

Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in Brassica napus

Article

Accepted Version

Yuan, P., Zhou, G., Yu, M., Hammond, J. P. ORCID: <https://orcid.org/0000-0002-6241-3551>, Liu, H., Hong, D. ORCID: <https://orcid.org/0000-0001-9460-219X>, Cai, H. ORCID: <https://orcid.org/0000-0002-1430-5126>, Ding, G. ORCID: <https://orcid.org/0000-0003-3702-5087>, Wang, S., Xu, F. ORCID: <https://orcid.org/0000-0003-3564-1644>, Wang, C. and Shi, L. ORCID: <https://orcid.org/0000-0002-5312-8521> (2024) Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in *Brassica napus*. *The Plant Journal*, 118 (2). pp. 437-456. ISSN 1365-313X doi: [10.1111/tpj.16617](https://doi.org/10.1111/tpj.16617) Available at <https://centaur.reading.ac.uk/114683/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1111/tpj.16617>

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in**
2 ***Brassica napus***

3

4 **Running Head**

5 *BnAC02.TPS8* promotes seed yield in *B. napus*

6

7 Pan Yuan^{1, 2}, Guilong Zhou³, Mingzhu Yu^{1, 2}, John P. Hammond⁴, Haijiang Liu^{1, 2},
8 Dengfeng Hong^{1, 5}, Hongmei Cai^{1, 2}, Guangda Ding^{1, 2}, Sheliang Wang^{1, 2}, Fangsen Xu^{1,}
9 ², Chuang Wang^{1, 2}, Lei Shi^{1, 2, *}

10

11 ¹National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural
12 University, Wuhan, Hubei 430070, China;

13 ²Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle
14 and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs,
15 Huazhong Agricultural University, Wuhan, Hubei 430070, China;

16 ³State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan
17 University, Wuhan, Hubei 430072, China;

18 ⁴School of Agriculture, Policy and Development, University of Reading, Reading RG6
19 6AR, UK;

20 ⁵National Research Center of Rapeseed Engineering and Technology, National
21 Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural
22 University, Wuhan, Hubei 430070, China

23

24 **Corresponding author**

25 Lei Shi

26 Tel: +86 027-87286871

27 E-mail address: leish@mail.hzau.edu.cn

28 **SUMMARY**

29 Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate
30 status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they
31 are believed to play pivotal regulatory roles in trehalose metabolism. However, their
32 precise functions in carbon metabolism and crop yield have remained largely unknown.
33 Here, *BnaC02.TPS8*, a class II TPS gene, is shown to be specifically expressed in
34 mature leaves and the developing pod walls of *Brassica napus*. Over expression of
35 *BnaC02.TPS8* increased photosynthesis and the accumulation of sugars, starch, and
36 biomass compared to wild type. Metabolomic analysis of *BnaC02.TPS8* overexpressing
37 lines and CRISPR/Cas9 mutants indicated that *BnaC02.TPS8* enhanced the partitioning
38 of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and
39 organic acids, which might be associated with TPS activity. Furthermore, the
40 overexpression of *BnaC02.TPS8* not only increased seed yield but also enhanced seed
41 oil accumulation and improved the oil fatty acid composition in *B. napus* under both
42 high nitrogen (N) and low N conditions in the field. These results highlight the role of
43 class II TPS in impacting photosynthesis and seed yield of *B. napus*, and *BnaC02.TPS8*
44 emerges as a promising target for improving *B. napus* seed yield.

45

46 **KEYWORDS**

47 *Brassica napus*, *Trehalose-6-phosphate synthase 8*, net photosynthetic rate, seed yield,
48 seed oil content, carbon metabolism

49 INTRODUCTION

50 Trehalose-6-phosphate (T6P) is a key signaling molecule in sucrose availability and
51 carbon (C) metabolism (Schluepmann et al., 2004; Figueroa and Lunn 2016). T6P plays
52 a critical role in regulating sucrose utilization and allocation, and fundamental processes
53 that drive crop growth and yield (Paul et al., 2022). Notably, transgenic maize plants
54 overexpressing rice *OsTPP1* using a floral promoter (MADS6) exhibit reduced T6P
55 concentrations in reproductive tissues, resulting in higher yields under both non-
56 drought and drought conditions (Nuccio et al., 2015). These transgenic maize lines also
57 display enhanced photosynthetic rates and delayed leaf senescence compared to the
58 wild type (Oszvald et al., 2018). Moreover, the application of plant-permeable analogs
59 of T6P directly to plants impacts endogenous T6P concentrations, consequently
60 promoting starch synthesis and potentially improving grain yield in wheat (Griffiths et
61 al., 2016). Recently, it is discovered that the sugar-inducible transcription factor
62 *OsNAC23* can repress *OsTPP1* expression, resulting in elevated T6P concentrations and
63 a 13% to 17% increase in rice yield (Li et al., 2022). This underscores the potential for
64 modifying T6P concentrations to enhance crop yield (Paul et al., 2022).

65 In plants, T6P is synthesized from UDP-Glc (UDPG) and Glc-6-phosphate (G6P) in
66 a reaction catalyzed by T6P synthase (TPS), followed by the dephosphorylating T6P to
67 trehalose, a reaction catalyzed by T6P phosphatase (TPP) (Cabib and Leloir 1958). In
68 *Arabidopsis*, *TPS* genes are divided into two sub-families, designated class I (*AtTPS1-4*) and class II (*AtTPS5-11*) (Leyman et al., 2001). While *AtTPS1* can complement the
70 yeast *tps1Δ* mutant, other class I TPS proteins can complement the *tps1Δtps2Δ* double
71 mutant, indicating that they all have TPS activity (Delorge et al., 2015). Knocking out
72 *AtTPS1* in *Arabidopsis* results in altered growth and development, including abnormal
73 cell wall morphology and embryo lethality (Eastmond et al., 2002; Gómez et al., 2006).
74 Weak alleles of *AtTPS1*, which are non-embryo-lethal, exhibit delayed flowering and a
75 40% reduction in T6P concentrations compared to wild type plants (Wahl et al., 2013).
76 In contrast, no class II TPS proteins can complement the yeast *tps1Δ* mutant (Ramon et
77 al., 2009; Delorge et al., 2015). While many of the functions of class II *TPS* genes
78 remain unclear, there is evidence of their diverse roles in growth and development. For
79 instance, *AtTPS5* is involved in thermotolerance and ABA signaling (Suzuki et al., 2008;
80 Tian et al., 2019), while *OsTPS8* enhances salt tolerance by increasing suberin

81 deposition and the expression of ABA-responsive genes in rice (Vishal et al., 2019).
82 *AtTPS6* has a role in defining the shape of epidermal pavement cells and branching of
83 trichomes (Chary et al., 2008), and *AtTPS11* promotes *Arabidopsis* defense against
84 aphids (Singh et al., 2011). However, there is limited information available on whether
85 class II TPS proteins affect T6P concentrations in plants.

86 Sucrose-non-fermenting1-related kinase1 (SnRK1) plays a central role in the
87 response to low energy conditions. Evidence suggests that T6P functions as an inhibitor
88 of SnRK1, promoting biosynthetic reactions in young tissues and lateral root formation
89 (Zhang et al., 2009; Lawlor et al., 2014; Morales-Herrera et al., 2023). SnRK1 is
90 involved in the transcriptional regulation of class II TPS genes, such as *AtTPS5-*
91 *AtTPS7* in *Arabidopsis*, which have been identified as SnRK1 targets (Harthill et al.,
92 2006; Baena-Gonzalez et al., 2007; Cho et al., 2016; Nukarinen et al., 2016), and this
93 regulation is dependent on bZIP11 (Ma et al., 2011). Phosphorylation of these proteins
94 leads to their association with 14-3-3 proteins (Harthill et al., 2006). Recent research
95 indicates that class II TPS can suppress SnRK1 kinase activity and hinder nuclear
96 localization by interacting with the α -catalytic subunit of SnRK1 and co-localized at
97 the endoplasmic reticulum in transient tobacco leaves (Van Leene et al., 2022).

98 In this study, we identified a class II TPS gene, *BnaC02.TPS8*, primarily expressed
99 in mature leaves and developing pod walls of *B. napus*. Our findings show that
100 *BnaC02.TPS8* mutants exhibit significant reductions in sugars and C accumulation,
101 coupled with reduced net photosynthetic rate, delayed leaf development, lower seed
102 yield, and decreased seed oil accumulation. Furthermore, the overexpression (OE) of
103 *BnaC02.TPS8*, driven by the cauliflower mosaic virus 35S promoter (CaMV-35S), led
104 to increased biomass accumulation at the seedling stage, higher seed yield, and
105 enhanced seed oil content in *B. napus* at maturity. Metabolomic analysis suggested that
106 *BnaC02.TPS8* promoted the partitioning of photoassimilate into starch and sucrose, as
107 opposed to glycolytic intermediates and organic acids, potentially through its TPS
108 activity. These results highlight the important role of *BnaC02.TPS8* in photosynthesis
109 organs (leaves and pod wall), seed yield, and seed oil accumulation in *B. napus*.

110

111 **RESULTS**

112 **Expression pattern and subcellular localization of *BnaC02.TPS8***

113 The precise functions of class II TPS genes in C metabolism and crop yield remain
114 largely unknown. Our previous work shows that the transcript of *BnaC02.TPS8* was
115 significantly reduced by nitrogen (N) deficiency in whole-transcriptome sequencing of
116 *B. napus* (Yang et al., 2020). To investigate the function of *BnaC02.TPS8* in *B. napus*,
117 the amino acid sequences of *Arabidopsis* AtTPS8 were used for BLAST analysis in the
118 BnTIR database (<http://yanglab.hzau.edu.cn/BnTIR>; Liu et al., 2021). Five homologous
119 copies of AtTPS8 were identified in *B. napus*. However, gene expression data showed
120 that only two BnTPS8 (BnaC02G0247200ZS, designated as *BnaC02.TPS8*;
121 BnaA02G0186800ZS, designated as *BnaA02.TPS8*) were expressed in multiple tissues,
122 especially in mature leaves and developing pod walls (Figure 1a). Domain analysis
123 showed that BnaC02.TPS8, BnaA02.TPS8 and AtTPS8 contained a conserved
124 Glycosyltransferase family 20 domain (Figure S1). A total of 16 independent transgenic
125 *Arabidopsis* Columbia-0 lines were obtained by utilizing around 2 kb of *BnaC02.TPS8*
126 promoter/5'UTR fused to the GUS reporter gene. Interestingly, strong GUS staining
127 was observed in green stem leaves, but weak GUS expression was detected in senescent
128 rosette leaves (Figure 1b(1),(2)). GUS activity was also detected at the seed-funiculus
129 junction in the green pods but not in yellow pods or seeds (Figure 1b(3),(4); Figure S2).
130 Combining the results of the gene expression pattern of *BnaC02.TPS8* and the tissues-
131 specific expression of GUS driven by the native promoter (Figure 1(a-b)), we conclude
132 that *BnaC02.TPS8* is expressed predominantly in photosynthetic organs: fully
133 expanded mature leaves and developing pod walls.

134 To analyze the subcellular localization of BnaC02.TPS8, BnaC02.TPS8 was fused
135 with green fluorescent protein (GFP) and transiently expressed in the protoplasts of
136 *Arabidopsis*. Results showed that the green fluorescence signal was co-localized with
137 the cytosol marker (Figure 1c), suggesting that BnaC02.TPS8 is localized in the cytosol.

138 **Generation of *B. napus* *BnaC02.TPS8* CRISPR mutants and OE lines**

139 To further elucidate the function of *BnaC02.TPS8* in oilseed rape, our initial attempts
140 to develop *BnaC02.TPS8* CRISPR/Cas9 mutants for commercial cultivar 'ZS11'
141 encountered challenges, with the explants exhibited necrosis, and the transformation
142 failed. Consequently, knock-out mutants were generated using CRISPR/Cas9 in the

143 universal cultivar ‘Westar’. Two distinct mutant alleles (*CR-44* and *CR-153*) were
144 selected (Figure 1d; Table S1). The *CR-44* mutant line had a 33 bp deletion in the first
145 exon of *BnaC02.TPS8*, while the *CR-153* mutant had a 9 bp deletion within the
146 *BnaC02.TPS8* coding region, which resulted in a three amino acid deletion.

147 *BnaC02.TPS8* overexpression (OE) lines were generated from the commercial
148 cultivar ‘ZS11’ driven by the CaMV35S promoter. Six T₃ transgenic lines with
149 increased expression of *BnaC02.TPS8* were successfully obtained (Figure 1e). Two
150 independent homozygous lines (OE-33 and OE-38) with higher transcript levels, which
151 resulted in significantly higher biomass accumulation than the WT (Figure S3), were
152 selected for further study.

153 ***BnaC02.TPS8* improves biomass production, leaf net photosynthetic rate, and**
154 **carbon-to-nitrogen ratio**

155 Five-week-old *BnaC02.TPS8* knockout mutants and OE lines were grown under
156 nutrient-sufficient conditions in hydroponics (Figure 2a,b). The shoot and root biomass
157 of *BnaC02.TPS8* mutant lines were significantly less than those of WT ‘Westar’ of
158 seven-week-old plants (Figure 2c,d). In contrast, overexpression of *BnaC02.TPS8*
159 significantly increased shoot and root biomass compared to WT ‘ZS11’ (Figure 2c,d).
160 Additionally, the root-to-shoot ratio was significantly increased in *BnaC02.TPS8*-OE
161 lines compared to WT, but there was no difference between *BnaC02.TPS8* mutants and
162 WT (Figure 2e). The leaf length and width of the fully-expanded 5th leaf in CR-44 and
163 CR-153 were significantly smaller than those in the WT, and the leaf size of OE-33 and
164 OE-38 were significantly higher than those in the WT (Figure 2f,g). Photosynthetic
165 efficiency of hydroponically grown ten-week-old plants showed that mutants had a
166 lower net photosynthetic rate, transpiration rate, and stomatal conductance than those
167 in WT, but the OE plants had a higher net photosynthetic rate and transpiration rate than
168 those in WT (Figure 2h-j). However, there were no differences in stomatal conductance
169 and intercellular CO₂ concentration between OE and WT (Figure 2j,k). In addition, the
170 intercellular CO₂ concentration of mutants was significantly higher than in WT (Figure
171 2k).

172 There was no significant difference in total C concentration among *BnaC02.TPS8*
173 mutants, OE-lines and WT plants (Figure 2l). However, the total N concentration was
174 significantly greater in *BnaC02.TPS8* mutants and significantly lower in OE lines

175 compared to their respective WT plants (Figure 2m). Therefore, compared to the WT,
176 the ratio of total C to total N (C/N ratio) was significantly lower in *BnaC02.TPS8*
177 mutants and was significantly higher in the OE lines (Figure 2n). These suggested that
178 *BnaC02.TPS8* is necessary for maintaining leaf photosynthesis and biomass
179 accumulation and affecting C/N metabolism.

180 ***BnaC02.TPS8* has significant effects on carbohydrate metabolism**

181 The altered C/N ratio in the various *BnaC02.TPS8* transgenic lines prompted an
182 examination of the sugar composition and starch of these lines. Sugars, starch, sugar-
183 phosphates, and sugar-nucleotide concentrations were quantified in the fully expanded
184 fifth and sixth leaves from the bottom of the seven-week-old plant at the seedling stage.
185 The sucrose and soluble sugar concentrations in the leaves were significantly lower in
186 *BnaC02.TPS8* mutants compared with WT ‘Westar’ and significantly greater in the OE
187 lines compared with WT ‘ZS11’ (Figure 3a,b). Notably, the trehalose concentration in
188 leaves of *BnaC02.TPS8* mutants was significantly lower by 26.6%, while that in
189 *BnaC02.TPS8*-OE lines was nearly doubled compared to their WT plants (Figure 3c).
190 The starch concentration in *BnaC02.TPS8* mutants was significantly lower by 26.9%-
191 52.6%, while it was increased by 45.4%-86.1% in OE lines (Figure 3d).

192 Leaf T6P concentrations were significantly higher in the *BnaC02.TPS8*-OE lines than
193 in the WT. However, there were no obvious changes in the T6P concentrations between
194 *BnaC02.TPS8* mutants and WT (Figure 3e). Among the metabolic intermediates of
195 sucrose synthesis, the concentrations of glucose 6-phosphate (G6P) and sucrose 6-
196 phosphate (S6P) were significantly increased in *BnaC02.TPS8*-OE lines compared to
197 the WT, while S6P was significantly lower in *BnaC02.TPS8* mutants, but G6P was not
198 significantly different between the mutant lines and WT (Figure 3f,g). There were no
199 significant differences in the concentrations of F6P, F1, 6BP, and G1P between
200 *BnaC02.TPS8* transgenic lines and WT (Figure S3). Compared to WT, the concentration
201 of ADPG was significantly lower in CR-44 and CR-153, and was significantly higher
202 in OE lines (Figure 3h). However, the concentration of UDPG was not significantly
203 different in *BnaC02.TPS8* transgenic lines compared to their WTs (Figure 3i).

204 ***BnaC02.TPS8* has significant effects on intermediates of glycolysis and
205 tricarboxylic acid (TCA) cycle**

206 Compared to WT, the concentrations of 3PGA (3-phosphoglycerate) and PEP

207 (phosphoenolpyruvate) were significantly lower in *BnaC02.TPS8* mutants and
208 significantly higher in OE lines (Figure 4a,b). In addition, the concentration of pyruvate
209 increased in the mutants but decreased in the OE lines (Figure 4c). Mutation or
210 overexpression of *BnaC02.TPS8* had a significant effect on PEP, and the ratio of PEP
211 to pyruvate was significantly lower in the mutants and higher in OE lines compared
212 with their WTs (Figure 4d). The concentrations of shikimate were significantly higher
213 in *BnaC02.TPS8* mutants, but significantly lower in *BnaC02.TPS8*-OE lines compared
214 to their WTs (Figure 4e).

215 Significantly higher concentrations of tricarboxylic acid (TCA) pathway
216 intermediates were observed in *BnaC02.TPS8* mutants compared to their WT.
217 Concentrations of citrate, aconitate, isocitrate, 2-OG, and succinate were significantly
218 higher in *BnaC02.TPS8*-OE lines, and were significantly decreased in *BnaC02.TPS8*
219 mutants compared to their respective WT plants (Figure 4f-j). The concentrations of
220 fumarate and malate were increased by 25% and 16% in *BnaC02.TPS8* mutants
221 compared to WT, respectively (Figure 4k,l). The concentration of fumarate was lower
222 in OE-38 than that in WT (Figure 4k). However, there was no significant difference in
223 the concentration of malate between OE lines and WT (Figure 4l). These comparisons
224 suggested that there was a significant increase in the net C assimilation rate in the
225 *BnaC02.TPS8*-OE plants but lower amounts of C within the TCA pathway
226 intermediates, and these were largely offset by increases in sucrose and starch.

227 ***BnaC02.TPS8* affects sugar and starch-related enzyme activity and gene 228 expression**

229 The pivotal enzyme in sucrose synthesis is sucrose phosphate synthase (SPS),
230 facilitating the conversion of UDP-glucose and fructose 6-phosphate into sucrose 6-
231 phosphate. Sucrose catabolism involves two primary enzymes: invertase (INV),
232 responsible for breaking down sucrose into glucose and fructose, and sucrose synthase
233 (Susy), which catalyzes the reversible cleavage of sucrose into fructose and either
234 uridine diphosphate glucose or adenosine diphosphate glucose (Ruan 2014). In the
235 leaves, the SPS, soluble acid INV, neutral INV, and Susy activity were significantly
236 lower in *BnaC02.TPS8* mutants but significantly higher in *BnaC02.TPS8*-OE lines
237 compared to their respective WT plants (Figure 5a-d). Pyruvate kinase (PK), a key
238 enzyme in glycolytic pathway, showed significantly higher activity in *BnaC02.TPS8*

239 mutants but lower activity in *BnaC02.TPS8*-OE lines compared to their WT plants
240 (Figure 5e).

241 Adenosine diphosphate-glucose pyrophosphorylase (AGPase), the limiting enzyme
242 in starch synthesis exhibited approximately 19.2% lower activity in *BnaC02.TPS8*
243 mutants but 21.5% higher activity in *BnaC02.TPS8*-OE lines compared to their WT
244 plants (Figure 5f). Additionally, compared to WT, total trehalose-6-phosphate synthase
245 (TPS) activity was significantly lower in *BnaC02.TPS8* mutants and significantly
246 higher in *BnaC02.TPS8*-OE lines (Figure 5g). These results indicate that *BnaC02.TPS8*
247 modulates multiple metabolic pathways directly or indirectly, including sucrose, starch,
248 and trehalose metabolism in the leaves of *B. napus*.

249 To further study the functions of *BnaC02.TPS8* in above mentioned process, we
250 measured the expression of key genes involved in starch synthesis (*GBSS1*, *SBE2.1*,
251 and *SBE2.2*), starch catabolism (*GWD3/PWD*, *BAM1*, and *BAM3*), sugar metabolites
252 transport (*PPT*, *GLT1*, and *SUC2*) and nitrogen metabolism (*NRT1.1*, *NRT1.5*, and
253 *GLNI*) in *BnaC02.TPS8* mutants and OE lines (Figure 6). Genes encoding enzymes of
254 starch biosynthesis and sugar metabolite transport in the leaves showed decreased
255 expression in *BnaC02.TPS8* mutants and increased expression in the *BnaC02.TPS8*-OE
256 lines compared with their WT (Figure 6 a-c, g-i). However, compared with the WT, the
257 expression of genes involved in starch catabolism in leaves was significantly decreased
258 in the *BnaC02.TPS8*-OE plants and only the expression of *GWD3/PWD* increased
259 significantly in the *BnaC02.TPS8* mutants (Figure 6d-f). Importantly, the expression of
260 genes involved in N metabolism was significantly increased in the roots of
261 *BnaC02.TPS8* mutants, while they were significantly repressed in *BnaC02.TPS8*-OE
262 lines compared to WT plants (Figure 6j-l). The observed expression profiles suggest
263 disruption of *BnaC02.TPS8* alters starch turnover and N metabolism in *B. napus*.

264 ***BnaC02.TPS8* is associated with seed yield-related traits**

265 To determine whether *BnaC02.TPS8* controls agronomic traits of *B. napus*, field trials
266 were used to investigate the yield-related traits of *BnaC02.TPS8* mutants and OE lines
267 under high and low N conditions for three years (Figure 7; Table 1). The plant height
268 of *B. napus* was reduced by mutation of *BnaC02.TPS8* under low N conditions, and
269 increased by overexpression of *BnaC02.TPS8* under both high and low N conditions
270 (Figure 7a-e). The seed yield per square meter decreased by 20.3%-29.2% in

271 *BnaC02.TPS8* mutants than in WT at high N and reduced by 42.3%-62.4 at low N
272 (Figure 7f). In contrast, the seed yield per square meter was 26.8%-45% greater in the
273 *BnaC02.TPS8*-OE lines compared with WT ‘ZS11’ at high N and 38.6-70.1% greater
274 at low N (Figure 7f). The increase of yield of *BnaC02.TPS8*-OE lines was achieved by
275 increasing the pod number per plant and the seed number per pod (Table 1). In contrast,
276 the 1000-seed weight and harvest index were similar in *BnaC02.TPS8* transgenic plants
277 and WT (Table 1). Although N deficiency greatly reduced the seed yield per plant (and
278 per square meter), pod number per plant, and seed number per pod of both
279 *BnaC02.TPS8*-OE lines and WT ‘ZS11’, the above parameters of *BnaC02.TPS8*-OE
280 lines were still significantly greater than WT ‘ZS11’ at low N (Figure 7f; Table 1). In
281 contrast to the *BnaC02.TPS8*-OE plants, seed yield per square meter, and seed number
282 per pod in *BnaC02.TPS8* mutants were significantly lower than those in ‘Westar’
283 (Figure 7f; Table 1). The pod number per plant of *CR-44* mutant was significantly
284 decreased compared with that in WT under both high and low N conditions (Table 1).
285 These indicate that *BnaC02.TPS8* plays a positive role in the seed yield-related traits of
286 *B. napus*.

287 ***BnaC02.TPS8* increases seed oil accumulation, but decreases proteins and soluble
288 sugar accumulation**

289 *BnaC02.TPS8* is highly expressed in the pods 22 to 42 DAF stage (Figure 1a), which is
290 the critical period for seed oil accumulation and, thus the expression of *BnaC02.TPS8*
291 may influence seed oil and protein accumulation. Compared with the WT, seed oil in
292 *BnaC02.TPS8* mutants and OE lines was reduced by 1.5%-6.4% and increased by 7.4%-
293 8.9%, respectively (Figure 8a). Seed protein concentration was approximately 3%
294 higher in *BnaC02.TPS8* mutants but 10% lower in *BnaC02.TPS8*-OE compared with
295 WT (Figure 8b). Furthermore, the fatty acid (FA) composition in seeds showed that
296 concentrations of C18:1 were higher, and concentrations of C18:0 and C18:2 were
297 lower in the *BnaC02.TPS8*-OE lines compared to their WT (Figure S4). There was no
298 significant difference in FA composition between *BnaC02.TPS8* mutants and WT
299 (Figure S4).

300 The concentrations of soluble sugar and starch in the pods play a crucial role in seed
301 filling (Bennett et al., 2011). Seed soluble sugar concentration of *BnaC02.TPS8* mutants
302 was significantly higher than that of WT (Figure 8c). In contrast, the soluble sugar

303 concentration in mature seeds of *BnaC02.TPS8*-OE lines was significantly lower
304 compared to WT (Figure 8c). Moreover, seed starch concentration was lower in
305 *BnaC02.TPS8* mutants but higher in *BnaC02.TPS8*-OE lines (Figure 8d). As compared
306 with their WT, the net photosynthetic rate of developing pods was significantly lower
307 in *BnaC02.TPS8* mutants and was significantly higher in *BnaC02.TPS8*-OE lines
308 (Figure 8e).

309 Expression of genes related to starch synthesis (*GBSS1* and *GBSS2*) was down-
310 regulated in the *BnaC02.TPS8* mutants and up-regulated in *BnaC02.TPS8*-OE lines in
311 the developing seeds (Figure 8f,g). The genes encoding proteins involved in fatty acid
312 synthesis and transcriptional activators of fatty acid synthesis (*WR11*, *MCAMT*, and
313 *FATA*) were significantly down-regulated in the *BnaC02.TPS8* mutants and
314 significantly up-regulated in the *BnaC02.TPS8*-OE lines (Figure 8h-j). The expression
315 of genes (*OBO1* and *CALO*) involved in oil storage was significantly lower in
316 *BnaC02.TPS8* mutants and higher in *BnaC02.TPS8*-OE lines compared to their WT
317 (Figure 8k-l). These data indicate that manipulation of *BnaC02.TPS8* can affect seed
318 oil, protein, and soluble sugar accumulation in *B. napus*.

319 **DISCUSSION**

320 Class I TPSs are known to have active TPS enzymes that regulate T6P concentration in
321 plants (Lunn et al., 2006; Paul et al., 2008). In contrast, the functions of class II TPSs
322 in T6P accumulation in crops have been poorly understood. Our study reveals the
323 previously unknown function of *BnaC02.TPS8*, a class II TPS in *B. napus*.
324 *BnaC02.TPS8* increases leaf T6P concentrations, seed yield, and seed oil accumulation
325 by enhancing photosynthesis in mature leaves and developing pods. This discovery
326 highlights *BnaC02.TPS8* as an important class II TPS mediating seed yield
327 improvement in *B. napus*.

328 **Overexpression of *BnaC02.TPS8* enhances seed yield and oil accumulation in *B.* 329 *napus***

330 Chemical and genetic T6P modulation can boost crop yield by regulating
331 photosynthesis and assimilate partitioning in crops (Nuccio et al., 2015; Griffiths et al.,
332 2016; Oszvald et al., 2018). In our study, overexpressing *BnaC02.TPS8* significantly
333 increased seed yield under both high and low N conditions, while mutations in
334 *BnaC02.TPS8* significantly decreased seed yield (Figure 7). This aligns with the

335 findings in rice, where *OsTPS8* mutations reduce seed yield under normal growth
336 conditions (Vishal et al., 2019), emphasizing the positive role of class II TPS in yield
337 formation.

338 The rainfall can affect the transpiration rate of leaves and, consequently, the seed
339 yield of oilseed rape, particularly during critical developmental stages (Secchi et al.,
340 2023). The precipitation was notably lower from March to May in 2020 compared to
341 the same period in 2018 and 2019. Consequently, the seed yield of both WT and
342 *BnaC02.TPS8-OE* was lower in 2020 than that of those in both 2018 and 2019.
343 However, the seed yield of *BnaC02.TPS8-OE* lines was significantly higher than that
344 of the WT across all three years (Figure 7). These findings demonstrate that
345 *BnaC02.TPS8-OE* lines had higher adaptation during lower rainfall seasons compared
346 with WT. The planting density in rows spaced 30 cm apart is a widely adopted practice
347 in field trials of *B. napus* (Hu et al., 2020; Zhang et al., 2023). In this study, the average
348 seed yield of the commercial *B. napus* cultivar (*cav.* Zhongshuang11, ZS11) was 2738
349 kg ha⁻¹ in 2018, 3365 kg ha⁻¹ in 2019, 2546 kg ha⁻¹ in 2020 in rows spaced 30 cm apart
350 (Figure 7g). Remarkably, in the same rows spaced, the seed yields of *BnaC02.TPS8-*
351 *OE* were significantly higher than those of ZS11 across all three years (Figure 7g).

352 In *B. napus*, the pod (or siliques) wall serves as both an important carbohydrate sink
353 and a source of photosynthates for seeds during the seed-filling stage (King et al., 1997;
354 Bennett et al., 2011). *BnaC02.TPS8*, highly expressed in developing pods (Figure 1b),
355 likely contributes to early-stage embryo development. Our study revealed that
356 *BnaC02.TPS8-OE* increased pod photosynthesis, seed and pod number, and overall
357 seed yield, irrespective of soil N levels (Figure 7-8; Table 1). However, the reduced
358 expression of NR, NRT1.5, and GLN11 in the roots of OE lines (Figure 6) suggests a
359 potential compromise in N uptake, correlating with decreased N content in leaves
360 (Figure 2m). It appears that *BnaC02.TPS8* exhibits a preference for responding to inner
361 N concentrations rather than the environmental N availability.

362 Improving oil production is a central goal in rapeseed breeding (Lu et al., 2011; Hua
363 et al., 2012). As the seeds become more mature, hexose concentrations and soluble acid
364 invertase activity in the pod wall decreases, giving way to starch accumulation in young
365 seeds (King et al., 1997). Our study found that mutating *BnaC02.TPS8* significantly
366 increased soluble sugars and reduced starch in mature seeds, while overexpressing of

367 *BnaC02.TPS8* had the opposite effect (Figure 8b,c). Therefore, *BnaC02.TPS8* seems to
368 promote starch accumulation over sucrose in the seeds, affecting hexose concentrations
369 or enhancing starch degradation in pod wall. To fully understand *BnaC02.TPS8*'s role
370 in photosynthesis and assimilate partitioning between the pod wall and developing
371 seeds during the podding stage, precise quantification of metabolite profiles and gene
372 expression in stems, pod walls, and developing seeds is necessary.

373 The quantity of starch in seeds is insufficient to meet the demands of oil synthesis,
374 necessitating the continuous import of sucrose and possible seed CO₂ fixation (King et
375 al., 1997). Signals from the pod wall coordinate seed filling and the redistribution of
376 reserves (Bennett et al., 2011). Our study revealed significant reductions in the
377 expression of genes involved in seed fatty acid and oil biosynthesis in *BnaC02.TPS8*
378 mutants and increased expression in *BnaC02.TPS8*-OE lines (Figure 8h-l). Notably, the
379 concentration of oleic acid (18:1) increased, while saturated fatty acid (18:0) decreased
380 in seeds of *BnaC02.TPS8*-OE lines (Figure S4). Consequently, seed oil concentration
381 was lower in mutant lines and higher in overexpressing lines compared to their WT
382 (Figure 8a). Mutation of *BnaC02.TPS8* significantly decreased the expression of the
383 key transcriptional factor *WRII*, which impacts glycolysis, fatty acid biosynthesis, and
384 lipid metabolism during seed oil accumulation (Cernac and Benning 2004; To et al.,
385 2012). Elevated *WRII* expression in *BnaC02.TPS8*-OE lines was associated with
386 increased seed oil content compared to the WT (Figure 8a, h). In summary,
387 overexpressing *BnaC02.TPS8* not only increases seed yield but also improves the oil
388 quality of *B. napus*.

389 ***BnaC02.TPS8* boosts net photosynthesis by enhancing carbon flux into sucrose and
390 starch**

391 In our study, overexpressing class II TPS *BnaC02.TPS8* resulted in higher net
392 photosynthetic rate and increased expression of sugar transporter genes (Figure 2h; 6g-
393 i), concomitant with augmented sugar accumulation and total TPS activity in leaves
394 (Figure 3;5d). Conversely, *BnaC02.TPS8* mutants displayed lower total TPS activity,
395 leading to reduced sugar transportation and accumulation in leaves (Figure 3;5d;6g-i).
396 T6P is a key regulator of photoassimilate partitioning (Li et al., 2019). Despite class II
397 TPS typically lacking TPS activity (Delorge et al., 2015), we speculate that
398 *BnaC02.TPS8* may regulate TPS activity through interactions with itself or other

399 BnTPSs, forming homodimers or heterodimers, similar to the mechanism observed in
400 rice (Zang et al., 2011).

401 It is noteworthy that both AtTPS8 and BnaC02.TPS8 are expressed at the
402 peduncle/pod boundaries of the young pods (Ramon et al., 2009; Figure 1b(3)). Pods
403 are crucial sources of assimilates and nutrients for supporting developing seeds,
404 particularly in the *Brassicaceae* family (Bennett et al., 2011). Compared to the wild
405 type, *BnaC02.TPS8*-OE and *BnaC02.TPS8* mutant pods exhibited significantly
406 increased and decreased net photosynthetic rates, respectively (Figure 8e). Moreover,
407 *BnaC02.TPS8_{pro}::GUS* expression patterns showed a stronger presence of
408 *BnaC02.TPS8* in green leaves compared to senescent leaves (Figure 1c), suggesting a
409 role of *BnaC02.TPS8* in controlling C assimilation and photosynthesis in young leaves.
410 Balancing C and N metabolism is essential for optimal plant growth under varying
411 environmental conditions (Han et al., 2020). Notably, overexpression of *BnaC02.TPS8*
412 did not affect total C concentrations but reduced total N concentrations, resulting in
413 higher C/N ratios in *BnaC02.TPS8*-OE lines under sufficient N conditions (Figure 2l-
414 n). Thus, overexpressing *BnaC02.TPS8* appears to stimulate an enhanced N demand
415 and promote C assimilation in transgenic plants.

416 Starch synthesis occurs through ADPG pyrophosphorylase (AGPase) in chloroplasts,
417 allosterically activated by 3-phosphoglycerate (3PGA) (Stitt and Zeeman 2012). In
418 *BnaC02.TPS8* mutants, AGPase activity, 3PGA and ADPG concentrations, and the
419 expression of genes involved in starch synthesis all decreased (Figure 3-6). In contrast,
420 *BnaC02.TPS8*-OE increased AGPase activity, 3PGA and ADPG concentrations. This
421 suggests that *BnaC02.TPS8* can influence metabolite pools in *B. napus* by altering
422 starch accumulation, possibly independent of T6P concentration. AGPase has two small
423 subunits subject to redox regulation, influenced in Arabidopsis by overexpressing the
424 *E. coli* TPS encoding gene (*OtsA*) (Tiessen et al., 2002; Martins et al., 2013). While
425 AGPase activity appears related to *BnaC02.TPS8* (Figure 5c), the impact of
426 *BnaC02.TPS8* on AGPase's *in vivo* redox status remains unclear.

427 The mutation in *BnaC02.TPS8* resulted in an increased C allocation to TCA pathway
428 intermediates, concurrently decreasing allocation to starch, soluble sugars. Conversely,
429 *BnaC02.TPS8*-OE plants exhibited the opposite trend (Figure 3; 4). In *BnaC02.TPS8*
430 mutants, there was an increase in pyruvate and pyruvate kinase, both involved in

431 glycolysis. In contrast, OE lines showed a decrease in these components (Figure 4c, 5e).
432 The activity of pyruvate kinase reflects the leaf's capacity to regulate glycolysis for
433 respiration and produce C skeletons required for anabolic processes (Plaxton, 1996).
434 The redirection of photoassimilates away from respiratory pathways towards starch
435 synthesis might contribute to the increased starch observed in *BnaC02.TPS8*-OE plants.
436 Previous studies have identified pyruvate kinase as a target of SnRK1 (Beczner et al.,
437 2010), with SnRK1 exerting negative effects on several TCA intermediates, including
438 citrate, aconitate and isocitrate (Peixoto et al., 2021). Our study revealed that
439 *BnaC02.TPS8* mutants exhibited higher concentrations of citrate, aconitate, and
440 isocitrate (Figure 4). These findings suggest that while the impact of SnRK1 on
441 pyruvate kinase activity exhibits opposing effects, its influence on TCA intermediates
442 aligns with the observed effects in *BnaC02.TPS8* mutants. Notably, overexpressing
443 *otsA* under an ethanol-inducible promoter in *Arabidopsis* led to increased C allocation
444 to organic and amino acids, while decreasing glycolysis intermediates (Figueroa et al.,
445 2016). These may be attributed to the interplay between source and sink in *otsA*
446 overexpressing *Arabidopsis* and *BnaC02.TPS8* overexpressing *B. napus* plants.

447 The overexpression of *BnaC02.TPS8* resulted in a significant increase in T6P
448 concentrations, whereas knockout lines showed no change in T6P, UDPG, or G6P
449 concentrations compared with WT (Figure 3e,f,i). This suggests that *BnaC02.TPS8* has
450 a limited role in T6P synthesis. The altered total TPS activity in *BnaC02.TPS8*-OE lines
451 or mutant could be a result of feedback regulation from trehalose concentrations or
452 other unidentified mechanisms. Surprisingly, *BnaC02.TPS8*-OE lines had elevated T6P
453 and sucrose concentrations in fully expanded leaves, contradicting the sucrose-T6P
454 model, where elevated T6P is expected to reduce sucrose concentration (Yadav et al.,
455 2014). Similar observations were made in pith and florets of MADS6:*OsTPP1*
456 transgenic maize lines, where pith showed decreased T6P and sucrose concentrations,
457 while florets had low T6P and higher sucrose concentrations (Oszvald et al., 2018).
458 Notably, the negative impact of T6P concentration on SnRK1 activity was observed
459 solely in young leaves, not in mature leaves of *Arabidopsis* (Zhang et al., 2009),
460 indicating that the influence of T6P concentration may vary across different tissues.

461 The increased sucrose synthesis or decreased consumption in this study could be
462 attributed to secondary effects resulting from the sustained elevation of T6P

463 concentration or total TPS activity in *BnaC02.TPS8*-OE lines. Recent research by Van
464 Leene et al. (2022) reported that the class II TPS-like protein AtTPS8 functions as a
465 negative regulator of SnRK1 in *Arabidopsis*. To precisely elucidate how SnRK1 affects
466 T6P concentration in the pods and developing seeds, accurate quantification of changes
467 in metabolic fluxes among *BnaC02.TPS8* mutants, OE lines, and wild type using stable
468 isotope labeling is imperative. Furthermore, investigating the relative contributions of
469 plastidial, mitochondrial, and cytosolic pathways to fatty acid biosynthesis will
470 contribute to a comprehensive understanding of *BnaC02.TPS8*'s function in lipid
471 metabolism.

472 In conclusion, our study reveals the previously unknown function of *BnaC02.TPS8*,
473 a class II TPS in *B. napus*. *BnaC02.TPS8* exhibits specific expression in mature leaves
474 and developing pod walls of *B. napus*. *BnaC02.TPS8* enhances the allocation of
475 photoassimilates to starch and sucrose, favoring seed yield and oil concentration
476 without adverse effects on plant growth and development. This discovery highlights
477 *BnaC02.TPS8* as an important class II TPS mediating seed yield and oil accumulation
478 improvement in *B. napus*, which offer valuable insights for future crop enhancement.

479

480 **EXPERIMENTAL PROCEDURES**

481 **Identification and sequence analysis of *BnaC02.TPS8* in *B. napus***

482 The *B. napus* sequences of putative homologs of the *Arabidopsis AtTPS8* gene were
483 retrieved through a BLAST search program in BnTIR (<http://yanglab.hzau.edu.cn/>; Liu
484 et al., 2021). Each of the *BnTPS8* genes was confirmed to be a member of the TPS
485 family using the SMART database (<http://smart.embl-heidelberg.de/>, Letunic et al.,
486 2018) and NCBI Conserved Domain Search Database
487 (<http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi>). Protein sequences of BnTPS8
488 and AtTPS8 were aligned using the ClustalW in MEGA 11 (Tamura et al., 2021). A
489 phylogenetic tree was constructed with the maximum-likelihood method by MEGA 11
490 using an algorithm with 1000 bootstraps, based on the equal input model, using partial
491 deletion of 95% site coverage for gaps and missing data.

492 **Plant materials and growth conditions**

493 In this study, a commercial *B. napus* cultivar (cv. Zhongshuang11, ZS11) was employed
494 for gene cloning, and both the universal cultivar 'Westar' and 'ZS11' were used for the

495 transformation receptor. Hydroponic experiments were conducted using a modified
496 Hoagland solution (Shi et al., 2013). The pH of the nutrient solutions was adjusted to
497 5.8 using 2 M NaOH or HCl. The nutrient solution was constantly aerated throughout
498 the experiments and refreshed every three days. Plants were cultivated in an illuminated
499 growth chamber at 22°C with 60% relative humidity under 16 h: 8 h light/dark regime.
500 To avoid the influence of the circadian rhythm, samples were taken in the middle of the
501 day. The experiments were replicated four to six times.

502 Three years of field trials were conducted at the experimental site of Huazhong
503 Agricultural University in Wuhan (114.3°E, 30.5°N), Hubei Province, China from
504 October 2017 to May 2020. The soil was a yellow-brown soil (Alfisol), and its
505 properties were as follows: pH6.8 (1:5 soil solution ratio), organic matter 10.70 g kg⁻¹,
506 NH₄OAc-extracted potassium 120.20 mg kg⁻¹, total N (Kjeldahl acid-digestion method)
507 0.35 g kg⁻¹, available N (alkali-hydrolysable N) 25.60 mg kg⁻¹, and Olsen-P 8.30 mg
508 kg⁻¹. Seeds of transgenic lines and WT were sown in a nursery bed in the field in mid-
509 September and the seedlings were transplanted by hand 30 days after sowing. There
510 were two N treatments, namely (1) high N of 180 kg N ha⁻¹ (basal fertilizer 108 kg N
511 ha⁻¹; top dressing 72 kg N ha⁻¹) and low N of 72 kg N ha⁻¹ (basal fertilizer 43.2 kg N
512 ha⁻¹, top dressing 28.8 kg N ha⁻¹). All the plots received basal fertilizer, including 60%
513 of the total N applied (supplied as urea), and all the P (supplied as calcium
514 superphosphate), K (supplied as potassium chloride), and boron (supplied as
515 Na₂B₄O₇·10H₂O). The application rates were as follows: P 90 kg P₂O₅ ha⁻¹, K 120 kg
516 K₂O ha⁻¹, and Borax 15 kg ha⁻¹. These fertilizers were thoroughly mixed and applied in
517 bands near the crop rows. The remaining 40% N was top dressed as urea during
518 overwintering.

519 A completely randomized block design with three replications was adopted in 2017-
520 2018, 2018-2019, and 2019-2020. The plot size was 6 m length × 1.8 m width, with 0.3
521 m row spacing and 0.25 m plant spacing, corresponding to 112,500 plants ha⁻¹. Each
522 plot had 6 varieties, and each variety had 3 rows, and 6 plants in each row. Each plot
523 had 20 rows, the first row and the last row were used as guard rows. The plants were
524 grown under rainfed conditions. The monthly average temperature and rainfall during
525 the rapeseed growth seasons were recorded (Figure S4). Weeds, pests, and disease
526 stresses were controlled using spray herbicides, insecticides, and fungicides,

527 respectively; no obvious weeds, insect pests, or disease infestations occurred during the
528 cropping season (Hu et al., 2020).

529 *Arabidopsis* was grown in an environmentally controlled growth room at 22°C. The
530 PAR light intensity of the fluorescent light was 150 $\mu\text{mol m}^{-2} \text{ s}^{-1}$. After sterilization,
531 *Arabidopsis* seeds were sown on agar medium contained with half-strength MS salt,
532 1.0% (w/v) sucrose, 0.05% MES, and 1.2% (w/v) agar (Sigma-Aldrich Co., St. Louis,
533 MO, catalog no. A1296). After plates were incubated at 4°C for 2 days, they were
534 transferred to long-day (16 h: 8 h light/dark regime) conditions. Ten-day-old seedlings
535 of *BnaC02.TPS8pro::GUS* were transferred to soil (PINDSTRUP from Denmark,
536 pH5.0) in black plastic pots (10 cm \times 10 cm), and sampled at the flowering and pod
537 stage.

538 **Vector construction and plant transformation**

539 To generate the *BnaC02.TPS8pro::GUS* construct, the promoter sequence (*B. napus*
540 cultivar 'ZS11') was inserted into the pBI121-GUS plus vector with a β -glucuronidase
541 (GUS) reporter gene (Li et al., 2015). The complete vector was verified by sequencing
542 and transformed into *Agrobacterium tumefaciens* GV3101 by electroporation.
543 *Arabidopsis* transformation was performed by the floral-dip method (Clough and Bent
544 1998).

545 Complete *BnaC02.TPS8* coding sequence (*B. napus* cultivar 'ZS11') was amplified
546 and cloned into the pCAMBIA2300 vector for *B. napus* *BnaC02.TPS8* overexpression
547 (OE) vectors. To generate the construct for the CRISPR/Cas9 system, two 20 bp target
548 sequences were inserted into the vectors of pKSE401 and pCBC-DT1T2 (Xing et al.,
549 2014). The plasmid constructs were introduced into *Agrobacterium tumefaciens* strain
550 GV3101 by electroporation. Hypocotyls of *B. napus* cultivar 'ZS11' or 'Westar' were
551 transformed (Zhou et al., 2002). The OE lines were confirmed by PCR using specific
552 primers. For the CRISPR/Cas9 mutants, PCR was performed for amplified Cas9, and
553 then the PCR product of the sgRNA target sequence was amplified and sequenced
554 (Wuhan Quintara Biotechnology Co., Ltd). The mutational patterns of CRISPR/Cas9
555 mutants were analyzed using DSDecode (Liu et al., 2015).

556 **RNA extraction and quantitative RT-PCR (qRT-PCR)**

557 Total RNA was extracted using the EastepR super total RNA extraction kit (Promega,
558 Madison, WI). One μg of total RNA was used to convert into cDNA with the

559 ReverTrace qPCR RT master mix with gDNA remover (TOYOBO, Osaka, Japan).
560 qRT-PCR was performed using SYBR® green supermix (Bio-Rad) on the CFX Connect
561 Real-Time PCR Detection System (Bio-Rad). The transcript levels were normalized to
562 the housekeeping genes *Tubulin* and *Actin2*.

563 **Subcellular localization**

564 The transiently expressed 35S::BnaC02.TPS8::GFP fusion constructs were introduced
565 into *Arabidopsis* (Col-0) protoplasts by the PEG/calcium-mediated transformation
566 method (Yoo et al., 2007). The subcellular localization marker construct of m::RFP (red
567 fluorescent protein) was used as a cytosol marker protein (Kim et al., 2016).
568 Fluorescence signals were detected and photographed under a confocal laser
569 microscope (LSM 510 Meta, Carl Zeiss Inc.).

570 **Measurement of biomass, seed yield, and yield-related traits**

571 At the seedling stage, the plants were sampled and divided into shoots and roots. At the
572 ripening stage, the shoot was divided into straw and seeds (almost all the leaves had
573 senesced at this stage). Samples were oven-dried at 105°C for 30 min, then at 65°C for
574 48 h for constant mass. Dried samples were weighed. At the ripening stage, twenty-one
575 plants of each line in three plots were harvested. Among them, seven plants of each line
576 were measured for branch number and pod number per plant. Twenty-five siliques from
577 each plant were sampled randomly and seed numbers were counted. After a subsequent
578 ripening period, all siliques from each plant were threshed and total seed yield and
579 1000-seed weight were determined. Harvest index = seed yield per plant/ (seed yield +
580 straw weight). The content of seed oil and protein was tested using a near-infrared
581 reflectance spectroscope (Foss NIRSystems 5000) (Gan et al., 2003).

582 **Collection of developing seeds of *B. napus***

583 Plants were selected at the middle flowering stage, and the 2-3 flowers that had recently
584 opened were pinched off. The main branch and three branches of selected five
585 individual plant replicates of *BnaC02.TPS8*-OE, CRISPR mutants, and WT were
586 labeled with wires, which were gently tied around the stem between the open flower
587 and the bud. The buds of labeled branches were bagged and self-pollinated for 4 days
588 and then the bag was removed. The pods close to the wire were sampled 35 days after
589 flowering (DAF).

590 **GUS histochemical and fluorometric assays**

591 Seedlings or tissues were incubated at 37°C for 6 h in GUS staining solution (1 mM 5-
592 bromo-4-chloro-3-indolyl - β -D-glucuronate acid in 50 mM sodium phosphate buffer,
593 pH7.2) containing 0.1% (v/v) Triton X-100, 0.5 mM K₄Fe(CN)₆, 2 mM K₃Fe(CN)₆, and
594 10 mM EDTA. The tissue samples were examined under a stereo-microscope (Olympus,
595 Japan).

596 Fluorometric GUS assays were conducted in accordance with the method described
597 by Jefferson et al. (1987) with minor adjustments. For quantitative assessments, plant
598 tissues were rapidly frozen and subsequently homogenized in 0.5 mL of GUS extraction
599 buffer, which consisted of 50 mM NaPO₄ buffer (pH 7.0), 10 mM EDTA (pH 8.0), 0.1%
600 (w/v) sodium lauryl sarcosine, 0.1% (v/v) Triton X-100, and 10 mM β -mercaptoethanol.
601 The homogenate was then centrifuged at 13,000 \times g for 15 min at 4°C. GUS activity in
602 the supernatants was quantified in extraction buffer containing 1 mM 4-MUG (4-
603 methylumbelliferyl- β -D-galactopyranoside) at 37°C. A 50 μ L aliquot of the supernatant
604 was mixed with 250 μ L of MUG assay buffer on ice. Subsequently, 100- μ L aliquots
605 were added immediately to 900 μ L of GUS stop buffer (0.2 M Na₂CO₃) as a control.
606 The remaining reaction aliquots were incubated at 37°C for 1 hour, and 100- μ L aliquots
607 were then added to 900 μ L of the stop buffer. The fluorescence intensity of 4-
608 methylumbelliferon (4-MU) was quantified using a fluorescence spectrophotometer
609 (HITACHI F-4600, Japan) at excitation and emission wavelengths of 365 and 455 nm,
610 respectively. A standard curve was constructed to determine the concentration of 4-MU.
611 The total protein concentration of the crude sample extracts was determined using
612 bovine serum albumin (BSA) as a reference standard. Finally, GUS activity was
613 normalized using the 4-MUG standard and calculated as picomoles of 4-MU produced
614 per minute per milligram of total protein.

615 In the GUS fluorometric assay of *pBnaC02.TPS8*-GUS *Arabidopsis* samples, leaf
616 specimens were obtained from leaf 6 at 2, 8, 16 and 22 days after emergence (DAE).
617 Individual flowers on the primary inflorescence were carefully marked at anthesis.
618 Samples were collected from young siliques (5 and 10 days after anthesis) and from
619 mature siliques (20 and 25 days after anthesis). Seeds were meticulously removed using
620 a dissecting needle, and the siliques walls and seeds were sampled.

621 **Determination of total C and N concentration**

622 The concentration of total N and C in the dried powder of samples was measured using
623 an elemental analyzer (Vario EL; Elemental analyzer system). C to N ratio (C/N ratio)
624 = total C/ total N.

625 **Measurement of chlorophyll concentration and photosynthetic efficiency**

626 At the seven-week-old stage, the fifth and sixth leaves of the plants were sampled, and
627 fresh leaves (~30 mg) were incubated in 2.5 mL of 80% acetone overnight in the dark
628 at 4°C. Pigment concentration was detected at 663 nm and 645 nm absorbance with a
629 spectrophotometer (Tecan Infinite 200, Switzerland). The concentration of total
630 chlorophyll was calculated using the following equation: $(20.31 A_{645} + 8.05 A_{663}) / FW$
631 $[mg\ g^{-1}]$ (FW: fresh weight of tissue in grams). The net photosynthesis rate in the middle
632 of leaves at the seedling stage or the pods from the main inflorescence at the podding
633 stage was measured using a portable photosynthesis system (Li6400; LI-COR, Lincoln,
634 NE, USA) with the parameters of 400 $\mu\text{mol mol}^{-1}\text{ CO}_2$, 600 $\mu\text{mol s}^{-1}$ flow rate, 60%
635 relative humidity and 1200 $\mu\text{mol m}^{-2}\text{ s}^{-1}$ light intensity.

636 **Metabolite extraction and analysis by LC-MS/MS**

637 Metabolites (including T6P) were extracted with chloroform/methanol and determined
638 by LC-MS/MS according to a previously described method (Guo et al., 2014; Luo et
639 al., 2007). The 5th and 6th leaves of seven-week-old seedlings were snap-frozen, and
640 ground to powder. Samples (30 mg) were homogenized in 1.8 mL chloroform: methanol
641 (3:7, v/v) containing 0.8 μg PIPES as internal standard and incubated for 2 h with
642 intermittent mixing at -20°C. Polar metabolites were extracted from the
643 methanol/chloroform phase by the addition of 1.6 mL water to each sample and then
644 centrifuged at 12,000 g after vigorous vortexing. The methanol-water phase was then
645 transferred to a new tube. Another 1.6 mL of water was added to each sample to extract
646 polar metabolites one more time. Two extracts were pooled and concentrated using a
647 stream of nitrogen gas in a Termovap sample concentrator (DC150-2, Youning,
648 Hangzhou, China). The extracts were redissolved with 300 μL ddH₂O and then filtered
649 with 0.45 μm cellulose acetate ultrafiltration membranes (Millipore, MA, United
650 States). Metabolites analysis was determined by LC-MS/MS (QTRAP 6500 plus) with
651 the instrumental parameters described by Luo et al. (2007). Six replicates were used for
652 each line. The standard curve for each metabolite was generated using authentic

653 standards for the quantification of targeted metabolites. Sugar phosphates, glycolytic
654 intermediates, and organic acids were determined by interpolating from the linear
655 relationship between peak area and standard concentration.

656 **Measurement of carbohydrates**

657 Carbohydrates were quantified as described previously (Li and Li, 2013; Li et al., 2022).
658 Dried leaves (~0.1 g) were homogenized in 5 mL of 80% (v/v) hot ethanol for 20 min
659 and filtered for the assays. To measure soluble sugar, the filtrate was boiled for 15 min
660 with anthrone and 98% sulfuric acid. The absorbance was recorded at 485 nm using a
661 spectrophotometer (Tecan Infinite 200, Switzerland). To measure sucrose, the filtrate
662 was boiled for 10 min with 2 N NaOH and then chilled, then 10 N HCl and 0.1%
663 resorcinol were added to the above mixture, and incubated at 80°C for 10 min. The
664 absorbance was recorded at 480 nm after cooling. For starch quantification, the filtrate
665 was dried, weighed, and sequentially boiled with deionized water, 9.2 M perchloric acid,
666 and 4.6 M perchloric acid, respectively. The mixture was centrifuged at 12,000 g for 20
667 min. The supernatants were treated using the same procedures as for soluble sugar and
668 measured for absorbance at 485 nm. To measure trehalose, the supernatant was dried at
669 80°C and redissolved with distilled water. The re-suspension was sequentially boiled in
670 0.2 N H₂SO₄ and 0.6 N NaOH. The mixture was treated with anthrone and 98% sulfuric
671 acid at 100°C for 10 min. The chilled solution was measured for absorbance at 630 nm.

672 **Measurement of trehalose-6-phosphate synthase (TPS) activity**

673 Activity of TPS was measured as the release of UDP from UDP-glucose in the presence
674 of glucose-6-phosphate (Hottiger et al., 1987; Ilhan et al., 2015). Briefly, 0.1 g of fresh
675 leaves were homogenized in 0.4 mL of reaction mixture, containing 50 mM tricine
676 buffer, pH 7.0, 10 mM glucose-6-phosphate, 5 mM UDPG, and 12.5 mM MgCl₂, and
677 incubated at 35°C for 30 min. Glucose-6-phosphate was excluded from control
678 experiments. Samples were then kept at 100°C for 5 min. The mixture was centrifuged
679 at 12,000 g for 10 min. The supernatant was mixed with the second reaction mixture,
680 containing 140 mM tricine, pH 7.6, 2 mM phosphoenolpyruvate, 0.31 mM NADH, and
681 20 U lactic dehydrogenase, for determination of UDP content. The reaction was started
682 by the addition of pyruvate kinase (20 U). A decrease in absorbance at 340 nm was
683 measured at 35°C, and used to calculate the concentration of UDP. One unit of enzyme
684 activity was defined as nmol UDP formed through the activity of TPS in the extract,

685 and total shoot enzyme activity was expressed as units g⁻¹ fresh weight.

686 **Measurement of sucrose phosphate synthase, invertase, sucrose synthase, AGPase**
687 **and cytosolic pyruvate kinase activity**

688 Sucrose phosphate synthase activity was measured according to Nägele et al. (2010).
689 Frozen leaf tissue was homogenized in 50 mM HEPES-KOH (pH 7.5), 15 mM MgCl₂,
690 1 mM EDTA, 2.5 mM DTT, and 0.1% Triton X-100. After centrifugation at 12,000 g
691 for 5 min at 4°C, SPS activity in the supernatant was determined. The reaction buffer
692 consisted of 50 mM HEPES-KOH, pH 7.5, 15 mM MgCl₂, 2.5 mM DTT, 10 mM UDP-
693 Glc, 10 mM Fru-6-P, and 40 mM Glc-6-P. Control assays included 30% KOH.
694 Reactions were performed at 25°C for 30 min, followed by a 10 min incubation at 95°C.
695 Anthrone (0.2%) in 95% H₂SO₄ was added, and samples were incubated for 8 min at
696 90°C. Glucose concentration was measured at 620 nm.

697 Invertase activities were evaluated in crude leaf extracts. Approximately 0.1 g of
698 frozen leaf tissues was homogenized in 50 mM HEPES-KOH (pH 7.5), 5 mM MgCl₂,
699 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 5 mM DTT, 0.1% Triton X-100, and 10%
700 glycerin. After centrifugation at 12,000 g for 25 min at 4°C, invertase activities were
701 assayed in the supernatant. Soluble acid invertase was assayed in 20 mM Na-acetate
702 buffer (pH 4.7) with 100 mM sucrose as a substrate. Neutral invertase was assayed in
703 20 mM HEPES-KOH (pH 7.5) with 100 mM sucrose as a substrate. The control of each
704 assay was boiled for 3 min after adding the enzyme extract. Reactions were incubated
705 for 60 min at 30°C, stopped by boiling for 3 min, and the reducing sugars released were
706 enzymatically measured (Comin Biotechnology Co., Ltd.). The activities were
707 expressed in µmol glucose h⁻¹ g⁻¹ FW.

708 To assay sucrose synthase activity, frozen samples were ground to powder and then
709 homogenized in extraction buffer containing 50 mM HEPES/KOH (pH7.5), 7.5 mM
710 MgCl₂ and 1 mM EDTA, 2% (w/v) PEG 8000, 2% (w/v) PVP and 5 mM DTT
711 (Hoffmann-Thoma et al., 1996). The supernatant was immediately desalting on a
712 Sephadex G-25 column equilibrated with extraction buffer at 4°C. The filtrate was then
713 used to determine the sucrose synthase activities with a test kit (Comin Biotechnology
714 Co., Ltd.).

715 To assay AGPase enzyme activity, frozen samples were ground to powder and then
716 homogenized in extraction buffer containing 1 mL extraction buffer consisting of

717 100 mM HEPES buffer (pH 7.5), 5 mM MgCl₂, 2 mM EDTA, 10% (v/v) glycerol, 0.1%
718 BSA, 5 mM DTT, and 2% (w/v) insoluble PVP, and then centrifuged at 12,000 g at 4°C
719 for 30 min. The remaining pellet was suspended in the extraction buffer and used for
720 AGPase enzyme assay with a test kit (AGP-2A-Y, Comin Biotechnology Co., Ltd.).

721 Crude pyruvate kinase enzyme solutions were extracted following Baud et al. (2007).
722 Leaves were ground and homogenized in extraction buffer (50 mM HEPES-KOH, pH
723 8.0, 100 mM KCl, 5 mM MgCl₂, 20 mM NaF, 1 mM EDTA, 0.1% Triton X-100, 20%
724 glycerol, 5% PEG 8000, 1 mM DTT, 1% PVP). The supernatant obtained after
725 centrifugation at 14,000 g at 4°C for 10 min was used for enzyme activity. The assay
726 involved a coupling reaction of pyruvate and the conversion of NADH to NAD⁺. The
727 reaction solution (100 mM HEPES-KOH, pH 8.2, 50 mM KCl, 10 mM MgCl₂, 5% PEG
728 8000, 1 mM DTT, 2 mM PEP, 0.3 mM NADH, 2.5 mM ADP, 2 U/mL rabbit muscle
729 lactate dehydrogenase) was analyzed for pyruvate kinase activity by monitoring the
730 decrease in absorbance values at 340 nm.

731 **Data analysis and statistics**

732 Data were processed using SPSS software 22.0 (IBM Corp.). The heatmap and bar chart
733 were completed by Microsoft Excel software and GraphPad 8.0 software (GraphPad,
734 USA), respectively. A two-tailed Student's *t*-test was performed to identify significant
735 differences between WT and transgenic plants for physiological data.

736

737 **ACKNOWLEDGMENTS**

738 This work was supported by the National Nature Science Foundation of China (Grant
739 Nos. 32301885, 31972498, and 32172662). Pan Yuan gratefully acknowledges
740 financial support from the China Scholarship Council to Reading University for joint
741 doctoral student education. We thank Prof. Liang Guo and Ms. Qing Li (Huazhong
742 Agricultural University) for their excellent technical assistance in metabolite analysis
743 by LC-MS/MS.

744

745 **Supplemental Data**

746 **Figure S1.** Multiple sequence alignment of AtTPS8, BnaC02.TPS8 and BnaA02.TPS8
747 proteins and structure similarity in *B. napus* and *Arabidopsis*. The red striated bar
748 indicates the Glyco_transf_20 domain (Glycosyltransferase family 20,

749 <https://www.ncbi.nlm.nih.gov/Structure/cdd/pfam00982>). The green striated bar
750 indicates the Trehalose_PPase domain (Trehalose-phosphatase domain,
751 <https://www.ncbi.nlm.nih.gov/Structure/cdd/PF02358>).

752 **Figure S2.** GUS activity in *pBnaC02.TPS8*-GUS Arabidopsis. GUS activity was
753 measured in Arabidopsis plants expressing the *pBnaC02.TPS8*-GUS construct. Leaf
754 samples were collected at 2, 8, 16, and 22 days after emergence (DAE), while pod walls
755 and seeds were sampled at 5, 10, 20, and 25 days after anthesis (DAA). Data are shown
756 as the mean \pm SD (n=4). Different letters represent significant differences at $P < 0.05$,
757 based on an ANOVA analysis with Tukey's significant difference test.

758 **Figure S3.** Comparison of shoot growth among different six-week-old *BnaC02.TPS8*-
759 *OE* lines and wild type plants (cultivar 'ZS11') grown hydroponically. Values are the
760 means \pm SD (n=5). Different letters represent significant differences at $P < 0.05$, based
761 on an ANOVA analysis with Tukey's significant difference test.

762 **Figure S4.** Climate conditions during rapeseed growth seasons (2017-2020). Monthly
763 averages of maximum and minimum temperatures, along with precipitation data, are
764 depicted for the rapeseed growth seasons spanning 2017 to 2020.

765 **Figure S5.** Impact of *BnaC02.TPS8* on the sugar-phosphates of leaves. (a-c)
766 Concentrations of F6P (a), F1,6BP (b), and G1P (c) in seven-week-old seedlings of WT,
767 *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, 'Westar') and overexpression lines
768 (OE-33 and OE-38; WT, 'ZS11'). Data were obtained from the 5th and 6th leaves of
769 seven-week-old seedlings grown hydroponically. Data are shown as the mean \pm SD
770 (n=6). Significant differences: * $P < 0.05$, ** $P < 0.01$ and ns indicates not significant
771 (Student's *t*-test).

772 **Figure S6.** Impact of *BnaC02.TPS8* on the fatty acid composition in mature seeds. (a-
773 f) Fatty acid composition, including C16:0 (a), C18:0 (b), C18:1 (c), C18:2 (d), C18:3
774 (e) and C20:0 (f) in mature seeds of WT, *BnaC02.TPS8* mutants (CR-44 and CR-153;
775 WT, 'Westar'), and overexpression lines (OE-33 and OE-38; WT, 'ZS11'). Data were
776 measured by a near-infrared spectrometer (NIRS). Data are shown as the mean \pm SD
777 (n=7). Significant differences: * $P < 0.05$ and ns indicates not significant (Student's *t*-
778 test).

779 **Table S1** The sequences of putative off-target sites of *BnaA02.TPS8* in *BnaC02.TPS8*
780 CRISPR-Cas9 mutants.

781 **Table S2** Abundance changes in metabolites of *BnaC02.TPS8* overexpression lines and
782 mutants by LC-MS/MS.

783 **Table S3** Primers used for *BnaC02.TPS8* cloning and vector construction.

784 **Table S4** Primers used for qRT-PCR of reference genes, *BnaC02.TPS8*, *BnaA02.TPS8*,
785 and genes associated with starch synthesis, starch degradation, sugar metabolites
786 transport, nitrogen uptake and metabolism, fatty acid synthesis, and oil storage.

787 **AUTHOR CONTRIBUTIONS**

788 L.S. and P.Y. conceived and designed the experiments; P.Y. performed most of the
789 experiments, analyzed the data, and drafted the manuscript; G.Z.L. provided technical
790 assistance; M.Z.Y. and H.J.L. collected the samples and worked on the phenotyping;
791 J.P.H., D.F.H., H.M.C., G.D.D., S.L.W., F.S.X., and C.W. revised the manuscript. All
792 authors provided final approval for publication.

793

794 **CONFLICT OF INTEREST**

795 The authors declare that they have no competing interests.

796

797 **REFERENCES**

- 798 **Arnon DI** (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*.
799 *Plant Physiol* **24**, 1-15
- 800 **Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat
801 C** (2007) Function of plastidial pyruvate kinases in seeds of *Arabidopsis Thaliana*. *Plant J*
802 **52**, 405-419
- 803 **Bennett EJ, Roberts JA, Wagstaff C** (2011) The role of the pod in seed development: strategies
804 for manipulating yield. *New Phytol* **190**, 838-853
- 805 **Cabib E, Leloir LF** (1958) The biosynthesis of trehalose phosphate. *J Bio Chem* **231**, 259-275
- 806 **Cernac A, Benning C** (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the
807 control of storage compound biosynthesis in *Arabidopsis*. *Plant J* **40(4)**, 575-585
- 808 **Chary SN, Hicks GR, Choi YG, Carte D, Raikhel NV** (2008) Trehalose-6-phosphate
809 synthase/phosphatase regulates cell shape and plant architecture in *Arabidopsis*. *Plant
810 Physiol* **146**, 97-107
- 811 **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for *Agrobacterium*-mediated
812 transformation of *Arabidopsis thaliana*. *Plant J* **16**, 735-743

- 813 **Damgaard O, Jensen LH, Rasmussen OS** (1997) *Agrobacterium tumefaciens*-mediated
814 transformation of *Brassica napus* winter cultivars. *Transgenic Res* **6**, 279-288
- 815 **De Block M, De Brouwer D, Tenning P** (1989) Transformation of *Brassica napus* and *Brassica*
816 *oleracea* using *agrobacterium tumefaciens* and the expression of the *bar* and *neo* genes in
817 the transgenic plants. *Plant Physiol* **91**(2), 694-701
- 818 **Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P** (2015) Trehalose-6-phosphate synthase
819 is not the only active TPS in *Arabidopsis thaliana*. *Biochem J* **466**, 283-290
- 820 **Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD,**
821 **Smeekens SC, Graham IA** (2002) Trehalose-6-phosphate synthase 1, which catalyzes the
822 first step in trehalose synthesis, is essential for *Arabidopsis* embryo maturation. *Plant J* **29**,
823 225-235
- 824 **Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, Höhne M, Encke B,**
825 **Plaxton WC, Zeeman SC, Li Z, Schulze WX, Hoefgen R, Stitt M, Lunn JE** (2016)
826 Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon
827 availability. *Plant J* **85**, 410-423
- 828 **Figueroa CM, Lunn JE** (2016) A tale of two sugars: trehalose 6-phosphate and sucrose. *Plant J*
829 **172**, 7-27
- 830 **Food and Agriculture Organization of the United Nations (FAO)** (2020) The state of food
831 security and nutrition in the world 2020. Transforming food systems for affordable healthy
832 diets. FAO, Rome, Italy. <http://www.fao.org/faostat>
- 833 **Gan L, Sun XL, Jin L, Wang GQ, Xu JW, Wei ZL, Fu TD** (2003) Establishment of math models
834 of NIRS analysis for oil and protein contents in seed of *Brassica napus*. *Scientia Agricultura*
835 *Sinica* **36**(12), 1609-1613
- 836 **Gómez LD, Baud S, Gilday A, Li Y, Graham IA** (2006) Delayed embryo development in the
837 *Arabidopsis TREHALOSE-6-PHOSPHATE SYNTHASE 1* mutant is associated with altered
838 cell wall structure, decreased cell division and starch accumulation. *Plant J* **46**, 69-84
- 839 **Griffiths CA, Sagar R, Geng Y, Primavesi LF, Patel MK, Passarelli MK, Gilmore IS, Steven**
840 **RT, Bunch J, Paul MJ, et al.** (2016) Chemical intervention in plant sugar signalling
841 increases yield and resilience. *Nature* **540**, 574-578
- 842 **Guo L, Ma F, Wei F, Fanella B, Allen DK, Wang X** (2014) Cytosolic phosphorylating
843 glyceraldehyde-3-phosphate dehydrogenases affect *Arabidopsis* cellular metabolism and
844 promote seed oil accumulation. *Plant Cell* **26** (7), 3023-3035

- 845 **Han X, Wu K, Fu X, Liu Q** (2020) Improving coordination of plant growth and
846 nitrogen metabolism for sustainable agriculture. *aBIOTECH* **(4)**, 255-275
- 847 **Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P** (2003) ADP-glucose
848 pyrophosphorylase is activated by posttranslational redox-modification in response to light
849 and to sugars in leaves of *Arabidopsis* and other plant species. *Plant Physiol* **133**, 838-849
- 850 **Henry C, Bledsoe SW, Siekman A, Kollman A, Waters BM, Feil R, Stitt M, Lagrimini LM**
851 (2014) The trehalose pathway in maize: conservation and gene regulation in response to the
852 diurnal cycle and extended darkness. *J Exp Bot* **65**, 5959-5973
- 853 **Hottiger T, Schmutz P, Wiemken A** (1987) Heat-induced accumulation and futile cycling of
854 trehalose in *Saccharomyces cerevisiae*. *J Bacteriol* **169**, 5518-5522
- 855 **Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J** (2020) The reduction in leaf area
856 precedes that in photosynthesis under potassium deficiency: the importance of leaf
857 anatomy. *New Phytol* **227**, 1749-1763
- 858 **Hua W, Li R J, Zhan GM, Liu J, Li J, Wang XF, Liu GH, Wang HZ** (2012) Maternal control of
859 seed oil content in *Brassica napus*: the role of silique wall photosynthesis. *Plant J* **69(3)**,
860 432-444
- 861 **Ilhan S, Ozdemir F, Bor M** (2015) Contribution of trehalose biosynthetic pathway to drought stress
862 tolerance of *Capparis ovata* Desf. *Plant Biol* **17**, 402-407
- 863 **Jefferson RA, Kavanagh TA, Bevan MW** (1987) GUS fusions: beta-glucuronidase as a sensitive
864 and versatile gene fusion marker in higher plants. *EMBO J* **6**, 3901-3907
- 865 **Jones TL, Ort DR** (1997) Circadian regulation of sucrose phosphate synthase activity in tomato by
866 protein phosphatase activity. *Plant Physiol* **113**, 1167-1175
- 867 **Kim RJ, Kim HJ, Shim D, Suh MC** (2016) Molecular and biochemical characterizations of the
868 monoacylglycerol lipase gene family of *Arabidopsis thaliana*. *Plant J* **85**, 758-771
- 869 **King SP, Lunn JE, Furbank RT** (1997) Carbohydrate content and enzyme metabolism in
870 developing canola siliques. *Plant Physiol* **114**, 153-160
- 871 **Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P** (2005) Trehalose 6-
872 phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose
873 pyrophosphorylase. *Proc Natl Acad Sci U S A* **102(31)**, 11118-11123
- 874 **Letunic I, Bork P** (2018) 20 years of the SMART protein domain annotation resource. *Nucleic
875 Acids Res* **46(D1)**, 493-496
- 876 **Leyman B, Van Dijck P, Thevelein JM** (2001). An unexpected plethora of trehalose biosynthesis

- 877 genes in *Arabidopsis thaliana*. Trends Plant Sci **6**, 510-513
- 878 **Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, Hong Y** (2015) Wrinkled1 accelerates flowering
879 and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism
880 in *Brassica napus*. Front Plant Sci **6**, 1015
- 881 **Li Q, Yin M, Li Y, Fan C, Yang Q, Wu J, Zhang C, Wang H, Zhou Y** (2015) Expression of
882 *Brassica napus TTG2*, a regulator of trichome development, increases plant sensitivity to
883 salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot **66**, 5821-
884 5836
- 885 **Li X, and Li J** (2013) Determination of the content of soluble sugar in sweet corn optimized
886 anthrone colorimetric method. Storage Process **13**, 24-27
- 887 **Li Y, Wang W, Feng Y, Tu M, Wittich PE, Bate NJ** (2019) Transcriptome and metabolome reveal
888 distinct carbon allocation patterns during internode sugar accumulation in different
889 sorghum genotypes. Plant Biotechnol J **17(2)**, 472-487
- 890 **Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Z, Li G, Wang Y, Ying J, Jiao G,**
891 **Hu H, Hu P, Zhang J** (2022) The OsNAC23-T6P-SnRK1a feed-forward loop regulates
892 sugar homeostasis and grain yield in rice. Mol Plant **15**, 706-722
- 893 **Liu D, Yu L, Wei L, Yu P, Wang J, Zhao H, Zhang Y, Zhang S, Yang Z, Chen G, Yao X, Yang**
894 **Y, Zhou Y, Wang X, Lu S, Dai C, Yang QY, Guo L** (2021) BnTIR: an online transcriptome
895 platform for exploring RNA-seq libraries for oil crop *Brassica napus*. Plant Biotechnol J
896 **19(10)**, 1895-1897
- 897 **Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ** (2012) The
898 *BnGRF2* gene (GRF2-like gene from *Brassica napus*) enhances seed oil production through
899 regulating cell number and plant photosynthesis. J Exp Bot **63(10)**, 3727-3740
- 900 **Liu W, Xie X, Ma X, Li J, Chen J, Liu YG** (2015) DSDecode: a web-based tool for decoding of
901 sequencing chromatograms for genotyping of targeted mutations. Mol Plant **8(9)**, 1431-
902 1433
- 903 **Lu C, Napier JA, Clemente TE, Cahoon EB** (2011) New frontiers in oilseed biotechnology:
904 meeting the global demand for vegetable oils for food, feed, biofuel, and industrial
905 applications. Curr Opin Biotechnol **22(2)**, 252-259
- 906 **Lu S, Liu H, Jin C, Li Q, Guo L** (2019) An efficient and comprehensive plant glycerolipids
907 analysis approach based on high performance liquid chromatography-quadrupole time-of-
908 flight mass spectrometer. Plant Direct **3**, 1-13

- 909 **Luo B, Groenke K, Takors R, Wandrey C, Oldiges M** (2007) Simultaneous determination of
910 multiple intracellular metabolites in glycolysis, pentose phosphate pathway and
911 tricarboxylic acid cycle by liquid chromatography-mass spectrometry. *J Chromatogr A*
912 **1147(2)**, 153-164
- 913 **Martins MC, Hejazi M, Fettke J, Steup M, Feil R, Krause U, Arrivault S, Vosloh D, Figueroa**
914 **CM, Ivakov A, Yadav UP, Piques M, Metzner D, Stitt M, Lunn JE** (2013) Feedback
915 inhibition of starch degradation in *Arabidopsis* leaves mediated by trehalose 6-phosphate.
916 *Plant Physiol* **163(3)**, 1142-1163
- 917 **Morales-Herrera S, Jourquin J, Coppé F, López-Galvis L, De Smet T, Safi A, Njo MF, Griffiths**
918 **CA, Sidda JD, McCullagh JS, Xue X, Davis BG, Van der Eycken J, Paul MJ, van Dijck**
919 **P, Beeckman T** (2023) Trehalose-6-phosphate signaling regulates lateral root formation in
920 *Arabidopsis thaliana*. *PNAS* **120 40**, e2302996120
- 921 **Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y,**
922 **Haque E, Haque E, Basu SS, Lagrimini LM** (2015) Expression of trehalose-6-phosphate
923 phosphatase in maize ears improves yield in well-watered and drought conditions. *Nat*
924 *Biotechnol* **33**, 862-869
- 925 **Oszvald M, Primavesi LF, Griffiths CA, Cohn J, Basu SS, Nuccio ML, Paul MJ** (2018)
926 Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive
927 tissue. *Plant Physiol* **176**, 2623-2638
- 928 **Paul MJ, Miret JA, Griffiths CA** (2022) Improving rice photosynthesis and yield through trehalose
929 6-phosphate signaling. *Mol Plant* **15**, 586-588
- 930 **Paul MJ, Watson A, Griffiths CA** (2020) Trehalose 6-phosphate signalling and impact on crop
931 yield. *Biochem Soc Trans* **48**, 2127-2137
- 932 **Pellny TK, Ghannoum O, Conroy JP, Schluemann H, Smeekens S, Andralojc J, Krause KP,**
933 **Goddijn O, Paul MJ** (2004) Genetic modification of photosynthesis with *E. coli* genes for
934 trehalose synthesis. *Plant Biotechnol J* **2**, 71-82
- 935 **Ramon M, De Smet I, Vandesteene L, Naudts M, Leyman B, Van Dijck P, Rolland F, Beeckman**
936 **T, Thevelein JM** (2009) Extensive expression regulation and lack of heterologous
937 enzymatic activity of the Class II trehalose metabolism proteins from *Arabidopsis thaliana*.
938 *Plant Cell Environ* **32**, 1015-1032
- 939 **Ruan YL** (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. *Annu*
940 *Rev Plant Biol* **65**, 33-67

- 941 **Secchi MA, Fernandez JA, Stamm MJ, Durrett T, Prasad PV, Messina CD, Ciampitti IA**
942 (2023). Effects of heat and drought on canola (*Brassica napus* L.) yield, oil, and protein: A
943 meta-analysis. *Field Crops Res* **293**, 108848
- 944 **Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S** (2004) Trehalose
945 mediated growth inhibition of *Arabidopsis* seedlings is due to trehalose-6-phosphate
946 accumulation. *Plant Physiol* **135**, 879-890
- 947 **Singh V, Louis J, Ayre BG, Reese JC, Pegadaraju V, Shah J** (2011) *TREHALOSE PHOSPHATE*
948 *SYNTHASE11*-dependent trehalose metabolism promotes *Arabidopsis thaliana* defense
949 against the phloem-feeding insect *Myzus persicae*. *Plant J* **67**, 94-104
- 950 **Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP** (2013) High-
951 throughput root phenotyping screens identify genetic loci associated with root architectural
952 traits in *Brassica napus* under contrasting phosphate availabilities. *Ann Bot* **112(2)**, 381-
953 389
- 954 **Stitt M, Zeeman SC** (2012) Starch turnover: pathways, regulation and role in growth. *Curr Opin*
955 *Plant Biol* **15(3)**, 282-292
- 956 **Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R** (2008) The transcriptional co-activator
957 *MBF1c* is a key regulator of thermotolerance in *Arabidopsis thaliana*. *J Bio Chem* **283**,
958 9269-9275
- 959 **Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo**
960 *J* (2011) Enhanced seed oil production in canola by conditional expression of *Brassica*
961 *napus* LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. *Plant Physiol* **156**
962 **(3)**, 1577-1588
- 963 **Tamura K, Stecher G, Kumar S** (2021) MEGA11: Molecular evolutionary genetics analysis
964 version 11. *Mol Biol Evol* **38(7)**, 3022-3027
- 965 **Tang S, Peng F, Tang Q, Liu Y, Xia H, Yao X, Lu S, Guo L** (2022) *BnaPPT1* is essential for
966 chloroplast development and seed oil accumulation in *Brassica napus*. *J Adv Res* **42**, 29-
967 40
- 968 **Tian L, Xie Z, Lu C, Hao X, Wu S, Huang Y, Li D, Chen, L** (2019) The trehalose-6-phosphate
969 synthase *TPS5* negatively regulates ABA signaling in *Arabidopsis thaliana*. *Plant Cell Rep*
970 **38**, 869-882
- 971 **Tiessen A, Hendriks JH, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P** (2002)
972 Starch synthesis in potato tubers is regulated by post-translational redox modification of

- 973 ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to
974 the sucrose supply. *Plant Cell* **14**(9), 2191-213
- 975 **To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S** (2012)
976 WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid
977 biosynthesis in *Arabidopsis*. *Plant Cell* **24**(12), 5007-5023
- 978 **Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, De Winne N, Persiau G, Van De**
979 **Slijke E, Persyn F, Mertens T, Smaghe W, Crepin N, Broucke E, Van Damme D,**
980 **Pleskot R, Rolland F, De Jaeger G** (2022) Mapping of the plant SnRK1 kinase signalling
981 network reveals a key regulatory role for the class II T6P synthase-like proteins. *Nat Plants*
982 **8**(11), 1245-1261
- 983 **Vigeolas H, Waldeck P, Zank T, Geigenberger P** (2007) Increasing seed oil content in oil-seed
984 rape (*Brassica napus* L.) by over-expression of a yeast glycerol-3- phosphate
985 dehydrogenase under the control of a seed-specific promoter. *Plant Biotechnol J* **5**(3), 431-
986 441
- 987 **Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP** (2019) *OsTPS8* controls yield-related
988 traits and confers salt stress tolerance in rice by enhancing suberin deposition. *New Phytol*
989 **221**, 1369-1386
- 990 **Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt**
991 **M, Schmid M** (2013) Regulation of flowering by trehalose-6-phosphate signaling in
992 *Arabidopsis thaliana*. *Science* **339**, 704-707
- 993 **Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor**
994 **DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood**
995 **JL** (2008) Metabolic control analysis is helpful for informed genetic manipulation of
996 oilseed rape (*Brassica napus*) to increase seed oil content. *J Exp Bot* **59** (13), 3543-3549
- 997 **Woodfield HK, Fenyk S, Wallington E, Bates RE, Brown A, Guschina IA, Marillia EF, Taylor**
998 **DC, Fell D, Harwood JL, Fawcett T** (2019) Increase in lysophosphatidate acyltransferase
999 activity in oilseed rape (*Brassica napus*) increases seed triacylglycerol content despite its
1000 low intrinsic flux control coefficient. *New Phytol* **224**, 700-711
- 1001 **Wingler A, Delatte TL, O'Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H**
1002 (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with
1003 high carbon availability. *Plant Physiol* **158**, 1241-1251
- 1004 **Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ** (2014) A

- 1005 CRISPR/Cas9 toolkit for multiplex genome editing in plants. *BMC Plant Biol* **14**, 327-338
- 1006 **Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P,**
1007 **Hubberten HM, Stitt M, Lunn JE** (2014) The sucrose-trehalose 6-phosphate (T6P)
1008 nexus: specificity and mechanisms of sucrose signalling by T6P. *J Exp Bot* **65**, 1051-1068
- 1009 **Yang NM, Li S, Wang SL, Li Q, Xu FS, Shi L, Wang C, Ye XS, Cai HM, Ding GD** (2020)
1010 Dynamic transcriptome analysis indicates extensive and discrepant transcriptomic
1011 reprogramming of two rapeseed genotypes with contrasting NUE in response to nitrogen
1012 deficiency. *Plant and Soil* **456**, 369-390
- 1013 **Yoo SD, Cho YH, Sheen J** (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for
1014 transient gene expression analysis. *Nat Protoc* **2**, 1565-1572
- 1015 **Zang B, Li H, Li W, Deng XW, Wang X** (2011) Analysis of trehalose-6-phosphate synthase (TPS)
1016 gene family suggests the formation of TPS complexes in rice. *Plant Mol Bio* **76**, 507-522
- 1017 **Zhang BB, Wang YJ, Liu HJ, Yang XY, Yuan P, Wang C, Cai HM, Wang SL, Ding GD, Xu FS,**
1018 **Shi L** (2023) Optimal phosphorus management strategies to enhance crop productivity and
1019 soil phosphorus fertility in rapeseed-rice rotation. *Chemosphere* **337**, 139392
- 1020 **Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, et al.** (2019) Artificial selection on *GmOLEO1*
1021 contributes to the increase in seed oil during soybean domestication. *PLoS Genet* **15**(7),
1022 e1008267
- 1023 **Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H,**
1024 **Delatte T, Wingler A, Paul MJ** (2009) Inhibition of SNF1-related protein kinase1 activity
1025 and regulation of metabolic pathways by trehalose-6-phosphate. *Plant Physiol* **149**, 1860-
1026 1871
- 1027 **Zhou Y, Wang H, Gilmer S, Whitwill S, Keller W, Fowke LC** (2002) Control of petal and pollen
1028 development by the plant cyclin-dependent kinase inhibitor *ICK1* in transgenic *Brassica*
1029 plants. *Planta* **215**, 248-257

1030 **Table 1** Seed yield components and harvest index of *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, Westar) and *BnaC02.TPS8*
 1031 overexpression plants (OE-33 and OE-38; WT, ZS11) under high and low nitrogen conditions.

	High nitrogen			Low nitrogen			High nitrogen			Low nitrogen		
	Westar	CR-44	CR-153	Westar	CR-44	CR-153	ZS11	OE-33	OE-38	ZS11	OE-33	OE-38
PN	472.5±31.9	338.2±32.1	398.2±28.1	115.2±12.4	85.3±11.3	75.8±10.4	510.4±59.8	709.6±78.8	729.3±79.1	283.1±38.4	403.0±21.2	438.5±53.5
(n)	a	b	ab	c	d	d	b	a	a	d	c	c
SN	12.6±0.1 a	10.9±0.2 b	10.7±0.3 b	7.5±0.2 c	4.2±0.2 d	3.6±0.1 d	11.9±0.2 b	13.4±0.4 a	13.2±0.4 a	8.7±0.3 c	10.2±0.4 b	10.3±0.4 b
(n)												
TSW	4.04±0.06	3.91±0.08	3.94±0.06	3.95±0.05	3.94±0.04	3.93±0.05	4.27±0.04	4.29±0.07	4.25±0.07	4.18±0.02	4.25±0.02	4.22±0.03
(g)	a	a	a	a	a	a	a	a	a	a	a	a
HI	2.85±0.10	2.97±0.11	3.04±0.12	2.99±0.14	2.89±0.08	2.75±0.11	3.31±0.05	3.39±0.08	3.26±0.12	2.98±0.11	3.12±0.10	3.08±0.09
(n)	a	a	a	a	a	a	a	a	a	a	a	a

1032 Note: PN, pod number of plant; SN, seed number per pod, TSW, thousand seed weight; HI, harvest index. Values are mean ± SD (n=7).

1033 Different letters represent significant differences at $P < 0.05$ among treatments, based on an ANOVA analysis with Tukey's multiple
 1034 comparisons test.

1035 **FIGURE LEGENDS**

1036 **Figure 1.** Gene expression pattern, protein localization, and generation of
1037 CRISPR/Cas9 mutants, and overexpression transgenic plants of *BnaC02.TPS8*. (a)
1038 Phylogenetic tree and gene expression pattern of *BnaC02.TPS8* in *B. napus*. Gene
1039 expression data were sourced from BnTIR (<http://yanglab.hzau.edu.cn>). At,
1040 *Arabidopsis thaliana*; Bn, *Brassica napus*. (b) Expression pattern of the *pBnaC02.TPS8*
1041 reporter gene in green stem leaf (1) and senescent rosette leaf (2) of post-flowering
1042 stage plants, and green silique (3) and yellow silique (4) of silique stage plants. Scale
1043 bars: 1 cm. (c) Subcellular localization of BnaC02.TPS8-GFP in *Arabidopsis* protoplast.
1044 GFP indicates the green fluorescent protein (GFP) fluorescence, while red indicates the
1045 cytosol marker fluorescence. Scale bars: 10 μ m. (d) Mutagenesis of target sequence
1046 guided by 1 and 2 of the *BnaC02.TPS8* gene. (e) Relative gene expression of
1047 *BnaC02.TPS8* in *B. napus* shoots of wild type (cultivar ‘ZS11’) and *BnaC02.TPS8*
1048 overexpression (OE) lines. *BnaEF1- α* and *BnaActin2* were used as the references.
1049 Values are the means \pm SD (n=4). Significant differences: ** P < 0.01 (Student’s *t*-test).

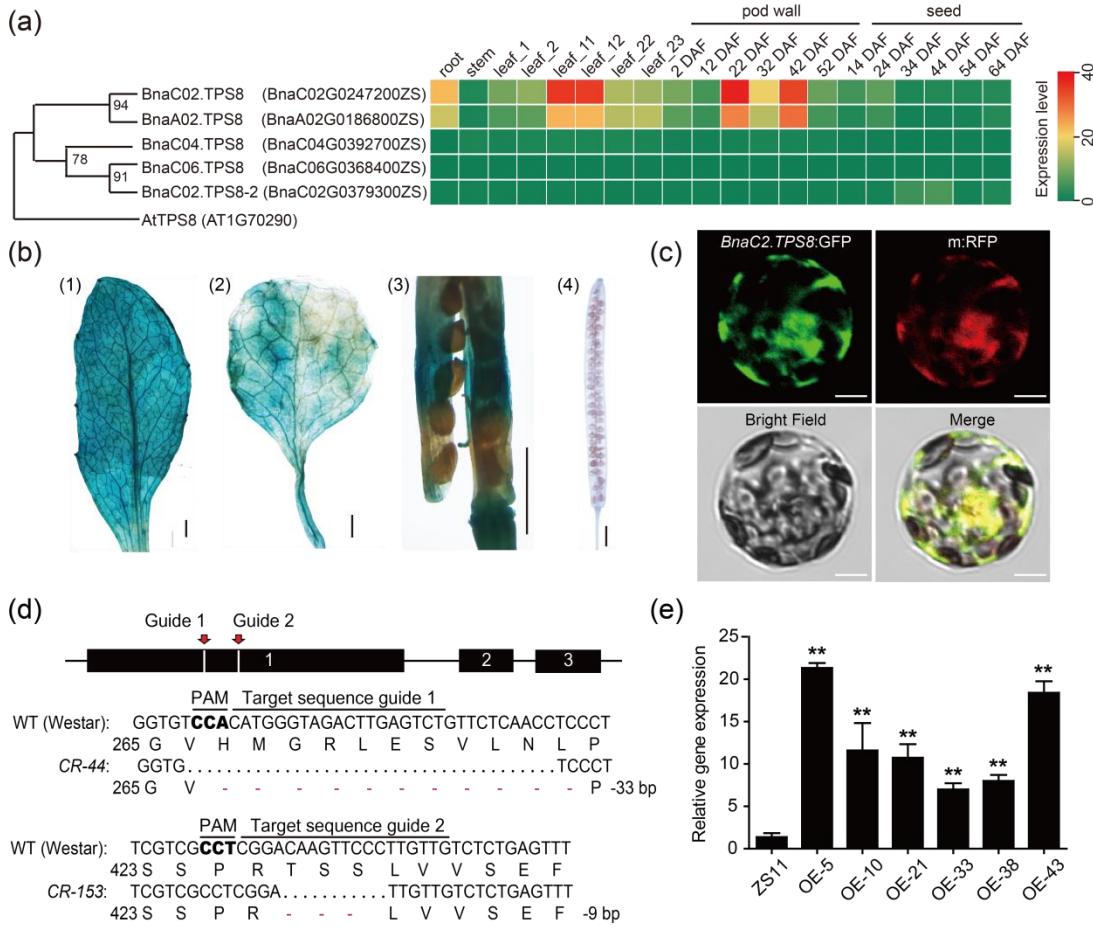
1050 **Figure 2.** Impact of *BnaC02.TPS8* disruption on the growth of *B. napus*. (a-b) Growth
1051 phenotype of five-week-old seedlings of CRISPR/Cas9 mutants (CR-44 and CR-153;
1052 WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11’) grown
1053 hydroponically. Scale bars: 2 cm. (c-e) Shoot biomass (c), root biomass (d), and root-
1054 to-shoot ratio (e) of seven-week-old seedlings of WT, *BnaC02.TPS8* mutants and
1055 overexpression lines. (f-g) Leaf length (f) and leaf width (g) of the 5th leaf of the seven-
1056 week-old seedlings. (h-n) Net photosynthetic rate (h), transpiration rate (i), stomatal
1057 conductance (j), and intercellular CO₂ (k) measured in ten-week-old seedlings grown
1058 hydroponically. (l-n) Total carbon (l), total nitrogen (m), and C/N ratio (n) measured in
1059 the 5th and 6th leaves of the seven-week-old seedlings. The data in (c-n) are shown as
1060 the mean \pm SD (n=6). Significant differences: * P < 0.05, ** P < 0.01 and ns indicates
1061 not significant (Student’s *t*-test).

1062 **Figure 3.** Impact of *BnaC02.TPS8* on the concentration of sugars, starch, sugar-
1063 phosphates, and sugar-nucleotides in the leaves. (a-i) Concentrations of sucrose (a),
1064 soluble sugar (b), trehalose (c), starch (d), T6P (e), G6P (f), S6P (g), ADPG (h) and

1065 UDPG (i) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, ‘Westar’) and
1066 overexpression lines (OE-33 and OE-38; WT, ‘ZS11’). Data were obtained from the 5th
1067 and 6th leaves of seven-week-old seedlings grown hydroponically. Data are shown as
1068 the mean ± SD (n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates
1069 not significant (Student’s *t*-test).

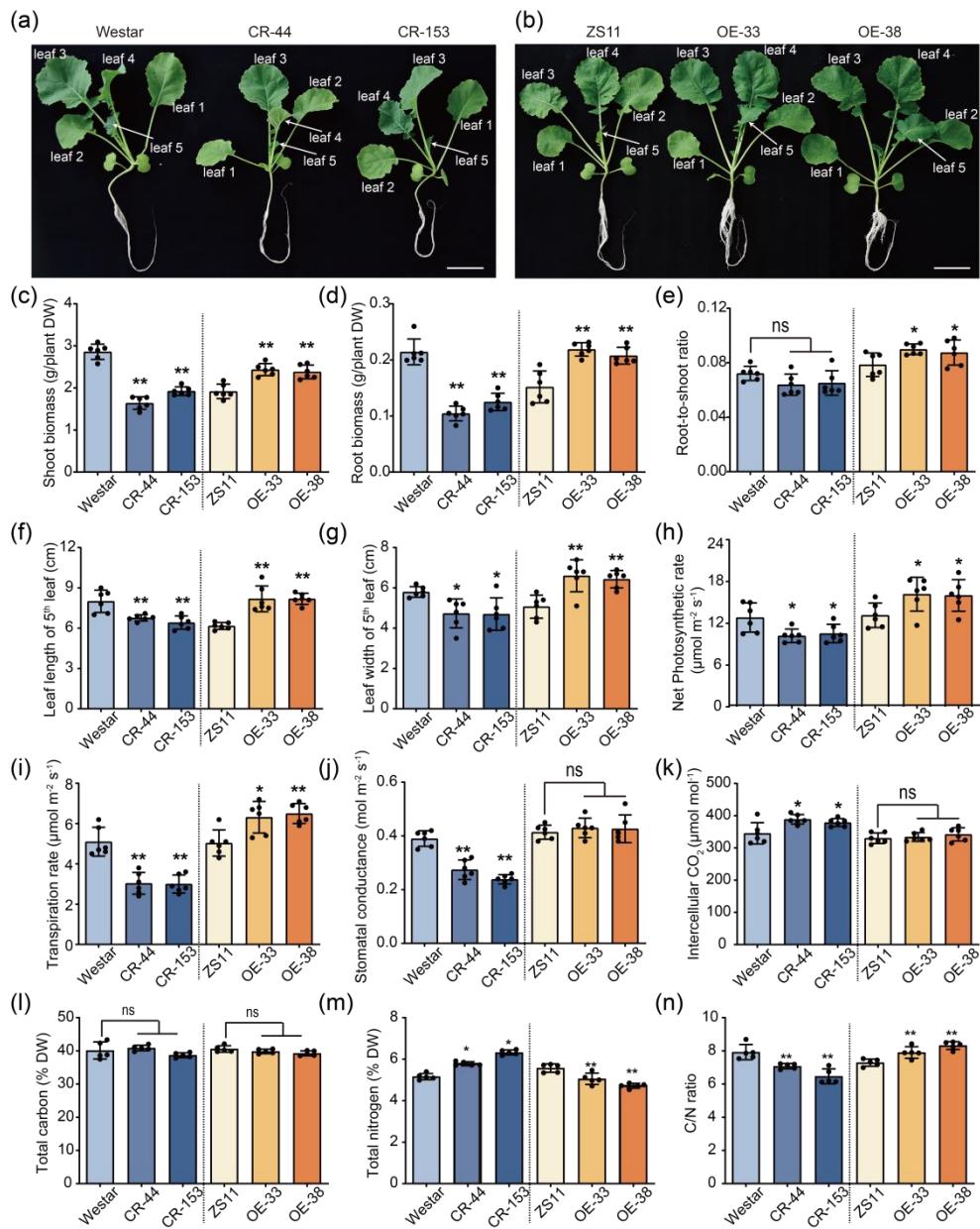
1070 **Figure 4.** Impact of *BnaC02.TPS8* on the concentration of glycolytic intermediates and
1071 organic acid in the leaves. (a-l) Concentrations of 3PGA (a), PEP (b), pyruvate (c), PEP:
1072 Pyruvate (d), shikimate (e), citrate (f), aconitate (g), isocitrate (h), 2-OG (i), succinate
1073 (j), fumarate (k) and malate (l) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT,
1074 ‘Westar’), and overexpression lines (OE-33 and OE-38; WT, ‘ZS11’). Data were
1075 obtained from the 5th and 6th leaves of seven-week-old seedlings grown hydroponically.
1076 Data are shown as the mean ± SD (n=6). Significant differences: *P < 0.05, **P < 0.01
1077 and ns indicates not significant (Student’s *t*-test). 3PGA: 3-phosphoglycerate; PEP:
1078 phosphoenolpyruvate; 2-OG: 2-oxoglutarate.

1079 **Figure 5.** Impact of *BnaC02.TPS8* on enzyme activities related to sucrose metabolism,
1080 starch synthesis, and trehalose-6-phosphate (TPS) activity in the leaves. (a-g) Enzyme
1081 activities including sucrose phosphate synthase (a), soluble acid invertase (b), neutral
1082 invertase (c), sucrose synthase (d), pyruvate kinase (e), AGPase (f), and TPS (g) in WT,
1083 *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, ‘Westar’), and overexpression lines
1084 (OE-33 and OE-38; WT, ‘ZS11’). Data were obtained from the 5th and 6th leaves of
1085 seven-week-old seedlings grown hydroponically. Data are shown as the mean ± SD
1086 (n=6). Significant differences: *P < 0.05, **P < 0.01 (Student’s *t*-test). AGPase:
1087 adenosine diphosphate-glucose pyrophosphorylase; TPS: trehalose-6-phosphate
1088 synthase.


1089 **Figure 6.** Impact of *BnaC02.TPS8* on the expression of starch synthesis, starch
1090 degradation, and sugar metabolite transport-related genes in leaves, and nitrogen uptake
1091 and metabolism-related genes in roots. (a-l) Gene expression level of *GBSS1* (a),
1092 *SBE2.1* (b), *SBE2.2* (c), *GWD3/PWD* (d), *BAM1* (e), *BAM3* (f), *PPT* (g), *GLT1* (h),
1093 *SUC2* (i), *NRT1.1* (j), *NRT1.5* (k) and *GLNI* (l) in WT, *BnaC02.TPS8* mutants (CR-44
1094 and CR-153; WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11’).

1095 The data in (a-i) and in (j-l) were collected from the 5th and 6th leaves of the plants, and
1096 roots of seven-week-old seedlings grown hydroponically, respectively. *BnaEF1- α* and
1097 *BnaActin2* were used as reference genes. Data are shown as the mean \pm SD (n=4).
1098 Significant differences: * $P < 0.05$, ** $P < 0.01$ (Student's *t*-test). *GBSS1*, *granule-bound*
1099 *starch synthase1*; *SBE2.1*, *starch branching enzyme2.1*; *SBE2.2*, *starch branching*
1100 *enzyme2.2*; *GWD3/PWD*, *glucan water dikinase3/ phosphoglucan water dikinase*;
1101 *BAM1*, *β -amylase1*; *BAM3*, *β -amylase3*; *PPT*, *phosphoenolpyruvic acid translocater*;
1102 *GLT1*, *glucose-6-phosphate translocater*; *SUC2*, *sucrose transporter2*; *NRT1.1*, *nitrate*
1103 *transporter1.1*; *NRT1.5*, *nitrate transporter1.5*; *GLN1*, *glutamine synthetase1*.

1104 **Figure 7.** Impact of *BnaC02.TPS8* on plant height and seed yield under high nitrogen
1105 (N) and low N conditions. (a) Phenotypic characterization of WT, *BnaC02.TPS8*
1106 mutants (CR-44 and CR-153; WT, Westar) and overexpression lines (OE-33 and OE-
1107 38; WT, ZS11) at the flowering stage under high N and low N conditions. (e-f) Plant
1108 height (e), and seed yield (f) of WT, *BnaC02.TPS8* mutants and overexpression lines
1109 under high N (180 kg N ha⁻¹) and low N (72 kg N ha⁻¹) conditions. Scale bars: 5 cm in
1110 (a-d). Data are shown as the mean \pm SD (n=6 for (e) and n=4 for (f)). Different letters
1111 represent significant differences at $P < 0.05$, based on an ANOVA analysis with Tukey's
1112 significant difference test.


1113 **Figure 8.** Impact of *BnaC02.TPS8* on the concentration of seed oil, protein, soluble
1114 sugar, and starch in mature seeds, the photosynthetic rate of pods, and the expression
1115 of starch synthesis and seed oil synthesis-related genes in developing seeds. (a-d) Seed
1116 oil (a), seed protein (b), seed soluble sugar (c), and seed starch (d) in the mature seeds
1117 of WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, Westar) and *BnaC02.TPS8*
1118 overexpression lines (OE-33 and OE-38; WT, ZS11). (e) Net photosynthetic rate of 40
1119 DAF pods, (f-l) expression of genes related to starch synthesis: *GBSS1* (f) and *GBSS2*
1120 (g), fatty acid synthesis: *WRI1* (h), *MCAMT* (i), *FATA* (j), and oil storage: *OBO* (k) and
1121 *CALO* (l). RNA was extracted from 35 DAF seeds. *BnaEF1- α* and *BnaActin2* were used
1122 as reference genes. Data are shown as the mean \pm SD (n=7 for (a-e); n=4 for (f-l)).
1123 Significant differences: * $P < 0.05$, ** $P < 0.01$ (Student's *t*-test). DAF, day after
1124 flowering. *GBSS1*, *granule-bound starch synthase1*; *GBSS2*, *granule-bound starch*

1125 *synthase1*; *WRIL*, *wrinkled1*; *MCAMT*, *malonyltransferase*; *FATA*, *acyl-ACP*
1126 *thioesterase A*; *OBO1*, *oil body oleosin1*; *CALO*, *caleosin*.

1127

1128 Figure 1. Gene expression pattern, protein localization, and generation of
 1129 CRISPR/Cas9 mutants, and overexpression transgenic plants of *BnaC02.TPS8*. (a)
 1130 Phylogenetic tree and gene expression pattern of *BnaC02.TPS8* in *B. napus*. Gene
 1131 expression data were sourced from BnTIR (<http://yanglab.hzau.edu.cn>). At,
 1132 *Arabidopsis thaliana*; Bn, *Brassica napus*. (b) Expression pattern of the *pBnaC02.TPS8*
 1133 reporter gene in green stem leaf (1) and senescent rosette leaf (2) of post-flowering
 1134 stage plants, and green silique (3) and yellow silique (4) of silique stage plants. Scale
 1135 bars: 1 cm. (c) Subcellular localization of *BnaC02.TPS8*-GFP in *Arabidopsis* protoplast.
 1136 GFP indicates the green fluorescent protein (GFP) fluorescence, while red indicates the
 1137 cytosol marker fluorescence. Scale bars: 10 μm. (d) Mutagenesis of target sequence
 1138 guided by 1 and 2 of the *BnaC02.TPS8* gene. (e) Relative gene expression of
 1139 *BnaC02.TPS8* in *B. napus* shoots of wild type (cultivar ‘ZS11’) and *BnaC02.TPS8*
 1140 overexpression (OE) lines. *BnaEF1- α* and *BnaActin2* were used as the references.
 1141 Values are the means \pm SD (n=4). Significant differences: ** $P < 0.01$ (Student’s *t*-test).

Figure 2. Impact of *BnaC02.TPS8* on the growth of *B. napus*. (a-b) Growth phenotype of five-week-old seedlings of CRISPR/Cas9 mutants (CR-44 and CR-153; WT, 'Westar') and overexpression lines (OE-33 and OE-38; WT, 'ZS11') grown hydroponically. Scale bars: 2 cm. (c-e) Shoot biomass (c), root biomass (d), and root-to-shoot ratio (e) of seven-week-old seedlings of WT, *BnaC02.TPS8* mutants and overexpression lines. (f-g) Leaf length (f) and leaf width (g) of the 5th leaf of the seven-week-old seedlings. (h-n) Net photosynthetic rate (h), transpiration rate (i), stomatal conductance (j), and intercellular CO₂ (k) measured in ten-week-old seedlings grown hydroponically. (l-n) Total carbon (l), total nitrogen (m), and C/N ratio (n) measured in the 5th and 6th leaves of the seven-week-old seedlings. The data in (c-n) are shown as the mean \pm SD (n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates not significant (Student's t-test).

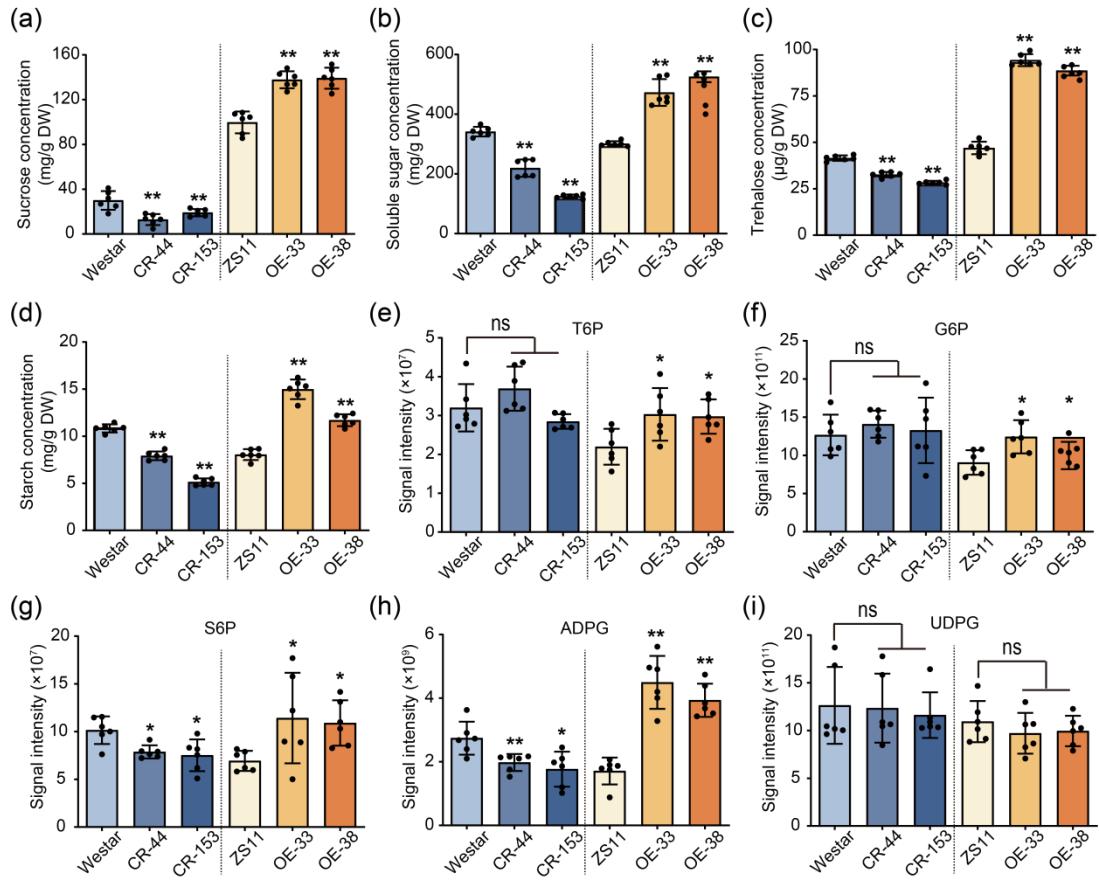


Figure 3. Impact of *BnaC02.TPS8* on the concentration of sugars, starch, sugar-phosphates, and sugar-nucleotides in the leaves. (a-i) Concentrations of sucrose (a), soluble sugar (b), trehalose (c), starch (d), T6P (e), G6P (f), S6P (g), ADPG (h) and UDPG (i) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11’). Data were obtained from the 5th and 6th leaves of seven-week-old seedlings grown hydroponically. Data are shown as the mean \pm SD (n=6). Significant differences: * $P < 0.05$, ** $P < 0.01$ and ns indicates not significant (Student’s *t*-test).

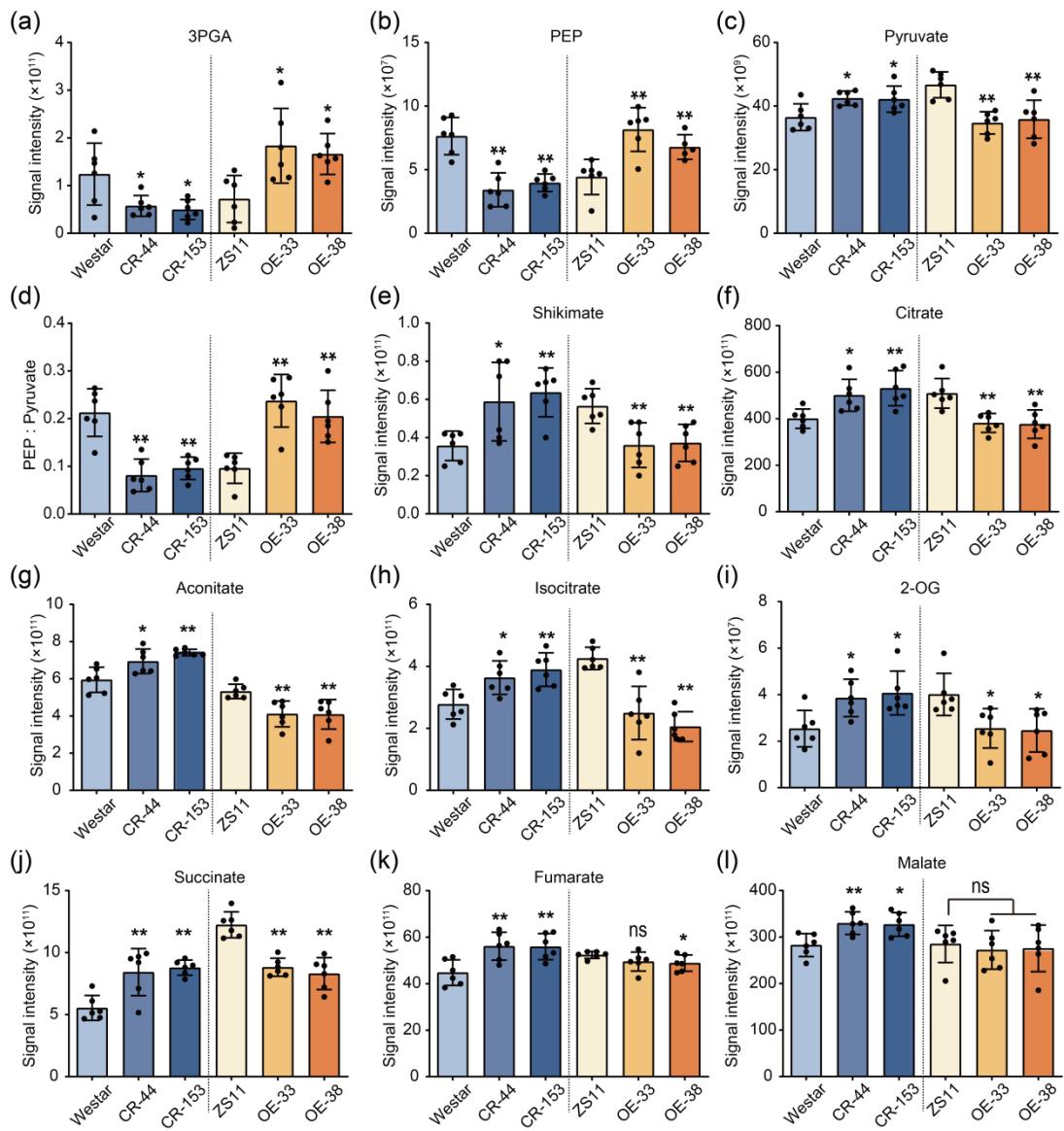


Figure 4. Impact of *BnaC02.TPS8* on the concentration of glycolytic intermediates and organic acid in the leaves. (a-l) Concentrations of 3PGA (a), PEP (b), pyruvate (c), PEP: Pyruvate (d), shikimate (e), citrate (f), aconitate (g), isocitrate (h), 2-OG (i), succinate (j), fumarate (k) and malate (l) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, 'Westar'), and overexpression lines (OE-33 and OE-38; WT, 'ZS11'). Data were obtained from the 5th and 6th leaves of seven-week-old seedlings grown hydroponically. Data are shown as the mean \pm SD (n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates not significant (Student's *t*-test). 3PGA: 3-phosphoglycerate; PEP: phosphoenolpyruvate; 2-OG: 2-oxoglutarate.

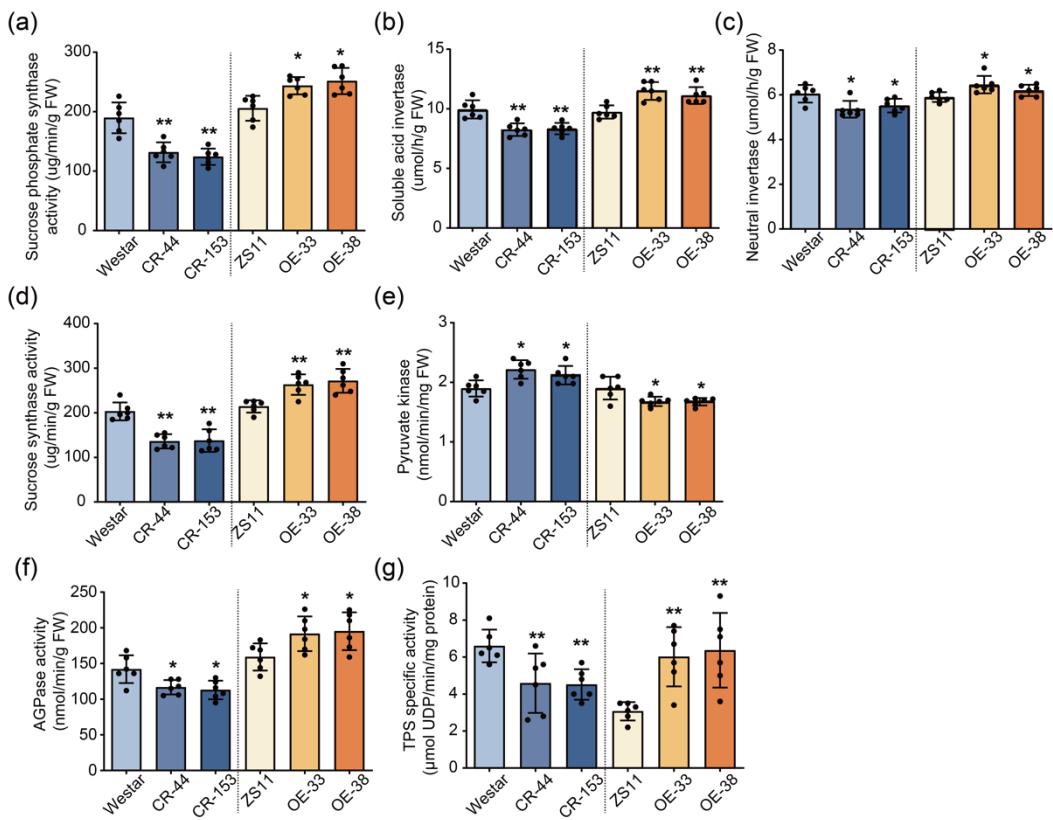


Figure 5. Impact of *BnaC02.TPS8* on enzyme activities related to sucrose metabolism, starch synthesis, and trehalose-6-phosphate (TPS) activity in the leaves. (a-g) Enzyme activities including sucrose phosphate synthase (a), soluble acid invertase (b), neutral invertase (c), sucrose synthase (d), pyruvate kinase (e), AGPase (f), and TPS (g) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, 'Westar'), and overexpression lines (OE-33 and OE-38; WT, 'ZS11'). Data were obtained from the 5th and 6th leaves of seven-week-old seedlings grown hydroponically. Data are shown as the mean \pm SD (n=6). Significant differences: *P < 0.05, **P < 0.01 (Student's t-test). AGPase: adenosine diphosphate-glucose pyrophosphorylase; TPS: trehalose-6-phosphate synthase.

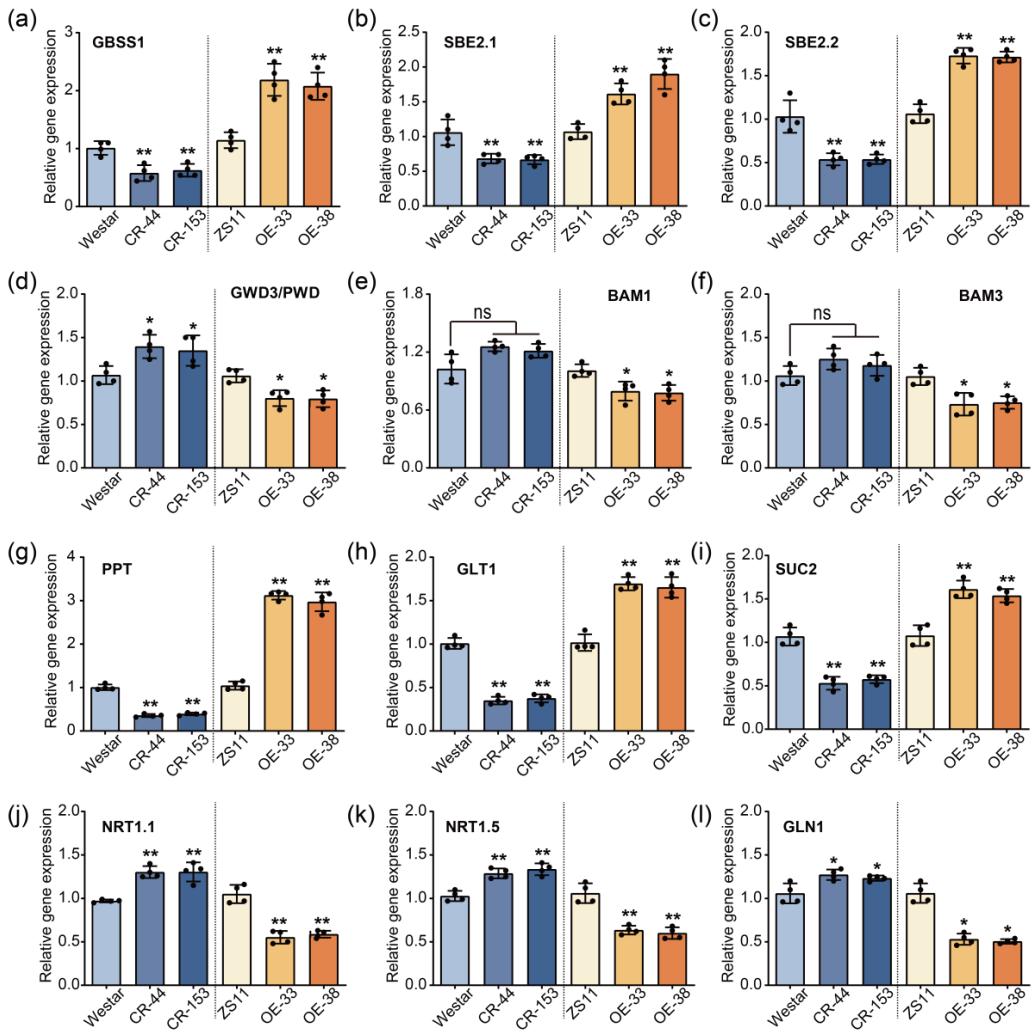


Figure 6. Impact of *BnaC02.TPS8* on the expression of starch synthesis, starch degradation, and sugar metabolite transport-related genes in leaves, and nitrogen uptake and metabolism-related genes in roots. (a-l) Gene expression level of *GBSS1* (a), *SBE2.1* (b), *SBE2.2* (c), *GWD3/PWD* (d), *BAM1* (e), *BAM3* (f), *PPT* (g), *GLT1* (h), *SUC2* (i), *NRT1.1* (j), *NRT1.5* (k) and *GLN1* (l) in WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, 'Westar') and overexpression lines (OE-33 and OE-38; WT, 'ZS11'). The data in (a-i) and in (j-l) were collected from the 5th and 6th leaves of the plants, and roots of seven-week-old seedlings grown hydroponically, respectively. *BnaEF1- α* and *BnaActin2* were used as reference genes. Data are shown as the mean \pm SD (n=4). Significant differences: *P < 0.05, **P < 0.01 (Student's t-test). *GBSS1*, granule-bound starch synthase1; *SBE2.1*, starch branching enzyme2.1; *SBE2.2*, starch branching enzyme2.2; *GWD3/PWD*, glucan water dikinase3/ phosphoglucan water dikinase; *BAM1*, β -amylase1; *BAM3*, β -amylase3; *PPT*, phosphoenolpyruvic acid translocator; *GLT1*, glucose-6-phosphate translocator; *SUC2*, sucrose transporter2; *NRT1.1*, nitrate transporter1.1; *NRT1.5*, nitrate transporter1.5; *GLN1*, glutamine synthetase1.

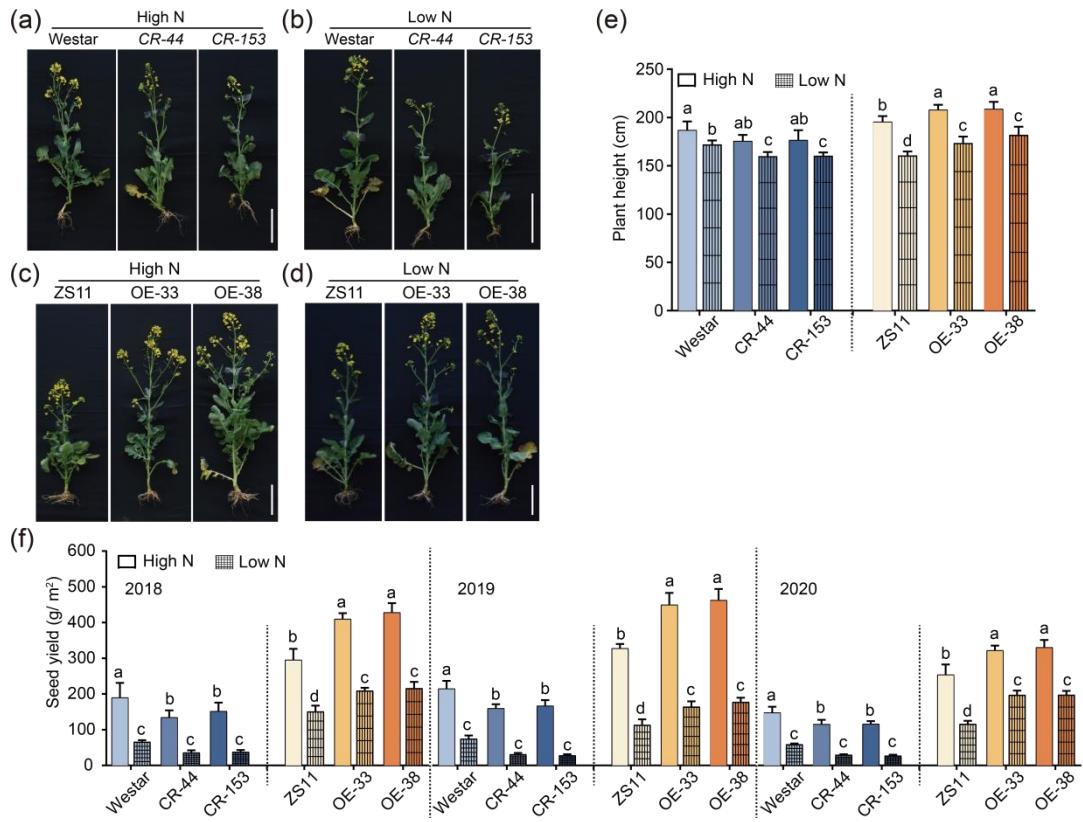


Figure 7. Impact of *BnaC02.TPS8* on plant height and seed yield under high nitrogen (N) and low N conditions. (a) Phenotypic characterization of WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, Westar), and overexpression lines (OE-33 and OE-38; WT, ZS11) at the flowering stage under high N and low N conditions. (e-f) Plant height (e), and seed yield (f) of WT, *BnaC02.TPS8* mutants, and overexpression lines under high N (180 kg N ha^{-1}) and low N (72 kg N ha^{-1}) conditions. Scale bars: 5 cm in (a-d). Data are shown as the mean \pm SD ($n=6$ for (e) and $n=4$ for (f)). Different letters represent significant differences at $P < 0.05$, based on an ANOVA analysis with Tukey's significant difference test.

1142 Figure 8. Impact of *BnaC02.TPS8* on the concentration of seed oil, protein, soluble
1143 sugar, and starch in mature seeds, the photosynthetic rate of pods, and the expression
1144 of starch synthesis and seed oil synthesis-related genes in developing seeds. (a-d) Seed
1145 oil (a), seed protein (b), seed soluble sugar (c), and seed starch (d) in the mature seeds
1146 of WT, *BnaC02.TPS8* mutants (CR-44 and CR-153; WT, Westar) and *BnaC02.TPS8*
1147 overexpression lines (OE-33 and OE-38; WT, ZS11). (e) Net photosynthetic rate of 40
1148 DAF pods, (f-l) expression of genes related to starch synthesis: *GBSS1* (f) and *GBSS2*
1149 (g), fatty acid synthesis: *WRI1* (h), *MCAMT* (i), *FATA* (j), and oil storage: *OBO1* (k) and
1150 *CALO* (l). RNA was extracted from 35 DAF seeds. *BnaEF1- α* and *BnaActin2* were used
1151 as reference genes. Data are shown as the mean \pm SD (n=7 for (a-e); n=4 for (f-l)).
1152 Significant differences: *P < 0.05, **P < 0.01 (Student's t-test). DAF, day after
1153 flowering. *GBSS1*, granule-bound starch synthase1; *GBSS2*, granule-bound starch
1154 synthase2; *WRI1*, wrinkled1; *MCAMT*, malonyltransferase; *FATA*, acyl-ACP
1155 thioesterase A; *OBO1*, oil body oleosin1; *CALO*, caleosin.