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CROUZEIX’S CONJECTURE FOR CLASSES OF MATRICES
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ABSTRACT. For a matrix A which satisfies Crouzeix’s conjecture, we construct several
classes of matrices from A for which the conjecture will also hold. We discover a new
link between cyclicity and Crouzeix’s conjecture, which shows that Crouzeix’s Conjecture
holds in full generality if and only if it holds for the differentiation operator on a class of
analytic functions. We pose several open questions, which if proved, will prove Crouzeix’s
conjecture. We also begin an investigation into Crouzeix’s conjecture for symmetric matri-
ces and in the case of 3 X 3 matrices, we show Crouzeix’s conjecture holds for symmetric
matrices if and only if it holds for analytic truncated Toeplitz operators.

Keywords: Numerical ranges, Crouzeix’s Conjecture, Matrix inequalities, Hardy spaces,
Norms of linear operators.

MSC: 15A60, 15A39, 30H10, 47A30.

1. INTRODUCTION

Finding an upper bound for the norm of an operator is one of the most fundamen-
tal endeavours in functional analysis and Crouzeix’s conjecture provides a computational
geometric approach to this. Despite its simplicity and strong numerical evidence, the con-
jecture has not been proved. The purpose of this article is to survey recent progress on the
conjecture, as well as provide several classes of matrices which satisfy Crouzeix’s conjec-
ture and introduce novel approaches to study the conjecture. In particular, we discover a
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2 CROUZEIX’S CONJECTURE FOR CLASSES OF MATRICES

new link between cyclicity and Crouzeix’s conjecture. This affirms the conjecture in the
positive for several new classes of matrices and gives elegant shortened algebraic proofs of
several previously known results obtained by detailed complex analysis techniques. Our
investigation leads to several open questions, which if proved, will prove Crouzeix’s con-
jecture.

Define the numerical range of an n X n matrix A with complex entries by
W(A) = {(Az,a) : (z,2) = 1},

where (-, ) refers to the Euclidean inner product on C™. Crouzeix’s conjecture can be
stated as follows.

Conjecture 1.1. For all square complex matrices A and all complex polynomials p,

Ilp(A)]| <2 sup [p(z)], (1.1)
z€EW(A)

where || - || denotes the standard operator norm for matrices.

Crouzeix [8,/9] showed that for each polynomial p, [[p(A)[| < 11.08sup, ey (4 [P(2)]
and the bound was later improved to 1++/2 by Crouzeix and Palencia [[12]. Using the argu-
ments developed by Crouzeix and Palencia, in [4] Caldwell, Greenbaum and Li improved
the bound to 2 in some special cases. Since the operator norm and numerical range of a
square matrix A are invariant under unitary equivalence Conjecture holds for A if and
only if it holds for all matrices in the unitary equivalence class of A. This is a long exploited
fact that we will use throughout. Consequently it can be shown that all normal matrices
satisfy the conjecture. Further, the conjecture has been shown to hold for several other
classes of matrices including 2 x 2 matrices [8]] (by Crouzeix), certain tridiagonal matri-
ces [20] (by Glader, Kurula and Lindstrém), certain contractions with eigenvalues that are
sufficiently well-separated [3] (by Bickel, Gorkin, Greenbaum, Ransford, Schwenninger
and Wegert) and numerous other specialised cases. Numerical investigations have also
strongly supported the conjecture (see, for example, the work of Greenbaum and Over-
ton [22]] and the references therein). Many results on the conjecture come from works in
the more general setting of K -spectral sets, and other related questions involving intersec-
tions of K -spectral sets have also generated research interest (see for example the work of
Badea, Beckermann, and Crouzeix [2]).

Throughout, all matrices are assumed to be square. We denote by conv{ X'} the convex
hull of the set X', by W (A)® the interior of W (A), by I, the identity matrix, and by ID the
open unit disk in C.

This paper is organised as follows. Section [2] first gives a background on some tech-
niques which have led to partial proofs of Conjecture It then provides the preliminary
results that we need for our study, and surveys recent relevant new results on the conjec-
ture. In Section[3] we construct classes of matrices for which the conjecture holds. We then
develop norm inequalities which prove several results relating cyclicity and Conjecture[T.T}
and as a consequence show that in order to prove Conjecture it suffices to prove the
conjecture for a differentiation operator on a specified space of entire functions. Section
M] discusses the conjecture for symmetric matrices (i.e. matrices which are self transpose).
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In particular, we show that the conjecture holds for 3 X 3 symmetric matrices if and only
if it holds for 3 x 3 truncated Toeplitz operators, and finally we also show that truncated
Toeplitz operators serve as model operators for numerical ranges of 3 X 3 matrices.

2. PREVIOUS WORK ON CROUZEIX’S CONJECTURE AND SOME EXTENSIONS

A commonly used approach to show certain matrices satisfy Conjecture[I.T]is to exploit
von Neumann’s inequality. For a contractive matrix A, von Neumann’s inequality states
that for an analytic function ¢ : D — C which is continuous up to the boundary 0D

lg(A)[| < sup |g(2)].
zeD

Let ¢ : W(A)° — D be a bijective conformal mapping extended to a homeomorphism
of W(A) onto D and let X be an invertible matrix of the same dimension as A such that
X¢(A)X 1 is a contraction and

R(X) = x| | X <2
Then, by von Neumann’s inequality, for any polynomial p,

(Al =X (po ™ (Xp(H)X ) X]|
<2max|po¢ ()| =2 max z)|.
<2maxfpoy™(z)| =2 max [p(z)]

Thus, A satisfies Conjecture [I.T} The difficulty of the above approach is finding ¢ and

X with the requirements specified above. Nonetheless, this approach was used in [20] to

prove Conjecture [I.1] for certain 3 x 3 matrices.

A similar yet alternative approach to proving Conjecture[I.T]for a diagonalisable matrix
Ais to write A = XAX ! where A is a diagonal matrix with the eigenvalues of A on the
diagonal and X is a invertible matrix such that || X|||| X ~*|| < 2. Then for each polynomial
p. we have [[p(A)[| = [ Xp(A)X | and

IXp(A)XH < IXIIX P < 2lpA)l <2 sup [p(2)] <2 sup |p(2)].
z€0(A) z€W(A)
Thus Conjecture [I.Tholds for A. This approach was used in [3]].

We wish to highlight that this approach can be generalised to the case where A is similar
to block diagonal matrices. Assume A = XBX ! where B = diag(Bi, Bs, ... B,) and
each B; is a square matrix such that for all polynomials p,

Ip(Bill <b sup [p(2)]
oy

zE

for some b < 2 and where || X ||| X||b < 2. Then ||p(A4)|| = | Xp(B)X ~}|| and
IXp(B)X | < XX Ilp(B)]| = IX[11X | max|[[p(B;)| <2 sup [p(2)].
v zEW(A)
Thus, under these assumptions Conjecture will hold for A.

For a matrix A, denote by A (W (A)) the algebra of functions which are analytic on the
interior W (A)° of W (A) and continuous on the boundary of W (A). There are at least four
slightly different equivalent formulations of Conjecture[I.T|appearing in the literature. For
the sake of completeness we give a proof of the following proposition.
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Proposition 2.1. The following are equivalent:

(a) For all complex polynomials p,

lp(A) <2 sup [p(z)].
zEW(A)

(b) For all functions f, analytic on an open neighbourhood of W (A)
IF(A)] <2 sup [f(2)].
2EW(A)
(¢) For all functions f, analytic on an open neighbourhood of W (A) such that
SUPew (A) f(2)] =1
IF(A)] < 2.
(d) For all functions f € A(W(A)),

[fA <2 sup [f(2)].

zEW(A)

Proof. To show (a) is equivalent to (b) note that any f which is analytic on an open neigh-
bourhood of W (A) will also lie in A(W(A)). The result now follows from Mergelyan’s
theorem, which shows polynomials are dense in A (W (A)). The implication (b)) = (c)
is immediate. The implication (¢) = (a) follows from the following standard rescaling
argument. For a polynomial p, let

p(2)
SUPzew (A) Ip(2)|
Then p' satisfies the hypothesis of (c), so [|[p'[| < 2, i.e., [[p(A)[| < 2sup,cpw (4 [P(2)]-

The equivalence of (a) and (d) follows from an identical argument to the argument show-
ing (a) and (b) are equivalent. O

P(z) =

The following propositions have also been observed previously, but as our later discus-
sions rely on these results, we include their proofs here.

Proposition 2.2. Let A satisfy Conjecture[I.1] let A, ju € C and denote the transpose of A
by AT, Then

(a) B = pA + My satisfies the conjecture,
(b) AT satisfies the conjecture,

(c) A* (the adjoint of A) satisfies Conjecture[I.1]

Proof. (a) For any polynomial p(z), define ¢(z) = p(uz + A), which means ¢(A4) =
p(pA + Xl;) = p(B). Since Conjectureholds for A, [|g(A)]| < 2sup,cw () lq(2)]
and so |[p(B)|| < 2sup,ew(a) [p(uz + A)|. Since W(B) = uW (A) + A, this implies
la(B)Il < 2sup.ewp) [P(2)]-

(b) A short computation (see [24, Chapter 1]) shows W(A) = W(AT), and as taking
matrix transposes is norm invariant, for each polynomial p

Ip(AT)[| = [lp(A)" | = lp(A)]| <2 sup |p(z)| =2 sup |p(2)].
z€W (A) 2EW (AT)
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(c) For a polynomial p, we write p(z) = ZkN:O pr2", where p;, € C. Note that p(A*) =
(p(A))*, where p(z) = chvzo PRz’ So as Conjectureholds for the given matrix A,

[P(AS) = (A" = [p(A) <2 sup [p(2)]
zEW (A)
=2 sup |p(Z)|=2 sup [p(Z)|=2 sup |p(z)],
M zEW (A*) zEW (A*) zEW (A*)
where the starred equality holds because z € W(A) if and only if Z € W(A*). O
For matrices A, As, ..., A, of dimensions a1 X a1, a3 X as, ..., a, X a, respectively,

letthe (a1 +as+---+ay) X (a1 +as + -+ a,) matrix Ay ® As B - -- B A, be defined
by

A 0 0 0

0 A 0 0
AoAe---0A, =0 0 A - 0 ) 2.1

0 0 A,

where each 0 denotes a block matrix of appropriate size. If a matrix, M, is unitarily
equivalent to a matrix of the form 2.I) for n > 1, then we say M is reducible. Otherwise
we say M is irreducible.

Proposition 2.3. If matrices Ay, As, . . ., A, satisfy Conjecture[I_1|then so does the matrix
AT DA DDA,
Proof. 1f Ay, A,, ..., A, satisfy Conjecture [I.1] then for any polynomial p,

[p(A1 @ Az ® -+ ® Ay
= [lp(A1) @ p(A2) @ - © p(An)||

= max{||p(A1) |, [[p(A2)]],- ... [[p(An) I}

<2max{ sup [p()s swp (..., sup |p(z>|,}
ze€W (A1) zEW(A2) zeEW(A,)

<2 sup [p(2)],

2EW(A1©A2D-DAR)

where the final inequality holds because
n
L W(4i) € conv{W (A1), W(Az),...,W(An)} =W(A & Ar & -+ & Ay),
i=1
and so A1 ® Ay @ - -- ® A, also satisfies the conjecture. O

Although the following proposition is in some sense new, it is fundamentally a result
which follows quickly from the fact that Conjecture [I.T]holds for 2 x 2 matrices.

Proposition 2.4. Every rank one matrix satisfies Conjecture[I.])
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Proof. Every n x n rank one matrix, A, is of the form A(z) = (x, v)u for some u, v € C".
Without loss of generality we may assume u ¢ span v, as if this is the case A is a linear
multiple of an orthogonal projection, which is normal and hence satisfies Conjecture [I.1]
Let X = span{u,v}. Then AX C X and AX+ = {0}. Let 21, x5 be an orthonormal
basis for X’ and let 23, 24, ..., z,, be an orthonormal basis for X1, then with respect to the
orthonormal basis x1, zo, ..., T, A has the matrix representation

(A0
Al@Z_(O Z)»

where A; is a 2 X 2 matrix and where Z denotes the (n — 2) X (n — 2) matrix with each
entry equal to 0. By [8| Theorem 1.1] every 2 x 2 matrix satisfies Conjecture [I.I} and it is
readily verifiable that Z satisfies Conjecture[I.1] So by Proposition Ay @ Z satisfies
Conjecture[I.T] and thus by unitarily equivalence, so does A. O

Denote the n x n matrix with 1 in the ¢j'th entry and 0 in all other entries by e;;. As
Ae;; is rank one for each A € C, by the proposition above Ae;; satisfies Conjecture
This leads us to pose the following question.

Question 2.5. Is the set of all n x n matrices which satisfy Conjecture closed under
addition?

Since the matrices e;; for 4, j = 1,2, ..., n form a basis for the space of all n x n matrices,
a positive answer to the question above is equivalent to Conjecture [I.1|being true.

In the following, ® denotes the tensor product (also known as Kronecker product) of
matrices. Further details of the construction of the tensor product of matrices may be found
in [18].

Proposition 2.6. Let A satisfy Conjecture [I.1] and suppose that N is a normal matrix.
Then N ® A and A ® N satisfy Conjecture[I.]

Proof. First consider N ® A. We have U*NU = D for some unitary U and diagonal D.
It is known (see, for example, [18} Section 3]) that (U ® I4)* = U* ® I4. Thus U ® I is
unitary and we have the unitary equivalence

URI)'NOAU®I) =D A.

Using the Kronecker product representation of D ® A we see D ® A is a direct sum of
scalar multiples of A. Thus, by Propositions [2.2] and D ® A will satisfy Conjecture
[I.T]and by unitary equivalence, so will N @ A.

To show A ® N satisfies Conjecture observe N ® A and A ® N are unitarily
equivalent [ 18, Proposition 2.3]. O
The following result was stated in [[11} Page 3] without proof.

Proposition 2.7. If Conjecture [[.1 holds for all N x N matrices then it holds for n x n
matrices where n < N.
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Proof. Tt suffices to prove the statement in the case that n + 1 = N, as then the result will
follow inductively. Let A be an n X n matrix and let p be a polynomial. If

A)|| < inf ,
Il < _inf  1p(2)

then [[p(A)[| < 2sup,ew(a) [P(2)]- So we can assume without loss of generality that

there exist a d € W (A) such that |p(d)| < ||p(4)||. Set B = (61 2) . By assumption

Conjecture [1.1]holds for B. So, W (B) = conv{W (A),d} = W(A), and thus
lp(A)l = llp(B)Il <2 sup |p(z)] =2 sup |[p(z)].
2€W(B) 2EW (A)

O

The recent thesis [26] contains many new results (some of which are also contained
in a paper by the same author [25]]) centred on norm attaining vectors of || f(A)]|, where
f € A(W(A)). By Proposition[2.1]we see that Conjecture[1.1]holds if and only if

sup /(A <o 22)

FEA(W (A)) MAXocw(a) | f(2)]

It was first observed in [[8, Theorem 2.1] that there are functions fwhich attain the supre-
mum in (2:2) and that such functions are of the form uB o o, where u € C, ¢ is any
conformal mapping from W (A)° to D and

B(z) =exp(in) [[ —=L, m<n—1, Jaj|<1l, ~v€R

is a Blaschke product of degree m. Such functions are called extremal functions for A
and we will denote the extremal function for A by f throughout. If one assumes that
max.cw(a) |f(2)| = 1, then o = 1, so that f is a function of the form B o ¢.

We summarise some results in [26, Section 2.2] related to the uniqueness of extremal
functions in the following theorem.

Theorem 2.8. (a) For ann X n nilpotent Jordan block

01 0 0
00 1 0
J=10 0 0 0]
0 0 0 1
00 0 0

o~

the unique (up to scalar multiplication) extremal function for J is f(z) = 2"~ 1.

(b) The extremal function for the matrix

o o o
o O =
syl o

is not unique.
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Through the use of extremal functions, an alternative proof that certain 2 x 2 matrices
satisfy Conjecture [I.T]is presented in [26} Section 2.3.1].

3. CYCLICITY

This section gives a new link between cyclicity and Conjecture [I.1] and consequently
we show that in order to prove Conjecture [I.1] in full generality one must only verify
Conjecture [I.T] for the differentiation operator on a class of entire functions (see Theorem
[3:3). We also provide several shortened proofs of previously known results.

For an n x n matrix A and a column vector y € C", the cyclic subspace generated by
y is span{y, Ay, A%y, ...}. We say that y is cyclic for A if the cyclic subspace generated
by y is C™. We say A is cyclic if there exists a y € C™ which is cyclic for A. Studying
cyclicity properties of matrices (or the related field of Krylov subspaces) are active areas
of research.

The following theorem establishes a novel link between Conjecture [T.1] and cyclicity.
For an extremal function f for A, if x is such that || f (A)z|| = || f(A)]|||z||, then x is called
a corresponding extremal vector for A.

Theorem 3.1. Let A be a n x n matrix, let V C C" be such that dimV < 2 and let
Ay = PyAp, 'V — V (where Py denotes the orthogonal projection onto V) be the
compression of A to V.

~ ~

(@) If [[f(A)] = [[f(Av)
Jjecture[I1]

(b) If the cyclic subspace generated by an extremal vector x for A is one or two dimen-
sional, then A satisfies Conjecture[I.1]

, where f is an extremal function for A, then A satisfies Con-

(c) If Ais a 3 x 3 matrix and an extremal vector x € C3 is not cyclic for A, then A
satisfies Conjecture [I I} In particular 3 x 3 non-cyclic matrices satisfy Conjecture

il

Proof. (a) As Ay iseithera 1 x 1 or 2 X 2 matrix and both of these satisfy Conjecture
(see [8])), Ay satisfies Conjecture[I.1} and it is readily checked that W (Ay) C W (A). So

~ ~

1/ (Al 1/ (Al 1/ (Av) |l

sup = = < = <
FEA(W (A)) MaX ey () | f(2)] max.cway |f(2)|  max.cw(a, [f(2)]

(b) Set V to be the cyclic subspace generated by . Since A(V) C V), we have

-~ o~ ~

I (A= 1 (Al = [1f (Al
Thus by part (a), the matrix A satisfies Conjecture|[L.1}

(c) If Ais a 3x 3 matrix and z is not cyclic for A, then clearly the cyclic subspace generated
by x is one or two dimensional. Thus the result follows from part (b). O

Remark 3.2. One could restate the theorem above so that if for each polynomial p,
there exists a two dimensional subspace V (which can depend on p) such that ||p(A)| =
[p(Av)|, then A satisfies Conjecture[I.1] This formulation will be more applicable when
one does not know an extremal function for A.
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Mimicking the arguments used in the theorem above shows that if Conjecture [I.1T]holds
for n x n matrices, then non-cyclic (n + 1) x (n + 1) matrices will also satisfy Conjecture
[I.1] We show this in the following corollary.

Corollary 3.3. (a) If Conjecture [I.1) holds for all n x n matrices, then Conjecture [I.1]
holds for all (n + 1) x (n + 1) non-cyclic matrices.

(b) If Conjecture[I. 1| holds for all cyclic matrices, then Conjecture[I.1| holds in full gen-
erality (i.e. for all matrices).

Proof. (a) Assume Conjecture [1.1]holds for all n x n matrices, and let A be a (n + 1) x
(n 4+ 1) non-cyclic matrix. Let f be extremal for A and z be a corresponding extremal
vector.

Set V = spanz, Az, A%x, ... to be the cyclic subspace generated by x. Then A(V) C
V. Since dimV < n, and we have assumed Conjecture holds for n x n matrices,
Propositionshows that Conjectureholds for Ajy. Thus, as || f(A)| = [[f(A)] =

o~

lf(Ap)| and W(A)y,) € W (A), it follows that

~ o~

sup 1/ (Al _ /(A o LAl

reaw(a) maxXzew(a) [F(2)]  max.ewa f(2)]  max.ewan 1F(2)]

(b) Let Conjecture|1.1{hold for all cyclic matrices and let P(n) be the statement “Con-
jecture |1.1{ holds for all matrices.” As previously mentioned P(2) holds by [8]. If P(n)
holds then part (a) combined with the assumption that Conjecture [I.1] hold for all cyclic
matrices shows P(n + 1) holds. Thus the result follows by induction. (]

Lemma 3.4. Ann x n matrix A is cyclic if and only if A* is cyclic.

Proof. This follows from the fact that a A is cyclic if and only if the minimal and charac-
teristic polynomials of A are equal [13] Lemma 25.6], and the fact that the minimal (re-
spectively characteristic) polynomial of A* is the conjugate of the minimal (respectively
characteristic) polynomial of A. ([

For a cyclic n X n matrix A, let v be cyclic for A* (such a v is guaranteed to exist by
Lemma. For u € C™, consider the entire function @(z) := (e*u,v). In the following
theorem Ej , := {a(2) : u € C"}, where ||i]|g, , = |lullcr,and Day 1 Eaw — Ean
is the differentiation operator. The operator D4 ,, is explicitly defined via D4 ,(1)(z) =
(e#4 Au, v). Theorem 1.1 in [1] states the following.

Theorem 3.5. If A is an n x n cyclic matrix and v is cyclic for A*, then A is unitarily
equivalent to Dy ,,.

The following theorem shows that proving the norm estimate (I.1)) for the differentiation
operator D 4 ,, associated with cyclic matrices would yield a full proof of Conjecture [T.1]
for all matrices.

Theorem 3.6. With the notation defined above, if for every cyclic matrix A and every
polynomial p, we have

IP(Paw)lEs, <2 sup  [p(z)] 3.1
2EW(Da,v)
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for some v which is cyclic for A*, then Conjecture[I.1) holds.

Proof. By Corollary [3.3] part (b), in order to prove Conjecture [I.1]in full generality, it is
enough to prove Conjecture for cyclic matrices. If A is a cyclic matrix and v is cyclic
for A*, Theorem 1.1 in [[I]] shows that A is unitarily equivalent to D4 ,,, thus if holds,
Conjecture [I.T| will hold for A. O

In the article [[10], Crouzeix gives a detailed analysis of 3 x 3 nilpotent matrices and
ultimately proves that 3 x 3 nilpotent matrices satisfy Conjecture For a 2-nilpotent
matrix, as the cyclic subspace generated by any vector is one or two dimensional, we
immediately deduce the following corollary to part (b) of Theorem 3.1

Corollary 3.7. Let A be an n x n matrix such that A?> = 0. Then the matrix A satisfies
Conjecture [}

Remark 3.8. Corollary 3.7 provides a swift alternative algebraic proof of the result that
has appeared several time previously in the literature. Recently, [|26, Theorem 6], proves
Conjecture holds for 2-nilpotent matrices. Alternatively, by combining [30] with [8|]
one can show that all matrices with minimum polynomial of degree 2 satisfy Conjecture
[I:1] Crouzeix also noted in [10] that for 2-nilpotent matrices, the numerical range is a
disc, and thus must satisfy Conjecture[I.1]

Theorem may lead one to consider if every 3 X 3 matrix has an extremal function
with a corresponding extremal vector which is non-cyclic (if this were true, this would
prove Conjecture[I.1]in the positive for 3 x 3 matrices). However, the following example
shows this is not the case.

Example 3.9. Let
010
J=(0 0 1
0 0 0

be a nilpotent Jordan block. Then by Theorem[2.8| the (unique up to scalar multiplication)

o~

extremal function is f(z) = z2. The (unique up to scalar multiplication) extremal vector
for
0 0 1
JP=10 0 0
0 0 0

0
is | 0|, which is cyclic for J. Thus the only extremal vectors for J are cyclic.
1

Nonetheless there are examples of cyclic matrices for which we can still apply Theo-
rem [3.T]as the following example shows.

Example 3.10. Let

b

Il
o O O
O O =

—
o | O

~~
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0
where 1 — % <t < V3 — 1. It is readily checked that | 0 | is a cyclic vector for A.
1
As highlighted in [26| Section 2.2.2] the extremal function for A is f(z) = 2, and the
0
corresponding extremal vector for f(A) = Ais | 1], which is not cyclic. Hence by part

0
(b) of Theorem[3.1] A satisfies Conjecture

Our workings lead us to ask the following questions.

Question 3.11. Which matrices A have an extremal function f such that || f(A)|| =

o~

Il f(Ay)|| for some two dimensional subspace V?

Question 3.12. Which matrices A have the property that for each polynomial p one can
find a subspace V such that diimV < 2 and ||p(A)|| = |[p(Av)]|?

Notice that an affirmative answer to Questions [3.1T] or [3.12] implies that the matrix A
satisfies Conjecture [I.1]

4. SYMMETRIC MATRICES AND TRUNCATED TOEPLITZ OPERATORS

Complex symmetric operators are infinite dimensional generalisations of symmetric
matrices. The past fifteen years has seen an explosion of research interest into complex
symmetric operators. In pursuit of a proof of Conjecture for symmetric matrices, in
this section we investigate what role truncated Toeplitz operators play when studying the
numerical ranges of symmetric matrices.

The Hardy space H? consists of all analytic functions on D whose Taylor coefficients
are square summable, that is,

H? .= {f(z) = Z anz™ : Z lan|? < oo},

n€Ng n€Ng
which is a Hilbert space with the inner product defined by

<Z an2", Y bnz”> = anby.

n€Np n€ENg n€Ng

It is well known that, for f € H?, the limits
fle) = lim £ (7<)

exist for almost every ¢, and f € L?(T) (here T = OD denotes the unit circle). If we
set H2 := {f : f € H?} c L2(T), then H? and H? are isometrically isomorphic, and
H? = {f € L2(T) : f, = 0forn < 0}, where f,, denotes the nth Fourier coefficient of
f- We refer the reader to [[14,27]] for a detailed background on the Hardy space.

We say a function § € H? is inner if |0| = 1 a.e. on T. For an inner function 6, we
define the model space, K2, by K3 = (0H?)* N H2. For example, if 6(z) = 2", then
K7 = span{l,z,.., 2" '} If 0(z) = [, 2= for distinct a1, ..., a,, lying in the unit

i=1 1-a;2
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—a;z

€ H? is the reproducing kernel at

disc, then K7 = span{kq,, ..., kq, } where kq, = 1
a;. For further details on model spaces, see [[15].

The truncated Toeplitz operator (which we will abbreviate to TTO), A? : K3 — K,
having symbol g € L*°(T) is defined by

AG(f) = Polgf)

where Py is the orthogonal projection L?(T) — K7. In the special case when 6(z) = 2",
Ag is an x n Toeplitz matrix. Further we note that compressed shift operators are TTOs
with the symbol g(z) = z, and in particular, the authors of [3] recently emphasised their
role in the study of Crouzeix’s conjecture.

TTOs have gained considerable interest from the operator theory community in the past
fifteen years. We refer the reader to [Sl/19] for survey articles on the topic and to [|6}21]] for
articles concerning the numerical ranges of TTOs.

Symmetric matrices are important for Crouzeix’s conjecture because they can mimic the
numerical range of any matrix A, in the sense that for any matrix A there exists a symmetric
matrix, S, of the same dimensions as A such that W(A) = W(S) (see [23]]). The following
open question posed in [[19] shows direct sums of TTOs may play an important role in the
understanding of numerical ranges of matrices and proving Crouzeix’s conjecture.

Question 4.1. Is every symmetric matrix unitarily equivalent to a direct sum of TTOs?

Through conjugation maps (and specifically the use of orthonormal bases which are
invariant under conjugation maps), one can show that every TTO is unitarily equivalent to a
symmetric matrix (see [|28} Section 2] for details). Conversely, Questionis known to be
true for 2-by-2 and 3-by-3 matrices (see [[19]] and [16] respectively), rank one matrices [|16]
and to several inflations of truncated Toeplitz operators [29].

The following lemma uses these facts to show that TTOs serve as model operators for
the numerical ranges of 3 x 3 matrices.

Lemma 4.2. For any 3 X 3 matrix A, there exists an inner function 0 and g1, g2 € L*(T)
such that W(A) = W (A9 & Af)) (summands may be 0).

Proof. As previously mentioned, [23]] shows that for any matrix A there exists a symmetric
matrix, S, of the same dimensions as A such that W (A) = W (S). If S is irreducible, then
S is unitarily equivalent to a TTO [17, Theorem 5.2]. If S is reducible, it is unitarily
equivalent to a direct sum of a 2 x 2 and 1 x 1 matrix. Then since every 2 X 2 matrix is
unitarily equivalent to a TTO [7, Theorem 5.2], S is unitarily equivalent to a direct sum of
two TTOs.

Thus, in all cases for the matrix S we can find (up to) two TTOs A21 , Agz such that
W(S) =W(AY @ A9). O

If Question was shown to be positive, one could make straightforward adaptations
to the lemma above, and show that TTOs serve as model operators for the numerical ranges
of all matrices. Related to this, we also have the following proposition.

Proposition 4.3. The following statements are equivalent:
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(a) Conjecture [I1] holds for all TTOs on three dimensional model spaces with analytic
symbols,

(b) Conjecture[I. 1| holds for all 3 x 3 symmetric matrices,

(c) Conjecture[I1|holds for all TTOs on three dimensional model spaces.

Proof. We first prove a = b. By [[17, Theorem 5.2], any 3 x 3 symmetric matrix S is
unitarily equivalent to (at least one of) the following:

(i) The direct sum of matrices.
(i1) A rank one matrix.
(iii)) A TTO with an analytic symbol.

As Conjectureﬂ;flholds for 2 x 2 matrices ( [[8, Theorem 1.1]), if (i) holds, by Proposition
23] S will satisfy the conjecture. If (i) holds, then Proposition 2.4] shows S will satisfy
the conjecture. If (iii) holds, then clearly by assumption .S will satisty the conjecture. Thus
in all cases S satisfies the conjecture.

The implication b = ¢ follows from the previously mentioned fact that every TTO is
unitarily equivalent to a symmetric matrix (see [28}, Section 2] for details). The implication
¢ = ais immediate. (]
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