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SUMMARY

Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate
status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they
are believed to play pivotal regulatory roles in trehalose metabolism. However, their
precise functions in carbon metabolism and crop yield have remained largely unknown.
Here, BnaC02.TPSS, a class I TPS gene, is shown to be specifically expressed in
mature leaves and the developing pod walls of Brassica napus. Over expression of
BnaC02.TPSS8 increased photosynthesis and the accumulation of sugars, starch, and
biomass compared to wild type. Metabolomic analysis of BnaC02.TPSS8 overexpressing
lines and CRISPR/Cas9 mutants indicated that BnaC02.TPSS8 enhanced the partitioning
of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and
organic acids, which might be associated with TPS activity. Furthermore, the
overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed
oil accumulation and improved the oil fatty acid composition in B. napus under both
high nitrogen (N) and low N conditions in the field. These results highlight the role of
class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8

emerges as a promising target for improving B. napus seed yield.

KEYWORDS
Brassica napus, Trehalose-6-phosphate synthase 8, net photosynthetic rate, seed yield,

seed oil content, carbon metabolism
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INTRODUCTION
Trehalose-6-phosphate (T6P) is a key signaling molecule in sucrose availability and
carbon (C) metabolism (Schluepmann et al., 2004; Figueroa and Lunn 2016). T6P plays
a critical role in regulating sucrose utilization and allocation, and fundamental processes
that drive crop growth and yield (Paul et al., 2022). Notably, transgenic maize plants
overexpressing rice OsTPPI using a floral promoter (MADSG6) exhibit reduced T6P
concentrations in reproductive tissues, resulting in higher yields under both non-
drought and drought conditions (Nuccio et al., 2015). These transgenic maize lines also
display enhanced photosynthetic rates and delayed leaf senescence compared to the
wild type (Oszvald et al., 2018). Moreover, the application of plant-permeable analogs
of T6P directly to plants impacts endogenous T6P concentrations, consequently
promoting starch synthesis and potentially improving grain yield in wheat (Griffiths et
al., 2016). Recently, it is discovered that the sugar-inducible transcription factor
OsNAC23 can repress OsTPP1 expression, resulting in elevated T6P concentrations and
a 13% to 17% increase in rice yield (Li et al., 2022). This underscores the potential for
modifying T6P concentrations to enhance crop yield (Paul et al., 2022).

In plants, T6P is synthesized from UDP-Glc (UDPG) and Glc-6-phosphate (G6P) in
a reaction catalyzed by T6P synthase (TPS), followed by the dephosphorylating T6P to
trehalose, a reaction catalyzed by T6P phosphatase (TPP) (Cabib and Leloir 1958). In
Arabidopsis, TPS genes are divided into two sub-families, designated class I (4¢TPS1-
4) and class II (A¢tTPS5-11) (Leyman et al., 2001). While AtTPS1 can complement the
yeast tpsIA mutant, other class I TPS proteins can complement the tps/Atps2A double
mutant, indicating that they all have TPS activity (Delorge et al., 2015). Knocking out
AtTPS1 in Arabidopsis results in altered growth and development, including abnormal
cell wall morphology and embryo lethality (Eastmond et al., 2002; Gomez et al., 2006).
Weak alleles of 4¢TPS1, which are non-embryo-lethal, exhibit delayed flowering and a
40% reduction in T6P concentrations compared to wild type plants (Wahl et al., 2013).
In contrast, no class II TPS proteins can complement the yeast tps/A mutant (Ramon et
al., 2009; Delorge et al., 2015). While many of the functions of class II 7PS genes
remain unclear, there is evidence of their diverse roles in growth and development. For
instance, A¢TPS5 is involved in thermotolerance and ABA signaling (Suzuki et al., 2008;

Tian et al.,, 2019), while OsTPS8 enhances salt tolerance by increasing suberin
3
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deposition and the expression of ABA-responsive genes in rice (Vishal et al., 2019).
AtTPS6 has a role in defining the shape of epidermal pavement cells and branching of
trichomes (Chary et al., 2008), and A¢TPSI] promotes Arabidopsis defense against
aphids (Singh et al., 2011). However, there is limited information available on whether
class II TPS proteins affect T6P concentrations in plants.

Sucrose-non-fermentingl-related kinasel (SnRK1) plays a central role in the
response to low energy conditions. Evidence suggests that TGP functions as an inhibitor
of SnRK1, promoting biosynthetic reactions in young tissues and lateral root formation
(Zhang et al., 2009; Lawlor et al., 2014; Morales-Herrera et al., 2023). SnRKI is
involved in the transcriptional regulation of class II TPS genes, such as AtTPSS5-
AtTPS7 in Arabidopsis, which have been identified as SnRK1 targets (Harthill et al.,
2006; Baena-Gonzalez et al., 2007; Cho et al., 2016; Nukarinen et al., 2016), and this
regulation is dependent on bZIP11 (Ma et al., 2011). Phosphorylation of these proteins
leads to their association with 14-3-3 proteins (Harthill et al., 2006). Recent research
indicates that class II TPS can suppress SnRK1 kinase activity and hinder nuclear
localization by interacting with the a-catalytic subunit of SnRK1 and co-localized at
the endoplasmic reticulum in transient tobacco leaves (Van Leene et al., 2022).

In this study, we identified a class II TPS gene, BnaC02.TPS8, primarily expressed
in mature leaves and developing pod walls of B. napus. Our findings show that
BnaC02.TPS8 mutants exhibit significant reductions in sugars and C accumulation,
coupled with reduced net photosynthetic rate, delayed leaf development, lower seed
yield, and decreased seed oil accumulation. Furthermore, the overexpression (OE) of
BnaC02.TPS8, driven by the cauliflower mosaic virus 35S promoter (CaMV-355), led
to increased biomass accumulation at the seedling stage, higher seed yield, and
enhanced seed oil content in B. napus at maturity. Metabolomic analysis suggested that
BnaC02.TPSS promoted the partitioning of photoassimilate into starch and sucrose, as
opposed to glycolytic intermediates and organic acids, potentially through its TPS
activity. These results highlight the important role of BnaC02.TPS§ in photosynthesis

organs (leaves and pod wall), seed yield, and seed oil accumulation in B. napus.
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RESULTS

Expression pattern and subcellular localization of BnaC02.TPS8

The precise functions of class II TPS genes in C metabolism and crop yield remain
largely unknown. Our previous work shows that the transcript of BnaC02.TPS8 was
significantly reduced by nitrogen (N) deficiency in whole-transcriptome sequencing of
B. napus (Yang et al., 2020). To investigate the function of BnaC02.TPS8 in B. napus,
the amino acid sequences of Arabidopsis AtTPS8 were used for BLAST analysis in the
BnTIR database (http://yanglab.hzau.edu.cn/BnTIR; Liu et al., 2021). Five homologous
copies of AtTPS8 were identified in B. napus. However, gene expression data showed
that only two BnTPS8 (BnaC02G0247200ZS, designated as BnraC02.TPSS;
BnaA02G0186800ZS, designated as BnaA402.TPS8) were expressed in multiple tissues,
especially in mature leaves and developing pod walls (Figure 1a). Domain analysis
showed that BnaC02.TPS8, BnaA02.TPS8 and AtTPS8 contained a conserved
Glycosyltransferase family 20 domain (Figure S1). A total of 16 independent transgenic
Arabidopsis Columbia-0 lines were obtained by utilizing around 2 kb of BnaC02.TPS8
promoter/5’UTR fused to the GUS reporter gene. Interestingly, strong GUS staining
was observed in green stem leaves, but weak GUS expression was detected in senescent
rosette leaves (Figure 1b(1),(2)). GUS activity was also detected at the seed-funiculus
junction in the green pods but not in yellow pods or seeds (Figure 1b(3),(4); Figure S2).
Combining the results of the gene expression pattern of BnaC02.TPS8 and the tissues-
specific expression of GUS driven by the native promoter (Figure 1(a-b)), we conclude
that BnaC02.TPS8 is expressed predominantly in photosynthetic organs: fully
expanded mature leaves and developing pod walls.

To analyze the subcellular localization of BnaC02.TPS8, BnaC02.TPS8 was fused
with green fluorescent protein (GFP) and transiently expressed in the protoplasts of
Arabidopsis. Results showed that the green fluorescence signal was co-localized with
the cytosol marker (Figure 1c), suggesting that BnaC02.TPS8 is localized in the cytosol.
Generation of B. napus BnaC02.TPS8 CRISPR mutants and OE lines
To further elucidate the function of BnaC02.TPSS in oilseed rape, our initial attempts
to develop BnaC02.TPS8 CRISPR/Cas9 mutants for commercial cultivar ‘ZS11°
encountered challenges, with the explants exhibited necrosis, and the transformation

failed. Consequently, knock-out mutants were generated using CRISPR/Cas9 in the
5
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universal cultivar ‘Westar’. Two distinct mutant alleles (CR-44 and CR-153) were
selected (Figure 1d; Table S1). The CR-44 mutant line had a 33 bp deletion in the first
exon of BnaC02.TPSS8, while the CR-153 mutant had a 9 bp deletion within the
BnaC02.TPS8 coding region, which resulted in a three amino acid deletion.

BnaC02.TPS8 overexpression (OE) lines were generated from the commercial
cultivar ‘ZS11° driven by the CaMV35S promoter. Six T3 transgenic lines with
increased expression of BnaC(02.TPS8 were successfully obtained (Figure le). Two
independent homozygous lines (OE-33 and OE-38) with higher transcript levels, which
resulted in significantly higher biomass accumulation than the WT (Figure S3), were
selected for further study.
BnaC02.TPS8 improves biomass production, leaf net photosynthetic rate, and
carbon-to-nitrogen ratio
Five-week-old BrnaC02.TPS8 knockout mutants and OE lines were grown under
nutrient-sufficient conditions in hydroponics (Figure 2a,b). The shoot and root biomass
of BnaC02.TPS8 mutant lines were significantly less than those of WT ‘Westar’ of
seven-week-old plants (Figure 2c,d). In contrast, overexpression of BnaC02.TPS8
significantly increased shoot and root biomass compared to WT ‘ZS11° (Figure 2c,d).
Additionally, the root-to-shoot ratio was significantly increased in BnaC02.TPSS8-OE
lines compared to WT, but there was no difference between BnaC02.TPS8 mutants and
WT (Figure 2e). The leaf length and width of the fully-expanded 5 leaf in CR-44 and
CR-153 were significantly smaller than those in the WT, and the leaf size of OE-33 and
OE-38 were significantly higher than those in the WT (Figure 2f,g). Photosynthetic
efficiency of hydroponically grown ten-week-old plants showed that mutants had a
lower net photosynthetic rate, transpiration rate, and stomatal conductance than those
in WT, but the OE plants had a higher net photosynthetic rate and transpiration rate than
those in WT (Figure 2h-j). However, there were no differences in stomatal conductance
and intercellular CO> concentration between OE and WT (Figure 2j,k). In addition, the
intercellular CO> concentration of mutants was significantly higher than in WT (Figure
2k).

There was no significant difference in total C concentration among BnaC02.TPS8
mutants, OE-lines and WT plants (Figure 21). However, the total N concentration was

significantly greater in BnaC02.TPS8 mutants and significantly lower in OE lines
6
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compared to their respective WT plants (Figure 2m). Therefore, compared to the WT,
the ratio of total C to total N (C/N ratio) was significantly lower in BnaC02.TPS§
mutants and was significantly higher in the OE lines (Figure 2n). These suggested that
BnaC02.TPS8 is necessary for maintaining leaf photosynthesis and biomass
accumulation and affecting C/N metabolism.

BnaC02.TPS8 has significant effects on carbohydrate metabolism

The altered C/N ratio in the various BnaC02.TPSS§ transgenic lines prompted an
examination of the sugar composition and starch of these lines. Sugars, starch, sugar-
phosphates, and sugar-nucleotide concentrations were quantified in the fully expanded
fifth and sixth leaves from the bottom of the seven-week-old plant at the seedling stage.
The sucrose and soluble sugar concentrations in the leaves were significantly lower in
BnaC02.TPS8 mutants compared with WT ‘Westar’ and significantly greater in the OE
lines compared with WT ‘ZS11° (Figure 3a,b). Notably, the trehalose concentration in
leaves of BnaC02.TPS8 mutants was significantly lower by 26.6%, while that in
BnaC02.TPSS8-OE lines was nearly doubled compared to their WT plants (Figure 3c).
The starch concentration in BnaC02.TPS8 mutants was significantly lower by 26.9%-
52.6%, while it was increased by 45.4%-86.1% in OE lines (Figure 3d).

Leaf T6P concentrations were significantly higher in the BnaC02. TPS8-OE lines than
in the WT. However, there were no obvious changes in the T6P concentrations between
BnaC02.TPS8 mutants and WT (Figure 3e). Among the metabolic intermediates of
sucrose synthesis, the concentrations of glucose 6-phosphate (G6P) and sucrose 6-
phosphate (S6P) were significantly increased in BnaC02.TPS8-OE lines compared to
the WT, while S6P was significantly lower in BnaC02.TPS8 mutants, but G6P was not
significantly different between the mutant lines and WT (Figure 3f,g). There were no
significant differences in the concentrations of F6P, F1, 6BP, and G1P between
BnaC02.TPS8 transgenic lines and WT (Figure S3). Compared to WT, the concentration
of ADPG was significantly lower in CR-44 and CR-153, and was significantly higher
in OE lines (Figure 3h). However, the concentration of UDPG was not significantly
different in BnaC02.TPSS transgenic lines compared to their WTs (Figure 31).
BnaC02.TPS8 has significant effects on intermediates of glycolysis and
tricarboxylic acid (TCA) cycle

Compared to WT, the concentrations of 3PGA (3-phosphoglycerate) and PEP
7
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(phosphoenolpyruvate) were significantly lower in BrnaC02.TPS§ mutants and
significantly higher in OE lines (Figure 4a,b). In addition, the concentration of pyruvate
increased in the mutants but decreased in the OE lines (Figure 4c). Mutation or
overexpression of BnaC(02.TPSS had a significant effect on PEP, and the ratio of PEP
to pyruvate was significantly lower in the mutants and higher in OE lines compared
with their WTs (Figure 4d). The concentrations of shikimate were significantly higher
in BnaC02.TPS8 mutants, but significantly lower in BnaC02.TPSS-OE lines compared
to their WTs (Figure 4e).

Significantly higher concentrations of tricarboxylic acid (TCA) pathway
intermediates were observed in BnaC02.TPS8 mutants compared to their WT.
Concentrations of citrate, aconitate, isocitrate, 2-OG, and succinate were significantly
higher in BnaC02.TPSS8-OE lines, and were significantly decreased in BnaC02.TPS8
mutants compared to their respective WT plants (Figure 4{-j). The concentrations of
fumarate and malate were increased by 25% and 16% in BnaC02.TPS8 mutants
compared to WT, respectively (Figure 4k,1). The concentration of fumarate was lower
in OE-38 than that in WT (Figure 4k). However, there was no significant difference in
the concentration of malate between OE lines and WT (Figure 41). These comparisons
suggested that there was a significant increase in the net C assimilation rate in the
BnaC02.TPSS-OE plants but lower amounts of C within the TCA pathway
intermediates, and these were largely offset by increases in sucrose and starch.
BnaC02.TPS8 affects sugar and starch-related enzyme activity and gene
expression

The pivotal enzyme in sucrose synthesis is sucrose phosphate synthase (SPS),
facilitating the conversion of UDP-glucose and fructose 6-phosphate into sucrose 6-
phosphate. Sucrose catabolism involves two primary enzymes: invertase (INV),
responsible for breaking down sucrose into glucose and fructose, and sucrose synthase
(Susy), which catalyzes the reversible cleavage of sucrose into fructose and either
uridine diphosphate glucose or adenosine diphosphate glucose (Ruan 2014). In the
leaves, the SPS, soluble acid INV, neutral INV, and Susy activity were significantly
lower in BnaC02.TPS8 mutants but significantly higher in BnaC02.TPS8-OE lines
compared to their respective WT plants (Figure 5a-d). Pyruvate kinase (PK), a key

enzyme in glycolytic pathway, showed significantly higher activity in BnaC02.TPS8
8
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mutants but lower activity in BnaC02.TPS8-OE lines compared to their WT plants
(Figure 5Se).

Adenosine diphosphate-glucose pyrophosphorylase (AGPase), the limiting enzyme
in starch synthesis exhibited approximately 19.2% lower activity in BnaC02.TPS8
mutants but 21.5% higher activity in BnaC02.TPS8-OE lines compared to their WT
plants (Figure 5f). Additionally, compared to WT, total trehalose-6-phosphate synthase
(TPS) activity was significantly lower in BnaC02.TPS8 mutants and significantly
higher in BnaC02.TPSS8-OE lines (Figure 5g). These results indicate that BnaC02.TPS§
modulates multiple metabolic pathways directly or indirectly, including sucrose, starch,
and trehalose metabolism in the leaves of B. napus.

To further study the functions of BnaC02.TPS8 in above mentioned process, we
measured the expression of key genes involved in starch synthesis (GBSSI, SBE2.1,
and SBE2.2), starch catabolism (GWD3/PWD, BAM1, and BAM3), sugar metabolites
transport (PPT, GLTI, and SUC?2) and nitrogen metabolism (NRTI.1, NRTI.5, and
GLNI) in BnaC02.TPS8 mutants and OE lines (Figure 6). Genes encoding enzymes of
starch biosynthesis and sugar metabolite transport in the leaves showed decreased
expression in BnaC(2.TPSS mutants and increased expression in the BnaC02.TPSS-OE
lines compared with their WT (Figure 6 a-c, g-1). However, compared with the WT, the
expression of genes involved in starch catabolism in leaves was significantly decreased
in the BnaC02.TPSS-OE plants and only the expression of GWD3/PWD increased
significantly in the BnaC02.TPS8 mutants (Figure 6d-f). Importantly, the expression of
genes involved in N metabolism was significantly increased in the roots of
BnaC02.TPS8 mutants, while they were significantly repressed in BnaC02.TPSS-OE
lines compared to WT plants (Figure 6j-1). The observed expression profiles suggest
disruption of BnaC02.TPS8 alters starch turnover and N metabolism in B. napus.
BnaC02.TPS8 is associated with seed yield-related traits
To determine whether BnaC02.TPS§ controls agronomic traits of B. napus, field trials
were used to investigate the yield-related traits of BnaC02.TPS8 mutants and OE lines
under high and low N conditions for three years (Figure 7; Table 1). The plant height
of B. napus was reduced by mutation of BnaC02.TPS8 under low N conditions, and
increased by overexpression of BnaC02.TPSS8 under both high and low N conditions

(Figure 7a-e). The seed yield per square meter decreased by 20.3%-29.2% in
9
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BnaC02.TPS8 mutants than in WT at high N and reduced by 42.3%-62.4 at low N
(Figure 7f). In contrast, the seed yield per square meter was 26.8%-45% greater in the
BnaC02.TPSS8-OE lines compared with WT ‘ZS11” at high N and 38.6-70.1% greater
at low N (Figure 7f). The increase of yield of BnaC02.TPS8-OE lines was achieved by
increasing the pod number per plant and the seed number per pod (Table 1). In contrast,
the 1000-seed weight and harvest index were similar in BnaC02.TPS8 transgenic plants
and WT (Table 1). Although N deficiency greatly reduced the seed yield per plant (and
per square meter), pod number per plant, and seed number per pod of both
BnaC02.TPSS-OE lines and WT ‘ZS11°, the above parameters of BnaC02.TPS§-OE
lines were still significantly greater than WT ‘ZS11° at low N (Figure 7f; Table 1). In
contrast to the BnaC02.TPSS8-OE plants, seed yield per square meter, and seed number
per pod in BrnaC02.TPS8 mutants were significantly lower than those in ‘Westar’
(Figure 7f; Table 1). The pod number per plant of CR-44 mutant was significantly
decreased compared with that in WT under both high and low N conditions (Table 1).
These indicate that BnaC02.TPSS plays a positive role in the seed yield-related traits of
B. napus.
BnaC02.TPS8 increases seed oil accumulation, but decreases proteins and soluble
sugar accumulation
BnaC02.TPSS is highly expressed in the pods 22 to 42 DAF stage (Figure 1a), which is
the critical period for seed oil accumulation and, thus the expression of BnaC02.TPS8
may influence seed oil and protein accumulation. Compared with the WT, seed oil in
BnaC02.TPS8 mutants and OE lines was reduced by 1.5%-6.4% and increased by 7.4%-
8.9%, respectively (Figure 8a). Seed protein concentration was approximately 3%
higher in BnaC02.TPS8 mutants but 10% lower in BnaC02.TPSS8-OE compared with
WT (Figure 8b). Furthermore, the fatty acid (FA) composition in seeds showed that
concentrations of C18:1 were higher, and concentrations of C18:0 and C18:2 were
lower in the BnaC02.TPSS8-OE lines compared to their WT (Figure S4). There was no
significant difference in FA composition between BrnaC02.TPS8 mutants and WT
(Figure S4).

The concentrations of soluble sugar and starch in the pods play a crucial role in seed
filling (Bennett et al., 2011). Seed soluble sugar concentration of BnaC02. TPS8 mutants

was significantly higher than that of WT (Figure 8c). In contrast, the soluble sugar
1
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concentration in mature seeds of BnaC(02.TPSS-OE lines was significantly lower
compared to WT (Figure 8c). Moreover, seed starch concentration was lower in
BnaC02.TPS8 mutants but higher in BnaC02.TPS8-OE lines (Figure 8d). As compared
with their WT, the net photosynthetic rate of developing pods was significantly lower
in BnaC02.TPS8 mutants and was significantly higher in BnaC02.TPS8-OE lines
(Figure 8e).

Expression of genes related to starch synthesis (GBSS/ and GBSS2) was down-
regulated in the BnaC02.TPS8 mutants and up-regulated in BnaC02.TPSS8-OE lines in
the developing seeds (Figure 8f,g). The genes encoding proteins involved in fatty acid
synthesis and transcriptional activators of fatty acid synthesis (WRII, MCAMT, and
FATA) were significantly down-regulated in the BnaC02.TPS§8 mutants and
significantly up-regulated in the BnaC02.TPSS8-OE lines (Figure 8h-j). The expression
of genes (OBOI and CALO) involved in oil storage was significantly lower in
BnaC02.TPS8 mutants and higher in BnaC02.TPSS8-OE lines compared to their WT
(Figure 8k-1). These data indicate that manipulation of BnaC02.TPSS§ can affect seed
oil, protein, and soluble sugar accumulation in B. napus.

DISCUSSION

Class I TPSs are known to have active TPS enzymes that regulate TO6P concentration in
plants (Lunn et al., 2006; Paul et al., 2008). In contrast, the functions of class II TPSs
in T6P accumulation in crops have been poorly understood. Our study reveals the
previously unknown function of BnaC02.TPS8, a class Il TPS in B. napus.
BnaC02.TPSS increases leaf TO6P concentrations, seed yield, and seed oil accumulation
by enhancing photosynthesis in mature leaves and developing pods. This discovery
highlights BnaC02.TPS8 as an important class II TPS mediating seed yield
improvement in B. napus.

Overexpression of BnaC02.TPS8 enhances seed yield and oil accumulation in B.
napus

Chemical and genetic T6P modulation can boost crop yield by regulating
photosynthesis and assimilate partitioning in crops (Nuccio et al., 2015; Griffiths et al.,
2016; Oszvald et al., 2018). In our study, overexpressing BnaC02.TPS8 significantly
increased seed yield under both high and low N conditions, while mutations in

BnaC02.TPSS significantly decreased seed yield (Figure 7). This aligns with the
1
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findings in rice, where OsTPS8 mutations reduce seed yield under normal growth
conditions (Vishal et al., 2019), emphasizing the positive role of class II TPS in yield
formation.

The rainfall can affect the transpiration rate of leaves and, consequently, the seed
yield of oilseed rape, particularly during critical developmental stages (Secchi et al.,
2023). The precipitation was notably lower from March to May in 2020 compared to
the same period in 2018 and 2019. Consequently, the seed yield of both WT and
BnaC02.TPSS8-OE was lower in 2020 than that of those in both 2018 and 2019.
However, the seed yield of BnaC02.TPSS-OE lines was significantly higher than that
of the WT across all three years (Figure 7). These findings demonstrate that
BnaC02.TPSS-OE lines had higher adaptation during lower rainfall seasons compared
with WT. The planting density in rows spaced 30 cm apart is a widely adopted practice
in field trials of B. napus (Hu et al., 2020; Zhang et al., 2023). In this study, the average
seed yield of the commercial B. napus cultivar (cv. Zhongshuangl1, ZS11) was 2738
kg halin 2018, 3365 kg ha! in 2019, 2546 kg ha™! in 2020 in rows spaced 30 cm apart
(Figure 7g). Remarkably, in the same rows spaced, the seed yields of BnaC02.TPSS-
OE were significantly higher than those of ZS11 across all three years (Figure 7g).

In B. napus, the pod (or silique) wall serves as both an important carbohydrate sink
and a source of photosynthates for seeds during the seed-filling stage (King et al., 1997;
Bennett et al., 2011). BnaC02.TPS8, highly expressed in developing pods (Figure 1b),
likely contributes to early-stage embryo development. Our study revealed that
BnaC02.TPSS-OE increased pod photosynthesis, seed and pod number, and overall
seed yield, irrespective of soil N levels (Figure 7-8; Table 1). However, the reduced
expression of NR, NRT1.5, and GLNI11 in the roots of OE lines (Figure 6) suggests a
potential compromise in N uptake, correlating with decreased N content in leaves
(Figure 2m). It appears that BnaC02.TPS8 exhibits a preference for responding to inner
N concentrations rather than the environmental N availability.

Improving oil production is a central goal in rapeseed breeding (Lu et al., 2011; Hua
etal., 2012). As the seeds become more mature, hexose concentrations and soluble acid
invertase activity in the pod wall decreases, giving way to starch accumulation in young
seeds (King et al., 1997). Our study found that mutating BnaC02.TPSS significantly

increased soluble sugars and reduced starch in mature seeds, while overexpressing of
1
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BnaC02.TPSS had the opposite effect (Figure 8b,c). Therefore, BnaC02.TPS8 seems to
promote starch accumulation over sucrose in the seeds, affecting hexose concentrations
or enhancing starch degradation in pod wall. To fully understand BnaC02.TPS8’s role
in photosynthesis and assimilate partitioning between the pod wall and developing
seeds during the podding stage, precise quantification of metabolite profiles and gene
expression in stems, pod walls, and developing seeds is necessary.

The quantity of starch in seeds is insufficient to meet the demands of oil synthesis,
necessitating the continuous import of sucrose and possible seed CO; fixation (King et
al., 1997). Signals from the pod wall coordinate seed filling and the redistribution of
reserves (Bennett et al.,, 2011). Our study revealed significant reductions in the
expression of genes involved in seed fatty acid and oil biosynthesis in BnaC02.TPS8
mutants and increased expression in BnaC(02.TPSS-OE lines (Figure 8h-1). Notably, the
concentration of oleic acid (18:1) increased, while saturated fatty acid (18:0) decreased
in seeds of BnaC02.TPS8-OE lines (Figure S4). Consequently, seed oil concentration
was lower in mutant lines and higher in overexpressing lines compared to their WT
(Figure 8a). Mutation of BnaC02.TPS$ significantly decreased the expression of the
key transcriptional factor WRI1, which impacts glycolysis, fatty acid biosynthesis, and
lipid metabolism during seed oil accumulation (Cernac and Benning 2004; To et al.,
2012). Elevated WRII expression in BnaC02.TPSS8-OE lines was associated with
increased seed oil content compared to the WT (Figure 8a, h). In summary,
overexpressing BnaC(02.TPSS§ not only increases seed yield but also improves the oil
quality of B. napus.

BnaC02.TPS8 boosts net photosynthesis by enhancing carbon flux into sucrose and
starch

In our study, overexpressing class Il TPS BnaC02.TPSS8 resulted in higher net
photosynthetic rate and increased expression of sugar transporter genes (Figure 2h; 6g-
1), concomitant with augmented sugar accumulation and total TPS activity in leaves
(Figure 3;5d). Conversely, BnaC02.TPS8 mutants displayed lower total TPS activity,
leading to reduced sugar transportation and accumulation in leaves (Figure 3;5d;6g-1).
T6P is a key regulator of photoassimilate partitioning (Li et al., 2019). Despite class 11
TPS typically lacking TPS activity (Delorge et al., 2015), we speculate that

BnaC02.TPS8 may regulate TPS activity through interactions with itself or other
1
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BnTPSs, forming homodimers or heterodimers, similar to the mechanism observed in
rice (Zang et al., 2011).

It is noteworthy that both AtTPS8 and BnaCO02.TPS8 are expressed at the
peduncle/pod boundaries of the young pods (Ramon et al., 2009; Figure 1b(3)). Pods
are crucial sources of assimilates and nutrients for supporting developing seeds,
particularly in the Brassicaceae family (Bennett et al., 2011). Compared to the wild
type, BnaC02.TPS8-OE and BnaC02.TPS8 mutant pods exhibited significantly
increased and decreased net photosynthetic rates, respectively (Figure 8e). Moreover,
BnaC02.TPS8,,::GUS expression patterns showed a stronger presence of
BnaC02.TPSS in green leaves compared to senescent leaves (Figure 1c), suggesting a
role of BnaC02.TPS$ in controlling C assimilation and photosynthesis in young leaves.
Balancing C and N metabolism is essential for optimal plant growth under varying
environmental conditions (Han et al., 2020). Notably, overexpression of BnaC02.TPS8
did not affect total C concentrations but reduced total N concentrations, resulting in
higher C/N ratios in BnaC02.TPSS8-OE lines under sufficient N conditions (Figure 2I-
n). Thus, overexpressing BnaC02.TPS8 appears to stimulate an enhanced N demand
and promote C assimilation in transgenic plants.

Starch synthesis occurs through ADPG pyrophosphorylase (AGPase) in chloroplasts,
allosterically activated by 3-phosphoglycerate (3PGA) (Stitt and Zeeman 2012). In
BnaC02.TPS8 mutants, AGPase activity, 3PGA and ADPG concentrations, and the
expression of genes involved in starch synthesis all decreased (Figure 3-6). In contrast,
BnaC02.TPSS-OE increased AGPase activity, 3PGA and ADPG concentrations. This
suggests that BnaC02.TPS8 can influence metabolite pools in B. napus by altering
starch accumulation, possibly independent of T6P concentration. AGPase has two small
subunits subject to redox regulation, influenced in Arabidopsis by overexpressing the
E. coli TPS encoding gene (OtsA) (Tiessen et al., 2002; Martins et al., 2013). While
AGPase activity appears related to BnaC02.TPSS (Figure 5c), the impact of
BnaC02.TPS8 on AGPase’s in vivo redox status remains unclear.

The mutation in BnaC02.TPSS resulted in an increased C allocation to TCA pathway
intermediates, concurrently decreasing allocation to starch, soluble sugars. Conversely,
BnaC02.TPS8-OE plants exhibited the opposite trend (Figure 3; 4). In BnaC02.TPSS

mutants, there was an increase in pyruvate and pyruvate kinase, both involved in
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glycolysis. In contrast, OE lines showed a decrease in these components (Figure 4c, 5e).
The activity of pyruvate kinase reflects the leaf’s capacity to regulate glycolysis for
respiration and produce C skeletons required for anabolic processes (Plaxton, 1996).
The redirection of photoassimilates away from respiratory pathways towards starch
synthesis might contribute to the increased starch observed in BnaC02.TPSS-OE plants.
Previous studies have identified pyruvate kinase as a target of SnRK1 (Beczner et al.,
2010), with SnRK1 exerting negative effects on several TCA intermediates, including
citrate, aconitate and isocitrate (Peixoto et al., 2021). Our study revealed that
BnaC02.TPS8 mutants exhibited higher concentrations of citrate, aconitate, and
isocitrate (Figure 4). These findings suggest that while the impact of SnRK1 on
pyruvate kinase activity exhibits opposing effects, its influence on TCA intermediates
aligns with the observed effects in BnaC02.TPS8 mutants. Notably, overexpressing
otsA under an ethanol-inducible promoter in Arabidopsis led to increased C allocation
to organic and amino acids, while decreasing glycolysis intermediates (Figueroa et al.,
2016). These may be attributed to the interplay between source and sink in ots4
overexpressing Arabidopsis and BnaC02.TPSS overexpressing B. napus plants.

The overexpression of BnaC(02.TPS8 resulted in a significant increase in T6P
concentrations, whereas knockout lines showed no change in T6P, UDPG, or G6P
concentrations compared with WT (Figure 3e,f,1). This suggests that BnaC02.TPSS8 has
a limited role in T6P synthesis. The altered total TPS activity in BnaC02.TPS8-OE lines
or mutant could be a result of feedback regulation from trehalose concentrations or
other unidentified mechanisms. Surprisingly, BnaC02.TPSS-OE lines had elevated T6P
and sucrose concentrations in fully expanded leaves, contradicting the sucrose-T6P
model, where elevated T6P is expected to reduce sucrose concentration (Yadav et al.,
2014). Similar observations were made in pith and florets of MADS6:0sTPPI
transgenic maize lines, where pith showed decreased T6P and sucrose concentrations,
while florets had low T6P and higher sucrose concentrations (Oszvald et al., 2018).
Notably, the negative impact of T6P concentration on SnRK1 activity was observed
solely in young leaves, not in mature leaves of Arabidopsis (Zhang et al., 2009),
indicating that the influence of T6P concentration may vary across different tissues.

The increased sucrose synthesis or decreased consumption in this study could be

attributed to secondary effects resulting from the sustained elevation of T6P
1
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concentration or total TPS activity in BnaC02.TPSS-OE lines. Recent research by Van
Leene et al. (2022) reported that the class II TPS-like protein AtTPS8 functions as a
negative regulator of SnRK1 in Arabidopsis. To precisely elucidate how SnRK 1 affects
T6P concentration in the pods and developing seeds, accurate quantification of changes
in metabolic fluxes among BnaC02.TPS8 mutants, OE lines, and wild type using stable
isotope labeling is imperative. Furthermore, investigating the relative contributions of
plastidial, mitochondrial, and cytosolic pathways to fatty acid biosynthesis will
contribute to a comprehensive understanding of BrnaC02.TPS§’s function in lipid
metabolism.

In conclusion, our study reveals the previously unknown function of BnaC02.TPSS,
aclass II TPS in B. napus. BnaC(02.TPS8 exhibits specific expression in mature leaves
and developing pod walls of B. napus. BnaC02.TPS8 enhances the allocation of
photoassimilates to starch and sucrose, favoring seed yield and oil concentration
without adverse effects on plant growth and development. This discovery highlights
BnaC02.TPS8 as an important class II TPS mediating seed yield and oil accumulation

improvement in B. napus, which offer valuable insights for future crop enhancement.

EXPERIMENTAL PROCEDURES

Identification and sequence analysis of BnaC02.TPS8 in B. napus

The B. napus sequences of putative homologs of the Arabidopsis AtTPSS8 gene were
retrieved through a BLAST search program in BnTIR (http://yanglab.hzau.edu.cn/; Liu
et al., 2021). Each of the BnTPS8 genes was confirmed to be a member of the TPS
family using the SMART database (http://smart.embl-heidelberg.de/, Letunic et al.,
2018) and NCBI Conserved Domain Search Database
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Protein sequences of BnTPSS8
and AtTPS8 were aligned using the ClustalW in MEGA 11 (Tamura et al., 2021). A
phylogenetic tree was constructed with the maximum-likelihood method by MEGA 11
using an algorithm with 1000 bootstraps, based on the equal input model, using partial
deletion of 95% site coverage for gaps and missing data.

Plant materials and growth conditions

In this study, a commercial B. napus cultivar (cv. Zhongshuangl1, ZS11) was employed

for gene cloning, and both the universal cultivar ‘Westar’ and ‘ZS11’ were used for the
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transformation receptor. Hydroponic experiments were conducted using a modified
Hoagland solution (Shi et al., 2013). The pH of the nutrient solutions was adjusted to
5.8 using 2 M NaOH or HCI. The nutrient solution was constantly aerated throughout
the experiments and refreshed every three days. Plants were cultivated in an illuminated
growth chamber at 22°C with 60% relative humidity under 16 h: 8 h light/dark regime.
To avoid the influence of the circadian rhythm, samples were taken in the middle of the
day. The experiments were replicated four to six times.

Three years of field trials were conducted at the experimental site of Huazhong
Agricultural University in Wuhan (114.3°E, 30.5°N), Hubei Province, China from
October 2017 to May 2020. The soil was a yellow-brown soil (Alfisol), and its
properties were as follows: pH6.8 (1:5 soil solution ratio), organic matter 10.70 g kg™,
NH4OAc-extracted potassium 120.20 mg kg™!, total N (Kjeldahl acid-digestion method)
0.35 g kg'!, available N (alkali-hydrolysable N) 25.60 mg kg!, and Olsen-P 8.30 mg
kg!. Seeds of transgenic lines and WT were sown in a nursery bed in the field in mid-
September and the seedlings were transplanted by hand 30 days after sowing. There
were two N treatments, namely (1) high N of 180 kg N ha™! (basal fertilizer 108 kg N
ha'!; top dressing 72 kg N ha!) and low N of 72 kg N ha™! (basal fertilizer 43.2 kg N
ha’!, top dressing 28.8 kg N ha™!). All the plots received basal fertilizer, including 60%
of the total N applied (supplied as urea), and all the P (supplied as calcium
superphosphate), K (supplied as potassium chloride), and boron (supplied as
Na;B4O7-10H20). The application rates were as follows: P 90 kg P»Os ha™!, K 120 kg
K>0 ha'!, and Borax 15 kg ha!. These fertilizers were thoroughly mixed and applied in
bands near the crop rows. The remaining 40% N was top dressed as urea during

overwintering.

A completely randomized block design with three replications was adopted in 2017-
2018, 2018-2019, and 2019-2020. The plot size was 6 m length x 1.8 m width, with 0.3
m row spacing and 0.25 m plant spacing, corresponding to 112,500 plants ha™'. Each
plot had 6 varieties, and each variety had 3 rows, and 6 plants in each row. Each plot
had 20 rows, the first row and the last row were used as guard rows. The plants were
grown under rainfed conditions. The monthly average temperature and rainfall during
the rapeseed growth seasons were recorded (Figure S4). Weeds, pests, and disease

stresses were controlled using spray herbicides, insecticides, and fungicides,
1
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respectively; no obvious weeds, insect pests, or disease infestations occurred during the

cropping season (Hu et al., 2020).

Arabidopsis was grown in an environmentally controlled growth room at 22°C. The
PAR light intensity of the fluorescent light was 150 pmol m™ s!. After sterilization,
Arabidopsis seeds were sown on agar medium contained with half-strength MS salt,
1.0% (w/v) sucrose, 0.05% MES, and 1.2% (w/v) agar (Sigma-Aldrich Co., St. Louis,
MO, catalog no. A1296). After plates were incubated at 4°C for 2 days, they were
transferred to long-day (16 h: 8 h light/dark regime) conditions. Ten-day-old seedlings
of BnaC02.TPS8pro::GUS were transferred to soil (PINDSTRUP from Denmark,
pHS5.0) in black plastic pots (10 cm x 10 cm), and sampled at the flowering and pod
stage.

Vector construction and plant transformation

To generate the BnaC02.TPS8pro::GUS construct, the promoter sequence (B. napus
cultivar ‘ZS11°) was inserted into the pBI121-GUS plus vector with a B-glucuronidase
(GUS) reporter gene (Li et al., 2015). The complete vector was verified by sequencing
and transformed into Agrobacterium tumefaciens GV3101 by electroporation.
Arabidopsis transformation was performed by the floral-dip method (Clough and Bent
1998).

Complete BnaC02.TPS8 coding sequence (B. napus cultivar ‘ZS11°) was amplified
and cloned into the pCAMBIA2300 vector for B. napus BnaC02.TPS8 overexpression
(OE) vectors. To generate the construct for the CRISPR/Cas9 system, two 20 bp target
sequences were inserted into the vectors of pKSE401 and pCBC-DT1T2 (Xing et al.,
2014). The plasmid constructs were introduced into Agrobacterium tumefaciens strain
GV3101 by electroporation. Hypocotyls of B. napus cultivar ‘ZS11° or ‘Westar’ were
transformed (Zhou et al., 2002). The OE lines were confirmed by PCR using specific
primers. For the CRISPR/Cas9 mutants, PCR was performed for amplified Cas9, and
then the PCR product of the sgRNA target sequence was amplified and sequenced
(Wuhan Quintara Biotechnology Co., Ltd). The mutational patterns of CRISPR/Cas9
mutants were analyzed using DSDecode (Liu et al., 2015).

RNA extraction and quantitative RT-PCR (qRT-PCR)
Total RNA was extracted using the EastepR super total RNA extraction kit (Promega,

Madison, WI). One pg of total RNA was used to convert into cDNA with the
1
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ReverTrace qPCR RT master mix with gDNA remover (TOYOBO, Osaka, Japan).
gRT-PCR was performed using SYBR® green supermix (Bio-Rad) on the CFX Connect
Real-Time PCR Detection System (Bio-Rad). The transcript levels were normalized to
the housekeeping genes Tubulin and Actin2.

Subcellular localization

The transiently expressed 35S::BnaC02.TPS8::GFP fusion constructs were introduced
into Arabidopsis (Col-0) protoplasts by the PEG/calcium-mediated transformation
method (Yoo et al., 2007). The subcellular localization marker construct of m::RFP (red
fluorescent protein) was used as a cytosol marker protein (Kim et al., 2016).
Fluorescence signals were detected and photographed under a confocal laser
microscope (LSM 510 Meta, Carl Zeiss Inc.).

Measurement of biomass, seed yield, and yield-related traits

At the seedling stage, the plants were sampled and divided into shoots and roots. At the
ripening stage, the shoot was divided into straw and seeds (almost all the leaves had
senesced at this stage). Samples were oven-dried at 105°C for 30 min, then at 65°C for
48 h for constant mass. Dried samples were weighed. At the ripening stage, twenty-one
plants of each line in three plots were harvested. Among them, seven plants of each line
were measured for branch number and pod number per plant. Twenty-five siliques from
each plant were sampled randomly and seed numbers were counted. After a subsequent
ripening period, all siliques from each plant were threshed and total seed yield and
1000-seed weight were determined. Harvest index = seed yield per plant/ (seed yield +
straw weight). The content of seed oil and protein was tested using a near-infrared
reflectance spectroscope (Foss NIRSystems 5000) (Gan et al., 2003).

Collection of developing seeds of B. napus

Plants were selected at the middle flowering stage, and the 2-3 flowers that had recently
opened were pinched off. The main branch and three branches of selected five
individual plant replicates of BnaC02.TPSS8-OE, CRISPR mutants, and WT were
labeled with wires, which were gently tied around the stem between the open flower
and the bud. The buds of labeled branches were bagged and self-pollinated for 4 days
and then the bag was removed. The pods close to the wire were sampled 35 days after

flowering (DAF).
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GUS histochemical and fluorometric assays

Seedlings or tissues were incubated at 37°C for 6 h in GUS staining solution (I mM 5-
bromo-4-chloro-3-indolyl -B-D-glucuronate acid in 50 mM sodium phosphate buffer,
pH7.2) containing 0.1% (v/v) Triton X-100, 0.5 mM K4Fe(CN)s, 2 mM K3Fe(CN)s, and
10 mM EDTA. The tissue samples were examined under a stereo-microscope (Olympus,
Japan).

Fluorometric GUS assays were conducted in accordance with the method described
by Jefferson et al. (1987) with minor adjustments. For quantitative assessments, plant
tissues were rapidly frozen and subsequently homogenized in 0.5 mL of GUS extraction
bufter, which consisted of 50 mM NaPOq buffer (pH 7.0), 10 mM EDTA (pH 8.0), 0.1%
(w/v) sodium lauryl sarcosine, 0.1% (v/v) Triton X-100, and 10 mM B-mercaptoethanol.
The homogenate was then centrifuged at 13,000xg for 15 min at 4°C. GUS activity in
the supernatants was quantified in extraction buffer containing 1 mM 4-MUG (4-
methylumbelliferyl-B-D-galactopyranoside) at 37°C. A 50 uL aliquot of the supernatant
was mixed with 250 pL of MUG assay buffer on ice. Subsequently, 100-uL aliquots
were added immediately to 900 puL of GUS stop buffer (0.2 M Na2CO3) as a control.
The remaining reaction aliquots were incubated at 37°C for 1 hour, and 100-uL aliquots
were then added to 900 pL of the stop buffer. The fluorescence intensity of 4-
methylumbelliferone (4-MU) was quantified using a fluorescence spectrophotometer
(HITACHI F-4600, Japan) at excitation and emission wavelengths of 365 and 455 nm,
respectively. A standard curve was constructed to determine the concentration of 4-MU.
The total protein concentration of the crude sample extracts was determined using
bovine serum albumin (BSA) as a reference standard. Finally, GUS activity was
normalized using the 4-MUG standard and calculated as picomoles of 4-MU produced
per minute per milligram of total protein.

In the GUS fluorometric assay of pBnaC02.TPS8-GUS Arabidopsis samples, leaf
specimens were obtained from leaf 6 at 2, 8, 16 and 22 days after emergence (DAE).
Individual flowers on the primary inflorescence were carefully marked at anthesis.
Samples were collected from young siliques (5 and 10 days after anthesis) and from
mature siliques (20 and 25 days after anthesis). Seeds were meticulously removed using

a dissecting needle, and the silique walls and seeds were sampled.
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Determination of total C and N concentration

The concentration of total N and C in the dried powder of samples was measured using
an elemental analyzer (Vario EL; Elemental analyzer system). C to N ratio (C/N ratio)
= total C/ total N.

Measurement of chlorophyll concentration and photosynthetic efficiency

At the seven-week-old stage, the fifth and sixth leaves of the plants were sampled, and
fresh leaves (~30 mg) were incubated in 2.5 mL of 80% acetone overnight in the dark
at 4°C. Pigment concentration was detected at 663 nm and 645 nm absorbance with a
spectrophotometer (Tecan Infinite 200, Switzerland). The concentration of total
chlorophyll was calculated using the following equation: (20.31 Asss+ 8.05 Ags3)/ FW
[mg g''] (FW: fresh weight of tissue in grams). The net photosynthesis rate in the middle
of leaves at the seedling stage or the pods from the main inflorescence at the podding
stage was measured using a portable photosynthesis system (Li16400; LI-COR, Lincoln,
NE, USA) with the parameters of 400 pmol mol™! CO,, 600 umol s flow rate, 60%
relative humidity and 1200 pmol m s™! light intensity.

Metabolite extraction and analysis by LC-MS/MS

Metabolites (including T6P) were extracted with chloroform/methanol and determined
by LC-MS/MS according to a previously described method (Guo et al., 2014; Luo et
al., 2007). The 5™ and 6™ leaves of seven-week-old seedlings were snap-frozen, and
ground to powder. Samples (30 mg) were homogenized in 1.8 mL chloroform: methanol
(3:7, v/v) containing 0.8 pg PIPES as internal standard and incubated for 2 h with
intermittent mixing at -20°C. Polar metabolites were extracted from the
methanol/chloroform phase by the addition of 1.6 mL water to each sample and then
centrifuged at 12,000 g after vigorous vortexing. The methanol-water phase was then
transferred to a new tube. Another 1.6 mL of water was added to each sample to extract
polar metabolites one more time. Two extracts were pooled and concentrated using a
stream of nitrogen gas in a Termovap sample concentrator (DC150-2, Youning,
Hangzhou, China). The extracts were redissolved with 300 uL. ddH>O and then filtered
with 0.45 um cellulose acetate ultrafiltration membranes (Millipore, MA, United
States). Metabolites analysis was determined by LC-MS/MS (QTRAP 6500 plus) with
the instrumental parameters described by Luo et al. (2007). Six replicates were used for

each line. The standard curve for each metabolite was generated using authentic
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standards for the quantification of targeted metabolites. Sugar phosphates, glycolytic
intermediates, and organic acids were determined by interpolating from the linear
relationship between peak area and standard concentration.

Measurement of carbohydrates

Carbohydrates were quantified as described previously (Li and Li, 2013; Li et al., 2022).
Dried leaves (~0.1 g) were homogenized in 5 mL of 80% (v/v) hot ethanol for 20 min
and filtered for the assays. To measure soluble sugar, the filtrate was boiled for 15 min
with anthrone and 98% sulfuric acid. The absorbance was recorded at 485 nm using a
spectrophotometer (Tecan Infinite 200, Switzerland). To measure sucrose, the filtrate
was boiled for 10 min with 2 N NaOH and then chilled, then 10 N HCI and 0.1%
resorcinol were added to the above mixture, and incubated at 80°C for 10 min. The
absorbance was recorded at 480 nm after cooling. For starch quantification, the filtrate
was dried, weighed, and sequentially boiled with deionized water, 9.2 M perchloric acid,
and 4.6 M perchloric acid, respectively. The mixture was centrifuged at 12,000 g for 20
min. The supernatants were treated using the same procedures as for soluble sugar and
measured for absorbance at 485 nm. To measure trehalose, the supernatant was dried at
80°C and redissolved with distilled water. The re-suspension was sequentially boiled in
0.2 N H2SO4 and 0.6 N NaOH. The mixture was treated with anthrone and 98% sulfuric
acid at 100°C for 10 min. The chilled solution was measured for absorbance at 630 nm.
Measurement of trehalose-6-phosphate synthase (TPS) activity

Activity of TPS was measured as the release of UDP from UDP-glucose in the presence
of glucose-6-phosphate (Hottiger et al.,1987; Ilhan et al., 2015). Briefly, 0.1 g of fresh
leaves were homogenized in 0.4 mL of reaction mixture, containing 50 mM tricine
buffer, pH7.0, 10 mM glucose-6-phosphate, 5 mM UDPG, and 12.5 mM MgCl, and
incubated at 35°C for 30 min. Glucose-6-phosphate was excluded from control
experiments. Samples were then kept at 100°C for 5 min. The mixture was centrifuged
at 12,000 g for 10 min. The supernatant was mixed with the second reaction mixture,
containing 140 mM tricine, pH 7.6, 2 mM phosphoenolpyruvate, 0.31 mM NADH, and
20 U lactic dehydrogenase, for determination of UDP content. The reaction was started
by the addition of pyruvate kinase (20 U). A decrease in absorbance at 340 nm was
measured at 35°C, and used to calculate the concentration of UDP. One unit of enzyme

activity was defined as nmol UDP formed through the activity of TPS in the extract,
2
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and total shoot enzyme activity was expressed as units g! fresh weight.

Measurement of sucrose phosphate synthase, invertase, sucrose synthase, AGPase
and cytosolic pyruvate Kinase activity

Sucrose phosphate synthase activity was measured according to Négele et al. (2010).
Frozen leaf tissue was homogenized in 50 mM HEPES-KOH (pH 7.5), 15 mM MgCl,,
1 mM EDTA, 2.5 mM DTT, and 0.1% Triton X-100. After centrifugation at 12,000 g
for 5 min at 4°C, SPS activity in the supernatant was determined. The reaction buffer
consisted of 50 mM HEPES-KOH, pH 7.5, 15 mM MgCl,, 2.5 mM DTT, 10 mM UDP-
Glc, 10 mM Fru-6-P, and 40 mM Glc-6-P. Control assays included 30% KOH.
Reactions were performed at 25°C for 30 min, followed by a 10 min incubation at 95°C.
Anthrone (0.2%) in 95% H>SO4 was added, and samples were incubated for 8§ min at
90°C. Glucose concentration was measured at 620 nm.

Invertase activities were evaluated in crude leaf extracts. Approximately 0.1 g of
frozen leaf tissues was homogenized in 50 mM HEPES-KOH (pH 7.5), 5 mM MgCl,
1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 5 mM DTT, 0.1% Triton X-100, and 10%
glycerin. After centrifugation at 12,000 g for 25 min at 4°C, invertase activities were
assayed in the supernatant. Soluble acid invertase was assayed in 20 mM Na-acetate
buffer (pH 4.7) with 100 mM sucrose as a substrate. Neutral invertase was assayed in
20 mM HEPES-KOH (pH 7.5) with 100 mM sucrose as a substrate. The control of each
assay was boiled for 3 min after adding the enzyme extract. Reactions were incubated
for 60 min at 30°C, stopped by boiling for 3 min, and the reducing sugars released were
enzymatically measured (Comin Biotechnology Co., Ltd.). The activities were
expressed in umol glucose h'l g FW.

To assay sucrose synthase activity, frozen samples were ground to powder and then
homogenized in extraction buffer containing 50 mM HEPES/KOH (pH7.5), 7.5 mM
MgCl; and 1 mM EDTA, 2% (w/v) PEG 8000, 2% (w/v) PVP and 5 mM DTT
(Hoffmann-Thoma et al., 1996). The supernatant was immediately desalted on a
Sephadex G-25 column equilibrated with extraction buffer at 4°C. The filtrate was then
used to determine the sucrose synthase activities with a test kit (Comin Biotechnology
Co., Ltd.).

To assay AGPase enzyme activity, frozen samples were ground to powder and then

homogenized in extraction buffer containing 1 mL extraction buffer consisting of
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100 mM HEPES buffer (pH 7.5), 5 mM MgCly, 2 mM EDTA, 10% (v/v) glycerol, 0.1%
BSA, 5 mM DTT, and 2% (w/v) insoluble PVP, and then centrifuged at 12,000 g at 4°C
for 30 min. The remaining pellet was suspended in the extraction buffer and used for
AGPase enzyme assay with a test kit (AGP-2A-Y, Comin Biotechnology Co., Ltd.).
Crude pyruvate kinase enzyme solutions were extracted following Baud et al. (2007).
Leaves were ground and homogenized in extraction buffer (50 mM HEPES-KOH, pH
8.0, 100 mM KCI, 5 mM MgCl, 20 mM NaF, 1 mM EDTA, 0.1% Triton X-100, 20%
glycerol, 5% PEG 8000, 1 mM DTT, 1% PVP). The supernatant obtained after
centrifugation at 14,000 g at 4°C for 10 min was used for enzyme activity. The assay
involved a coupling reaction of pyruvate and the conversion of NADH to NAD". The
reaction solution (100 mM HEPES-KOH, pH 8.2, 50 mM KCI, 10 mM MgCl, 5% PEG
8000, 1 mM DTT, 2 mM PEP, 0.3 mM NADH, 2.5 mM ADP, 2 U/mL rabbit muscle
lactate dehydrogenase) was analyzed for pyruvate kinase activity by monitoring the
decrease in absorbance values at 340 nm.
Data analysis and statistics
Data were processed using SPSS software 22.0 (IBM Corp.). The heatmap and bar chart
were completed by Microsoft Excel software and GraphPad 8.0 software (GraphPad,
USA), respectively. A two-tailed Student’s #-test was performed to identify significant

differences between WT and transgenic plants for physiological data.
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Supplemental Data
Figure S1. Multiple sequence alignment of AtTPS8, BnaC02.TPS8 and BnaA02.TPS8
proteins and structure similarity in B. napus and Arabidopsis. The red striated bar

indicates the Glyco transf 20 domain (Glycosyltransferase family 20,
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https://www.ncbi.nlm.nih.gov/Structure/cdd/pfam00982). The green striated bar
indicates the  Trehalose PPase = domain  (Trehalose-phosphatase  domain,
https://www.ncbi.nlm.nih.gov/Structure/cdd/PF02358).

Figure S2. GUS activity in pBnaC02.TPS8-GUS Arabidopsis. GUS activity was
measured in Arabidopsis plants expressing the pBnaC02.TPS8-GUS construct. Leaf
samples were collected at 2, 8, 16, and 22 days after emergence (DAE), while pod walls
and seeds were sampled at 5, 10, 20, and 25 days after anthesis (DAA). Data are shown
as the mean £+ SD (n=4). Different letters represent significant differences at P < 0.05,
based on an ANOVA analysis with Tukey’s significant difference test.

Figure S3. Comparison of shoot growth among different six-week-old BnaC02.TPSS§-
OE lines and wild type plants (cultivar ‘ZS11’) grown hydroponically. Values are the
means £+ SD (n=5). Different letters represent significant differences at P < 0.05, based
on an ANOVA analysis with Tukey’s significant difference test.

Figure S4. Climate conditions during rapeseed growth seasons (2017-2020). Monthly
averages of maximum and minimum temperatures, along with precipitation data, are
depicted for the rapeseed growth seasons spanning 2017 to 2020.

Figure S5. Impact of BraC02.TPS8 on the sugar-phosphates of leaves. (a-c)
Concentrations of F6P (a), F1,6BP (b), and G1P (c) in seven-week-old seedlings of WT,
BnaC02.TPS8 mutants (CR-44 and CR-153; WT, ‘Westar’) and overexpression lines
(OE-33 and OE-38; WT, ‘ZS11°). Data were obtained from the 5" and 6 leaves of
seven-week-old seedlings grown hydroponically. Data are shown as the mean + SD
(n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates not significant
(Student’s #-test).

Figure S6. Impact of BnaC02.TPS8 on the fatty acid composition in mature seeds. (a-
f) Fatty acid composition, including C16:0 (a), C18:0 (b), C18:1 (c), C18:2 (d), C18:3
(e) and C20:0 (f) in mature seeds of WT, BnaC02.TPS8 mutants (CR-44 and CR-153;
WT, ‘Westar’), and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°). Data were
measured by a near-infrared spectrometer (NIRS). Data are shown as the mean = SD
(n=7). Significant differences: *P < 0.05 and ns indicates not significant (Student’s ¢-
test).

Table S1 The sequences of putative off-target sites of BnaA02.TPS8 in BnaC02.TPS§
CRISPR-Cas9 mutants.
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Table S2 Abundance changes in metabolites of BnaC02.TPS8 overexpression lines and
mutants by LC-MS/MS.

Table S3 Primers used for BnaC02.TPS8 cloning and vector construction.

Table S4 Primers used for qRT-PCR of reference genes, BnaC02.TPS8, BnaA02.TPSS,
and genes associated with starch synthesis, starch degradation, sugar metabolites
transport, nitrogen uptake and metabolism, fatty acid synthesis, and oil storage.
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Table 1 Seed yield components and harvest index of BnaC02.TPS8 mutants (CR-44 and CR-153; WT, Westar) and BnaC02.TPS8
overexpression plants (OE-33 and OE-38; WT, ZS11) under high and low nitrogen conditions.

High nitrogen Low nitrogen High nitrogen Low nitrogen

Westar CR-44 CR-153 Westar CR-44 CR-153 ZS11 OE-33 OE-38 ZS11 OE-33 OE-38
PN 472.5¢31.9 338.2432.1 398.2428.1 115.2+12.4 85.3+11.3 75.8+104 510.4+59.8 709.6+78.8 729.3+79.1 283.1438.4 403.0+21.2 438.5+53.5
(n) a b ab c d d b a a d c c
SN
- 12.6+0.1a 109+02b 10.7+03b 7.5+02c  4.2+02d 3.6+0.1d 11.9+02b 13.4+04a 132+04a 8.7+03c 10.2+0.4b 10.3£0.4b
TSW 4.04+0.06 3.91+0.08 3.94+0.06 3.95+0.05 3.94+0.04 3.93+0.05 4.27+0.04 4.29+0.07 4.25+0.07 4.18+0.02  4.25+0.02  4.22+0.03
(2 a a a a a a a a a a a a
HI 2.85+0.10  2.97+0.11  3.04+0.12  2.99+0.14  2.89+0.08 2.75+0.11 3.31+0.05 3.39+0.08 3.26+0.12 2.98+0.11  3.12+0.10  3.08+0.09
(n) a a a a a a a a a a a a

Note: PN, pod number of plant; SN, seed number per pod, TSW, thousand seed weight; HI, harvest index. Values are mean + SD (n=7).
Different letters represent significant differences at P < 0.05 among treatments, based on an ANOVA analysis with Tukey's multiple

comparisons test.
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FIGURE LEGENDS

Figure 1. Gene expression pattern, protein localization, and generation of
CRISPR/Cas9 mutants, and overexpression transgenic plants of BnaC02.TPSS8. (a)
Phylogenetic tree and gene expression pattern of BnaC02.TPS8 in B. napus. Gene
expression data were sourced from BnTIR (http://yanglab.hzau.edu.cn). At,
Arabidopsis thaliana; Bn, Brassica napus. (b) Expression pattern of the pBnaC02. TPS8
reporter gene in green stem leaf (1) and senescent rosette leaf (2) of post-flowering
stage plants, and green silique (3) and yellow silique (4) of silique stage plants. Scale
bars: 1 cm. (¢) Subcellular localization of BnaC02.TPS8-GFP in Arabidopsis protoplast.
GFP indicates the green fluorescent protein (GFP) fluorescence, while red indicates the
cytosol marker fluorescence. Scale bars: 10 pm. (d) Mutagenesis of target sequence
guided by 1 and 2 of the BnaC02.TPSS gene. (¢) Relative gene expression of
BnaC02.TPS8 in B. napus shoots of wild type (cultivar ‘ZS11°) and BnaC02.TPS8
overexpression (OE) lines. BnaEFI-o and BnaActin2 were used as the references.
Values are the means + SD (n=4). Significant differences: **P < 0.01 (Student’s #-test).
Figure 2. Impact of BnaC(02.TPS8 disruption on the growth of B. napus. (a-b) Growth
phenotype of five-week-old seedlings of CRISPR/Cas9 mutants (CR-44 and CR-153;
WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°) grown
hydroponically. Scale bars: 2 cm. (c-e) Shoot biomass (c), root biomass (d), and root-
to-shoot ratio (e) of seven-week-old seedlings of WT, BnaC02.TPS8 mutants and
overexpression lines. (f-g) Leaf length (f) and leaf width (g) of the 5™ leaf of the seven-
week-old seedlings. (h-n) Net photosynthetic rate (h), transpiration rate (i), stomatal
conductance (j), and intercellular CO2 (k) measured in ten-week-old seedlings grown
hydroponically. (I-n) Total carbon (1), total nitrogen (m), and C/N ratio (n) measured in
the 5™ and 6™ leaves of the seven-week-old seedlings. The data in (c-n) are shown as
the mean = SD (n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates
not significant (Student’s z-test).

Figure 3. Impact of BnaC02.TPS8 on the concentration of sugars, starch, sugar-
phosphates, and sugar-nucleotides in the leaves. (a-i) Concentrations of sucrose (a),

soluble sugar (b), trehalose (c), starch (d), T6P (e), G6P (f), S6P (g), ADPG (h) and
3
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UDPG (i) in WT, BnaC02.TPS8 mutants (CR-44 and CR-153; WT, ‘Westar’) and
overexpression lines (OE-33 and OE-38; WT, ‘ZS11°). Data were obtained from the 5%
and 6™ leaves of seven-week-old seedlings grown hydroponically. Data are shown as
the mean + SD (n=6). Significant differences: *P < 0.05, **P < 0.01 and ns indicates
not significant (Student’s ¢-test).

Figure 4. Impact of BnaC02.TPSS§ on the concentration of glycolytic intermediates and
organic acid in the leaves. (a-1) Concentrations of 3PGA (a), PEP (b), pyruvate (c), PEP:
Pyruvate (d), shikimate (e), citrate (f), aconitate (g), isocitrate (h), 2-OG (i), succinate
(j), fumarate (k) and malate (1) in WT, BnaC02.TPS8 mutants (CR-44 and CR-153; WT,
‘Westar’), and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°). Data were
obtained from the 5" and 6™ leaves of seven-week-old seedlings grown hydroponically.
Data are shown as the mean + SD (n=6). Significant differences: *P < 0.05, **P < 0.01
and ns indicates not significant (Student’s z-test). 3PGA: 3-phosphoglycerate; PEP:
phosphoenolpyruvate; 2-OG: 2-oxoglutarate.

Figure 5. Impact of BnaC02.TPS8 on enzyme activities related to sucrose metabolism,
starch synthesis, and trehalose-6-phosphate (TPS) activity in the leaves. (a-g) Enzyme
activities including sucrose phosphate synthase (a), soluble acid invertase (b), neutral
invertase (c), sucrose synthase (d), pyruvate kinase (e), AGPase (f), and TPS (g) in WT,
BnaC02.TPS8 mutants (CR-44 and CR-153; WT, ‘Westar’), and overexpression lines
(OE-33 and OE-38; WT, ‘ZS11°). Data were obtained from the 5" and 6 leaves of
seven-week-old seedlings grown hydroponically. Data are shown as the mean + SD
(n=6). Significant differences: *P < 0.05, **P < 0.01 (Student’s ¢-test). AGPase:
adenosine diphosphate-glucose pyrophosphorylase; TPS: trehalose-6-phosphate
synthase.

Figure 6. Impact of BnaC02.TPS8 on the expression of starch synthesis, starch
degradation, and sugar metabolite transport-related genes in leaves, and nitrogen uptake
and metabolism-related genes in roots. (a-1) Gene expression level of GBSS! (a),
SBE2.1 (b), SBE2.2 (c), GWD3/PWD (d), BAM1I (e), BAM3 (f), PPT (g), GLTI (h),
SUC2 (i), NRT1.1 (j), NRT1.5 (k) and GLNI (1) in WT, BnaC02.TPS8 mutants (CR-44

and CR-153; WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°).
3
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The data in (a-i) and in (j-1) were collected from the 5™ and 6' leaves of the plants, and
roots of seven-week-old seedlings grown hydroponically, respectively. BnaEFI-a and
BnaActin2 were used as reference genes. Data are shown as the mean £ SD (n=4).
Significant differences: *P <0.05, **P <0.01 (Student’s ¢-test). GBSS1, granule-bound
starch synthasel; SBE2.1, starch branching enzyme2.l; SBE2.2, starch branching
enzyme2.2; GWD3/PWD, glucan water dikinase3/ phosphoglucan water dikinase;
BAMI1, p-amylasel; BAM3, f-amylase3; PPT, phosphoenolpyruvic acid translocater;
GLT1, glucose-6-phosphate translocater; SUC2, sucrose transporter2; NRT1I.1, nitrate
transporterl.l; NRT1.5, nitrate transporterl.5; GLN1, glutamine synthetasel.

Figure 7. Impact of BrnaC(02.TPS8 on plant height and seed yield under high nitrogen
(N) and low N conditions. (a) Phenotypic characterization of WT, BrnaC02.TPS8
mutants (CR-44 and CR-153; WT, Westar) and overexpression lines (OE-33 and OE-
38; WT, ZS11) at the flowering stage under high N and low N conditions. (e-f) Plant
height (e), and seed yield (f) of WT, BnaC02.TPS8 mutants and overexpression lines
under high N (180 kg N ha!) and low N (72 kg N ha™') conditions. Scale bars: 5 cm in
(a-d). Data are shown as the mean + SD (n=6 for (¢) and n=4 for (f)). Different letters
represent significant differences at P <0.05, based on an ANOVA analysis with Tukey’s
significant difference test.

Figure 8. Impact of BnaC02.TPS§ on the concentration of seed oil, protein, soluble
sugar, and starch in mature seeds, the photosynthetic rate of pods, and the expression
of starch synthesis and seed oil synthesis-related genes in developing seeds. (a-d) Seed
oil (a), seed protein (b), seed soluble sugar (c), and seed starch (d) in the mature seeds
of WT, BnaC02.TPS8 mutants (CR-44 and CR-153; WT, Westar) and BnaC02.TPS8
overexpression lines (OE-33 and OE-38; WT, ZS11). (e) Net photosynthetic rate of 40
DAF pods, (f-1) expression of genes related to starch synthesis: GBSS! (f) and GBSS?2
(g), fatty acid synthesis: WRII (h), MCAMT (i), FATA (j), and oil storage: OBO (k) and
CALO (1). RNA was extracted from 35 DAF seeds. BnaEF I-a and BnaActin2 were used
as reference genes. Data are shown as the mean = SD (n=7 for (a-e); n=4 for (f-1)).
Significant differences: *P < 0.05, **P < 0.01 (Student’s f-test). DAF, day after

flowering. GBSSI, granule-bound starch synthasel; GBSS2, granule-bound starch
3
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Figure 1. Gene expression pattern, protein localization, and generation of
CRISPR/Cas9 mutants, and overexpression transgenic plants of BrnaC02.TPSS. (a)
Phylogenetic tree and gene expression pattern of BnaC02.TPS8 in B. napus. Gene
expression data were sourced from BnTIR (http://yanglab.hzau.edu.cn). At,
Arabidopsis thaliana; Bn, Brassica napus. (b) Expression pattern of the pBnaC02.TPS8
reporter gene in green stem leaf (1) and senescent rosette leaf (2) of post-flowering
stage plants, and green silique (3) and yellow silique (4) of silique stage plants. Scale
bars: 1 cm. (c) Subcellular localization of BnaC02.TPS8-GFP in Arabidopsis protoplast.
GFP indicates the green fluorescent protein (GFP) fluorescence, while red indicates the
cytosol marker fluorescence. Scale bars: 10 um. (d) Mutagenesis of target sequence
guided by 1 and 2 of the BnaC02.TPS8 gene. (e) Relative gene expression of
BnaC02.TPS8 in B. napus shoots of wild type (cultivar ‘ZS11°) and BrnaC02.TPS8
overexpression (OE) lines. BnaEFI-o. and BnaActin2 were used as the references.
Values are the means = SD (n=4). Significant differences: **P < 0.01 (Student’s #-test).
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Figure 2. Impact of BnaC02.TPSS on the growth of B. napus. (a-b) Growth phenotype
of five-week-old seedlings of CRISPR/Cas9 mutants (CR-44 and CR-153; WT,
‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°) grown
hydroponically. Scale bars: 2 cm. (c-¢) Shoot biomass (c), root biomass (d), and root-
to-shoot ratio (e) of seven-week-old seedlings of WT, BnaC02.TPS8 mutants and
overexpression lines. (f-g) Leaf length (f) and leaf width (g) of the 5™ leaf of the seven-
week-old seedlings. (h-n) Net photosynthetic rate (h), transpiration rate (i), stomatal
conductance (j), and intercellular CO> (k) measured in ten-week-old seedlings grown
hydroponically. (I-n) Total carbon (1), total nitrogen (m), and C/N ratio (n) measured in
the 5™ and 6™ leaves of the seven-week-old seedlings. The data in (c-n) are shown as
the mean = SD (n=6). Significant differences: *P < 0.05, **P < (0.01 and ns indicates
not significant (Student’s ¢-test).
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Figure 3. Impact of BnaC02.TPS8 on the concentration of sugars, starch, sugar-
phosphates, and sugar-nucleotides in the leaves. (a-i) Concentrations of sucrose (a),
soluble sugar (b), trehalose (c), starch (d), T6P (e), G6P (f), S6P (g), ADPG (h) and
UDPG (i) in WT, BraC02.TPS8 mutants (CR-44 and CR-153; WT, ‘Westar’) and
overexpression lines (OE-33 and OE-38; WT, ‘ZS11°). Data were obtained from the 5%
and 6™ leaves of seven-week-old seedlings grown hydroponically. Data are shown as
the mean = SD (n=6). Significant differences: *P < 0.05, **P < (0.01 and ns indicates
not significant (Student’s z-test).
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Figure 4. Impact of BnaC(02.TPS8 on the concentration of glycolytic intermediates and
organic acid in the leaves. (a-1) Concentrations of 3PGA (a), PEP (b), pyruvate (c), PEP:
Pyruvate (d), shikimate (e), citrate (f), aconitate (g), isocitrate (h), 2-OG (i), succinate
(j), fumarate (k) and malate (1) in WT, BnaC02.TPS8 mutants (CR-44 and CR-153; WT,
‘Westar’), and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°). Data were
obtained from the 5 and 6™ leaves of seven-week-old seedlings grown hydroponically.
Data are shown as the mean + SD (n=6). Significant differences: *P < 0.05, **P < 0.01
and ns indicates not significant (Student’s z-test). 3PGA: 3-phosphoglycerate; PEP:
phosphoenolpyruvate; 2-OG: 2-oxoglutarate.
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Figure 5. Impact of BnaC02.TPS8 on enzyme activities related to sucrose metabolism,
starch synthesis, and trehalose-6-phosphate (TPS) activity in the leaves. (a-g) Enzyme
activities including sucrose phosphate synthase (a), soluble acid invertase (b), neutral
invertase (c), sucrose synthase (d), pyruvate kinase (e), AGPase (f), and TPS (g) in WT,
BnaC02.TPS8 mutants (CR-44 and CR-153; WT, ‘Westar’), and overexpression lines
(OE-33 and OE-38; WT, ‘ZS11°). Data were obtained from the 5" and 6 leaves of
seven-week-old seedlings grown hydroponically. Data are shown as the mean = SD
(n=6). Significant differences: *P < 0.05, **P < 0.01 (Student’s r-test). AGPase:
adenosine diphosphate-glucose pyrophosphorylase; TPS: trehalose-6-phosphate
synthase.
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Figure 6. Impact of BnaC02.TPSS on the expression of starch synthesis, starch
degradation, and sugar metabolite transport-related genes in leaves, and nitrogen uptake
and metabolism-related genes in roots. (a-1) Gene expression level of GBSS! (a),
SBE2.1 (b), SBE2.2 (¢), GWD3/PWD (d), BAM1I (e), BAM3 (f), PPT (g), GLTI (h),
SUC2 (i), NRT1.1 (j), NRT1.5 (k) and GLNI (1) in WT, BnaC02.TPS8 mutants (CR-44
and CR-153; WT, ‘Westar’) and overexpression lines (OE-33 and OE-38; WT, ‘ZS11°).
The data in (a-i) and in (j-1) were collected from the 5 and 6 leaves of the plants, and
roots of seven-week-old seedlings grown hydroponically, respectively. BnaEF1-o. and
BnaActin2 were used as reference genes. Data are shown as the mean £ SD (n=4).
Significant differences: *P <0.05, **P <0.01 (Student’s t-test). GBSS1, granule-bound
starch synthasel; SBE2.1, starch branching enzyme2.l; SBE2.2, starch branching
enzyme2.2; GWD3/PWD, glucan water dikinase3/ phosphoglucan water dikinase;
BAMI1, p-amylasel; BAM3, f-amylase3; PPT, phosphoenolpyruvic acid translocater;
GLTI, glucose-6-phosphate translocater; SUC2, sucrose transporter2; NRTI.1, nitrate
transporterl.l; NRT1.5, nitrate transporterl.5; GLN1, glutamine synthetasel .
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Figure 7. Impact of BnaC02.TPS8 on plant height and seed yield under high nitrogen
(N) and low N conditions. (a) Phenotypic characterization of WT, BrnaC02.TPS8
mutants (CR-44 and CR-153; WT, Westar), and overexpression lines (OE-33 and OE-
38; WT, ZS11) at the flowering stage under high N and low N conditions. (e-f) Plant
height (e), and seed yield (f) of WT, BnaC02.TPS8 mutants, and overexpression lines
under high N (180 kg N ha') and low N (72 kg N ha!) conditions. Scale bars: 5 cm in
(a-d). Data are shown as the mean + SD (n=6 for (e) and n=4 for (f)). Different letters
represent significant differences at P <0.05, based on an ANOVA analysis with Tukey’s
significant difference test.
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Figure 8. Impact of BnaC02.TPS8 on the concentration of seed oil, protein, soluble
sugar, and starch in mature seeds, the photosynthetic rate of pods, and the expression
of starch synthesis and seed oil synthesis-related genes in developing seeds. (a-d) Seed
oil (a), seed protein (b), seed soluble sugar (c), and seed starch (d) in the mature seeds
of WT, BnaC02.TPS8 mutants (CR-44 and CR-153; WT, Westar) and BnaC02.TPS8
overexpression lines (OE-33 and OE-38; WT, ZS11). (e) Net photosynthetic rate of 40
DAF pods, (f-1) expression of genes related to starch synthesis: GBSS! (f) and GBSS2
(g), fatty acid synthesis: WRII (h), MCAMT (1), FATA (j), and oil storage: OBO (k) and
CALO (1). RNA was extracted from 35 DAF seeds. BnaEF1-a and BnaActin2 were used
as reference genes. Data are shown as the mean = SD (n=7 for (a-e); n=4 for (f-1)).
Significant differences: *P < 0.05, **P < 0.01 (Student’s ¢-test). DAF, day after
flowering. GBSSI, granule-bound starch synthasel; GBSS2, granule-bound starch
synthasel; WRII, wrinkledl, MCAMT, malonyltransferase; FATA, acyl-ACP
thioesterase A; OBOI, oil body oleosinl; CALO, caleosin.



