

Changes in quality and bacterial profiles of Tualang and Kelulut honeys preserved by post-harvest maturation

Article

Accepted Version

Yap, S. K., Chin, N. L., Niranjan, K. ORCID: <https://orcid.org/0000-0002-6525-1543>, Shah, N. N. A. K. and Than, L. T. L. (2024) Changes in quality and bacterial profiles of Tualang and Kelulut honeys preserved by post-harvest maturation. *International Journal of Food Science and Technology*, 59 (3). pp. 1338-1350. ISSN 1365-2621 doi: [10.1111/ijfs.16874](https://doi.org/10.1111/ijfs.16874) Available at <https://centaur.reading.ac.uk/114558/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1111/ijfs.16874>

Publisher: Wiley-Blackwell

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Changes in Quality and Bacterial Profiles of Tualang and Kelulut Honeys Preserved by Post-harvest Maturation

(Running Title: Post-harvest Maturation of Honey)

Shu Khang Yap¹, Nyuk Ling Chin^{1,*}, Keshavan Niranjan², Nor Nadiah Abdul Karim Shah¹, and Leslie Thian Lung Than³

¹*Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.*

²Department of Food and Nutritional Sciences,

University of Reading, Whiteknights, Reading RG6 6DZ, United Kingdom.

³*Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.*

**(Tel.: +603 9769 6353; Fax: +603 9769 4440; Email: chinnl@upm.edu.my)*

ABSTRACT

18 Post-harvest maturation of two Malaysian honeys, the Tualang and Kelulut was studied by measuring
19 changes in physicochemical and antioxidant properties, hydroxymethylfurfural (HMF) contents and
20 bacterial profiles at room temperature of 23-26 °C. After maturation at the recommended period of
21 26 weeks, water activity of both honeys increased between 0.89-2.34% while free acidity increased
22 between 2.05-2.24%. Results suggested the prominence of fermentation reactions in honey during
23 post-harvest maturation as fructose concentration reduced by 10.6 and 1.05% for the Tualang and
24 Kelulut honey respectively while HMF concentrations were kept at a safe limit of 48.00 and 61.23
25 mg/kg honey. The total phenolic content of Tualang and Kelulut honey increased significantly by
26 12.61 and 54.66% respectively. The highlight of this post-harvest maturation process for Kelulut
27 honey was the improvement found in antioxidant properties of DPPH radical scavenging activity by
28 10.01% to 54.74% and also the probiotic-like potential in terms significant increase in relative
29 abundance of the *Bacillus* genera to 2.6% and *Lactobacillus* to 6.25% at 26 weeks. The prolonged
30 maturation process up to one year however revealed continuous accumulation of HMF to values
31 above 80 mg/kg honey, surpassing the limits by the Codex Alimentarius Commission despite
32 improvements of antioxidant properties and bacterial profiles.

33 **Keywords:** Malaysian Honey; Post-harvest Maturation; Probiotic; Honey Preservation

34 **1.0 Introduction**

35 Heat treatment is known to be the simplest and most convenient method to process honey to improve
36 its shelf stability (Subramanian *et al.*, 2007; Turhan *et al.*, 2008; Scepankova *et al.*, 2021).
37 Conventionally, raw honey is processed at temperature of 45-80 °C for 1-45 min (Subramanian *et al.*,
38 2007) to delay crystallisation, to reduce viscosity, to remove contaminating microbes and to prevent
39 fermentation (Subramanian *et al.*, 2007; Scepankova *et al.*, 2021). However, heat treatment is a
40 processing method that is often accompanied with significant degradation of food quality, particularly
41 raw honey (Wang *et al.*, 2004; Soni *et al.*, 2016; Tarapoulouzi *et al.*, 2023). Samborska and
42 Czelejewska (2014) reported that multifloral honey processed at 90 °C for 30 min contained a high
43 hydroxymethylfurfural (HMF) concentration of 67.8 mg/kg. Similarly, study of Zarei *et al.* (2019)
44 showed that antioxidant DPPH radical scavenging activity and total phenolic content (TPC) of honey
45 reduced by 12.55-20.85% after being processed at 63 °C for 10-30 min. Other studies have also shown
46 that heat treatments at temperature of between 45 to 90 °C can reduce nutrients, enzymatic (Cianciosi
47 *et al.*, 2018) and antimicrobial activities of honey (Mat Ramlan *et al.*, 2021) significantly.

48 Increasing concerns and awareness on nutritional quality of processed honey have prompted studies
49 on various other alternative honey processing methods. The advanced technologies and techniques
50 offer better preservation of honey quality (Chong *et al.*, 2017; Scepankova *et al.*, 2021).
51 Thermosonification was reported to be effective in killing microorganisms in honey and enhance
52 DPPH radical scavenging activity and TPC of Kelulut honey by 63.0 and 58.1% respectively (Chong
53 *et al.*, 2017). The high-pressure processing (HPP) technique used on Manuka honey recorded an
54 increment of TPC by 47.16% (Akhmazillah *et al.*, 2013). The more recent microfluidization technique
55 produced a shelf-stable multifloral honey with enhanced antioxidant activity by 37.2% while
56 maintaining a low HMF concentration (Leyva-Daniel *et al.*, 2020). Although these techniques are

57 beneficial, they are costly and may not be feasible for the smaller scale farmers and honey producers
58 from both the economical and technical aspects.

59 The post-harvest maturation of honey is a honey preservation technique developed by the Native Bee
60 Rural Community Project in Northeast Brazil for rural honey producers for a more viable honey
61 processing (Drummond, 2013). Unlike other honey processing techniques requiring high-end
62 equipment, post-harvest maturation is simple and does not require use of heat which destroys
63 microbial activity of honey. In post-harvest maturation, honey is allowed to age and ferment naturally
64 for about 26 weeks (around 180 d) in a hygienic and controlled condition (Drummond, 2013; Silva
65 *et al.*, 2023). Processed honey using the post-harvest maturation method is noted to have significant
66 fermented acidic aroma, higher acidity and lower reducing sugars (Ribeiro *et al.*, 2018). The
67 physicochemical and bacteriological properties of processed honey via post-harvest maturation have
68 also confirmed its compliances and standards for safe consumption (Drummond, 2013). The sensory
69 acceptance test of post-harvest matured Tiuba honey suggested acceptance by the consumers (Ribeiro
70 *et al.*, 2018). The research on post-maturation process of honeys are however still limited to Brazilian
71 honeys, *i.e.* native stingless bee (Drummond, 2013), Tiuba (Ribeiro *et al.*, 2018) and Uruçú-Amarela
72 honey (Silva *et al.*, 2023).

73 The honey industry in Malaysia is similar to that of Northeast of Brazil where many small scale honey
74 producers exist especially in the suburbs and rural areas (Lim and Baharun, 2009). The Tualang and
75 Kelulut honeys are two more common honey produced in Malaysia. Tualang honey is a multifloral
76 jungle honey produced by *Apis Dorsata* bee (Ahmed and Othman, 2013). It is named after the
77 *Koompassia excelsa* (*Tualang*) tree where the bee hives are built on (Moniruzzaman *et al.*, 2013).
78 Kelulut honey is another common multifloral honey produced mainly by *Heterotrigona itama* bee in
79 Malaysia (Saludin *et al.*, 2018; Kamal *et al.*, 2021). Kelulut honey generally contains a significantly
80 higher acidity (87.0-347.5 meq/kg honey) and moisture content (26.60-33.24%) than other types of
81 honey (Kek *et al.*, 2017; Omar *et al.*, 2019; Yap *et al.*, 2022). The Kelulut honey can be produced

82 commercially via Meliponiculture practice (Cortopassi-Laurino *et al.*, 2006; Bahri *et al.*, 2016). The
83 source of Tualang honey is relatively limited and inconsistent due to its collection from wild forest
84 and produced by *Apis dorsata* bees which cannot be domesticated commercially due to its highly
85 defensive behavior (Thakar, 1973). Nevertheless, these two Malaysian honeys have gained
86 considerable recognitions in researches due to their significant health beneficial properties.

87 Published studies reported that the Tualang honey has high level of antioxidants (Kishore *et al.*, 2011;
88 Yap *et al.*, 2022) while the Kelulut honey was found to harbour a significant beneficial probiotic
89 bacteria *i.e.* *Bacillus* and *Lactobacillus sp.* (Zulkhairi Amin *et al.*, 2019; Yap *et al.*, 2022). Other
90 studies on Kelulut honey include Hasali *et al.* (2015) who isolated four *Lactobacillus sp.*, Amin *et al.*
91 (2020) reported two *Bacillus sp.*, Wu *et al.* (2023) recorded significant abundance of *Lactobacillus*
92 and Goh *et al.* (2021) isolated lactic acid bacteria in Kelulut honey from Sabah. With the post-harvest
93 maturation technique being capable of preserving honey more naturally for its thermolabile
94 antioxidant compounds and beneficial probiotic bacteria, this research investigated its effects on two
95 honey varieties, the Tualang and Kelulut by measuring their physicochemical and antioxidant
96 properties, hydroxymethylfurfural (HMF) content and bacterial diversities.

97 **2.0 Materials and Methods**

98 **2.1 Honey Samples and Post-harvest Maturation**

99 Tualang honey produced by bee species of *Apis dorsata* was collected directly from honey collectors
100 and Kelulut honey from bee species of *Heterotrigona itama* was collected directly from farms with
101 extra practise and care on hygiene. A total of 4.5 kg of honey was collected for each type of honey.
102 The honeys were homogenised and distributed equally into six pasteurised glass jars. The samples
103 were allowed to mature at room temperature of 23-26 °C in the glass jars under aseptic condition. The
104 glass jars were opened every two weeks to release accumulated gas in the jars (Silva *et al.*, 2023) and
105 for sampling of 50 g of honey for a duration of 52 weeks. The prolonged post-harvest maturation

106 period beyond the usual practise of maturation for 26 weeks (Drummond, 2013; Silva *et al.*, 2023)
107 was aimed to study honey changes more completely.

108 **2.2 Physicochemical Properties**

109 Water activity at room temperature of honey samples was measured using a water activity meter
110 (Aqualab Pre, Washington, DC, USA). pH value and free acidity of the honey samples were
111 determined following the Association of Official Analytical Chemists (AOAC) Official Method
112 962.19 (AOAC International, 2005). A honey solution containing 10 g of honey and 75 mL of distilled
113 water was prepared. The pH value of the solution was determined with a pH meter (Mettler Toledo,
114 Greifensee, Switzerland). Prepared honey solution was then titrated with 0.1 mol L⁻¹ sodium
115 hydroxide (NaOH) solution and free acidity was calculated from the volume of NaOH needed to
116 achieve pH value of 8.3 and reported in meq/kg following equation (1).

117 Free acidity (meq/kg) = volume of 0.1M NaOH used × 10 (1)

118 Sugar concentration of honey samples, *i.e.* sucrose, fructose, glucose and maltose contents were
119 measured following method suggested by International Honey Commission (Bogdanov, 2002).
120 Honey (5 g) was dissolved in 75 mL of distilled water. The solution was then added with 25 mL
121 methanol, filtered with a membrane filter and analysed with high-performance liquid chromatography
122 (HPLC; Shidmazu, Kyoto, Japan) equipped with refractive index detector (RI-D) and Shidmazu
123 Shim-pack GIST NH2 separation column. The run was done with 10 µL sample injection volume and
124 1.3 mL min⁻¹ acetonitrile-water (75:25) isocratic elution mobile phase. The reading of sucrose for
125 both honey were low and nearing zero thus not reported.

126 **2.3 Antioxidant Properties**

127 Antioxidant properties of honey was measured as the total phenolic content (TPC) (Singleton *et al.*,
128 1999) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (Chong *et al.*, 2017).
129 For TPC, the Folin-Ciocalteu spectrophotometric method was used. Honey sample solution was
130 prepared by dissolving 1 g of honey in 20 mL of distilled water. The sample solution (1 mL) was then

131 added with 5 mL of 0.2 N Folin-Ciocalteu reagent solution and 4 mL of 7.5% (w/v) aqueous sodium
132 carbonate solution. The absorbance of the sample solution at 765 nm was measured using a
133 UV/Visible spectrophotometer (Ultrospec 3100 pro, Amersham Biosciences, USA) after 2 h of
134 incubation in dark. TPC was calculated and expressed in milligrams of gallic acid equivalent per kg
135 of honey (mgGAE/ kg honey).

136 For DPPH, a stock solution (0.1 mM) was prepared by dissolving DPPH powder (Sigma-Aldrich, St
137 Louis, MO, USA) in methanol. Honey solution containing 0.5 g honey and 10 mL of methanol was
138 prepared. The solution was then centrifuged for 15 min at 5700 g (Universal 320, Hettich, USA). Two
139 millilitres of supernatant was collected and then added with 2 mL of DPPH solution. The absorbance
140 of the sample solution was measured at 17 nm using a UV/Visible spectrophotometer (Ultrospec 3100
141 pro, Amersham Biosciences, USA) after 30 min of incubation in dark. The DPPH radical scavenging
142 activity (RSA) of honey was then calculated using equation (2):

$$143 \text{ DPPH } (\% \text{RSA}) = \left[1 - \left(\frac{A_s}{A_c} \right) \right] \times 100\% \quad (2)$$

144 where A_s and A_c are the absorbance values for the sample and control, respectively.

145 **2.4 Hydroxymethylfurfural (HMF) Content**

146 The HMF content of honey sample was determined following the widely recognised White's
147 spectrophotometric method (White, 1979). A solution was prepared with diluted honey solution,
148 Carrez I, Carrez II and ethanol. The absorbance values of the solution were measured using a
149 UV/Visible spectrophotometer (Ultrospec 3100 pro, Amersham Biosciences, USA). The HMF
150 concentration of the honey was calculated following equation (3):

$$151 \text{ HMF (mg/kg honey)} = (A_{284} - A_{336}) \times 149.7 \times 5 \times \frac{D}{W} \quad (3)$$

152 where A_{284} and A_{336} indicate the absorbances values of the solution at 284 and 336 nm respectively.

153 D is the dilution factor and W is the weight of the sample.

154 **2.5 Bacterial Profile Analysis**

155 The bacterial profile study was conducted using the next-generation targeted amplicon sequencing
156 method *i.e.* sequencing the 16S rRNA gene amplified from extracted gDNA. The DNA extraction
157 was done by modifying method suggested by Yap et al. (2022). Honey solution was prepared with 15
158 mL honey and 135 mL of sterile water. It was incubated in a water bath at 65 °C for 30 min with
159 occasional shaking to dissolve the honey completely. The honey solution was then filtered on filter
160 with pore size > 100 µM. The solution was filtered again with a membrane filter with a smaller pore
161 size of 0.22 µM to retain the microbes. The membrane was transferred into a tube. One millilitre of
162 lysis buffer containing lysozyme was then added to the tube. The tube was incubated in a rotating
163 incubator at 37 °C for 3 h. The sample was homogenised by bead beating. The gDNA was extracted
164 by using the spin column method following manufacturer's protocol and eluted with 100 µL of buffer
165 solution.

166 The V3-V4 region of the 16s rRNA gene was amplified from the extracted gDNA with the primer
167 pair Illumina V3V4F (5'-CCTACGGGNGGCWGCAG-3') and Illumina V3V4R (5'-GACTACHV-
168 GGGTATCTAATCC-3') appended with overhang adapters (5'-TCGTCGGCAGCGTCAGATGTG-
169 TATAAGAGACAG-3') and (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3'). The
170 PCR amplification was performed with 3 min of initial denaturation at 95 °C; 25 cycles of 30 s
171 denaturation at 95 °C, 30 s annealing at 55 °C, 30 s elongation at 70 °C and a final extension at 72 °C
172 for 5 min. The quality of the amplified PCR products was verified by electrophoresis in a 1% agarose
173 gel after purified with purification kit.

174 An equal quantity (100 ng) of each PCR amplicon tagged with the sample-specific barcode sequences
175 was pooled and the quantity and quality of DNA was further assessed on a Illumina MiSeq system
176 (Illumina, San Diego, CA, USA). The sequencing of the pooled library was done with the run
177 configuration of 2 x 300 base pairs according to the manufacturer's instructions.

178 The forward and reverse reads were merged using FLASH2 (Magoč and Salzberg, 2011) and its
179 quality was screened for sequence length and nucleotide ambiguity. Sequences that are shorter than
180 150 bp or longer than 600 bp were removed. Chimeric errors were checked by aligning the reads with
181 16s rRNA database. High quality reads were clustered at 97% similarity into OTUs using QIIME
182 with de novo open reference clustering algorithm (UCLUST) (Venkatavara Prasad *et al.*, 2015). Rare
183 OTUs with only 1 (singleton) or 2 reads (doubleton) were eliminated. All OTUs were annotated to
184 different classification levels (from domain to genus) with the SILVA ribosomal 16s RNA database
185 (Quast *et al.*, 2013). The bacterial profile analysis was conducted only for the Kelulut sample but not
186 the Tualang based on its more consistent, availability and potential to be developed into probiotic
187 matured honey.

188 **2.6 Statistical Analysis**

189 All samples were tested in triplicates and results are reported as means \pm standard error of mean. One-
190 way analysis of variance (ANOVA) statistical analysis and Tukey's test at confidence level of 0.05
191 was performed using Minitab software (version 18, Minitab Inc., State College, PA, USA) to evaluate
192 the significant differences between the data.

193 **3.0 Results and Discussion**

194 **3.1 Physicochemical Changes**

195 Figure 1 shows the changes of water activity of honeys during post-harvest maturation. Water activity
196 of both honeys fluctuated in the beginning of post-harvest maturation storage period but increased
197 gradually from weeks 18 onwards. Despite a lower water activity for the Tualang honey, its increase
198 after 26 weeks of post-harvest maturation was higher at 2.34% from 0.710 to 0.727 when compared
199 to Kelulut at 0.89% from 0.783 to 0.790. This increase is consistent with the Tiuba honey at 1.76%
200 from 0.675 to 0.687, also at about 26 weeks (180 d) of post-harvest maturation (Ribeiro *et al.*, 2018).
201 The increase of water activity continued after 26 weeks and reached 0.728 with a total increase of
202 2.54% for Tualang and 0.803 (2.55%) for Kelulut honey at the end of 52 weeks maturation. The

203 remarkably high water activity, above threshold value of 0.6 facilitates natural fermentation of honey
204 (Sanz *et al.*, 1995) as Drummond (2013) also reckoned microbial fermentation to occur during post-
205 harvest maturation of honey. These fermentation processes are well complemented to the sensory
206 profile results reported by Ribeiro *et al.* (2018) where post-harvest matured honey had fermented
207 characteristics and acidic taste.

208 Figure 2(a) shows that the pH values of both honey decreased with post-harvest maturation. At 26
209 weeks, pH reduction for Tualang was 11.20% from 3.66 and for Kelulut was 17.26% from 3.07. The
210 reduction continued to 3.13 (14.48%) and 2.58 (15.96%) respectively at the end of post-harvest
211 maturation of one year (52 weeks). Figure 2(b) shows supporting results of pH where free acidity
212 increased steadily over the entire post-harvest maturation period. Previous post-harvest maturation
213 studies on *Melipona quadrifasciata* (da Silva *et al.*, 2022) and Uruçú-Amarela honey (Silva *et al.*,
214 2023) have similarly reported increase of acidity of post-harvest matured honey. The increase of
215 honey acidity was mainly due to the formation of gluconic acid from enzymatic decomposition of
216 glucose as explained in metabolomics study by Silva *et al.* (2023). Due to high water activity and the
217 presence of active microbes, fermentative activities which lead to increase of honey acidity are
218 common phenomena in unprocessed honey (Sanz *et al.*, 1995; Subramanian *et al.*, 2007). Yap *et al.*
219 (2022) supported and showed the presence of *Actinobacteria*, *Firmicutes* and *Proteobacteria* as the
220 core bacterial phyla of Tualang and Kelulut honey. These bacteria are often categorised as facultative
221 anaerobes and possesed significant fermentative ability (Lee *et al.*, 2015). As honey sugars are
222 converted to ethyl alcohol and organic acids, *i.e.* succinic, lactic and acetic acid during honey
223 fermentation, its free acidity increase and pH decrease (Özcelik *et al.*, 2016; Sanz *et al.*, 1995; Silva
224 *et al.*, 2023). The increased acidity of honey during post-harvest maturation is seen beneficial as a
225 natural method of honey preservation that helps inhibiting growth of pathogenic microbes (Silva *et*
226 *al.*, 2023).

227 Figure 3 shows the changes of predominant honey sugars, *i.e.* fructose, glucose and maltose during
228 the post-harvest maturation period. The results show that Kelulut honey contains a lower glucose
229 (Figure 3b) and higher maltose concentration (Figure 3c) than Tualang honey. Previous studies have
230 consistently reported a lower reducing sugar concentration in Kelulut (Zawawi *et al.*, 2022), *e.g.* low
231 glucose (140-210 g/kg honey) and high maltose content (33.7-45.2 g/kg honey) in stingless bee honey
232 (Chutpong *et al.*, 2016a; Tuksitha *et al.*, 2018). Braghini *et al.* (2021) suggested that the high maltose
233 concentration in stingless bee honey could be attributed to its low α -glycosidase activity, an enzyme
234 that catalyses hydrolysis of a bond joining a sugar of a glycoside to another sugar unit or alcohol.

235 The changes during post-harvest maturation of both honey samples showed similarity. The fructose
236 concentration of both honeys shows a more significant decreasing trend (Figure 3a) than glucose
237 (Figure 3b) and maltose (Figure 3c). After 26 weeks of post-harvest maturation, fructose
238 concentration of Tualang and Kelulut honey recorded a decrease of 10.6 and 1.05% respectively. The
239 values dropped further to 271.35 g/kg honey (15.4%) and 247.20 g/kg (14.92%) respectively at the
240 end of 52 weeks maturation. For Tualang honey, glucose and maltose content reduced by 14.66 and
241 24.47%, respectively to 217.89 and 36.15 g/kg honey after 52 weeks. In comparison to Kelulut honey,
242 the reduction of glucose and maltose is less pronounced, *i.e.* 6.13 and 17.99% respectively. The
243 reduction of fructose and glucose during post-harvest maturation are also reported by Ribeiro *et al.*
244 (2018) for Tiuba honey and Silva *et al.* (2023) for Uruçú-Amarela honey. The results complemented
245 the sensory study reporting significantly lower sweetness in post-harvest matured honey (Ribeiro *et*
246 *al.*, 2018). The observed minor fluctuations of honey sugars in honey is generally explained by the
247 myriads of complex reactions that occur during post-harvest maturation process such as non-
248 enzymatic transglycosylation which converts complex oligosaccharides to simpler sugar (Silva *et al.*,
249 2019); glucose oxidase enzymatic activity converts glucose to gluconic acid (Silva *et al.*, 2023); series
250 of non-enzymatic browning reactions that transform fructose and glucose to furan compounds and
251 other by-products (Shapla *et al.*, 2018); isomerization of sucrose and glucosylation of fructose to form

252 trehalulose (Zhang *et al.*, 2022). Trehalulose is a bioactive disaccharide that was recently proposed to
253 be a characteristic sugar component of stingless bee honey (Fletcher *et al.*, 2020; Zawawi *et al.*, 2022).
254 Silva *et al.* (2023) suggested that fermentation of trehalulose might occur during maturation of Uruçú-
255 Amarela honey. The understanding on formation of trehalulose in honey is limited and it is still not
256 regulated in honey standards (Codex Alimentarius Commission, 2001; Department of Standards
257 Malaysia, 2017). Thus, trehalulose was not measured in the present study.

258 The similar physicochemical changes of both Tualang and Kelulut honey samples during post-harvest
259 maturation *i.e.* decreased fructose and glucose concentrations (Fig. 3) and increased water activity
260 (Fig. 1) and acidity (Fig. 2) suggest prominence of microbial fermentation activities. According to
261 the findings of Silva *et al.* (2023), fermentation was more evident after 72 days of post-harvest
262 maturation, leading to remarkable changes on Uruçú-Amarela honey's physicochemical properties,
263 *i.e.* increased acidity and reduced glucose and fructose. Following practice in Brazil, the stabilising
264 period of post-harvest maturation of honey is determined solely based on visual observation on the
265 adhering of honey's foam on the wall of flask (Drummond, 2013). According to Drummond (2013),
266 the end of stabilising period is achieved usually after around 180 d (about 26 weeks) of post-harvest
267 maturation, *i.e.* when the increasing consistency of honey's foam collar does not move when the glass
268 flask is inclined. In this research, the stabilisation period of both Tualang and Kelulut honey properties
269 were evaluated by using not just the physico-chemical changes but also the changes in TPC, DPPH,
270 and HMF concentration. It is known that high HMF concentration in honey can give negative impacts
271 to health due to its potential carcinogenic, mutagenic, genotoxic and organotoxic characteristics
272 (Abraham *et al.*, 2011; Shapla *et al.*, 2018; Choudhary *et al.*, 2020). The Codex honey standards has
273 set a maximum limit of 80 mg/kg honey for tropical honey (Codex Alimentarius Commission, 2001).

274 **3.2 Changes in TPC, DPPH and HMF**

275 The total phenolic content (TPC) and DPPH radical scavenging activity are considered positive health
276 promoting properties while HMF is a negative quality parameter of honey. HMF increase during

277 honey aging is a natural process and unavoidable (Kesić *et al.*, 2014) thus has to be compensated by
278 the anticipated increase of its antioxidant properties. Figure 4(a) shows that TPC of Tualang and
279 Kelulut honey increased steadily by 12.61 and 54.66% after 26 weeks respectively, from 1286.36 and
280 483.52 mgGAE/kg honey to 1448.57 and 747.83 mgGAE/kg honey for its first half of maturation
281 period. The increase was less for the second half of maturation period, *i.e.* by a further 8.49% for
282 Tualang and 0.35% for Kelulut honey to 1571.62 and 750.41 mgGAE/kg respectively at the end of
283 post-harvest maturation. The earlier work of da Silva *et al.* (2020) has shown a similar increasing
284 trend of TPC for *Apis Mellifera* L. honey during storage but the otherwise was reported for Uruçú-
285 Amarela honey, where TPC reduced from 515.11 to 463.5 mgGAE/kg honey after 180 d of post-
286 harvest maturation (Silva *et al.*, 2023). Silva *et al.* (2023) explained that the increase of honey's
287 acidity during post-harvest maturation may cause the structural changes of phenolic compound.
288 According to Wojtunik-Kulesza *et al.* (2020), phenolic compounds exist commonly in polymerized,
289 glycosylated and esterified forms. In acidic conditions, the compounds can transform to a new
290 phenolic derivatives through ethylation, glycosylation, hydroxylation or dimerization reactions
291 (Wojtunik-Kulesza *et al.*, 2020; Silva *et al.*, 2023). The transformation and stability of the compound
292 structures vary significantly between different phenolic compounds (Šarić *et al.*, 2020). For instance,
293 a previous study have shown that flavonols can transform to hydroxyphenylacetic acids,
294 phenylvalerolactone and hydroxyphenylpropionic acids while flavones and flavanones can degrade
295 to hydroxyphenylpropionic acids (Wojtunik-Kulesza *et al.*, 2020).

296 Thus, the extreme diverse phenolic profiles between honey samples could lead to unpredictable
297 outcomes as different phenolic compounds which reacted differently leading to the contrasting trends
298 reported in different studies (Lawag *et al.*, 2022). Khalil *et al.* (2011) have identified six phenolic
299 acids, *i.e.* gallic, syringic, caffeic, p-coumaric and trans-cinnamic acids, and five flavonoids, *i.e.*
300 luteolin, kaempferol, catechin, apigenin and naringenin in Malaysian honeys, with each type of honey
301 showing a different profile. A more recent research by Lawag *et al.* (2022) reported that there are as
302 many as 161 different phenolic compounds that have been reported in honey from around the globe.

303 In general, phenolic contents in honey show significant therapeutic potential and give rise to its
304 health-beneficial properties, *i.e.* the anti-inflammatory, anti-neoplastic and antimicrobial activities
305 (Uthurry *et al.*, 2011; Cianciosi *et al.*, 2018). Phenolic compounds in honey also contribute to the
306 good antioxidant activities due to its excellent free radicals scavenging ability (da Silva *et al.*, 2016;
307 Cianciosi *et al.*, 2018).

308 Studies have reported positive correlation between TPC and antioxidant DPPH radical scavenging
309 activity of honey consistently to the extend where TPC presents an estimation on the antioxidant level
310 of honey (Sant'Ana *et al.*, 2014; Yap *et al.*, 2022). The DPPH parameter, however, is known to
311 provide a more specific and direct measurement on antioxidant activity of honey from its radical
312 scavenging capacity (Lewoyehu *et al.*, 2019). The DPPH results in Figure 4(b) shows consistency
313 with TPC indicating Tualang honey has a higher antioxidant level than Kelulut honey. This finding
314 is agreeing with previous studies showing high antioxidant activities in Tualang honey (Kishore *et*
315 *al.*, 2011; Ahmed and Othman, 2013). However, from Figure 4(b), the high DPPH value of Tualang
316 honey reduced from 85.16 to 63.92% whereas the lower antioxidant Kelulut honey increased from
317 49.73 to 54.74% after 26 weeks of post-harvest maturation. Thereafter, the DPPH values of Tualang
318 honey rebounded back to 76.54% and Kelulut honey further increased to 63.95% at 44th weeks of
319 post-harvest maturation. The results suggested that the post-harvest maturation process might be
320 beneficial in elevating the antioxidant level of honey with lower antioxidant activities. The only other
321 source that reported this similarly is Silva *et al.* (2023), who mentioned that antioxidant ABTS radical
322 scavenging activity of Uruçú-Amarela honey reduced by 9.3% after 36 d and then rebounded by 6.6%
323 to 8.22 TEAC mM.g⁻¹ after 180 d of post-harvest maturation. Previous studies have also reported
324 contradicting antioxidant DPPH radical scavenging activity during honey storage. Zarei *et al.* (2019a)
325 showed that DPPH value of Thyme honey reduced from 63.8 to 28.4% after one year whereas da
326 Silva *et al.* (2020) reported a 30-52% DPPH increase for multifloral *Apis Mellifera* L. honey after 450
327 d of storage. The DPPH radical scavenging activity of a honey is affected by the complex reactions
328 of its antioxidant bioactive compounds including the phenolic compounds (Alvarez-Suarez *et al.*,

329 2009), amino acids (Pérez *et al.*, 2007) and enzymes (Gheldorf *et al.*, 2002). The formation and
330 degradation of these bioactive compounds due to the reactions thereby cause fluctuations of DPPH
331 radical scavenging values in honey (da Silva *et al.*, 2016; da Silva *et al.*, 2020). Braghini *et al.* (2020)
332 reported six bioactive compounds that were not originally present in honey, *i.e.* vanillin, quercetin,
333 gallic, p-hydroxymethylbenzoic, kaempferol and protocatechuic were detected after 90 d of storage.

334 Figure 5 shows that HMF of both honeys accumulated steadily during post-harvest maturation, from
335 0.3 and 0.25 mg/kg honey to 48 and 61.23 mg/kg honey for Tualang and Kelulut honey respectively
336 at 26 weeks and reached a high value of 121.54 and 162.25 mg/kg honey after 52 weeks. The rate of
337 HMF accumulation is higher in Kelulut than Tualang honey. In other honey studies, Ribeiro *et al.*
338 (2018) showed no detection on HMF in Tiuba honey, Silva *et al.* (2023) recorded a low amount of
339 HMF of 18.81 mg/kg honey in Uruçú-Amarela honey after 180 d of post-harvest maturation,
340 Mouhoubi-Tafinine *et al.* (2018) reported a high concentration of 100.84-353.09 mg/kg honey after
341 9 months and Khalil *et al.* (2010) also reported a high content of 128.19 and 206.06 mg/kg honey for
342 Tualang honey stored for one year. Hydroxymethylfurfural (HMF) is a widely recognised quality
343 parameter of honey (Codex Alimentarius Commission, 2001). It is a potentially carcinogenic
344 compound (Capuano and Fogliano, 2011) formed through Maillard reaction and hexose dehydration
345 that occur during processing and ageing of honey (Choudhary *et al.*, 2020). Studies have consistently
346 recorded low concentration of HMF in fresh honey (0-27 mg/kg honey) and it spiked high in heat-
347 processed and aged honey (43-1426 mg/kg honey) (Khalil *et al.*, 2010; Braghini *et al.*, 2020; Sabireen
348 *et al.*, 2020). Thus, it is generally accepted that a higher HMF indicates a lower quality of honey. A
349 maximum concentration limit of 80 mg/kg honey is stated in Codex STAN 12-1981 for tropical honey
350 (Codex Alimentarius Commission, 2001).

351 The rate of HMF formation in honey is affected by its physicochemical properties, *i.e.* water activity,
352 acidity, amino acids, sugars, minerals and concentration of vitamin E as explained by Choudhary *et*
353 *al.* (2020). The higher water activity (Figure 1) and acidity (Figure 2(b)) of Kelulut honey could have

354 facilitated the formation of HMF (Chuttong *et al.*, 2016b; Shapla *et al.*, 2018) thus resulting a higher
355 HMF accumulation (Figure 5). Referring to Figure 5, at the 80 mg/kg honey HMF cut-off, the
356 maximum post-harvest maturation period is around 44 weeks for Tualang and 34 weeks for Kelulut.
357 This is recommended as the stabilisation period for Tualang and Kelulut honey with a safe increase
358 of TPC by 12.61 and 54.66% at least as recorded at 26 weeks.

359 **3.3 Bacterial Profile Changes**

360 The results of next-generation sequencing yielded a total of 898608 16s high quality rRNA sequences.
361 The sequences were assigned to 11032 bacterial operational taxonomic units (OTUs) respectively at
362 97% sequence similarity. The bacterial OTUs were successfully assigned to 26 phyla and 308 genera
363 of bacteria. Figure 6 shows the simplified bacterial profiles of Kelulut honey at three stages of
364 maturation, *i.e.* in the beginning, middle (26 weeks) and at the end of maturation of 52 weeks. Three
365 bacterial phyla identified as the main and dominating bacterial that undergo substantial changes
366 during the post-harvest maturation process are the *Proteobacteria*, *Firmicutes* and *Actinobacteria*.
367 Previous studies by Hroncová *et al.* (2018) and Yap *et al.* (2022) have consistently reported the
368 prevalence of *Proteobacteria*, *Firmicutes* and *Actinobacteria* phyla in honey. The relative abundance
369 of *Proteobacteria* reduced from 71.7 to 70.7% while *Firmicutes* increased from 2.4 to 6.4% after 26
370 weeks of post-harvest maturation. At the end of 52 weeks, *Proteobacteria* reduced further to 53.9%
371 while *Firmicutes* increased dramatically to 21%. The least changes was the *Actinobacteria* where it
372 fluctuated with slight decrease from 7.2 to 4% at the end of 52 weeks. The phyla *Proteobacteria*,
373 *Firmicutes* and *Actinobacteria* are categorised as fermentative bacteria which possess the ability to
374 breakdown saccharides to form lactic or acetic acid (Thierry *et al.*, 2011; Lee *et al.*, 2015). They are
375 highly responsible for the fermentative activity and this is proven from the significant changes and
376 shifting of their relative abundance during post-harvest maturation process.

377 Zooming into bacterial profiles of honey at genus level (Table 1), the *Proteobacteria* phyla of Kelulut
378 had the most diverse genera, mainly environmental bacteria where bees may have acquired during

379 foraging activities. It was dominated by genera *Acinetobacteri* (2.25%), *Mesorhizobium* (4.95%),
380 *Comamonadaceae* (5.65%), *Rhizobium* (5.9%), *Burkhoderia* (10.22%) and *Ralstonia* (24.22%).
381 *Burkhoderia* genera was detected in honeybees and bumble bee specimens (Martinson *et al.*, 2011)
382 while *Ralstonia* genera was isolated from Australian stingless bees, *i.e.* *Austroplebeia*
383 *australis*, *Tetragonula carbonaria* and *Tetragonula hockingsii* (Leonhardt and Kaltenpoth, 2014).
384 The relative abundance of *Burkhoderia* and *Ralstonia* genera reduced by 0.84 and 5.21% respectively
385 at the end of 52 weeks of post-harvest maturation. *Burkhoderia* *sp.* is a common environmental
386 bacteria that can stimulate growth of plants, form an antagonistic interactions with fungi and establish
387 a symbiosis with insects (Eberl and Vandamme, 2016). However, despite exhibiting some functional
388 effects, there are also some bacterial species within the genus *Burkhoderia* that possess pathogenic
389 potential. According to Eberl and Vandamme (2016), *Burkholderia pseudomallei* and *Burkholderia*
390 *mallei* were categorised as animal pathogens while *Burkholderia cepacia*, *Burkholderia caryophylli*,
391 and *Burkholderia gladioli* were considered as plant pathogens. Likewise, *Ralstonia* is a non-
392 fermenting Gram-negative bacteria genus that also consisted of some pathogenic species, *i.e.*
393 *Ralstonia pickettii*, *Ralstonia insidiosa* and *Ralstonia mannitololytica* (Ryan and Adley, 2014). The
394 reduction of *Burkhoderia* and *Ralstonia* genera during post-harvest maturation suggests the benefits
395 of maturation process which have reduced potentially pathogenic bacteria genera in Kelulut honey.

396 The two beneficial bacteria genera of *Bacillus* and *Lactobacillus* that have been reported regularly in
397 honey studies are the dominant genera of phylum *Firmicutes*, constituting to 0.22 and 1.29% of
398 Kelulut honey's bacterial profile (Alberoni *et al.*, 2016; Audisio, 2017; Anjum *et al.*, 2018). The
399 relative abundance of *Bacillus* and *Lactobacillus* increased to 2.6 and 6.25% respectively after 26
400 weeks of post-harvest maturation. The values continue to increase as the post-harvest maturation
401 progressed, reaching a higher value of 4.85 and 18.46% respectively for *Bacillus* and *Lactobacillus*
402 genera after 52 weeks. Both *Bacillus* and *Lactobacillus* are recognised as probiotic bacteria (Esawy
403 *et al.*, 2012; Zulkhairi Amin *et al.*, 2019) due to its various reported health-beneficial factors. The
404 *Bacillus* *sp.* possess good antioxidant potential and is able to produce lipase and cholesterol oxidase

405 enzyme that help in reducing the low-density lipoprotein cholesterol (Abdelsamad *et al.*, 2022).
406 Likewise, the *Lactobacillus spp.* is also promising for its antimicrobial effects against some foodborne
407 pathogens, *i.e.* *E. coli*, *Salmonella enteritidis*, *Listeria monocytogenes*, *Staphylococcus aureus* and
408 *Shigella flexneri* (Lashani *et al.*, 2020). The increased prevalence of *Bacillus* and *Lactobacillus*
409 genera during post-harvest maturation of honey is potentially positive in enhancing honey's probiotic
410 qualities as suggested by earlier work of Yap *et al.* (2022).

411 The reduction of phylum *Actinobacteria* is mostly attributed to the *Propionibacterium* genus where
412 relative abundance reduced from 4.21 to 1.03%. Although *Propionibacterium* is more commonly
413 detected in dairy products, sourdough and fermented vegetables (Thierry *et al.*, 2011; Gautier, 2014),
414 it has also been detected in the gut of honeybees (Callegari *et al.*, 2021). It is a fermentative bacteria
415 that produces propionic acid, the major end product that effectively prevent food spoilage caused by
416 yeast and also 1,4-dihydroxy-2-naphthoic acid that gives benefit of stimulating growth of probiotic
417 bacteria (Thierry *et al.*, 2011). The activities of *Propionibacterium* genus is said to be inhibited by
418 the increasing acidity during fermentation (Gautier, 2014; Piwowarek *et al.*, 2018), which explains
419 its reduction during post-harvest maturation.

420 **4.0 Conclusions**

421 Post-harvest maturation is a simple honey preservation technique that allows honey to age naturally
422 in a controlled condition. Natural fermentation occurred during post-harvest maturation process of
423 honey due to its consistently high water activity (> 0.6) and the presence of fermentative bacteria, *i.e.*
424 *Proteobacteria*, *Firmicutes* and *Actinobacteria* phyla resulting increase in free acidity by 2.05 and
425 2.24% for Tualang and Kelulut honey respectively while its fructose and glucose content decreased
426 by 1.05-10.62% and 12.11-15.77% after the recommended maturation period of 26 weeks. At this
427 recommended maturation period, the total phenolic content of Tualang and Kelulut honey increased
428 by 12.61 and 54.66% respectively with HMF concentrations maintaining between 48.00-61.23 mg/kg
429 honey, well within the permissible limit. The results suggest that post-harvest maturation is a good

430 preservation technique for honey, particularly for Kelulut honey because of improved bioactivity
431 from increased DPPH radical scavenging activity by 10.07% and improved probiotic bacteria profile
432 of the *Bacillus* and *Lactobacillus* genera in terms of relative abundance increase between 1.51 and
433 8.85%.

434 **Conflict of Interest**

435 Authors declare there is no conflicts of interest in this research.

436 **Acknowledgements**

437 This work was supported by Universiti Putra Malaysia (UPM) [Grant Number UPM.RMC.800-
438 3/3/1/GPB/2021/9695600]. Ethics approval was not required for this research.

439 **Ethical Guidelines**

440 Ethics approval was not required for this research.

441 **Data Availability Statement**

442 The data that support the findings of this study are available from the corresponding author upon
443 reasonable request.

444 **References**

445 Abdelsamad, N.O., Esawy, M.A., Mahmoud, Z.E., El-Shazly, A.I., Elsayed, T.R. & Gamal, A.A.
446 (2022). Evaluation of different bacterial honey isolates as probiotics and their efficient roles in
447 cholesterol reduction. *World Journal of Microbiology and Biotechnology*, **38**, 1–12.

448 Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A. & Appel, K.E. (2011). Toxicology
449 and risk assessment of 5-Hydroxymethylfurfural in food. *Molecular Nutrition and Food
450 Research*, **55**, 667–678.

451 Ahmed, S. & Othman, N.H. (2013). Review of the medicinal effects of tualang honey and a
452 comparison with Manuka honey. *Malaysian Journal of Medical Sciences*, **20**, 6–13.

453 Akhmazillah, M.F.N., Farid, M.M. & Silva, F.V.M. (2013). High pressure processing (HPP) of honey
454 for the improvement of nutritional value. *Innovative Food Science & Emerging Technologies*,
455 **20**, 59–63.

456 Alberoni, D., Gaggia, F., Baffoni, L. & Gioia, D. Di. (2016). Beneficial microorganisms for honey
457 bees: problems and progresses. *Applied Microbiology and Biotechnology*, **100**, 9469–9482.

458 Alvarez-Suarez, J., Tulipani, S., Romandini, S., Vidal, A. & Battino, M. (2009). Methodological
459 Aspects about Determination of Phenolic Compounds and In Vitro Evaluation of Antioxidant
460 Capacity in the Honey: A Review. *Current Analytical Chemistry*, **5**, 293–302.

461 Anjum, S.I., Shah, A.H., Aurongzeb, M., Kori, J., Azim, M.K., Ansari, M.J. & Bin, L. (2018).
462 Characterization of gut bacterial flora of *Apis mellifera* from north-west Pakistan. *Saudi Journal
463 of Biological Sciences*, **25**, 388–392.

464 AOAC International. (2005). *Official Methods of Analysis of AOAC International*. 11th edn.
465 Gaithersburg, MD, USA: Association of Official Analytical Chemists International.

466 Audisio, M.C. (2017). Gram-Positive Bacteria with Probiotic Potential for the *Apis mellifera* L.
467 Honey Bee: The Experience in the Northwest of Argentina. *Probiotics and Antimicrobial
468 Proteins*.

469 Bahri, S., Abd Razak, S.B., Aziz, A., Nora'aini, A., Ali, M.F. & Visser, F. (2016). The sustainable
470 integration of meliponiculture as an additional income stream for rubber smallholders in
471 Malaysia. *CRI & IRRDB International Rubber Conference 2016*, 143–156.

472 Bogdanov, S. (2002). *Harmonised methods of the International Honey Commission*. Liebefeld,
473 Switzerland: Swiss Bee Research Centre.

474 Braghini, F., Biluca, F.C., Ottequir, F., Gonzaga, L. V., Silva, M. da, Vitali, L., Micke, G.A., Costa,
475 A.C.O. & Fett, R. (2020). Effect of different storage conditions on physicochemical and
476 bioactive characteristics of thermally processed stingless bee honeys. *LWT*, **131**, 109724.

477 Braghini, F., Biluca, F.C., Schulz, M., Gonzaga, L. V., Costa, A.C.O. & Fett, R. (2021). Stingless bee
478 honey: a precious but unregulated product - reality and expectations. *Food Reviews International*,
479 **38**, 683–712.

480 Callegari, M., Crotti, E., Fusi, M., Marasco, R., Gonella, E., Noni, I. De, Romano, D., Borin, S.,
481 Tsiamis, G., Cherif, A., Alma, A. & Daffonchio, D. (2021). Compartmentalization of bacterial
482 and fungal microbiomes in the gut of adult honeybees. *npj Biofilms and Microbiomes 2021* **7**:1,
483 **7**, 1–15.

484 Capuano, E. & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on
485 metabolism, toxicity, occurrence in food and mitigation strategies. *LWT - Food Science and
486 Technology*, **44**, 793–810.

487 Chong, K.Y., Chin, N.L. & Yusof, Y.A. (2017). Thermosonication and optimization of stingless bee
488 honey processing. *Food Science and Technology International*, **23**, 608–622.

489 Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P. & Suri, S. (2020). 5-
490 Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent
491 developments. *Toxin Reviews*, 1–17.

492 Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. (2016a). Physicochemical profiles of
493 stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). *Food Chemistry*,
494 **192**, 149–155.

495 Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. (2016b). Effects of long term storage on
496 stingless bee (Hymenoptera: Apidae: Meliponini) honey. *Journal of Apicultural Research*, 1–
497 11.

498 Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboreda-Rodriguez, P., Manna, P.,
499 Zhang, J., Bravo Lamas, L., Martínez Flórez, S., Agudo Toyos, P., Quiles, J., Giampieri, F. &
500 Battino, M. (2018). Phenolic Compounds in Honey and Their Associated Health Benefits: A

501 Review. *Molecules*, **23**, 2322.

502 Codex Alimentarius Commission. (2001). Revised Codex Standard For Honey for Honey Codex Stan
503 12-1981. *Codex Standard*, **12**, 1–7.

504 This document is the most commonly referred and widely recognised standard for honey. It is
505 served as a guideline for the quality control of honey. In this study, the document was referred
506 to check for the physicochemical compliance of honey during maturation process.

507 Cortopassi-Laurino, M., Imperatriz-Fonseca, V.L., Roubik, D.W., Dollin, A., Heard, T., Aguilar, I.,
508 Venturieri, G.C., Eardley, C. & Nogueira-Neto, P. (2006). Global meliponiculture: challenges
509 and opportunities. *Apidologie*, **37**, 275–292.

510 da Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C.O. & Fett, R. (2016). Honey: Chemical
511 composition, stability and authenticity. *Food Chemistry*, **196**, 309–323.

512 da Silva, P.M., Gonzaga, L.V., Biliuca, F.C., Schulz, M., Vitali, L., Micke, G.A., Oliveira Costa, A.C.
513 & Fett, R. (2020). Stability of Brazilian *Apis mellifera* L. honey during prolonged storage:
514 Physicochemical parameters and bioactive compounds. *LWT*, **129**, 109521.

515 da Silva, T.M.F. de S.S., Ávila, S., Matos, M.G., Junkert, A.M., Tolabrdini Frizon, C.N., Pontarolo,
516 R., Beux, M.R. & Ferreira, S.M.R. (2022). Effect of preservation methods on antimicrobial
517 activity, and nutritional and microbiological quality of *Melipona quadrifasciata* bee honey.
518 *Journal of Food Processing and Preservation*, **46**, e16917.

519 Department of Standards Malaysia. (2017). *Kelulut (stingless bee) honey- specification. MS*
520 *2683:2017*.

521 Drummond, M.S. (2013). Maturation of stingless bee pot-honey : a new frontier in the gastronomical
522 market. In: *Stingless bees process honey and pollen in cerumen pots* (edited by P. Vit & D.
523 Roubik). Pp. 1–9. Mérida, Venezuela: Facultad de Farmacia y Bioanálisis, Universidad de Los
524 Andes.

525 This study introduced and provided fundamental explanations on maturation process of stingless
526 bee honey. The authors explained on the practical approaches of maturation process and showed
527 the acceptability of maturing processed honey in the market.

528 Eberl, L. & Vandamme, P. (2016). Members of the genus *Burkholderia*: good and bad guys.
529 *F1000Research*, **5**, 1007.

530 Esawy, M.A., Awad, G.E.A., Ahmed, E.F., Danial, E.N. & Mansour, N.M. (2012). Evaluation of
531 honey as a new reservoir for probiotic bacteria. *Advances in Food Sciences journal*, **34**, 72–81.

532 Fletcher, M.T., Hungerford, N.L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I.S.J.,
533 Blanchfield, J.T. & Zawawi, N. (2020). Stingless bee honey, a novel source of trehalulose: a
534 biologically active disaccharide with health benefits. *Scientific Reports*, **10**, 12128.

535 Gautier, M. (2014). *Propionibacterium*. *Encyclopedia of Food Microbiology: Second Edition*, 232–
536 237.

537 Gheldof, N., Wang, X.-H. & Engeseth, N.J. (2002). Identification and Quantification of Antioxidant
538 Components of Honeys from Various Floral Sources. *Journal of Agricultural and Food
539 Chemistry*, **50**, 5870–5877.

540 Goh, L.P.W., Molujin, A.M., Muthu, K., Abdulla, R., Sabullah, M.K., Mohd Faik, A.A., Gansau, J.A.
541 & Jawan, R. (2021). Isolation and characterization of lactic acid bacteria from Sabah (North
542 Borneo) stingless bees for probiotic and food applications. *International Journal of Food
543 Properties*, **24**, 564–578.

544 Hasali, N.H.M., Zamri, A.I., Lani, M.N., Mubarak, A. & Suhaili, Z. (2015). Identification of lactic
545 acid bacteria from Meliponine honey and their antimicrobial activity against pathogenic bacteria.
546 *American-Eurasian Journal of Sustainable Agriculture*, **9**, A453290795.

547 Hroncová, Z., Konopásková, K., Volštátová, T. & Killer, J. (2018). Quantification of Firmicutes,
548 Actinobacteria, and Gammaproteobacteria from Bohemian Honey. *Scientia Agriculturae
549 Bohemica*, **49**, 192–200.

550 Kamal, D.A.M., Ibrahim, S.F., Kamal, H., Kashim, M.I.A.M. & Mokhtar, M.H. (2021).
551 Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A
552 Comprehensive Review. *Nutrients 2021, Vol. 13, Page 197*, **13**, 197.

553 Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. & Chua, L.S. (2017). Classification of entomological
554 origin of honey based on its physicochemical and antioxidant properties. *International Journal
555 of Food Properties*, **20**, S2723–S2738.

556 Kesić, A., Crnkić, A., Hodžić, Z., Ibrišimović, N. & Šestan, A. (2014). Effects of Botanical Origin
557 and Ageing on HMF Content in Bee Honey. *Journal of Scientific Research and Reports*, **3**,
558 1057–1066.

559 Khalil, M.I., Alam, N., Moniruzzaman, M., Sulaiman, S.A. & Gan, S.H. (2011). Phenolic Acid
560 Composition and Antioxidant Properties of Malaysian Honeys. *Journal of Food Science*, **76**,
561 C921–C928.

562 Khalil, M.I., Sulaiman, S.A. & Gan, S.H. (2010). High 5-hydroxymethylfurfural concentrations are
563 found in Malaysian honey samples stored for more than one year. *Food and Chemical
564 Toxicology*, **48**, 2388–2392.

565 Kishore, R.K., Halim, A.S., Syazana, M.S.N. & Sirajudeen, K.N.S. (2011). Tualang honey has higher
566 phenolic content and greater radical scavenging activity compared with other honey sources.
567 *Nutrition Research*, **31**, 322–325.

568 Lashani, E., Davoodabadi, A. & Dallal, M.M.S. (2020). Some probiotic properties of Lactobacillus
569 species isolated from honey and their antimicrobial activity against foodborne pathogens.
570 *Veterinary Research Forum*, **11**, 121.

571 Lawag, I.L., Lim, L.Y., Joshi, R., Hammer, K.A. & Locher, C. (2022). A Comprehensive Survey of
572 Phenolic Constituents Reported in Monofloral Honeys around the Globe. *Foods 2022, Vol. 11,
573 Page 1152*, **11**, 1152.

574 Lee, F.J., Rusch, D.B., Stewart, F.J., Mattila, H.R. & Newton, I.L.G. (2015). Saccharide breakdown
575 and fermentation by the honey bee gut microbiome. *Environmental Microbiology*, **17**, 796–815.

576 Leonhardt, S.D. & Kaltenpoth, M. (2014). Microbial communities of three sympatric Australian
577 stingless bee species. *PLoS ONE*, **9**, 1–6.

578 Lewoyehu, M., Amare, M. & Yildiz, F. (2019). Comparative evaluation of analytical methods for
579 determining the antioxidant activities of honey: A review. *Cogent Food & Agriculture*, **5**,
580 1685059.

581 Leyva-Daniel, D.E., Alamilla-Beltrán, L., Villalobos-Castillejos, F., Monroy-Villagrana, A.,
582 Jiménez-Guzmán, J. & Welti-Chanes, J. (2020). Microfluidization as a honey processing
583 proposal to improve its functional quality. *Journal of Food Engineering*, **274**, 109831.

584 Lim, Y.W. & Baharun, R. Bin. (2009). Apiculture strategies in Malaysia: planning and
585 implementation. In: *Contemporary Issues in Marketing*. Pp. 33–54. Skudai, Johor: Penerbit
586 UTM Press.

587 Magoč, T. & Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome
588 assemblies. *Bioinformatics (Oxford, England)*, **27**, 2957–2963.

589 Martinson, V.G., Danforth, B.N., Minckley, R.L., Ruepell, O., Tingek, S. & Moran, N.A. (2011). A
590 simple and distinctive microbiota associated with honey bees and bumble bees. *Molecular
591 Ecology*, **20**, 619–628.

592 Mat Ramlan, N.A.F., Md Zin, A.S., Safari, N.F., Chan, K.W. & Zawawi, N. (2021). Application of
593 Heating on the Antioxidant and Antibacterial Properties of Malaysian and Australian Stingless
594 Bee Honey. *Antibiotics*, **10**, 1365.

595 Moniruzzaman, M., Khalil, M.I., Sulaiman, S.A. & Gan, S.H. (2013). Physicochemical and
596 antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis
597 mellifera*. *BMC Complementary and Alternative Medicine*, **13**, 43.

598 Omar, S., Enchang, F.K., Nazri, A., Ismail, M., Iryani, W. & Ismail, W. (2019). Physicochemical
599 Profiles of Honey Harvested from Four Major Species of Stingless Bee (Kelulut) in North East
600 Peninsular of Malaysia. *Malays. Appl. Biol.*, **48**, 111–116.

601 Özcelik, S., Kuley, E. & Özogul, F. (2016). Formation of lactic, acetic, succinic, propionic, formic
602 and butyric acid by lactic acid bacteria. *LWT*, **73**, 536–542.

603 Pérez, A.R., Iglesias, M.T., Pueyo, E., González, M. & Lorenzo, C. De. (2007). Amino acid
604 composition and antioxidant capacity of Spanish honeys. *Journal of Agricultural and Food
605 Chemistry*, **55**, 360–365.

606 Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M. & Ścibisz, I. (2018).
607 Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important
608 for the industry. *Applied Microbiology and Biotechnology*, **102**, 515.

609 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glöckner, F.O.
610 (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-
611 based tools. *Nucleic Acids Research*, **41**, D590–D596.

612 Ribeiro, G.P., Villas-Bôas, J.K., Spinosa, W.A. & Prudencio, S.H. (2018). Influence of freezing,
613 pasteurization and maturation on Tiúba honey quality. *LWT - Food Science and Technology*, **90**,
614 607–612.

615 Ryan, M.P. & Adley, C.C. (2014). Ralstonia spp.: emerging global opportunistic pathogens.
616 *European Journal of Clinical Microbiology & Infectious Diseases*, **33**, 291–304.

617 Sabireen, S.N., Sulaiman, S.A., Salleh, R.M. & Fuad, W.E.M. (2020). Correlation Between 5-
618 Hydroxymethylfurfural (HMF) Concentration and Physicochemical Properties in Fresh and
619 Aged Tualang Honey. *Asian Journal of Medicine and Biomedicine*, **4**, 10–16.

620 Saludin, S.F., Kamarulzaman, N.H. & Ismail, M.M. (2018). Measuring consumers' preferences of
621 stingless bee honey (meliponine honey) based on sensory characteristics. *International Food
622 Research Journal*, **26**, 225–235.

623 Samborska, K. & Czelejewska, M. (2014). The Influence of Thermal Treatment and Spray Drying on
624 the Physicochemical Properties of Polish Honeys. *Journal of Food Processing and Preservation*,
625 **38**, 413–419.

626 Sant'Ana, L.D.O., Buarque Ferreira, A.B., Lorenzon, M.C.A., Berbara, R.L.L. & Castro, R.N. (2014).
627 Correlation of total phenolic and flavonoid contents of brazilian honeys with colour and
628 antioxidant capacity. *International Journal of Food Properties*, **17**, 65–76.

629 Sanz, S., Gradillas, G., Jimeno, F., Perez, C., Juan, T. & Juanl, T. (1995). Fermentation Problem in

630 Spanish North-Coast Honey. *J. Food Prot.*, **58**, 515–518.

631 Šarić, G., Vahčić, N., Bursać Kovačević, D. & Putnik, P. (2020). The Changes of Flavonoids in
632 Honey during Storage. *Processes*, **8**, 943.

633 Scepankova, H., Pinto, C.A., Paula, V., Estevinho, L.M. & Saraiva, J.A. (2021). Conventional and
634 emergent technologies for honey processing: A perspective on microbiological safety,
635 bioactivity, and quality. *Comprehensive Reviews in Food Science and Food Safety*, **20**, 5393–
636 5420.
637 The study critically reviewed on the latest conventional and alternatives processing approaches
638 of honey. The authors provided explanations on various honey processing techniques and
639 summarized the effects of the techniques on honey quality. The study can be a very good
640 references for honey processing study.

641 Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I. & Gan, S.H. (2018). 5-Hydroxymethylfurfural
642 (HMF) levels in honey and other food products: effects on bees and human health. *Chemistry
643 Central Journal*, **12**, 35.

644 Silva, J.R., Henrique-Bana, F.C., Villas-Bôas, J.K., Colombo Pimentel, T., Spinosa, W.A. &
645 Prudencio, S.H. (2023). Maturation of honey from Uruçú-Amarela (*Melipona mondury*):
646 Metagenomics, metabolomics by NMR 1H, physicochemical and antioxidant properties. *Food
647 Chemistry: Molecular Sciences*, **6**, 100157.
648 In this study, the researchers examined the changes of Uruçú-Amarela honey over a 180 days
649 of maturation. This is the most recent study on honey maturation. Thus, the study serves as a
650 good reference for future honey maturation study.

651 Silva, S.P., Moreira, A.S.P., Domingues, M.D.R.M., Evtuguin, D. V., Coelho, E. & Coimbra, M.A.
652 (2019). Contribution of non-enzymatic transglycosylation reactions to the honey
653 oligosaccharides origin and diversity. *Pure and Applied Chemistry*, **91**, 1231–1242.

654 Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. & Lamuela-Raventos, R.M. (1999). Analysis
655 of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu
656 reagent. *Methods in Enzymology*, **299**, 152–178.

657 Soni, S., Vaidya, D., Mehrotra, S., Sharma, S. & Nandi, S.P. (2016). A Comparative Study on
658 Antibacterial and Antioxidant Activity of Honey at Different Processing Stages. *National
659 Academy Science Letters*, **39**, 435–439.

660 Subramanian, R., Hebbar, H.U. & Rastogi, N.K. (2007). Processing of honey: A review. *International
661 Journal of Food Properties*, **10**, 127–143.

662 Tarapoulouzi, M., Mironescu, M., Drouza, C., Mironescu, I.D. & Agriopoulou, S. (2023). Insight into
663 the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey
664 during Processing and Storage. *Foods*, **12**, 473.

665 Thakar, C. V. (1973). A Preliminary Note on Hiving *Apis Dorsata* Colonies. *Bee World*, **54**, 24–27.

666 Thierry, A., Falentin, H., Deutsch, S.M. & Jan, G. (2011). Bacteria, Beneficial | *Propionibacterium*
667 spp. In: *Encyclopedia of Dairy Sciences*. Pp. 403–411. Elsevier.

668 Tuksitha, L., Chen, Y.-L.S., Chen, Y.-L., Wong, K.-Y. & Peng, C.-C. (2018). Antioxidant and
669 antibacterial capacity of stingless bee honey from Borneo (Sarawak). *Journal of Asia-Pacific
670 Entomology*, **21**, 563–570.

671 Turhan, I., Tetik, N., Karhan, M., Gurel, F. & Reyhan Tavukcuoglu, H. (2008). Quality of honeys
672 influenced by thermal treatment. *LWT - Food Science and Technology*, **41**, 1396–1399.

673 Uthurry, C.A., Hevia, D. & Gomez-Cordoves, C. (2011). Role of honey polyphenols in health.
674 *Journal of ApiProduct and ApiMedical Science*, **3**, 141–159.

675 Venkatavara Prasad, D., Madhusudanan, S. & Jaganathan, S. (2015). uCLUST-A New Algorithm for
676 Clustering Unstructured Data. *ARPJ Journal of Engineering and Applied Sciences*, **10**, 2108–
677 2117.

678 Wang, X.H., Gheldof, N. & Engeseth, N.J. (2004). Effect of Processing and Storage on Antioxidant
679 Capacity of Honey. *Journal of Food Science*, **69**, fct96–fct101.

680 White, J.W. (1979). Spectrophotometric method for hydroxymethylfurfural in honey. *Journal of*
681 *Association of Official Analytical Chemists*, **62**, 509–514.

682 Wojtunik-Kulesza, K., Oniszczuk, A., Oniszczuk, T., Combrzyński, M., Nowakowska, D. &
683 Matwijczuk, A. (2020). Influence of In Vitro Digestion on Composition, Bioaccessibility and
684 Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. *Nutrients*, **12**, 1401.

685 Wu, J., Han, B., Chen, X., Gao, J., Zhao, S., Sun, L. & Wang, S. (2023). Quantification of bioactive
686 components and evaluation of microbial community and antibacterial activity from
687 Heterotrigona itama and Tetrigona binghami honeys. *International Journal of Food Science &*
688 *Technology*, **58**, 2247–2257.

689 Yap, S.K., Chin, N.L., Shah, N.N.A.K., Than, L.T.L. & Niranjan, K. (2022). Physicochemical
690 characteristics, antioxidant properties and bacterial profiling of three Malaysian honey varieties:
691 a study using multivariate analysis. *Journal of the Science of Food and Agriculture*, **102**, 5440–
692 5451.

693 Zarei, M., Fazlara, A. & Alijani, N. (2019a). Evaluation of the changes in physicochemical and
694 antioxidant properties of honey during storage. *Functional Foods in Health and Disease*, **9**, 593–
695 605.

696 Zarei, M., Fazlara, A. & Tulabifard, N. (2019b). Effect of thermal treatment on physicochemical and
697 antioxidant properties of honey. *Helijon*, **5**, e01894.

698 Zawawi, N., Zhang, J., Hungerford, N.L., Yates, H.S.A., Webber, D.C., Farrell, M., Tinggi, U.,
699 Bhandari, B. & Fletcher, M.T. (2022). Unique physicochemical properties and rare reducing
700 sugar trehalulose mandate new international regulation for stingless bee honey. *Food Chemistry*,
701 **373**, 131566.

702 Zhang, J., Hungerford, N.L., Yates, H.S.A., Smith, T.J. & Fletcher, M.T. (2022). How is Trehalulose
703 Formed by Australian Stingless Bees? - An Intermolecular Displacement of Nectar Sucrose.
704 *Journal of Agricultural and Food Chemistry*, **70**, 6530–6539.

705 Zulkhairi Amin, F.A., Sabri, S., Ismail, M., Chan, K.W., Ismail, N., Mohd Esa, N., Mohd Lila, M.A.
706 & Zawawi, N. (2019). Probiotic Properties of Bacillus Strains Isolated from Stingless Bee
707 (Heterotrigona itama) Honey Collected across Malaysia. *International Journal of Environmental*
708 *Research and Public Health*, **17**, 278.

709

710

711

712

713

714

715

716 **Legends to Figures**

717 **Figure 1:** The changes of water activity in honey during post-harvest maturation

718 **Figure 2:** The changes of (a) pH and (b) free acidity in honey during post-harvest maturation

719 **Figure 3:** The changes of (a) fructose, (b) glucose and (c) maltose concentration in honey during

720 post-harvest maturation

721 **Figure 4:** The changes of (a) total phenolic content and (b) DPPH radical scavenging activity in
722 honey during post-harvest maturation.

723 **Figure 5:** The changes of hydroxymethylfurfural (HMF) in honey during post-harvest maturation

724 **Figure 6:** The bacterial profiles of Kelulut honey during post-harvest maturation at phyla level

725