695.616  669.027  4460.515  14746.834  22866.954  

Hydro 427 955.295  0.000  145.344  1094.059  1730.852  

Nuclear 427 15167.978  0.000  0.000  13904.351  30298.574  

Oil 427 495.585  0.000  0.359  14.174  1776.266  

Solar 427 370.352  0.000  0.000  123.117  1075.981  

Wind 427 2012.966  0.000  343.029  1560.854  5707.777  

LD/M 427 0.265  0.222  0.260  0.295  0.068  

TD/M 427 0.589  0.535  0.587  0.644  0.087  

LD/A 427 0.319  0.277  0.310  0.351  0.077  

TD/A 427 0.708  0.672  0.703  0.740  0.065  
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3.5. Empirical Analysis 

 

Next, we applied the machine learning models to investigate the following research 

questions: Do changes of the renewable energy and fossil fuels in the energy structure 

affect the capital structure of electric utility firms? Are the impacts of different types of 

renewable energies on firm’s capital structure consistent? How and at what speed does 

firms’ capital structure adjust? Can existing capital structure theories explain the capital 

structure of the electric utility sector?  

 

3.5.1. The Predictive Power of Energy Structure on Firms’ Capital Structure 

 

To investigate the role played by the energy structure, we employed the three machine 

learning methods to conduct the five-year rolling prediction on the four different 

leverages (Amini et al., 2021). Five rolling training and test sets are employed to obtain 

a reliable result. For instance, data from 2010 to 2015 were used as training set to predict 

the value of 2016, which is the test set, while the data from 2010 to 2016 were used to 

predict the 2017 value. This process was repeated to get an out-of-sample prediction 

over the period 2016 to 2020. Two sets of input variables were employed to forecast 

the leverage, allowing us to compare the predictivity of the two data sets. The 

performance of the different prediction models was assessed by the two criteria 𝑅𝑜𝑠
2  and 

RMSE, which are defined as follows: 

 

𝑅𝑜𝑠
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑁
𝑖=1

 

 

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1
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Where N is the number of observations in the out-of-sample subset. 𝑦𝑖 is the actual 

value. 𝑦̂𝑖 is the predicted value, and 𝑦̅𝑖 is the average value. The larger the 𝑅𝑜𝑠
2  and the 

smaller the RMSE, the better the performance of the model. Tables 3.3 and 3.4 report 

the results when the SVR is applied to all four different types of leverages. Results for 

the other two methods are in Appendix 1.  

 

Table 3.3. 𝑹𝒐𝒔
𝟐  of SVR for Datasets 1 and 2 

SVR 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.42  0.76  0.42  0.50  0.71  0.88  0.65  0.75  

2017 0.84  0.69  0.83  0.52  0.83  0.86  0.85  0.81  

2018 0.68  0.80  0.69  0.69  0.76  0.87  0.78  0.80  

2019 0.62  0.81  0.54  0.67  0.58  0.86  0.60  0.85  

2020 0.53  0.84  0.55  0.69  0.60  0.93  0.64  0.87  

 

Table 3.4. RMSE of SVR for Datasets 1 and 2 

SVR 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.06  0.05  0.07  0.05  0.05  0.03  0.05  0.04  

2017 0.03  0.05  0.03  0.05  0.03  0.03  0.03  0.03  

2018 0.04  0.04  0.05  0.04  0.04  0.03  0.04  0.03  

2019 0.04  0.03  0.05  0.04  0.04  0.03  0.05  0.03  

2020 0.04  0.03  0.05  0.04  0.04  0.02  0.05  0.03  

 

Clearly, the inclusion of energy structure variables can increase (decrease) the value of 𝑅𝑜𝑠
2  

(RMSE) in most cases; that is, it can help improve models’ predictive power for the capital 

structure significantly. According to EIA (2021, 2011), from 2010 to 2020, the percentage 

of renewables in the energy structure of the US electricity utility firms has increased from 

10% to 21%. The growing public awareness towards environmental protection and greater 

regulatory control have forced utility firms to shift their energy structure towards a more 

sustainable path, which may directly impact their capital structure. Therefore, in the next 

section, it will calculate the importance of each variable to confirm whether certain energy 

types have an influence on the capital structure of electric utilities.   

 

For a more detailed explanation and better visualisation, the results of 𝑅𝑜𝑠
2  are presented 

in Figures 3.3–3.6. The results for each measurement of leverage are presented 
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separately. In each figure, different colours are used to compare results of the three 

machine learning methods. The dotted and solid lines stand for the results of Datasets 

1 and 2, respectively.  

 

 

Figure 3.3. 𝑹𝒐𝒔
𝟐  of long-term debt to market assets 

 

 

Figure 3.4. 𝑹𝒐𝒔
𝟐  of total debt to market assets 
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Figure 3.5. 𝑹𝒐𝒔
𝟐  of long-term debt to book assets 

 

 

Figure 3.6. 𝑹𝒐𝒔
𝟐  of total debt to book assets 
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First, when energy variables are included, Dataset 2 tends to yield higher predictive 

accuracy than that of Dataset 1 in most cases. The average 𝑅𝑜𝑠
2  of all Dataset 1 models 

is 0.56. However, this value increases to 0.68 after including the energy variable in 

Dataset 2. Meanwhile, the solid lines for each method in all four figures (leverages) are 

usually above the dotted lines, although the difference between the two types of lines 

varies when different methods are applied.  

 

Second, on the prediction power of different machine learning methods, the 𝑅𝑜𝑠
2  of most 

models exceed 0.55 (the majority of lines in the figures are above the value of 0.55), 

which verifies the prediction reliability of the machine learning methods. Moreover, 

when the RF model is used to predict the leverage of TD/M based on Dataset 1, the 

value of 𝑅𝑜𝑠
2  is 0.50–0.71 (Figure 3.4). This is generally consistent with Amini et al.’s 

(2021) conclusions that the best performing model, RF, is capable of achieving a rolling 

prediction 𝑅𝑜𝑠
2  value ranging between 45.6% to 58.7% over the sample period. Among 

the three different machine learning methods, SVR has the best overall prediction 

performance with both good accuracy and stability for all four leverages (both solid and 

dotted blue lines are at the top of their respective counterparts in all four figures). The 

average 𝑅𝑜𝑠
2   of SVR models for Datasets 1 and 2 are 0.65 and 0.77 (Figure 3.3), 

respectively, compared with 0.44 and 0.61, respectively, for RF (Figure 3.4) and 0.60 

and 0.65, respectively, for ANN (Figure 3.5). This is in line with prior findings that 

SVR tends to have superior prediction ability when compared with RF and ANN (Baba 

et al., 2015; Beyca et al., 2019; İskenderoğlu et al., 2020). This may be because the 

algorithm of SVR has a stronger generalisation ability due to its structural risk 

minimisation target (Yu et al., 2020; Zhang, 2011). Furthermore, SVR is mostly defined 

by the underlying support vectors, mitigating the effect of outliers and noise (Luo et al., 

2023). Lastly, SVR is more robust at addressing smaller sample size (Mountrakis et al., 

2011), while ANN performs better with larger sample in general (Alwosheel et al., 

2018). Overall, SVR emerges as the most suitable prediction method for this study. 

Nevertheless, while RF does not exhibit the best prediction performance, it generates 
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the largest difference in 𝑅𝑜𝑠
2  between Datasets 1 and 2. This may be because the RF 

algorithm is sensitive in identifying the decisive variable for prediction (Archer and 

Kimes, 2008; Strobl et al., 2008). Therefore, it provides valuable evidence in 

identifying the important energy variables in explaining the leverages. 

 

Regarding the different leverage measurements, the differences in predictions between 

Datasets 1 and 2 appear to be more noticeable for LD/A and TD/A compared to LD/M 

and TD/M. In Figures 3.5 and 3.6, the solid and dotted lines of all three models show 

almost no overlap for LD/A and TD/A. This indicates that the potential impact of energy 

variables on book leverages (LD/A and TD/A) tends to be relatively stronger. This may 

be because the book-leverage is a better reflection of loans/debts borrowed for the 

development of renewables, while the market leverage is more of a forward-looking 

measurement (Frank and Goyal, 2009).  

 

Moreover, the estimated 𝑅𝑜𝑠
2  of TD/M and TD/A (Figures 3.4 and 3.6) are increasing 

over years, but no such trends are observed for LD/M and LD/A (Figures 3.3 and 3.5). 

This may be because one or more of the influential factors (i.e. input features) for TD/M 

and TD/A have become more important and relevant in recent years, resulting in a 

higher predictive accuracy of the model. The 𝑅𝑜𝑠
2 for both LD/M and LD/A experienced 

a decline after 2017; this is coincided with the timing of the announcement of the new 

Basel III (Basel III, 2017). One key objective of Basel III is to enhance banks’ liquidity 

and asset quality to withstand economic stress. However, such requirements may 

restrict banks’ long-term lending capacity, making the long-term funding for capital-

intensive renewable energy projects even more difficult (Ang et al., 2017; Ng and Tao, 

2016). Consequently, when it comes to the long-term or total leverages, renewables 

play diverse roles. 
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3.5.2. Factor Importance Analysis  

 

Next, we applied the factor importance analysis to further investigate each variable’s 

contribution to confirm the influential energy types for the capital structure. The Taylor 

expansion was used to measure the importance of each variable in determining the 

capital structure decision of firms (Hoffman and Frankel, 2001)5.  

 

Assume that the function deduced by the machine learning is: 

 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)                                    (19) 

 

When the function has a small increment at 𝑥0, the change can be written as:  

 

∆𝑦 = 𝑦𝑥0+∆𝑥 − 𝑦𝑥0
                                             (20) 

 

The change function (∆𝑦) can be expanded by the multivariable Taylor function as the 

sum of the terms related to the multi-order partial derivatives: 

 

∆𝑦 = [∑ ∆𝑥𝑖 ∙
𝜕

𝜕𝑥𝑖
] 𝑓(𝑥) +

1

2!
[∑ ∆𝑥𝑖 ∙

𝜕

𝜕𝑥𝑖
]

2

𝑓(𝑥) + ⋯ +
1

𝜅!
[∑ ∆𝑥𝑖 ∙

𝜕

𝜕𝑥𝑖
]

𝜅

𝑓(𝑥) +

1

(𝜅+1)!
[∑ ∆𝑥𝑖 ∙

𝜕

𝜕𝑥𝑖
]

𝜅+1

𝑓(𝜉)                                           (21) 

 

Where i=1,2,…n, 𝜉 is a value between 𝑥𝑖0 and 𝑥𝑖0 + ∆𝑥𝑖 

 

∆𝑦 can be further expressed as the sum of a finite number of partial derivatives and the 

sum of residuals:  

 

∆𝑦 = ∆𝑦𝑥1
+ ∆𝑦𝑥2

+ ⋯ + ∆𝑦𝑥𝑛
+ 𝜇𝛥𝑥                     (22) 

 

When the decomposed polynomial remainder (k+1) derivative term is ignored, the 

increment in the variable contains the changes caused by each of the following variables: 

 
5  Taylor expansion is a mathematical technique used to approximate a function with a polynomial 

expression; it is useful for coping with the function, such as computing function values and derivatives. 
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                    (23) 

 

∆𝑦𝑥𝑖
= 𝛥𝑥𝑖 ∙

𝜕𝑓(𝑥)

𝜕𝑥𝑖
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1
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𝛥𝑥𝑖

𝜅 ∙
𝜕𝜅𝑓(𝑥)

𝜕𝑥𝑖
                       (24) 

 

When 𝛥𝑥𝑖 ≠ 0, and the rest 𝛥𝑥𝑗 = 0, 𝑗 ≠ 𝑖, ∆𝑦 only reflects the effect of the change in 

𝑥𝑖 on the dependent variable. Therefore, in the multivariate function, the importance of 

each independent variable on the dependent variable can be investigated separately.  

 

By calculation:  

 

𝑦𝑥0
= 𝑓(𝑥10, 𝑥20, … , 𝑥𝑖0 … 𝑥𝑛0)                                                                (25) 

 

and 

 

𝑦𝑥𝑖
= 𝑓(𝑥10, 𝑥20, … , 𝑥𝑖0+𝛥𝑥𝑖

… 𝑥𝑛0)     i=1,2,…,n,                      (26) 

 

∆𝑦𝑥𝑖
 can be written as: 

 

∆𝑦𝑥𝑖
=

𝑦𝑥𝑖
−𝑦𝑥0

𝑦𝑥0

∗ 100%            i=1,2,…,n                                      (27) 

 

This can measure the importance of each independent variable separately.  

 

To analyse the contribution made by each energy type in firms’ capital structure 

decisions, we constructed two representative samples with relatively higher and lower 

proportions of renewables in their respective energy structures. This allows us to 

analyse the impact of different levels (high and low) of renewables on the capital 

structure choices of firms. Each variable, including both financial and energy variables, 

was set to increase by 10% to derive the change of each leverage ratio in every year. 
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The absolute values of these changes reflect the importance of the input variables. A 

larger change indicates stronger influence of the input variable on the output variable. 

Note that these changes represent the variable importance within each model, and no 

comparisons were made between the changes of different models. When comparing the 

importance of variables between any two models, the primary focus is on assessing the 

ranks of the variables, or which variable plays a more significant role in determining 

the capital structure of firms. Considering the predictive advantage demonstrated by 

SVR, only the results of SVR are presented in this and subsequent sections. For 

conciseness, the results of book leverage are presented, as the market leverage provides 

similar findings. The results are presented in Figures 3.7–3.10.  

 

Combining the results of both samples, among all energy variables, wind, solar, and 

natural gas have the most significant impact on electric utility firms’ capital structure. 

In contrast, other fossil energy generation, coal and oil, along with other traditional 

energy, including hydro and nuclear, have small and limited impact. The accounting 

and financial variables have larger impacts than the energy variables in the low 

proportion sample but smaller impact in the high proportion sample.  

 

In general, the result support the Hypothesis I and II: both renewable energy and fossil 

fuels can significantly affect the capital structure of electric utility firms. However, the 

effects of renewable energy are relatively stronger compared with fossil fuels. This may 

be because firms’ new investments in renewable energy can be substantial (Egli, 2020; 

Geddes et al., 2018). Nevertheless, the relative impact generated is greatly affected by 

its proportion in the overall energy portfolio. In short, the larger the share of renewable 

energy in the overall energy supply, the greater its importance becomes, leading to 

stronger influence on firm’s capital structure. This argument can be verified through the 

following three dimensions: firm, leverage, and time dimensions.  

 

First, from the firm dimension, renewable energy variables in both LD/A (Figure 3.9) 
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and TD/A (Figure 3.10) of the high proportion sample consistently have significantly 

higher importance and ranks compared to those of the low proportion sample (Figures 

3.7 and 3.8). In most years, wind and solar energy of the high proportion sample rank 

among the top four, along with the conventional financial indicators, tangibility and 

growth opportunities, in determining the capital structure of firms. Notably, in over one-

third of the years, solar even ranks first as the most important determinant for firms’ 

capital structure, surpassing all financial variables. This is consistent with prior findings 

that the risk associated with renewable energy decreases as its proportion in the energy 

mix increases (Tietjen et al., 2016). Consequently, companies with a higher share of 

renewable energy may experience lower investment risk.  

 

Second, in terms of leverage, compared to total debt, the impacts of wind and solar 

energy on long-term debt (Figures 3.7 and 3.9) are relatively small and are decreasing 

over the years (more clearer in the difference between LD/M and TD/M seen in 

Appendix 2). This aligns with our former inference that the new Basel III (2017) norms 

have imposed additional restrictions on firms’ accessing long-term debt for renewable 

energy projects (Ang et al., 2017; Ng and Tao, 2016), leading to the prediction 

difference between the two kinds of leverage. Moreover, when we combine all figures 

of LD/M in the Appendix 2, wind ranks ahead of solar in almost all years for the long-

term debt, while solar ranks higher than wind in the majority of years for the total debt. 

This is mainly because the construction of PV power plants, depending on the capacity, 

generally take three months to one year, while building wind farms can take one to three 

years. Therefore, according to the classification of liabilities, the investments in solar 

project tend to rely more on short-term funding and this can only be captured by total 

debt. Consequently, besides the negative impact of Basel III on long-term investments 

in renewable energy, the varying construction periods of solar and wind projects also 

partially contribute to the measured difference in renewable energy generated on firms’ 

leverage. Specifically, when the total debt is used to calculate the capital structure, solar 

tends to play a more significant impact in determining the leverage level of firms.   
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Figure 3.7. Factor importance for 

LD/A(L) from 2016–2020 

Figure 3.8. Factor importance for 

TD/A (L) from 2016–2020 
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Figure 3.9. Factor importance for 

LD/A (H) from 2016–2020 
Figure 3.10. Factor importance for 

TD/A (H) from 2016–2020
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Third, the influence of renewable energy on firm’s leverage increases over years. The 

focus is primarily on two total debt estimations (Figures 3.8 and 3.10) as the use of 

long-term measurement of debt may lead to the omission of investments made on 

certain type of renewables. For the TD/A of the low proportion sample (Figure 3.8), the 

rank of wind increases from the seventh in 2016 to the third in 2020. In the high 

proportion sample (Figure 3.10), solar has always been in the top three, while wind 

ranks from the fifth to the first. The increased contribution of renewable energy is 

consistent with previous discussions that along with the decreased risks involved in 

renewable energy investments, more funding is channelled to support its development 

(Egli, 2020; In et al., 2022; Noothout et al., 2016; Shrimali, 2021). Consequently, 

renewables become increasingly important in determining firms’ leverage level. 

 

Notably, natural gas significantly affects the capital structure. It is the most influential 

fossil fuel for both high and low samples. In particular, within the low proportion 

sample, the impact of natural gas on leverage exceeds that of renewable energy in 

certain years (Figures 3.7 and 3.8). This is mainly because compared to other fossil 

fuels, natural gas is a cleaner energy source, emitting nearly 50% less carbon dioxide 

than coal (EIA, 2022). Furthermore, in the US, natural gas is not only more affordable 

than coal but has also got lower capital costs compared to wind energy (Feldman and 

Margolis, 2019; IEA, 2021c). Therefore, from 2010 to 2019, approximately 79% of the 

new capacity of the conventional US electric generation was natural gas powered 

(Feldman and Margolis, 2019). Therefore, natural gas will remain a key player in the 

energy transition process until renewable energy completely replaces fossil fuels as the 

dominant energy source (IEA, 2019).  

 

Coal-powered generation has significantly decreased in the US. Due to the increasing 

risks associated with coal, capital has actually flown out from the sector (In et al., 2022; 

Shrimali, 2021). However, this capital outflow has only generated small impact on 

firms’ capital structure as the infrastructure for coal-fired power generation has been 
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already constructed. Consequently, the cost reduction is mainly due to decreased fuel 

consumption, which represents a much smaller spending when compared to the total 

investments needed for renewable energy projects. As a result, the impact of coal on 

firms’ capital structure is relatively minor. Similarly, as oil only accounts for a very 

small proportion of the overall electricity generation, its impact on firms’ capital 

structure is limited. Finally, as hydro power and nuclear have relatively stable electricity 

generation throughout the sample period, their influence on firms’ capital structure is 

also marginal, being constantly positioned at the bottom in both of the low- and high-

proportion samples.  

 

3.5.3. Impact Directions of Variables 

 

Here, we further analysed the direction of the impact of variables on firms’ capital 

structure. We set the ten firms with the highest renewable energy generation as one 

group, and the lowest ten as another one. The average value of each variable within 

each group were used to test their sensitivity. The Taylor (Hoffman and Frankel, 2001) 

was used to calculate the change in the leverage ratios for each variable. Both changes 

of 5% and 10% for each input variable were applied to test the nonlinearity of the 

models. Figures 3.11–3.14 report the directions besides the changes and ranks of the 

leverage ratios when values of the input variables were changed. As Section 3.5.2 

showed that total debt is a better measure for capturing the impact of changes in energy 

structure on capital structure, only the results of TD/A are reported here. The variables 

are categorised into three groups for discussion: renewable energy, other energy, and 

accounting and financial variables. 

 

The degree of impact of wind and solar energy on leverage still indicate a large 

difference between the low and high renewable generation samples. For the low 

renewable sample, wind and solar rank among the bottom five variables for both the 5% 

and 10% changes; meanwhile, in the high renewable sample, wind and solar rank sixth 
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and fourth, respectively. This again verifies that the impact of renewables generated on 

the leverage is closely related to their proportion in the overall generation.  

 

Interestingly, wind and solar energy impact leverage differently, with wind (solar) 

energy contributing negatively (positively) to the gearing level of electric utility firms. 

This is consistent with prior findings that solar energy investments are considered less 

risky compared to wind as solar experiences a faster decline in the LCOE and less 

resource volatility risk, resulting in lower costs of capital for solar projects (Feldman 

and Margolis, 2019; IRENA, 2021; Shrimali, 2021). Meanwhile, wind energy is 

perceived to have higher investment risks and longer construction period. Consequently, 

financial institutions are reluctant to lend to companies with a relatively high proportion 

of wind energy. 
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Figure 3.11. Factor directions for TD/A (L) - 5% difference 
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Figure 3.12. Factor directions for TD/A (L) - 10% difference  
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Figure 3.13. Factor directions for TD/A (H) - 5% difference 
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Figure 3.14. Factor directions for TD/A (H) - 10% difference 

 

For other energy variables, gas exhibits a more pronounced influence in both groups. In 

the low proportion group (Figures 3.11 and 3.12), gas emerges as the most influential 

energy type among all energy variables, surpassing the combined impact of the remaining 

energy variables. In the high proportion sample (Figures 3.13 and 3.14), gas ranks the 

second, following solar but surpassing wind, and its influence is comparable to that of 

solar and wind. Moreover, in both the high and low proportion samples, gas consistently 

shows a positive relationship with leverage. This indicates that the lending market holds 

a favourable view of gas investments and recognises the significance of utilising gas to 

address the current inadequacy of renewable energy development (IEA, 2019).  

 

Nuclear energy only occupies a middle position in both the high and low proportion 

samples, with a consistent negative impact. This may be attributed to the perceived 

potential safety risks associated with nuclear energy, leading both companies and debt 

investors to adopt a cautious approach towards nuclear energy projects. Meanwhile, 

hydropower generation holds a middle position in the low proportion group (Figures 

3.11 and 3.12) with a negative impact but ranks last in the high proportion group 

(Figures 3.13 and 3.14) with a positive impact. Coal ranks among the bottom three in 

both groups, with its impact aligning with that of hydropower in both cases. Oil ranks 
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at the bottom in both groups but with a positive impact. The directions towards hydro 

and coal are opposite in the two groups. Low proportion companies (Figures 3.11 and 

3.12), focusing on traditional fossil energy projects, face higher environmental and 

financial distress risks, leading to reduced debt investments in such sources. High 

proportion companies (Figures 3.13 and 3.14), with lower environmental risks, have 

easier access to debt financing. Furthermore, allocating some traditional energy sources 

helps mitigate the volatility risks of renewable energy for high proportion companies. 

However, the impact of the lower-ranked energy variables is minimal. Regardless of 

the direction of impact, their influence on capital costs is limited. 

 

Among accounting and financial variables, PPEN/AT, EBIT/AT, and Z_score are 

constantly ranked as the top three determinants of firms’ total leverage for both low and 

high proportion groups (Figures 3.11 to 3.14). The sum changes of the three variables 

account for more than 50% of all the changes for each model. This means that the 

tangibility, profitability, and bankruptcy risk are the main influential factors for firm’s 

leverage decision on book leverage. The influence of the remaining accounting and 

financial variables, firm size, growth opportunities, and stock market conditions, are 

much smaller, showing the much smaller absolute value of changes and rank after some 

energy variables.  

 

Besides their importance, the directions of accounting and financial variables are worth 

discussing. For the most important top three variables, tangibility (-), profitability (+), 

and bankruptcy risk (-) exhibit almost consistent directions (except the direction of 

bankruptcy risk is positive for the 5% change of the low proportion group) for both 

groups, and when 5% and 10% changes are applied. Regarding tangibility, for most 

companies, having more fixed assets should be interpreted by the lending market as 

having lower default risks. Consequently, firms tend to borrow more for purposes like 

corporate investments, and research and development, resulting in a higher gearing 

level. However, utility investments differ from other types of companies as their 
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primary target is to construct power generation equipment. Therefore, when fixed assets 

account for a higher proportion of total assets, it implies that there is less need for 

further investment in building new capacity, resulting in lower leverage. Firms with 

higher level of profits tend to have lower financial distress cost and can take more 

advantage of the tax shields, resulting in a higher debt level of firms (Frank and Goyal, 

2009). For bankruptcy risk, the results show that in most cases, firms with higher 

bankruptcy risk are less likely to rely on additional debt financing due to limited 

additional borrowing capacities.    

 

Regarding the other three accounting and financial variables, except growth 

opportunity with a consistent negative direction for both groups, firm size and stock 

market conditions have contractionary impacts on firms’ leverage for the two groups. 

Companies experiencing rapid growth are more likely to suffer financial distress cost 

and debt-related agency problems. Consequently, they may prefer a lower leverage 

level (Frank and Goyal, 2009). In the low proportion group, larger firms and firms with 

high stock returns are more likely to have lower leverage. This is not surprised as large 

firms tend to have stronger financial resources and stability; if they rely mainly on fossil 

energy, demand for additional funding is limited, resulting in lower gearing level. 

Meanwhile, when the stock return is high, firms are more likely to use equity finance 

to take advantage of the “market timing” (Frank and Goyal, 2009). Here, despite limited 

demand for additional finance for renewable development, firms will use equity finance 

whenever needed, leading to a lower leverage ratio.  

 

A different picture emerges for the high proportion group (Figures 3.13 and 3.14). Large 

firms and firms with high stock returns are more likely to have higher leverage. When 

companies require significant investments for the continuous development of 

renewable projects, large firms tend to take advantage of their size effect, borrowing at 

a cheaper rate from banks to minimise the cost of capital. Meanwhile, for firms with 

high stock returns, the trade-off theory suggests that to exploit the benefits of low 
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market debt ratios, firms may issue additional debt to move towards the optimum ratio 

(Frank and Goyal, 2009). Consequently, the gearing level of firms will increase.    

 

Thus, the relationship between the capital structure and its determinants in this study is 

nonlinear, as shown by the varying changes and rankings of variables. For example, the 

directions of asset, stock return, hydro, and coal are negative for the low proportion 

group (Figures 3.11 and 3.12), but positive for the high proportion group (Figures 3.13 

and 3.14). Further, even within the low and high proportion groups, when 5% and 10% 

changes are applied, the rankings of variables are inconsistent. Together, this indicates 

the nonlinearity of the model, consistent with prior research (Amini et al., 2021). 

 

3.5.4. Adjustment Speed 

 

Finally, we investigated the adjustment speed when the actual leverage deviates from 

the target level. The partial adjustment framework can be defined as follows (Amini et 

al., 2021): 

 

∆𝑦𝑖,𝑡+1 = 𝜆𝐺𝐴𝑃𝑖,𝑡 + 𝜀𝑖,𝑡+1                             (28) 

 

Where: 

 

𝐺𝐴𝑃𝑖,𝑡 = Ε(𝑦𝑖,𝑡+1) − 𝑦𝑖,𝑡                             (29) 

 

GAP represents the gap between the actual and target leverage of firm i. Target leverage 

is defined as the one predicted by SVR with Dataset 2. Both TD/M and TD/A were 

tested. λ is the adjustment speed, which should equal zero to one if it fits the prediction 

of the dynamic trade-off theory. Eq. (28) is estimated as a pooled ordinary least squares 

(OLS) regression with bootstrapped standard errors (Amini et al., 2021). The results 
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with and without fixed effects are presented in Table 3.5.  

 

Table 3.5. Leverage adjustment speed 

 TD/M TD/M (F) TD/A TD/A (F) 

GAP 0.126 (***) 0.743 (***) 0.056 (*) 0.645 (***) 

 (0.032) (0.099) (0.031) (0.116) 

Half-life in years 5.096 0.511 12.158 0.666 

Observations 197 197 197 197 

Adjusted-R2 0.065 0.403 0.024 0.331 

Note: ***, **, and * indicate statistical significance at 0.01, 0.05 and 0.1 levels, respectively. 

 

Table 3.5 shows that firm fixed effects play a crucial role in determining the adjustment 

speed. Both market and book leverage adjust more quickly when we control firm 

specific characteristics. Before controlling for company fixed effects, the adjustment 

speeds of the market and book leverage are 0.126 and 0.056, respectively. After 

controlling, these speeds rise to 0.743 and 0.645, respectively. The half-life of market 

and book leverage are 0.511 and 0.666 years, respectively, after controlling firm fixed 

effects versus 5.096 and 12.158 years, respectively, without controlling. These findings 

are consistent with prior research arguing that controlling the firm fixed effect can lead 

to the faster adjustment speed estimated (Amini et al., 2021).  

 

Note that the adjustment speed identified in this study is much faster than those reported 

in other studies. This may be because the target leverage is more accurately estimated 

by the machine learning method (Amini et al., 2021), or perhaps due to the unique 

sample used in this study. As prior research is normally based on the overall market, the 

adjustment speed can be viewed as an average speed across industries (usually 

excluding utilities). However, as our sample only includes firms from the electric utility 

sector, a much faster adjustment speed suggests that electric utility firms are more 

sensitive to deviations from the target leverage. This may be because along with the 

rapid development of renewable energy, utilities need to adjust their financing channels 
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quickly to facilitate the deployment of renewable energy projects. Further, among the 

two types of leverages, the market leverage tends to adjust 10% faster than that of the 

book leverage. This is may be because the market leverage is a forward-looking 

measurement. Market prices adjust quickly to reflect the market’s perception of a 

company’s debt levels and risks. Meanwhile, book leverage is subject to the lag in 

financial reporting and disclosure cycles.  

 

Overall, both types of results are consistent with the predictions of the dynamic trade-

off theory, and range between zero and one. In addition, the directions of most 

accounting and financial variables including, profitability (+), bankruptcy risk (-), 

growth opportunity (-), firm size of high proportion group (+), and stock market 

conditions, of the high proportion group (+) are consistent with the predictions of the 

trade-off theory. That is, the financing decisions for companies with a high proportion 

of renewable energy tend to align more closely with the trade-off theory, indicating the 

need for frequent adjustments in capital structure to address the substantial investments 

required in renewable energy development. 

 

3.6. Conclusion 

 

In order to fight against the climate change, renewable energy is developed and deployed 

at a much faster speed. As one of the major emitters, electric utility sector must go through 

the energy transformation process to achieve greener operations. Employing machine 

learning methods, this study investigates the dynamic adjustments of capital structure in 

firms in the electric utility sector in response to changes in their energy structure. We ask: 

1) Do changes of the renewable energy and fossil fuels in the energy structure affect the 

capital structure of electric utility firms? 2) Are the impacts of different types of 

renewable energies on a firm’s capital structure consistent? 3) How and at what speed 

will the firms’ capital structure adjust to reflect these changes? 4) Can existing capital 

structure theories explain the capital structure of the electric utility sector?  
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We hope to answer these questions by analysing data of 42 listed companies of the US 

electric utility sector over the period 2010 to 2020 using three machine learning 

methods (SVR, RF, and ANN). The results show that: First, the introduction of energy 

structure variables can improve the predictive power of the capital structure models. 

This provides a sign that certain energy types may affect the capital structure decisions.  

 

Second, we confirm that, among all energy variables, wind, solar, and natural gas have 

the most significant impact on the capital structure of electricity utility firms. Besides 

conventional accounting determinants like tangibility, Z-score, and profitability, for 

firms employing a higher percentage of renewables in the energy structure, wind and 

solar energy are more likely to have a stronger explanatory power in firms’ capital 

structure. Other conventional fossil fuels have limited impact on firms’ capital structure 

decisions. Moreover, using different proxies of capital structure may yield different 

results. For instance, compared with the long-term debts, the total debts generally tend 

to have stronger predictive accuracy. This implies that both short- and long-term debts 

are used by firms in developing renewable projects.  

 

We further investigated the direction of contribution of each variable. This is the first 

study to reveal that despite both being renewables, wind and solar energy have opposite 

effects on the capital structure, with wind (solar) energy contributing negatively 

(positively) to the gearing level of firms. This may be because compared with wind 

energy, solar energy investments are considered less risky in debt market, and hence, 

more likely to attract increased borrowings. Among the three most influential 

accounting and financial variables, tangibility and bankruptcy risk contribute 

negatively to leverage, while profitability leads higher debt.  

 

Moreover, based on the target leverage predicted by the machine learning approach, the 

leverage adjustment speed of electric utility firms is in line with the prediction of the 
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dynamic trade-off theory; rather, it happens at a much faster rate when compared with 

the overall market. The directions of most accounting and financial variables also 

conform to the prediction of the trade-off theory. 

 

Our findings have some valuable implications. First, in response to government policies, 

more green credit and/or green bond should be provided to support firms’ green 

activities. To reduce firms’ financial risk exposure, such lending can be priced at a lower 

rate and backed up by the government. This may encourage more borrowings and 

increased green investments, particularly for utilities firms operating in regions with 

favourable natural conditions. Meanwhile, due to higher level of risks involved in wind 

energy, the government should provide more financial support, and facilitate research 

collaboration among utility firms and research institutions. This may speed up the 

industrial transformation process. Finally, given financial institutions preference for 

solar energy over wind energy, firms could divide their capital more strategically, 

relying on debt finance more for solar energy plants while using internal accruals more 

for wind energy plants. This can help optimise the capital structure of utility firms and 

accelerate the overall green transformation process.  

 

Finally, this study has some limitations. Due to the data availability, this study explores 

the relationship between energy structure transition and capital structure only in the US 

market. Future research can consider samples from other markets with distinct energy 

structure characteristics. For instance, in the Chinese and Indian markets, while 

renewable energy generation is increasing, the generation of fossil fuels, especially coal, 

is also on the rise. This stands in contrast to the sample characteristics presented here 

and may lead to different findings.  
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Chapter 4: Energy Structure Transition and Firm Risk 

Exposure: Evidence from the Electric Utility Industry  

Based on Support Vector Machine 

 

4.1. Introduction 

 

The Paris Agreement, signed in 2015, achieved unanimous consensus to limit global 

temperature rise to 2˚C.To achieve this goal, global emissions should be halved by 2030 

and reach net-zero by 2050 (Climate Analytics, 2022). Accordingly, the energy 

structure must transition away from fossil fuel-based energy to renewable energy to 

reduce greenhouse gas (GHG) emissions. As the single largest source of GHG 

emissions, the electricity industry plays a key role in the energy structure transition 

(IEA, 2021d). Currently, over 40% of CO2 emissions related to energy come from the 

combustion of fossil fuels for power generation (World Nuclear Association, 2022). It 

also contributes to 46% of the global rise in emissions in 2021 (IEA, 2022a). To achieve 

the net-zero target, nearly 90% of global electricity generation should come from 

renewable sources by 2050, compared to only 23% in 2015, with solar photovoltaic 

(PV) and wind contributing to nearly 70% (IEA, 2021d, 2016).  

 

The rapid and extensive transition of the energy structure poses a huge challenge for 

the electric utilities. After completing the electricity market reform in the 1990s, the 

electric utilities of major economies have transformed into market-driven operations 

(Sioshansi and Pfaffenberger, 2006). Instead of requiring direct state intervention, the 

energy structure transition is now considered more of an economic challenge as 

substantial funding is needed for the development of renewable energy projects 

(Donovan, 2015). Under such increased financing pressure, we need to understand the 

impact of the changes in electric utilities’ energy structure on firms’ performance. If 

renewable energy can enhance the financial performance or reduce risk exposure of the 
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electric utility firms, then effective policies should be set up to encourage/speed up this 

transformation.  

 

The discussion about how electric utilities’ energy structure transition influences the 

corporate performance can be seen as a part of the broader debate about the economic 

outcomes of firms’ corporate social responsibility (CSR) activities. Research often 

examines the influence of CSR on firm performance from two perspectives, financial 

performance and risk exposure, with the former receiving much more attention. 

According to stakeholder theory (Clarkson, 1995; Donaldson and Preston, 1995; 

Freeman, 1984) and the natural resource-based view (Hart, 1995), investing in CSR can 

yield several benefits. For instance, it may assist firms to diversify products with 

enhanced competitiveness, build a positive corporate reputation, and adjust strategies 

according to the changing business environments (Albuquerque et al., 2019; Aragón-

Correa and Sharma, 2003; Miles and Covin, 2000; Miller et al., 2020). These 

advantages can reduce costs, increase short- and long-term profits, and mitigate firm 

risk (Albuquerque et al., 2019; Hart and Ahuja, 1996; Liu and Lu, 2021). However, 

some studies reported contradictory findings. For instance, CSR may be more of a 

moral obligation used by companies for public relations purpose (Ozdora Aksak et al., 

2016). It may also add financial burden and lead to negative firm performance (Barnett 

and Salomon, 2006; Palmer et al., 1995; Preston and O’Bannon, 1997). Nevertheless, 

this may be because CSR comprises multiple dimensions and the choice of different 

proxies may lead to different estimation results (Bouslah et al., 2013; Johnson and 

Greening, 1999; Rehbein et al., 2004; Ruggiero and Lehkonen, 2017). Consequently, 

many studies choose to focus on each CSR dimension separately, particularly when it 

comes to the environmental related impacts (Bouslah et al., 2013; Busch and 

Lewandowski, 2018; Cai et al., 2016; Correia et al., 2021).    

 

Studies on the impact of energy structure transition on firms’ financial performance are 

quite limited and have diverse conclusions. Employing a cross country sample over the 
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period 2008–2013, Martí-Ballester (2017) found that the adoption of renewable energy 

does not significantly affect a company’s financial performance. However, a positive 

relationship is observed for European countries, despite the significant inconsistencies 

among different countries (Correia et al., 2021). Later, Ruggiero and Lehkonen (2017) 

analysed a sample of utilities from the North America, Europe, and East Asia from 2005 

to 2014, and found that firms’ transition towards renewables does not promote their 

financial performance. Therefore, besides firm specific characteristics, the impact of 

renewables on firms’ performance is more likely to be affected by factors including the 

uneven development of the renewable energy in different regions, study period, and 

diversified socioeconomic and political backgrounds of different countries.  

 

Some studies have explored the impact of renewable energy on firms’ financial 

performance. However, research about the relationship between energy structure 

transition, particularly concerning renewable energy, and firms’ risk exposure is even 

more limited. Facing highly volatile international environments, firms’ risk 

management capacity may directly affect their financial performance (Florio and Leoni, 

2017; Malik et al., 2020). As suggested by Bouslah et al. (2013), a firm’s social 

performance can influence its financial performance or value if and only if it affects its 

risk. To fill in this research gap, we investigate the impact of energy structure transition 

on electric utility firms’ risk exposure. While renewable energy is the primary driver of 

the transition, changes in fossil fuels and other conventional energy also shape the 

energy structure. Similar to the broader CSR study that acknowledges multiple 

dimensions may cause biased effects, it is reasonable to conduct separate test to assess 

the impact of different energy types. This study primarily focuses on renewable energy 

due to its substantial investment, which has a high potential to influence firm risks. 

Therefore, it should be clarified that the effect of energy structure transition examined 

in this study is the part caused by the development of the renewable energy. Considering 

the different types of risks faced by the electric utility firms, we first test whether and 

how the development of renewables affects all different types of risks faced by firms. 
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Furthermore, we explore whether different kinds of renewable energy have consistent 

impacts on these risks.  

 

To answer these questions, this study employs a sample of 44 US listed electric utility 

companies during 2010–2020. Unlike other CSR studies which often rely on regression 

methods, this study adopts the machine learning approach to construct a more reliable 

classification model for the analysis. We find that the increase in renewable energy is 

negatively associated with systematic risk but has inconsistent relationship with the 

idiosyncratic and total risks. This is because that solar (wind) positively (negatively) 

impact idiosyncratic and total risks. Clearly, in a broader context, it can be concluded 

that the energy structure transition significantly affects not only the systematic but also 

idiosyncratic and total risks faced by utility firms. However, it should be noted that 

deducing the direction of the effect due to the energy structure transition is not 

appropriate. For instance, despite both being renewable energy sources, wind and solar 

exhibit different effect direction on firm risks. Therefore, it is highly probable that other 

energy types may have diverse impact directions.  

 

This study’s contributions are fourfold. First, this study integrates the energy structure 

transition into the broader CSR research framework. It not only contributes to the 

extensive field of CSR research (Albuquerque et al., 2019; Aragón-Correa and Sharma, 

2003; Miles and Covin, 2000; Miller et al., 2020) but also responds to the growing 

demand for separate testing of specific themes (Bouslah et al., 2013; Busch and 

Lewandowski, 2018; Cai et al., 2016; Correia et al., 2021). Focusing on the 

environmental dimension, by analysing the impact of energy structure transition guided 

by renewable energy on firms’ performance, this study provides a more comprehensive 

understanding about the relationship between CSR and corporate risk exposure.  

 

Second, the majority of studies investigating the relationship between CSR or corporate 

environmental responsibility (CER) and firms’ performance focus on their financial 
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performance and systematic risk exposure only (Albuquerque et al., 2019; Oikonomou 

et al., 2012; Salama et al., 2011). Electricity utility firms are also generally excluded 

from the sample due to the uniqueness of their operations. This study fills in these gaps 

on the important role played by electric utility firms in a country’s energy structure 

transition. Besides systematic risk, we also include the idiosyncratic and total risks into 

our analysis. This helps us capture the heterogeneous impact of electric utility firm’s 

energy structure transition on its different types of risks exposure.  

 

Third, this study innovatively investigates the respective impacts of wind and solar 

energy on electric utility firms’ risk exposure. We find that both wind and solar energy 

can reduce the systematic risk. Meanwhile, solar (wind) increases (decreases) 

idiosyncratic and total risks. Electric utility firms can consider these differences and 

adjust their future financing plans accordingly.  

 

Finally, this study contributes to the research methods used in the CSR studies. While 

studies mainly rely on regression methods, this study employs a classification approach, 

offering a more intuitive understanding of the impact of renewable energy on a firm’s 

market risk. Further, finance studies using the machine learning approach have 

primarily focused on default and credit risks classification (Härdle et al., 2009; Harris, 

2013; Kim and Sohn, 2010; Shin et al., 2005; Zhou et al., 2014). This study extends the 

research scope by applying these methods to assess the market risk faced by firms. 

 

The rest of this chapter is organised as the following. Section 4.2 reviews the literature 

and develops the research hypotheses. Section 4.3 introduces the methodology. Section 

4.4 describes the data and variables. Section 4.5 discusses the empirical results. Section 

4.6 presents the conclusions of this study with some useful policy implications.  
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4.2. Literature Review  

 

4.2.1. Corporate Social Responsibility, Corporate Environmental Responsibility, 

and Energy Structure Transition 

 

Many key concepts have been introduced in CSR research, including CER and 

environmental, social, and corporate governance (ESG). While these concepts are 

interrelated, they have some distinct characteristics. Therefore, untangling their 

relations is necessary to obtain a clear understanding of the research landscape, as 

illustrated in Figure 4.1. The starting point is CSR, which is defined as “a commitment 

to improve community well-being through discretionary business practices and 

contributions of corporate resources” (Kotler and Lee, 2005, p. 3). With increased social 

attention, CSR has evolved to become a widely accepted mainstream business practice 

(Kitzmueller and Shimshack, 2012). Accordingly, several assessment frameworks have 

been developed to evaluate firms’ CSR performance, such as the ESG principles (Eccles 

et al., 2012; PRI, 2021)6. Subsequently, many data providers, such as Kinder Lydenburg 

Domini (KLD)7 , offer quantified measurements (scores or ratings) according to the 

ESG framework.  

 

 
6 ESG is a comprehensive criterion of environmental, social, and corporate governance dimensions. Each 

dimension has their own subthemes. The environmental dimension mainly includes energy usage and 

efficiency, climate change strategy, waste reduction, biodiversity loss, GHG emissions, and carbon 

emissions reduction. The social dimension mainly comprises employee wellbeing, workplace safety and 

health, customer benefits, diversity and equity, product information, and supply chain management. 

Finally, corporate governance mainly contains bribery and corruption, board diversity, disclosure and 

transparency, executive pay, and risk management. 

7  The KLD database is recognized as the most extensive and widely accepted data source for CSR 

research (Bouslah et al., 2013; Mattingly and Berman, 2006). KLD classifies CSR activities into seven 

categories, each corresponding to one ESG dimension. For every category, CSR activities are ascribed 

into either "strength" or "concern" types, and a company is rated 0 or 1 for each type (Cai et al., 2016).   
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Figure 4.1. Key concepts in CSR Studies 

Note: The subthemes of the other two ESG dimensions are in footnote 6. 

 

Indeed, environmental issues have received increased attention in recent years, and the 

environmental dimension of CSR, CER, has become one of the most prominent topics 

(Cai et al., 2016; Jo et al., 2015; D. Li et al., 2017; Z. Li et al., 2020; Qin et al., 2019; 

Wahba, 2008). In Figure 4.1, the framework and measurement of CER can be the 

environmental dimension of ESG and KLD. Given the different nature and stakeholder 

involved in different CSR dimensions, each dimension may have distinct effects on a 

firm’s financial and risk performance (Girerd-Potin et al., 2014; Godfrey et al., 2009). 

Consequently, the aggregate measurement of CSR may muddle the impact of each 

dimension and lead to biased conclusions (Bouslah et al., 2013; Johnson and Greening, 

1999; Rehbein et al., 2004). Separate tests should be conducted for each dimension of 

CSR to identify its unique impact on firm performance (Bouslah et al., 2013). Therefore, 

it may not be appropriate to infer the relationship between CER and firms’ financial 

performance or risk exposure simply based on the relationship identified between CSR 

and them (Cai et al., 2016). 

 

Moreover, the environmental dimension could be further divided into subthemes 

including climate change strategy, waste reduction, and biodiversity loss (Figure 4.1). 
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These subthemes may also generate diversified impacts on firms’ performance, and thus, 

should be investigated separately (Busch and Lewandowski, 2018; Correia et al., 2021). 

Energy, as an important subtheme in the environmental dimension, has constantly 

attracted wide attention, particularly with the growing public awareness towards 

environmental protection. Governments have created various policies and regulations 

to guide firms’ practice, while firms are under pressure to develop and invest in green 

technologies and renewables for more sustainable growth. Renewable energy will 

undeniably replace fossil fuels gradually as the primary energy source. In this process, 

the mix of different energy sources is a suitable proxy for the energy structure transition. 

Among all the energy types, this study mainly focuses on the impact of renewable 

energy on firm risks due to the significant influx of new investments.  

 

4.2.2. Firm Risk Exposure 

 

While referring to risk, this study focuses on three kinds of risk measures, which are total, 

systematic and idiosyncratic risks. Total risk can be defined as the volatility of a firm’s 

stock returns over time, often measured by the variance or standard deviation of stock 

returns from the previous year (Bouslah et al., 2013; Jo and Na, 2012; Sassen et al., 2016). 

It can be further divided into systematic and idiosyncratic risks (Jo and Na, 2012; Sassen 

et al., 2016). Systematic risk reflects a company’s sensitivity to broad market fluctuations 

that affect all stocks, while idiosyncratic risk represents company-specific risks that 

cannot be explained by overall market volatilities (Bouslah et al., 2013; Luo and 

Bhattacharya, 2009; Sassen et al., 2016; Sharpe, 1964). According to modern portfolio 

theory, only the systematic risk is relevant to asset pricing as the idiosyncratic risk can be 

fully diversified away, and hence, not included into the pricing (Markowitz, 1952). 

Consequently, some studies argue that the CSR (CER) only influences the systematic risk 

exposure of firms. However, because achieving a fully diversified investment portfolio is 

nearly impossible in the real market, as a company-specific character, CSR (CER) may 

still act on the idiosyncratic risks faced by firms (Bouslah et al., 2013; Goyal and Santa-
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Clara, 2003; Lee and Faff, 2009; Sassen et al., 2016).  

 

4.2.3. Renewable Energy, Diversification, and Systematic Risk 

 

Researches on the relationship between systematic risk and CSR (CER) often reveal a 

negative correlation (Albuquerque et al., 2019; Oikonomou et al., 2012; Salama et al., 

2011). One important explanation for this relationship is diversification. According to 

stakeholder theory, besides shareholders, firms should also consider the interests of 

other stakeholder groups to maximise the value created (Dmytriyev et al., 2021; 

Donaldson and Preston, 1995; Ruf et al., 2001). As an important dimension of the CSR 

practice, aligning their environmental strategy with the environmental preferences of 

stakeholders can create additional competitive advantages for firms (Martí-Ballester, 

2017; Rivera, 2002). Transitioning from fossil fuels to renewable energy sources can 

be viewed as a means to enhance the product diversification of electric utility firms. A 

higher proportion of renewable energy signifies a stronger ability for diversification. 

For instance, German customers would like to switch their electricity retailers for 

environmental reasons (Richter, 2013). The increased loyalty built up could then be 

transformed into higher profits, leading to reduced systematic risk exposure and more 

sustained growth (Albuquerque et al., 2019). 

 

For electric utilities, besides the aforementioned benefits, diversification to renewables 

may also assist firms to have a more stable capital cost and a more reliable energy 

supply. This can effectively reduce the market risk exposure of firms. Currently, several 

geopolitical, environmental, and regulatory factors have led to the high volatility of 

fossil fuel prices, exposing firms relying on fossil fuels to increased risks. Meanwhile, 

renewable resources have developed rapidly over the past few years. Compared with 

fossil fuels, investments into renewables, such as wind and solar, is less risky (Shrimali, 

2021). This has accelerated the transition from fossil fuels to renewables. Based on the 

above discussion, a higher percentage of renewables signifies greater diversification, 
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we propose the following hypothesis: 

 

Hypothesis I: The development of renewable energy negatively affects electric utility 

firms’ systematic risk. 

 

4.2.4. Renewable Energy and Idiosyncratic/Total Risk 

 

In recent years, an increasing number of studies have investigated the relationship 

between CSR (CER), and both the idiosyncratic and total risk exposures of firms. A 

negative relationship is normally detected for idiosyncratic risk when a comprehensive 

CSR measurement is used (Boutin-Dufresne and Savaria, 2004; Lee and Faff, 2009). 

Furter, the relationship between a single environmental dimension and firms’ 

idiosyncratic risk exposure becomes inconsistent (Bouslah et al., 2013; Sassen et al., 

2016). Meanwhile, total risk has an inverse relationship with CER (Cai et al., 2016). 

However, for firms with higher carbon efficiency, the total risk remains unchanged 

despite changes in their environmental performance (Trinks et al., 2020). Regarding the 

inconsistent outcomes of the relationships between the environmental dimension and 

idiosyncratic/total risk, one possible explanation suggests that environmental concerns, 

like climate change, may convey mixed signals to the market (Bouslah et al., 2013). In 

particular, despite its potential benefits for the business, green investment involves 

substantial investment upfront. Consequently, shareholders may object and/or some 

may even choose divestment, such as institutional shareholders (Fernando et al., 2010). 

Based on this above, we propose the following hypothesis: 

 

Hypothesis II: The development of renewable energy positively affects electric utility 

firms’ idiosyncratic risk. 

 

Total risk is the sum of systematic and idiosyncratic risks. Its relationship with 

renewable energy is likely to be a reflection of the combination of these two risks. Since 
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firms are facing increased social scrutiny nowadays, investments into the renewables 

can be regarded as firms’ response to social requests. However, the investment practices 

vary significantly among firms, potentially leading to greater volatility in idiosyncratic 

risk On the contrary, systematic risk reflects the attitude of entire market and tends to 

be relatively stable compared to idiosyncratic risk. Consequently, the total risk may 

exhibit characteristics similar to those of the idiosyncratic risk. Based on this discussion, 

we propose the following hypothesis:    

 

Hypothesis III: The development of renewable energy positively affects electric utility 

firms’ total risk.  

 

4.2.5. The Influence of Wind and Solar Energy on Firms’ Risk Exposure  

 

Few studies have investigated how wind and solar energy investments individually 

affect the different types of firm risk exposure. Given the close relationship between 

cost and risk, this study seeks to make preliminary inferences about their relationship 

by examining the cost dynamics of wind and solar energy. According to the 

International Renewable Energy Agency (IRENA, 2021), the last decade has witnessed 

substantial reductions in the levelised cost of electricity (LCOE) for both wind and solar 

energy. The LCOE of onshore wind energy has declined from USD 0.089/kWh in 2010 

to USD 0.039/kWh in 2020, even surpassing the LCOE of fossil fuels. Meanwhile, solar 

energy’s LCOE has plummeted from USD 0.381/kWh in 2010 to USD 0.057/kWh in 

2020. In 2017, the cost of solar energy fell below the cost level of the wind energy in 

2010, while the cost of the wind energy itself reached parity with that of fossil fuels at 

USD 0.05 /kWh. Notably, although solar energy experienced a much rapid decline, its 

higher initial costs meant that solar energy remained considerably more expensive than 

wind energy over a long period. Despite the recent narrowing of the cost difference 

between the two, the cost of solar energy remains high. Furthermore, data from the UK 

market used by Europe Economics in 2015 and 2018 to assess the capital costs of 
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various energy sources show that both the debt and equity costs for wind and solar 

energy have declined. Moreover, the equity cost for solar energy exceeded that of wind 

energy in both 2015 and 2018 (GOV.UK, 2020). Considering the cost trends of wind 

and solar energy, we propose the following hypotheses: 

 

Hypothesis IIIIa: Wind and solar energy negatively affect systematic risk. 

 

Hypothesis IIIIb: Wind energy negatively affects idiosyncratic risk. 

 

Hypothesis IIIIc: Solar energy positively affects idiosyncratic risk. 

 

Hypothesis IIIId: Wind energy negatively affects total risk. 

 

Hypothesis IIIIe: Solar energy positively affects total risk. 

 

As noted before, systematic risk primarily reflects the overall market sentiment. 

Considering the significant cost reductions in both wind and solar energy, their 

increased utilisation will contribute to greater diversity of electric utility firms. 

Therefore, we expect that both wind and solar to have a negative correlation with 

systematic risk. However, in the context of idiosyncratic risk, the difference in the wind 

and solar energy costs are linked to individual attributes, directly influencing individual 

firms. Further, solar has a higher LCOE than wind over the long term. We therefore 

assume that wind (solar) negatively (positively) affects idiosyncratic risk, and similarly, 

total risk follows the trend of idiosyncratic risk. 

 

4.3. Methodology 

 

When discussing problems related to risk, the central focus lies in assessing whether 

the research subject poses a substantial risk. For instance, in scenarios involving default 

or credit risks, if a borrower’s rating surpasses a specific threshold, it is classified as 
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being of high risk (Harris, 2013; Kim and Sohn, 2010). Our objective is to evaluate 

whether a firm is exposed to high risk, considering the context of energy structure 

transition. To tackle such a binary question, a commonly employed approach is 

classification. The main advantages for using this approach in this study are as follows. 

First, categorising risks into high and low categories aids in intuitively assessing the 

level of risks. Second, given the substantial variations in renewable energy development 

among different companies, extreme values could adversely affect the accuracy of 

regression models. In contrast, the classification approach relies on categories rather 

than specific values, thus enhancing the model’s robustness by reducing the influence 

of extreme values. Third, the classification method is better equipped to capture these 

nonlinear characteristics of renewable energy development.  

 

This study aims to construct reliable classification models to estimate firms’ risk 

exposure by classifying firms into high and low risk categories for each risk type.  

Based on the reliable classifier, renewable energy values are adjusted to simulate their 

development trend and further test their influence on the risks.  

 

According to the classification criteria (specific criteria are introduced in section 5.2) 

of the three risk types, the number of high-risk samples of each risk is less than the low-

risk counterpart, leading to an unbalanced dataset. To deal with the unbalanced dataset 

for high and low risk groups, the adaptive synthetic (ADASYN) algorithm8 is used for 

sampling. Then, Support Vector Machine (SVM), a popular machine learning 9 

classification approach, is utilised. The dataset is split into two subsets, with a training 

 
8 ADASYN uses a weighted distribution to generate synthetic data for the minority class. This approach 

addresses class imbalance by reducing bias and adjusts the classification boundary toward challenging 

examples (He et al., 2008).  

9 Machine learning (Zhou, 2021) falls within the domain artificial intelligence. It aims to use data and 

algorithms to teach computers in learning from experience like humans. Algorithms are trained on past 

data for the purpose of making predictions on new data. This process empowers computers to analyse 

complex data, identify patterns, and adaptively improve performance as more training data is 

incorporated. 
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set comprising 70% and test set comprising 30% of the total sample, respectively. 

 

SVM employs a non-parametric approach to tackle classification problems and falls 

under the category of supervised learning (Vapnik, 1998, 1995). The primary objective 

of SVM is to determine a hyperplane that can effectively segregate training data with 

distinct features into two classes. The sample points nearest to this hyperplane on both 

sides are termed support vectors, which confirm two separating paralleled hyperplanes. 

The gap between these two hyperplanes is known as the “margin,” and the key objective 

of the SVM is to maximise this margin. Furthermore, when the input data cannot be 

linearly separated in its original low-dimensional space, SVM utilises a kernel function 

to map the data into a higher-dimensional feature space, rendering it linearly separable.  

 

Unlike other machine learning methods that aim to minimise empirical risk10, SVM 

follows an approach that minimises structural risk, endowing the model with robust 

generalisation capabilities on small sample size. Empirical risk refers to the average 

loss of empirical data, which is deviated from the true risk of the whole data. The true 

risk is the sum of empirical risk plus a confidence interval, indicating model complexity. 

Based on the function of confidence interval, it becomes small when the sample size 

increases. Following the law of large numbers, the empirical risk converges toward the 

true risk as the sample size approaches infinity (Luxburg & Schölkopf, 2011; Vapnik, 

1991). Therefore, when the sample size is relatively small, it is not reliable to deduce 

the empirical risk as true risk, indicating that the constructed model has less 

generalisation ability. In contrast, SVM aims to minimise the structural risk, which 

refers to minimise both the empirical risk and confidence interval simultaneously 

(Vapnik, 1991). Hence, SVM demonstrates superior performance on small dataset 

 
10 Empirical and structural risks are two basic concepts in machine learning, measuring the model's 

capacities of fitting and generalisation, respectively. A lower empirical risk signifies a superior model 

fitting to the training data. Meanwhile, structural risk takes into account the potential disparity between 

the training data and the actual data distribution. Hence, mitigating structural risk helps enhance the 

model’s generalisation ability. (Zhang, 2011). 
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compared to other machine learning approaches (Mountrakis et al., 2011).  

 

Many studies have verified SVM’s superior classification ability compared with other 

classification techniques, including Random Forest, Decision Trees, and Logistic 

Regression, among others (Burbidge et al., 2001; Marjanović et al., 2011; Naji et al., 

2021). In financial research, SVM has been widely applied in tackling classification 

problems, such as bankruptcy, default risk, or credit risk (Härdle et al., 2009; Harris, 

2013; Kim and Sohn, 2010; Shin et al., 2005; Zhou et al., 2014). 

 

SVM can be explained by the following algorithm. 

 

Suppose the training samples are as follow: 

 

𝑆 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1,2, … , 𝑛}                      (1) 

 

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) ∈ 𝑅𝑚，𝑦𝑖 ∈ 𝑌 = {−1, 1}. 𝑥𝑖 is the input data, which are 

the accounting and energy structure variables (including firm size, profitability, wind, 

and solar energy), and 𝑦𝑖 is the firm risk.  

 

In the general form of SVM, the classification function is: 

 

𝜔𝑇𝑥 + 𝑏 = 0                                          (2) 

 

where 𝜔 is a weight vector, and 𝑏 is a constant. 𝜔 and 𝑏 determine the direction and 

position of the hyperplane, respectively. The aim is to find the farthest distance from 

the hyperplane to the nearest sample point, which is referred to as the support vector. 

In two-dimensional space, the distance from (x, y) to line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 is: 

 

|𝐴𝑥+𝐵𝑦+𝐶|

√𝐴2+𝐵2
                                            (3) 
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Expanding to the n-dimensional space, the distance from 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛) to 𝜔𝑇𝑥 +

𝑏 = 0 is: 

 

|𝜔𝑇𝑥+𝑏|

‖𝜔‖
, ‖𝜔‖ =  √𝜔1

2 + 𝜔2
2 + ⋯ + 𝜔𝑛

2                                                   (4) 

 

Then, maximising the distance from support vector 𝑋𝑠 to 𝜔𝑇𝑥 + 𝑏 = 0: 

 

𝑚𝑎𝑥      
|𝜔𝑇𝑥𝑠+𝑏|

‖𝜔‖
                                                                                      (5) 

𝑠. 𝑡.         
|𝜔𝑇𝑥𝑖+𝑏|

‖𝜔‖
 ≥

|𝜔𝑇𝑥𝑠+𝑏|

‖𝜔‖
 ,         𝑖 = 1,2, … , 𝑛                                         (6) 

 

We set |𝜔𝑇𝑥𝑠 + 𝑏| = 1, then substitute it into equations (5) and (6), and obtain: 

 

1

‖𝜔‖
                                                                                                                               (7) 

|𝜔𝑇𝑥𝑖 + 𝑏|  ≥ 1,         𝑖 = 1,2, … , 𝑛                             (8) 

 

Here, the sum distance from each side’s support vector to the hyperplane is 
2

‖𝜔‖
, and 

this distance is called hard margin. Removing the absolute value of |𝜔𝑇𝑥𝑖 + 𝑏|  ≥ 1, 

we find:   

 

{ 
𝜔𝑇𝑥𝑖 + 𝑏 ≥ 1,   𝑦𝑖=1                    

 𝜔𝑇𝑥𝑖 + 𝑏 ≤ 1,   𝑦𝑖=-1                   
                         (9) 

 

Combining the two functions of equation (9), we get: 

 

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1,    i = 1,2, … , n                         (10) 

 

Thus, the optimisation can be written as: 
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𝑚𝑎𝑥      
2

‖𝜔‖
                                                                                  (11) 

𝑠. 𝑡.          𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1,      i = 1,2, … , n                            (12) 

 

The maximisation of 
2

‖𝜔‖
 equals to minimise 

1

2
‖𝜔‖. For ease of calculation, it can be 

transformed as 
1

2
‖𝜔‖2. Thus, the optimisation can be rewritten as: 

 

𝑚𝑖𝑛       
1

2
‖𝜔‖2                                                                          (13) 

𝑠. 𝑡.         𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1,      i = 1,2, … , n                              (14) 

 

In cases where the data are not linearly separable, slack variables (𝜉𝑖) are introduced to 

create a soft margin, and 𝜉𝑖 is subject to a kind of loss function. Then, the optimisation 

problem becomes: 

 

𝑚𝑖𝑛       
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1                                                            (15) 

𝑠. 𝑡.         𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,      i = 1,2, … , n                             (16) 

𝜉𝑖 ≥ 0,      𝑖 = 1,2, … , 𝑛                                                              (17) 

 

𝐶 is a regularisation parameter and a constant larger than zero. It determines the balance 

between training error and the robustness of the model. The larger it is, the lower its 

capacity for fault tolerance. When 𝐶  equals infinity, the margin becomes the hard 

margin.  

 

To address the constrained optimisation problem, the Lagrangian function is 

constructed: 

 

𝐿 =
1

2
‖𝜔‖2  + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 − ∑ 𝛼𝑖(𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖)

𝑛
𝑖=1 − ∑ 𝜇𝑖𝜉𝑖

𝑛
𝑖=1        (18) 



104 

 

 

where 𝛼𝑖 ≥ 0 and 𝜇𝑖 ≥ 0 are the Lagrange multipliers.  

 

Then, the dual problem can be derived as follows: 

 

𝑚𝑎𝑥    ∑ 𝛼𝑖
𝑛
𝑖=1 −  

1

2
 ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑗                      (19) 

𝑠. 𝑡.      ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 ,       𝑖 = 1,2, … , 𝑛                                   (20) 

0 ≤ 𝛼𝑖 ≤ 𝐶,       𝑖 = 1,2, … , 𝑛                                         (21) 

            

The solution of the dual problem consequently yields the value of the optimal solution 

for the initial problem.  

 

To deal with nonlinear problems, SVM utilises kernel function 𝜅(𝑥𝑖, 𝑥𝑗)  to map all 

training points from their original low-dimensional space to a high-dimensional feature 

space: 

 

𝜅(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)                             (22) 

 

where 𝑥𝑖  and 𝑥𝑗  are training points of the sample, and 𝜙(𝑥) is the map function. The 

kernel function’s value is equivalent to the inner product of two vectors in the feature 

space. Different kernel functions have been proven to be effective, but there are no 

widely accepted criteria for choosing an appropriate kernel function. Following the 

literature (Hassan et al., 2014; Zuo and Carranza, 2011) we adopt the common Sigmoid 

Kernel as the kernel function illustrated below:    

 

𝜅(𝑥𝑖, 𝑥𝑗) =  tanh(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)                          (23) 

 

Where 𝛾  is the gamma term and r is the bias term. A larger 𝛾  will increase the 
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complexity of the model, which may cause overfitting problem leading to less 

generalisation ability of the model.  

 

After incorporating the kernel function, the SVM can be written as:   

 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1
𝑥𝑖

𝑇𝑥 + 𝑏 = ∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1
𝜙(𝑥𝑖)

𝑇𝜙(𝑥) + 𝑏 = ∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1
𝜅(𝑥𝑖, 𝑥) + 𝑏 

(24) 

 

In order to find the optimal values for parameters 𝐶 and 𝛾, particle swarm optimisation 

(PSO) is utilised (Sudheer et al., 2014). As a popular optimisation technique, it can help 

determine the optimal parameters for balancing the model performance on both training 

and test sets. 

 

4.4. Data and Variable Construction 

 

4.4.1 Data Source 

 

For the following reasons, this study focuses on the electricity utility industry in the US 

as the sample. First, after the completion of electricity market reforms, the US has a 

vibrant and market-driven electricity market. Second, the US leads the world with the 

highest number of publicly listed electric utility firms and uniquely provides all the 

essential energy-related data required for this study. Third, the capital markets in the 

US are highly developed and sophisticated, facilitating access to a broad range of 

funding sources for enterprises. 

 

The sample consists of unbalanced panel data of 44 publicly listed companies in the US 

electric utility sector spanning from 2010 to 2020. Firm data are gathered from the 

Bloomberg. This study first identifies electricity utilities within the US using 

Bloomberg’s BICS classification, resulting in a pool of 276 firms encompassing both 
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parent companies and their subsidiaries. After eliminating non-listed firms and 

consolidating subsidiaries under their parent companies, we are left with 83 firms, a 

count closely matching that of Hughes (2000). Further refinement involved removing 

firms primarily engaged in transmission, distribution, and power infrastructure while 

retaining those primarily focused on power generation activities. Subsequently, after 

filtering out firms with incomplete data, a final sample comprising 44 firms is obtained. 

The accounting and financial data for these firms are sourced from Standard and Poor’s 

Compustat North America, while risk-related data are obtained from CRSP. Energy data 

are acquired from the Global Power Plant Database and the US Energy Information 

Administration (EIA). 

 

The Global Power Plant Database is a comprehensive and open-source repository 

containing extensive information about power plants worldwide. This information 

encompasses various details, such as power generation capacity, installed capacity, 

ownership, and geographical location. This study first extracts data for power plants in 

the US from this database and subsequently matches them with the electric utility firms 

in the sample. Each publicly listed company (parent company) may possess multiple 

power plants of diverse energy types, including coal-fired plants, nuclear plants, solar 

power plant. These power plants may be directly owned by the parent company or fall 

under the ownership of its subsidiaries. Notably, the Global Power Plant Database 

typically provides ownership information for power plants in terms of subsidiary names 

without specifying the parent company to which these subsidiaries belong. 

Consequently, this study obtains data on the parent company and subsidiary 

relationships for the 44 firms from the Bloomberg. Then, matching the information of 

the subsidiaries that own the power plants with their respective parent companies. 

Furthermore, Find Energy (2022) has also disseminated information regarding power 

plant ownership relationships among US electric utility firms. This study employs both 

data sources for cross-validation, ensuring the reliability and accuracy of the results in 

matching power plants to their respective electricity companies. 
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In addition, because the generation data available in the Global Power Plant Database 

covers the period from 2013 – 2019 only, this study manually collects data from the 

EIA to expand the sample’s period to 2010 – 2020. Moreover, in cases where a power 

plant is co-owned by two or more electric utility firms, the generated output is 

distributed proportionally among each of them. 

 

4.4.2. Variables Selection 

 

4.4.2.1. Input Variables 

 

To test whether firms’ energy structure could improve the classification accuracy, three 

sets of data are constructed for three respective models. Model 1 only includes a set of 

widely accepted firm-level accounting and financial variables. Model 2 adds the energy 

variables to Model 1. Furthermore, a dimension reduction technique is applied to the 

input variables of Model 2, creating a new set of composite input variables used for 

Model 3.   

 

The accounting and financial variables include firm size (AT), measured by total assets 

(Albuquerque et al., 2019; Benlemlih et al., 2018; Cai et al., 2016), growth 

opportunities (Tobin’s Q), represented by Tobin’s Q (Saravia et al., 2021; Schwert and 

Strebulaev, 2014), profitability (ROA), proxied by the net income divided by total 

assets (Benlemlih et al., 2018; Cai et al., 2016), investment opportunities 

(CAPEXP/AT), measured by capital expenditure divided by total assets (Albuquerque 

et al., 2019; Benlemlih et al., 2018; Cai et al., 2016), leverage (TD/AT), proxied by total 

debt divided by total assets (Benlemlih et al., 2018; Salama et al., 2011), and sales 

growth (SALEG), calculated by the rate of sales growth (Cai et al., 2016; Jo and Na, 

2012). 

 

Although this study focuses on the impact of renewable energy on the firm risks, it 
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includes the generation and installed capacity of each energy type in the classification 

model. This helps us in independently identify the distinct characteristics of each energy 

type. This holistic framework enables a more precise recognition of the impact of 

renewable energy development on firm risks. Further, including the highly correlated 

generation and installed capacity variables together allows us to accurately reflect the 

energy utilisation rate of each energy type. Furthermore, for renewable energy, this rate 

is closely related to its utilisation risk, which may affect firm risk exposure. Although 

some studies have verified the robustness of SVM against the multicollinearity issue 

(Erdogan, 2013; Morlini, 2006), converse outcomes have also been found (Kim and 

Sohn, 2010). Therefore, the dimension reduction technique is employed to construct 

new composite variables for comparison. Table 4.1 provides detailed descriptions of 

the accounting, financial, and energy structure variables. Table 4.2 presents the 

descriptive statistics of the variables.  

 

To process multivariate data sets that usually consist of many correlated variables, we 

use principal component analysis (PCA), a common dimensionality reduction 

technique (Shlens, 2014; Smith, 2002). By extracting the primary features of the data, 

and eliminating noise and redundant information, PCA reduces the data’s 

dimensionality while preserving its original features as much as possible. In the new 

lower-dimensional space, each new feature (principal component) is a linear 

combination of the original features and is no longer highly correlated. The first 

principal component contains the highest percentage of variance (information) of the 

data, the second principal component contains the second highest percentage of 

variance (information), and so on. By retaining the most informative principal 

components, the dimensionality of the data can be reduced while retaining most of the 

original information.  
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Table 4.1. Variable description 

Variable Description      

Accounting and financial variables (input variables) 

AT Total assets. 

ROA Ratio of net income to total assets. 

CAPEXP/AT Ratio of capital expenditure expense to total assets. 

Tobin’s Q 
Ratio of the sum of the year-end market capitalisation, and the difference between total 

assets and common/ordinary equity to total assets. (PRCC_F*CSHO+AT-CEQ)/AT  

TD/AT Ratio of total debt to total assets. 

SALEG Sales growth rate from t to t-1. 

Energy structure variables (input variables) 

Coal Annual generation of coal-based energy 

Gas Annual generation of gas-based energy 

Hydro Annual generation of hydroelectric power 

Nuclear Annual generation of nuclear energy 

Oil Annual generation of oil-based energy 

Solar Annual generation of solar energy 

Wind Annual generation of wind energy 

Coal (IC) Annual installed capacity of coal-based energy 

Gas (IC) Annual installed capacity of gas-based energy 

Hydro (IC) Annual installed capacity of hydroelectric power 

Nuclear (IC) Annual installed capacity of nuclear energy 

Oil (IC) Annual installed capacity of oil-based energy 

Solar (IC) Annual installed capacity of solar energy 

Wind (IC) Annual installed capacity of wind energy 

Risk variable (output variables) 

𝛽 Beta of capital asset pricing model (CAPM) 

IR Idiosyncratic risk of CAPM 

TR Standard deviation of daily stock returns in current year 
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Table 4.2. Descriptive statistics  

Variable N Mean 
25th 

Percentile 
Median 

75th 

Percentile 

Standard 

Deviation 

AT 462 31893.16  7778.2483  24614.0000  45651.5000  30212.59  

ROA 462 0.024  0.0185  0.0265  0.0327  0.027  

CAPEXP/AT 462 0.069  0.0554  0.0691  0.0813  0.020  

Tobin’s Q 462 1.223  1.1191  1.1998  1.3031  0.155  

TD/AT 462 0.710  0.6717  0.7035  0.7403  0.066  

SALEG 462 0.020  -0.0349  0.0141  0.0604  0.109  

Coal 462 15809.75  1769.5427  7237.0968  23711.7885  20818.93  

Gas 462 12853.13  510.7208  3943.2603  13301.1372  22203.44  

Hydro 462 1081.36  0 51.5115  1128.7453  2059.22  

Nuclear 462 14462.09  0 0 14620.3188  29318.06  

Oil 462 458.58  0 0.1630  11.1583  1712.45  

Solar 462 366.60  0 1.7980  150.6133  1050.66  

Wind 462 1871.77  0 253.6695  1426.0045  5493.34  

Coal (IC) 462 4591.15  1031.7000  2873.5000  6181.7000  5018.93  

Gas (IC) 462 4977.42  539.8000  1740.6000  5301.8000  7014.14  

Hydro (IC) 462 354.87  0 19.1000  434.2000  633.36  

Nuclear (IC) 462 2460.87  0 0 4083.6000  4567.94  

Oil (IC) 462 510.15  0 27.0500  335.7000  1068.26  

Solar (IC) 462 225.65  0 2.1000  107.2000  582.27  

Wind (IC) 462 737.24  0 106.7000  580.6000  1822.04  

𝛽 462 0.558  0.3186 0.5649 0.7556 0.3093  

IR 462 0.011  0.0081 0.0110 0.0118 0.0059  

TR 462 0.013  0.0094 0.0115 0.0137 0.0075  

 

To ensure the feasibility of conducting PCA, we perform the Kaiser-Meyer-Olkin (KMO) 

test. The estimated KMO value is 0.69, surpassing the cutoff value of 0.5, suggesting that 

the dimensionality was sufficient for employing dimension reduction (Kaiser and Rice, 

1974). We then employ Cattell’s scree test and Horn’s parallel analysis to determine the 

number of components to be retained (Naraei and Sadeghian, 2017)11.  

 
11 As the Kaiser’s eigenvalue rule can lead to severely overestimating the number of components to retain, 

we only used the other two approaches to determine the number of components that should be retained 

(Zwick and Velicer, 1986). 
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Cattell’s scree test is a visualised method which helps determine the number of 

components to retain by examining the “elbow” point in the plot (Cattell, 1966). Figure 

4.2 indicates that around six components should be retained. To ensure the suitability 

of the selection, we employ Horn’s parallel analysis, which compares the actual data’s 

eigenvalues with those from a randomly generated dataset and only retains the ones 

with eigenvalues exceeding the random ones for the analysis (Ledesma and Valero-

Mora, 2007). This method can be more reliable than other ones (Henson and Roberts, 

2006; Naraei and Sadeghian, 2017). Finally, seven components are retained by parallel 

analysis, which aligns closely with the scree test result.   

 

 
Figure 4.2. Scree plot of components 

 

We then construct seven components by the PCA program. Generally, loadings12 > |0.4| 

are assigned to one component (Stevens, 2001). In cases where loadings could be 

assigned to more than one component, the higher loading is selected. Table 4.3 displays 

 
12 The loading value represents the weight of the original variable in the principal component. A higher 

value indicates a greater contribution of that variable. Understanding the composition of the principal 

component can be facilitated by examining the loading values.  
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the components along with their respective loadings, arranged in descending order of 

explained variance proportion. Component one, derived from the generation and 

installation capacity of solar and wind, explains the largest portion of the variance. In 

total, approximately 81% of the total variance can be captured by the seven chosen 

components. Next, scores13 for the seven components are calculated and integrated into 

the dataset for further analysis.  

 

Table 4.3. Loadings and components 

Component Variance proportion Original variables Loadings 

One 0.20 

Solar 0.89 

Wind 0.89 

Solar (IC) 0.87 

Wind (IC) 0.86 

Two 0.15 

Nuclear (IC) 0.96 

Nuclear 0.95 

AT 0.63 

Three 0.14 

Coal (IC) 0.96 

Coal 0.94 

Gas (IC) 0.66 

Gas  0.55 

Four 0.11 
Hydro 0.96 

Hydro (IC) 0.95 

Five 0.08 

Oil 0.72 

CAPX/AT -0.62 

TD/AT 0.61 

Oil (IC) 0.55 

Six 0.07 
ROA 0.83 

Tobin’s Q 0.76 

Seven 0.06 Sale 0.82 

 

 

 
13 Scores are a group of values calculated for each sample data for principal components. It refers to the 

mapping of original data points onto principal components after the dimension reduction. 
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4.4.2.2 Output Variables  

 

We use Beta of the famous capital asset pricing model (CAPM) to measure the 

systematic risk (Albuquerque et al., 2019; Benlemlih et al., 2018; Mossin, 1966; Sharpe, 

1964): 

 

𝑟𝑖,𝑡 − 𝑟𝑓𝑡 = 𝑎𝑖 + 𝛽𝑖(𝑚𝑘𝑡𝑟𝑓𝑡 − 𝑟𝑓𝑡) + 𝜀𝑖,𝑡 

 

where 𝑟𝑖,𝑡 is the return for stock i for period t, 𝑟𝑓𝑡 is the risk-free rate, and 𝑚𝑘𝑡𝑟𝑓𝑡 is the 

Fama French Excess Return on marketing for period t. 𝜀𝑖,𝑡 is the stochastic error term 

for period t. The systematic risk for stock i at year t is measured as the estimated value 

of 𝛽𝑖. The model is captured by the previous year’s daily excess returns.  

 

The idiosyncratic risk (IR) is the volatility of the difference between realised and 

expected returns, which is provided by the CAPM model (Bouslah et al., 2013). Total 

risk (TR) is calculated directly as the standard deviation of daily stock returns over the 

previous 12 months (Benlemlih et al., 2018; Bouslah et al., 2013; Jo and Na, 2012).  

 

4.5. Empirical Analysis 

 

We construct reliable classifiers to investigate whether and how the development of 

renewables affects all different types of risks faced by electric utility firms? Do different 

kinds of renewable energy have consistent impacts on these risks?  

 

4.5.1. Performance Measures 

 

This study employs the widely used confusion matrix to evaluate the performance of 

the classification models (Jian et al., 2016; Khemakhem et al., 2018; Liu et al., 2011). 

Table 4.4 provides the definitions of different classification results. For example, TN 
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represents the number of the correctly predicted low risk firms, while FP indicates the 

number of low-risk firms that have been wrongly classified into the high-risk category.  

 

Table 4.4. Confusion matrix  

 
Predicted negative (low risk) Predicted positive (high risk) 

Actual negative 

(low risk) 
True negative (TN) False positive (FP) 

Actual positive 

(high risk) 
False negative (FN) True positive (TP) 

 

The accuracy rate evaluates the overall classification ability of the models by 

calculating the number of correctly classified firms divided by the total number of firms: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

However, the accuracy rate may not be adequate to measure the classification 

performance of each category, especially in the case of an imbalanced dataset (Jian et 

al., 2016). To address this, two ratios, ‘sensitivity’ and ‘specificity’, are calculated as 

the true positive number to the total positive number and true negative number to the 

total negative number, respectively. Here, they are the correctly predicted number of 

high-risk firms to the total number of high-risk firms, and the correctly predicted 

number of low-risk firms to the total number of low-risk firms, respectively. 

 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

For the imbalanced dataset, G-mean is another important criterion used to assess the 

classification balance performance between the majority and minority classes: 
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𝐺 − 𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= √Sensitivity × Specificity   

 

It considers both sensitivity and specificity. Thus, even if a classifier performs well on 

one class (e.g. the majority class), the G-mean value remains low (Liu et al., 2011). It 

only shows a higher value when the model performs well on both classes. In this way, 

it ensures that accuracy of classification.  

 

4.5.2. Performance of the Classification Models 

 

Here, we test the three models. For the input variables, Model 1 only has accounting 

and finance variables, Model 2 has both accounting, finance, and energy variables, and 

Model 3 is estimated by the PCA variables. In terms of the classification criteria, we 

use the New York University provided US utility industry Beta, 0.64 14 , for the 

systematic risk. This value can represent the average level of systematic risk for US 

utilities. Furthermore, due to data limitations, we calculated the average values of the 

idiosyncratic and total risks from the sample data as their respective classification 

criteria. For each risk type, sample values surpassing the average are categorized into 

the high-risk group, whereas those falling below the average are classified into the low-

risk group.  

 

The classification results in Table 4.5 show that for all three models, the G-mean of the 

systematic, idiosyncratic, and total risks are higher than 0.6, suggesting that the 

ADASYN sampling technique has addressed the unbalanced problem of the dataset 

effectively. That is, the majority samples in both low and high-risk groups are classified 

correctly.  

 

 

 
14 Data source: https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/Betas.html 
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Table 4.5. Classification results of the three risk types 

Risks Model Accuracy Sensitivity Specificity G-mean 

Systematic 

risk 

1 0.63 0.67 0.61 0.64 

2 0.68 0.70 0.67 0.69 

3 0.76 0.79 0.73 0.76 

Idiosyncratic 

risk 

1 0.61 0.55 0.64 0.60 

2 0.63 0.64 0.62 0.63 

3 0.70 0.77 0.66 0.71 

Total risk 

1 0.66 0.53 0.71 0.61 

2 0.62 0.66 0.60 0.63 

3 0.68 0.68 0.67 0.68 

 

In terms of accuracy, both systematic and idiosyncratic risks exhibit higher accuracy in 

Model 2 compared to Model 1, with the former experiencing a more significant increase. 

Moreover, after using the PCA variables, Model 3 shows further improvements in the 

accuracy for all three risk types, with the systematic risk achieving the highest accuracy 

of 0.76. The difference in accuracies between Models 1 and 3 are 0.12, 0.09, and 0.02 

for the systematic, idiosyncratic, and total risks, respectively. Thus, the classification 

accuracy of all three risk types improves after incorporating energy variables, especially 

after applying PCA technique.  

 

The sensitivity of the high-risk group has increased progressively from dataset one to 

dataset three among all three types of risks. The systematic risk of the Model 3 has the 

highest sensitivity of 0.79, which is slightly higher than that of idiosyncratic risk of 0.77 

and significantly higher than that of the total risk of 0.68. The largest difference between 

Models 1 and 3 lies in the idiosyncratic risk, reaching 0.21. 

 

While the specificity of the systematic risk increases progressively from Models 1 to 3, 

only Model 3 shows a higher specificity in the idiosyncratic risk when compared to 

Model 1. On total risk, although specificity of Model 3 outperforms that of Model 2, it 

remains lower than that of Model 1. However, Model 3’s accuracy for total risk is still 

the highest after combining its high sensitivity, suggesting that the classifier for the total 

three remains reliable.  
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4.5.3. The Impact of Renewable Energy on Firms’ Risk Exposure  

 

After confirming the reliable classifier, the impact of renewable energy on firm risks 

can be examined. According to the IEA, global renewable energy (including the US) is 

expanding annually, and this growth is expected to further accelerate in the upcoming 

years15. Figures 4.3–4.4 shows the installed capacity of PV and onshore wind energy in 

the US from 2005 to 2027, illustrating the patterns of this growth trend. To ensure the 

congruence of our study with real-world trends, we employed a yearly escalating rate 

to simulate the growth of renewable energy with greater accuracy. We assume that the 

installed capacity of renewable energy of each sample increases by k% in the first year, 

followed by an annual increase of n times k% (n=1,2,…, 11) thereafter. Accordingly, 

the changed value of the generation variable equals to the changed value of the installed 

capacity variable multiplied by the ratio of original value of the wind generation 

variable to the original wind installed capacity variable. For samples without wind 

energy, their values are substituted by the average value of samples with the wind 

energy. The rate (k%) is set at 0.5%, 1%, and 2% to simulate the three different 

development scenarios of slower, medium, and faster speed of deployment. An even 

higher growth rate would not align well with the actual situation, hence there is no need 

to test for a higher growth rate at the moment.   

 

 
15  Full reports can be found at the website of IEA: https://www.iea.org/reports/renewables-

2022/renewable-electricity. 
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Figure 4.3. PV capacity, United States, 2005–2027 

Data source: https://www.iea.org/reports/renewables-2022/renewable-electricity. 

 

Figure 4.4. Onshore wind capacity, United States, 2005–2027 

Data source: https://www.iea.org/reports/renewables-2022/renewable-electricity. 

 

To simulate the real-world scenario of inconsistent growth rates in wind and solar better, 

three different growth ratios, 1:1, 3:1, and 1:3, are applied. The actual growth ratio of 

wind and solar energy is hard to confirm as it varies depending on different companies 

and countries. Therefore, the choice of 1:3 and 3:1 ratio is primarily aimed at reflecting 

the impact of these two distinct trends, where wind energy’s growth is greater than that 
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of solar energy or vice versa, on different types of risk exposure of firms. For example, 

when renewable energy increases by 1%, following the 1:1 ratio, both wind and solar 

energy increase by 0.5%. When the ratio is 3:1, wind and solar energy increase by 0.75% 

and 0.25%, respectively, and vice versa if the ratio is 1:3. The same logic applies to the 

cases of 0.5% and 2% increase in renewables.  

 

For each adjusted sample, PCA is performed to derive a new set of components. To make 

comparisons, PCA and the SVM classifier are applied to the entire original sample as well. 

Given that the primary focus is on high-risk firms, the presented results are ratios of the 

predicted number of high-risk firms to the total firm number. A higher ratio indicates that 

more firms are categorised into the high-risk group, suggesting a higher risk.  

 

Figure 4.5 displays the proportion of high-risk firms in the total sample after increasing 

the installed capacity and generation of renewable energy at different rates. Higher 

proportions indicate a larger number of firms are classified into the high-risk group and 

are subject to higher risk exposure. Nevertheless, as the three risk types are measured 

differently, making direct comparisons between them are invalid. For instance, we 

cannot conclude that a systematic risk of 0.5 implies a higher level of risk than an 

idiosyncratic risk of 0.3. We therefore use the blue, yellow, and red lines to represent 

the systematic, idiosyncratic, and total risks, respectively. 
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Figure 4.5. Results of high-risk firms’ proportions with different renewables growth  

Note: The solid, long-dashed, and short-dashed lines correspond to the results of wind and solar energy increases in 

the ratios of 1:1, 3:1, and 1:3, respectively 

 

Clearly, systematic risk and renewable energy are significantly negatively correlated. 

Thus, the introduction of more renewables reduces the systematic risk exposure of 

electricity utility firms. This relationship is consistent across all three wind-solar growth 

ratios applied. Thus, hypothesis I is supported. It also aligns with prior research 

showing that environmental performance is negatively correlated with systematic risk 

(Albuquerque et al., 2019; Oikonomou et al., 2012; Salama et al., 2011). Firms with 

more renewables tend to be better diversified, and thus, more immune to external 

volatilities (Shrimali, 2021). Moreover, when the proportion of solar energy exceeds 

that of wind energy, the short-dashed blue line is positioned above both the solid and 

long-dashed lines. This indicates a higher ability of the renewable energy to decrease 

systematic risk when wind energy grows faster than solar energy. This may be the result 

of the current US power generation landscape, where wind energy is playing a much 

more important role than the solar energy. In 2020, the percentage of wind energy 
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generation in the total generation was around four times that of solar energy 16 . 

Therefore, with a much more mature market, investors may consider investments in 

wind power to be less risky. Consequently, when the development of the wind energy 

outpaces that of solar energy, electric utility firms are more likely to experience a 

reduction in systematic risk exposure.  

 

Idiosyncratic risk’s relationship with renewables is directly affected by the different 

growth ratios assigned to wind and solar energy. This is not fully consistent with our 

hypothesis II that renewable energy is positively correlated with the idiosyncratic risk. 

The solid yellow line remains relatively flat throughout, while the long- and short-

dashed lines show negative and positive trends, respectively. Thus, if wind and solar 

energy increase proportionally, the impact on idiosyncratic risk is not substantial. 

However, if the increase in wind energy surpasses that of solar energy, renewable 

energy and idiosyncratic risk positively correlated. Conversely, the correlation is 

negative. Moreover, the distance between these lines and the solid line is much greater 

than that of the systematic risk, indicating that idiosyncratic risk is highly sensitive to 

disproportional changes in wind and solar energy increments. This may be because 

although wind energy exhibits a more robust capacity to reduce systematic risk than 

solar energy, the market still perceives that both energy sources have the potential to 

mitigate the risk exposure of utility firms. Consequently, the disparity in the impact of 

varying growth ratios between the wind and solar energy remains relatively small when 

they have the same impact directions. On the contrary, the results suggest that wind and 

solar energy have opposite impacts on the idiosyncratic risk exposure of firms. 

Therefore, when the growth rate of one surpasses the other, individual companies may 

perceive the changes in their risk profile more sensitive and initiate actions accordingly. 

This is consistent with the literature which emphasises that environmental factors are 

the unique characteristics of individual companies, thereby influencing their 

 
16  Data are available on the website of U.S. Energy Information Administration: 

https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T07.02B#/?f=A&start=2010&end=2022

&charted=14-13. 
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idiosyncratic risks (Bouslah et al., 2013; Goyal and Santa-Clara, 2003; Lee and Faff, 

2009; Sassen et al., 2016). The specific impact directions, extent, and reasons of the 

wind and solar energy are further analysed and discussed in the subsequent section.  

 

Importantly, renewable energy’s contrasting impact on the idiosyncratic risk with 

varying wind-solar growth ratios offers a potential explanation for the discrepancies 

observed in prior research regarding the influence of environmental factors on 

idiosyncratic risk (Bouslah et al., 2013; Sassen et al., 2016). In previous studies, where 

renewable energy data were part of comprehensive environmental variables; hence, 

variations in wind-solar ratios across different samples meant that the seemingly 

uniform “renewable energy” variable actually exhibited distinct characteristics which 

will generate different outcomes. This also highlights the importance of thoroughly 

dissecting environmental factors when studying such issues (Busch and Lewandowski, 

2018; Correia et al., 2021). 

 

Next, total risk exhibits comparable trends to the idiosyncratic risk concerning the three 

distinct wind-solar growth ratios. In essence, when the solar energy experiences a 

higher growth ratio, the total risk increases decreases. In contrast, renewable energy has 

almost no impact on total risk when wind energy undergoes a faster growth ratio. As 

total risk comprises systematic and idiosyncratic risks (Jo and Na, 2012; Sassen et al., 

2016), it reflects their comprehensive characteristics. We find that the relationship 

between idiosyncratic risk and renewable energy has more influence compared to the 

relationship between systematic risk and renewable energy. Therefore, the total risk 

displays similar trends to the idiosyncratic risk. This is partially consistent with 

hypothesis III. This could potentially explain the inconsistent results in prior studies on 

the relationship between CER and the total risk (Cai et al., 2016; Trinks et al., 2020), 

as the influence of total risk is a combination of the other two types of risk.  

 

Overall, the short-dashed lines of the three risk types are all positioned above the other 
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two lines. This indicates that when solar and wind energy develop simultaneously, the 

risk associated with solar energy is greater than that of the wind energy. Therefore, 

when solar energy increases faster than wind energy, all three types of risks show an 

upward trend. In fact, many companies may only be able to develop either solar or wind 

energy in practice due to various reasons, such as natural constraints. In addition, to 

eliminate potential interactions between wind and solar energy, the following section 

separately examines their individual impacts on the three types of risks. 

 

4.5.4. The Impact of Wind and Solar Energy on Firms’ Risk Exposure 

 

To precisely evaluate the individual effects of wind and solar energy, this section 

examines their individual impacts on the three types of risks at different growth rates 

and presents the results in Figure 4.6. Clearly, the growth of wind and solar energy has 

a consistent negative impact on systematic risk, indicating that investments into the 

renewables lower firm risks. This is consistent with hypothesis IIIIa. However, the 

influence of wind energy is more obvious, resulting in a smaller number of firms being 

classified into the high-risk groups.  

 

Furthermore, wind and solar energy generate opposite impacts on idiosyncratic risk, as 

wind energy is negatively correlated and solar energy positively correlated with it. In 

other words, electric utility firms with more wind energy tend to have lower 

idiosyncratic risk, whereas the adoption of more solar energy may increase firms’ 

idiosyncratic risk exposure. This finding is consistent with hypotheses IIIIb and IIIIc. 
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Figure 4.6. Results of high-risk firms’ proportions with different solar and wind growth 

Note: The blue, yellow, and red lines represent systematic, idiosyncratic, and total risks, respectively. Meanwhile, 

the solid and dashed lines correspond to solar and wind energy, respectively. 

 

According to IRENA (2021), solar energy consistently had a higher LCOE than wind 

energy throughout the sample period. Furthermore, based on reports of the UK 

government in 2015 and 2018, the equity cost of solar energy exceeded that of wind 

energy in both years (GOV.UK, 2020). Although solar energy experienced a greater 

reduction (85%) in LCOE compared to wind energy (56%) from 2010 to 2020, its 

LCOE remains much higher than that of wind over a long period due to high initial 

costs. Notably, by 2020, the LCOE of wind had even dipped below that of conventional 

fossil fuels. As the idiosyncratic risk is linked closely with its investment costs, the 

observed results of increased idiosyncratic risk for solar energy and decreased risk for 

wind energy could be explained as the differences in LCOE and equity costs between 

these two renewable sources. 

 

Meanwhile, as the total risk reflects a combination of systematic and idiosyncratic risks, 

and the latter seems to have a more pronounced influence, the total risk demonstrates a 
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trend which is consistent with that of idiosyncratic risk when additional investments are 

made in the solar and the wind energy. This is in line with hypothesis IIIId and e. The 

magnitudes and directions of wind and solar energy’s impact on different types of risks 

are different. Hence, using renewable energy, which includes both wind and solar, as a 

single variable to assess its relationship with firms’ risk exposure may lead to biased 

conclusions. These biases might arise from the mutual offsetting or compounding 

effects of wind and solar energy, leading to upward or downward biases. In particular, 

for the systematic risk, although both wind and solar energy share the same impact 

direction; meanwhile, wind energy has a stronger risk reduction ability compared to 

solar energy. Hence, using the composite renewable energy variable may not reveal 

these distinctions. In terms of the idiosyncratic risk, due to the opposite influence 

directions of wind and solar energy, the composite renewable energy variable could 

potentially yield unreliable outcomes. Furthermore, this effect could subsequently 

contribute to the total risk.  

 

Next, we further investigate whether the influence of wind and solar energy on firms’ 

risks varies over time. The data from 2010 to 2020 are divided into six groups. The first 

five groups consist of data of two consecutive years each, while data of 2020 is 

classified as the last group. Within each group, wind and solar energy are again 

increased by 0.5%, 1%, and 2%, respectively. Figure 4.7 displays how the impacts of 

wind and solar energy on the systematic risk change over time. Clearly, in the original 

data (represented by the grey bars), the systematic risk decreases over time from 2010 

to 2019. However, in the year 2020, there is an abnormal rebound to the level observed 

ten years ago. This may be because of the dislocations caused by the COVID-19 

pandemic, leading to crisis in the energy sector (IEA, 2020b). 
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Figure 4.7. Impacts of wind and solar energy on the systematic risk over time 

Note: Solid and dashed bars represent wind and solar, respectively 

 

First, except for the year 2020, the systematic risk decreases over time as the use of both 

wind and solar energy increases. The negative impact is more significant in recent years, 

and when more wind and solar energy are used. Compared with solar, firms using wind 

tend to experience a faster reduction in their systematic risk exposure. For example, from 

2016 to 2019, for all three increase scenarios, firms with wind energy experience lower 

systematic risks compared with solar energy. This may be because after 2016, the 

installed capacity of wind energy has been much higher than that of solar. Hence, scaling 

up wind energy on a larger basis may be recognised by the market as a more stable choice, 

leading to a more rapid reduction in the associated systematic risk. Finally, although the 

data for the year 2020 may be influenced by the COVID-19 pandemic, increasing the 

utilisation of wind and solar energy can effectively reduce systematic risk to a certain extent. 

 

Figure 4.8 depicts the variations in idiosyncratic risk. Even when the anomalous year, 

2020, is excluded, the original idiosyncratic risk faced by firms is increasing gradually 
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over years. After adjusting the proportion of wind and solar energy to firms’ original 

energy portfolio. The idiosyncratic risk rises over time for all three increments of solar. 

This rise is also positively correlated with the size of the increase of the proportion of 

the solar energy. This aligns with the higher LCOE of solar energy (IRENA, 2021).  

 

 

Figure 4.8. Impacts of wind and solar energy on the idiosyncratic risk over time  

Note: Solid and dashed bars represent wind and solar, respectively 

 

Meanwhile, each increment of wind energy reduces the original idiosyncratic risk 

within the study period, while the magnitude of reduction in risks increases when more 

wind energy is used. However, the idiosyncratic risk still increases over time at a slow 

speed after an increase in wind energy in three different rates. This indicates that wind 

energy can mitigate the rise in idiosyncratic risk, but the extent of reduction is not large 

enough to fully alter the trajectory of risk progression. This is consistent with the fact 

that financing renewable energy projects is challenging, especially in the earlier 

development stage (Geddes et al., 2018; Polzin et al., 2015).  
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Total risk (Figure 4.9) remained relatively stable from 2010 to 2019. However, it 

exhibited a noticeable increase in the abnormal year of 2020. As the total risk exposure 

of firms equals to the sum of the systematic and idiosyncratic risks, the converse growth 

of the two risks during normal years offset each other, resulting in firms’ relatively 

stable overall risk exposure. However, when variations in wind and solar energy are 

considered, solar energy’s changing pattern follow that of the idiosyncratic risk as it 

shows a stronger influence degree compared to the systematic risk. Although wind 

energy mitigates the idiosyncratic risk compared to the original one, it still experiences 

a slow increase over time. Further, such an increase is offset by the decrease in the 

influence of systematic risk. Consequently, wind energy shows no obvious impact on 

total risk.  

 

 

Figure 4.9. Impacts of wind and solar energy on the total risk over time 

Note: Solid and dashed bars represent wind and solar, respectively 
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4.6. Conclusion 

 

Reacting to the challenges of climate change, the electric utility industry has directed 

substantial financial resources toward its energy structure transition. Then, one may ask 

whether this significant investment affects the fluctuations in their market risk. Using a 

dataset consisting of 44 listed companies operating in the US electric utility industry 

from 2010 to 2020, we ask: Whether and how does the development of renewables 

affect the systematic, idiosyncratic, and total risk exposures of firms? Is the impact of 

different kinds of renewable energy consistent on different types of risk exposure?  

 

Employing the machine learning classification approach, SVM, we show that the 

inclusion of energy variables improves the classification accuracy of systematic, 

idiosyncratic, and total risks, constructing a more reliable classifier. Second, we 

simulate the increase in the growth in renewables at different rates of 0.5%, 1%, and 

2%. Further, to better simulate the real-world scenario of inconsistent growth ratios 

within the renewables, three different growth ratios, 1:1, 3:1, and 1:3, are applied to 

wind and solar energy for each rate. We find that first, systematic risk and renewable 

energy are significantly negatively correlated. That is, the introduction of more 

renewables reduces the systematic risk exposure of electricity utility firms. This 

relationship is consistent across all three wind-solar growth ratios. Notably, the 

reduction in systematic risk is more pronounced when wind energy has a larger 

proportion compared to solar energy. This may be due to the current US power 

generation landscape, where wind energy is playing a much more important role than 

solar energy; consequently, investors feel more confident about further expanding wind 

energy capacity. In contrast, idiosyncratic risk exhibits positive relationships with 

renewable energy when solar develops at a faster pace than wind, and vice versa. This 

finding offers a potential explanation for the discrepancies observed in former research 

regarding the influence of environmental factors on idiosyncratic risk (Bouslah et al., 

2013; Sassen et al., 2016). Specifically, when the renewable energy data are part of 
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comprehensive environmental variables, variations in wind-solar ratios across different 

samples may be simply ignored. This divergence strongly implies the necessity of 

considering different outcomes in such research. In addition, as the total risk 

encompasses both systematic and idiosyncratic risks, it follows a similar pattern to 

idiosyncratic risk, which exhibits a stronger influence compared to the systematic risk.  

 

Third, the independent effects of wind and solar on the three risks have been examined. 

Both wind and solar are negatively correlated with the systematic risk due to their 

continually decline LCOE, which leads to lower risk perception by the market as the 

energy product diversifies. For the idiosyncratic risk, wind and solar exhibit opposite 

effect. Since the LCOE of solar remains higher compared to wind, firms perceive a 

higher (lower) risk associated with solar (wind), resulting in a positive (negative) 

relationship with idiosyncratic risk. 

 

Besides examining the individual effects of wind and solar on the three risk types, we 

explore whether these effects change over time. The results show that in terms of 

systematic risk, although both wind and solar have negative impacts over time, wind 

leads to a much faster decline compared to solar. Meanwhile, solar (wind) significantly 

increases (decreases) idiosyncratic and total risks. In other words, electric utility firms 

with more wind (solar) energy tend to have lower (higher) idiosyncratic risk. This is 

mainly due to the lower costs of wind energy compared with solar energy. Furthermore, 

the degree of influence of solar is much larger than that of wind, suggesting that the 

same amount of wind is insufficient to offset the risks brought about by an equivalent 

amount of solar. This implies that the firm may be more sensitive to the higher cost 

compared to the lower cost.  

 

To sum up, it can be stated in a broader concept that the energy structure transition 

significantly affects not only the systematic but also idiosyncratic and total risks faced 

by utility firms. However, it needs to clarify that it is not proper to deduce the influence 
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direction of whole energy structure transition as each energy types may have diverse 

impact direction.  

 

Our findings have some valuable implications. First, considering idiosyncratic risk in 

asset pricing is reasonable as this risk is significantly influenced by both wind and solar. 

Second, as the impacts of wind and solar on the systematic and idiosyncratic risks vary 

in direction and degree, a rational allocation between the two should be considered to 

minimise the total risk exposure of firms. Third, given the higher risk associated with 

solar energy, companies can explore diversified financing sources for developing solar 

energy projects, rather than relying on the equity financing only. For instance, some 

other financial instruments, like green bonds, could be used to mitigate the impact of 

market fluctuations. Finally, governments should consider the diversified conditions of 

different regions while formulating subsidy policies. For instance, in areas where wind 

energy development is restricted by geographical and climatic factors, more support 

could be provided to assist firms’ development of solar projects. This can facilitate the 

better utilisation of state funding, reducing the risk exposure of electricity utility firms 

while improving their overall financial performance. In turn, this can promote the 

steady development of the green energy industry and accelerate the energy structure 

transition of the whole country.  

 

This study has some limitations. This study only investigates how energy structure 

transition influences firm risks in the US market, which exhibits a moderate level of 

renewable energy development. Future studies could be extended to regions with high 

renewable energy proportion in the energy mix, such as Germany and Northern 

European countries. Furthermore, developing countries undergoing rapid renewable 

energy expansion should be considered as well, such as China and India. Comparative 

studies can further reveal interesting and comprehensive insights. 
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Chapter 5: The Cost Optimisation of the Electricity Retailers with 

the Integration of the Cloud Energy Storage 

 

5.1. Introduction  

 

Along energy supply structure adjustments and higher requirement for energy 

efficiency, many countries, including the US, Australia, European countries, and the 

UK, started reforming the electricity market since the 1990s. The goal has been to 

unbundle the traditional vertically integrated electricity market into four sectors, 

generation, transmission, distribution, and supply, and induce competition via 

privatisation, restructuring, and deregulation (Sioshansi and Pfaffenberger, 2006). With 

this market liberalisation process, the majority of electric utilities in many countries are 

now investor-owned (EIA, 2019). Electric utilities in the supply sector are often referred 

to as electricity retailers. Acting as an intermediary, retailers purchase electricity from 

the generators and resell it to the end users. The prosperity of the electricity retail market 

has offered customers with more choices and helped the whole power industry in 

improving its efficiency.  

 

Contrary to normal commodities, electricity can neither be stored on a large-scale nor 

can the supply-demand relation be simply adjusted via inventory management. The 

production and consumption of electricity must always be balanced to avoid power 

wastage and extremely high electricity prices (Griffin and Puller, 2005; Müsgens et al., 

2014). When electricity supply and demand are unbalanced for a substantial amount or 

period, it may lead to additional maintenance expenses, lower energy efficiency, and 

even market failure, such as the California crisis (Joskow, 2001). To appropriately 

balance electricity supply and demand, and survive under tough competition, retailers 

need to work carefully with both the consumer and wholesale sides of the market. 

Extensive research has used various angles to examine how the balance program can 
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be addressed, including consumer load forecasting, energy procurement strategies, and 

related risk management. 

 

Several studies have explored load forecasting. For instance, various techniques, such 

as Artificial Neural Network (Alhussein et al., 2020; Cecati et al., 2015; Li et al., 2016), 

linear regression model (Hong and Wang, 2014), semi-parametric additive model 

(Goude et al., 2014), statistical method (Hong et al., 2014), and fuzzy regression (Hong 

and Wang, 2014; Song et al., 2005) have been proposed to forecast the short-term load 

(up to several weeks). Moreover, the long-term load forecasting models (up to a few 

years) are often developed based on short-term models (Hong et al., 2014; Hyndman 

and Fan, 2010; Nalcaci et al., 2019; Xie et al., 2015; Yang et al., 2018).  

 

In terms of the energy procurement strategies, various internal and external factors, 

including the electricity price volatility, price elasticity of demand, and market 

competition, are considered while making the optimal purchasing decision from 

different sources, such as the spot market, forward contracts, call options, and self-

production facilities (Yang et al., 2018). Several models have been proposed to capture 

electricity price volatility, such as the generalised autoregressive conditional 

heteroskedasticity (GARCH) and GARCH-jump models (Ciarreta et al., 2020; Hatami 

et al., 2009; Liu and Shi, 2013), the mean-reverting Ornstein-Uhlenbeck stochastic 

process (Kettunen et al., 2010), and the envelope bound model (Charwand and 

Moshavash, 2014). Meanwhile, two main types of models are widely used for energy 

procurement optimisation: the stochastic (Safdarian et al., 2015) and bi-level 

optimisation models (Nazari and Akbari Foroud, 2013). The demand side responses are 

often considered in the purchasing models (Feuerriegel and Neumann, 2014; Khan et 

al., 2015; Zugno et al., 2013).  

 

Finally, on the risk management of electricity retailers, some studies have focused on 

the trade-off between the expected profit and risk (Carrion et al., 2007; Charwand and 
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Gitizadeh, 2020; Mahmoudi-Kohan et al., 2010; Sun et al., 2021). Others have analysed 

the hedging strategies that can be adopted by the electricity generators and retailers 

(Boroumand et al., 2015; Deng and Oren, 2006; Stevenson et al., 2006). However, some 

hedging choice could be inefficient, and the seasonal variation of the electricity 

consumption may cause systematic mismatch in hedging demand (Junttila et al., 2018). 

 

Among all available tools that electricity retailers have to balance supply and demand, 

the development of energy storage brings new possibilities. Energy storage is a set of 

technologies that transform one kind of energy which is hard to store to other kinds of 

energy which can be easily stored and used at a later time (IEA, 2023a). This time 

difference in electricity production and consumption can significantly reduce the 

imbalance between energy supply and demand. The rapid development of energy 

storage has come along with the increasing penetration of renewable energies. As a 

sustainable and environmentally friendly energy source, renewable energy is projected 

to account for nearly 90% of global electricity generation by 2050 (IEA, 2021a). 

However, the nature of renewable energy makes it unstable and intermittent. Energy 

storage technologies can help address this intermittency and have indeed developed 

rapidly in recent years. Energy storage facilities can be installed flexibly in any place 

on the power system—from the generation supplier, through the transmission network, 

and to the final consumer—to integrate them in the comprehensive operation of the 

power system (Ding et al., 2019; Locatelli et al., 2015). Notably, using energy storage 

techniques to maintain grid balance in the power system is not a new research topic. 

Studies have typically focused on the integration of stored energy into the grid from the 

aspects of electricity generation, transmission, and distribution sectors (Després et al., 

2017; Di Cosmo and Malaguzzi Valeri, 2018; Scorah et al., 2012). To our knowledge, 

little attention has been paid on the role played by electricity retailers, probably because 

the energy storage technologies were not that well developed at the time. With energy 

storage technology advancements, the lower cost and faster response of storage 

technologies has now made it possible for retailers to utilise energy storage devices to 
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balance the load deviation and optimise the procurement strategies. Since then, an 

increasing number of models have been proposed to simulate this optimisation process.  

 

Hu et al. (2019) built a purchase model of an energy storage system and distributed 

renewable energy to control the load forecast deviation risk and increase the total profit 

of the power-selling company. Wei et al. (2015) proposed a two-stage two-level 

optimisation model for the retailers to cope with the procurement problems 

incorporating storage units. In the first stage, the consumer’s attitude to the retail price 

was reflected by the demand response. This phenomenon was characterised by a 

Stackelberg game in which the leader of the market moves first, and then the followers 

move. In the second stage, retailers worked on dispatching energy storage and 

executing the energy contracts. Using case studies, the authors showed that building 

larger storage units may help retailers maximise their profits. Ju et al. (2020) proposed 

a new two-stage demand response for electricity retailers with an energy storage system 

and a corresponding two-layer coordinated optimal model for purchase and retail 

transactions, respectively. The results showed that higher energy storage capacity with 

proper dimension can enhance the demand response efficiency. Yang et al. (2020) 

constructed a multi-objective stochastic optimisation model of electricity retailers with 

energy storage system to minimise the cost of electricity retailers and maximise the 

consumption of clean energy power generation considering the uncertainties of clean 

energy power generation and demand response in four different scenarios. Liu et al. 

(2021) established an optimal planning model for multiple electricity retailers who 

shared energy storage and analysed the cost-benefit for them of doing this. The 

electricity retailers were screened and classified into groups with high or low matching 

degree based on the correlation degree of their load curves. Their results demonstrated 

that energy storage can effectively reduce the cost for all groups and the groups with 

higher matching tend to benefit more. Sun et al. (2022) built a data-model hybrid driven 

bi-level optimisation model to maximise the profit of the electricity retailer by 

combining real-time price and energy storage system as demand response strategies. 
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The authors found that the retailer’s profit extra increases by 7.19% after integrating 

the energy storage system.  

 

Together, these studies show the feasibility of using energy storage for cost cutting and 

profit maximisation by electricity retailers from different angles. Moreover, a higher 

level of energy storage capacity and more flexible consumption patterns are more likely 

to lead to higher profit and efficiency. However, Liu et al. (2017) noted that despite 

these potential benefits, in practice, high maintenance cost, policy restriction and low 

control efficiency mean that many domestic and small users are reluctant to invest in 

energy storage devices. To address this issue, a new business concept, cloud energy 

storage (CES), was developed (Liu et al., 2017). In this virtual energy storage service 

system, the CES operator invests and operates centralised energy storage facilities. 

Different kinds of energy storage devices can be deployed according to different 

situations to optimise the operations. CES users can make a virtual request of their load 

demand to the central operator, and store or withdraw real electrical energy to and from 

central energy storage facilities connected to the power grid. Due to the sharing of 

storage resources and economies of scale, CES can help in achieving higher social 

benefits at lower social costs.  

 

The amount of energy that needs to be charged or discharged by energy retailers to deal 

with supply and demand fluctuations is volatile. Hence, renting CES capacities seems 

a better choice as it is more flexible and cheaper in the short term. Due to tough 

competition, it is important for the electricity retailers to limit costs. Therefore, we 

believe that the adoption of CES may offer new business opportunities to retailers. Then, 

one question naturally arises: How can we fully utilise the CES system to balance 

electricity supply and demand while maximising retailer profits? We construct a new 

business model to estimate the optimal CES rental amount required to achieve a 

balanced supply and demand on a daily basis. Based on this, we further calculate the 
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minimal costs incurred. Data from the advanced PJM17 market from the US are used to 

test the feasibility of the model.  

 

The contributions of this study are fourfold. First, to the best of our knowledge, this is 

the first study which try to link the two agents, electricity retailers and CES suppliers, 

for potential collaborations. Compared with individuals, these agents have more 

resources to gather comprehensive market information. Further, compared with the 

power system, they tend to be more flexible. Consequently, if these two agents can 

collaborate, a win-win situation can be created for more efficient resource allocation 

and more stable power supply. 

 

Second, this study proposes a new energy storage model for electricity retailers. Unlike 

previous studies that require electricity retailers to purchase the energy storage devices, 

this model proposes a dynamic renting mode, allowing the electricity retailers to rent 

the energy storage capacities from CES suppliers according to their daily needs. In this 

way, the idle energy storage devices can be fully utilised, and the financial burden of 

the electricity retailers can be significantly reduced. With a much higher capital 

utilisation rate, returns generated from investments in energy storage can be greatly 

improved.  

 

Third, The CES-based business model requires the estimation of a set of energy storage 

devices’ overall cost (Liu et al., 2017). This study advances this business model by 

providing a more accurate estimation of the single rental price of CES. It considers all 

key factors including the time value of the capital, battery life, and charge-discharge 

cycle times. In practice, to maximise profit, electricity retailers can use this estimated 

single rental price as a key reference while searching for electricity supplies from 

different sources.  

 
17 PJM, the Pennsylvania-New Jersey-Maryland Interconnection, is a regional transmission organisation 

(RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District 

of Columbia in the United States. 
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Finally, the proposed business model is very practical and can be easily adapted in 

different electricity markets with minor adjustments. The case study uses data from the 

PJM electricity market, and demonstrates that the proposed method can significantly 

reduce the total cost of the electricity retailers and improve their operational efficiency. 

As electricity consumption behaviours, electricity price trend, and battery price share 

many common characters in different countries and regions, our proposed business 

model can also be applied in different markets with reasonable confidence. In addition, 

as the costs of the electricity retailers decrease over the long term, the electricity price 

would be lower. This may save energy and reduce carbon emissions. 

 

The rest of this chapter is organised as follows. Section 5.2 describes the cooperation 

between electricity retailers and CES suppliers and establishes the business model for 

the electricity retailers to incorporate CES. Section 5.3 builds the model to calculate the 

single rental cost of the CES and confirm its optimal rented amount of the CES. Section 

5.4 explains the data selection and analysis approaches. Section 5.5 presents the case 

study to demonstrate the effectiveness of the proposed model in different scenarios. 

Section 5.6 highlights the contributions and draws the conclusions of this chapter.  

 

5.2. Cooperation between Electricity Retailers and CES Suppliers 

 

5.2.1. Electricity Retailers Operations 

 

To understand the relationship between electricity retailers and CES suppliers, we first 

discuss the purchasing process of electricity retailers. In general, retailers’ purchasing 

decision is determined by consumer demand, which can be highly volatile sometimes. 

To reduce the uncertainties, electricity retailers often divide the purchasing amount into 

the fixed and variable components, and engage in transactions on both medium-to-long 

term financial markets and the short-term spot market (Nazari and Akbari Foroud, 
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2013). For the fixed component, electricity retailers can sign procurement contracts 

with the generators directly at a relatively low price. They can also use futures and other 

financial derivatives to hedge against the potential risk exposure. In practice, this fixed 

amount is often estimated conservatively as any deviation from this figure may lead to 

penalties or high balance fee cost (Hu et al., 2019). Meanwhile, generators and 

electricity retailers also bid and offer in the short-term spot market, where the price is 

constantly fluctuating. Consequently, under the widely adopted time-of-use (TOU) 

pricing scheme, the electricity retailers would bear the price risks from the spot market. 

In particular, if it is very close to the electricity consumption time, a very high cost 

could be incurred to balance the supply and demand (Byström, 2005). This can 

incentivise the development of energy storage, which can be used to effectively balance 

supply and demand on both medium-to-long term markets and the short-term spot 

market (Bradbury et al., 2014; Hu et al., 2019; Zhang et al., 2013). The electricity 

retailers can purchase a certain amount of electricity when the price is low and then 

discharge it when needed. This can reduce the demand for high cost electricity on the 

spot market while absorbing the additional electricity generated from the medium-to-

long-term market. Meanwhile, the increased demand in the medium-to-long term 

market may encourage large scale energy generation from renewable sources; this can 

further lower the overall electricity generation costs.  

 

5.2.2. Business Model  

 

As shown in Figure 5.1, the flow of the electricity can be explained from both physical and 

economic aspects. From the natural science perspective, the entire process of electricity 

production, transmission, and consumption is completed almost simultaneously. 

Generators produce the electricity, the power grid transmits the electricity to consumers, 

and then the electricity is immediately consumed. This process can be regarded as a 

physical chain of electricity flow. Meanwhile, from an economic perspective, a business 

chain exists for electricity consumption. The central platform of the business chain is the 
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electricity market, which incorporate all parts of the physical chain.  

 

As a professional agency, electricity retailers do not exist in this physical chain but are 

inevitable in the business chain. Renting storage capacity from the CES suppliers can 

significantly improve the adjustment ability of the electricity retailers. In the following 

section, we propose an optimisation model for the electricity retailers with the CES 

(ER-CES). To ensure the balance between electricity supply and demand, ER-CES will 

rent certain amount of energy storage capacities from the CES for charging or 

discharging. However, as the real-time electricity price may be cheaper than the cost of 

the CES in some periods, it is not advisable to balance all the supply-demand imbalance 

by renting the CES. Understanding the optimal rental amount of CES is essential. Hence, 

the model first calculates this amount and then determines the total minimal cost.  

 

 

 

Figure 5.1. ER-CES model 

 

5.3. Methodology 

 

5.3.1. Flow of the ER-CES Model 

 

Essentially, electricity retailers purchase electricity from the electricity market based 

on customer demand and then sell it to customers, taking advantage of the wholesale-

retail arbitrage. However, customer demand is dynamic, leading to a difference between 
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the amount of electricity purchased in advance and actual customer demand. 

Consequently, there is always a load deviation between the predicted and real loads. 

Taking one day’s load data of the PJM power market in the United States as an example, 

Table 5.1 shows the predicted load, real load, and load deviation ratio of one load area 

on December 11, 2020. The load deviation ratios vary from -9.43% to 6.31%. The parts 

of positive deviation should be purchased from the spot power market to compensate 

for the shortage, while the negative deviation should still be paid according to the 

contract. 

 

Table 5.1. Load data from the PJM on December 11, 2020 

Time Predicted Load / MW Real Load / MW Load Deviation Ratio 

12 am 1290 1352.5 4.62% 

1 am 1258 1292.9 2.70% 

2 am 1244 1277.6 2.63% 

3 am 1243 1249.8 0.54% 

4 am 1266 1262.1 -0.31% 

5 am 1326 1284.0 -3.27% 

6 am 1418 1355.7 -4.60% 

7 am 1494 1446.8 -3.26% 

8 am 1522 1509.5 -0.83% 

9 am 1537 1539.2 0.14% 

10 am 1538 1525.2 -0.84% 

11 am 1527 1496.1 -2.07% 

12 pm 1514 1493.7 -1.36% 

1 pm 1499 1478.0 -1.42% 

2 pm 1481 1452.1 -1.99% 

3 pm 1470 1423.1 -3.30% 

4 pm 1487 1408.0 -5.61% 

5 pm 1548 1414.6 -9.43% 

6 pm 1532 1509.0 -1.52% 

7 pm 1499 1501.6 0.17% 

8 pm 1458 1486.7 1.93% 

9 pm 1408 1465.5 3.92% 

10 pm 1345 1417.5 5.11% 

11 pm 1276 1361.9 6.31% 
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Figure 5.2a shows electricity retailers’ actual processing procedure for the load 

deviation in practice, which has no CES (No-CES); the aim is to solve the load 

deviation by purchasing electricity in the spot power market. The purchase price is the 

spot price for that day and is cleared by the end of the day. In general, the spot price is 

much higher than the contract price; if the load deviation is too large, the retailer may 

have to pay a penalty. 

 

 

Figure 5.2a. Flow chart of the No-CES Model 

 

Figure 5.2b below illustrates how an electricity retailer can minimise its costs after 

incorporating the CES. The predicted load, predicted electricity price, and single CES 

price of day n are obtained first. Then, they are used for computing the total cost of ER-

CES and optimal CES rental amount. When a positive deviation occurs on day n, the 

CES will discharge for compensation; for a negative deviation, the CES is charged to 

absorb the extra power.  
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Figure 5.2b. Flow chart of the ER-CES Model 

 

5.3.2. Definition of Load Deviation 

 

The price of energy storage devices is determined by two factors: power (P) and 

capacity (Q) (Q = P∆t). To rapidly respond to charging and discharging needs, and avoid 

the repeated charging and discharging of the same equipment, two sets of energy 

storage devices are normally required to compensate and absorb the load deviation, 

respectively. If an hour is set as one trading period, there will be 24 trading periods in 

a day. The estimated load for period t of day n can then be represented by 𝑃𝐿𝑝(𝑡). 

Assuming the actual load as 𝑃𝐿(𝑡), the deviation 𝑃𝐾(𝑡) is: 

 

𝑃𝐾(𝑡) = 𝑃𝐿(𝑡) − 𝑃𝐿𝑝(𝑡)                                                                                                      (1) 
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The size of 𝑃𝐾(𝑡) depends on the accuracy of load forecasting. However, a prediction 

error is inevitable due to the randomness of electricity consumption. As load forecasting 

is not the research object of this study, the load deviation curve of day n will be 

estimated in a simple way. From Figure 5.3, when 𝑃𝐾(𝑡) > 0 in period t, it is called the 

positive load deviation, implying that the actual load is greater than the estimated load 

(Hu et al., 2019). The optimal discharging CES capacities should then be calculated to 

compensate the deviation. Assume that the power discharged is 𝑃𝐸𝑆𝐷(𝑡), then, for all 

periods t with a positive 𝑃𝐾(𝑡), the total capacity is 𝑄𝐸𝑆𝐷. When 𝑃𝐾(𝑡) < 0, it is called a 

negative load deviation, implying that the actual load is less than the estimated load 

(Hu et al., 2019). The optimal charging CES capacities should then be calculated to 

absorb the load deviation. Assume that the power of absorption is 𝑃𝐸𝑆𝐶(𝑡), then, for all 

periods t with a negative 𝑃𝐾(𝑡), the total capacity is 𝑄𝐸𝑆𝐶. Consequently, the remaining 

positive and negative deviations, represented by the yellow parts in Figure 5.3, would 

be traded directly in the real-time electricity market. 

 

 

 

Figure 5.3. Load deviation 
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5.3.3. Electricity Cost of ER-CES 

 

To balance the daily load deviation though CES, the cost of electricity charging and 

discharging should be separately calculated. The charging electricity needs to be 

purchased, while the discharging electricity can be sold. Assuming N periods for 

charging and M periods for discharging; then, the difference between the two parts can 

be positive or negative. Referring to the electricity price curve of day n, set 𝛾(𝑡) as the 

estimated real-time electricity price for day n. Then, the cost is: 

 

𝐶𝐸𝑆 =  ∑ (𝑃𝐸𝑆𝐶(𝑡) × ∆𝑡 × 𝛾(𝑡))𝑁
𝑡=1 −  ∑ (𝑃𝐸𝑆𝐷(𝑡) × ∆𝑡 × 𝛾(𝑡))𝑀

𝑡=1                                                  (2) 

 

According to the model, the optimal charging and discharging amount may not fully 

match the deviation. Then, the unfulfilled component must still be traded in the spot 

market. Using 𝛾(𝑡) as the trading price, the difference cost for charging and discharging 

is: 

 

𝐶𝐸𝑆
+ =  ∑ [(𝑃𝐾(𝑡) − 𝑃𝐸𝑆𝐷(𝑡)) × ∆𝑡 × 𝛾(𝑡)]𝑀

𝑡=1 ,       𝑃𝐾(𝑡) > 0                                                       (3) 

𝐶𝐸𝑆
− =  ∑ [(−𝑃𝐾(𝑡) − 𝑃𝐸𝑆𝐶(𝑡)) × ∆𝑡 × 𝛾(𝑡)]𝑁

𝑡=1 ,   𝑃𝐾(𝑡) < 0                                                        (4) 

 

Then, the total electricity costs after using the CES is: 

 

𝐶𝐸𝑆
𝐸 =  𝐶𝐸𝑆 + 𝐶𝐸𝑆

+ + 𝐶𝐸𝑆
−                                                                                                (5) 

 

5.3.4. Equipment Cost of ER-CES 

 

The total equipment cost includes two parts: the energy ($/kWh) and power capacities 

($/kW): 
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𝐶𝐸𝑆𝑃 = (𝛼𝐸𝑆𝑄𝐸𝑆𝑀 + 𝛽𝐸𝑆𝑃𝐸𝑆𝑀)                                                                                    (6) 

 

𝛼𝐸𝑆 and 𝛽𝐸𝑆 are the unit investment cost of the energy ($/kWh) and power capacities 

($/kW), respectively. 𝑄𝐸𝑆𝑀  and 𝑃𝐸𝑆𝑀  are the purchased energy capacity and power 

capacity of energy storage.  

 

After considering the time value of capital, the annualised equipment cost (𝐶𝑌) over Y 

years can be estimated as follows, assuming r is the discount rate (Liu et al., 2017):  

 

𝐶𝑌 =
𝑟

1−(1+𝑟)−𝑌
× 𝐶𝐸𝑆𝑃 =

𝑟

1−(1+𝑟)−𝑌
× (𝛼𝐸𝑆𝑄𝐸𝑆𝑀 + 𝛽𝐸𝑆𝑃𝐸𝑆𝑀)                                     (7) 

 

The single rental price is related to the service times of equipment that has limited 

number of uses. Setting the circle times for charging and discharging as K, one year’s 

usage days as 𝜌, and one circle for one day, the service life of the energy storage 

equipment is: 

 

𝑌 =
𝐾

𝜌
                                                                                                                           (8) 

 

The single rental price of energy and power capacities, α and β, respectively, can be 

represented as： 

 

𝛼 =

(
𝑟

1−(1+𝑟)
−

𝐾
𝜌

)×𝛼𝐸𝑆

𝜌
                                                                                                    (9)  

𝛽 =

(
𝑟

1−(1+𝑟)
−

𝐾
𝜌

)×𝛽𝐸𝑆

𝜌
                                                                                                   (10) 
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Next, 𝑃𝐸𝑆𝐶𝑀 is defined as the rental power capacity for charging, and it should meet the 

largest one: 

 

𝑃𝐸𝑆𝑃𝐶𝑀 = max{𝑃𝐸𝑆𝐶(𝑡)}, t = 0,1,2…23                                                                        (11) 

 

𝑃𝐸𝑆𝐷𝑀 is the rental power capacity for discharging, and it also should meet the largest 

one: 

 

𝑃𝐸𝑆𝑃𝐷𝑀 = max{𝑃𝐸𝑆𝐷(𝑡)}, t = 0,1,2…23                                                                      (12) 

 

Then, the rental energy capacity for charging is: 

 

𝑄𝐸𝑆𝐶 = ∑ (𝑁
𝑡−1 𝑃𝐸𝑆𝐶(𝑡) × ∆𝑡)                                                                                           (13) 

 

The rental energy capacity for discharging is: 

 

𝑄𝐸𝑆𝐷 = ∑ (𝑁
𝑡−1 𝑃𝐸𝑆𝐷(𝑡) × ∆𝑡)                                                                                        (14) 

 

Because the charging and discharging capacities are rented separately, charging and 

discharging only complete half of one charge-discharge cycle. This means that only half 

of the full cost should be calculated for charging (𝐶𝐸𝑆𝐶) and discharging (𝐶𝐸𝑆𝐷) separately: 

 

𝐶𝐸𝑆𝐶 =
1

2
× (𝛼𝑄𝐸𝑆𝐶 + 𝛽𝑃𝐸𝑆𝐶𝑀)                                                                                  (15) 

𝐶𝐸𝑆𝐷 =
1

2
× (𝛼𝑄𝐸𝑆𝐷 + 𝛽𝑃𝐸𝑆𝐷𝑀)                                                                                   (16) 

 

The total equipment cost for using CES is: 
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𝐶𝐸𝑆𝑃 = 𝐶𝐸𝑆𝐶 + 𝐶𝐸𝑆𝐷                                                                                                    (17) 

 

5.3.5. Upfront Cost of ER-CES 

 

The charging equipment prepared for absorbing the electricity should be kept empty. 

Meanwhile, the discharging equipment should be charged in advance to guarantee the 

supply. The amount is determined based on the optimised energy and power capacities. 

Then, the cost for day n is:  

 

𝐶𝐸𝑆𝐷′ = 𝛾(𝑝) × 𝑄𝐸𝑆𝐷 = 𝛾𝑝1 × ∑ (𝑃𝐸𝑆𝐷(𝑡) × ∆𝑡)𝑀
𝑡=1                                                       (18) 

 

γ𝑝1 is the clearing price of day n-1. Furthermore, the electricity that is absorbed in day 

n-1 can be traded at the clearing price of day n (γ𝑝2), generating an income from the 

absorbed electricity. Thus, the actual cost incurred is: 

 

𝐶𝐸𝑆𝐷′(𝑛−1) = 𝛾𝑝 × 𝑄𝐸𝑆𝐶(𝑛−1) = 𝛾𝑝2 × ∑ (𝑃𝐸𝑆𝐶(𝑛−1) × ∆𝑡)𝑁
𝑡=1                                      (19) 

 

The upfront cost of CES is: 

 

𝐶𝐸𝑆𝑄 = 𝐶𝐸𝑆𝐷 − 𝐶𝐸𝑆𝐶(𝑛−1)                                                                                            (20) 

 

5.3.6. Total Cost of ER-CES 

 

The total cost of the ER-CES is the sum of all three parts, which are the real-time 

electricity, equipment and upfront electricity costs:  

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐸𝑆
𝐸 + 𝐶𝐸𝑆𝑃 + 𝐶𝐸𝑆𝑄                                                                                      (21) 
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5.4. Data Collection and Analysis  

 

To test the feasibility of our model, data from the PJM electricity market of the US are 

used. Two sets of 15 days of data are chosen in December 2020 and May 2021, 

respectively. As this study intends to balance the load deviation on a daily basis, we 

purposely use data from winter as the season tends to have a higher demand for 

electricity due to increased heating needs. This may also result in a larger fluctuation in 

the load and price curves, making it ideal to verify the feasibility of the proposed model. 

For the rest of the year, the load curve tends to be relatively smooth (the summer is not 

hot in the sample area, which means that demand for electricity tends to remain stable). 

To further test the model validity in such a lower load fluctuation period, data from 

May 2021 are used for comparative analysis. 

 

In total, three types of data are collected for the case study: users’ load data, electricity 

price in the spot market, and parameters of energy storage devices. The former two are 

collected from the PJM electricity market 18 , while the third one comes from the 

literature (Liu et al., 2017; Sloane, 2019). Data from PJM are chosen for the following 

reasons. First, PJM is a regional transmission organisation (RTO) in the US serving 

eastern several states, including Pennsylvania, New Jersey, and Maryland. It was the 

world’s largest competitive electricity market until the development of the European 

Integrated Energy Market in the 2000s. The successful operation of PJM has made it a 

research case for many studies (Ott, 2003; Sioshansi et al., 2009; Walawalkar et al., 

2008).  

 

Second, PJM provides high quality data. As it is impossible for one electricity retailer 

to serve the whole country, the load data at the city level or even a smaller scale would 

be suitable. The load data of PJM are released by load areas, which can be a very small 

town or area. This provides us with a relatively precise estimation of the service 

 
18 http://dataminer2.pjm.com/feed/da_hrl_lmps/definition 
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coverage of an electricity retailer. Meanwhile, except for the actual load and price data, 

the predicted load and price data are also readily accessible in the PJM market. 

Therefore, the quality of data ensures that the proposed model’s results are reliable, and 

hence, reasonably generalisable. Valuable lessons may also hold for countries like 

China, which is trying hard to build up its own electricity market.  

 

Finally, as big and well-developed cities tend to have sound infrastructure and well-

educated labour force, they are also more likely to invest into new technologies and 

adopt new business models. Duquesne, in the metropolitan area of Pittsburgh (the 

second largest and second-most populous city in Pennsylvania, known as “the Steel 

City”, and is a leader in manufacturing, computing, electronics, and the automotive 

industry), is a suitable choice to demonstrate the validity of our business model. 

 

We also employ data from the power market of New South Wales (NSW), Australia, as 

a robustness test for the adaptability of the proposed model in different regions. The 

load data for November 1, 2022, are randomly selected and scaled down to simulate the 

scale of an electricity retailer. For simplification, we directly present the results of the 

NSW power market in the Finding and Discussion rather than showing the detail of 

their various types of data in the following parts as we did for the PJM market. 

 

5.4.1. Load Data 

 

The daily predicted (Figure 5.4) and actual load curves (Figure 5.5) of 15 days in 

December 2020 in Duquesne, Pittsburgh, with a time interval of one hour, were 

collected from the website of PJM. The data covered the period from December 4 to 

18. The Christmas was not included, because the commercial and industrial load 

demand is very low during the holiday period.  
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Figure 5.4. Predicted load curve 

(December) 

 

Figure 5.5. Actual load curve  

(December) 

 

The load deviation curve for each day can be calculated based on the two sets of loads 

(Figure 5.6). Considering the different load characteristics of weekday and weekend, 

the load curves of the weekday are more representative as there is less commercial and 

industrial demand during the weekend. Moreover, Monday is not suitable as day n, as 

the electricity data of day n-1, which is Sunday, will be used for calculation of upfront 

cost. Hence, one day from Tuesday to Friday can be randomly chosen as day n. Finally, 

18 December 2020 (Friday) was chosen as day n because it is the last day of our data 

period. For simplicity, the mean value of the former two Friday’s load deviation (4 

December and 11 December) was used as the predicted load deviation for day n (Figure 

5.7).  

Figure 5.6. Load eviation curves 

of 15 days (December) 

Figure 5.7. Predicted load deviation curve 

of day n (December) 

 

For the comparative sample, data from 7 to 21 May 2021 were chosen randomly and 

May 21 (Friday) was chosen as day n. Figures 5.8 and 5.9 are the predicted and actual 

load curves of May respectively. Figure 5.10 shows the load deviation curves and 
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Figure 5.11 is the predicted load deviation of day n (mean value of May 7and 14). 

Clearly, the majority of load curves of May are more stable than that of December.  

Figure 5.8. Predicted load curve (May) Figure 5.9. Actual load curve (May) 

 

Figure 5.10. Load deviation curves 

of 15 days (May) 

                                                                 

Figure 5.11. Predicted load deviation curve 

of day n (May) 

 

5.4.2. Electricity Price     

 

The real-time electricity prices of day n-1 were collected, and the price of the last period 

was chosen as the clearing price. Figures 5.12 and 5.13 represent the data of December 

2020 and May 2021, respectively. The price curve of May 2021 is less volatile than that 

of December 2020. Figures 5.14 and 5.15 are the predicted real-time electricity prices 

curve of day n in December and May, respectively.  
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Figure 5.12. Real-time electricity prices  

of day n-1 (December)                           

Figure 5.13. Real-time electricity prices  

of day n-1 (May) 

    

Figure 5.14. Predicted real-time prices  

of day n (December)                                

Figure 5.15. Predicted real-time prices  

of day n (May) 

 

5.4.3. Energy Storage Parameters 

 

Lithium-ion batteries are widely used for energy storage because of their high energy 

density, small size, fast response speed, and flexible regulation, make it convenient to 

deploy them on the user side. According to the literature and the price trend of the 

lithium-ion battery (Liu et al., 2017; Sloane, 2019), two sets of costs were assumed for 

comparison: 1) $293.7/kWh for energy capacity (kWh) and $154.8/kW for power 

capacity (kW); and 2) $180/kWh for energy capacity (kWh) and $100/kW for power 

capacity (kW). In practice, the latter is more closely related to the actual average price 

of the battery. The discount rate, usage days of a year, and the cycle index were assumed 

to be 6%, 300, and 3000, respectively (Liu et al., 2017). Finally, lithium-ion batteries 

were selected as an example to validate the proposed business model. Electricity 
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retailers can choose any other more suitable energy storage devices in the real market 

just by changing the relevant parameters in the model. 

 

5.5. Results and Discussion 

 

5.5.1. PJM Power Market in December 2020 

 

This section tests the effectiveness of the ER-CES model in the PJM market in 

December 2020. The condition without CES is set as the baseline model, which is then 

compared with the model with CES. To evaluate the models with varied CES costs and 

electricity prices, three scenarios are examined: 1) higher CES cost and lower electricity 

price; 2) lower CES cost and lower electricity price; and 3) lower CES cost and higher 

electricity price.   

 

5.5.1.1. No-CES Baseline Model  

 

When electricity retailers do not have energy storage configurations, all load deviations 

should be traded in the real-time electricity market to achieve supply and demand 

balance. This situation without CES is set as the baseline model. Figure 5.16 shows a 

bar chart of the load deviation on day n. After calculation, it would cost $45,231 for the 

electricity retailers to balance supply and demand.  

 

Figure 5.16. Load deviation  

of day n in bar chart                      

Figure 5.17. Application of 

energy storage in scenario 1 



155 

 

 

5.5.1.2. ER-CES Model – Scenario 1 

 

In scenario 1, the investments in energy and power capacities were set as $293.7/kWh 

and $154.8/kW respectively; and r, 𝜌, and K were assumed to be 6%, 300 and 3000 

respectively. Then, α and β are $133/MWh and $70/MW. The clearing price is $33.16 

/MWh on day n-1 and $47.13/MWh on day n. Based on our calculation, the optimised 

charging capacity is 0 and discharging capacity is 66.5 MWh (Table 5.2). The total cost 

is $44,864, which saves $367 than the situation without energy storage devices. Figure 

5.17 shows that the positive deviation is not completely compensated by the energy 

storage capacity for most time periods and all negative load deviations are sold in the 

real-time market. The results suggest that investment in energy storage is less cost-

effective in most time periods when the cost of energy storage is relatively higher than 

the real-time electricity prices. 

 

5.5.1.3. ER-CES Model – Scenario 2 

 

In scenario 2, the cost of the energy storage devices was assumed to be $180/kWh and 

$100/kWh, while other parameters remain the same. Then, α and β are $81.5/MWh and 

$45.3/MW, respectively. With a decrease in battery price, the optimised charging and 

discharging capacities increase to 189.9 MWh and 286.65 MWh, respectively (Table 

5.2). The total cost decreases to $37,651, representing a saving of $7,580 

(𝐶𝑠𝑎𝑣𝑖𝑛𝑔 =16.8%). Clearly, a lower cost battery can significantly enhance the amount 

of the energy storage capacities in the purchase strategy, lowering the total costs further. 

While the discharging capacity increases with the amount of load deviation, the 

charging capacity remains roughly the same across all periods (Figure 5.18). 
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Table 5.2. Charging and discharging capacities of the three scenarios 

Time 

Charging 

capacity /MW 

(Scenario 1) 

Discharging 

capacity /MW 

(Scenario 1) 

Charging 

capacity /MW 

(Scenario 2) 

Discharging 

capacity /MW 

(Scenario 2) 

Charging 

capacity /MW 

(Scenario 3) 

Discharging 

capacity /MW 

(Scenario 3) 

0 0 0 0 0 0 65.70 

1  0 0 0 37.1 0 37.10 

2  0 0 0 0 0 30.75 

3  0 0 0 3.7 0 3.70 

4  0 0 18.65 0 21.80 0 

5  0 0 18.65 0 58.60 0 

6  0 0 18.65 0 58.60 0 

7  0 0 18.65 0 58.60 0 

8  0 0 18.65 0 39.55 0 

9 0 0 18.1 0 18.10  0 

10 0 0 18.65 0 18.65 0 

11 0 0 17.5 0 17.50 0 

12  0 0 4.3 0 4.30 0 

13 0 0 0.15 0 0.15 0 

14 0 0 0 0.35 0 0.35 

15 0 0 0.65 0 0.65 0 

16 0 0 18.65 0 24.30 0 

17 0 0 18.65 0 58.60 0 

18 0 0 0 0 0 0 

19 0 0 0 0 0 11.10 

20 0 0 0 46.00 0 46.00 

21 0 66.5 0 66.50 0 66.50 

22 0 0 0 66.50 0 77.15 

23 0 0 0 66.50 0 77.15 

Sum 0 66.5 189.9 286.65 379.4 415.5 
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Figure 5.18. Application of  

energy storage in scenario 2                        

Figure 5.19. Application of  

energy storage in scenario 3 

 

5.5.1.4. ER-CES Model – Scenario 3 

 

In scenario 3, to simulate the power shortage that might be caused by some natural 

disasters, such as snowstorm and hailstone, a higher predicted real-time electricity price 

of $5 increase per hour on day n is assumed. Setting all other parameters the same as 

scenario 2, the cost without the CES increases to $49,751. Further, the optimised 

charging and discharging capacities increase further to 379.4 MWh and 415.5 MWh, 

respectively (Table 5.2). The total cost decreases to $37,549, representing a saving of 

$12,202 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 =24.5%). According to Figure 19, when the real time electricity price 

is higher, the majority of positive and negative load deviations are traded with CES.  

 

5.5.2. Comparative Test – May 2021 of the PJM Power Market 

 

For comparison purposes, all parameters and scenarios are set the same as the 

December figures apart from the data of load and electricity price. The clearing 

electricity prices of days n-1 and n are $19.82/MWh and $24.51/MWh, respectively. 

The results are presented by Figures 20-23 below. Without the use of CES, the 

balancing cost of the load deviation is $36,292 (Figure 5.20).  
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Figure 5.21 (scenario 1) shows that both the optimised charging and discharging 

capacities are 0. Thus, adopting the energy storage system is not suitable under this 

situation. This is due to the low clearing price and relatively high CES cost.  

 

In scenario 2 (Figure 5.22), when the CES cost falls, the optimised charging capacity is 

0 and discharging capacity is 345 MWh. This can reduce total cost to $32,218, or a 

saving of $4,074 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 =11.2%). Because of the lower CES cost, the model chooses 

to discharge when the electricity price is relatively high on day n and trade in the real-

time market for the remaining periods when the electricity price is relatively low.  

 

Finally, as for scenario 3 (Figure 5.23), when the predicted real-time electricity price 

increase by $5 per hour, the cost without the CES increases to $41,284. The optimised 

charging is still 0, while the discharging capacity increases to 381 MWh. Consequently, 

the total cost decreases by $5,877 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 =14.2%), reaching $35,407.  

 

A comparison reveals that even when the load and price fluctuations are relatively stable, 

our proposed model remains effective on cost saving. However, when the cost of energy 

storage devices is higher, such positive effect tend to be less significant.  

 

Figure 5.20. Load deviation  

of day n in bar chart (May)                  

Figure 5.21. Application of  

energy storage in scenario 1 (May) 
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Figure 5.22. Application  

of energy storage in scenario 2 (May)                     

Figure 5.23. Application  

of energy storage in scenario 3 (May) 

 

5.5.3. Comparative Test – November 2022 of the NSW Power Market 

 

To verify the adaptability of the proposed model in different regions, the data from 

NSW, Australia, are used. Data were obtained from the Australian power market 

operator AEMO’s website.  

 

The load data of November 1, 2022, were randomly selected and scaled down to 

simulate the scale of an electricity retailer. The load deviation (Figure 5.24) and 

electricity price curves (Figure 5.25) of this day are obtained by the same method 

described above. For simplification, only scenario 1 with the higher CES cost is tested 

to compare with the scenario without CES. The clearing electricity prices of days n-1 

and n are $128.25 /MWh and $149/MWh, respectively. All other parameters remain the 

same as in the PJM market. 
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Figure 5.24. Predicted load deviation 

curve of day n (Nov)                               

Figure 5.25. Predicted real-time prices  

of day n (Nov) 

 

As shown in Figure 5.26, the cost of balancing without the use of CES is $30,948. After 

incorporating the CES, Figure 5.27 shows the optimised charging capacity is 1204.8 

MWh and discharging capacity is 625.5 MWh. In general, the CES discharges when 

the load deviation is positive, while it charges with negative load deviation. During the 

period 11-12, the electricity price is relatively high; hence, no compensation is given. 

Meanwhile, for the period 13-14, the discharge should be made; however, the electricity 

price fell to the lowest point at this time. Hence, the optimal decision is to charge during 

this period to obtain greater benefits. The total cost decreases to $20,378, or a saving of 

$10,569 (or 𝐶𝑠𝑎𝑣𝑖𝑛𝑔 =34.2%). Although the electricity price in the Australian power 

market is much higher than that in the PJM power market, a satisfactory profit can still 

be obtained by renting the CES.  

 

Figure 5.26. Load deviation  

of day n in bar chart (Nov)                       

Figure 5.27. Application of  

energy storage in scenario 1 (Nov) 
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These experiments verify that the decision variables of the proposed model are only 

related to factors like user demand, electricity price, battery price, and battery 

parameters. The model can be employed in different seasons and regions with good 

results, and can significantly reduce the cost of electricity retailers and improve their 

ability to respond to different customers. 

 

5.5.4. Comparison Analysis 

 

(1) No-CES baseline and ER-CES models (PJM market) 

 

Table 5.3 compares the No-CES baseline model with the ER-CES model in the three 

scenarios. The savings continuously increase with the decrease in CES costs and 

increase in electricity prices. Thus, the ER-CES model can effectively smoothen the 

fluctuations and lower the risk of some extreme situations, such as the power shortage 

caused by some natural disasters, with robust cost saving for electricity retailers. 

 

Table 5.3. Comparison between the No-CES baseline and ER-CES models (PJM) 

Scenario Cost 

 No-CES baseline model ER-CES model 𝐶𝑠𝑎𝑣𝑖𝑛𝑔 

1 $45,231 $44,864 0.8% 

2 (CES cost decrease) $45,231 $37,651 16.8% 

3 (electricity price increase) $49,751 $37,549 24.5% 

 

(2) Co-investment energy storage and ER-CES models 

 

Liu et al. (2021) proposed an approach to optimally plan the energy storage shared by 

multiple electricity retailers to minimise their electricity procurement cost; specifically, 

the procurement cost can be reduced through arbitraging the shared energy storage in 

the day-ahead and real-time markets. Different from the proposed strategy in this study, 

this scheme of co-investment and co-use of energy storage pursues overall optimisation; 
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however, it may not be an optimal choice to compensate the load deviation of individual 

electricity retailers. Furthermore, as the load pattern of electricity retailers changes over 

time, the investment optimisation circumstance will change accordingly. Consequently, 

the flexibility of such fixed investments may deteriorate, and the investment income 

may face uncertainties. Meanwhile, in this study, the independent electricity retailer 

rents CES, which relieves it of the burden of fixed asset amortisation and generates 

stable cost savings. 

 

5.6. Conclusion 

 

The energy supply-demand imbalance has always been a critical and extensively 

debated issue. Acting as intermediaries, the electricity retailers have tried hard to 

balance supply and demand. Energy storage can serve as an effective solution to this 

load imbalance problem. However, the majority of electricity retailers have not 

developed a practical business model to leverage energy storage at scale. Based on the 

development of a new business concept, CES which is a virtual energy storage service 

system, this study discusses the cooperation between the electricity retailers and CES 

suppliers, and proposes a novel ER-CES model that can effectively leverage the CES 

to reduce the load deviation and realise cost efficiency. The main results are summarised 

as follows:  

 

First, by renting the CES, the electricity retailers can flexibly use the energy storage 

resources and real-time electricity price mechanism to achieve a dynamic balance 

between power purchase and sale, and maximise profits. This option eliminates the 

need for electricity retailers to make upfront investments in fixed assets (energy storage 

devices) or endure their amortisation pressure. They can flexibly adjust the amount and 

duration of renting energy storage in response to changes in customer demand for 

electricity. Second, we consider the cost of renting CES, time value of investment, price 

of power on the market, and other factors before establishing an optimisation model 
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using the CES rental amount as the decision variable. This model can not only give the 

total amount of the next day’s rented CES, total cost, and total profits, but also the 

charge and discharge plan of CES for each period of the next day, which is convenient 

for the electricity retailers to execute things as planned. Third, a decision method of 

separately renting charge and discharge energy storage is adopted to simplify the 

optimisation model and solve the optimisation decision problem when there are both 

positive and negative load deviations. Fourth, testing the model in both the PJM market 

in the United States and NSW market in Australia verified the effectiveness of the 

model. This demonstrates that renting CES can significantly reduce the costs for 

electricity retailers in different seasons and regions. 

 

Our findings have several practice implications. Policy makers should further 

encourage the development of the energy storage industry. This may speed up 

technological progress, lowering the battery price and application costs further, similar 

to the case of solar energy. With lower costs, electricity retailers can purchase more 

energy storage capacities and enjoy better cost efficiency brought by CES. In turn, this 

could allow retailers to gain better control over the load deviation, and help them in 

more flexibly adjusting the balance of supply and demand. Furthermore, successful 

cooperation between electricity retailers and CES suppliers will not only create a win-

win situation for themselves, but also decrease the electricity cost for consumers, 

strengthen power system stability, and more importantly, improve energy efficiency. 

Higher energy efficiency and renewable penetration are critical for the energy transition 

and the fight against climate change. Next, the successful application of the proposed 

business model could expand the business scope for CES suppliers, help them in 

achieving much higher return on investments. Consequently, more investors can be 

attracted into the market, leading to more competition, and hence, more rapid 

technological progress in the energy sector.  
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Finally, although the feasibility of the proposed model has been demonstrated here, it 

should be tested in more electricity markets to identify the boundary of application and 

other potential limitations. In addition, over the longer term, studies could compare the 

cost efficiency of electricity retailers between renting CES capacities and purchasing 

energy storage equipment themselves.  
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Chapter 6: Conclusion and Policy Implications 

 

This thesis investigates the influence of the energy structure transition on electric utility 

firms. Chapter 1 introduces the research background, develops research questions, and 

outlines the key contributions of the thesis. Chapter 2 reviews the primary theoretical 

foundations and literature. Chapters 3 and 4 examine whether energy structure 

transition affect firms’ capital structure and risk exposure, respectively. Chapter 5 

develops a useful business model for the utilisation of energy storage to assist the 

energy structure transition. This chapter (Chapter 6) summarises the major findings of 

the three studies, and then proposes the policy implications, limitations, and future 

research directions. 

 

6.1. Conclusion  

 

Utilising data from the US electric utility sector between 2010 and 2020, Chapter 3 

extensively explores the relationship between the energy structure transition and firms’ 

capital structure. Machine learning approaches are used to capture the nonlinear 

relationships between them. For robustness, three machine learning methods, Support 

Vector Regression (SVR), Artificial Neural Network (ANN), and Random Forest (RF), 

are employed to conduct a five-year rolling prediction on four different measures of 

leverage (Amini et al., 2021). Two sets of input variables are used to compare their 

prediction accuracy for these leverage measures. Dataset 1 comprises a group of widely 

accepted firm-level accounting and financial variables for determining capital structure. 

Dataset 2 further adds energy structure variables. The out-of-sample R-squared (𝑅𝑜𝑠
2 ) 

and root mean squared error (RMSE) are used to assess whether energy variables 

improve the prediction ability for capital structure. A higher (lower) value of 𝑅𝑜𝑠
2  

(RMSE) indicates greater prediction accuracy.  
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The outcomes of all three methods consistently show that the 𝑅𝑜𝑠
2  (RMSE) of Dataset 

2 is significantly higher (lower) than that of Dataset 1 in most cases (Table 3.3). For 

instance, the average 𝑅𝑜𝑠
2  of Dataset 2 is 12% higher compared to Dataset 1. Among the 

three machine learning methods, SVR outperforms the other two in both accuracy and 

stability for all four leverage measurements. 

 

Chapter 3 further applies Taylor expansion to analyse the importance contribution of 

each variable. Among the energy variables, wind, solar, and natural gas exert the most 

significant influence on electricity utility firms’ capital structure. Moreover, their 

influence becomes stronger over time. Natural gas has interesting results. Despite being 

a fossil fuel, it is much cleaner with nearly 50% less carbon emissions compared to coal 

(EIA, 2022). It is also more cost-effective compared to both coal and wind energy 

(Feldman and Margolis, 2019; IEA, 2021c). Therefore, it is expected to continue 

playing a pivotal role in the ongoing energy transition process until renewable energy 

fully replace fossil fuels as the dominant energy source (IEA, 2019). Conversely, other 

fossil fuels, like coal and oil, as well as other traditional energy sources, like hydro and 

nuclear, have small and limited impact. Importantly, the influence of renewable energy 

on capital structure grows as its proportion in the total generation increases. The ranks 

of wind and solar energy increase from ninth and twelfth in the low percentage sample 

to sixth and fourth in the high percentage sample, respectively (Figures 3.12 and 3.14).  

 

Furthermore, different measurements of leverage exhibit different outcomes. Total 

debts yield higher prediction accuracy compared to long-term debts over time. This is 

due to the relatively small and declining impacts of wind and solar energy on long-term 

debt over the years. One potential reason for this trend is the implementation of new 

Basel III in 2017, which imposed additional constraints on firms’ long-term debt 

financing for renewable energy projects (Ang et al., 2017; Ng and Tao, 2016). 

Specifically, wind (solar) energy has a stronger impact than solar (wind) energy on the 

long-term (total) debt. This is primarily because PV power plants have shorter 
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construction periods, whereas wind farms take longer. Consequently, investments in 

solar projects often rely more on short-term funding, which is better represented by 

total debt. In conclusion, total debt is a more accurate measure of leverage in this 

context. 

 

Chapter 3 further examines each variable’s direction contribution. The results reveal, 

for the first time, that the influence of wind and solar energy on electric utility firms’ 

capital structure are opposite, with wind having a negative impact and solar having a 

positive impact on firms’ gearing levels. This may be because solar investments are 

perceived as less risky in the debt market compared to wind energy, thanks to their 

faster cost decline and less resource volatility risk, making them more attractive for 

borrowing. 

 

Moreover, according to the target leverage predicted by the SVR, the adjustment speeds 

of the market and book leverage are 0.743 and 0.645, respectively, after controlling 

company fixed effects. When converted to half-life values, they are 0.511 and 0.666 

year, respectively. This adjustment speed is much faster than that of the overall market, 

indicating that electric utility firms quickly respond to market changes related to 

renewable energy, and hence, actively adjust their leverage according to the target 

capital structure. Furthermore, both adjustment speeds align with the expectations set 

by the dynamic trade-off theory, falling within the range of zero to one. The impact 

directions of most accounting and financial variables also support the trade-off theory. 

 

Employing data from the US electric utility sector from 2010 to 2020, Chapter 4 

comprehensively explores the impact of energy structure transition on firms’ systematic, 

idiosyncratic, and total risks. Support Vector Machine (SVM) is utilised to build 

dependable classification models for estimating firms’ risk exposure, categorizing firms 

into high and low risk groups for each type of risk. Moreover, as the number of the high 

and low risk groups are uneven, the adaptive synthetic (ADASYN) algorithm is 
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employed for sampling. The dataset is divided into training and test sets, each 

comprising 70% and 30% of the total sample, respectively. Confusion matrix is used to 

evaluate the performance of the classification models (Liu et al., 2011). It provides four 

performance criteria. Accuracy assesses the model’s overall classification ability. 

Sensitivity (specificity) is the correctly predicted number of high (low)-risk firms to the 

total number of high (low)-risk firms. 𝐺 − 𝑚𝑒𝑎𝑛  evaluates the balance between the 

high- and low-risk class performance, with higher values indicating good performance 

across both classes. 

 

For each risk, Model 1 only uses accounting and finance variables, Model 2 adds energy 

variables to Model 2, and Model 3 adds variables reconstructed after applying principal 

component analysis (PCA) to Model 2. As for the classification criteria, US utility 

industry Beta = 0.64, provided by the New York University, is used for the systematic 

risk. The other two risks use the average Beta values calculated form the sample data. 

All models exhibit a G-mean higher than 0.6 (Table 4.5), indicating the effectiveness 

of the ADASYN sampling technique in balancing the classification performance of 

both groups. The accuracy differences between Models 1 and 3 are 0.12, 0.09, and 0.02 

for systematic, idiosyncratic, and total risks, respectively (Table 4.5), confirming 

significant increase in the prediction accuracy for these risks. 

 

To examine the influence of renewable energy variables in the energy structure, Chapter 

4 employs a yearly escalating rate to simulate their growth. The installed capacity of 

renewable energy in each sample is initially increased by k% (k = 0.5, 1, 2) in the first 

year, and then further increased by n times k% (n = 1, 2, ..., 11) in the subsequent years. 

Further, to better simulate real-world variations in growth ratios within renewables, 

three ratios (1:1, 3:1, and 1:3) are applied to wind and solar energy for each growth rate. 

The results indicate that increasing the use of renewables can significantly decrease 

electricity utility firms’ exposure to systematic risk (Figure 4.5). Furthermore, this 

negative relationship remains consistent across all three ratios of wind-solar growth. 
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Notably, a more pronounced reduction in systematic risk occurs when the growth of 

wind energy outweighs that of solar energy. This is possibly due to wind energy’s 

predominant role in the current US power generation landscape, boosting investor 

confidence in its expansion. 

 

In contrast, different growth ratios of wind and solar energy exhibit diverse effects for 

idiosyncratic risk. When solar energy grows faster (slower) than wind energy, 

renewable energy positively (negatively) affects idiosyncratic risk (Figure 4.5). 

Importantly, this discovery offers a potential explanation for the previous inconsistent 

findings in studies investigating the impact of environmental factors on idiosyncratic 

risk (Bouslah et al., 2013; Sassen et al., 2016). When renewable energy data is 

integrated into more comprehensive environmental variables, disparities in wind-solar 

ratios among different samples may go unnoticed. This highlights the need for 

considering such differences in future research. In addition, as the total risk 

encompasses both systematic and idiosyncratic risks, it exhibits a similar trend to 

idiosyncratic risk, which has a more substantial impact compared to systematic risk. 

This leads to heightened (stable) risk as the proportion of solar (wind) energy increases 

(Figure 4.5). This may clarify discrepancies in studies examining the impact of 

corporate environmental responsibility (CER) on total risk (Cai et al., 2016; Trinks et 

al., 2020), as total risk’s impact is a composite of the other two risk types. 

 

Chapter 4 further investigates the separate effects of wind and solar energy on these 

risks while considering the varying growth rate. Both wind and solar negatively affect 

systematic risk. Conversely, solar (wind) demonstrates a positive (negative) 

relationship with both idiosyncratic and total risks (Figure 4.6). Wind and solar energy 

have both seen significant reductions in their levelised cost of electricity (LCOE) 

between 2010 and 2020. This reduction is expected to drive the increased adoption of 

both energy sources. This can enhance the diversity of the energy mix of electric utility 

firms, and consequently, reducing their systematic risk. Despite the reduction in LCOE, 
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the LCOE of solar remains higher than that of wind. Consequently, single firms 

perceive higher risk associated with solar, leading to different effects of wind and solar 

on idiosyncratic risk. Meanwhile, the total risk still follows the trends of idiosyncratic 

risk, driven by its greater influence compared to systematic risk. In addition, the distinct 

effects of wind and solar reaffirm the potential for biased results when using a 

composite renewable energy variable. The effects of wind and solar over time are also 

examined. While both wind and solar negatively affect systematic risk over time, wind 

experiences a much faster rate of decline compared to solar. Meanwhile, solar (wind) 

energy significantly increases (decreases) idiosyncratic and total risks. Moreover, solar 

has a much larger impact compared to wind, indicating that an equivalent amount of 

wind is insufficient to offset the risks associated with solar. This suggests that electric 

utility firms may be more sensitive to higher costs than lower costs. 

 

Concluding the findings from both Chapters 3 and 4, wind and solar energy have 

opposite risk perceptions in the debt and equity markets. Specifically, in the debt market, 

leverage has a positive (negative) relationship with solar (wind) energy. This implies 

that lenders are more willing to invest in solar energy rather than wind energy. 

Meanwhile, in the equity market, both the idiosyncratic and total risks are positively 

(negatively) correlated with the solar (wind) energy. Although both wind and solar 

energy have negative relationships with systematic risk, wind energy exhibits a stronger 

risk reduction ability compared to solar energy. Therefore, all three risks suggest that 

shareholders prefer wind energy because it decrease its idiosyncratic volatility, while 

they may decrease the use of solar energy to avoid the extra volatility.  

 

To develop an effective business model for electricity retailers to utilise energy storage, 

Chapter 5 employs data from the PJM electricity market in the US to verify the 

feasibility of the proposed optimisation model for electricity retailers to maximise 

profits. Two sets of data are selected, one from December 2020 and the other from May 

2021, to predict two kinds of load deviations. Winter data are intentionally chosen due 
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to higher electricity demand for heating, leading to larger load and price fluctuations, 

which makes it an ideal choice for validating the proposed model. Meanwhile, the load 

curve remains relatively steady throughout the rest of the year (due to cooler summers 

in the sample area, resulting in stable electricity demand). Therefore, data from May 

2021 are used to compare the feasibility of the proposed model in a scenario with lower 

fluctuations. The baseline model without cloud energy storage (CES) is used for 

comparison with ER-CES models that have different CES costs and electricity prices. 

The first scenario has a higher CES cost and lower electricity price, second has a lower 

CES cost and lower electricity price, and third has a lower CES cost and higher 

electricity price.  

 

In December 2020, the baseline model cost $45,231 for balancing on day n. In scenario 

1, with an optimised discharging capacity of 66.5 MWh and charging capacity of 0 

(Table 5.2), the total cost is $44,864, saving $367 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 0.8%) compared to the 

baseline model. These findings imply that energy storage investment is less cost-

effective when CES costs are relatively higher than real-time electricity prices. In 

scenario 2, with reduced CES costs, optimised charging and discharging capacities rise 

to 189.9 MWh and 286.65 MWh, respectively (Table 5.2). The total cost decreases to 

$37,651, yielding a savings of $7,580 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 16.8%). Apparently, lower CES costs 

substantially increase energy storage capacities in the purchase strategy, further 

reducing total costs. In scenario 3, a higher electricity price is used to simulate the 

power shortage during crises, causing the cost of the baseline model rise to $49,751. 

Optimized charging and discharging capacities increase further to 379.4 MWh and 

415.5 MWh, respectively (Table 5.2). The total cost decreases to $37,549, resulting in 

a $12,202 saving (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 24.5%). These results verify the efficiency of the ER-CES 

model, especially during market fluctuations with elevated electricity prices. 

 

In May 2021, the cost of baseline model is $36,292. In scenario 1, the optimisation 

model suggests no CES renting duo to lower electricity price. Scenarios 2 and 3 save 
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$4,074 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 11.2%) and $5,877 (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 14.2%), respectively. A comparison 

suggests that the proposed optimisation model still achieves cost savings, even when 

fluctuations are relatively stable. Data from November 2022 in New South Wales 

(NSW), Australia, is randomly chosen for robustness testing. For simplicity, only 

scenario 1 with a higher CES cost is tested against the scenario without CES, showing 

a $10,569 saving (𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = 34.2%) with the ER-CES model.  

 

By renting form the CES, electricity retailers can flexibly employ energy storage 

resources and the real-time electricity price mechanism to obtain a flexible equilibrium 

between power procurement and sale, thereby maximising profits. This choice 

eliminates upfront investments in fixed assets (energy storage devices) for electricity 

retailers, allowing flexible adjustments to rented energy storage based on changing 

customer electricity demand. The savings of the ER-CES model increase as CES costs 

decrease and electricity prices rise. This confirms the effectiveness of the ER-CES 

model in mitigating power grid fluctuations and reducing the risk of extreme scenarios. 

 

6.2. Policy Implications 

 

Considering the different preferences of debt and equity markets toward wind and solar 

energy, more diversified financing strategies can be developed at the firm level to 

facilitate the green transition. Wind energy projects have relatively lower risk in the 

equity market. Considering that equity costs are generally higher than debt costs, early-

stage developments should be supported via internal capital and external equity capital 

should be introduced when the project reaches a certain stage. This approach can 

minimise capital costs and help in fully utilising market preferences. Meanwhile, given 

the higher risk perception of solar energy projects in the equity market but favourability 

in the debt market, firms can leverage debt financing more and explore varied financing 

avenues, such as green bonds and government incentive programs. Sustainable 

repayment schedules can be established to alleviate financial risks. Furthermore, since 
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wind and solar energy have different impacts on systemic and idiosyncratic risks in 

terms of direction and magnitude, a thoughtful allocation between them should be 

considered to minimize the total risk exposure of the electric utility firms.  

 

From the government’s perspective, although current evidence suggests that market-

driven measures can promote energy structure transition, there remains space for 

governments to implement policies and initiatives to further guide and accelerate the 

development of renewable energy. For instance, while formulating subsidy policies, 

governments should consider natural conditions in different regions and place an 

emphasis on available resources. This can contribute to the more efficient use of federal 

funds, mitigate risk exposure for electric utility firms, and enhance their overall 

financial performance. In addition, considering the potential impact of new Basel III 

norms on long-term liabilities for renewable energy, it may be necessary to explore 

alternative financing channels, such as government-guided special financing, to ensure 

the long-term feasibility of renewable projects. Furthermore, governments should 

actively promote private capital investment in renewable energy through measures like 

tax incentives. In summary, these targeted financing strategies can assist electric utility 

firms in optimising their capital structure, reducing financing costs, and mitigating risk 

exposures during the process of renewable energy development, thereby facilitating a 

faster green transition. 

 

Regarding the deployment of energy storage, electricity retailers can explore more 

forms of collaboration with CES providers. For instance, they can consider signing 

long-term contracts to further reduce the cost of energy storage and increase the volume 

of renting. A win-win situation can be achieved by better controlling load deviation and 

flexibly adjusting supply-demand equilibrium. This can reduce electricity costs for 

consumers, improve power system stability, and, most importantly, reduce wind and 

solar energy wastage, thereby improving overall energy efficiency. Besides promoting 

the development of energy storage industry to further reduce battery prices and 
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application costs, governments should also encourage and support innovative business 

models for improving energy storage utilization. This can be achieved by establishing 

dedicated funds or providing fiscal incentives to attract private capital investment into 

the energy storage sector. These measures can help accelerate the commercialisation of 

energy storage technologies, and consequently, advance the green transition. 

 

6.3. Limitations and Potential Future Work 

 

Due to data availability challenges, this study investigates how the energy structure 

transition influences firms’ capital structure and risk exposure only in the US market, 

which exhibits a moderate development level of renewable energy. Future studies could 

be extended to regions with distinct characteristics, such as Germany and Northern 

European countries with high penetration of renewable energy, or China and India, 

whose renewable energy generation is increasing together with fossil fuels. 

Comparative research can yield more intriguing and valuable insights. 
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Appendix  

 

Appendix 1  

 

𝑹𝒐𝒔
𝟐  of RF for Dataset 1 and Dataset 2 

RF 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.33  0.71  0.26  0.48  0.60  0.74  0.52  0.58  

2017 0.48  0.50  0.51  0.35  0.71  0.59  0.73  0.56  

2018 0.45  0.60  0.38  0.45  0.68  0.71  0.60  0.54  

2019 0.40  0.59  0.24  0.48  0.68  0.68  0.48  0.51  

2020 0.32  0.64  0.17  0.48  0.43  0.76  0.38  0.68  

 

𝑹𝒐𝒔
𝟐  of ANN for Dataset 1 and Dataset 2 

ANN 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.35  0.75  0.38  0.49  0.60  0.80  0.61  0.61  

2017 0.67  0.69  0.59  0.50  0.62  0.70  0.55  0.60  

2018 0.58  0.72  0.50  0.58  0.63  0.73  0.56  0.63  

2019 0.53  0.79  0.52  0.63  0.54  0.74  0.54  0.71  

2020 0.62  0.85  0.55  0.63  0.51  0.91  0.56  0.80  

 

RMSE of RF for Dataset 1 and Dataset 2 

RF 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.07  0.05  0.08  0.05  0.05  0.05  0.06  0.05  

2017 0.05  0.06  0.06  0.06  0.04  0.06  0.04  0.05  

2018 0.05  0.05  0.07  0.06  0.04  0.04  0.06  0.05  

2019 0.04  0.05  0.07  0.05  0.03  0.04  0.05  0.05  

2020 0.05  0.05  0.07  0.05  0.05  0.04  0.06  0.04  

 

RMSE of ANN for Dataset 1 and Dataset 2 

ANN 
Dataset 1 Dataset 2 with energy variables 

LD/M TD/M LD/A TD/A LD/M TD/M LD/A TD/A 

2016 0.07  0.05  0.07  0.05  0.04  0.03  0.05  0.04  

2017 0.03  0.05  0.04  0.05  0.03  0.03  0.04  0.03  

2018 0.04  0.04  0.05  0.04  0.03  0.03  0.04  0.03  

2019 0.03  0.03  0.04  0.04  0.04  0.03  0.04  0.03  

2020 0.04  0.03  0.05  0.04  0.04  0.02  0.05  0.03 

 

 

 

 

 



194 

 

Appendix 2 

Factor importance for    

LD/M(L) from 2016–2020                       

Factor importance for  

TD/M(L) from 2016–2020
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Factor importance for  

LD/M (H) from 2016–2020                      

Factor importance for  

TD/M(H) from 2016–2020 

 

 


