

Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Yu, Y., Zhang, B., Jiang, X., Cui, Y., Luo, H., Stergiadis, S. ORCID: <https://orcid.org/0000-0002-7293-182X> and Wang, B. (2024) Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat. *Meat Science*, 209. 109419. ISSN 0309-1740 doi: [10.1016/j.meatsci.2023.109419](https://doi.org/10.1016/j.meatsci.2023.109419) Available at <https://centaur.reading.ac.uk/114478/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.meatsci.2023.109419>

Publisher: Elsevier

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Exploring the metabolomic landscape: *Perilla frutescens* as a promising enhancer of production, flavor, and nutrition in Tan lamb meat

Yue Yu^a, Boyan Zhang^a, Xianzhe Jiang^a, Yimeng Cui^a, Hailing Luo^a, Sokratis Stergiadis^b, Bing Wang^{a,*}

^aState Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China

^b*University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom*

*Corresponding author: Bing Wang (wangb@cau.edu.cn)

13 **ABSTRACT**

14 Addressing health-related concerns linked to the metabolite profile of lamb meat has
15 become paramount, in line with the growing demand for enhanced flavor and taste. We
16 examined the impact of *Perilla frutescens* seeds on Tan lamb growth, carcass traits, and
17 metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-
18 concentrate group (HC), and a PFS group (the LC diet supplemented with 3% *Perilla*
19 *frutescens* seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six
20 months) with similar body weights ($25.1 \text{ kg} \pm 1.12 \text{ SD}$) were randomly assigned to one
21 of these three groups for 84-day feeding, including an initial 14-day adjustment phase.
22 The supplementation of PFS resulted in increased average daily gain ($P < 0.01$) and
23 improved carcass quality and meat color ($P < 0.05$). Additionally, it led to an
24 enhancement in omega-3 polyunsaturated fatty acids ($P < 0.05$) and a reduction in the
25 omega-6/omega-3 ratio ($P < 0.05$). Using gas chromatography-mass spectrometry, 369
26 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-
27 trimethyl-benzene associated with PFS ($P < 0.05$). Among the 807 compounds
28 identified by ultra-high performance liquid chromatography-mass spectrometry, there
29 were 66 significantly differential compounds ($P < 0.05$), including 43 hydrophilic
30 metabolites and 23 lipids. PFS supplementation led to significant alterations in 66
31 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-
32 hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-
33 related biomarkers. The study indicates that PFS supplementation can enhance Tan-
34 lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with
35 improved flavor and nutritional characteristics.

36 **Keywords:** fatty acid, volatiles, lipids, lysophosphatidylcholine, flavor and taste
37 precursors

38 **1. Introduction**

39 The cooked meat odor, flavor, and eating taste are closely related to the volatile,
40 lipophilic, and hydrophilic metabolites, and even lipid oxidation compounds in raw
41 meat (Munekata, Pateiro, López-Pedrouso, Gagaoua, & Lorenzo, 2021; Ramalingam,
42 Song, & Hwang, 2019). The lipids and water-soluble compounds are also precursors of
43 these volatile compounds (Khan, Jo, & Tariq, 2015). However, with the development
44 of new techniques and data processing method, liquid chromatography coupled to
45 accurate MS/MS with spectral entropy showed more accurate and helpful for both
46 lipophilic and hydrophilic metabolites and new compounds identification (Li et al.,
47 2021).

48 Diet is one of the most important factors affecting the flavor metabolites and
49 precursors deposition in raw meat (Khan et al., 2015). The total oil content of *Perilla*
50 *frutescens* seed can range from 30-45%, of which α -linolenic acid accounts for 50-62%
51 (ALA). Additionally, *Perilla frutescens* seed also contain functional components such
52 as flavonoids, terpenes, polyphenols, amino acids, among others (Akriti, Rajni, &
53 Meenakshi, 2019). In addition, it contains high concentration of essential oils that can
54 act as preservatives in food systems (Al-Maqtari et al., 2022). Consumers nowadays
55 are paying increasing attention to the relationship between food and health (De Smet &
56 Vossen, 2016). Thus, foods enriched with omega-3 PUFAs (n-3 PUFAs) have gained
57 worldwide acclaim, due to their antiviral, anti-inflammatory, immune-boosting and
58 cholesterol-lowering effects (Kavyani et al., 2022), preventing cardiovascular diseases
59 (Sunagawa et al., 2022), and even improving survival in patients with COVID-19
60 infection (Hathaway et al., 2020). Meanwhile, research indicates that n-3 PUFAs
61 supplementation during pregnancy reduces the risk of developing asthma or asthma
62 symptoms during childhood. Thus, maintaining a moderate intake of n-3 PUFAs is
63 considered crucial for optimal human health.

64 Despite prior studies on *Perilla frutescens* supplementation (Deng et al., 2018;
65 Peiretti, Gasco, Brugia, & Gai, 2011) for carcass quality, organoleptic properties,
66 and nutrition in meat, a comprehensive metabolomics analysis of its effect on Tan lamb

67 metabolism and diverse meat characteristics is lacking. In this study, two integrative
68 untargeted metabolomics approaches were employed to uncover core metabolites and
69 metabolic pathways in Tan sheep, aiming to elucidate the observed phenotypes. We
70 aimed to examine the characteristics related to production (growth rates, feed
71 efficiency), carcass and meat characteristics (classification and basic meat quality
72 parameters), flavour and taste precursors (volatile, lipophilic, and hydrophilic
73 metabolites) and nutritional quality (fatty acid profile, nutritionally-relevant
74 metabolites) of raw meat from lambs fed with *Perilla frutescens* seed.

75 **2. Materials and methods**

76 *2.1. Animals, diets, and samples preparation*

77 All animal procedures in the present study were approved by the Animal Care
78 Committee of China Agricultural University (Beijing, China; approval no.
79 AW30901202-1-1). Forty-five male Tan-lambs (*Ovis aries*) (approximately six months
80 of age) with an average bodyweight (BW) of 25.1 kg (± 1.23 SD) were selected on a
81 commercial Tan-sheep farm (Ningxia Hui Autonomous Region, China). The Tan-lambs
82 were randomly divided into three groups with 15 animals in each group (each group
83 has three blocks (pens); each block has five lambs) based on balanced BW using the
84 RAND function in Excel. Each group was allocated in one of the following three
85 experimental treatments: 1) a low-concentrate diet (LC; 45:55 forage:concentrate ratio,
86 on a dry matter (DM) basis); 2) a high-concentrate control diet (HC; 20:80 forage:
87 concentrate ratio, on a DM basis; 3) a LC diet supplemented with 3% *Perilla frutescens*
88 seed (PFS; 3% of diet of Tan-lamb, on a DM basis). The addition of 3% perilla seeds
89 in this study was based a previous study that found the addition of 1% perilla seeds
90 extract of the feed subtract could mitigate the rumen methane production but with no
91 effects on volatile fatty acids (Wang et al., 2016). The detailed ingredients and nutrient
92 composition of the basal diet of are shown in Table 1. *Perilla frutescens* seeds
93 (Purchased from an agricultural food e-commerce) exhibit a nutrient-rich profile with
94 40.9% ether extract (EE), 23.5% crude protein (CP), 25.4% neutral detergent fiber

95 (NDF), 19.9% acid detergent fiber (ADF), and 3.9% ash (DM basis). In terms of fatty
96 acids, they contain 57.8% C18:3n3 (ALA), 19.9% C18:1n9c (oleic acid), 11.9%
97 C18:2n6c (linoleic acid), and 7.4% C16:0 (palmitic acid, % of total fatty acids) (Table
98 2). The diets were fed as total mixed ration and the *Perilla frutescens* seed was
99 uniformly mixed into the concentrates. The offered feed and refusals from each pen
100 were weighed and recorded daily to determine the DM intake. The lambs were fed twice
101 a day at 09:00 and 17:00. All the lambs had ad libitum access to feed and water
102 throughout the experimental period. The experiment lasted for 84 d, including a 14 d
103 adaptation period, plus 70 d of the feeding experiment.

104 An untargeted metabolomics was conducted for the botanical bioactive compounds
105 for PFS based on the LC-MS/MS analysis, which was performed on an UHPLC system
106 (Vanquish, Thermo Fisher Scientific) with a Waters UPLC BEH C18 column (1.7 μ m
107 2.1*100 mm). The detail protocol was following a previous study (Hou et al., 2019).

108 *2.2. Carcass traits, basic meat quality and targeted fatty acid analysis*

109 At the end of the feeding experiment (on the d 70), 6 lambs per group (2 lambs
110 from each pen) were randomly selected for slaughter. The selection was performed
111 using the RAND function in Excel. Slaughter was conducted following the outlined
112 procedure: euthanasia; skinning; removal of the head at the atlas-occipital joint; cutting
113 of the limbs at the carpo-metacarpal and tarso-metatarsal joints; removal of the heart,
114 liver, spleen, lungs, kidneys, and testis; excision of the omental, perirenal, and tail fat
115 deposits. The organs and carcass weights were measured and recorded immediately
116 after slaughtering, and the organs' index were calculated based on their ratio to carcass
117 weight. Immediately after slaughtering, the body fat (assessed as GR value) and loin-
118 eye area were measured. The GR value was determined by using a vernier caliper to
119 measure the thickness at the 12th/13th rib intersection, 11 cm away from the midline
120 (Karim, Porwal, Kumar, & Singh, 2007). The loin-eye area was determined using a
121 planimeter (QCJ-2000, Harbin Optical Instrument Factory, Harbin, China) at the
122 interface of 12th and 13th ribs on both sides of the carcass (Karim, Porwal, Kumar, &

123 Singh, 2007). Then, meat samples taken from the 6th to 12th ribs of the left *longissimus*
124 *lumborum* (LL) muscle were trimmed of fat. The determination of pH and meat colour
125 were performed between 12th and 13th thoracic vertebrae. To measure the pH values of
126 LL muscle samples at 45 min and 24 h postmortem, a pH meter with automatic
127 temperature compensation was used after calibration with pH 4.6 and 7.0 buffers. Meat
128 color parameters such as redness (*a**), yellowness (*b**), and lightness (*L**) were
129 measured in triplicate after 30 min of blooming at room temperature (approximately at
130 20 °C) using an NS800 high-quality spectrophotometer (3NH Technology co., Ltd,
131 Shenzhen, China). The measurements were conducted at 45 min and 24 h after slaughter,
132 using illuminant D65 as the light source and a 10° observer with an 8 mm diameter
133 measuring area and a 50 mm diameter illumination area (Honikel, 1998). The LL (from
134 the 6th to 12th ribs) at 24 h post-mortem was used to assess instrumental meat quality
135 characteristics including cooking **rate** and shear force (Ekiz et al., 2009). After thawing
136 at 4 °C, the meat was cut into rectangular 2 × 2 × 1 cm samples weighing approximately
137 30 ± 1 g and the connective tissue was removed. The muscle samples were placed in
138 plastic vacuum packs (**two steaming batch**) and placed in a water bath at 75 °C for
139 approximately 30 min until the final core temperature reached 70 °C. The samples were
140 then cooled to room temperature, the surface of the samples was dried with paper towels,
141 and **cooking rate was measured and calculated as follows: (Weight of the samples after**
142 **cooking / Weight of the samples before cooking) × 100%.** After measuring the cooking
143 rate, three sub-samples (cut parallel to the muscle fibres and 1 × 1 cm in cross-section)
144 were removed from each cooked sample. Shearing perpendicular to the muscle fiber
145 direction was performed using a TMS-PRO Texture Analyzer (FTC Co., Ltd., Virginia,
146 USA) **equipped with a WBSF (Warner-Bratzler Shear Force) device featuring a 250**
147 **Newton load cell, employing an across-head speed of 60 mm/min.**

148 The LL samples from the 12th/13th rib at 45 min were collected to freezing tubes
149 and stored in liquid nitrogen for further metabolomics study. The LL samples taken
150 from the 6th to 12th rib section at 24 h postmortem were stored in dry ice and then were
151 used for targeted fatty acid composition via gas chromatography (Model 6890; Agilent
152 Technologies, Santa Clara, CA, USA) equipped with a DB-23 capillary column (60.0

153 m×250 μm×0.25 μm) following our previous method (Zhang et al., 2022). The standard
154 sample mixture (F.A.M.E. Mix, C4-C24 Unsaturates, Supelco-18919-1AMP, Sigma-
155 Aldrich Trading Co.Ltd., Shanghai, China), which consisted of 40 free fatty acids, was
156 used in the analysis. C11:0 (1.0 mg/mL) was employed as the internal standard. The
157 fatty acid results expressed as mg/100 g of wet meat samples. The following
158 combinations and ratios of fatty acids were calculated: saturated fatty acids (SFA),
159 unsaturated fatty acids (UFA), total fatty acids (TFA), monounsaturated fatty acids
160 (MUFA), conjugated linoleic acid (CLA), PUFA, SFA/UFA, and omega-6/omega-3
161 ratio (n-6/n-3). The index of atherogenicity (IA) = (C12:0 + (4 × C14:0) + C16:0) /
162 (MUFA + PUFA), and index of thrombogenicity index (IT) = (C14:0 + C16:0 + C18:0)
163 / (0.5 × MUFA) + (0.5 × n-6) + (3×n-3) + (n-3:n-6) were calculated based on a previous
164 study (Pretorius & Schonfeldt, 2021).

165 *2.3. Volatile compounds identification based on GC-MS analysis*

166 A 300 ± 5 mg LL sample was transferred into a 20 mL headspace vial, to which 10
167 μL of a 2-octanol internal standard (at a concentration of 10 mg/L in deionized water)
168 was added. Subsequent analysis was conducted using a gas chromatography-mass
169 spectrometry (GC-MS) system, specifically during the Solid Phase Microextraction
170 (SPME) cycle of the PAL rail system. The sample incubation temperature was set to
171 60 °C, with a preheating duration of 15 min, followed by an incubation period of 30
172 min. The desorption time was 4 min. The GC-MS analysis was performed on an Agilent
173 7890 gas chromatograph system coupled with a 5977B mass spectrometer, utilizing a
174 DB-Wax column. The sample was injected in splitless mode. Helium served as the
175 carrier gas, with a front inlet purge flow of 3 mL/min and a column gas flow rate of 1
176 mL/min. The initial oven temperature was set to 40 °C and maintained for 4 min, then
177 incrementally increased to 245 °C at a rate of 5 °C/min, where it was held for an
178 additional 5 min. The temperatures for the injection port, transfer line, ion source, and
179 quadrupole were set at 250 °C, 250 °C, 230 °C, and 150 °C, respectively. Ionization
180 was achieved using an energy of -70 eV in electron impact mode. Mass spectrometry

181 data acquisition was performed in scan mode, covering a mass-to-charge ratio (m/z)
182 range of 20-400, with no solvent delay. Raw peak extraction, baseline data filtering and
183 calibration, peak alignment, deconvolution analysis, peak identification, integration,
184 and spectral matching of peak areas were conducted utilizing the Chroma TOF 4.3X
185 software developed by LECO Corporation in conjunction with the NIST database
186 (Garcia & Barbas, 2011).

187 *2.4. Higher definition mix discovery metabolomics based on LC-MS/MS analysis*

188 Twenty-five mg of the LL sample was accurately weighed and transferred into a
189 polypropylene microcentrifuge tube. Subsequently, 500 μ L of an extraction solution,
190 composed of methanol and water in a 3:1 ratio with an isotopically-labelled internal
191 standard mixture (250 nmol/L), was added to the sample. The samples underwent a
192 homogenization process at a frequency of 35 Hz for a duration of 4 min, followed by a
193 5-min sonication in an ice-water bath. This homogenization and sonication cycle was
194 conducted thrice. Post these cycles, the samples were subjected to an incubation period
195 of 1 hour at a temperature of -40 °C, followed by centrifugation at a rotational speed of
196 13,800 g for 15 min at 4 °C. The supernatant resulting from the centrifugation was
197 carefully transferred into a new, clean glass vial for further analysis. A quality control
198 (QC) sample was prepared by amalgamating equal aliquots of supernatants from all
199 samples.

200 The analytical assessments were conducted utilizing a high-definition (HD) mix
201 Ultra-High-Performance Liquid Chromatography (UHPLC) system (Vanquish, Thermo
202 Fisher Scientific) integrated with a UPLC HSS T3 column (2.1 mm \times 100 mm, 1.8 μ m),
203 linked to an Orbitrap Exploris 120 mass spectrometer (Orbitrap MS, Thermo) (UHPLC-
204 OE-MS). The mobile phase comprised of 5 mmol/L ammonium acetate and 5 mmol/L
205 acetic acid in water (A), alongside acetonitrile (B). The autosampler was maintained at
206 a temperature of 4 °C, with an injection volume of 2 μ L. The Orbitrap Exploris 120
207 mass spectrometer was employed due to its capacity for acquiring MS/MS spectra using
208 information-dependent acquisition (IDA) mode under the supervision of the Xcalibur

209 acquisition software (Thermo). In this specified mode, the software incessantly assesses
210 the complete scan MS spectrum. The ESI source conditions were preordained as
211 follows: sheath gas flow rate at 50 Arb, auxiliary gas flow rate at 15 Arb, capillary
212 temperature at 320 °C, full MS resolution at 60,000, MS/MS resolution at 15,000,
213 collision energy at 10/30/60 in Normalized Collision Energy (NCE) mode, and spray
214 voltage at 3.8 kV (positive) or -3.4 kV (negative). The raw data was converted into
215 mzXML format utilizing ProteoWizard and subsequently processed with an in-house
216 developed program, founded on XCMS. This program facilitated peak detection,
217 extraction, alignment, and integration. Post-processing, an in-house MS2 database
218 (BiotreeDB, V2.1) was utilized for metabolite annotation, with an annotation cut-off
219 established at 0.3.

220 *2.5. Statistical analysis*

221 Variation in animal growth performance, carcass traits, meat quality, and targeted
222 fatty acid analysis were described using linear mixed models by the IBM SPSS
223 Statistics (version 26.0), with three treatments (LC, HC, and PFS) as a fixed effect and
224 random terms for animal and pen. Predicted means and standard errors were obtained
225 from the models, facilitating pairwise comparisons between means by calculating the
226 least significant difference at a 5% critical value. The value of $P < 0.05$ was considered
227 statistically significant.

228 For the data from GC-MS and LC-MS/MS, the missing values were assumed to be
229 half of the minimum value (Tiedt et al., 2020). Normalisation was implemented using
230 the total ion current method. The consolidated dataset, inclusive of peak number,
231 sample identifiers, and normalised peak areas, was transferred to the SIMCA16.0.2
232 software package (Sartorius Stedim Data Analytics AB, Umea, Sweden) for
233 comprehensive multivariate analyses. Data were scaled and logarithmically
234 transformed to attenuate the influence of both background noise and significant
235 variance across variables. Post-transformation, principal component analysis (PCA)
236 was implemented as an unsupervised analytic method to condense the dimensionality

237 of the dataset, providing visual interpretation of sample distribution and clustering. A
238 95% confidence interval within the PCA score plot was utilized as the criterion for
239 potential outlier identification. Supervised orthogonal projections to latent structures-
240 discriminant analysis (OPLS-DA) was employed for visualizing group differentiation
241 and the identification of significantly altered metabolites. The validity and
242 predictability of the model were assessed by executing a 7-fold cross-validation,
243 yielding R^2 and Q^2 values. R^2 quantifies the extent to which variation in a variable is
244 elucidated, whereas Q^2 denotes the predictability of a variable. The robustness and
245 predictive capability of the OPLS-DA model were verified via a 200-iteration
246 permutation test, from which the intercept values for R^2 and Q^2 were ascertained. In
247 this context, a smaller Q^2 intercept value is indicative of a robust model with low risk
248 of overfitting and high reliability. The value of variable importance in the projection
249 (VIP) of the first principal component in OPLS-DA analysis was obtained. It
250 summarizes the contribution of each variable to the model. The metabolites with $VIP >$
251 1 and $P < 0.05$ (student t test) were considered as significantly changed metabolites. In
252 addition, commercial databases including KEGG (<http://www.genome.jp/kegg/>) and
253 MetaboAnalyst (<http://www.metaboanalyst.ca/>) were used for pathway enrichment
254 analysis.

255

256 **3. Results**

257 *3.1. The plant secondary metabolites of PFS*

258 The top 5 catteries of the plant secondary metabolites of PFS are flavonoids (37%),
259 phenylpropanoids (28%), terpenoids (11%), quinones (11%), alkaloid (11%, Fig. S1A).
260 For the specific compounds, luteolin (22%), 7-hydroxycoumarin (15%), and emodin
261 (9%) are the most abundant bioactive compounds (Fig. S1B).

262 *3.2. Growth performance and carcass characteristics*

263 As shown in Table 3, there was no significant effect of the dietary treatments on
264 dry matter intake (DMI) ($P > 0.05$). The HC exhibited the highest average daily gain
265 (ADG, 194 g/d), followed by PFS (154 g/d), with LC (120 g/d) presenting the lowest
266 value ($P < 0.01$). The feed conversion rate (average DMI/ADG) was lower in HC (4.78)
267 than in LC (8.28, $P < 0.05$). The carcass traits, including live weight, carcass weight,
268 and dressing percentage of HC and PFS, were higher than those of LC ($P < 0.05$), with
269 no significant differences observed between HC and PFS. The HC had the higher head
270 weight compared to LC (2.72 kg vs 2.42 kg, $P < 0.05$). The organ weight of the heart
271 was higher in HC (145 g) and PFS (136 g) than in LC (120 g), with similar values
272 between HC and PFS ($P < 0.01$). The organ weights of the kidney in HC (101.2 g) were
273 higher than those in LC (41.4 g) and PFS (46.2 g), with similar values between LC and
274 PFS ($P < 0.01$). The organ ratio of the heart was higher in LC than in PFS (8.52 vs 7.87
275 g/kg carcass weight, $P < 0.05$). The organ ratios of the lung and testis were higher in
276 LC (21.2 and 22.4 g/kg carcass weight) than in HC (16.8 and 19.8 g/kg carcass weight)
277 and PFS (16.6 and 18.3 g/kg carcass weight, $P < 0.01$). The organ ratios of the kidney
278 were higher in HC (5.62 g/kg carcass weight) than in LC (2.95 g/kg carcass weight)
279 and PFS (2.65 g/kg carcass weight, $P < 0.01$).

280 *3.3. Meat quality*

281 As shown in Table 4, the tail fat weight and the tail fat ratio were higher in HC than
282 in LC ($P < 0.05$). The perirenal fat weight and perirenal fat ratio were highest in the HC
283 group, followed by PFS, with the lowest value found in LC ($P < 0.01$). The omentum
284 weight and omentum ratio were higher in HC and PFS than in LC ($P < 0.01$). The eye
285 muscle area was greater in HC than in LC ($P < 0.05$). The value of shear force was
286 higher in LC than in HC ($P < 0.05$). The meat color of a^* (redness) after 24 hours was
287 lower in PFS than in HC ($P < 0.05$).

288 *3.4. Targeted fatty acids composition*

289 The raw meat DM content, intramuscular fat (IMF) content, and fatty acid profiles

290 in muscle are displayed in Table 5. The DM content in PFS was higher than in LC ($P < 0.01$). The HC had higher levels of C10:0, C16:1, and TFA compared to LC ($P < 0.05$).
291 Compared to LC, the concentrations of C22:0 and C23:0 were lower, but the
292 concentrations of UFA, MUFA, and C18:1c9 were higher in LC and PFS ($P < 0.05$).
293 The PFS had higher concentration of C20:0 but lower C20:3n6 compared to LC. The
294 PFS exhibited higher concentrations of α -linolenic acid (C18:3n3, ALA), C20:5n3
295 (eicosapentaenoic, EPA), C22:6n3 (docosahexaenoic acid, DHA) and the sum of n-3
296 PUFA compared to LC and HC ($P < 0.05$). Compared to PFS and LC, HC had higher
297 levels of CLA-t10c12, C18:2n6, and the sum of n-6 PUFA ($P < 0.05$). The SFA/UFA
298 ratio was lower in HC and PFS than in LC ($P < 0.01$). The ratio of n-6/n-3 was lowest
299 in PFS (8.02), intermediate in LC (15.2), and highest in HC (21.3, $P < 0.01$). The values
300 of IA, IT, and C16:0/C18:1 were lower in PFS and HC than in LC ($P < 0.05$).
301

302 3.5. *Volatile compounds*

303 In this experiment, a total of 434 peaks were detected, and 421 metabolites remained
304 after relative standard deviation denoising based on GC-MS analysis. According to the
305 HMDB and Biotree self-built databases, 369 of these metabolites were identified and
306 categorized into 6 groups (Fig. 1A). The 6 categories are alcohols, aldehydes, ketones,
307 esters, hydrocarbons, and others. Alcohols were the most abundant VOCs (Fig. 1A). A
308 multivariate statistical analysis of volatile compounds (VOCs) was performed. The
309 OPLS-DA revealed a clear separation of volatile compounds between the two groups
310 ($R^2X = 0.26$, $R^2Y = 0.95$, $Q^2 = 0.0703$, Fig. 1B). The permutation plot and histogram test
311 of the OPLS-DA model suggest that the original OPLS-DA model did not exhibit
312 overfitting, indicating a relatively robust model (Fig. S2A-B).

313 Eight compounds **were significantly different** between these two groups, **with** 2,4-
314 dihydroxybenzoic acid, 1,2,4-trimethylbenzene, and acetaldehyde **being up-regulated**
315 **by the PFS**, and pyridine, 2-butanol, dl-isocitric acid lactone, 3,3-dimethylbutane-2-ol,
316 and 4-ethylcyclohexanone **down-regulated by the PFS** (Fig. 1C). Meanwhile, 2,4-
317 dihydroxybenzoic acid ($AUC = 0.94$), 3,3-dimethylbutane-2-ol ($AUC = 0.94$), and 4-

318 ethyl-cyclohexanone (AUC = 0.97) were selected as the potential VOCs biomarker to
319 distinguish PFS from CON (Fig. 1D).

320 *3.6. High definition mix discovery LC-MS/MS metabolome*

321 Based on the high definition (HD) mix UHPLC-OE-MS discovery metabolomics,
322 both hydrophilic substances and lipophilic metabolites can be detected. A total of
323 22,630 peaks were detected in this experiment, and 17,985 peaks were retained after
324 relative standard deviation de-noising. The Fig. S2C shows the score chart based on
325 PCA analysis; all samples are located in the 95% confidence interval. The OPLS-DA
326 model showed an apparent group separation between the two groups ($R^2X= 0.215$,
327 $R^2Y=1$, $Q^2=0.275$, Fig. S2D) and the model is robust based on permutations and
328 interceptions (Fig. S2E-F). According to the HMDB database and self-built database, a
329 total of 422 hydrophilic metabolites were identified, **belonging to various categories**:
330 organic acids and derivatives (25.1%); organoheterocyclic compounds (20.38%);
331 phenylpropanoids and polyketides (13.03%); organic oxygen compounds (12.32%);
332 benzenoids (10.9%); nucleosides, nucleotides, and analogues (7.35%); organic nitrogen
333 compounds (4.03%); alkaloids and derivatives (1.18%); organosulfur compounds
334 (0.71%); homogeneous non-metal compounds (0.47%); lignans, neolignans and related
335 compounds (0.47%); hydrocarbons (0.24%); organic compounds (0.24%);
336 organohalogen compounds (0.24%); and others (3.32%) (Fig. 2A). A total of 385 lipids
337 were identified, belonging to various classes: phosphatidylcholine (PC, 16.88%); acyl
338 carnitine (AcCa, 11.69%); free fatty acid (FFA, 10.91%); lysophosphatidylcholine
339 (LPC, 5.45%); lysophosphatidylethanolamine (LPE, 3.12%); phosphatidylglycerol (PG,
340 2.86%); phosphatidylinositol (PI, 2.34%); phosphatidylethanolamine (PE, 2.08%);
341 sphingomyelin (SM, 1.82%); ceramides (Cer, 0.78%); phosphatidylserine (PS, 0.26%);
342 triglycerides (TG, 0.26%); Coenzyme (Co, 0.26%); and others (41.30%) (Fig. 2B).
343 Among these lipids categories, the LPC in PFS was lower than that in LC, and Co was
344 higher in PFS than that in LC (Fig. 2C).

345 In total, 66 compounds were screened out as **significantly different** metabolites by
346 HD mix LC-MS/MS (VIP > 1, $P < 0.05$). Among the hydrophilic metabolites, 43
347 compounds showed statistically significant differences (Fig. 2D). **These included** the
348 upregulated macrophorin A, hydroxyprolyl-Isoleucine, sedoheptulose, rotenone, D-
349 pantothenic acid, 5-hydroxyisourate, D-glutamine, xanthyllic acid, S-adenosyl-L-
350 methionine, uridine diphosphate glucuronic acid, 5'-inosinic acid, inosine 2'-phosphate,
351 arginyl-alanine, aromadendrin, 3-ethyl-5-methylphenol, 2,5-diisopropyl-3-
352 methylphenol, and N-desmethylvenlafaxine, and downregulated guanidinosuccinic
353 acid, L-norleucine, 3,4-dihydroxybenzaldehyde, 1,6-dimethoxypyrene, tectorigenin,
354 2,4-dimethyloxazole, macrocralpal I, nornicotine, 3-hydroxydecanoic acid, L-valine,
355 adrenosterone, pelargonic acid, 2-hydroxybutyric acid, gyromitrin, guanosine-5'-
356 triphosphate, 7-aminoflunitrazepam, zedoarondiol, 2-methylbutyroylcarnitine, and
357 fexofenadine by PFS compared to LC. In lipids, there are 23 substances with different
358 lipid molecular species affected by PFS (Fig. 2E). **In the PFS group, one species of**
359 **AcCa, one species of Co, one species of PC, and two species of PG significantly**
360 **increased. Conversely, nine species of LPC, one species of LPE, and eight species of**
361 **PC decreased** (Fig. 2E). Meanwhile, 2,5-diisopropyl-3-methylphenol (AUC = 1), 3-
362 hydroxydecanoic acid (AUC = 1), and LPC(15:0) (AUC = 1) were the potential PFS
363 related biomarker in lamb meat based on ROC analysis (Fig. 2F).

364 *3.7. Metabolic pathways analysis*

365 Based on the KEGG enrichment analysis (Fig. 3A), we found the pathways of purine
366 metabolism and choline metabolism in cancer were enriched ($P < 0.05$). On the other
367 hand, the metabolic pathways contributing to the metabolite differences of lamb meat
368 were also conducted based on MetaboAnalyst (Fig. 3B). The bubble plot showed that
369 the differential metabolites were mainly enriched in the ascorbate and aldarate
370 metabolism, valine, leucine and isoleucine biosynthesis, pentose and glucuronate
371 interconversions, and propanoate metabolism.

372 **4. Discussion**

373 4.1. Growth performance and carcass characteristics

374 Previous study found no significant improvement in the growth rate and carcass
375 traits after the inclusion of 5%, 10% or 15% perilla seed in the diet, on a DM basis, of
376 Hu-lambs (Deng et al., 2018). In this study, the HC diet, which has the highest dietary
377 metabolic energy level, was set as a positive control. The results from the HC group
378 indicated that the lambs fed with a higher energy diet exhibited increased growth
379 performance but also higher fat deposition. The PFS significantly increased carcass
380 weight and dressing percentage in Tan sheep compared to LC, which was similar to the
381 carcass characteristics in HC. This improvement could be partly attributed to increased
382 energy intake in the PFS group compared to the LC group, in line with previous
383 observations that a higher growth rate can be achieved through oil supplementation in
384 goats and sheep (Candyrine et al., 2018). In addition, feeding PFS increased the DM
385 content of raw meat while reducing meat redness. Myoglobin interacts with oxygen to
386 form the bright red oxymyoglobin, which along with myoglobin can be oxidized to the
387 brown-colored high-iron content metmyoglobin, consequently affecting the perceived
388 redness of the tissue (Brewer, 2004). **Flavonoids, known to prevent the production of**
389 **free radicals (Zhu et al., 2022), are enriched in *Perilla* seeds in our study.** Consequently,
390 the PFS might increase the activity of myoglobin reductase and delay the oxidation of
391 myoglobin, potentially reducing meat redness when PFS was fed to lambs. The
392 enhanced growth performance, increased carcass yield, and altered meat color observed
393 in the PFS-fed group may be attributed to both the energy content of PFS and the
394 presence of functional plant secondary metabolites. Thus, supplementing PFS in lamb
395 diets, can synergistically improve the growth performance and carcass quality of lamb,
396 when compared with diets with low concentrates; although the growth rates achieved
397 by a HC diet would still be higher than a PFS diet.

398 4.2. Meat fatty acid profiles

399 This study mainly found that the PFS could increase the lamb meat UFA and n-3
400 PUFA content and reduced the n-6/n-3, IA, and IT. The lamb fed with HC diet had

401 higher n-6 PUFA content which result in the highest n-6/n-3. The accumulation of n-3
402 and n-6 PUFA in lamb meat are through direct consumption from diets or via
403 desaturation and elongation processes from short-chain fatty acid precursors
404 (Ponnampalam, Sinclair, & Holman, 2021). Hence, the elevated levels of n-6 PUFA in
405 lamb meat from the HC group can be attributed to the common derivation of short-
406 chain n-6 PUFA from grain-based and feedlot diets. The SFA may enhance lipid
407 adhesion to immunological and circulatory system cells (pro-atherogenic), while UFA
408 could inhibit plaque formation and reduce certain lipid levels, thereby decreasing the
409 risk of coronary diseases (anti-atherogenic) (FAO, 2010). The firmness of adipose
410 tissue is contingent upon the degree of fatty acid saturation, a factor that plays a critical
411 role in determining the nutritional merit of meat products and their subsequent
412 acceptance by consumers (Wood et al., 2004). It has been reported that n-3 PUFAs have
413 properties that improve antioxidant capacity and nutritional value of meat, as well as
414 playing a crucial role in health maintenance (Sunagawa et al., 2022). The diet's primary
415 significant sources of preformed long-chain PUFAs such as eicosapentaenoic acid
416 (C20:5 n3) and docosahexaenoic acid (C22:6 n3) are derived exclusively from ruminant
417 meats and oily fish (Wyness et al., 2011). The consumption of lamb meat with reduced
418 levels of n-6 PUFA and increased levels of n-3 PUFA had the potential to enhance both
419 animal and human health, well-being, and resilience against diseases (Ponnampalam et
420 al., 2021). The present study found higher concentrations of total n-3 PUFAs (+ 64%),
421 C20:5n3 (+ 49%), and C18:3n3 (+ 83%) in PFS compared to LC, thus demonstrating a
422 nutritionally improved fatty acid profile (Wood et al., 2004). Diet plays a pivotal role
423 in shaping the fatty acid composition of lamb fat (Wood et al., 2004). Notably, the
424 choice of dietary oil source can significantly impact the fatty acid content in lamb meat
425 (Jeronimo, Alves, Prates, Santos-Silva, & Bessa, 2009). Furthermore, the presence of
426 plant flavonoids has been shown to modify the fatty acid profiles of lamb meat (North,
427 Dalle Zotte, & Hoffman, 2019). Thus, the reduction of SFA/UFA, n-6/n-3 PUFA, IA,
428 and IT in the raw lamb meat from PFS group might be mainly explained by the high
429 content of PUFA and plant flavonoids, and the production of PFS lamb meat can further

430 be regarded as beneficial effects from a public health and human nutrition perspective
431 (Pretorius & Schonfeldt, 2021).

432 *4.3. Compounds contribute to meat flavour and human health*

433 The VOCs and their respective precursors substantially influence the olfactory
434 characteristic of ovine meat, or mutton, wherein the resultant odor profile is a complex
435 interplay governed by their relative concentrations and perceptual thresholds (Zhan,
436 Tian, Zhang, & Wang, 2013). Aldehydes typically possess a relatively low odor
437 threshold, and as a result, they are regarded as having a vital impact on the distinct
438 flavor of lamb meat (Zhang, Zhang, Liu, Zhao, & Luo, 2020), primarily originating
439 from PUFAs (Hu et al., 2022). In this research, aldehyde serves as the primary aromatic
440 active compounds based on VOC analysis. Acetaldehyde and acetal are types of
441 aldehydes that have a fruity odor with sweet and astringent notes and play a role in
442 forming the primary liquor aroma by assisting other flavor compounds (Wei, Zou, Shen,
443 & Yang, 2020). 1,2,4-Trimethyl-benzene is thermal degradation **product** of β -carotene,
444 which is produced in high amounts in the orange flesh color, imparting strong violet
445 aromas (Wang & Kays, 2003). In addition, the pelargonic acid, an oily liquid with an
446 unpleasant, rancid odor (Liu et al., 2022), was found to be decreased by PFS using HD
447 mix LC-MS. 5'-Inosinic acid, identified as a taste-active component in the chicken meat
448 extract (Fujimura et al., 1996), suggests that the taste of PFS lamb meat might be
449 improved by increasing its 5'-inosinic acid content. **Therefore, the changes in VOCs**
450 **and related hydrophilic metabolites in lamb meat suggest that feeding PFS may enhance**
451 **the aroma, flavor, and taste of raw lamb.**

452 In addition, aroma compounds are mainly formed by lipids (Munekata et al., 2021).
453 Thus, the lipids were further detected by a HD mix UHPLC-OE-MS. **Compared with**
454 **normal LC-MS, HD LC-MS/MS has a mixed hydrophilic and lipophilic system,**
455 **specifically the T3 chromatographic system, which can enhance the resolution and**
456 **reliability in MS-oriented characterization of hydrophilic and lipophilic metabolites**
457 **(Ding et al., 2022). Lipid subclasses (SM, Cer, LPC, PC, LPE, TG) in Tan sheep meat**

458 can be significantly influenced by thermal processing (Jia, Li, Wu, Liu, & Shi, 2021).
459 We found the total LPC, 9 species of LPC, 7 species of PC, and 1 species of LPE were
460 decreased by PFS, and 2 species of PG were increased by PFS. LPC(15:0) was also the
461 potential biomarker to discriminate PFS from LC by the ROC analysis. LPC(15:0) was
462 used to predict inflammatory response to TNF- α inhibitors in rheumatoid arthritis
463 (Cuppen et al., 2016). In hepatic inflammation, there is a notable elevation in the
464 concentrations of LPC and LPE, with particularly LPC as a potential biomarker in the
465 diagnosis and monitoring of hepatic steatosis (Engel, Schiller, Galuska, & Fuchs, 2021).
466 The addition of PG(18:1/18:1) and PG(18:2/18:2) can effectively reduce mitochondrial
467 inflammation (Chen, Chao, Chang, Chan, & Hsu, 2018). Thus, the decreased LPC and
468 increased PG(18:1/18:1) and PG(18:1/18:2) indicate the potentially desirable
469 nutritional and safety characteristics of PFS lamb meat for consumers.

470 Furthermore, most of the potential detrimental hydrophilic metabolites were
471 reduced by feeding PFS. For instance, the PFS reduced the relative abundance of
472 muscular guanidinosuccinic acid that has been identified as a uraemic toxin (Duranton
473 et al., 2012), and the hepatic guanidinosuccinic acid can be elevated in lambs under a
474 high-energy diet induced immune response (Wang et al., 2023). 3-hydroxydecanoic
475 acid is a potential negative biomarker associated with PFS. The tissue accumulation of
476 3-hydroxydecanoic acid is associated with increased disease risk such as
477 cardiomyopathy (Tonin et al., 2013). 2-Methylbutyroylcarnitine is an acylcarnitine, a
478 group of compounds gaining recognition as crucial markers in metabolic investigations
479 of various illnesses, such as metabolic disorders, cardiovascular diseases, diabetes,
480 depression, neurological disorders, and some types of cancer (Dambrova et al., 2022).
481 Thus, another potential benefit to human nutrition by consuming meat from lambs fed
482 with PFS is the reduced concentrations of these compounds which are associated to
483 various diseases.

484 Conversely, several metabolites that underwent substantial changes or potential
485 biomarkers associated with PUFAs in lamb meat have yet to be thoroughly researched.
486 Even though 2,5-diisopropyl-3-methylphenol was identified in the current investigation
487 as a potential biomarker of PUFA-enhanced lamb meat, further investigations are

488 required to corroborate its association with PUFAs, understand its role in lamb
489 physiology, and determine its impact on human nutrition and health.

490 **5. Conclusions**

491 The present study demonstrated that the dietary inclusion of *Perilla frutescens*
492 seeds improved growth performance and simultaneously **improved** carcass quality and
493 raw meat attributes in Tan-lambs. An increased n-3 PUFAs content and a decrease in
494 the n-6/n-3, IA, and IT were observed in raw lamb meat as a result of feeding PFS.
495 These changes are considered nutritionally desirable. Volatile compounds, including
496 acetaldehyde and 1,2,4-trimethyl-benzene, were found in higher concentrations in PFS,
497 which suggests an improved flavor profile for PFS raw lamb meat. In addition, several
498 nutritionally beneficial lipids and hydrophilic metabolites were associated with PFS
499 treatment, including PG(18:1/18:1), PG(18:2/18:2), and 5'-inosinic acid. Metabolites
500 such as LPC, guanidinosuccinic acid, 3-hydroxydecanoic acid, and 2-
501 methylbutyroylcarnitine, known to exert negative impacts on human health, were found
502 in lower concentrations in PFS raw lamb meat. The present findings provide exhaustive
503 understanding of the metabolome of raw lamb meat with improved n-3 PUFAs and
504 corresponding volatile, lipidic, and hydrophilic metabolites achieved through the
505 incorporation of *Perilla frutescens* seed. Additionally, the global alteration of
506 compounds detected through HD-mix LC-MS/MS metabolomics proposes its utility as
507 a replacement for lipidomics and hydrophilic metabolomics.

508 **Funding**

509 This study was funded by the Open Project of the Key Laboratory of Molecular
510 Animal Nutrition, Ministry of Education (KLMAN202206) and China Agriculture
511 Research System (No. CARS-38). We greatly acknowledge the personnel of Tianyuan
512 Liangzhong Sheep Farm (Wuzhong, China) for their help in animal feeding.

513 **CRediT authorship contribution statement**

514 **Yue Yu**: Writing - original draft, Formal analysis. **Boyan Zhang**: Writing - review
515 & editing, Resources, Conceptualization. **Xianzhe Jiang**: Writing - review & editing.
516 **Yimeng Cui**: Investigation. **Hailing Luo**: Writing - review & editing, Resources.
517 **Sokratis Stergiadis**: Writing - review & editing. **Bing Wang**: Project administration,
518 Writing - review & editing, Supervision, Conceptualization.

519 **Declaration of Competing Interest**

520 The authors declare no conflict of interest.

521 **Data availability**

522 Data will be made available on request.

523 **References**

524 Akriti, D., Rajni, C., & Meenakshi, G. (2019). A review on nutritional value, functional properties and
525 pharmacological application of Perilla (Perilla Frutescens L.). *Biomedical & Pharmacology
526 Journal*, 12(2), 649-660.

527 Al-Maqtari, Q. A., Rehman, A., Mahdi, A. A., Al-Ansi, W., Wei, M., Yanyu, Z., . . . Yao, W. (2022).
528 Application of essential oils as preservatives in food systems: challenges and future prospectives
529 – a review. *Phytochemistry Reviews*, 21(4), 1209-1246.

530 Brewer, S. (2004). Irradiation effects on meat color - a review. *Meat Science*, 68(1), 1-17.

531 Candyrine, S. C. L., Jahromi, M. F., Ebrahimi, M., Chen, W. L., Rezaei, S., Goh, Y. M., . . . Liang, J. B.
532 (2018). Oil supplementation improved growth and diet digestibility in goats and sheep fed
533 fattening diet. *Asian-Australasian Journal of Animal Sciences*, 32(4), 533-540.

534 Chen, W.-W., Chao, Y.-J., Chang, W.-H., Chan, J.-F., & Hsu, Y.-H. H. (2018). Phosphatidylglycerol
535 incorporates into cardiolipin to improve mitochondrial activity and inhibits inflammation.
536 *Scientific Reports*, 8(1), 1-14.

537 Cuppen, B. V., Fu, J., van Wietmarschen, H. A., Harms, A. C., Koval, S., Marijnissen, A. C., . . . all
538 Society for Rheumatology Research Utrecht Investigators. (2016). Exploring the inflammatory
539 metabolomic profile to predict response to TNF-alpha inhibitors in Rheumatoid Arthritis. *PLoS
540 One*, 11(9), e0163087.

541 Dambrova, M., Makrecka-Kuka, M., Kuka, J., Vilskersts, R., Nordberg, D., Attwood, M. M., . . . Schiøth,
542 H. B. (2022). Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and
543 clinical trials. *Pharmacol Reviews*, 74(3), 506-551.

544 De Smet, S., & Vossen, E. (2016). Meat: The balance between nutrition and health. A review. *Meat
545 Science*, 120, 145-156.

546 Deng, K. P., Fan, Y. X., Ma, T. W., Wang, Z., TanTai, W. J., Nie, H. T., . . . Wang, F. (2018). Carcass traits,
547 meat quality, antioxidant status and antioxidant gene expression in muscle and liver of Hu lambs
548 fed perilla seed. *Journal of Animal Physiology and Animal Nutrition*, 102(2), e828-e837.

549 Ding, X., Liu, Z., Liu, Y., Xu, B., Chen, J., Pu, J., . . . Wang, X. (2022). Comprehensive evaluation of the
550 mechanism of *Gastrodia elata* Blume in ameliorating cerebral ischemia-reperfusion injury based
551 on integrating fecal metabonomics and 16S rDNA sequencing. *Frontiers in Cellular and*
552 *Infection Microbiology*, 12, 1026627.

553 Duranton, F., Cohen, G., De Smet, R., Rodriguez, M., Jankowski, J., Vanholder, R., & Argiles, A. (2012).
554 Normal and pathologic concentrations of uremic toxins. *Journal of the American Society of*
555 *Nephrology*, 23(7), 1258-1270.

556 Ekiz, B., Yilmaz, A., Ozcan, M., Kaptan, C., Hanoglu, H., Erdogan, I., & Yalcintan, H. (2009). Carcass
557 measurements and meat quality of Turkish Merino, Ramlic, Kivircik, Chios and Imroz lambs
558 raised under an intensive production system. *Meat Science*, 82(1), 64-70.

559 Engel, K. M., Schiller, J., Galuska, C. E., & Fuchs, B. (2021). Phospholipases and reactive oxygen
560 species derived lipid biomarkers in healthy and diseased humans and animals - a focus on
561 lysophosphatidylcholine. *Frontiers in Physiology*, 12, 732319.

562 FAO. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. *FAO Food and*
563 *Nutrition Paper*, 91, 1-166.

564 Fujimura, S., Koga, H., Takeda, H., Tone, N., Kadokawa, M., & Ishibashi, T. (1996). Role of taste-active
565 components, glutamic acid, 5'-inosinic acid and potassium ion in taste of chicken meat extract.
566 *Animal Science and Technology*, 67(5), 423-429.

567 Garcia, A., & Barbas, C. (2011). Gas chromatography-mass spectrometry (GC-MS)-based metabolomics.
568 *Methods in Molecular Biology*, 708, 191-204.

569 Hathaway, D., Pandav, K., Patel, M., Riva-Moscoso, A., Singh, B. M., Patel, A., Abreu, R. (2020). Omega
570 3 fatty acids and COVID-19: a comprehensive review. *Infection and Chemotherapy*, 52(4), 478-
571 495.

572 Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. *Meat*
573 *Science*, 49(4), 447-457.

574 Hou, J. J., Zhang, J. Q., Yao, C. L., Bauer, R., Khan, I. A., Wu, W. Y., & Guo, D. A. (2019). Deeper
575 chemical perceptions for better traditional Chinese medicine standards. *Engineering*, 5(1), 83-
576 97.

577 Hu, Y., Zhao, G., Yin, F., Liu, Z., Wang, J., Qin, L., . . . Zhu, B. (2022). Effects of roasting temperature
578 and time on aldehyde formation derived from lipid oxidation in scallop (*Patinopecten yessoensis*)
579 and the deterrent effect by antioxidants of bamboo leaves. *Food Chemistry*, 369, 130936.

580 Jeronimo, E., Alves, S. P., Prates, J. A., Santos-Silva, J., & Bessa, R. J. (2009). Effect of dietary
581 replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. *Meat*
582 *Science*, 83(3), 499-505.

583 Jia, W., Li, R., Wu, X., Liu, S., & Shi, L. (2021). UHPLC-Q-Orbitrap HRMS-based quantitative
584 lipidomics reveals the chemical changes of phospholipids during thermal processing methods
585 of Tan sheep meat. *Food Chemistry*, 360, 130153.

586 Karim, S. A., Porwal, K., Kumar, S., & Singh, V. K. (2007). Carcass traits of Kheri lambs maintained on
587 different system of feeding management. *Meat Science*, 76(3), 395-401.

588 Kavyani, Z., Musazadeh, V., Fathi, S., Hossein Faghfouri, A., Dehghan, P., & Sarmadi, B. (2022).
589 Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella
590 meta-analysis. *International Immunopharmacology*, 111, 109104.

591 Khan, M. I., Jo, C., & Tariq, M. R. (2015). Meat flavor precursors and factors influencing flavor
592 precursors--A systematic review. *Meat Science*, 110, 278-284.

593 Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S. S., & Fiehn, O. (2021). Spectral entropy outperforms
594 MS/MS dot product similarity for small-molecule compound identification. *Nature Methods*,
595 18(12), 1524-1531.

596 Liu, Z., Xu, L., Song, P., Wu, C., Xu, B., Li, Z., & Chao, Z. (2022). Comprehensive quality evaluation
597 for medicinal and edible *Ziziphi Spinosa* semen before and after rancidity based on traditional
598 sensory, physicochemical characteristics, and volatile compounds. *Foods*, 11(15), 2320.

599 Munekata, P. E. S., Pateiro, M., López-Pedrouso, M., Gagaoua, M., & Lorenzo, J. M. (2021). Foodomics
600 in meat quality. *Current Opinion in Food Science*, 38, 79-85.

601 North, M. K., Dalle Zotte, A., & Hoffman, L. C. (2019). The use of dietary flavonoids in meat production:
602 A review. *Animal Feed Science and Technology*, 257, 114291.

603 Peiretti, P. G., Gasco, L., Brugia, A., & Gai, F. (2011). Effects of perilla (*Perilla frutescens* L.)
604 seeds supplementation on performance, carcass characteristics, meat quality and fatty acid
605 composition of rabbits. *Livestock Science*, 138(1-3), 118-124.

606 Ponnampalam, E. N., Sinclair, A. J., & Holman, B. W. B. (2021). The sources, synthesis and biological
607 actions of omega-3 and omega-6 fatty acids in red meat: An overview. *Foods*, 10(6), 1358.

608 Pretorius, B., & Schonfeldt, H. C. (2021). Cholesterol, fatty acids profile and the indices of atherogenicity
609 and thrombogenicity of raw lamb and mutton offal. *Food Chemistry*, 345, 128868.

610 Ramalingam, V., Song, Z., & Hwang, I. (2019). The potential role of secondary metabolites in modulating
611 the flavor and taste of the meat. *Food Research International*, 122, 174-182.

612 Sunagawa, Y., Katayama, A., Funamoto, M., Shimizu, K., Shimizu, S., Sari, N., . . . Morimoto, T.
613 (2022). The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-
614 induced heart failure by inhibiting p300-HAT activity in rats. *The Journal of Nutritional
615 Biochemistry*, 106, 109031.

616 Tiedt, S., Brandmaier, S., Kollmeier, H., Duering, M., Artati, A., Adamski, J., . . . Dichgans, M. (2020).
617 Circulating metabolites differentiate acute ischemic stroke from stroke mimics. *Annals of
618 Neurology*, 88(4), 736-746.

619 Tonin, A. M., Amaral, A. U., Busanello, E. N., Grings, M., Castilho, R. F., & Wajner, M. (2013). Long-
620 chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and
621 mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart
622 mitochondria. *Journal of Bioenergetics and Biomembranes*, 45(1-2), 47-57.

623 Wang, B., Zhang, B., Zhou, L., Li, S., Li, Z., & Luo, H. (2023). Multi-omics reveals diet-induced
624 metabolic disorders and liver inflammation via microbiota-gut-liver axis. *The Journal of
625 Nutritional Biochemistry*, 111, 109183.

626 Wang, J., Liu, M., Wu, Y., Wang, L., Liu, J., Jiang, L., & Yu, Z. (2016). Medicinal herbs as a potential
627 strategy to decrease methane production by rumen microbiota: a systematic evaluation with a
628 focus on *Perilla frutescens* seed extract. *Applied Microbiology and Biotechnology*, 100(22),
629 9757-9771.

630 Wang, Y., & Kays, S. J. (2003). Analytically directed flavor selection in breeding food crops. *Journal of
631 the American Society for Horticultural Science*, 128(5), 711-720.

632 Wei, Y., Zou, W., Shen, C. H., & Yang, J. G. (2020). Basic flavor types and component characteristics of
633 Chinese traditional liquors: A review. *Journal of Food Science*, 85(12), 4096-4107.

634 Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., . . . Enser, M.
635 (2004). Effects of fatty acids on meat quality: a review. *Meat Science*, 66(1), 21-32.

636 Wyness, L., Weichselbaum, E., O'connor, A., Williams, E., Benelam, B., Riley, H., & Stanner, S. (2011).

637 Red meat in the diet: an update. *Nutrition Bulletin*, 36(1), 34-77.

638 Zhan, P., Tian, H., Zhang, X., & Wang, L. (2013). Contribution to aroma characteristics of mutton process
639 flavor from the enzymatic hydrolysate of sheep bone protein assessed by descriptive sensory
640 analysis and gas chromatography olfactometry. *Journal of Chromatography B-Analytical
641 Technologies in the Biomedical and Life Sciences*, 921-922, 1-8.

642 Zhang, B., Sun, Z., Yu, Z., Li, H., Luo, H., & Wang, B. (2022). Transcriptome and targeted metabolome
643 analysis provide insights into bile acids' new roles and mechanisms on fat deposition and meat
644 quality in lamb. *Food Research International*, 162, 111941.

645 Zhang, C., Zhang, H., Liu, M., Zhao, X., & Luo, H. (2020). Effect of breed on the volatile compound
646 precursors and odor profile attributes of lamb meat. *Foods*, 9(9), 1178.

647 Zhu, W., Han, M., Bu, Y., Li, X., Yi, S., Xu, Y., & Li, J. (2022). Plant polyphenols regulating myoglobin
648 oxidation and color stability in red meat and certain fish: A review. *Critical Reviews in Food
649 Science and Nutrition*, 1-13.

650

651 **Tables**652 **Table 1**

653 Ingredients and nutrient composition of the basal diet.

Item	LC ¹	HC ¹
Ingredient, % dry matter basis		
Corn grain	26.40	48.00
Soybean meal	12.80	14.20
Wheat bran	11.10	12.80
Corn silage	9.00	13.20
Alfalfa Hay	16.00	6.80
Caragana microphylla silage	20.00	0.00
NaHCO ₃	0.70	1.00
<i>Perilla frutescens</i> seed	0.00	0.00
Premix ²	4.00	4.00
Nutrients		
Metabolic energy, MJ/kg	10.01	11.22
Crude protein, %	14.27	14.27
Neutral detergent fiber, %	37.84	22.39
Acid detergent fiber, %	24.56	11.16
Non-fiber carbohydrate, %	34.09	50.57
Ether extract, %	4.10	5.41
Ash, %	6.30	3.25
Calcium, %	0.81	0.51
Phosphorus, %	0.40	0.46

654 ¹LC: low-concentrate diet; HC: high-concentrate diet655 ²Formulated to provide (per kilogram of dry matter): 500,000 IU of vitamin A, 160,000
656 IU of vitamin D3, 650 IU of vitamin E, 150 g of NaCl, 20 g of Ca, 20 g of P, 1750 mg
657 of Zn, 15 mg of Se, 50 mg of I, 2000 mg of Fe, 20 mg of Co, 1500 mg of Mn, and 600
658 mg of Cu.

659 **Table 2**

660 The nutrient composition and fatty acid profiles of *Perilla frutescens* seeds (dry matter
 661 basis).

Item	Composition	
Nutrients		
Crude protein, %		22.03
Neutral detergent fiber, %		23.82
Acid detergent fiber, %		18.67
Non-fiber carbohydrate, %		12.12
Ether extract, %		38.39
Ash, %		3.64
Fatty acids		
	mg/100g	% of total fatty acids
C8:0	3.48	0.01
C12:0	1.90	0.01
C14:0	8.19	0.03
C15:0	3.24	0.01
C16:0	2337	7.38
C16:1	32.55	0.10
C17:0	2.32	0.01
C18:0	698.45	2.20
C18:1n9c	6312	19.94
C18:2n6c	3767	11.90
C18:3n3	18292	57.78
C20:0	69.25	0.22
C20:1	55.91	0.18
C21:0	9.84	0.03
C20:2	8.18	0.03
C20:4n6	11.90	0.04
C22:0	17.54	0.06
C22:1n9	10.88	0.03
C24:0	17.10	0.05
Total fatty acids	31658	100.00

662

Items	Treatments ¹				
	LC	HC	PFS	SEM	P-value
Growth performance					
Initial BW, kg	25.4	25.0	25.3	0.30	0.674
DMI, g/d	934	961	869	41.0	0.345
ADG, g/d	120c	194a	157b	11.9	<0.001
FCR	8.28a	4.78b	5.44ab	1.848	0.061
Carcass traits					
Live weight, kg	31.1b	37.0a	35.4a	0.67	<0.001
Carcass weight, kg	14.1b	18.0a	17.3a	0.29	<0.001
Dressing percentage, %	45.6b	49.0a	48.8a	0.59	0.001
Head weight, kg	2.42b	2.72a	2.57ab	0.069	0.026
Hooves weight, kg	0.63	0.79	0.73	0.013	0.292
Pelage weight, kg	2.45	3.50	2.82	0.197	0.078
GR	6.03	7.98	6.99	1.020	0.458
The organ weight, g					
Heart	120b	145a	136a	3.7	0.001
Liver	507	660	523	33.8	0.083
Spleen	56.0	62.0	59.0	9.99	0.913
Lung	299	304	287	17.2	0.545
Kidney	41.4b	101.2a	46.2b	2.75	<0.001
Testis	316	358	315	13.6	0.100
The organ ratio, g/kg of carcass weight					
Heart	8.52a	8.07ab	7.87b	0.197	0.089
Liver	35.8	36.3	30.4	1.80	0.098
Spleen	3.79	3.36	3.54	0.522	0.842
Lung	21.2a	16.8b	16.6b	0.68	0.001
Kidney	2.95b	5.62a	2.65b	0.119	<0.001
Testis	22.4a	19.8b	18.3b	0.76	0.016

665 ^{a-c} Means within a row with different subscripts differ when P-value < 0.05.

666 ¹ LC, low-concentrate diet; HC, high-concentrate diet; PFS: 3% *Perilla frutescens* seed
 667 supplementation in LC; BW, body weight; DMI, dry matter intake; ADG, average daily
 668 gain; FCR, feed conversion ratio (DMI/ADG); GR, the depth of muscle and fat tissue
 669 from the surface of the carcass to the lateral surface of the 12th rib 110mm from the
 670 midline.

671 **Table 4**
672 The fat distribution and raw meat quality of Tan-lamb

Items	Treatments ¹			SEM	<i>P</i> -value
	LC	HC	PFS		
Fat distribution					
Tail fat, g	1098b	1979a	1546ab	145.3	0.019
Tail fat ratio, g/kg	77.6b	110a	89.1ab	8.33	0.079
Perirenal fat, g	35c	287a	141b	26.4	<0.001
Perirenal fat ratio, g/kg	2.5c	15.9a	8.1b	1.50	<0.001
Omentum, g	154b	270a	322a	21.3	0.001
Omentum ratio, g/kg	10.9b	14.8a	18.7a	1.19	0.006
Meat quality					
Eye muscle area, cm ²	15.6b	18.4a	17.7ab	0.89	0.098
Cooking rate, %	59.1	59.2	61.0	1.06	0.350
Shear force, N	63.7	47.0	52.2	5.00	0.081
pH 45 min	6.73	6.58	6.62	0.078	0.392
<i>a</i> * 45 min	8.5	8.3	9.0	0.45	0.519
<i>b</i> * 45 min	7.6	7.3	7.6	0.31	0.695
<i>L</i> * 45 min	34.3	34.2	34.2	0.69	0.987
pH 24 h	5.76	5.76	5.92	0.074	0.249
<i>a</i> * 24 h	12.0a	10.7ab	10.2b	0.49	0.050
<i>b</i> * 24 h	10.7	12.4	10.5	1.28	0.425
<i>L</i> * 24 h	38.1	41.5	38.1	0.70	0.106

673 ^{a-c} Means within a row with different subscripts differ when *P*-value < 0.05.

674 ¹ LC, low-concentrate diet; HC, high-concentrate diet; PFS: 3% *Perilla frutescens* seed
675 supplementation in LC; *a**, redness; *b**, yellowness; *L**, lightness.

676 **Table 5**677 The fatty acid composition (mg/100g tissue, wet fresh matter basis) and health index
678 in the raw meat of Tan-lamb

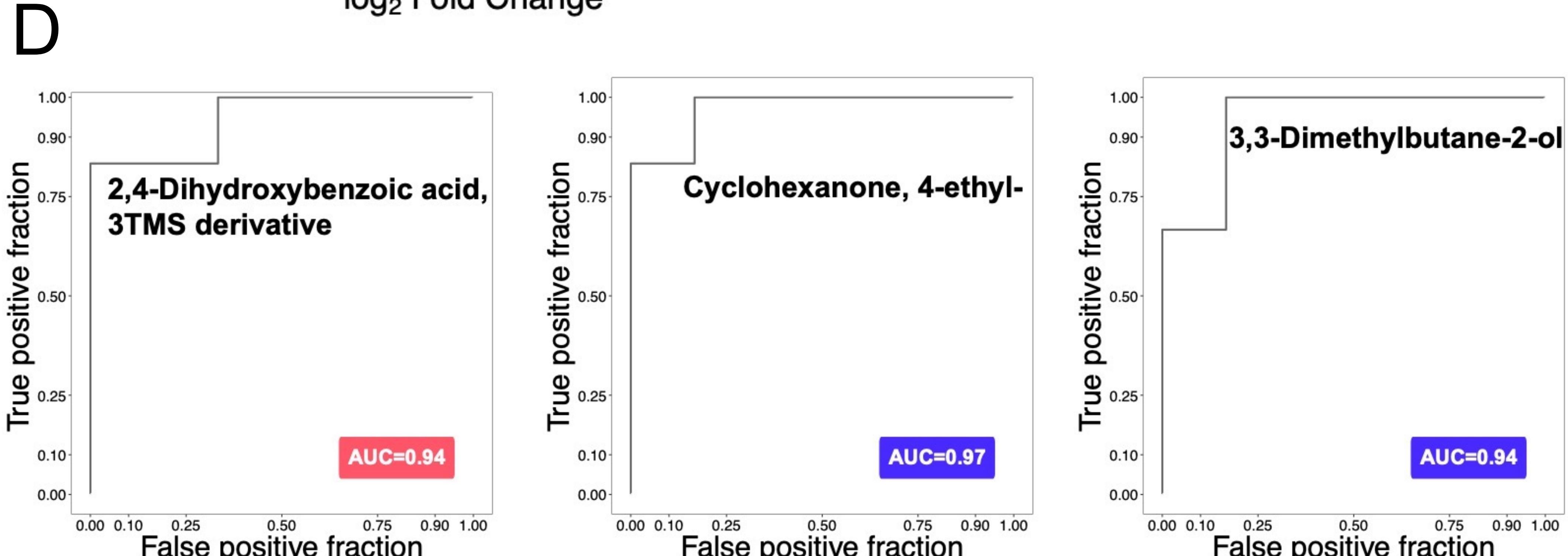
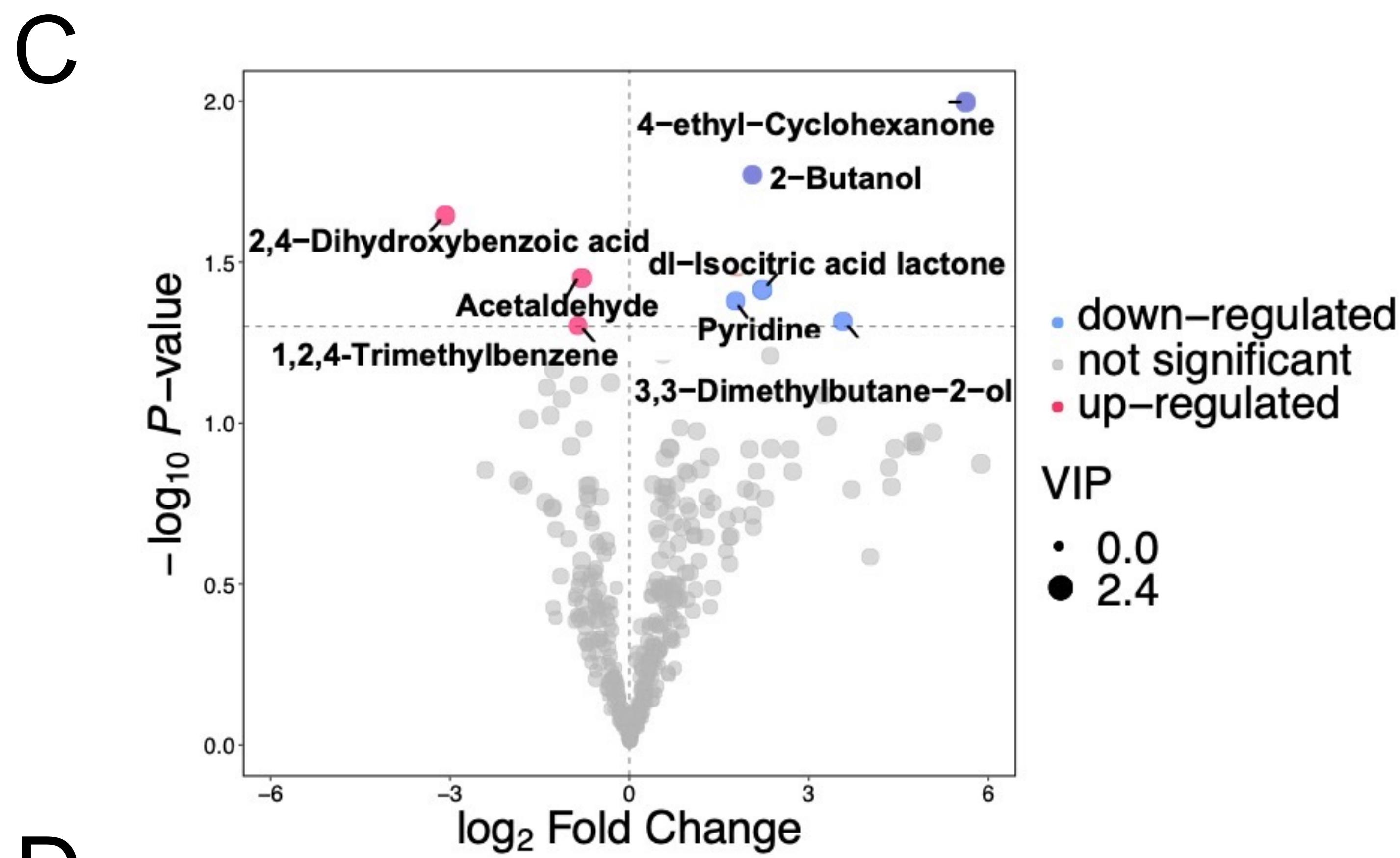
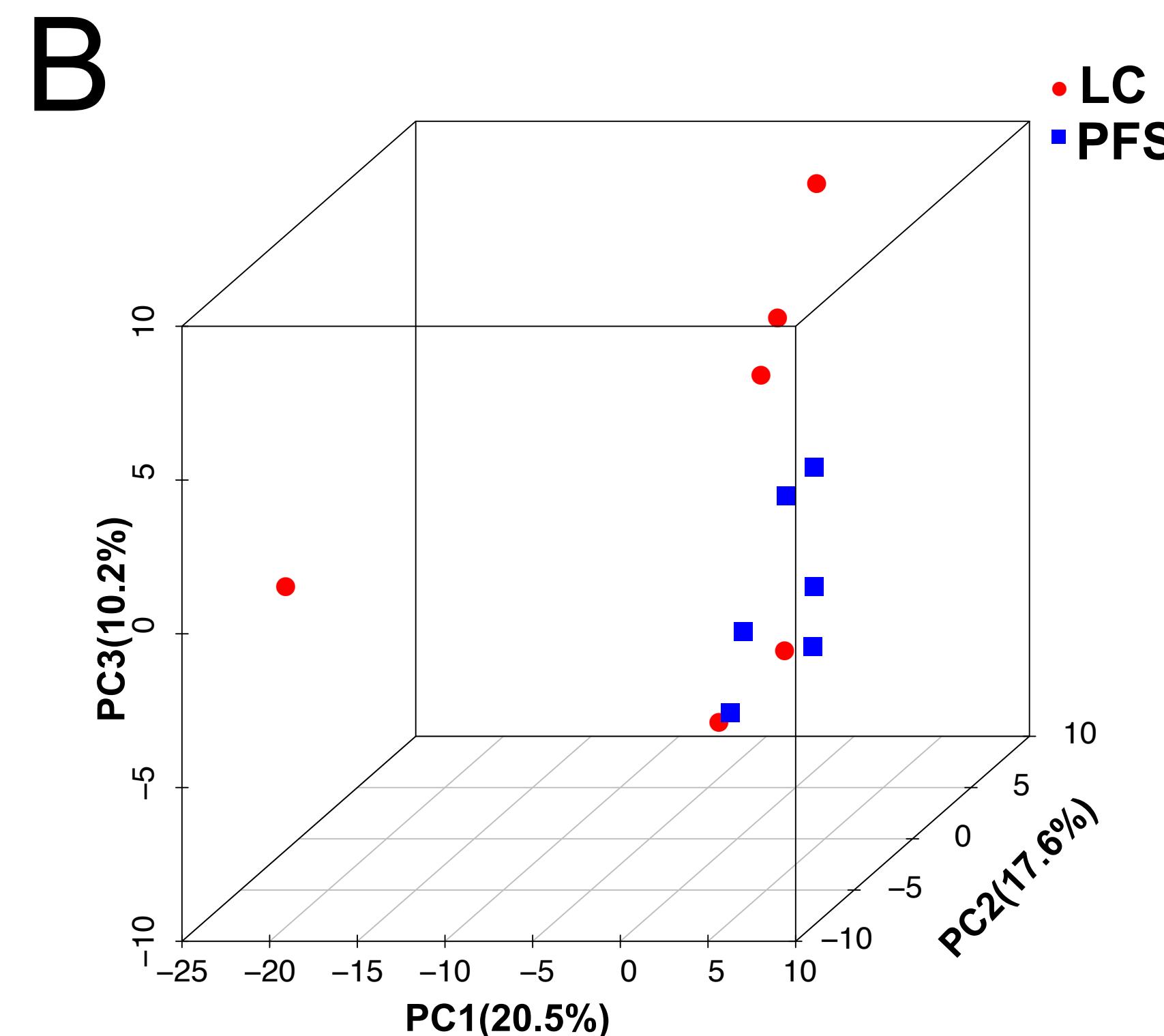
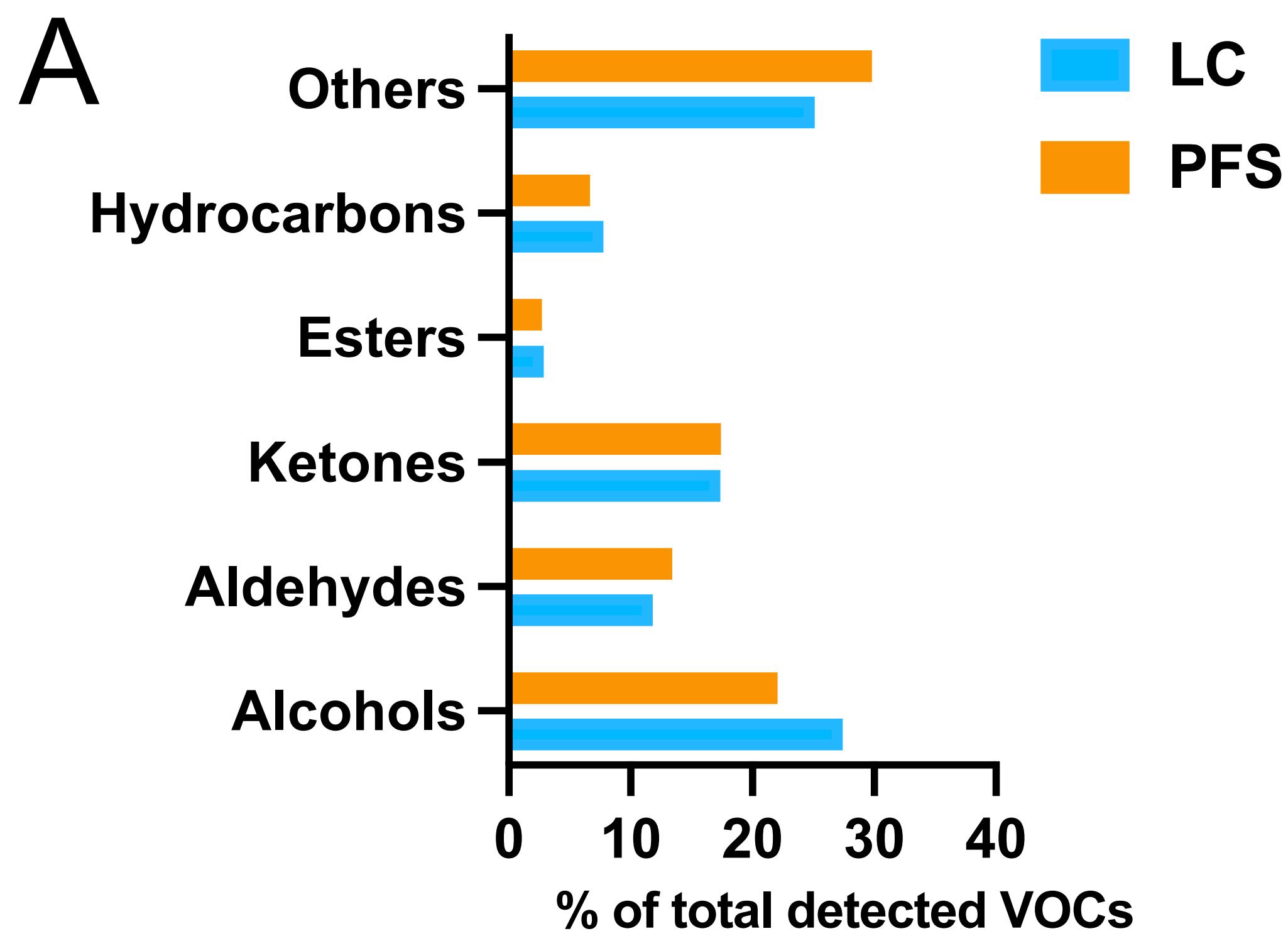
Items	Treatments ¹			SEM	<i>P</i> -value
	LC	HC	PFS		
DM content of raw meat, %	22.9b	24.7a	25.9a	0.56	0.009
IMF, % FM	1.85	2.80	2.38	0.316	0.138
IMF, % DM	8.08	11.2	9.37	1.247	0.239
ΣSFA	879	1137	1128	128	0.152
C10:0	2.51b	3.57a	3.44ab	0.522	0.090
C12:0	3.30	3.12	3.82	0.896	0.570
C14:0	47.9	51.2	60.5	12.95	0.338
C15:0	7.02	9.71	7.24	1.894	0.294
C16:0	424	577	569	75.7	0.116
C17:0	20.9b	40.7a	21.3b	5.54	0.033
C18:0	346	427	429	35.0	0.187
C20:0	3.12b	3.44ab	3.93a	0.221	0.057
C21:0	11.6	10.0	11.4	1.23	0.200
C22:0	2.77a	2.19b	1.99b	0.231	0.005
C23:0	2.84a	2.11b	2.34b	0.275	0.011
C24:0	2.82	2.45	2.70	0.161	0.278
ΣUFA	916b	1310a	1271a	137.8	0.041
ΣMUFA	701b	1051a	1043a	126.3	0.037
C14:1	1.79	2.02	2.42	0.585	0.251
C16:1	27.8b	41.1a	39.1ab	6.19	0.074
C18:1c9	666b	1003a	996a	119.1	0.035
C20:1	2.54	2.41	2.45	0.263	0.939
C22:1n9	1.07	0.99	0.98	0.096	0.762
C24:1	2.87	2.53	2.52	0.184	0.334
ΣPUFA	207	252	218	15.3	0.121
CLA-c9t11	3.96	3.96	3.75	0.308	0.865
CLA-t10c12	1.16b	1.73a	1.13b	0.307	0.035
Σn-3	13.6b	11.5b	25.4a	1.51	<0.001
C18:3n3	7.53b	6.49b	15.7a	1.007	<0.001
C20:5n3	3.27b	2.67b	5.44a	0.415	<0.001
C22:6n3	2.61b	2.44b	3.96a	0.411	0.012
Σn-6	194b	241a	194b	14.5	0.053
C18:2n6	126b	171a	132b	11.6	0.028
C20:3n6	5.37a	4.79ab	4.53b	0.461	0.098
C20:4n6	61.9	64.4	57.2	3.04	0.262
ΣTFA	1795b	2447a	2399ab	265.3	0.077
SFA/UFA	0.96a	0.87b	0.88b	0.018	0.003
MUFA/PUFA	3.45	4.25	4.54	0.397	0.139
n-6/n-3	15.2b	21.3a	8.02c	1.127	<0.001

C16:0/C18:1	0.64a	0.58b	0.56b	0.012	0.001
IA	0.68a	0.60b	0.62b	0.017	0.020
IT	1.68a	1.56b	1.51b	0.039	0.017

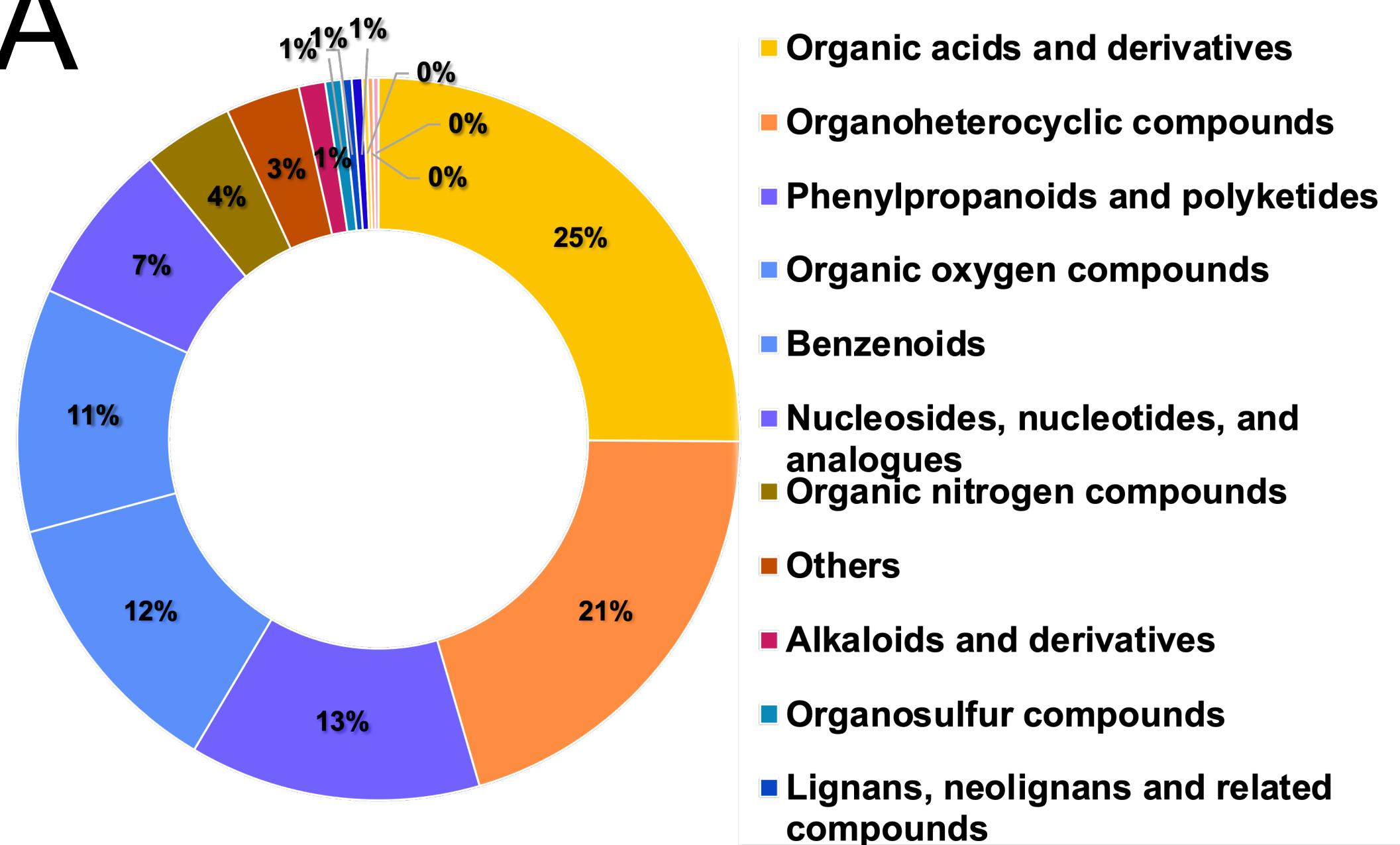
^{a-b} Means within a row with different subscripts differ when P -value < 0.05.

¹ LC, low-concentrate diet; HC, high-concentrate diet; PFS: 3% *Perilla frutescens* seed supplementation in LC; DM, dry matter; FM, fresh matter; IMF, intramuscular fat; SFA, saturated fatty acids; UFA, unsaturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; CLA, conjugated linoleic acid; TFA, total fatty acids; IA, index of atherogenicity; IT, index of thrombogenicity.

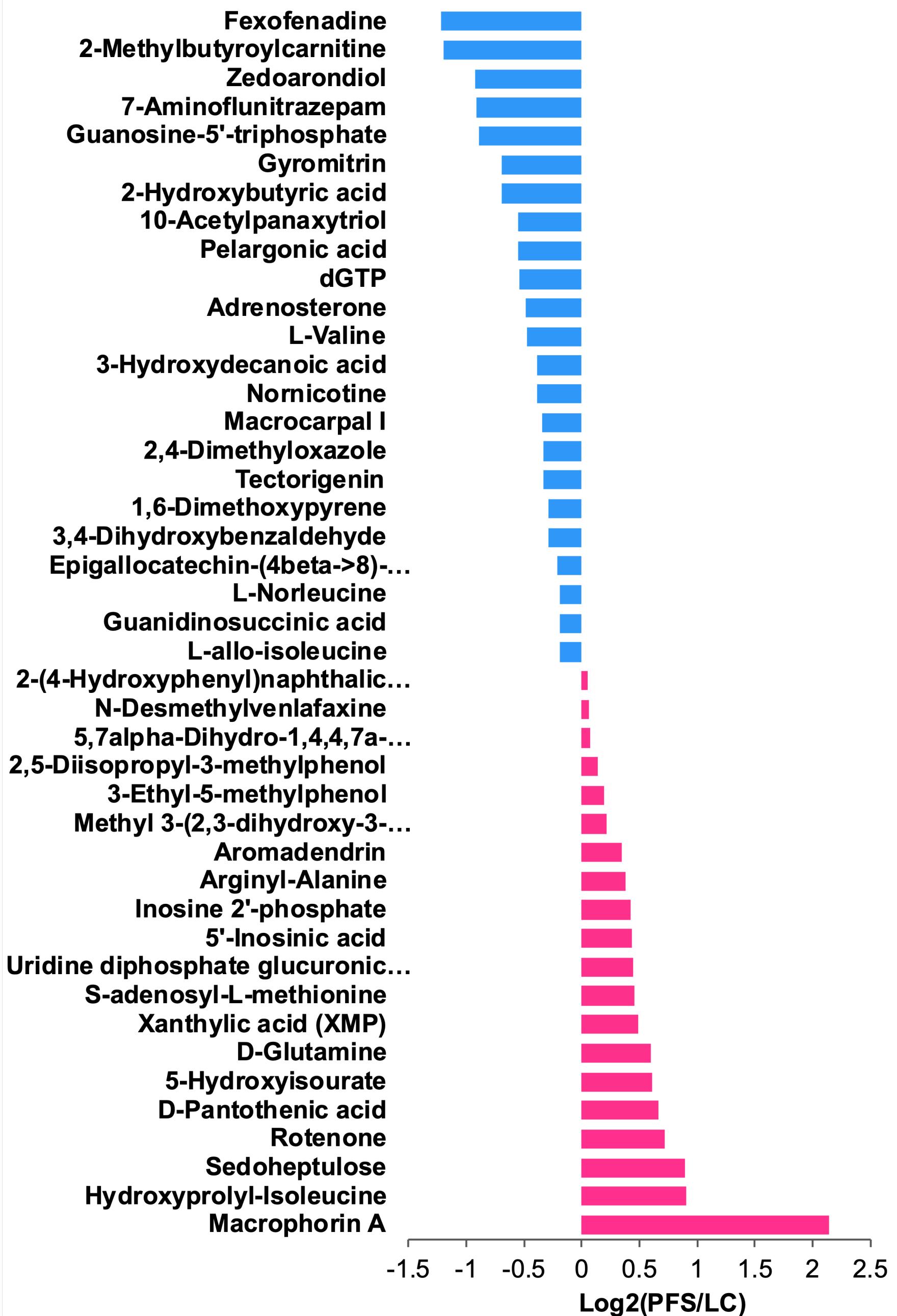
685 **FIGURE CAPTIONS**

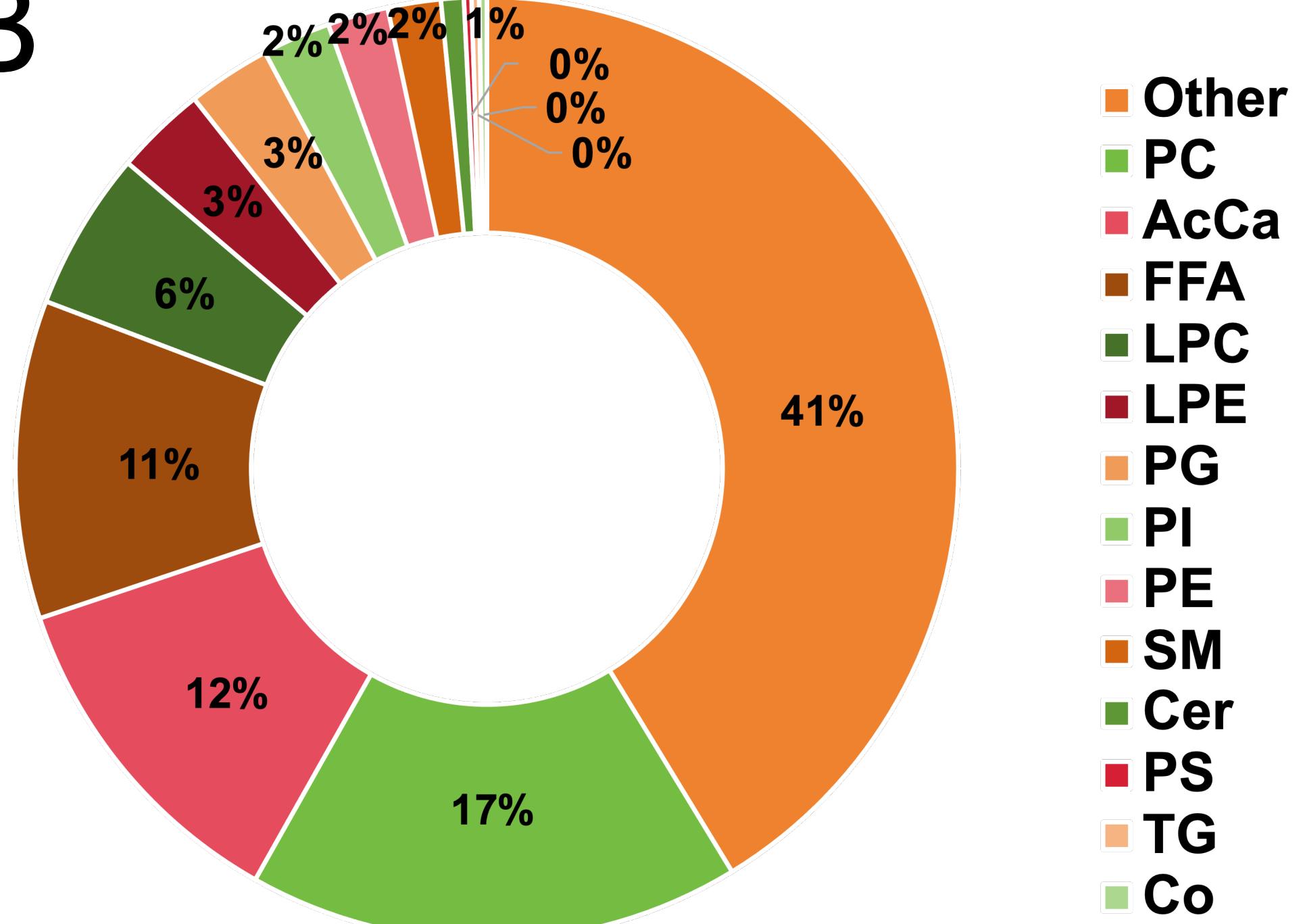




686 **Fig. 1.** The profiles of volatile compounds (VOCs) in *longissimus lumborum* based on
687 GC-MS. (A) The relative proportion of volatile categories in the two groups. (B)
688 Principal component analysis (PCA) score plots of volatile compounds. (C) The
689 volcano plot and differential VOCs between LC and PFS. (D) Biomarker analysis
690 results of VOCs (ROC curve view).

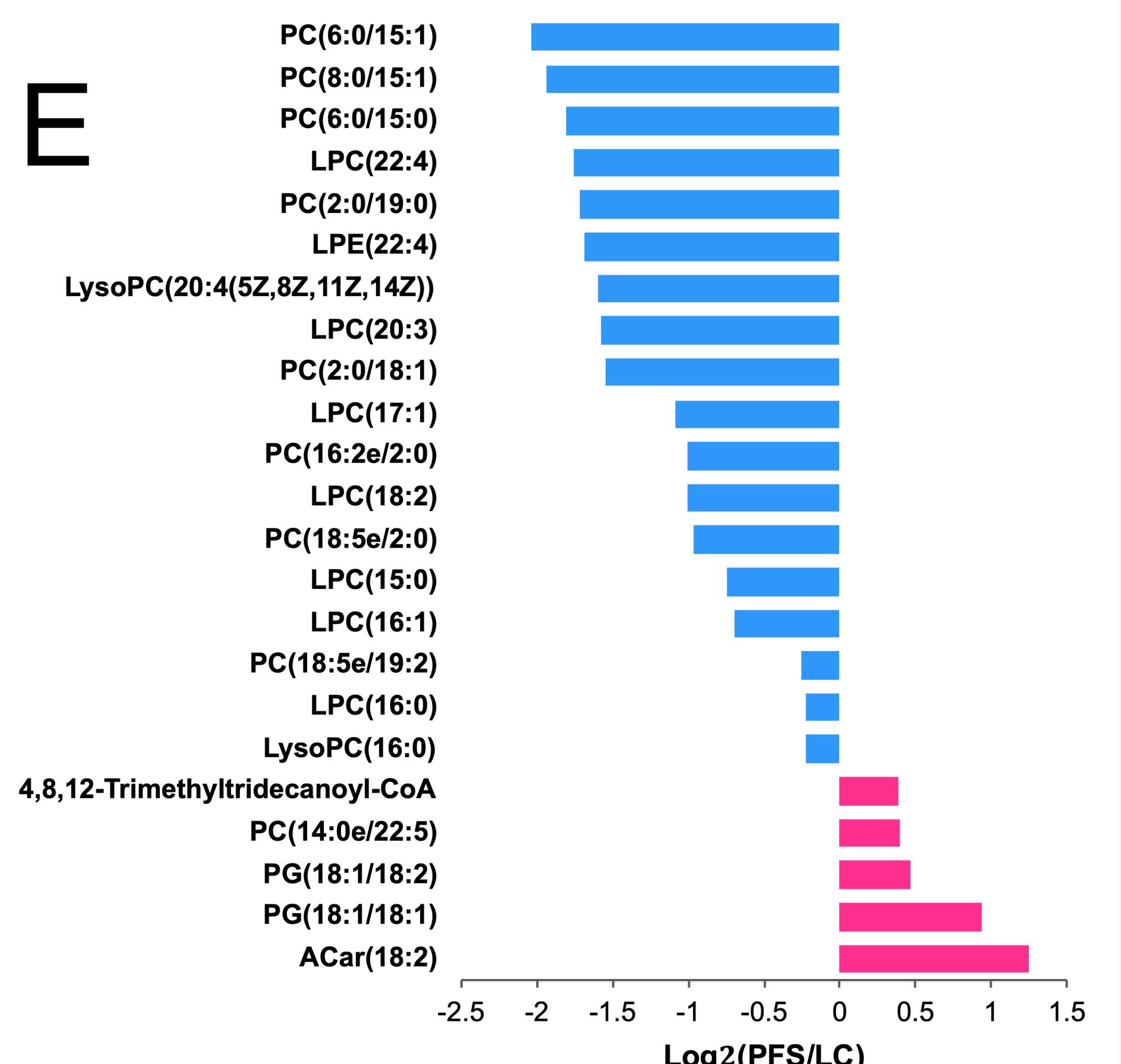
691

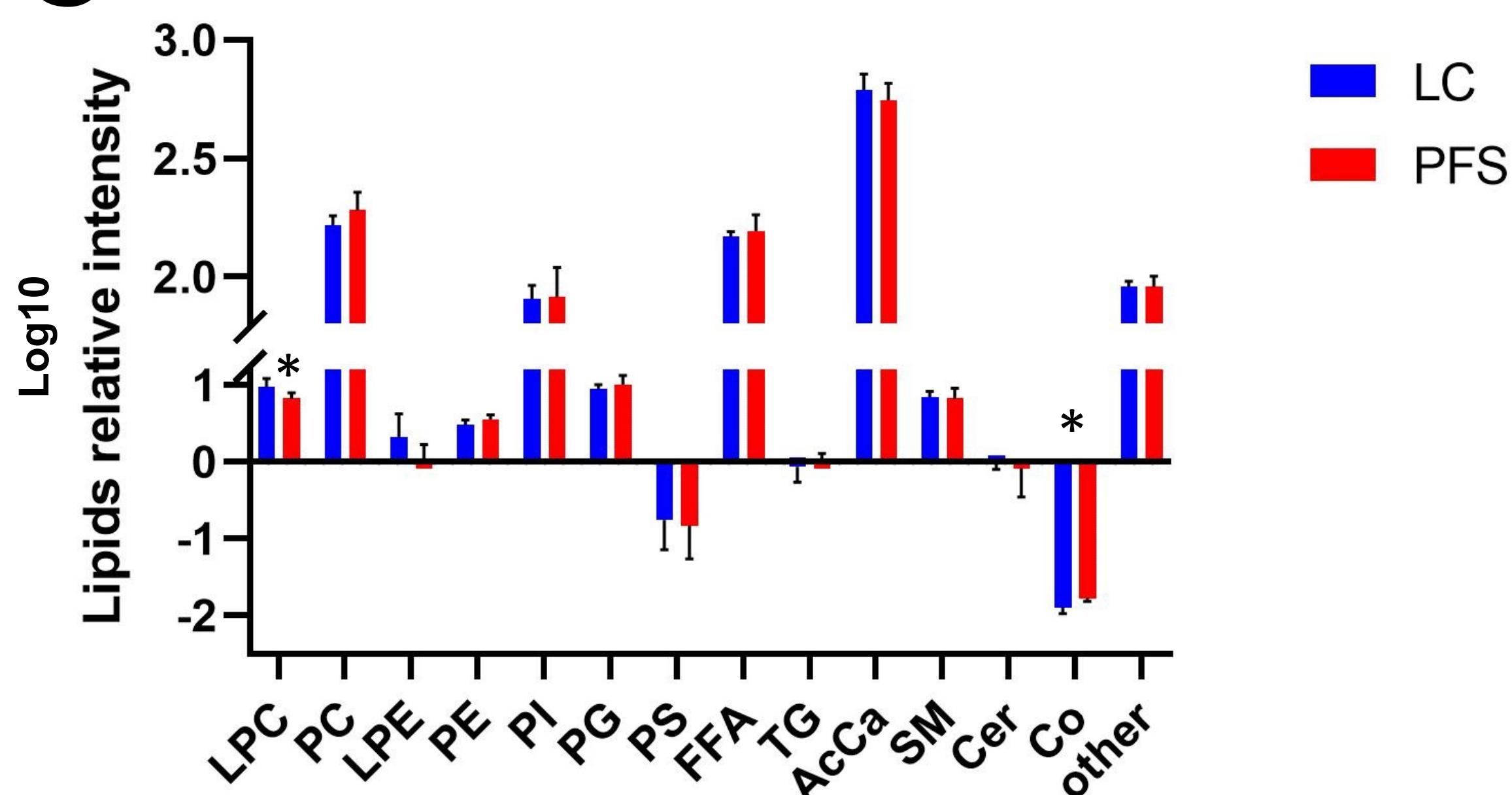

692 **Fig. 2.** The profiles of lipids and hydrophilic metabolites in *longissimus lumborum*
693 based on high definition mix LC-MS. (A) Percentages of categories of lipids and
694 hydrophilic metabolites. (B) Percentages of numbers of lipid species. (C) Difference in
695 lipid species between LC and PFS lamb. (D) Significant different hydrophilic molecular.
696 (E) Significant different lipids molecular. (F) Biomarker analysis results of HD mix
697 LC-MS metabolomics (ROC curve view). *Represents significant differences using
698 Student's two-tailed t-test. (* $P < 0.05$). AcCa, acyl carnitine; Cer, ceramides; Co,
699 coenzyme; FFA, free fatty acid; LPC, lysophosphatidylcholine; LPE,
700 lysophosphatidylethanolamine; PC, phosphatidylcholine; PE,
701 phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS,
702 phosphatidylserine; SM, sphingomyelin; TG, triglyceride.

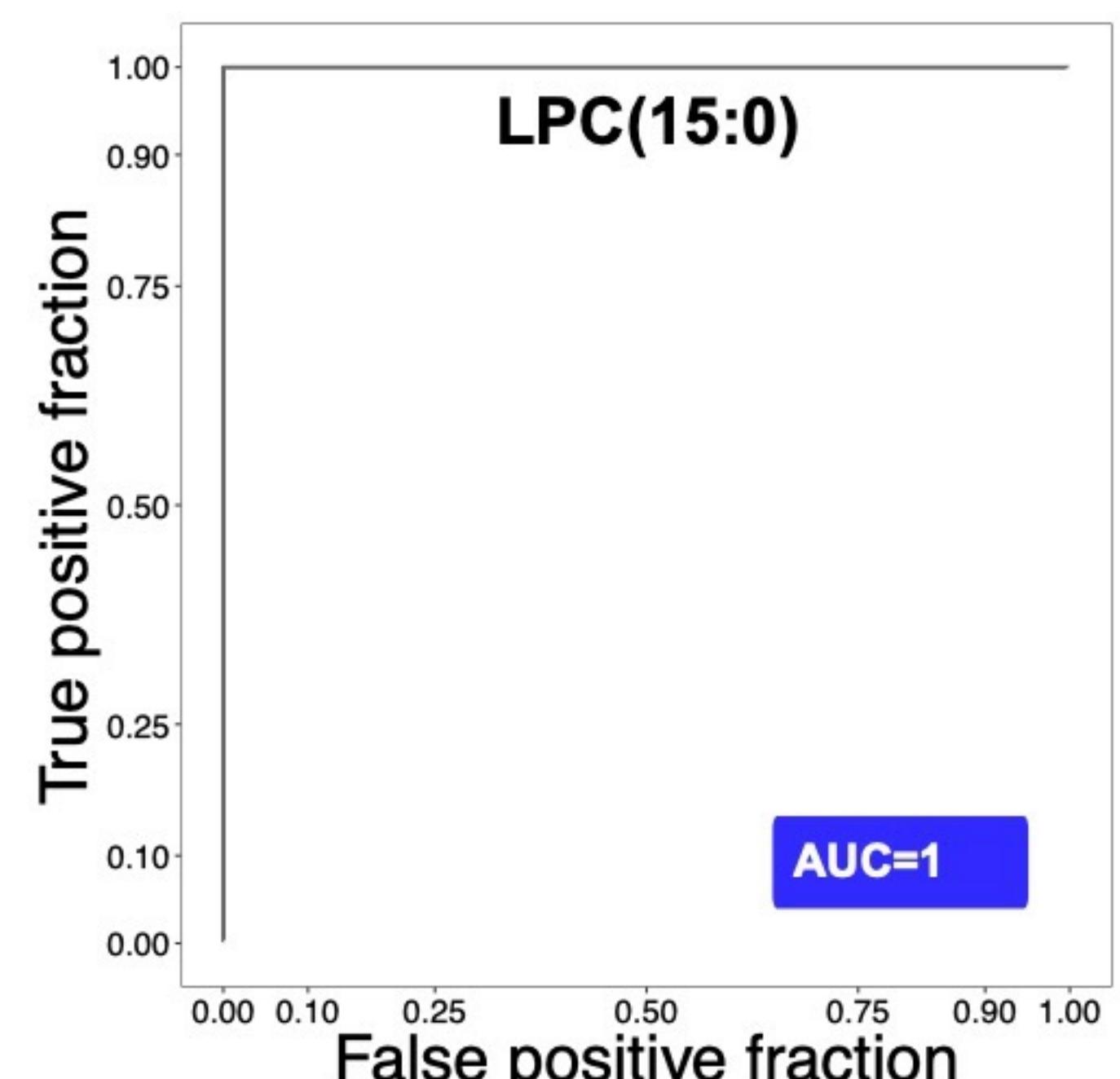
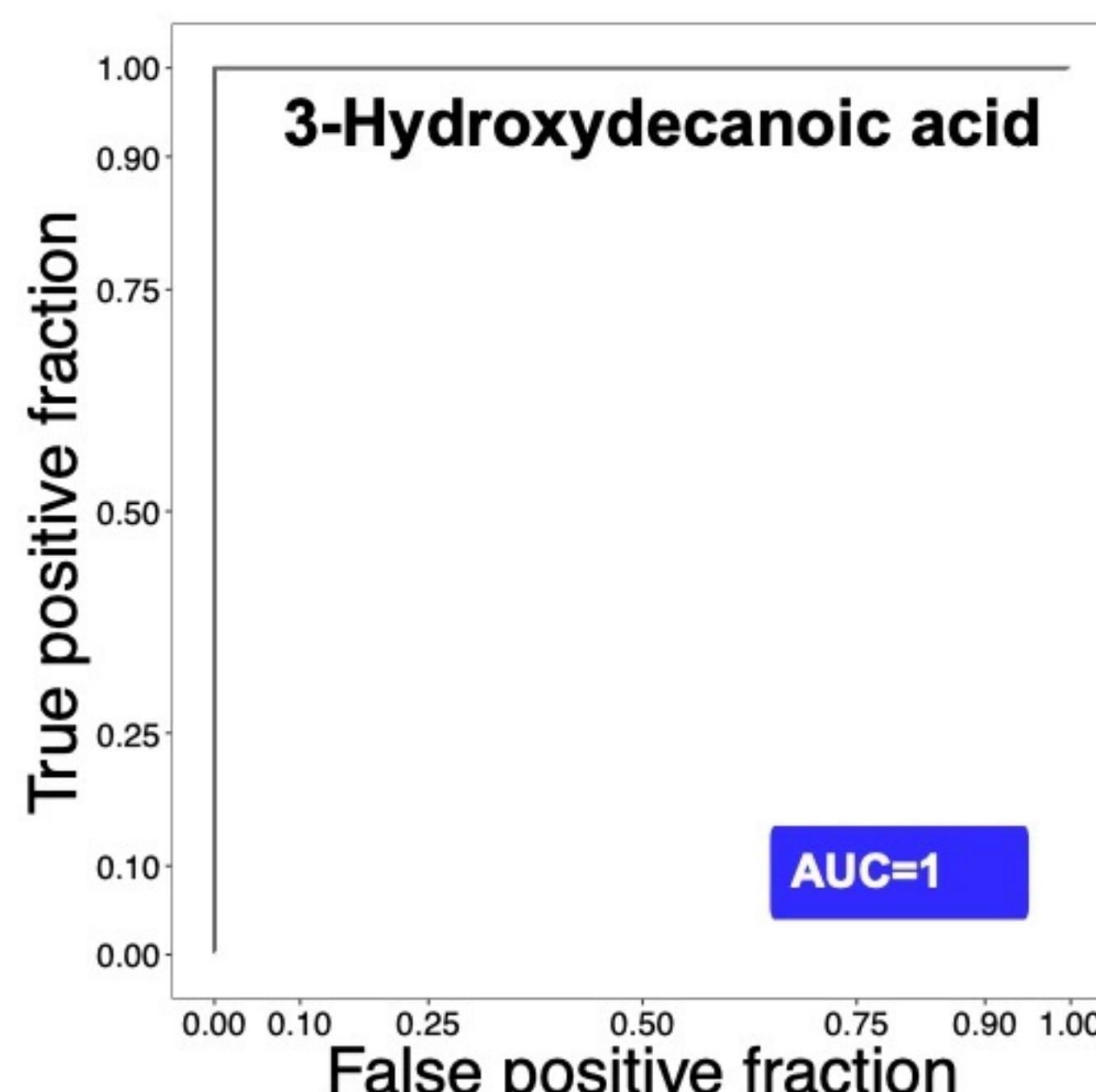
703

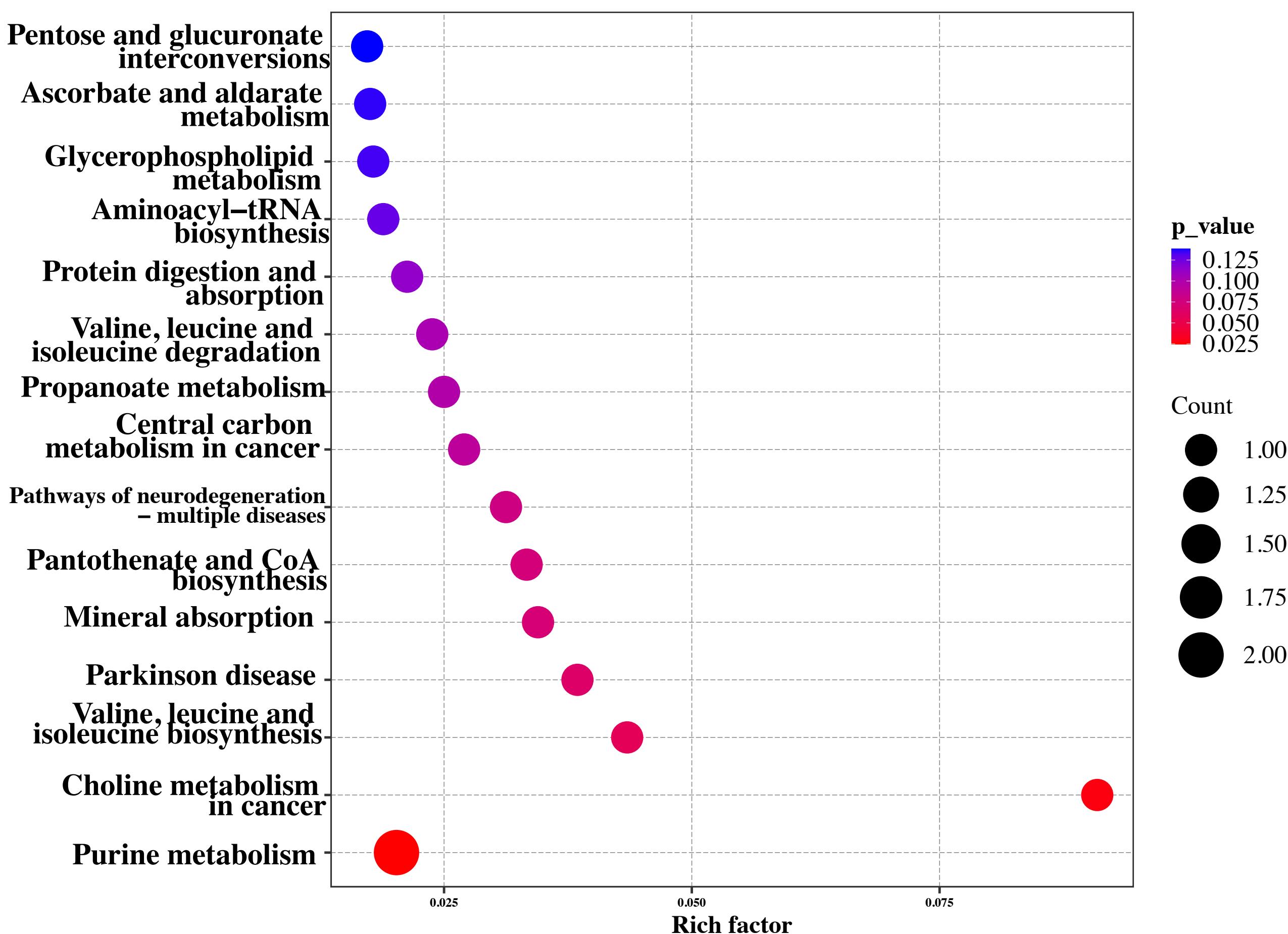
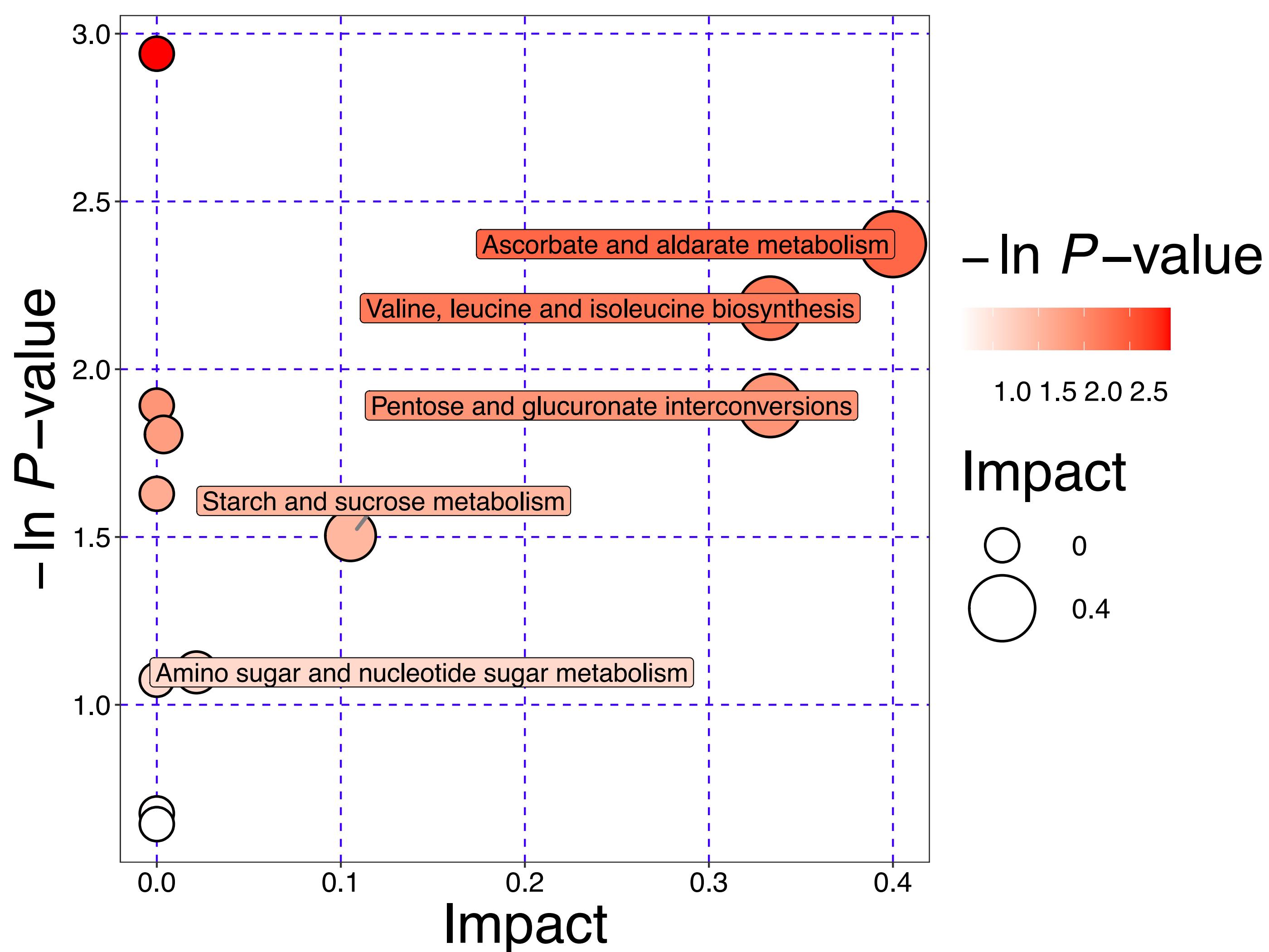

704 **Fig. 3.** The enriched metabolic pathways and co-occurrence network analyses of the
705 different volatile, lipophilic, and hydrophilic metabolites. (A) Metabolic pathways (top
706 15) according to KEGG enrichment analysis of different metabolites (B) Overview of
707 pathway analysis of significant metabolites using Metaboanalyst 5.0.


A


D


B

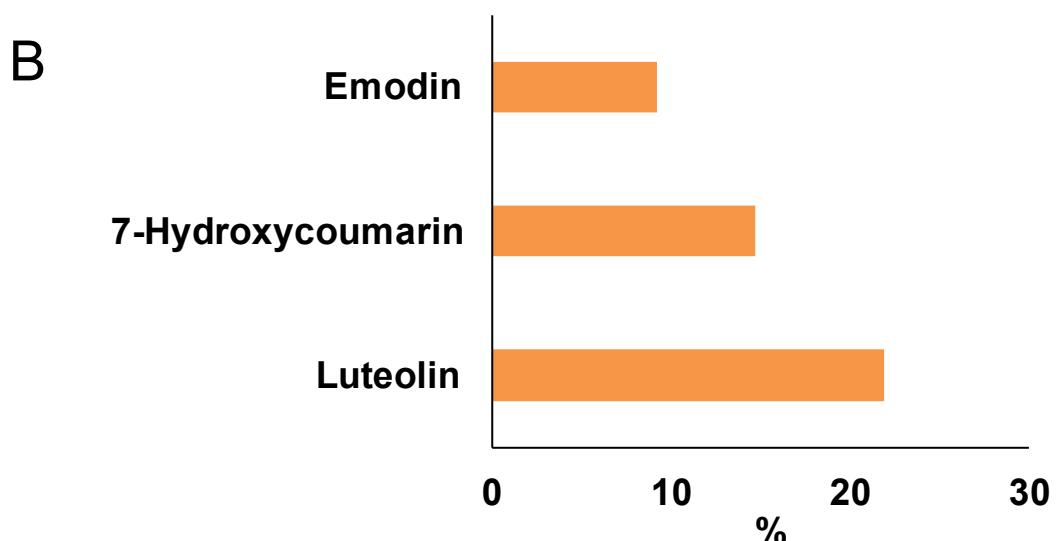
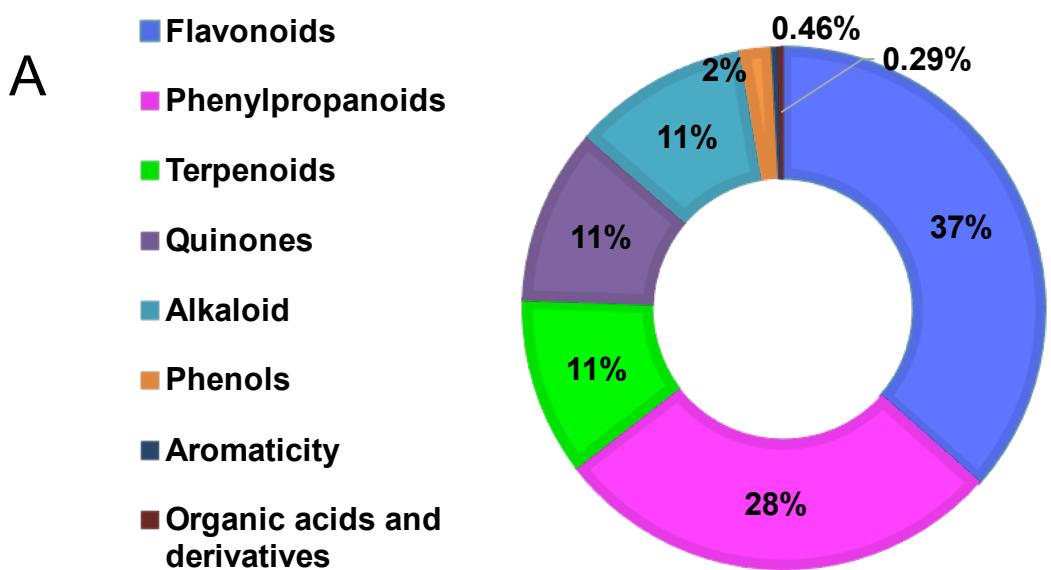


E

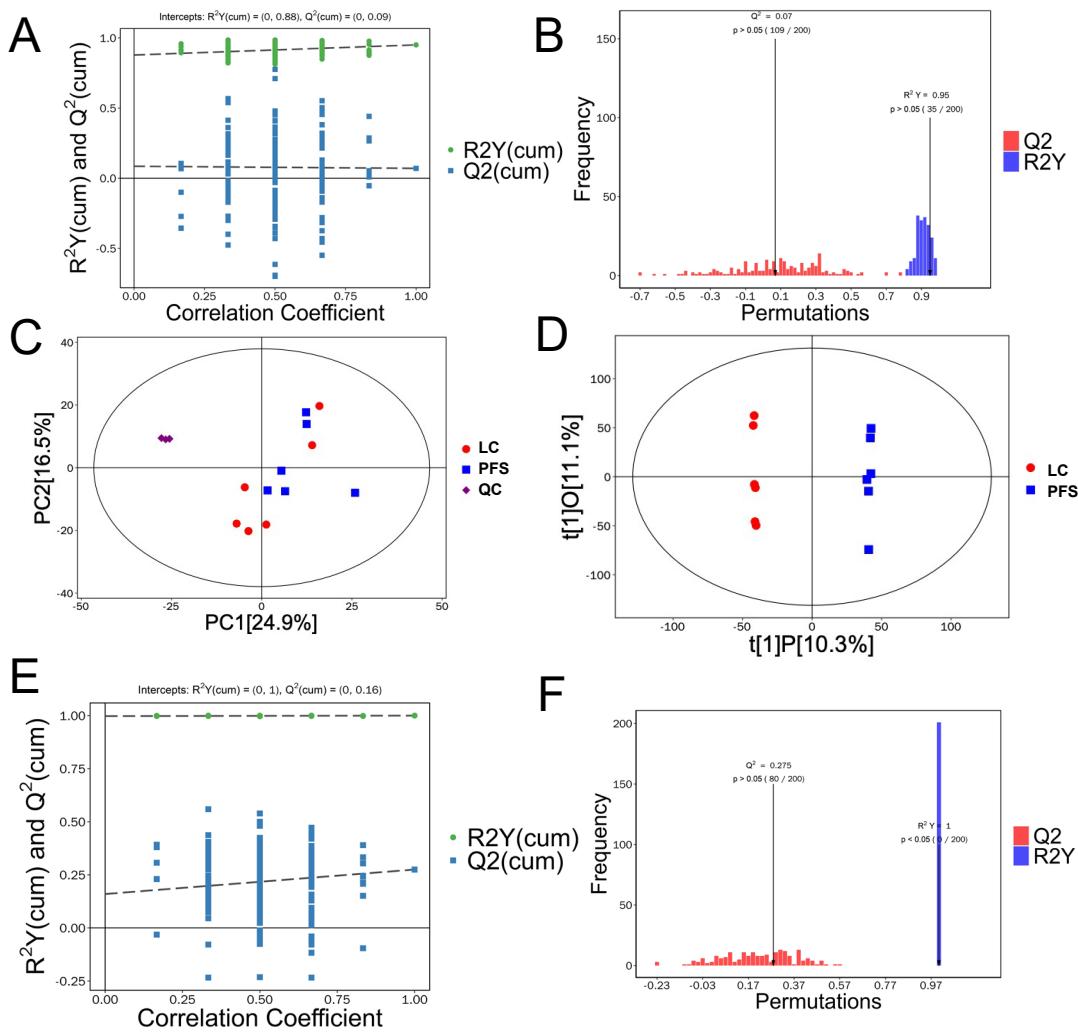
C

F

A**B**



**Exploring the metabolomic landscape: *Perilla frutescens* as a promising enhancer
of production, flavor, and nutrition in Tan lamb meat**

Yue Yu^a, Boyan Zhang^a, Xianzhe Jiang^a, Yimeng Cui^a, Hailing Luo^a, Sokratis Stergiadis^b, Bing Wang^{a,*}


^a*State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China*

^b*University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom*

*Corresponding author: Bing Wang (wangb@cau.edu.cn)

Fig. S1. The plant secondary metabolites of *Perilla Frutescens* seeds. (A) the main categories of plant secondary metabolites. (B) the top three **compounds** of plant secondary metabolites.

Fig. S2. The principal component analysis (PCA) and supervised orthogonal projections to latent structures-discriminant analysis (OPLS-DA) plots. (A-B) the permutation plot and histogram test of the OPLS-DA model based on GC-MS. (C) PCA score plots of lipophilic and hydrophilic metabolites. (D) OPLS-DA score plots of lipophilic and hydrophilic metabolites. (E-F) the permutation plot and histogram test of the OPLS-DA model based on high-definition mix discovery LC-MS/MS.