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Abstract 
Measuring model risk is required by regulators in financial and insurance markets. We separate model 
risk into parameter estimation risk (PER) and model specification risk (MSR), and we propose expected 
shortfall type model risk measures applied to L�evy jump, affine jump-diffusion, and multifactor models. 
We investigate the impact of PER and MSR on the models’ ability to capture the joint dynamics of 
stock and option prices. Using Markov chain Monte Carlo techniques, we implement two methodolo
gies to estimate parameters under the risk-neutral probability measure and the real-world probability 
measure jointly.
Keywords: L�evy models, MCMC, model specification risk, parameter estimation risk, stochastic volatility
JEL classifications: C11, C52, G12, G13

Model risk is currently considered one of the most overlooked risks faced by financial firms. 
The Basel Committee on Banking Supervision (2009), Federal Reserve Board of Governors 
(2011), and European Banking Authority (2012) require banks to measure and report model 
risk as for any other type of risk. The sources of model risk are parameter estimation risk 
(PER) and model specification risk (MSR). The latter is the risk associated with incorrectly 
identifying and modeling decisive factors that can jointly describe the dynamics of an eco
nomic asset, while PER denotes the risk of inaccurate estimation of parameters for a given 
model. The PER and MSR are the two components of the total model risk (TMR).

The majority of studies use point-wise estimation methods and consider model risk as 
model mispricing, thus not estimating the components of model risk. PER can be captured 
via Bayesian estimation methods. Jacquier and Jarrow (2000) study the PER of the Black 
and Scholes model. Furthermore, Jacquier, Polson, and Rossi (2002) apply Bayesian esti
mators for stochastic volatility (SV) models and find that the Bayesian approach produces 
more robust results compared with the moments and likelihood estimators. There are 
many advantages of using Markov chain Monte Carlo (MCMC) techniques in extracting 
�
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inference on continuous-time models in finance that have been highlighted in a series of 
works by Eraker (2001), Polson and Stroud (2003), Jacquier, Johannes, and Polson 
(2007), Johannes and Polson (2010), and Yu, Li, and Wells (2011).

In this article, we propose an expected shortfall (ES)-based method to measure model 
risk. This ES-type model risk measurement is potentially superior in capturing model risk 
because it is able to capture model tail risk. We provide an applicable framework to sepa
rate and measure PER and MSR for a very competitive class of option pricing models. We 
disentangle the model risk for buyers and sellers and we highlight that the two parties in 
options contracts are exposed asymmetrically to model risk. We find that option sellers 
tend to be exposed to a higher PER than buyers, which is in line with the conclusions of 
Green and Figlewski (1999). Furthermore, we find that the option bid–ask spread is posi
tively linked to the positional gap of model risk.

We implement two methodologies that estimate model parameters jointly under physical 
and risk-neutral probability measures. These two methodologies use different types of data 
and pricing error specifications. One estimation methodology introduces random effects to 
the autoregressive pricing error process to allow multiple options to be considered in the es
timation process, while allowing for different estimation windows for the spot and option 
prices. The second estimation methodology relies on underlying spot volatility and option 
implied volatility (IV) data and assumes that the relative pricing errors are normally distrib
uted. We apply our new methodology to several option pricing models with different abili
ties to explain S&P 500 index spot prices/volatility and option prices/IV. We find that the 
multifactor model has the lowest TMR.

The remainder of the article is organized as follows. In Section 1, we introduce the model 
risk measurement framework; then we revisit all models that are investigated in Section 2. 
Section 3 provides the details of the two estimation methodologies. Section 4 describes the 
data. The empirical analyses are presented in Section 5. The last section concludes.

1 Model Risk

This section discusses the theoretical background of model risk measures and then proceeds 
to define the PER and MSR. The ES-type model risk measures are introduced at the end of 
this section.

1.1 Theoretical Background
Most of the literature in the area of model risk of continuous-time models concerns mea
suring TMR. Hull and Suo (2002) introduce a methodology to measure model risk asso
ciated with mis-specified models in the evaluation of exotic options. Their focus is on the 
estimation of the IV surface from market option prices using three different models, 
Black-Scholes, IV function, and a two-factor SV model. Taking the latter as the bench
mark for pricing exotic options, they quantify model risk by comparing the other two 
models with the benchmark model. The model performance is monitored separately for 
pricing and hedging. Another innovative work on model risk is Lindstr€om et al. (2008), 
where parameter uncertainty is taken into account with a revised risk-neutral valua
tion formula.

Given a derivative written on an underlying asset Stf gt�0, a pricing model M can be de
fined using a vector of parameters h belonging to a compact domain H. Risk-neutral pric
ing theory dictates that the price at time t of any contingent claim C on the underlying asset 
S with maturity T and payoff WðSTÞ, such as a call option or a put option, is determined by 
Cðt; St; hÞ ¼ e−rðT−tÞEQ

t ½WðSTÞ� with Q a risk-neutral pricing measure and r the risk-free 
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rate. If dQ
dP jF t

n o

t�0 
is the Radon–Nikodym process that allows switching between the phys

ical measure P and Q then the same price of the contingent claim C can be rewritten as 

Cðt; St; hÞ ¼ e−rðT−tÞ dP
dQ

�
�
�
�
F t

EP
t ½

dQ
dP

�
�
F t

WðSTÞ�: (1) 

For a fixed model M, the investor or trader or risk manager is faced with uncertainty in 
the values of parameter h. One way to account for this uncertainty is to integrate the con
tingent claim price, viewed as a function of individual parameter values, over the entire do
main of H (Gzyl, ter Horst, and Malone 2008; Johannes and Polson, 2010; Rodr�ıguez, Ter 
Horst, and Malone 2015). In that case, we have: 

Cðt; StÞ ¼ e−rðT−tÞ
ð

h2H

Cðt; St; hÞpðdhÞ: (2) 

This can be rewritten as below: 

Cðt; StÞ ¼ e−rðT−tÞ
ð

h2H

dP
dQ

�
�
�
�
F t

EP
t ½

dQ
dP

�
�
F t

WðSTÞ�pðdhÞ: (3) 

Applying the Bayes rule and denoting by f ðSs : s � tÞ, the pathway distribution of underly
ing S, being equal to 

Ð

h2H
dP
dQ jF t

pðdhÞ, leads to 

Cðt; StÞ ¼ e−rðT−tÞ
ð

h2H

f ðSs : s � tÞEP
t ½

dQ
dP

�
�
F t

WðSTÞ�pðdhÞ: (4) 

Formula (4) shows that the trader combines uncertainty on the pathway followed by the 
underlying asset S as governed by each set of parameter values h.

1.2 Model Risk of Option Pricing Models
One major criticism of the above approach is that the integration over the entire domain H 

of the vector of parameters h will combine favorable errors with unfavorable errors in the 
overall calculation of the probability distribution of the contingent claim. Also, buyers and 
sellers are affected differently by the various values of H.

For example, assuming that the trader is only selling call options, and for the sake of sim
plicity of exposition, that there is only one parameter h � r, the risk of loss for the seller is 
that they may sell call options at a value r� < r0; whereas if they sell European call options 
for r� > r0 then they are making a profit, with r0 being the true value of r. The argument 
goes in the opposite direction for the buyer of the option. From a PER perspective, the 
buyer makes a loss when they buy the call option with r� > r0 and there is no loss if they 
buy the European call at r� < r0. This means that the position in the contract, whether 
long or short, should be recognized when computing model risk.

Hence, in our approach, we consider the two tails of the price distribution, keeping in 
mind that they affect the buyer and the seller differently. This is different from the so-called 
predictive approach that combines good scenarios with bad scenarios, making it difficult to 
disentangle the exact magnitude of model PER faced by the trader.1 Our model risk mea
sure is defined within a Bayesian inferential setup. Following Berger (1985), a posterior 

1 Alternative methods used in the literature are based on the conditional inferential approach whereby the 
trader will pick a value based on some criteria, usually related to the loss that they are facing. Pricing based on 
the posterior mean hmean is directly linked to a quadratic loss function while pricing based on the posterior me
dian of hmed is associated with an absolute loss function.
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expected loss of an action a when the posterior distribution is pðhjD; aÞ can be written as Ð

H
Lðh; aÞdFpðhjDÞ, with D denoting the observed dataset. The Bayesian risk rule associated 

with the squared-error loss Lðh; aÞ ¼ ðh−aÞ2 is the posterior mean EpðhjDÞ½h�. When the loss 
function is the absolute error Lðh; aÞ ¼ jh−aj then the Bayes estimator corresponding to 
this risk is the posterior median. We define model risk at a desirable significance level, 
showing the potential losses the trader would incur due to model risk. As a first step, we 
fix g as the significance level for the model risk. Typical values for g are 1%;2:5%, or 5%, 
similar to market risk measures. Then the loss function 

Lðh; aÞ ¼

h − a; if h − a � 0

1
g

−1
� �

ðh − aÞ; otherwise:

8
>><

>>:

(5) 

implies that the Bayes estimator is equal to the g quantile of the posterior density func
tion pðhjDÞ.2

Model risk is generated by two types of risk. The PER assumes that the model specification 
is fixed but the exact value of parameter vector h 2 H is uncertain, and it estimates a loss a 
trader would face due to incorrect estimation of the model parameters. The second source of 
model risk is the uncertainty in model specification, and this is called MSR. One common 
case is that of a set of nested models defined by expanding the vector of free parameters 
hð1Þ � hð2Þ � � � � hðmÞ, where hðiÞ 2 H, 1 6 i 6 m, m being the number of models and we as
sume that the true value of the vector of parameter h0 coincides exactly with one of the hðiÞ. 
In such a case, the MSR of the “true” model as well of the models which nest the true model 
should be equal to zero, while the nested models would generally have a nonzero MSR, due 
to having too few parameters. In practice, however, we also encounter the situation where 
there is a finite set of non-nested models each defined by different vector parameters of possi
bly different sizes. The most general case is when we have non-nested families of nested mod
els, with different parameter sets across families and nested vectors of parameters for models 
within a given family. Without loss of generality, we can assume that the set of models oper
ating in a given market is given by M1;M2; . . . ;Mdf g, these can be nested and non-nested. 
We also assume that the true data-generating process is unknown. Each model Mi will pro
duce one price estimate for the targeted asset as well as a price distribution and the investor 
has to choose the most suitable model based on these outputs.

MSR is conceptualized in this article as additional to PER. It refers to the inability of a 
model used by the seller or buyer to generate prices that will match the market price of assets 
with sufficient Bayesian credibility. For a given critical level g, if the trader is a buyer, let CL 
denote the g quantile on the left side of the price distribution and correspondingly, if the 
trader is a seller, let CR be the 1−g quantile on the right side of the price distribution. These 
two quantiles will define a credibility interval akin to the confidence interval in a frequentist 
approach. The PER, if the trader is a seller, would be the difference between CR and the price 
estimate, and the PER, if the trader is a buyer, would be the difference between the estimated 
price and CL. If improved measures of tail risk such as ES type risk measures are sought, the 
theoretical construction remains the same. If the asset market price is above CL (buyer), or is 
below CR (seller), then MSR is zero because the model is able to capture the market price of 
the product, and the pricing error can be explained by PER.3 If the market price is below CL 
(buyer) or is higher than CR (seller), however, then there is nonzero MSR for the trader.

2 For proof see result 6 in Berger (1985), page 162.
3 The concept of model risk is to some extent related to pricing error. In some special cases, the two can be 

equal. However, model risk can be substantial even if pricing error is small.
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Figure 1 shows the intuition behind our measures and provides an example of model risk 
measures for a trader who is a buyer or a seller, which exemplifies the situation when the 
pricing error is not fully explained by PER. For example, if OP is the market price of a 
European call option such that CR < OP, then the MSR of a seller trader is the minimum 
value that the seller’s price distribution should shift with so that the option price is inside 
the credibility interval. In this example, this value is clearly OP−CR; see Figure 1 (C) and  
(D). If, however, OP < CL, then the MSR of a buyer trader is the minimum shift in the 
model’s estimated price distribution (EPD) so that the price is within the credibility inter
val; and this value is CL−OP; see Figure 1 (A) and (B). If a seller trader underestimates the 
option price, then they would bear losses caused by MSR because they will be prepared to 
sell even below the market price; whereas a buyer trader would bear losses caused by MSR 
when overestimating the price because they will be happy to buy at overinflated prices. So 
we measure the MSR for the buyer wanting to long (L) the assets as maxðCL−OP;0Þ, and 
for the seller, who wants to short (S) the assets, as maxðOP−CR;0Þ.

Figure 1 (A) and (B) compares the buyer’s model risk for two different models, which 
can be nested. Figure 1 (A) shows the price distribution for a more general model, possibly 
with more free parameters, whereas Figure 1 (B) shows the price distribution obtained 
from a possibly nested model with a smaller number of free parameters. The more general 
model would typically have a higher PER, due to the higher number of free parameters, but 
a lower MSR, whereas the restricted model would have a lower PER, but a higher MSR. A 
similar comparison can be made for the model risk faced by the seller, shown in Figure 1 
(C) and (D). If the market price is higher than CL (for the buyer) or lower than CR (for the 
seller), then the only model risk faced by the buyer or seller is the PER of the model, which 
is typically larger for the more general model.

0 2 4 6 8 10 12 14 16 18 20

A Example of Model Risk for Buyers using a more General Model

Estimated Price
CL
Market Price
Estimated Price Distribution

0 2 4 6 8 10 12 14 16 18 20

B Example of Model Risk for Buyers using a more Restricted Model

Estimated Price
CL
Market Price
Estimated Price Distribution

0 2 4 6 8 10 12 14 16 18 20

C Example of Model Risk for Sellers using a more General Model

Estimated Price
CR
Market Price
Estimated Price Distribution

0 2 4 6 8 10 12 14 16 18 20

D Example of Model Risk for Sellers using a more Restricted Model

Estimated Price
CR
Market Price
Estimated Price Distribution

MSR for Buyers PER for Buyers

PER for Buyers

PER for Sellers MSR for Sellers

MSR for Buyers

PER for Sellers MSR for Sellers

Figure 1. This figure provides an example to explain model risk measures. We assume that the EPD is 
constructed based on the estimated posterior distribution of the parameters of two models; a more general 
model and a restricted model; one gives a wider distribution, and the other leads to a narrower distribution. 
The blue lines mark the 5% and 95% cutoff points of the EPD, and the red lines mark two possible market 
prices for the option. Buyers fear overpricing, while sellers fear underpricing an option. Therefore, the left tail 
of the EPD is used to measure the model risk for buyers, and the right tail is used to measure model the risk 
for sellers. The black dashed line marks the estimated price, which can either be the posterior mean 
or median.

Lazar et al. j Continuous-Time Finance Models                                                                                            5 

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbae001/7597791 by guest on 19 O

ctober 2024



1.3 Model Risk Measures
We now provide the definition of PER and MSR as follows:

Definition 1  For a given contingent claim C and a given model M with vector of 
parameters h, the PER refers to the risk of loss due to possible mispricing associated 
with erroneous estimates of parameters h obtained via the estimation process K
given dataset D, for a given critical level.  

Definition 2  For an option C and a model M with vector of parameters h, the MSR of 
model M refers to the risk of mispricing due to the inability of the model to capture 
the market price of C based on dataset D and methodologies K, for a given 
critical level.   

Our main objective is to measure PER and MSR, and then compare the model risk 
across different pricing models. Johannes and Polson (2010) state that the marginal pos
terior distribution through the Bayesian estimation characterizes the sample information 
regarding the objective and risk-neutral parameters and quantifies the PER. According to 
Bayes’ theorem, for the model MðhÞ, the posterior distribution of model parameters h 

can be expressed as: pðhjDÞ / hðDjhÞpðhÞ, where pðhÞ is the so-called prior distribution of 
parameters and hðDjhÞ is the likelihood function. The posterior distribution of the 
parameters can further be used to construct the estimated posterior distribution of the as
set price, ~FtðC;MðhÞ;D;KÞ. Here C denotes the type of financial instrument such as an 
option (call or put) at time t conditional on model M with parameter vector h, given an 
observed dataset D. For clarity, we also insist on the notational K for different computa
tional methodologies (including calibration and pricing). The posterior distribution of 
option prices is produced by the uncertainty in the value of parameters h weighted by the 
combination of prior assumptions on h and the likelihood coming out of historical data. 
Furthermore, we use the posterior mean as the point estimated of the price 
F̂ðC;MðhÞ;D;KÞ. As discussed above, the buyer (seller) fears overpricing (underpricing) 
the product. Thus the PER for a trader seeking a long (short) position is measured based 
on the left (right) tail of ~FtðC;MðhÞ;D;KÞ. We adopt ES-type risk measures in this article. 
ES has been shown to be a superior measure to Value-at-Risk (VaR) due to its coherence 
property. The regulators stipulate ES as the main measure of market risk. At the same 
time, they require model risk to be treated similarly to other types of risk (Basel 
Committee on Banking Supervision 2009). In the literature on model risk measurement, 
ES-type measures have been used to capture model risk (Barrieu and Scandolo 2015; 
Detering and Packham 2016). Let VaRgð~KÞ denote the VaR at critical level g, which is 
computed as the g quantile of the distribution ~K.4 Then the ES can be calculated as 
ESgð~KÞ ¼

1
g

Ð g

0 VaRPER
x ð~KÞdx. The ES-type credibility interval for the estimated posterior 

distribution of the option price is based on the risk measures below in the left and right 
tail of the price distribution: 

CLg;tðC;MðhÞ;D;KÞ ¼ ESg

�
~Ft ðC;MðhÞ;D;KÞ

�
;

CRg;tðC;MðhÞ;D;KÞ ¼

�
�
�
�ESg

�
− ~Ft ðC;MðhÞ;D;KÞ

���
�
�:

(6) 

4 We consider g% to be 5% in this article.
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The ES-type model risk measure for PER, at level g, for option C, given model M with 
parameter vector h, dataset D, methodology K, for a long or short position is defined as: 

qPER
g;t ðC;L;MðhÞ;D;KÞ ¼ F̂t ðC;MðhÞ;D;KÞ−CLg;tðC;MðhÞ;D;KÞ;

qPER
g;t ðC; S;MðhÞ;D;KÞ ¼ CRg;tðC;MðhÞ;D;KÞ−F̂tðC;MðhÞ;D;KÞ:

(7) 

The MSR of the model for the buyer and the seller, respectively, is computed as: 

qMSR
g;t ðC;L;MðhÞ;D;KÞ ¼ max

�
CLg;tðC;MðhÞ;D;KÞ−OPtðCÞ;0

�
;

qMSR
g;t ðC; S;MðhÞ;D;KÞ ¼ max

�
OPtðCÞ−CRg;tðC;MðhÞ;D;KÞ;0

�
:

(8) 

The TMR for long and short positions is defined as: 

qTMR
g;t ðC;L;MðhÞ;D;KÞ ¼ qPER

g;t ðC;L;MðhÞ;D;KÞþqMSR
g;t ðC;L;MðhÞ;D;KÞ;

qTMR
g;t ðC; S;MðhÞ;D;KÞ ¼ qPER

g;t ðC; S;MðhÞ;D;KÞþqMSR
g;t ðC; S;MðhÞ;D;KÞ:

(9) 

Furthermore, when comparing models, one might want to calculate the PER of the model 
itself without considering positions. In this case, we can assess the PER of a model MðhÞ as 
the maximum of the PER for long and short positions: 

qPER
g;t ðC;MðhÞ;D;KÞ ¼ max½qPER

g;t ðC;L;MðhÞ;D;KÞ; qPER
g;t ðC; S;MðhÞ;D;KÞ�: (10) 

The MSR for the model regardless of positions is computed as: 

qMSR
g;t ðC;MðhÞ;D;KÞ ¼ max½qMSR

g;t ðC;L;MðhÞ;D;KÞ; qMSR
g;t ðC; S;MðhÞ;D;KÞ�: (11) 

A good model should have both PER and MSR small. A model based on a large number 
of parameters might capture a market well and result in a very low MSR, but could be ex
posed to a large PER. On the other hand, a model with only a few parameters is easier to 
estimate with a low PER, but can be exposed to a large MSR. To directly compare models 
regardless of the trader’s position, we define the (position-free) TMR of the model as the 
sum of the PER and MSR of the model: 

qTMR
g;t ðC;MðhÞ;D;KÞ ¼ qPER

g;t ðC;MðhÞ;D;KÞþqMSR
g;t ðC;MðhÞ;D;KÞ: (12) 

2 Models

This section describes the set of models used in the empirical section. We consider five 
single-factor models: the SV model, the SV model with Merton jumps in returns (SVJ), the 
SV model with contemporaneous jumps in returns and volatility (SVCJ), the SV model 
with variance-gamma jumps in returns (SVVG), and the SV model with log-stable jumps in 
returns (SVLS). The model specification and the change of measure between P and Q for 
these single-factor models are given in Sections 2.1 and 2.2, respectively. We also study the 
model risk of a multifactor model, introduced in Section 2.3.
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2.1 Single-Factor SV Models
Let Yt ¼ lnðStÞ denote the logarithm of the asset price. The dynamics, for all models, of the 
continuously compounded return on the asset price under the real-world measure P are: 

dYt ¼ �ldtþ
ffiffiffiffiffi
Vt
p

dWY
t ðPÞþdJY

t ðPÞ;

dVt ¼ jð#−VtÞdtþrV
ffiffiffiffiffi
Vt
p

dWV
t ðPÞþdJV

t ðPÞ;
(13) 

where WY
t ðPÞ and WV

t ðPÞ are standard Brownian motions under P with 
dWY

t ðPÞdWV
t ðPÞ ¼ qdt, with the correlation q contributing to the skewness of the returns’ 

distribution. A negative q captures the leverage effect; �l measures the mean return; Vt is 
the instantaneous variance of returns at time t; j represents the speed of mean reversion; #
denotes the long-run mean of the variance process; and rV is the volatility of volatility.

The SVJ and SVCJ are AJD models (Duffie, Pan, and Singleton 2000) capturing continu
ous movements of assets with affine diffusions and large discontinuous jumps in asset 
returns with a Poisson process. The jump processes in AJD models are defined as dJY

t ðPÞ ¼
nYdNY

t and dJV
t ðPÞ ¼ nVdNV

t where NY
t

� �

t�0 and NV
t

� �

t�0 are Poisson processes as in 
Duffie, Pan, and Singleton (2000). The SVCJ model contains simultaneous correlated 
jumps, where NY

t ¼ NV
t ¼ Nt, in both the return and volatility processes with a constant 

intensity5 k; the jump size in the variance process follows an exponential distribution, 
nV � EXPðlVÞ, and the jump size in the asset log-prices is conditionally normally distrib
uted with nY jnV �NðlJþqJn

V ; r2
J Þ.

6 qJ is assumed to be zero for simplicity. The long-run 
mean–variance of the SVCJ model is #þlVk=j due to the jump component in the variance 
process. For SVJ, JV

t ðPÞ ¼ 0, and the process of the jump JY
t ðPÞ has the same specification 

as SVCJ. For SV, JY
t ðPÞ ¼ JV

t ðPÞ ¼ 0.
The AJD model is constructed based on Brownian motions and compound Poisson pro

cesses, which are just special cases of L�evy processes. The AJD models we consider allow 
finite-activity jump processes and constant jump intensities only, while the L�evy processes 
are more flexible, allowing for infinite jump arrival rates. We consider two L�evy jump 
models, namely the SVVG model of Madan, Carr, and Chang (1998) and the SVLS model 
of Carr and Wu (2003).

The SVVG model is an infinite-activity but finite-variation jump model. The variance- 
gamma process can be described as: 

XVG
t ðr; c; �Þ ¼ cG�

tþrWG�
t
; (14) 

where XVGf g is an arithmetic Brownian motion with drift c and volatility r; G�
t

� �

t�0 
denotes the gamma process with unit mean rate and variance rate �; and Wtf gt�0 is a stan
dard Brownian motion independent of G�

t . Setting JY
t ðPÞ ¼ XVG

t ðr; c; �Þ and JV
t ðPÞ ¼ 0 

reduces Equation (13) to the SVVG model.
The SVLS model is an example of infinite-activity and infinite-variation jump model. 

The log-stable process follows an a-stable distribution (Sa): 

XLS
t ða; rÞ−XLS

s ða; rÞ � Saðb;r
1
aðt−sÞ

1
a; cÞ; t > s; (15) 

5 Bates (2000) finds that the model with state-dependent intensities is significantly misspecified while 
Andersen, Benzoni, and Lund (2002) state that there is no evidence to support time-varying intensity.

6 EXP denotes the exponential distribution and N denotes the normal distribution.
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where a 2 ð1; 2� is the tail index of the a-stable distribution which determines the shape of 
the stable distribution; b 2 ½−1; 1� is the skew parameter determining the skewness of the 
distribution; r � 0 is the scale parameter and c 2 R is the location parameter. We follow 
Carr and Wu (2003) and set b ¼ −1 and c ¼ 0. Equation (13) reduces to SVLS, if JY

t ðPÞ ¼
XLS

t ða; rÞ and JV
t ðPÞ ¼ 0.

2.2 Change of Measure and Option Pricing for Single-Factor Models
For Brownian motions, Pan (2002) proposes a standard practice for the change of measure: 

cY
t ¼ gs

ffiffiffiffiffi
Vt

p
; cV

t ¼ −
1
ffiffiffiffiffiffiffiffiffiffiffi
1−q2

p qgs þ
gv

rV

� � ffiffiffiffiffi
Vt

p
; (16) 

where cY
t and cV

t represent the market prices of risk of Brownian shocks to returns and vari
ance, respectively. The Brownian motions under Q in the return and variance pro
cesses are: 

dWY
t ðQÞ ¼ dWY

t ðPÞþcY
t dt;

dWV
t ðQÞ ¼ dWV

t ðPÞþcV
t dt:

(17) 

For the variance process, following Pan (2002), Bates (2000), and Broadie, Chernov, 
and Johannes (2007), we apply the following “time-series consistency” constraints in the 
change of measure such that both physical and risk-neutral probability densities are from 
the same family: jP#P ¼ jQ#Q; qP ¼ qQ and rP

V ¼ r
Q
V .7

Moreover, for jump processes, the following restrictions are imposed: in SVJ, ðk; lJ; rJÞ

are able to change between P and Q; in SVCJ, ðk; lJ; rJ; lVÞ are able to change between P 
and Q; in SVVG, c and r are able to change between P and Q, while � remains unchanged 
under P and Q; in SVLS, a is allowed to change between P and Q.8 In AJD models, all 
parameters in the jump processes can be different under the physical and risk-neutral meas
ures. However, this leads to some difficulties with the econometric identification, as shown 
in Pan (2002). To bypass this identification issue, in this article, we enable only k to change 
between measures.9 Finally, the jump parameters under both measures for SVJ, SVCJ, 
SVVG, and SVLS are ðkP; kQ; lJ; rJÞ, ðkP; kQ; lJ; rJ; lVÞ, ð�; cP; rP; cQ; rQÞ, and ðaP; aQ; rÞ, 
respectively.

Under the framework described above, the Radon–Nikodym derivative is10: 

dQ
dP

�
�
�
�
t
¼ exp −

ðt

0
cY

s dWY
s ðPÞ−

ðt

0
cV

s dWV
s ðPÞ−

1
2

ðt

0
ðcY

s Þ
2dsþ

ðt

0
ðcV

s Þ
2ds

" #( )

expðUtÞ:

(18) Then the return dynamics under the risk-neutral measure are expressed as: 
7 jQ ¼ jP−gv and #Q ¼ jP#P

jQ , we use j and # to represent jP and #P in this article. Also, for simplicity, we 
use q to denote qP and qQ, and use rV to represent rP

V and rQ
V .

8 In Yu, Li, and Wells (2011), no parameters in the SVLS model are allowed to change between measures. 
We relax this restriction to compare models under similar settings.

9 In some previous studies (e.g., Pan, 2002; Yu, Li, and Wells 2011) lJ is chosen to be the changeable param
eter, besides, Hu and Liu (2022) allow both lJ and k to change between P and Q; however, in many related 
papers, the estimates of lJ under P tend to be insignificant (the posterior mean is almost 0 with large variance; 
see, e.g., Pan 2002; Asgharian and Bengtsson 2006; Li, Wells, and Yu 2008; and Yu, Li, and Wells 2011). In this 
article, we assume that lJ remains unchanged between measures, so that information in both index returns and 
option prices can be considered.

10 As jump processes are restricted to follow the same processes between measures, the expressions of Ut are 
different for models with different jump specifications. In this case, the models also differ in terms of Radon– 
Nikodym derivatives. Additionally, in this article, we use both e and exp to denote the exponential function.
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dYt ¼ rt−
1
2

Vt þ UJð−iÞ
� �

dtþ
ffiffiffiffiffi
Vt
p

dWY
t ðQÞþdJY

t ðQÞ;

dVt ¼ ½jð#−VtÞ þ gvVt�dtþrV
ffiffiffiffiffi
Vt
p

dWV
t ðQÞþdJV

t ðQÞ;

(19) 

where rt is the risk-free rate, UJð−iÞ is the jump component, and the expressions of UJð�Þ for 
different models in this study are detailed in the Supplementary Appendix. Naturally, the 
drift term of the return process under P can be derived as l ¼ rt− 1

2 VtþUJð−iÞþgsVt.
When the risk-free interest rate is constant, the option price can be deduced from the 

closed-form solution to the characteristic function of the log stock price under Q: 

/ðt; uÞ ¼ exp ½iuY0 þ iuðrþ UJð−iÞÞt� exp
�

−tUJðuÞ
�

exp
�

−bðt; uÞV0−cðt; uÞ
�
; (20) 

where jMðuÞ ¼ j−gv−iurVq; dðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjMðuÞÞ2þðiuþu2Þr2
V

q

; Y0 ¼ lnðS0Þ denotes the log- 

spot price; V0 represents the initial variance; bðt; uÞ ¼ ðiuþu2Þð1−e−dðuÞtÞ

ðdðuÞþjMðuÞÞþðdðuÞ−jMðuÞÞeð−dðuÞtÞ; 

and cðt; uÞ ¼ j#
r2

V
½2ln 2dðuÞ−ðdðuÞ−jMðuÞÞð1−e−dðuÞtÞ

2dðuÞ þ ðdðuÞ−jMðuÞÞt�.

Denoting by s the time to expiration, we can price a European call option with strike K 
using the formula below (Yu, Li, and Wells 2011): 

FðY0;V0; s;KÞ ¼ EQ
0 ½e

−rsðSs−KÞþ� ¼
e−rs

p
� Re

ð1

0
e−ixlnðKÞ /ðs; x−iÞ

−x2 þ ix
dx

� �

: (21) 

2.3 Three-Factor Double Exponential Model
Multifactor models have been shown to have superior performance in fitting the options 
market compared to single SV factor models (e.g., Christoffersen, Jacobs, and Ornthanalai 
2012; Andersen, Fusari, and Todorov 2015b; Gruber, Tebaldi, and Trojani 2021). We also 
consider the three-factor model (SVTF hereafter) proposed by Andersen, Fusari, and 
Todorov (2015b): 

dSt

St−1
¼ ðrt−dtÞdtþ

ffiffiffiffiffiffiffiffi
V1;t

p
dWQ

1;tþ
ffiffiffiffiffiffiffiffi
V2;t

p
dWQ

2;tþg
ffiffiffiffiffiffi
Ut

p
dWQ

3;tþ

ð

R2
ðex−1Þ~lQðdt; dx; dyÞ;

dV1;t ¼ j1ð#1−V1;tÞdtþrV;1
ffiffiffiffiffiffiffiffi
V1;t

p
dBQ

1;tþl1
Ð

R2 x21 x<0f glðdt; dx; dyÞ;

dV2;t ¼ j2ð#2−V2;tÞdtþrV;2
ffiffiffiffiffiffiffiffi
V2;t

p
dBQ

2;t;

dUt ¼ −juUtdtþlu
Ð

R2 ½ð1−quÞx21 x<0f g þ quy2�lðdt; dx; dyÞ:

(22) 

WQ
1;t;W

Q
2;t;W

Q
3;t;B

Q
1;t;B

Q
1;t are Brownian motions with corrðWQ

1;t;B
Q
1;tÞ ¼ q1 and 

corrðWQ
2;t;B

Q
2;tÞ ¼ q2, while the remaining Brownian motions are mutually independent. 

The number of jumps in the price and state factors is denoted by l. The corresponding 
risk-neutral jump intensity is dt� t

Q
t ðdx; dyÞ. The associated martingale jump measure can 

be expressed as ~lQðdt; dx; dyÞ ¼ lðdt; dx; dyÞ−dttQ
t ðdx; dyÞ, where x and y are two sepa

rate components that specify jumps. The co-jumps that occur simultaneously in S, V1, and 
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U(if qu < 1) are captured by x while y describes independent jumps in the U factor. Based 
on the above, the jump compensator is calculated as: 

t
Q
t ðdx; dyÞ

dxdy
¼

�
c−ðtÞ1 x<0f gk−e−k−jxj þ cþðtÞ1 x>0f gk

þe−kþx
�

if y ¼ 0;

c−ðtÞk−e−k−jyj if x ¼ 0 and y < 0:

8
><

>:
(23) 

The price jumps of the SVTF model are exponentially distributed, and the tail decay 
parameters for negative and positive jumps are separately specified as k− and kþ. The time- 
varying jump intensities are given by: 

c−ðtÞ ¼ c−
0þc−

1 V1;t−1þc−
2 V2;t−1þUt−1;

cþðtÞ ¼ cþ0þcþ1 V1;t−1þcþ2 V2;t−1þcþu Ut−1:
(24) 

We refer to Andersen, Fusari, and Todorov (2015b) for a more detailed description of the 
SVTF model and the option pricing approach. Also, we apply the same settings to SVTF as 
Andersen, Fusari, and Todorov (2015b).

3 Estimation Methodology

The models considered in this article are quite complex so parameter estimation may not 
be straightforward. For example, one problem is that the latent variables, such as SV and 
sizes and arrival rates of jump processes, are difficult to track. Moreover, L�evy processes 
are complex and many of them do not lead to closed-form option pricing formulae. We fo
cus on joint estimation, which uses data under both physical and risk-neutral probability 
measures. Two joint estimation methodologies based on the Bayesian approach are devel
oped in this study; the first one requires underlying spot prices and option prices (referred 
to as the SOP methodology), and the second one relies on underlying realized volatility and 
option IV (referred to as the RIV methodology). Additionally, these two methodologies as
sume different pricing error processes.

3.1 Joint Estimation with the SOP Methodology
Li, Wells, and Yu (2008) extend the application of the MCMC method to L�evy processes 
under the real-world probability measure (P) for spot prices. Then, Yu, Li, and Wells 
(2011) further apply the MCMC method to L�evy processes under both P and Q probabil
ity measures with spot prices and option prices. Their setup has a groundbreaking contri
bution by jointly estimating parameters with both index returns and option prices under a 
Bayesian framework; however, these approaches have the following two limitations: first, 
the index returns and option prices data are restricted to be in the same time frame, which 
limits the estimation of the objective parameters. Generally, the estimation of risk-neutral 
parameters requires recent options data, while the estimation of real-world parameters 
demands index returns data over a longer period of time. The second limitation is that, 
only one at-the-money (ATM) call option per day is used in their estimation, which ignores 
out-of-the-money (OTM) options that are informative about jumps. The joint point-wise 
estimation with index prices and multiple options has been studied by Du and Luo (2019), 
who employ a maximum likelihood-based estimation method.11 However, the parameter 
estimation with multiple options data using the MCMC approach has not been studied be
fore in the literature.

11 Durham (2013) also performs a joint analysis of the physical and risk-neutral models.
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To address the above two issues, we propose extending the approach of Yu, Li, and 
Wells (2011). For model pricing errors, we still follow the autoregressive specification used 
in Yu, Li, and Wells (2011). The economic rationale is that if one day the option pricing er
ror is high, then it is likely to be high on the following day as well. In order to allow for 
multiple options in the parameter estimation and set the pricing error updating equation in 
a more refined way, we consider a drift term aDn related to the pricing error process; aDn is 
a vector with the same length as the number of options used per day. We use Delta values 
to classify options because the option Delta measures the sensitivity of the option’s value to 
changes in the underlying security price.12 Let OPt;Dn denote the market price at time t of 
the option with a Delta of Dn, while Ft;DnðMðhÞ;Y;VÞ represents the model price at time t 
of model M with parameter vector h for the option with a Delta of Dn, given Y and V, 
where the log stock prices are denoted by Y ¼ Ytf g

T
t¼0, and the variance variables are 

V ¼ Vtf g
T
t¼0. Similarly to Yu, Li, and Wells (2011), we denote PEt;DnðMðhÞ;Y;VÞ ¼

OPt;Dn −Ft;DnðMðhÞ;Y;VÞ henceforth. The joint dynamics of the daily spot and option pri
ces upon discretization are summarized as follows: 

Ytþ1 ¼ Ytþ rt−
1
2

Vt þ w
Q
J ð−iÞ þ gsVt

� �

d�þ
ffiffiffiffiffiffiffiffiffiffi
Vtd

�
p

�Ytþ1þJY
tþ1;

Vtþ1 ¼ Vtþjð#−VtÞd
�þrV

ffiffiffiffiffiffiffiffiffiffi
Vtd

�
p

�Vtþ1þJV
tþ1;

PEtþ1;DnðMðhÞ;Y;VÞ ¼ aDnþqcPEt;DnðMðhÞ;Y;VÞþrc�
c
tþ1;Dn

;

aDn �Nðam; a2
s Þ;

(25) 

where d� is the one day time interval; �ct , �
Y
tþ1 and �Vtþ1 follow the standard normal distribu

tion, �Ytþ1 and �Vtþ1 are correlated with correlation q and are independent from �ct . In addition, 
aDn �Nðam; a2

s Þ provides random effects to the autoregressive pricing error process; am is the 
average size of aDn while as modulates the varying effects of the drift term across options with 
different strike prices as determined by the Delta values. The autoregressive specification also 
reflects the stochastic singularity argument mentioned in Johannes and Polson (2010); and 
since qc 2 ½−1; 1�, the pricing error cannot get very large (otherwise the market will misprice 
the options for too long, allowing for arbitrage). Although discretization errors might impact 
the model risk, the discretization bias is quite small using daily data (Eraker 2004).

In addition to the Bayesian updating of the model, we also try to improve the estimation 
method computationally. Considering h is the parameter vector under a given model, we 

split the parameters into four groups, that is h ¼ ðhPQÞ; ðhuniÞ; ðhrisk premiaÞ; ðhpricing errorsÞ

n o

; 
the first group contains the parameters that remain unchanged between measures; the sec
ond one includes the parameters that are unique under P or Q; the risk premium associ
ated with “Brownian” return risk and volatility risk are in the third group, while the fourth 
part contains the parameters used to describe the option pricing errors of the models. 
For example, the SV model has no parameters that are unique under P or Q, so 
h ¼ fðj#;rv; qÞ; ðÞ; ðgs; gvÞ; ðaDn ; am; as; qc; rcÞg; for SVJ, h ¼ fðj#; rv; q; rJ; lJÞ; ðk

P; kQÞ;

ðgs; gvÞ; ðaDn ; am; as; qc; rcÞg; for SVCJ, h ¼ fðj#;rv; q; rJ; qJ; lJ; lVÞ; ðk
P; kQÞ; ðgs; gvÞ;

ðaDn ; am; as; qc; rcÞg; for SVVG, h ¼ fðj#; rv; q; �Þ; ðc
P; rP; cQ; rQÞ; ðgs; gvÞ; ðaDn ; am; as;

qc; rcÞg; and SVLS has h ¼ fðj#;rv; q; rÞ; ða
P; aQÞ; ðgs; gvÞ; ðaDn ; am; as; qc; rcÞg.

12 Moreover, it is easy to determine the main information of an option by its Delta. We also select option 
data based on the Delta values in the empirical analysis.
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Given the option prices OP ¼ fOPtg
T
t¼T� , where 0 � T� � T13 and jumps times/sizes 

J ¼ fJtg
T
t¼0, the posterior of parameters and latent variables can be decomposed into the 

product of individual conditionals: 

pðh;V; JjY;OPÞ / pðY;OP;V; J; hÞ ¼ pðOPjY;V; hÞpðY;VjJ; hÞpðJjhÞpðhÞ: (26) 

Assuming n� options are used per day, we have: 

pðOPjY;V;hÞ ¼
Yn
�

n¼1

YT−1

t¼T�

1
ffiffiffiffiffiffi
2p
p

rc
exp −

½PEtþ1;DnðMðhÞ;Y;VÞ−qcPEt;DnðMðhÞ;Y;VÞ−aDn �
2

2r2
c

( )

:

(27) 

For the SVVG model, a time-changing variable G ¼ fGtg
T
t¼0, where14 Gtþ1 � Gðd

�

�
; �Þ, is 

introduced as a conditional latent variable on the jump process: 

pðh;V; J;GjY;OPÞ / pðY;OP;V; J;G; hÞ ¼ pðOPjY;V; hÞpðY;VjJ; hÞpðJjG; hÞpðGjhÞpðhÞ:
(28) 

For the SVLS model, an auxiliary variable series U ¼ Utf g
T
t¼0 is added: 

pðh;V; J;UjY;OPÞ / pðY;OP;V; J;U; hÞ ¼ pðOPjY;V; hÞpðY;VjJ; hÞpðJ;UjhÞpðhÞ: (29) 

It is difficult to simulate random draws directly from the joint posterior densities of the mod
els shown above; instead, we estimate the parameters and latent variables by simulating from 
complete conditional distributions of each parameter and latent variable with the MCMC 
method. The complete conditional distributions of AJD models and L�evy processes under P 
can be found in several earlier studies, but few investigate the estimation of the parameters by 
a Bayesian approach under Q. Broadie, Chernov, and Johannes (2007) simulate posterior dis
tributions of hP (parameters under P) with complete conditional distributions and then they 
calibrate models with the estimated parameters under P (represented by ^

hP ) to obtain the val
ues of hQ (parameters under Q) based on the following objective function: 

hQ ¼ argmin
XT

t¼T�

XOt

n¼1

½IVtðKn; sn; St; rt;VtÞ−IVtðh
Qj

^
hP ;Kn; sn; St; rt;VtÞ�

2
; (30) 

here Ot is the number of options at time t; St, Vt, and rt denote the spot price, instant vari
ance, and risk-free rate at time t, respectively; Kn and sn represent the strike price and expi
ration of the n-th option; and IV is the IV. A disadvantage of this approach is that only the 
mean values of the posterior of the parameters under P are considered when calibrating 
the models, overlooking other possible values in the posterior distribution of parameters 
under P. This two-step estimation method produces an interval estimation (under P) plus 
a point estimation (under Q), which is not ideal for taking PER into consideration. A dif
ferent approach is presented by Yu, Li, and Wells (2011) who derive the complete condi
tional distribution of each individual parameter and latent variable under both measures, 
enabling the simulation of posterior samples of parameters and latent variables with the 
MCMC method. For objective parameters, they apply almost the same method with 

13 Y and OP are not necessarily in the same time frame. In this article, we only control for the two sets of 
data by making sure that they end on the same date.

14 G denotes the Gamma distribution.
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complete conditional distributions as Broadie, Chernov, and Johannes (2007), after which 
the random draws are accepted/rejected with the Damlen, Wakefild, and Walker method 
(Damlen et al., 1999) based on the likelihood value calculated with Equation (27) while the 
Metropolis–Hasting algorithm is used to estimate hQ. In the two-step method of Broadie, 
Chernov, and Johannes (2007), hP is estimated from spot prices and hQ is calibrated with 
^
hP and option data, whereas Yu, Li, and Wells (2011) do these in one step, and the param
eters are estimated with both spot price and option data.15

Combining the methods of Yu, Li, and Wells (2011) and Broadie, Chernov, and Johannes 
(2007), we estimate j, #, rv, and q with only spot prices based on the MCMC methods intro
duced in Li, Wells, and Yu (2008), while the other parameters are estimated with the method 
of Yu, Li, and Wells (2011) with both index returns and option prices. The corresponding 
risk-neutral values of j and # can be calculated with gv as explained in Section 2.2. In order 
to speed up the estimation process, option data are also not considered when estimating rv 

and q; as explained in Broadie, Chernov, and Johannes (2007), the comparison of the evolu
tion of Y and V under both measures implies that these parameters can be estimated using ei
ther equity index returns or option prices; besides, computationally, the determinant factor 
in estimating the size of pð rv; qf gjY;OPÞ is pðYj rv; qf gÞ. Even then, the estimation can be 
computationally expensive as it requires a recomputation of all option prices for each of the 
other parameters. Our Markov chain has 100,000 iterations in total. To speed up the estima
tion process, we first update j, #, rv, and q, which require only index returns, and take the 
first 90,000 runs as the burn-in period. The other parameters that need to be estimated with 
both index returns and option prices are started to update from the 80,001th iteration and 
discard the first 10,000 runs as the burn-in period. The option data contain more informa
tion, and 10,000 runs are sufficient to obtain convergence for the estimates.16 Our method 
has less computational burden than the approach of Yu, Li, and Wells (2011); besides, com
pared with Broadie, Chernov, and Johannes (2007), our method estimates risk-neutral 
parameters and real-world parameters jointly, so that the PER can be captured fully.

However, the autoregressive specification of pricing errors may lead to unrealistic esti
mates of risk-neutral parameters. This is because the conditional probability (27) focuses 
on the autoregressive property between of PEt;DnðMðhÞ;Y;VÞ rather than on the size of the 
pricing error itself. By minimizing the pricing errors while capturing the autoregressive fea
ture of the pricing errors, we introduce an extra condition for the magnitude of the pricing 
errors in the MCMC process when updating parameters whose posterior distributions con
tain the conditional probability (27), specifically: we accept the updated parameter ~h

ðgþ1Þ

only when the sum of squared errors associated with it is lower than the sum of squared 
errors computed with the previous value of the parameter, ~h

ðgÞ
: 

XT

t¼T�

Xn
�

n¼1

OPt;Dn −Ft;Dn M hj ~h
gþ1ð Þ

n o� �

;Y;V
� �h i2

6
XT

t¼T�

Xn
�

n¼1

OPt;Dn −Ft;Dn M hj ~h
gð Þ

� �� �

;Y;V
� �h i2

;

(31) 
where Ft;DnðMðhjf

~h
ðgÞ
gÞ;Y;VÞ denotes the model price implied by the g-th updated 

parameter value; hjf~h
ðgÞ
g represents the parameter vector given the g-th updated ~h; and 

~h can be any model parameter that requires this extra condition for estimation.17 

15 Candidate points of hP are generated based on the posterior distribution with spot prices and only the 
points that fit the option prices are accepted.

16 Yu, Li, and Wells (2011) also discard the first 10,000 runs as “burn-in” period; Du and Luo (2019) sam
ple 5000 times to estimate jump size/times and discard the first 2000 as burn-in.

17 This problem can be circumvented by disregarding the autoregressive component of pricing errors and us
ing the size of pricing errors directly. However, as the empirical results highlight (qc is about 0.8, see Figure D2 
in the Supplementary Appendix), the autoregressive specification is a feature that should not be ignored when 
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More details of the MCMC methods for each model are provided in the 
Supplementary Appendix.

3.2 Joint Estimation with the RIV Methodology
The RIV estimation methodology builds on the approach used in Andersen, Fusari, and 
Todorov (2015b). We estimate the model with both option IV and realized volatility data. 
In order to capture PER, we estimate the parameters using a Bayesian approach. Following 
Andersen, Fusari, and Todorov (2015b), the implied and realized volatility fitting errors 
are adjusted with the 30-day ATM IV. As multiple options are used per day, we assume 
that the average fitting errors on day t follow a normal distribution: 

1
Nt

XNt

j¼1

�IVt;kj;sj
ffiffiffiffiffiffiffiffiffiffiffiffi
VATM

t

p −
1

Nt

XNt

j¼1

IVðkj; sj;Zt; hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
VATM

t

p ¼ rOF�OF
t ;

ffiffiffiffiffiffi

V̂ t

q

ffiffiffiffiffiffiffiffiffiffiffiffi
VATM

t

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðZt; hÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffi
VATM

t

p ¼ rVF�VF
t :

(32) 

On day t, Nt options are used. Given Zt ¼ V1;t;V2;t;Utf g, IVðkj; sj;Zt; hÞ is the model IV 
for option kj, �IVt;kj;sj is the market price implied IV for option kj; the model implied diffu

sive spot variance is VðZt; hÞ ¼ V1;tþV2;tþg2Ut; V̂ t is a nonparametric estimator of the dif
fusive spot variance constructed from the underlying intraday asset prices; and VATM

t is the 
squared short-term ATM Black-Scholes IV.

Let PEOF
t ¼ 1

Nt

PNt
j¼1

�IV t;kj ;sjffiffiffiffiffiffiffiffiffi
VATM

t

p − 1
Nt

PNt
j¼1

IVðkj;sj;Zt ;hÞffiffiffiffiffiffiffiffiffi
VATM

t

p ¼ rOF�OF
t and PEVF

t ¼

ffiffiffiffi
V̂ t

p

ffiffiffiffiffiffiffiffiffi
VATM

t

p −
ffiffiffiffiffiffiffiffiffiffiffiffi
VðZt;hÞ
p

ffiffiffiffiffiffiffiffiffi
VATM

t

p ¼

rVF�VF
t . We assume that the implied and realized volatility fitting errors are correlated 

and corrð�OF; �VFÞ ¼ qFit. Following Andersen, Fusari, and Todorov (2015b), we 
also consider the tuning factor, represented by n; we get PEOF

t þnPEVF
t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOFÞ
2
þðnrVFÞ

2
þ2qFitrOFðnrVFÞ

q

�Fit
t , where �Fit follows the standard normal distribution. 

We obtain the following posterior probability: 

pðIV;ZjV̂ t;VATM
t ; hÞ ¼

YNt

j¼1

YT

t¼1

1
ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrOFÞ
2
þðnrVFÞ

2
þ2qFitrOFnrVF

q

�exp −
½PEOF

t þnPEVF
t �

2

2ððrOFÞ
2
þ ðnrVFÞ

2
þ 2qFitrOFnrVFÞ

( )

:

(33) 

Let ðrOFÞ
2
þðnrVFÞ

2
þ2qFitrOFnrVF ¼ rS, the log-likelihood function of Equation (33) is: 

LLKðIV;ZjV̂ t;VATM
t ; hÞ

¼
XNt

j¼1

XT

t¼1

½−
1
2

lnð2pÞ−
1
2

lnðrSÞ−
1

2rS ½PEOF
t þnPEVF

t �
2
�:

(34) 

measuring model risk; that is, the pricing performance of a model to price an option today should relate to the 
model’s performance the day before.
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Given the log-likelihood function, all model parameters and latent variables are estimated 
using the Gibbs sampling method; rOF, rVF, and qFit are estimated with the Metropolis– 
Hasting method. The tuning factor is set to 0.2 following Andersen, Fusari, and 
Todorov (2015b).

4 Data

The two estimation methodologies we introduced specify different pricing error processes 
and require different data types. The SOP methodology relies on spot and option prices, 
and assumes an autoregressive pricing error process; in contrast, the RIV methodology 
requires implied and realized volatility data, and assumes that the pricing errors are nor
mally distributed.

4.1 Data Used in the SOP Estimation Methodology
The empirical analysis around the SOP methodology is based on the S&P 500 index spot 
price from January 2, 1992 to December 29, 2017 and the corresponding S&P 500 index 
put option prices from January 3, 1996 to December 29, 2017. We use six daily series of 
option prices, and they are put options with 30 days to maturity with Delta values of −25, 
−30, −35, −40, −45, and −50, respectively. The option dataset is downloaded in the vola
tility surface file from Option Metrics. This file contains information on options with expi
ration ranges from 30 to 730 calendar days, and the 30-days-to-expiration options fully 
match the requirements of Yu, Li, and Wells (2011). The forward price and corresponding 
strike price of the underlying on the expiration date of the option are calculated with the 
zero-coupon yield curve and projected dividends; the option premium on these options are 
calculated daily using linear interpolation from the volatility surface, which is computed 
via kernel smoothing. Compared with picking options in the real market, the data in the 
volatility surface file have constant duration and Delta values, reducing measurement error 
arising from options that vary in maturity and moneyness. Also, the daily Treasury yield 
curve rates from the U.S. Department of the Treasury are used as the risk-free rate; these 
are referred to as constant duration Treasury rates, which provide the yield curve at fixed 
maturities.18

4.2 Data Used in the RIV Estimation Methodology
The RIV estimation methodology requires market option data, and the S&P 500 index op
tion data are downloaded from OptionMetrics. We restrict our attention to out-of-the- 
money options with maturity between 7 and 180 calendar days.19 We apply some com
monly used option data filters to the raw data.20 The realized volatility calculated with in
traday data is downloaded from the Oxford-Man Institute’s realized library. Moreover, we 
use the zero-coupon yield for the corresponding maturities (linear interpolation is used 
when necessary) to proxy the risk-free rate. The zero-coupon yield and the dividend yield 
are obtained from OptionMetrics. We consider two sample periods. Period one is the crisis 

18 One-month Treasury yield curve rates are not available prior to July 31, 2001; so the one-month risk free 
rate before this date is estimated with the three-month yield curve: (1) run the regression rf one

t ¼ b0þb1rf three
t 

with rf one and rf three denoting the one-month and three-month Treasure yields during July 31, 2001 to 
December, 29 2017, respectively. The estimated coefficients are b̂0 ¼ −0:0359 and b̂1 ¼ 0:9822, the adjusted 
R2 is 99.5%. (2) the one-month risk free rate before July 31, 2001 is estimated as rf one

t ¼ b̂0þb̂1 rf three
t , where 

rf three
t is the three-month yield before July 31, 2001. A more descriptive data summary is provided in the 

Supplementary Appendix.
19 Several papers in the literature, such as Bardgett, Gourier, and Leippold (2019), rely on different option 

maturities to model the term structure of volatilities.
20 More discussions about the data filter can be found in Johannes and Polson (2010) and Andersen, Fusari, 

and Todorov (2015b).
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period ranging from January 2006 to December 2009, the other one is the post-crisis pe
riod spanning from January 2010 to December 2017.

5 Empirical Analysis

This section investigates the model risk of the models introduced in Section 2. Both the 
SOP and RIV estimation methodologies are used, and the corresponding results are pre
sented in Sections 5.1 and 5.2.

5.1 Empirical Analysis Using the SOP Methodology
Using the SOP estimation methodology described in Section 3.1 and the data introduced in 
Section 4.1, we study the model risk of the single-factor models described in Section 2.1.21 

We employ MCMC to estimate h ¼ fðhPQÞ; ðhuniÞ; ðhrisk premiaÞ; ðhpricing errorsÞg. The empiri
cal results are based on annual rolling window estimation. We use the current year option 
data in the estimation window. However, the estimation using 1-year returns can lead to 
very large PER, so we use 5-year returns; this is also needed because the objective parame
ters estimation needs a longer time period, as discussed in Section 3. For example, in 2011, 
we use index returns from the beginning of 2007 to the end of 2011 and option data in 
2011 to estimate the parameters jointly. Applying the moving window estimation, we ob
tain 22 sets of estimates from 1996 to 2017.22

5.1.1 Model risk
This section provides an analysis of model risk. Supplementary Appendix Figure D4 
presents the 5% to 95% quantiles of the estimated prices, showing that all models suffer 
from model risk. The sizes of model risk are reported in Table 1. TMR, PER, and MSR are 
defined in (12), (10), and (11), respectively. Jump models have lower TMR compared with 
SV for all Delta values; besides, SVJ, SVCJ, and SVLS always have smaller MSR than SV; 
SVVG has the largest MSR and the least TMR and PER, while SVLS has the lowest MSR. 
Moreover, we find that MSR increases with Delta (OTM options tend to have larger 
MSR), while PER and TMR decrease with Delta (OTM options tend to have lower PER 
and TMR). The deep OTM put options (high Delta) have low prices and have lower PER 
and higher MSR than options with lower Delta values. The reason for the higher MSR val
ues for deep OTM options is that single-factor models are less able to capture the IV sur
face of deep OTM options (Andersen, Fusari, and Todorov 2015a).

In order to analyze the model risk of models during different market periods, we split the 
sample period into seven time windows by detecting abrupt changes in the IV of the stan
dardized ATM options based on the method proposed by Killick, Fearnhead, and Eckley 
(2012).23 Using average values of IV, we identify the following time windows: ‹: January 
3, 1996 to June 4, 1997; ›: June 5, 1997 to October 13, 2003; fi: October 14, 2003 to 
July 24, 2007; fl: July 25, 2007 to September 23, 2008; �: September 24, 2008 to May 1, 
2009; –: May 4, 2009 to June 29, 2012; and †: July 2, 2012 to December 29, 2017.

The values of the mean and standard deviation of the IV of the standardized ATM 
options during these seven time windows are reported in Panel A of Table 2. Period fi is 
the most tranquil period, followed by periods † and ‹, which are characterized by mean 
IV values below 0.2. During these three periods, the market is stable. In contrast, the mar
ket is turbulent during periods –, fl, and ›. Period › is very long and covers the 1997 

21 Estimating the SVTF model using the SOP methodology can be challenging as the variance-related param
eter estimates rely heavily on the spot returns; however, the two variance processes in the SVTF model are pri
marily specified to capture the implied volatility smile.

22 A comparison of model parameter inferences and a benchmark exercise with simulated data can be found 
in the Supplementary Appendix.

23 The ATM option dataset is downloaded in the Std Option Price file from Option Metrics.
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Table 1. Model Risk under different values of delta

SVLS SVVG SVCJ SVJ SV

Delta¼−25

PERL 2.8512 1.6104 2.7691 2.7210 2.8454
PERS 3.4434 1.8732 3.3379 3.2393 3.5582
PER 3.4637 1.8857 3.3841 3.2764 3.5768
MSRL 0.0317 0.1444 0.0299 0.0373 0.0347
MSRS 0.9932 2.1403 1.0679 1.0368 1.0872
MSR 1.0249 2.2846 1.0978 1.0740 1.1219
TMR 4.4886 4.1703 4.4820 4.3504 4.6987

Delta¼−30

PERL 3.2802 1.8688 3.1939 3.1219 3.3082
PERS 3.8790 2.1284 3.7575 3.6434 4.0269
PER 3.9096 2.1445 3.8186 3.6946 4.0539
MSRL 0.0425 0.2046 0.0411 0.0518 0.0495
MSRS 0.8079 1.9375 0.8826 0.8547 0.8873
MSR 0.8504 2.1422 0.9237 0.9066 0.9368
TMR 4.7600 4.2867 4.7423 4.6012 4.9907

Delta¼−35

PERL 3.6294 2.0776 3.5669 3.4584 3.6800
PERS 4.2170 2.3253 4.0903 3.9623 4.3842
PER 4.2606 2.3477 4.1718 4.0289 4.4203
MSRL 0.0563 0.2701 0.0536 0.0684 0.0687
MSRS 0.6688 1.7494 0.7390 0.714 0.7312
MSR 0.7251 2.0195 0.7926 0.7823 0.7998
TMR 4.9857 4.3672 4.9644 4.8113 5.2201

Delta¼−40

PERL 3.9070 2.2402 3.8877 3.7372 3.9645
PERS 4.4734 2.4712 4.3525 4.2115 4.6454
PER 4.5305 2.5021 4.4612 4.2944 4.6905
MSRL 0.0723 0.3355 0.0683 0.0847 0.0923
MSRS 0.5562 1.5753 0.6253 0.5998 0.6058
MSR 0.6286 1.9108 0.6936 0.6845 0.6981
TMR 5.1591 4.4130 5.1548 4.9789 5.3886

Delta¼−45

PERL 4.1105 2.3555 4.1405 3.9522 4.1606
PERS 4.6558 2.5701 4.5489 4.3963 4.8200
PER 4.7248 2.6097 4.6843 4.4943 4.8725
MSRL 0.0887 0.4016 0.0846 0.1006 0.1209
MSRS 0.4660 1.4167 0.5345 0.5092 0.5048
MSR 0.5547 1.8183 0.6191 0.6098 0.6257
TMR 5.2795 4.4280 5.3035 5.1042 5.4982

(continued) 
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Asian financial crisis, the Russian financial crisis that hit on August 17, 1998, the Brazilian 
currency crisis from 1998 to 1999, the dot-com crash from March 11, 2000 to October 9, 
2002, the 1998-to-2002 Argentine great depression, the 911 (September 11, 2001) and the 
WorldCom accounting scandal in 2002; period fl involves the subprime crisis; and period 
– captures the European credit crisis since the end of 2009. Period � marks the well- 
known Financial Crisis of 2008, when the mean IV reaches 0.4486 with a standard devia
tion of 0.0966.

Figure 2 illustrates the model risk estimates of our models for put options with a Delta of 
−45. The model risks of the put options with a Delta of −45 are used in the subsequent 
analysis, and the conclusions that can be drawn from the model risks of other options are 
similar. The black columns mark the PER of the models, while the gray columns are the 
TMR values; the differences between the gray and black columns represent the MSR. We 
find that MSR is the main source of TMR for SVVG, while PER is the dominant compo
nent of TMR for the other models. The TMR of each model has almost uniform trends and 
reflects the market conditions; the TMR is relatively low during stable periods ‹, fi, and † 

and relatively high during turbulent periods ›, fl, and –; TMR peaks during period �, the 
Financial Crisis. PER dominates the model risk during quiet periods; there is almost no ob
vious MSR during period fi. In contrast, MSR becomes an important source of TMR when 
the market is unstable. Not surprisingly, a sudden and large MSR appears during the 
Financial Crisis for all models, indicating that all jump models fail to capture the market 
dynamics during this intense period. Model users should be aware of changes in model risk 
and replace the model if necessary. For example, SVVG has the lowest TMR in period fl, 
but its MSR increases dramatically during period � and leads to a high TMR. By contrast, 
during the Financial Crisis, SVCJ has the lowest MSR with SVLS having the lowest TMR.

Panel B of Table 2 reports the average values of the differences between PERL and PERS 

during different periods, and significance is obtained based on the t-test.24 A negative value 
indicates that a short position bears a higher PER. The results indicate that a short position 

Table 1. (continued) 

SVLS SVVG SVCJ SVJ SV

Delta¼−50

PERL 4.2319 2.4204 4.3058 4.0903 4.2655
PERS 4.7663 2.6234 4.6771 4.5161 4.9139
PER 4.8430 2.6702 4.8308 4.6244 4.9707
MSRL 0.1066 0.4683 0.1005 0.1146 0.1524
MSRS 0.3954 1.2718 0.4622 0.4396 0.4228
MSR 0.5020 1.7401 0.5626 0.5542 0.5752
TMR 5.3450 4.4103 5.3934 5.1786 5.5459

Notes: This table reports the average values of model risk measures for all models when pricing put options with 
Delta values of −25, −30, −35, −40, −45, and −50. PER, MSR, and TMR are defined in Equations (10), (11), 
and (12), respectively; the PER for long and short positions (PERL and PERS) are computed using Equation (7); 
the MSR for long and short positions (MSRL and MSRS) are computed using Equation (8). The results are based 
on annual rolling window estimation with daily spot prices of the S&P 500 from January 2, 1992 to December 
29, 2017 and the corresponding S&P 500 index put option prices with Delta values of −25, −30, −35, −40, 
−45, and −50 from January 3, 1996 to December 29, 2017. SV is the stochastic volatility model; SVJ is the 
stochastic volatility model with Merton jumps in returns; SVCJ is the stochastic volatility model with 
contemporaneous jumps in returns and volatility; SVVG is the stochastic volatility model with variance-gamma 
jumps in returns; and SVLS is the stochastic volatility model with log-stable jumps in returns.

24 A figure of the model risk of long and short positions of the models can be found in the 
Supplementary Appendix.
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tends to have significantly higher PER for all models during normal periods. During the 
Financial Crisis (period �), the difference for SV is negative but not significant, while a 
long position bears a greater model risk for SVCJ and SVVG. Overall, sellers are generally 
exposed to a higher model risk than buyers.

Table 2. Statistics on IV and the differences between the PER of long and short positions

Period ‹ › fi fl � – †

Panel A: The mean and standard deviation of the IV of standardized ATM options

Mean 0.1568 0.2265 0.1244 0.2182 0.4486 0.2080 0.1272
Std 0.0236 0.0484 0.0207 0.0351 0.0966 0.0557 0.0336

Panel B: Mean differences between the PER of long and short positions

SV −0.4985
�� −0.5898

�� −0.2329
�� −0.6771

�� −0.1266 −0.7017
�� −1.1023

��

SVJ −0.3924
�� −0.5441

�� −0.1178
�� −0.3356

�� −0.9025
�� −0.4824

�� −0.5175
��

SVCJ −0.3994
�� −0.5876

�� −0.1531
�� −0.4612

��
0.4611

�� −0.4878
�� −0.4174

��

SVVG −0.0630
�� −0.1375

��
0.0138

� −0.1310
��

0.0169
�� −0.2865

�� −0.5011
��

SVLS −0.4746
�� −0.4879

�� −0.1976
�� −0.4598

�� −0.3405
�� −0.8413

�� −0.7408
��

Notes: Panel A reports the mean and standard deviation of the IV of the standardized ATM options during 
different periods; Panel B reports the mean values of the differences between the PER of long and short positions 
for put options with a Delta of −45 during different time periods. � and �� indicate values significant at 5% and 
1% significance levels based on t-tests, respectively. SV is the stochastic volatility model; SVJ is the stochastic 
volatility model with Merton jumps in returns; SVCJ is the stochastic volatility model with contemporaneous 
jumps in returns and volatility; SVVG is the stochastic volatility model with variance-gamma jumps in returns; 
and SVLS is the stochastic volatility model with log-stable jumps in returns.

Figure 2. This figure presents the daily average TMR (gray columns) and PER (black columns) for S&P 500 index 
put options with a Delta of −45 between January 3, 1996 and December 29, 2017. SV is the stochastic volatility 
model; SVJ is the stochastic volatility model with Merton jumps in returns; SVCJ is the stochastic volatility model 
with contemporaneous jumps in returns and volatility; SVVG is the stochastic volatility model with variance-gamma 
jumps in returns; and SVLS is the stochastic volatility model with log-stable jumps in returns.
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5.1.2 Analyzing the components of model risk
In this section, we highlight the necessity of measuring PER and MSR separately in terms 
of explaining absolute pricing errors.

Let etðC;MðhÞ;D;KÞ ¼ jF̂t ðC;MðhÞ;D;KÞ−OPtðCÞj represent the absolute pricing error 
of option C conditional on model M with parameter vector h, observed dataset D, and 
methodology K at time t. We run the following regression to explore the explanatory 
power of the PER and MSR in explaining absolute pricing errors. 

etðC;MðhÞ;D;KÞ ¼ b0þb1q
PER
g;t ðC;MðhÞ;D;KÞþb2q

MSR
g;t ðC;MðhÞ;D;KÞþet: (35) 

Here, we focus on testing whether b1 ¼ b2, as this would prove that it is not necessary to 
separate the PER and MSR from TMR. Taking b1−b2 ¼ a and using Equation (12), 
Equation (35) can be rewritten as: 

etðC;MðhÞ;D;KÞ ¼ b0þaqPER
g;t ðC;MðhÞ;D;KÞþb2q

TMR
g;t ðC;MðhÞ;D;KÞþet: (36) 

A test of a ¼ 0 in Equation (36) is a test of b1 ¼ b2 in Equation (35). The results are 
reported in Table 3. All a’s are statistically significant, which supports the necessity of mea
suring PER and MSR separately.

5.1.3 Out-of-sample analysis
In January of each year in our sample period, we use the estimated parameter values and 
forecast option prices for 1 month ahead, as well as for 1 year ahead. Our model risk meas
ures are comparable with the absolute forecasting errors (AFEs). As described in Section 1, 
PER is one of the reasons behind forecasting error, and the part of the forecasting error 
that cannot be explained by PER, has to be explained by model mis-specification. 
Measuring model risk as described in Section 1, we decompose the forecasting errors into 
two parts: one is explained by PER, denoted by FEPER and the other one captures the fore
casting error stemming from MSR (denoted by FEMSR). This second component is 0 if the 
AFE is fully explained by PER, and is equal with AFE − FEPER if AFE is greater than PER. 
The results are presented in Table 4. The models with jumps no longer reveal substantially 
smaller forecasting errors than the SV model when the forecasting horizon is long; this is 
reasonable as it is difficult to forecast jumps for longer horizons. Only the forecasting 
errors of SVJ and SVLS are lower than those of the SV model for the one month forecasting 
horizon. AFE is greater than PER for all models, implying the existence of MSR. FEPER 

reveals small increases when the forecasting horizon changes from 1 month to 1 year; in 
contrast, FEMSR almost doubles, indicating that the forecasting error due to model specifi
cation increases with the length of the forecasting horizon.

5.2 Empirical Analysis Using the RIV Methodology
As defined in Section 1, model risk depends on the methodology and data used. In this sub
section, we investigate the model risk of these option pricing models using the RIV method
ology. As explained earlier, the RIV estimation methodology relies on underlying realized 
and option-IV data. Also, here we consider the SVTF model as well in addition to the mod
els used in the previous section. The data used in this subsection are presented in 
Section 4.2.25

25 Compared to the SOP estimation methodology, the RIV methodology is more time-consuming as all 
parameters are jointly determined by the option data, which means we need to calculate option prices when 
updating parameters in each iteration of the MCMC estimation. For example, for SVTF, following the setting of 
Andersen, Fusari, and Todorov (2015b), although several parameters are not used, we still need to calculate op
tion prices 22 times in each iteration. The advantage of this method is that the parameters can converge faster; 

Lazar et al. j Continuous-Time Finance Models                                                                                          21 

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbae001/7597791 by guest on 19 O

ctober 2024



5.2.1 Model risk
Different from the rolling window estimation performed in Section 5.1, in this section, we 
study the model risk for two periods; specifically, these are the crisis period ranging from 
January 2006 to December 2009, and the post-crisis period from January 2010 January to 
December 2017. The model risk is reported in Table 5. The short position bears a greater 
PER than the long position; however, all single-factor models reveal much higher MSR for 
the long position during the post-crisis period. Additionally, the SV model reveals the larg
est MSR. The SVTF model always has the lowest TMR. It has the lowest PER and MSR 
during the post-crisis period. Although the MSR of SVTF is greater during the crisis period, 
it still reveals the lowest TMR thanks to the low PER.26 For single-factor models, SVLS 
reveals the lowest TMR during the crisis period, but it becomes the second worst model 
during the post-crisis period; in contrast, SVVG has the lowest PER, MSR, and TMR 

Table 4. Forecasting error decomposition using model risk.

SVLS SVVG SVCJ SVJ SV

Panel A: One-month ahead

AFE 5.7169 7.3572 6.0926 5.8125 5.8642
FEPER 4.8231 2.7252 5.0910 4.6471 5.0408
FEMSR 0.8938 4.6320 1.0016 1.1654 0.8235

Panel B: One-year ahead

AFE 7.7520 8.3288 8.1578 7.4252 7.6210
FEPER 4.9867 2.9134 5.2733 4.8154 5.2464
FEMSR 2.7652 5.4154 2.8846 2.6099 2.3747

Notes: This table reports the average values of AFE, FEPER, and FEMSR for all options introduced in Section 4.1. 
The out-of-sample period ranges from January 1993 to December 2017. AFE represents the absolute forecasting 
error; FEPER is the forecast error due to the model PERA calculated based on Equation (10); FEMSR captures the 
forecasting error stemming from MSR, calculated as AFE - FEPER. SVJ is the stochastic volatility model with 
Merton jumps in returns; SVCJ is the stochastic volatility model with contemporaneous jumps in returns and 
volatility; SVVG is the stochastic volatility model with variance-gamma jumps in returns; and SVLS is the 
stochastic volatility model with log-stable jumps in returns.

Table 3. Explaining absolute pricing errors with PER and TMR

b0 a b2 Adj. R2 (%)

SV 0.49
�� −1.09

��
1.47

��
72.76

SVJ 0.34
�� −1.03

��
1.45

��
73.35

SVCJ 0.28
� −1.05

��
1.48

��
72.27

SVVG 0.43
�� −0.68

��
1.10

��
89.81

SVLS 0.46
�� −1.10

��
1.48

��
70.51

Notes: The regression results are based on Equation (36) with the model risk of the put options with a Delta of 
−45. � and �� indicate values significant at 5% and 1% significance levels, respectively. SV is the stochastic 
volatility model; SVJ is the stochastic volatility model with Merton jumps in returns; SVCJ is the stochastic 
volatility model with contemporaneous jumps in returns and volatility; SVVG is the stochastic volatility model 
with variance-gamma jumps in returns; and SVLS is the stochastic volatility model with log-stable jumps 
in returns.

thus, following Du and Luo (2019), we set the total MCMC iteration number as 5000, and the first 2000 itera
tions are regarded as burn-in.

26 For comparison, we transform the results for puts into equivalent results for call options using the put- 
call parity.
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during the post-crisis period. The results suggest that there is a need to monitor model risk 
and changes in model risk might necessitate the replacement of the models.

5.2.2 Explaining the bid–ask spread with model risk
We analyze the impact of positional model risk gap on the bid–ask spread. We focus on the 
proportional bid–ask spread (PBAS), expressed as a fraction of the mid-price and typically 
used to measure liquidity (Wei and Zheng 2010), and run the following regression: 

PBASi ¼ b0þb1GapPER
i þb2GapMSR

i þb3Volumeiþb4Miþb5siþb6IViþ�i; (37) 

where PBASi stands for the proportional bid–ask spread of option i, Gap is the absolute 
difference between the model risk of long and short positions divided by the option mid- 
price. We also consider the following factors used in Wei and Zheng (2010) as control vari
ables. Volumei is the trading volume of options i scaled downward by 100,000, M repre
sents option moneyness (option strike price over underlying spot price), s is the time-to- 
maturity in years. IVi, the IV of option i, is also included. The regression results are 
reported in Table 6. The estimated coefficient of GapPER and GapMSR are always signifi
cantly positive, suggesting that a higher positional model risk gap is accompanied by a 
wider PBAS, thus, lower liquidity. It is also worth noting that the trading volume and 

Table 5. Model risk estimated using the RIV methodology

SV SVJ SVCJ SVLS SVVG SVTF

Panel A: Crisis period

PERL 4.7537 5.1160 4.7978 3.3791 3.5069 0.0461
PERS 5.4261 5.8897 5.1041 3.4736 3.6568 0.0491
PER 5.7479 6.1808 5.5435 3.7208 3.8807 0.0535
MSRL 1.6256 1.5705 0.6547 0.3129 0.3252 1.3225
MSRS 0.5988 0.4319 1.1581 0.6767 0.5848 0.8185
MSR 2.2244 2.0024 1.8128 0.9897 0.9100 2.1410
TMRL 6.3793 6.6865 5.4525 3.692 3.8321 1.3686
TMRS 6.0249 6.3215 6.2621 4.1503 4.2417 0.8676
TMR 7.9723 8.1832 7.3563 4.7105 4.7907 2.1945

Panel B: Post-crisis period

PERL 4.0029 3.7456 3.7998 3.1669 3.0798 0.1019
PERS 4.7415 4.5826 4.7706 3.8318 3.7720 0.1058
PER 4.9109 4.7337 4.8919 3.9452 3.9581 0.1169
MSRL 7.894 4.6234 3.9371 7.6638 2.5795 1.0484
MSRS 0.016 0.1289 0.1369 0.0822 0.5539 1.0958
MSR 7.9100 4.7524 4.0740 7.7460 3.1334 2.1442
TMRL 11.8969 8.3691 7.7369 10.8307 5.6593 1.1503
TMRS 4.7575 4.7115 4.9075 3.914 4.3259 1.2016
TMR 12.8209 9.4861 8.9659 11.6912 7.0915 2.2611

Notes: This table reports the average values of TMR, PER, and MSR for all models; the corresponding values 
for long and short positions are also reported. PER, MSR and TMR are defined in Equations (10), (11), and 
(12), respectively; the PER for long and short positions (PERL and PERS) are computed using Equation (7); the 
MSR for long and short positions (MSRL and MSRS) are computed using Equation (8); the TMR for long and 
short positions (TMRL and TMRS) are computed using Equation (9). The crisis period ranges from January 
2006 to December 2009, and the post-crisis period ranges from January 2010 to December 2017. SV is the 
stochastic volatility model; SVJ is the stochastic volatility model with Merton jumps in returns; SVCJ is the 
stochastic volatility model with contemporaneous jumps in returns and volatility; SVVG is the stochastic 
volatility model with variance-gamma jumps in returns; SVLS is the stochastic volatility model with log-stable 
jumps in returns; and SVTF is the three-factor double exponential model.
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option time-to-maturity are negatively linked to PBAS, but the effect is only significant dur
ing the post-crisis period.

6 Conclusions

In this article, we propose ES-type model risk measures that capture the PER and MSR of 
continuous-time finance models. We then apply this measure to L�evy jump, AJD, and mul
tifactor models to investigate the MSR and PER of the models when explaining the joint 
dynamics of the underlying and option prices. To capture PER, we develop two estimation 
methodologies based on a Bayesian approach. The first one builds on the approaches of 
Broadie, Chernov, and Johannes (2007) and Yu, Li, and Wells (2011), we propose a 
random-effect specification for pricing errors and develop an effective MCMC method to 
jointly estimate parameters and latent variables with both stock and option prices. Our 
model specification and estimation method can consider multiple options and use index 

Table 6. Explaining the bid-ask spread using positional model risk gap

Model GapPER GapMSR Volume M s IV Adj. R2 (%)

Panel A: Crisis period

SV 0.0996
��

0.0825
��

42.55
0.0530

��
0.0787

�� −0.0065 0.4105
�� −0.0312 0.0875

��
54.85

SVJ 0.0859
��

0.0845
��

42.64
0.0462

��
0.0806

�� −0.0059 0.4085
�� −0.0367 0.0853

��
54.94

SVCJ 0.1347
��

0.0549
��

44.59
0.0804

��
0.0528

�� −0.0075 0.3639
�� −0.0304 0.0635

��
54.43

SVLS 0.3702
��

0.0142
��

35.56
0.2704

��
0.0134

�� −0.0158 0.3504
�� −0.0041 0.0425

��
45.17

SVVG 0.2204
��

0.0313
��

33.89
0.1569

��
0.0271

�� −0.0147 0.3599
�� −0.0326 0.0424

��
44.78

SVTF 3.0272
��

0.0632
��

51.57
1.4220

��
0.0552

�� −0.0044 0.3518
��

0.0025 0.0765
��

60.52

Panel B: Post-crisis period

SV 0.0935
��

0.0300
��

35.27
0.0778

��
0.0283

�� −0.0412
�

0.4906
�� −0.1008

��
0.2006

��
41.96

SVJ 0.1391
��

0.0490
��

39.35
0.1194

��
0.0461

�� −0.0424
�

0.5055
�� −0.0573

��
0.2068

��
45.77

SVCJ 0.1469
��

0.0526
��

33.07
0.1250

��
0.0489

�� −0.0405
�

0.5350
�� −0.0437 0.2088

��
40.29

SVLS 0.1383
��

0.0456
��

27.06
0.1163

��
0.0414

�� −0.0533
��

0.5521
�� −0.0812

��
0.2255

��
35.01

SVVG 0.1439
��

0.0647
��

41.34
0.1245

��
0.0611

�� −0.0288 0.4448
�� −0.0948

��
0.1491

��
47.52

SVTF 0.1588
��

0.0675
��

32.5
0.1240

�
0.0605

�� −0.0323 0.5775
��

0.021 0.2285
��

40.45

The regression results are based on Equation (37). � and �� indicate values significant at 5% and 1% 
significance levels, respectively. The crisis period ranges from January 2006 to December 2009, and the post- 
crisis period ranges from January 2010 to December 2017. GapPER and GapMSR are the absolute value of the 
PER and MSR difference between short and long positions divided by the option mid-price; Volume is the 
option trading volume; M is the option moneyness, which is the ratio of option strike to underlying spot price; s 
is the option time-to-maturity in years; and IV denotes the option implied volatility. SV is the stochastic 
volatility model; SVJ is the stochastic volatility model with Merton jumps in returns; SVCJ is the stochastic 
volatility model with contemporaneous jumps in returns and volatility; SVVG is the stochastic volatility model 
with variance-gamma jumps in returns; SVLS is the stochastic volatility model with log-stable jumps in returns; 
and SVTF is the three-factor double exponential model.
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returns and option prices over different time periods. The second one builds on the meth
odology used in Andersen, Fusari, and Todorov (2015b). Assuming that pricing errors are 
normally distributed, we estimate the parameters and latent variables jointly with the real
ized and IV data using MCMC methods.

We find that modeling jumps is necessary as all jump models have smaller TMR com
pared with the SV model. Additionally, the multifactor model consistently reveals the low
est TMR compared to single-factor models. Our results highlight that it is necessary to 
measure PER and MSR separately as the two components of TMR. Furthermore, we show 
that the positional model risk gap is positively linked to the option bid–ask spread.

Supplemental Data

Supplemental data is available at https://www.datahostingsite.com.
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