

Compacted soil adaptability of Brassica napus driven by root mechanical traits

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Duan, X., Jin, K., Mao, Z., Liu, L., He, Y., Xia, S., Hammond, J. P. ORCID: <https://orcid.org/0000-0002-6241-3551>, White, P. J., Xu, F. and Shi, L. (2023) Compacted soil adaptability of Brassica napus driven by root mechanical traits. *Soil and Tillage Research*, 233. 105785. ISSN 1879-3444 doi: 10.1016/j.still.2023.105785 Available at <https://centaur.reading.ac.uk/114439/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.still.2023.105785>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Compacted soil adaptability of *Brassica napus* driven by root mechanical traits**

2 Xianjie Duan ^{a, b}, Kemo Jin ^{c, *}, Zhun Mao ^d, Ling Liu ^{a, b}, Yangbo He^b, Shangwen Xia ^e,
3 John P. Hammond ^f, Philip J. White ^{a, g}, Fangsen Xu ^{a, b}, Lei Shi ^{a, b, *}

4 ^a National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural
5 University, Wuhan 430070, China

6 ^b Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze
7 River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,
8 Wuhan 430070, China

9 ^cCollege of Resources and Environmental Sciences, National Academy of Agriculture
10 Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education,
11 China Agricultural University, Beijing 100193, China

12 ^d Univ Montpellier, AMAP, INRAE, CIRAD, CNRS, IRD, 34000 Montpellier, France

13 ^e CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical
14 Garden, Chinese Academy of Sciences, Yunnan, China

15 ^f School of Agriculture, Policy and Development, University of Reading, Reading,
16 United Kingdom

17 ^g The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK

18

19 *Correspondence: Lei Shi (lei.shi@mail.hzau.edu.cn); Kemo Jin
20 (kemo.jin@cau.edu.cn)

21 Address: National Key Laboratory of Crop Genetic Improvement, Huazhong
22 Agricultural University, Wuhan 430070, China

23 Tel: 0086-27-87286871

24 Fax: 0086-27-87280016

25

26 E-mail address for other authors:

27 Xianjie Duan: xianjieduan23@126.com

28 Zhun Mao: maozhun04@126.com

- 29 Ling Liu: hzaulingliu@webmail.hzau.edu.cn
- 30 Yangbo He: kathy@mail.hzau.edu.cn
- 31 Shangwen Xia: xsw@xtbg.org.cn
- 32 John P. Hammond: j.p.hammond@reading.ac.uk
- 33 Philip J. white: Philip.White@hutton.ac.uk
- 34 Fangsen Xu: fangsenxu@mail.hzau.edu.cn

35 **Abstract**

36 Soil compaction due to mechanized farming operations is a recurrent issue affecting
37 crop growth and yield. Yet, how soil compaction affects plant functions and ecological
38 strategies is poorly known. With *Brassica napus*, i.e. a widespread crop species as
39 study object, we aim to understand (i) how soil compaction impacts root and shoot
40 traits related to the plant's well-being, nutrient acquisition of *Brassica napus* with
41 different mechanical robustness, as well as their trade-offs, and (ii) how such impacts
42 vary among different cultivars. To do this, we cultivated six cultivars of *Brassica napus*
43 in non-compactated (control) and compacted (treatment) soils, respectively, in a sand
44 culture system. After harvesting, a series of mechanical, morphological and chemical
45 traits of roots and/or shoots were measured. Results showed that soil compaction
46 significantly limited root penetration depth and root system establishment in
47 morphological traits, leading further to significant reduction in nutrients acquisition and
48 plant biomass accumulation. However, soil compaction significantly increases the
49 average root diameter and root/shoot ratio, and facilitate more root exudates
50 secretion (e.g. organic acids and polysaccharides) of *Brassica napus* cultivars. The
51 *Brassica napus* cultivars with large root mechanical traits (e.g. root tensile force, root
52 tensile strength and modulus of elasticity) had higher root cellulose and lignin
53 concentrations and showed a stronger response in maximum root depth and specific
54 root length compared with *Brassica napus* cultivars with small root mechanical traits in
55 compacted treatment, which resulted in the greater fine root length and more root
56 exudates secretion at root-soil interface. Furthermore, deep rooting enhanced
57 nutrients acquisition and further biomass accumulation in compacted soil. Totally, the
58 *Brassica napus* cultivars with large root mechanical traits with more fine roots and root
59 exudates were critical for *Brassica napus* root penetration into a deep soil layer in
60 compacted soil.

61 **Keywords:** *Brassica napus*; Soil compaction; Root mechanical traits; Fine roots; Root
62 exudates

63 **Introduction**

64 In modern agricultural system, soil compaction is mainly sourced from the
65 improper agricultural management, such as the use of heavy machinery, soil drying,
66 long-term no-tillage and intensive agricultural production (Shah et al., 2017; Keller et
67 al., 2019; Mirzavand and Moradi-Talebbeigi, 2021; Ferreira et al., 2021) and is a
68 recurrent problem worldwide. Approximately 68 million hectares of the world's land is
69 degraded due to compaction (Flowers and Lal, 1998; Hamza and Anderson, 2005).
70 The yield loss due to soil compaction has been estimated up to 20 % (Barken et al.,
71 1981) or even up to 50- 75% (Flowers and Lal, 1998; Hoque and Kobata, 2000;
72 Wolkowski and Lowery, 2008). Soil compaction causes a degraded soil structure,
73 which could decrease soil void space available for displacement of soil particles,
74 increase penetrating cost for plant roots (Hamza and Anderson, 2005; Batey, 2009)
75 and lead to low connectivity and continuity of the pore space to reduce water and air
76 transport capability of soil (Kuncoro et al., 2014; Keller et al., 2017).

77 Roots are the first and most direct plant organ subjected to soil compaction and
78 their multifunctionality, such as water and nutrient uptake and scavenging, and
79 resistance to uprooting, can be potentially affected in cultivated lands. Soil
80 compaction can modify root morphological traits through limiting maximum rooting
81 depth and decreasing the size of root system, reducing root elongation rate,
82 increasing radial growth and changing the amount of root branching (Tracy et al.,
83 2012; Correa et al., 2019). Besides limited root growth, soil compaction significantly
84 affects the shoot performance by nutrients deficiency (Lipiec and Stępniewski, 1995;
85 Colombi and Keller 2019). Improving the adaptation ability of roots to soil compaction
86 in deep soil layer will provide benefit for the plant establishment in shoot and root by
87 enhancing the water and nutrients acquisition (Jin et al., 2015; Wang et al., 2019). Yet,
88 the impact of soil compaction on roots' functions and their adaptive strategies still
89 remains poorly understood.

90 Plasticity of roots to compacted soil has been studied previously mainly associated
91 to morphological, biochemical and mechanical traits (Jin et al., 2017; Correa et al.,

92 2019; Vanhees et al., 2020; Bello-Bello et al., 2022), which included (1) a plant with
93 thicker roots tends to enhance its axial force and radial expansion in penetrating
94 through the compacted soil (Chen and Weil, 2010; Colombi et al., 2017). Meanwhile,
95 fine roots with small diameter relative to the small pores distribution in compacted soil
96 could promote roots to penetrate and elongate in the textural pores spaces where
97 there were sufficient small pores in compacted soil (Fukao and Bailey-Serres, 2004;
98 Bodner et al., 2014). (2) The induction of organic and inorganic compounds in the
99 root-soil interface by soil compaction could serve as the lubricant to decrease the
100 resistance source from the friction between root surface and soil particles (Bengough
101 and McKenzie, 1997; Groleau-Renaud et al., 1998; Iijima et al., 2004; More et al.,
102 2020), mainly through improving the soil compression characteristics to ease
103 penetration and enhance the recovery of root induced soil compaction (Oleghe et al.,
104 2107); (3) plants with stronger (i.e., greater root tensile force and strength) and stiffer
105 roots (i.e. greater modulus of elasticity) have an enhanced penetration ability against
106 the strongly-compacted soil layers (Clark et al., 2008; Chimungu et al., 2015; Lee et
107 al., 2020). Root thickening at the root tips can interpret the root penetration outcomes
108 by increasing the root axial force in increased soil strength (Whiteley et al., 1982;
109 Clark et al., 2002; Hanbury and Atwell, 2005; Jin et al., 2013).

110 Root mechanical traits are key metrics in studying the plant anchorage and root
111 penetration into soil (Chimungu et al., 2015). Root functions in compressive, buckling,
112 twisting and/or bending behaviour are important in response to soil compaction and
113 root setting (Bourrier et al., 2013; Mao et al., 2014; Schwarz et al., 2015; Johnson et
114 al., 2016). The root mechanical traits mostly related to the tensile force, tensile
115 strength, modulus of elasticity and tensile strain. Wide variations in root mechanical
116 traits among species mainly depends on root size (Gray and Barker, 2004; Ghestem
117 et al., 2014; Mao et al., 2018; Xu et al., 2021), root moisture contents (Yang et al.,
118 2016; Zhang et al., 2019; Ekeoma et al., 2021), root types (Loades et al., 2015; Mao
119 et al., 2023), root structure (Genet et al., 2005; Zhang et al., 2014; Zhu et al., 2020)
120 and root anatomy (Chimungu et al., 2015; Schneider et al., 2021). For example, the

121 roots with multiseriate cortical sclerenchyma have greater root lignin concentration
122 and root bending strength, and greater root penetration depth in compacted soils
123 (Schneider et al., 2021). The impact of the root mechanical traits on the root
124 penetration ability needs to be explored, which will be helpful for revealing the
125 potential adaptative mechanism of roots' function traits driven by root mechanical
126 traits in reaction to compacted soil (Stokes et al., 2009).

127 Oilseed rape (*Brassica napus* L.) is the most important edible oil crops and has
128 abundant germplasm resources in China as well as in the world (Hu et al., 2017;
129 Friedt et al., 2018; Li et al., 2020). Most of the cultivated soil in the main planting area
130 of *Brassica napus* in Yangtze River basin of central China are poorly drained clay soils,
131 and have poor soil pore system (Xi, 1998; Wang et al., 2021). In addition, the
132 frequency of mechanized harvesting of *Brassica napus* has aggravated the soil
133 compaction recently (Zhang et al., 2006; Wang et al., 2015; Correa et al., 2019). For
134 example, the average soil bulk density at topsoil (5-10 cm) is about 1.38 g/cm³, while
135 the soil bulk density up to 1.52 g/cm³ at plow pan (Ji et al., 2013), which are much
136 higher than the ideal soil bulk density of 1.2-1.3 g/cm³ (Li and Zhou 1994). Oilseed
137 rape is sensitive to soil compaction (Blake et al., 2006) and the seed yield significantly
138 decreased under high soil compaction stress (Alakukku and Elonen, 1995; Arvidsson
139 and Håkansson, 2014; Bogunovic et al., 2018; Orzech et al., 2021). And the
140 adaptability of different oilseed rape species to compacted soil depends on root
141 characteristics, such as root morphology (Wang et al., 2021), root penetration depth
142 (Peltonen-Sainio et al., 2011), root size (Chen and Weil, 2010; Zhang et al., 2022) and
143 root type (Chen and Weil, 2010).

144 In this study, we firstly determined the variation in root mechanical traits and its
145 effect on root depth of six *Brassica napus*, and further investigated the root
146 morphological and biochemical traits plasticity and their effects on nutrients
147 acquisition and plant biomass accumulation of the *Brassica napus* cultivars grown in
148 compacted soil. Thus, the objective of the study is 1) to clarify the responses of the six
149 *Brassica napus* cultivars to soil compaction and 2) the root plasticity to soil

150 compaction for different *Brassica napus* cultivars.

151 **2. Materials and methods**

152 **2.1 Plant materials and growth conditions**

153 In this study, six *Brassica napus* cultivars were selected from an association panel
154 collected from major breeding centers across China (Liu et al., 2016), and among
155 them, *Brassica napus* cultivars of MJDT, A148 and R2 have large root mechanical
156 traits (F , T_r and E_r) and cultivars of NY7, 11-Y7-117 and 1368 have small root
157 mechanical traits (Table S1). A sand-culture system was used to investigate the
158 response of *Brassica napus* to soil compaction in this study, which allows mechanical
159 impedance to be varied independent of aeration and water status of the growing
160 medium (Coelho Filho et al., 2013; Jin et al., 2015). Rigid plastic tubes with 45 cm in
161 length and 15 cm in diameter were placed in tanks with nutrient solution on a base.
162 Each tank contains six tubes, and each tube contains one *Brassica napus* seedling
163 (Fig. S1A). The tubes were filled with mixed quartz sand (88.89% fine sand with 0.23
164 mm particle size on average, and 11.11% coarse sand with 0.69 mm particle size on
165 average) and adequate nutrient solution. Compaction is directly proportional to soil
166 bulk density (Popova et al., 2016). Low (1.30 g cm^{-3}) and high (1.60 g cm^{-3}) bulk
167 density were quantified by adding different masses of sand soil to the tubes with the
168 same volume, which represented non-compacted and compacted treatments,
169 respectively. The changes of penetration resistance along soil profile depth in
170 non-compacted and compacted treatments were shown in Fig. 1, respectively. The
171 penetration resistance was measured by a soil compaction meter (Field Scout SC900
172 soil compaction meter, Spectrum Technologies, Inc., IL, USA) in 2.5 cm increments
173 from soil surface to 30 cm depth with four repetitions. The total porosity and particle
174 density of sand were calculated at non-compacted and compacted treatments (Table
175 1 and Table S2). The soil water potential is basically similar between two bulk density
176 treatments in the well-watered sands. Each treatment for each cultivar has four
177 replications in this study.

178 Seeds were sterilized using 70% (v/v) ethanol and NaOCl (2.5% active chlorine),
179 and then placed on gauze with pure water containing 0.5 μ M CaCl₂ for germination.
180 The germinated seeds with about 1.0 cm length primary root were transplanted and
181 grown in the center of sand core. *Brassica napus* seedlings were grown in an
182 illuminated growth chamber under 16-h-light/8-h-dark photoperiod (with a photo flux
183 density of 300- 320 μ mol m⁻² s⁻¹ at plant height) and 60% relative humidity. The
184 modified Hoagland nutrient solution contains 5.0 mM Ca(NO₃)₂·4H₂O, 5.0 mM KNO₃,
185 2.0 mM MgSO₄·7H₂O, 1.0 mM KH₂PO₄, 50 μ M Fe-EDTA, 50 μ M H₃BO₃, 9.5 μ M
186 MnCl₂·4H₂O, 0.8 μ M ZnSO₄·7H₂O, 0.3 μ M CuSO₄·5H₂O and 0.4 μ M Na₂MoO₄·2H₂O.
187 A total of 60 L nutrient solution was supplied in each tank.

188 *Brassica napus* plants were harvested at 35 d after transplanting when the
189 difference in the growth phenotypes were observed between plants grown in
190 non-compactated and compacted treatments. Firstly, we tested the variations of root
191 mechanical traits and maximum root depth of the six *Brassica napus* cultivars.
192 Secondly, the root morphological traits (total root length, coarse root length, fine root
193 length, root surface area, average root diameter and specific root length), root
194 biochemical traits (organic acid concentration, xylose concentration, glucose
195 concentration and uronic acid concentration), plant biomass parameters (root and
196 shoot dry weight, root/shoot ratio), and nitrogen (N), phosphorus (P) and potassium (K)
197 concentrations and contents in shoot and root of plants were determined.

198 **2.2 Measurement of maximum root depth**

199 At harvest time, the tube grown plants were pulled out carefully from the top of the
200 sand column, and then the sand was carefully removed from the tube bottom till the
201 root tips appeared (Fig. S1B). The maximum root depth was determined by the
202 vertical distance measured from the primary root base to the root tips by ruler with the
203 accuracy of 0.1 cm.

204 **2.3 Measurements of root mechanical traits and root cellulose and lignin
205 content**

206 The first-order lateral roots of more than 10 cm length of the plant were sampled to
207 test root mechanical properties. Root samples were firstly preserved in an alcohol
208 solution contained 15 % ethanol and then kept in a refrigerator at 4 °C (Bischetti et al.,
209 2003). Thirty to forty-five undamaged roots were used to test the root mechanical
210 properties with a universal testing machine (model5967, Instron® Corporation) that
211 was fitted with a 50-N load cell with an accuracy of 2 mN. Root segments were
212 manually clamped with two grips and further fixed with strips of sandpaper and 502
213 Super Waterglue to increase friction. Force of loaded was recorded during tensile
214 testing with extension at the constant rate of 5 mm min⁻¹ (Giadrossich et al., 2017).
215 The diameters of root segment were gauged by vernier caliper with 0.02 mm accuracy.
216 Each root segment was measured three times, in the center of the root segment, to
217 the left and right of the center adhering to both grips, respectively. The average root
218 diameter was used to calculate the root cross-sectional area (Mao et al., 2018). The
219 root tensile force (F , N) and extension (ΔL , mm) were recorded until the root segment
220 was broken. The root tensile strength (T_r , MPa) was calculated as maximum force at
221 failure divided by root cross-sectional area. The root tensile strain (ε_r , %) was
222 calculated by dividing root extension by unstrained root length. The elasticity of
223 modulus (E_r , MPa) corresponds to the slope of the curve of stress-strain within the
224 quasi-liner elastic stage of a root in tension. The calculation method of elasticity of
225 modulus was referenced from the method by Mao et al. (2018). The crude cell wall of
226 roots was extracted by 95% ethanol and ethanol-hexane (1:2) separately and then
227 dried at 55 °C in oven. And the cellulose content was measured by the phenol-sulfuric
228 acid method based on the Masuko et al. (2005) and Nielsen (2010). Total lignin
229 content was measured by the acetyl bromide method in *Brassica napus* roots based
230 on the liyama and Wallis (1990).

231 **2.4 Measurements of root morphological and biochemical traits**

232 The collection method of root exudates was modified from Boeuf-Tremblay et al.
233 (1995) and Pearse et al. (2006, 2007). At harvest time, the plant was lifted carefully
234 from the plastic tube and bulk soil (sand) was shaken off from the root system

235 immediately, and the sand adhering to the roots was defined as rhizosphere soil.
236 Roots were then immersed into a 200 mL container with 40 mL 0.2 mM CaCl₂ solution
237 for 1-2 min to remove mostly rhizosphere soil. All extracts were poured into a 50 mL
238 centrifuge tube and then centrifugated using an Eppendorf 5810R centrifuge
239 (Eppendorf, Hamburg, Germany) at 3000 g for 15 minutes to discard root debris and
240 sloughed cells. The supernatant was freeze-dried and redissolved in 8 mL of distilled
241 water.

242 The extracts of separate 2 mL were used to quantify the glucose and xylose
243 concentrations by anthrone-sulfuric acid assay, respectively (Leyva et al., 2008). A
244 hydroxybiphenyl method was used to test the uronic acid concentration with 2 mL
245 suspension (Filisetti-Cozzi and Carpita, 1991). The rest of the 2 mL extract was used
246 to analyze carboxylates by a reversed phase high-performance liquid
247 chromatography (HPLC) system on an Agilent column (Agilent 1200, equipped with a
248 C18 250×4.6 mm ion-exclusion column, Alltima, America) (Wang et al., 2007; Li et al.,
249 2016).

250 After collection of root exudates, the roots were cleaned by flow water and then
251 scanned with a modified flatbed scanner (Epson V700, Nagano-ken, Japan). The total
252 root length, fine root length, coarse root length, root surface area and average root
253 diameter were analyzed by WinRHIZO software (Regent Instruments Inc., Quebec,
254 Canada).

255 **2.5 Plant biomass and nutrients analyses**

256 Shoots and roots were dried at 80 °C for 3 days to test the root and shoot dry weight.
257 Then, the dried samples were ground to powder and digested with sulfuric acid and
258 hydrogen peroxide in a microwave oven. The N and P concentrations were
259 determined using a fully automated flow-injection system and colorimetry (Sullivan
260 and Havlin, 1991; Alves et al., 2000). The K concentration was determined by a flame
261 photometry (Gao et al., 2005).

262 **2.6 Statistical analyses**

263 The statistical analysis of the data was conducted by SPSS software (SPSS 19.0;
264 IBM Corporation, Armonk, NY, USA). Analysis of Variance (ANOVA) was used to
265 compare the effects of soil compaction on root morphological traits, root biochemical
266 traits, plant biomass and nutrients concentrations and contents in root and shoot
267 among six *Brassica napus* cultivars. Pearson's correlation analysis was used to test
268 the linear correlations among root morphological and root biochemical traits. Principal
269 component analysis (PCA) was used to evaluate the relationships among eleven root
270 traits (including root morphological traits and root biochemical traits) in
271 non-compactated and compacted treatments, respectively. The first three principal
272 components were used to describe the relationships among eleven root traits.

273 **3. Results**

274 **3.1 Root mechanical traits and maximum root depth of *Brassica napus* in**
275 **response to compacted soil**

276 The root tensile force (F) increased significantly with increasing diameter of six
277 *Brassica napus* cultivars regardless of the compaction treatment (non-compactated
278 versus compacted) (Fig. 2a, Fig. S2a and Table S3). The root tensile strength (T_r) and
279 elasticity of modulus (E_r) of *Brassica napus* cultivars decreased with increasing
280 diameter following a non-linear relationship (Fig. 2b, c, Fig. S2b, c and Table S3).
281 There was no significant difference in root mechanical traits (F , T_r and E_r) among six
282 *Brassica napus* cultivars in non-compactated treatment (Fig. S2). However, in the
283 compacted treatment, the three LRM cultivars (MJDT, A148 and R2) had significantly
284 larger root mechanical traits (F , T_r and E_r) than SRM cultivars (NY7, 11-Y7-117 and
285 1368) (Fig. 2). There was not significant difference among six *Brassica napus*
286 cultivars for root tensile strain (ε_r) whether in non-compactated or compacted treatments
287 (Fig. S3). And we also found higher cellulose and lignin concentration in roots of LRM
288 cultivars compared with SRM cultivars, especially in compacted treatment (Fig. S4).
289 The maximum root depth (MRD) of all the six cultivars of the compacted treatment
290 was 59.4% smaller than that of the non-compactated treatment (Fig. 3). In compacted
291 treatment, LRM cultivars had a significantly larger maximum root depth compared

292 with SRM cultivars (Fig. 3), while no significant difference between LRM and SRM
293 cultivars was found in non-compacted treatment (Fig. 3).

294 **3.2 Root morphological and biochemical traits of *Brassica napus* in response to**
295 **compacted soil**

296 The effects of soil compaction on root morphological and biochemical traits of
297 *Brassica napus* were significant at $P < 0.05$ to 0.001 (Table 2). The genotypic
298 differences among six *Brassica napus* cultivars were also observed at $P < 0.05$ to
299 0.01 in total root length (TRL), root surface area (RSA), specific root length (SRL) and
300 fine root length (FRL). Significant differences were also observed in glucose
301 concentration (GC), xylose concentration (XC), uronic acid concentration (UAC) and
302 organic acid concentration (OAC) of root exudates at $P < 0.05$ to 0.001 (Table 2). The
303 interaction effects between compaction treatment and cultivars were observed only in
304 RSA and average root diameter (ARD) ($P < 0.05$) (Table 2).

305 The mechanical impedance significantly impeded root growth and elongation in
306 TRL, RSA, SRL, FRL and CRL, but increased ARD (Fig. 4). Compared with SRM
307 cultivars, LRM cultivars were 23.4% greater in TRL, 17.8% greater in RSA, 22.8%
308 greater in FRL, 6.8% greater in CRL and 23.9% greater in SRL, but 3.6% less in ARD
309 in compacted treatment (Fig. 4). The mechanical impedance also stimulates *Brassica*
310 *napus* roots to secrete more glucose, uronic acid, xylose and organic acid
311 components in the rhizosphere (Fig. 5 and Table S4). Compared with SRM cultivars,
312 LRM cultivars were 49.0% greater in glucose, 91.7% greater in xylose, 28.3% greater
313 in uronic acid and 47.6% greater in organic acid of root exudates (Fig. 5).

314 **3.3 Trade-offs among root-related traits in response to compacted soil**

315 The principal component analysis of the eleven root functional traits of six *Brassica*
316 *napus* cultivars in non-compacted treatment explained 77.2% of the variation in the
317 first three principal components, and the first component (PC1) represented 38.6% of
318 the variability and was dominated by TRL, CRL, SRL, RSA, OAC and XC; the second
319 component (PC2) represented 22.1% of the variability and was dominated by UAC
320 and GC; the third component (PC3) accounted for 16.4% of the variability and was

321 dominated by ARD and MRD (Fig. 6a and Table S5). And the LRM cultivar was
322 clustered in the direction of OAC (e.g. LRM1), the direction of GC, UAC and MRD (e.g.
323 LRM3) and the direction of RSA and TRL (e.g. LRM2). In compacted treatment, the
324 first three traits of the PCA accounted for 39.2%, 25.8% and 10.9% of the total
325 variation, respectively. The root morphological traits (such as TRL, CRL, FRL, MRD,
326 SRL, RSA) scored high in PC1, the root biochemical traits (such as UAC, OAC, GC
327 and XC) scored high in PC2, and the ARD and MRD scored high in PC3 (Fig. 6b and
328 Table S5). Cultivars LRM1 and LRM3 were clusters in the direction of MRD, and the
329 cultivar LRM2 was cluster in the direction of FRL and SRL (Fig. 6b).

330 **3.4 Correlations between maximum root depth and root morphological,
331 biochemical traits of *Brassica napus* in compacted soil**

332 Across six *Brassica napus* cultivars, the MRD and CRL had significant positive
333 correlation with ARD, and the FRL and RSA both had significant positive correlations
334 with CRL in non-compacted treatment ($P < 0.01$ to 0.001 , Fig. S5). However, in
335 compacted treatment, MRD had significant negative correlation with ARD ($P < 0.05$,
336 Fig. 7a). In addition, MRD had significant positive correlation with FRL ($P < 0.05$, Fig.
337 7b), but had no significant correlation with CRL ($P = 0.44$) in compacted treatment (Fig.
338 7c). Meanwhile, SRL had significant positive correlation with glucose, xylose, uronic
339 acid and organic acid concentrations in compacted treatment (Fig. S6). The maximum
340 root depth also had significant correlation with organic acid, glucose, xylose and
341 uronic acid concentrations in compacted treatment (Fig. 8).

342 **3.5 Plant biomass and nutrients acquisition of *Brassica napus* in response to
343 soil compaction**

344 A significant reduction of shoot dry weight (SDW), root dry weight (RDW) and
345 nutrients (N, P and K) concentrations and contents of *Brassica napus* were observed
346 in compacted treatment (Fig. 9a, b, Fig. 10 and Fig. S7). However, the root/shoot ratio
347 significantly increased in compacted treatment compared with non-compacted
348 treatment in both LRM and SRM cultivars (Fig. 9c). The genotypic differences were
349 observed among six *Brassica napus* cultivars both in SDW and RDW ($P = 0.001$, Fig.

350 9), and also in N, P and K contents of root ($P = 0.001$) and shoot ($P = 0.013$ to < 0.001)
351 in both non-compactated and compacted treatments (Fig. 10). Soil compaction had
352 significant effects on the nutrient concentrations of N, P and K in shoot and root ($P <$
353 0.001, Fig. S7). There was no significant difference in shoot N, P and K
354 concentrations among six cultivars, however, significant differences were found in root
355 N and K concentrations among cultivars both in non-compactated and compacted
356 treatments (Fig. S7). Compared with SRM cultivars, LRM cultivars had significantly
357 larger SDW and RDW, and N, P and K contents in shoot and root both in compacted
358 and non-compactated treatments (Fig. 9 and Fig. 10); and higher N, P and K
359 concentrations in root in compacted treatment. There was no significant difference in
360 shoot N, P and K concentrations whether in compacted or non-compactated treatment
361 (Fig. S7).

362 **4. Discussion**

363 It is an important strategy to enhance the biological potential with superior root traits
364 to break the limitation of soil compaction stress by plants (Alameda and Villar, 2012;
365 Grzesiak et al., 2013; Correa et al., 2019). In this study, the *Brassica napus* cultivars
366 with large root mechanical traits (LRM) had higher root lignin and cellulose
367 concentrations and greater rooting depth compared with *Brassica napus* cultivars with
368 small root mechanical traits (SRM) in compacted soil (Fig. 2, Fig. 3, Fig. 11 and Fig.
369 S4). Additionally, the former had more fine roots accompanied by more root exudates
370 in rhizosphere than the latter in compacted treatment. These result in more nutrients
371 uptake and higher biomass accumulation in LRM cultivars than SRM cultivars (Fig. 4,
372 Fig. 5, Fig. 9 and Fig. 10). The penetration of roots through the compacted soil
373 promotes plant growth while increasing soil voids due to the large taproot system of
374 *Brassica napus* (Kautz, 2015; Semwal et al., 2020). It is beneficial for the root
375 establishment of staple crops along the soil pores in structural soil and adherence to
376 more water and nutrients (Gao et al., 2012; Jin et al., 2013).

377 Deep root development in compacted soil is associated with the root traits
378 modification, maximum root system establishment and elongation in vertical and

379 horizontal directions (Comas et al., 2013; Pérez-Ramos et al., 2013; Zwicke et al.,
380 2015; Wu et al., 2022). However, the soil properties significantly affect deep root
381 development, especially in the drought and high soil bulk density condition associated
382 to the soil compaction (Cairns et al., 2011; Correa et al., 2019). In this study, rooting
383 depth of *Brassica napus* in compacted treatment was 59.4% smaller than in
384 non-compacted treatment (Fig. 3). In addition, LRM cultivars had larger root
385 biomechanical properties parameters including tensile force, tensile strength and
386 modulus of elasticity, and had a deeper rooting growth compared with SRM (Fig. 3).
387 These are consistent with previous studies that stiffer roots with large tensile force,
388 tensile strength and modulus of elasticity are associated with greater rooting depth in
389 strong soil (Clark et al., 2008; Chimungu et al., 2015; Lee et al., 2020). Meanwhile,
390 high cellulose or lignin concentrations in cell wall are associated with larger root
391 tensile strength and modulus of elasticity values (Marga et al., 2003; Genet et al.,
392 2005; Zhang et al., 2014), especially for lignin, deposited in the walls of secondarily
393 thickened cells, making them rigid and impervious (Degenhardt and Gimmler, 2000;
394 Zhang et al., 2011). Lee et al. (2020) has reported tree species with large root tensile
395 strength and Young's modulus has deeper and more abundant root system. We
396 hypothesized that large root mechanical traits might be attributed to the stiff root cell
397 wall structure decided by the cell wall components (Fig. 3 and Fig. S5).

398 In this study, with the increasing root diameter, the root tensile force of *Brassica*
399 *napus* grows larger in both non-compacted and compacted treatments (Fig. 2 and Fig.
400 S3). Generally, compared with fine roots, coarse roots with a large axial force and
401 radial expansion could increase root penetration probability when roots encounter a
402 strong soil layer (Whiteley et al., 1982; Clark et al., 2008). However, our results
403 showed that the trade-offs of root morphological traits with more fine roots, rather than
404 coarse roots, had significant positive correlation with root penetration depth in
405 compacted treatment (Fig. 7). Fine roots had an important function in resistance to
406 compacted soil stress, which might be depended on that (1) the shorter and narrower
407 root caps benefit to increase axial force per root cross-sectional area and facilitate

408 penetration through the dense soil layer in mechanical impedance (Souty and Rode,
409 1987; Iijima et al., 2003) and that (2) the micro-pores proportion increased in
410 compacted soil with the decreasing total soil porosity, and the fine roots had a strongly
411 adaptive response to the local constriction in micropores in compacted soil (Fig. 7, Fig.
412 11 and Table 1). Additionally, a larger fine root length was found in LRM cultivars than
413 SRM cultivars in compacted treatment (Fig. 4b). Specially, LRM cultivars tend to have
414 larger SRL and finer and larger MRD in compacted treatment compared with SRM
415 cultivars (Fig. 6). Thus, we suggest that greater fine roots with large root tensile
416 strength and modulus of elasticity facilitate roots to penetrate into the deep soil layer
417 in compacted soil, and increase the soil volume exploring and nutrients acquisition by
418 proliferating more roots per unit carbon investment (Fig. 3 and Fig. 4) (Ho et al., 2005;
419 Laliberté et al., 2015).

420 In our study, greater specific root length and larger rooting depth were also found in
421 LRM cultivars than SRM cultivars in compacted soil stress (Fig. 3 and Fig. 4e). In
422 maize, roots with larger specific root length stimulated by localized fertilizer
423 application had more fine roots proliferation, which could further facilitate the roots to
424 grow into the small pores and elongate into the deep soil layers in compacted soil (Wu
425 et al., 2022). In addition, under compacted soil stress, the organic acids secretion was
426 significantly induced (Ahmed et al., 2014; Oleghe et al., 2017) and the reduction of
427 soil pore size could limit soil solution movement and restrict proton diffusion, all
428 leading to the rhizosphere acidified (McNear, 2013). Low rhizosphere soil pH could
429 regulate root proliferation and cell wall mechanical properties to contribute to the root
430 proliferation (Bloom et al., 2002). This might be supported by our results that specific
431 root length had significant positive correlation with organic acids concentration under
432 compacted soil stress (Fig. S6b). Greater specific root length could be associated with
433 more organic acids secretion in the rhizosphere, and contributed to roots proliferation
434 in compacted soil.

435 Previous studies reported that root secreted mucilage from root tip could lubricate
436 roots to reduce friction as they penetrate through deeper soil layers (Bacic et al., 1986;

437 Read and Gregory, 1997). We found that root exudates polysaccharides and organic
438 acids had significant correlations with maximum root depth in compacted treatment
439 (Fig. 7). The increase of root exudates with more sugars and organic acids can
440 decrease the penetration resistance and increase compression index of soils, and
441 facilitate the roots to grow deeper in compacted soil (Ahmed et al., 2014). In addition,
442 organic acids of exudates can disperse soil structure and decrease soil hardness
443 (Naveed et al., 2017, 2018), and thus enhancing the roots to penetrate into the soil
444 layer (Jin et al., 2013). Although sugars secretion in the soil could offset this effect to
445 stabilize soil structure (Oades, 1984), the most important function of root exudates
446 with sugars-rich mucilage formed a soil sheath to envelope the roots, and relieve the
447 friction at root-soil interface and penetrate roots deep (Bengough and McKenzie, 1997;
448 Carter et al., 2019; Liu et al., 2019). Thus, we suggest that greater root exudates
449 stimulated by mechanical impedance could facilitate roots to penetrate and elongate
450 into the deep soil layer for LRM than SRM, which was achieved by lubricating the
451 passage of biopores in the process of roots elongation (Fig. 11, Hinsinger et al., 2009;
452 Oleghe et al., 2017), and the coordination of more fine roots with more root exudates
453 in rhizosphere for LRM cultivars had the positive function in root penetration and
454 elongation in compacted soil.

455 A significant higher N, P and K contents in root and shoot, and biomass in LRM
456 cultivars than SRM cultivars were observed in compacted soil (Fig. 9, Fig. 10 and Fig.
457 11). Deeper roots and greater root proliferation in compacted soil provide benefit for
458 roots resistance to resources stress distributed in the deep soil layer, such as N and
459 water uptake (Yu et al., 2015; Battisti and Sentelhas, 2017; Xie et al., 2021; Wu et al.,
460 2022). In this study, compared with SRM cultivars, LRM cultivars had a deeper root
461 growth and greater specific root lengths, which facilitates the roots to absorbe more N,
462 P and K in compacted soil (Fig. 10), and which might be achieved by (1) greater total
463 root length and root surface area of roots dealing with the soil compaction stress
464 driven by larger root biochemical properties parameters (De Baets et al., 2008;
465 Vergani et al., 2014); and (2) more nutrients mobilization by root secreting organic

466 acids into the rhizosphere that increased the bioavailability of nutrients (Ström et al.,
467 2002; Gharu and Tarafdar, 2004; Carvalhais et al., 2011; Terzano et al., 2015) and (3)
468 a deeper root system beneficial to the nutrients absorption from the tank by
469 shortening the distance of mass flow between roots and nutrients (Lipiec and
470 Stępniewski, 1995; Chapman et al., 2012).

471 **5. Conclusion**

472 Soil compaction limited root penetration depth and root system establishment, while
473 facilitating root exudates secretion of *Brassica napus*. LRM cultivars had higher root
474 penetration ability, greater fine roots and more exudates, more biomass accumulation
475 and nutrients uptake than SRM cultivars in the compacted treatments. LRM cultivars
476 could be planted in the agricultural soils where soil compaction increases due to the
477 intensity of agricultural activities or the pressure of heavy farm machinery.

478 **Acknowledgements**

479 This work was supported by the National Natural Science Foundation of China (Grant
480 Nos. 31972498 and 31601815). P.J.W. was funded by the Scottish Government
481 Strategic Research Programme (2022-2027).

482

483 **References**

484 Ahmed, M.A., Kroener, E., Holz, M., Zarebanadkouki, M., Carminati, A., 2014.
485 Mucilage exudation facilitates root water uptake in dry soils. *Funct. Plant Biol.* 41,
486 1129-1137.

487 Alakukku, L., Elonen, P., 1995. Long-term effects of a single compaction by heavy
488 field traffic on yield and nitrogen uptake of annual crops. *Soil Till. Res.* 36,
489 141-152.

490 Alameda, D., Villar, R., 2012. Linking root traits to plant physiology and growth in
491 *Fraxinus angustifolia* Vahl. seedlings under soil compaction conditions. *Environ.*
492 *Exp. Bot.* 79, 49-57.

493 Alves, B.J.R., Zotarelli, L., Resende, A.S., Polidoro, J.C., Urquiaga, S., Boddey, R.M.,
494 2000. Rapid and sensitive determination of nitrate in plant tissue using flow
495 injection analysis. Commun. Soil Sci. Plant Anal. 31, 2739-2750.

496 Arvidsson, J., Håkansson, I., 2014. Response of different crops to soil
497 compaction—Short-term effects in Swedish field experiments. Soil Till. Res. 138,
498 56-63.

499 Bacic, A., Moody, S.F., Clarke, A.E., 1986. Structural analysis of secreted root slime
500 from maize (*Zea mays* L.). Plant Physiol. 80, 771-777.

501 Barken, L.R., Bosrresen, T., Njoss, A., 1981. Effect of soil compaction by tractor traffic
502 on soil structure, denitrification, and yield of wheat (*Triticum aestivum* L.). J. Soil
503 Sci. 38, 541– 552.

504 Batey, T., 2009. Soil compaction and soil management—a review. Soil Use Manage.
505 25, 335-345.

506 Battisti, R., Sentelhas, P.C., 2017. Improvement of soybean resilience to drought
507 through deep root system in Brazil. Agron. J. 109, 1612-1622.

508 Bello-Bello, E., López-Arredondo, D., Rico-Chambrón, T. Y., Herrera-Estrella, L., 2022.
509 Conquering compacted soils: uncovering the molecular components of root soil
510 penetration. Trends Plant Sci. 2022, S1360138522001054.

511 Bengough, A.G., McKenzie, B.M., 1997. Sloughing of root cap cells decreases the
512 frictional resistance to maize (*Zea mays* L.) root growth. J Exp. Bot. 48, 885-893.

513 Bischetti, G.B., Bonfanti, F., Greppi, M., 2003. Root tensile strength measurement:
514 testing device and protocol. Quaderni di Idronomia Montana 21, 349-360.

515 Blake, J., Spink, J., Bingham, I., 2006. Management of oilseed rape to balance root
516 and canopy growth. HGCA Rep. 402, 22.

517 Bloom, A.J., Meyerhoff, P.A., Taylor, A.R., Rost, T.L., 2002. Root development and
518 absorption of ammonium and nitrate from the rhizosphere. J. Plant Growth Regul.
519 21, 416-431.

520 Bodner, G., Leitner, D., Kaul, H.P., 2014. Coarse and fine root plants affect pore size
521 distributions differently. Plant Soil 380, 133-151.

522 Boeuf-Tremblay, V., Plantureux, S., Guckert, A., 1995. Influence of mechanical

523 impedance on root exudation of maize seedlings at two development stages.

524 Plant Soil 172, 79-287.

525 Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M., 2018. Tillage management

526 impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia).

527 Catena 160, 376-384.

528 Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T., 2013. Discrete modeling of granular

529 soils reinforcement by plant roots. Ecol. Eng. 61, 646-657.

530 Cairns, J.E., Impa, S.M., O'Toole, J.C., Jagadish, S.V.K., Price, A.H., 2011. Influence

531 of the soil physical environment on rice (*Oryza sativa* L.) response to drought

532 stress and its implications for drought research. Field Crops Res. 121, 303-310.

533 Carter, A.Y., Hawes, M.C., Ottman, M.J., 2019. Drought-tolerant barley: I. Field

534 observations of growth and development. Agronomy 9, 221.

535 Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D., Hajirezaei, M.R., Borriss, R., von

536 Wirén, N., 2011. Root exudation of sugars, amino acids, and organic acids by

537 maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J.

538 Plant Nutr. Soil Sci. 174, 3-11.

539 Chapman, N., Miller, A.J., Lindsey, K., Whalley, W.R., 2012. Roots, water, and nutrient

540 acquisition: let's get physical. Trends Plant Sci. 17, 701-710.

541 Chen, G., Weil, R.R., 2010. Penetration of cover crop roots through compacted soils.

542 Plant Soil 331, 31-43.

543 Chen, G.H., Weil, R.R., 2010. Penetration of cover crop roots through compacted

544 soils. Plant Soil 331, 31-43.

545 Chimungu, J.G., Loades, K.W., Lynch, J.P., 2015. Root anatomical phenes predict

546 root penetration ability and biomechanical properties in maize (*Zea mays*). J. Exp.

547 Bot. 66, 3151-3162.

548 Clark, L.J., Cope, R.E., Whalley, W.R., Barraclough, P.B., Wade, L.J., 2002. Root

549 penetration of strong soil in rainfed lowland rice: comparison of laboratory

550 screens with field performance. Field Crops Res. 76, 189-198.

551 Clark, L.J., Price, A.H., Steele, K.A., Whalley, W.R., 2008. Evidence from

552 near-isogenic lines that root penetration increases with root diameter and

553 bending stiffness in rice. *Funct. Plant Biol.* 35, 1163-1171.

554 Coelho Filho, M.A., Colebrook, E.H., Lloyd, D., Webster, C.P., Mooney, S.J., Phillips,
555 A.L., Hedden, P., Whalley, W.R., 2013. The involvement of gibberellin signalling
556 in the effect of soil resistance to root penetration on leaf elongation and tiller
557 number in wheat. *Plant Soil* 371, 81-94.

558 Colombi, T., Keller, T., 2019. Developing strategies to recover crop productivity after
559 soil compaction—A plant eco-physiological perspective. *Soil Till. Res.* 191,
560 156-161.

561 Colombi, T., Kirchgessner, N., Walter, A., Keller, T., 2017. Root tip shape governs root
562 elongation rate under increased soil strength. *Plant Physiol.* 174, 2289-2301.

563 Comas, L.H., Becker, S.R., Cruz, V.M.V., Byrne, P.F., Dierig, D.A., 2013. Root traits
564 contributing to plant productivity under drought. *Front. Plant Sci.* 4, 442.

565 Correa, J., Postma, J.A., Watt, M., Wojciechowski, T., 2019. Soil compaction and the
566 architectural plasticity of root systems. *J. Exp. Bot.* 70, 6019-6034.

567 De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., Muys, B.,
568 2008. Root tensile strength and root distribution of typical Mediterranean plant
569 species and their contribution to soil shear strength. *Plant Soil* 305, 207-226.

570 Degenhardt, B., Gimmler, H. 2000. Cell wall adaptations to multiple environmental
571 stresses in maize roots. *J. Exp. Bot.* 51, 595-603.

572 Ekeoma, E.C., Boldrin, D., Loades, K.W., Bengough, A.G., 2021. Drying of fibrous
573 roots strengthens the negative power relation between biomechanical properties
574 and diameter. *Plant Soil* 469, 321-334.

575 Ferreira, C J.B., Tormena, C.A., Severiano, E.D.C., Zotarelli, L., Betoli Júnior, E.,
576 2021. Soil compaction influences soil physical quality and soybean yield under
577 long-term no-tillage. *Arch. Agron. Soil Sci.* 67, 383-396.

578 Filisetti-Cozzi, T.M., Carpita, N.C., 1991. Measurement of uronic acids without
579 interference from neutral sugars. *Anal. Biochem.* 197, 157-162.

580 Flowers, M.D., Lal, R., 1998. Axle load and tillage effects on soil physical properties
581 and soybean grain yield on a mollic ochraqualf in northwest Ohio. *Soil Till. Res.*
582 48, 21-35.

583 Friedt, W., Tu, J., Fu, T., 2018. Academic and economic importance of *Brassica napus*
584 rapeseed. In The *Brassica napus* genome. Springer, 1-20, Cham, Germany.

585 Fukao, T., Bailey-Serres, J., 2004. Plant responses to hypoxia—is survival a balancing
586 act?. *Trends Plant Sci.* 9, 449-456.

587 Gao, W., Watts, C.W., Ren, T., Whalley, W.R., 2012. The effects of compaction and
588 soil drying on penetrometer resistance. *Soil Till. Res.* 125, 14-22.

589 Gao, X., C. Ma, S. Du., 2005. Techniques on formula fertilization by soil testing.
590 Chinese Agriculture Press, 94-96, Beijing, China.

591 Genet, M., Stokes, A., Salin, F., Mickovski, S.B., Fourcaud, T., Dumail, J.F., Van Beek,
592 R., 2005. *Plant Soil* 278, 1-9.

593 Gharu, A., Tarafdar, J.C., 2004. Influence of organic acids on mobilization of inorganic
594 and organic phosphorus in soil. *J. Indian Soc. Soil Sci.* 52, 248-253.

595 Ghestem, M., Cao, K.F., Ma, W.Z., Rowe, N., Leclerc, R., Gadenne, C., Stokes, A.,
596 2014. A framework for identifying plant species to be used as 'ecological
597 engineers' for fixing soil on unstable slopes. *Plos One* 9. e95876.

598 Giadrossich, F., Schwarz, M., Cohen, D., Cislaghi, A., Vergani, C., Hubble, T., Phillips,
599 C., Stokes, A., 2017. Methods to measure the mechanical behaviour of tree roots:
600 a review. *Ecol. Eng.* 109, 256-271.

601 Gray, D.H., Barker, D., 2004. Root-soil mechanics and interactions. In: Bennett JJ,
602 Simon A (eds) Riparian vegetation and fluvial geomorphology. Water Science and
603 Application 8. American Geophysical Union, New York, pp 113–123.

604 Groleau-Renaud, V., Plantureux, S., Guckert, A., 1998. Influence of plant morphology
605 on root exudation of maize subjected to mechanical impedance in hydroponic
606 conditions. *Plant Soil* 201, 231-239.

607 Grzesiak, S., Grzesiak, M. T., Hura, T., Marcińska, I., Rzepka, A., 2013. Changes in
608 root system structure, leaf water potential and gas exchange of maize and
609 triticale seedlings affected by soil compaction. *Environ. Exp. Bot.* 88, 2-10.

610 Hamza, M.A., Anderson, W.K., 2005. Soil compaction in cropping systems: A review
611 of the nature, causes and possible solutions. *Soil Till. Res.* 82, 121-145.

612 Hanbury, C.D., Atwell, B.J., 2005. Growth dynamics of mechanically impeded lupin

613 roots: does altered morphology induce hypoxia?. Ann. Bot. 96, 913-924.

614 Hinsinger, P., Bengough, A.G., Vetterlein, D., Young, I.M., 2009. Rhizosphere:

615 biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117-152.

616 Ho, M.D., Rosas, J.C., Brown, K.M., Lynch, J.P., 2005. Root architectural tradeoffs for

617 water and phosphorus acquisition. Funct. Plant Biol. 32, 737-748.

618 Hoorman, J.J., Sá, J.C.M., Reeder, R., 2011. The biology of soil compaction. Science

619 68, 49-57.

620 Hoque, M., Kobata, T., 2000. Effect of soil compaction on the grain yield of rice (*Oryza*
621 *sativa* L.) under water-deficit stress during the reproductive stage. Plant Prod. Sci.

622 3, 316–322.

623 Hu, Q., Hua, W., Yin, Y., Zhang, X.K., Liu, L.J., Shi, J.Q., Zhao, Y.G., Qin, L., Chen, C.,
624 Wang, H.Z., 2017. Rapeseed research and production in China. Crop J. 5, 127–
625 135.

626 Iijima, M., Barlow, P. W., Bengough, A.G., 2003. Root cap structure and cell
627 production rates of maize (*Zea mays*) roots in compacted sand. New Phytol. 160,
628 127-134.

629 Iijima, M., Higuchi, T., Barlow, P.W., 2004. Contribution of root cap mucilage and
630 presence of an intact root cap in maize (*Zea mays*) to the reduction of soil
631 mechanical impedance. Ann. Bot. 94, 473-477.

632 Iiyama, K., Wallis, A.F., 1990. Determination of lignin in herbaceous plants by an
633 improved acetyl bromide procedure. J. Sci. Food Agr. 51, 145-161.

634 Ji, B., Zhao, Y., Mu, X., Liu, K., Li, C., 2013. Effects of tillage on soil physical
635 properties and root growth of maize in loam and clay in central China. Plant Soil
636 Environ. 59, 295-302.

637 Jin, K., Shen, J., Ashton, R.W., Dodd, I.C., Parry, M.A., Whalley, W.R., 2013. How do
638 roots elongate in a structured soil?. J. Exp. Bot. 64, 4761-4777.

639 Jin, K., Shen, J., Ashton, R.W., White, R.P., Dodd, I.C., Phillips, A.L., Whalley, W.R.,
640 2015. The effect of impedance to root growth on plant architecture in wheat. Plant
641 Soil 392, 323-332.

642 Johnson, D.M., Wortemann, R., McCulloh, K.A., Jordan-Meille, L., Ward, E., Warren,
643 J.M., Palmroth, S., Domec, J.C., 2016. A test of the hydraulic vulnerability
644 segmentation hypothesis in angiosperm and conifer tree species. *Tree Physiol.*
645 36, 983-993.

646 Kautz, T., 2015. Research on subsoil biopores and their functions in organically
647 managed soils: A review. *Renew. Agr. Food Syst.* 30, 318-327.

648 Keller, T., Colombi, T., Ruiz, S., Manalili, M. P., Rek, J., Stadelmann, V., Wunderli, H.,
649 Breitenstein, D., Reiser, R., Oberholzer, H.-R., Schymanski, S., Romero-Ruiz, A.,
650 Linde, N., Weisskopf, P., Walter, A., Or, D., 2017. Long-term soil structure
651 observatory for monitoring post-compaction evolution of soil structure. *Vadose*
652 *Zone J.* 16, 1-16.

653 Keller, T., Sandin, M., Colombi, T., Horn, R., Or, D., 2019. Historical increase in
654 agricultural machinery weights enhanced soil stress levels and adversely affected
655 soil functioning. *Soil Till. Res.* 194, 104293.

656 Kuncoro, P.H., Koga, K., Satta, N., Muto, Y., 2014. A study on the effect of compaction
657 on transport properties of soil gas and water I: Relative gas diffusivity, air
658 permeability, and saturated hydraulic conductivity. *Soil Till. Res.* 143, 172-179.

659 Laliberté, E., Lambers, H., Burgess, T.I., Wright, S.J., 2015. Phosphorus limitation,
660 soil - borne pathogens and the coexistence of plant species in hyperdiverse
661 forests and shrublands. *New Phytol.* 206, 507-521.

662 Lee, J.T., Chu, M.Y., Lin, Y.S., Kung, K.N., Lin, W.C., Lee, M.J., 2020. Root traits and
663 biomechanical properties of three tropical pioneer tree species for forest
664 restoration in landslide areas. *Forests* 11, 179.

665 Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E.N., Cremata, J., Sánchez, J.C.,
666 2008. Rapid and sensitive anthrone–sulfuric acid assay in microplate format to
667 quantify carbohydrate in biopharmaceutical products: method development and
668 validation. *Biologicals* 36, 134-141.

669 Li, C., Zhou, S., 1994. Effects of soil bulk density on the growth of maize seeding
670 stage. *Acta Agriculturae Boreali-Sinica* (In Chinese), 9, 49-54.

671 Li, H., Xia, H., Mei, Y., 2016. Modeling organic fouling of reverse osmosis membrane:

672 From adsorption to fouling layer formation. Desalination 386, 25-31.

673 Li, L.X., Chen, B.Y., Yan, G.X., Gao, G.Z., Xu, K., Xie, T., Zhang, F.G., 2020. Proposed
674 strategies and current progress of research and utilization of oilseed rape
675 germplasm in China. J. Plant Genet. Resour. 21, 1–19.

676 Lipiec, J., Stępniewski, W., 1995. Effects of soil compaction and tillage systems on
677 uptake and losses of nutrients. Soil Till. Res. 35, 37-52.

678 Liu, S., Fan, C.C., Li, J.N., Cai, G.Q., Yang, Q.Y., Wu, J., Yi, X.Q., Zhang, C.Y., Zhou,
679 Y.M., 2016. A genome-wide association study reveals novel elite allelic variations
680 in seed oil content of *Brassica napus*. Theor. Appl. Genet. 129, 1203-1215.

681 Liu, T.Y., Ye, N., Song, T., Cao, Y., Gao, B., Zhang, D., Zhu, F.Y., Chen, M., Zhang, Y.J.,
682 Xu, W.F., Zhang, J., 2019. Rhizosheath formation and involvement in foxtail millet
683 (*Setaria italica*) root growth under drought stress. J. Integr. Plant Biol. 61,
684 449-462.

685 Loades, K.W., Bengough, A.G., Bransby, M.F., Hallett, P.D., 2015. Effect of root age
686 on the biomechanics of seminal and nodal roots of barley (*Hordeum vulgare* L.) in
687 contrasting soil environments. Plant Soil 395, 253-261.

688 Mao, Z., Roumet, C., Rossi, L.M.W., Merino-Martin, L., Nespolous, J., Taugourdeau,
689 O., Boukrim, H., Fourtier, S., Del Rey-Granado, M., Ramel, M., Ji, K., Zuo, J.,
690 Fromin, N., Stokes, A., Fort, F., 2023. Intra- and inter-specific variation in root
691 mechanical traits for twelve herbaceous plants and their link with the root
692 economics space. Oikos e09032.

693 Mao, Z., Wang, Y., McCormack, M. L., Rowe, N., Deng, X.B., Yang, X.D., Xia S.W.,
694 Nespolous, J., Sidle, Roy.C., Guo, D.L., Stokes, A., 2018. Mechanical traits of
695 fine roots as a function of topology and anatomy. Ann. Bot. 122, 1103-1116.

696 Mao, Z., Yang, M., Bourrier, F., Fourcaud, T., 2014. Evaluation of root reinforcement
697 models using numerical modelling approaches. Plant Soil, 381, 249-270.

698 Marga, F., Gallo, A., Hasenstein, K.H., 2003. Cell wall components affect mechanical
699 properties: studies with thistle flowers. Plant Physiol. Biochem. 41, 792-797.

700 Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., Lee, Y. C., 2005.
701 Carbohydrate analysis by a phenol-sulfuric acid method in microplate format.

702 Anal. Biochem. 339, 69-72.

703 McNear, D.H.Jr., 2013. The rhizosphere-roots, soil and everything in between. Nat.

704 Educ. Knowl. 4, 1.

705 Mirzavand, J., Moradi-Talebbeigi, R., 2021. Relationships between field management,

706 soil compaction, and crop productivity. Arch. Agron. Soil Sci. 67, 675-686.

707 Moradi, E., Rodrigo-Comino, J., Terol, E., Mora-Navarro, G., da Silva, A.M.,

708 Daliakopoulos, I.N., Khosravi, H., Fernandez, M.P., Cerdá, A., 2020. Quantifying

709 soil compaction in persimmon orchards using ISUM (Improved Stock Unearthing

710 Method) and core sampling methods. Agriculture-Basel 10, 266.

711 More, S.S., Shinde, S.E., Kasture, M.C., 2020. Root exudates a key factor for soil and

712 plant: An overview. Pharma Innov. J. 8, 449-459.

713 Naveed, M., Brown, L.K., Raffan, A.C., George, T.S., Bengough, A.G., Roose, T.,

714 Sinclair, I., Koebernick, N., Cooper, L., Hackett, C.A., Hallett, P.D., 2017. Plant

715 exudates may stabilize or weaken soil depending on species, origin and time. Eur.

716 J. Soil Sci. 68, 806-816.

717 Naveed, M., Brown, L.K., Raffan, A.C., George, T.S., Bengough, A.G., Roose, T.,

718 Sinclair, I., Koebernick, N., Cooper, L., Hallett, P.D., 2018. Rhizosphere-scale

719 quantification of hydraulic and mechanical properties of soil impacted by root and

720 seed exudates. Vadose Zone J. 17.

721 Nielsen, S.S., 2010. Phenol-sulfuric acid method for total carbohydrates. In Food

722 analysis laboratory manual. Springer, 47-53, Boston, MA.

723 Oades, J.M., 1984. Soil organic matter and structural stability: mechanisms and

724 implications for management. Plant Soil 76, 319-337.

725 Oleghe, E., Naveed, M., Baggs, E.M., Hallett, P.D., 2017. Plant exudates improve the

726 mechanical conditions for root penetration through compacted soils. Plant Soil

727 421, 19-30.

728 Orzech, K., Wanic, M., Załuski, D., 2021. The Effects of Soil Compaction and Different

729 Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields

730 of Winter Oilseed Rape and Cereals. Agriculture 11, 666.

731 Pearse, S.J., Veneklaas, E.J., Cawthray, G., Bolland, M.D., Lambers, H., 2007.
732 Carboxylate composition of root exudates does not relate consistently to a crop
733 species' ability to use phosphorus from aluminium, iron or calcium phosphate
734 sources. *New Phytol.* 173, 181-190.

735 Pearse, S.J., Veneklaas, E.J., Cawthray, G., Bolland, M.D., Lambers, H., 2006.
736 *Triticum aestivum* shows a greater biomass response to a supply of aluminium
737 phosphate than *Lupinus albus*, despite releasing fewer carboxylates into the
738 rhizosphere. *New Phytol.* 169, 515-524.

739 Peltonen-Sainio, P., Jauhainen, L., Laitinen, P., Salopelto, J., Saastamoinen, M.,
740 Hannukkala, A., 2011. Identifying difficulties in rapeseed root penetration in
741 farmers' fields in northern European conditions. *Soil Use Manage.* 27, 229-237.

742 Pérez-Ramos, I.M., Volaire, F., Fattet, M., Blanchard, A., Roumet, C., 2013. Tradeoffs
743 between functional strategies for resource-use and drought-survival in
744 Mediterranean rangeland species. *Environ. Exp. Bot.* 87, 126-136.

745 Popova, L., van Dusschoten, D., Nagel, K.A., Fiorani, F., Mazzolai, B., 2016. Plant
746 root tortuosity: an indicator of root path formation in soil with different composition
747 and density. *Ann. Bot.* 118, 685-698.

748 Read, D.B., Gregory, J.P., 1997. Surface tension and viscosity of axenic maize and
749 lupin root mucilages. *New Phytol.* 137, 623–628.

750 Schneider, H.M., Strock, C.F., Hanlon, M.T., Vanhees, D.J., Perkins, A.C., Ajmera, I.B.,
751 Sidhu, J.S., Mooney, S.J., Brown, K.M., Lynch, J.P., 2021. Multiseriate cortical
752 sclerenchyma enhance root penetration in compacted soils. *P. Natl. Acad. Sci.*
753 USA 118, e2012087118.

754 Schwarz, M., Rist, A., Cohen, D., Giadrossich, F., Egorov, P., Büttner, D., Stolz, B.M.,
755 Thormann, J. J., 2015. Root reinforcement of soils under compression. *J. Geophys.*
756 Res-Earth 120, 2103-2120.

757 Semwal, T., Mali, N., Masakapalli, S.K., Uday, K.V., 2020. Effect of plant roots on
758 permeability of soil, In geotechnical characterization and modelling: Proceedings
759 of IGC 2018. Springer, Singapore, pp. 343-352.

760 Shah, A.N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M.A.,

761 Tung, S.A., Hafeez, A., Souliyanonh, B., 2017. Soil compaction effects on soil
762 health and cropproductivity: an overview. Environ. Sci. Pollut. Res. 24,
763 10056-10067.

764 Souty, N., Rode, C., 1987. Aspect mécanique de la croissance des racines. I.-Mesure
765 de la force de pénétration. Agronomie 7, 623-630.

766 Ström, L., Owen, A.G., Godbold, D.L., Jones, D.L., 2002. Organic acid mediated P
767 mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 34,
768 703-710.

769 Sullivan, D.M., Havlin, J.L., 1991. Flow injection analysis of urea nitrogen in soil
770 extracts. Soil Sci. Soc. Am. J. 55, 109-113.

771 Terzano, R., Cuccovillo, G., Gattullo, C.E., Medici, L., Tomasi, N., Pinton, R., Mimmo,
772 T., Cesco, S., 2015. Combined effect of organic acids and flavonoids on the
773 mobilization of major and trace elements from soil. Biol. Fertil. Soils 51, 685-695.

774 Tracy, S.R., Black, C.R., Roberts, J.A., Sturrock, C., Mairhofer, S., Craigon, J.,
775 Mooney, S.J., 2012. Quantifying the impact of soil compaction on root system
776 architecture in tomato (*Solanum lycopersicum*) by X-ray micro-computed
777 tomography. Ann. Bot. 110, 511-519.

778 Vanhees, D.J., Loades, K.W., Bengough, A.G., Mooney, S.J., Lynch, J.P., 2020. Root
779 anatomical traits contribute to deeper rooting of maize under compacted field
780 conditions. J. Exp. Bot. 71, 4243-4257.

781 Vergani, C., Schwarz, M., Cohen, D., Thormann, J.J., Bischetti, G.B., 2014. Effects of
782 root tensile force and diameter distribution variability on root reinforcement in the
783 Swiss and Italian Alps. Can. J. For. Res. 44, 1426-1440.

784 Wang, C.Y., Yan, Z.K., Wang, Z.K., Batool, M., El-Badri, A.M., Bai, F., Li, Z., Wang, B.,
785 Zhou, G.S., Kuai, J., 2021. Subsoil tillage promotes root and shoot growth of
786 rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur. J. Agron.
787 130, 126351.

788 Wang, H., Hao, J., Feng, R., Nan, Y., Yang, S., Nan, J., 2015. Microhole subsoiling
789 decreasing soil compaction, and improving yield and seed quality of cotton. Trans.
790 Chin. Soc. Agric. Eng. 31, 7-14.

791 Wang, M., Feng, W.Y., Shi, J.W., Zhang, F., Wang, B., Zhu, M.T., Li, B., Zhao, Y.L.,
792 Chai, Z.F., 2007. Development of a mild mercaptoethanol extraction method for
793 determination of mercury species in biological samples by P-replete LC-ICP-MS.
794 *Talanta* 71, 2034–2039.

795 Wang, M., He, D., Shen, F., Huang, J., Zhang, R., Liu, W., Zhou, Q., 2019. Effects of
796 soil compaction on plant growth, nutrient absorption, and root respiration in
797 soybean seedlings. *Environ. Sci. Pollut. R.* 26, 22835-22845.

798 Whiteley, G.M., Hewitt, J.S., Dexter, A.R., 1982. The buckling of plant roots. *Physiol.*
799 *Plant.* 54, 333-342.

800 Wolkowski, R., Lowery, B., 2008. Soil compaction: causes, concerns, and cures.
801 University of Wisconsin-Extension, Coop. Ext. A3367 Retrieved from
802 <http://www.soils.wisc.edu/extension/pubs/A3367.pdf>

803 Wu, X., Li, H., Rengel, Z., Whalley, W. R., Li, H., Zhang, F., Shen, J., Jin, K., 2022.
804 Localized nutrient supply can facilitate root proliferation and increase
805 nitrogen-use efficiency in compacted soil. *Soil Till. Res.* 215, 105198.

806 Xi, C.F., 1998. Soils of China (in Chinese). Chinese Agriculture Press, 162-174,
807 Beijing, China.

808 Xie, Y., Islam, S., Legesse, H. T., Kristensen, H.L., 2021. Deep root uptake of
809 leachable nitrogen in two soil types is reduced by high availability of soil nitrogen
810 in fodder radish grown as catch crop. *Plant Soil* 1-15.

811 Xu, H., Wang, X.Y., Liu, C.N., Chen, J.N., Zhang, C., 2021. A 3D root system
812 morphological and mechanical model based on L-Systems and its application to
813 estimate the shear strength of root-soil composites. *Soil Till Res* 212, 105074.

814 Yang, Y.J., Chen, L.H., Li, N., Zhang, Q.F., 2016. Effect of root moisture content and
815 diameter on root tensile properties. *Plos One* 11, e0151791.

816 Yu, P., Li, X., White, P.J., Li, C., 2015. A large and deep root system underlies high
817 nitrogen-use efficiency in maize production. *Plos One* 10, e0126293.

818 Zhang, C. B., Chen, L. H., Jiang, J., 2014. Why fine tree roots are stronger than
819 thicker roots: The role of cellulose and lignin in relation to slope stability.
820 *Geomorphology* 206, 196-202.

821 Zhang, C.B., Zhou, X., Jiang, J., Wei, Y., Ma, J.J., Hallett, P.D., 2019. Root moisture
822 content influence on root tensile tests of herbaceous plants. *Catena* 172,
823 140-147.

824 Zhang, S., Grip, H., Lövdahl, L., 2006. Effect of soil compaction on hydraulic
825 properties of two loess soils in China. *Soil Till. Res.* 90, 117-125.

826 Zhang, Y., Culhaoglu, T., Pollet, B., Melin, C., Denoue, D., Barriere, Y., Méchin, V.,
827 2011. Impact of lignin structure and cell wall reticulation on maize cell wall
828 degradability. *J. Agric. Food Chem.* 59, 10129-10135.

829 Zhang, Z.B., Yan, L., Wang, Y.K., Ruan, R.J., Xiong, P., Peng, X.H., 2022. Bio-tillage
830 improves soil physical properties and maize growth in a compacted Vertisol by
831 cover crops. *Soil Sci. Soc. Am. J.* 86, 324-337.

832 Zhu, J.Q., Wang, Y.Q., Wang, Y.J., Mao, Z., Langendoen, E.J., 2020. How does root
833 biodegradation after plant felling change root reinforcement to soil? *Plant Soil*
834 446, 211-227.

835 Zwicke, M., Picon-Cochard, C., Morvan-Bertrand, A., Prud'homme, M.P., Volaire, F.,
836 2015. What functional strategies drive drought survival and recovery of perennial
837 species from upland grassland? *Ann. Bot.* 116, 1001–1015.

838 Figure Captions

839 **Fig. 1.** Penetration resistance at different soil profile depth in non-compactated (a) and
840 compacted (b) treatment, respectively.

841 **Fig. 2.** Correlations between root tensile force (a), root tensile strength (b), modulus of
842 elasticity (c) and root diameter of LRM or SRM cultivars in compacted treatment. LRM,
843 *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus*
844 cultivars with small root mechanical traits.

845 **Fig. 3.** Maximum root depth of LRM and SRM cultivars in non-compactated (NC) and
846 compacted (C) treatments. LRM, *Brassica napus* cultivars with large root mechanical
847 traits; SRM, *Brassica napus* cultivars with small root mechanical traits. The different
848 small letters above the column indicate significant difference among four treatments at
849 $P < 0.05$.

850 **Fig. 4.** Root morphological traits of LRM and SRM cultivars in non-compactated (NC)
851 and compacted (C) treatments. Total root length (a), fine root length (b), coarse root
852 length (c), root surface area (d), specific root length (e) and average root diameter (f).
853 LRM, *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus*
854 cultivars with small root mechanical traits. The different small letters above the column
855 indicate significant difference among four treatments at $P < 0.05$.

856 **Fig. 5.** The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose
857 (d) of root exudates of LRM and SRM cultivars in non-compactated (NC) and
858 compacted (C) treatments. LRM, *Brassica napus* cultivars with large root mechanical
859 traits; SRM, *Brassica napus* cultivars with small root mechanical traits. The different
860 small letters above the column indicate significant difference among four treatments at
861 $P < 0.05$.

862 **Fig. 6.** Principal component analysis of root morphological traits (TRL, CRL, FRL,
863 RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six
864 *Brassica napus* cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in
865 non-compactated (a) and compacted (b) treatments, respectively. TRL, total root length;
866 CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific
867 root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose

868 concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
869 organic acid concentration; LRM, *Brassica napus* cultivars with large root mechanical
870 traits; SRM, *Brassica napus* cultivars with small root mechanical traits.

871 **Fig. 7.** Correlations between maximum root depth and average root diameter (a), fine
872 root length (b) and coarse root length (c) of six *Brassica napus* cultivars in compacted
873 treatment. The shaded areas indicate the 95% confidence range, derived from the
874 models.

875 **Fig. 8.** Correlations between maximum root depth and organic acids (a), glucose (b),
876 uronic acid (c) and xylose (d) concentrations of six *Brassica napus* cultivars in both
877 non-compactated (NC) and compacted (C) treatments. The shaded areas indicate the
878 95% confidence range, derived from the models. * $P < 0.05$, ** $P < 0.01$.

879 **Fig. 9.** Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and
880 SRM cultivars in non-compactated (NC) and compacted (C) treatments. LRM, *Brassica*
881 *napus* cultivars with large root mechanical traits; SRM, *Brassica napus* cultivars with
882 small root mechanical traits. The different small letters above the column indicate
883 significant difference among four treatments at $P < 0.05$.

884 **Fig. 10.** The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c)
885 and root (d-f) of LRM and SRM cultivars in non-compactated (NC) and compacted (C)
886 treatments. LRM, *Brassica napus* cultivars with large root mechanical traits; SRM,
887 *Brassica napus* cultivars with small root mechanical traits. The different small letters
888 above the column indicate significant difference among four treatments at $P < 0.05$.

889 **Fig. 11.** A proposed diagram on how root traits (especially fine roots and root
890 exudates) of *Brassica napus* contribute to root penetration through the compacted soil.
891 LRM, *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus*
892 cultivars with small root mechanical traits.

893

894 Table Captions

895 **Table 1** Soil bulk density and total porosity of soil in non-compactated and compacted
896 treatments.

897 **Table 2** The effects of soil compaction on the root morphological and biochemical

898 traits of six *Brassica napus* cultivars.

899

900 Supplementary information

901 **Supplementary Fig. S1.** A schematic representation of the root growth system (a)
902 and root collection system (b).

903 **Supplementary Fig. S2.** Correlation between root tensile force (a), tensile strength (b)
904 and modulus of elasticity (c) and root diameter of LRM and SRM cultivars in
905 non-compact treatment. LRM, *Brassica napus* cultivars with large root mechanical
906 traits; SRM, *Brassica napus* cultivars with small root mechanical traits.

907 **Supplementary Fig. S3.** Correlations between root tensile strain and root diameter of
908 LRM and SRM cultivars in non-compact (a) and compacted (b) treatments. LRM,
909 *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus*
910 cultivars with small root mechanical traits.

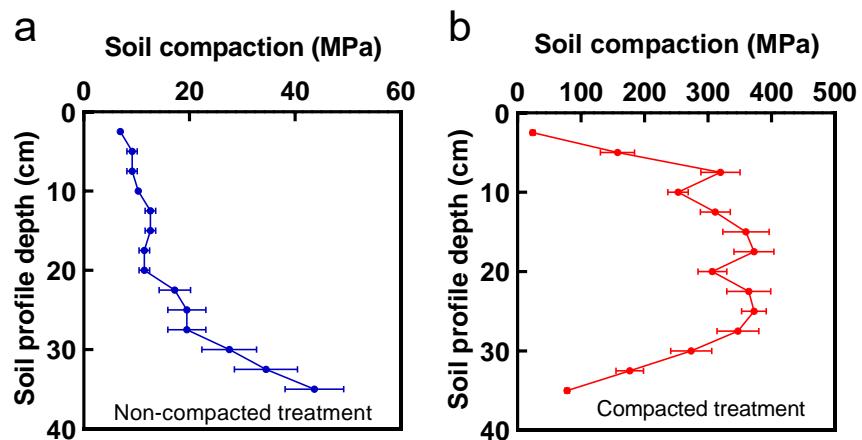
911 **Supplementary Fig. S4.** Root cellulose (a) and lignin (b) concentrations of *Brassica*
912 *napus* cultivars with LRM and SRM in non-compact (NC) and compacted (C)
913 treatments. LRM, *Brassica napus* cultivars with large root mechanical traits; SRM,
914 *Brassica napus* cultivars with small root mechanical traits.

915 **Supplementary Fig. S5.** Correlations between maximum root depth (a), coarse root
916 length (b) and average root diameter, and correlations between fine root length (c),
917 root surface area (d) and coarse root length of six *Brassica napus* cultivars in
918 non-compact treatment.

919 **Supplementary Fig. S6.** Correlations between glucose (a), organic acid (b), uronic
920 acid (c) and xylose (d) concentrations and specific root length of six *Brassica napus*
921 cultivars in compacted treatments. The shaded areas indicate the 95% confidence
922 range, derived from the models. * $P < 0.05$, ** $P < 0.01$.

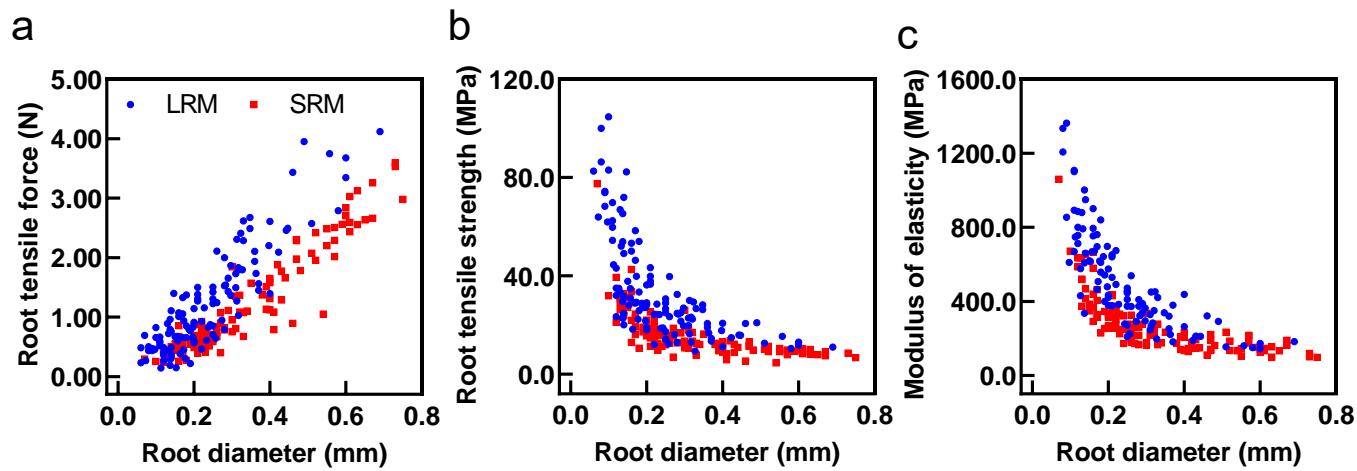
923 **Supplementary Fig. S7.** The concentrations of nitrogen (N), phosphorus (P) and
924 potassium (K) in shoot (a-c) and root (d-e) of LRM and SRM cultivars in
925 non-compact (NC) and compacted (C) treatments. LRM, *Brassica napus* cultivars
926 with large root mechanical traits; SRM, *Brassica napus* cultivars with small root
927 mechanical traits. The different small letters above the column indicate significant

928 difference among four treatments at $P < 0.05$.

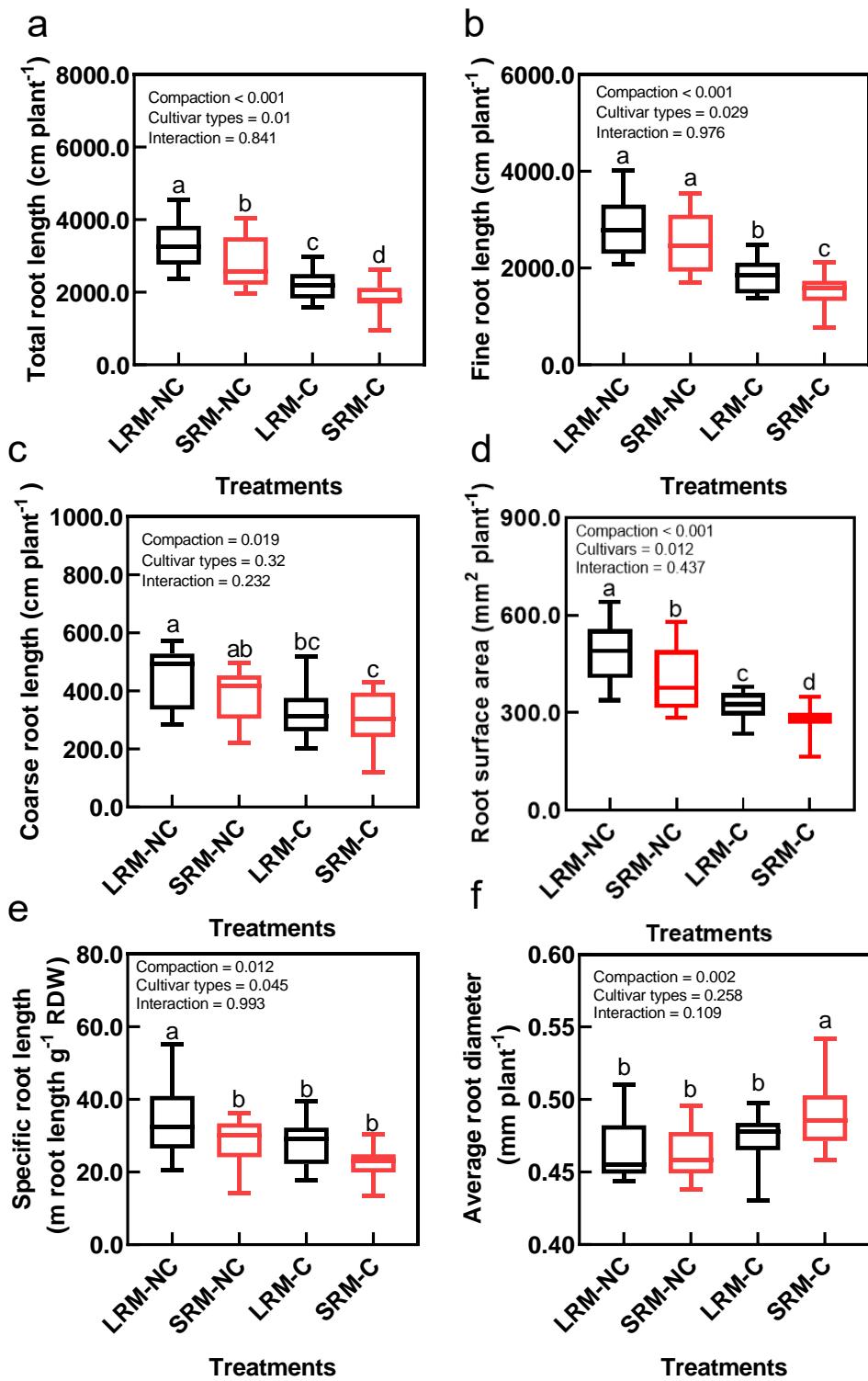

929 **Table S1** *Brassica napus* cultivars used in this study.

930 **Table S2** Particle density of sand in non-compactated and compacted treatments in this
931 study.

932 **Table S3** Fitting equations of root tensile force, root tensile strength and modulus of
933 elasticity with root diameter of LRM and SRM cultivars in non-compactated and
934 compacted treatments, respectively.

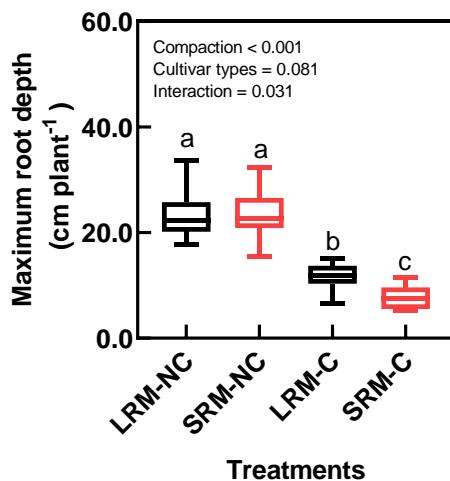

935 **Table S4** The compositions and amounts of organic acids in the rhizosphere of six
936 *Brassica napus* cultivars in non-compactated and compacted treatments.

937 **Table S5** The loading scores of eleven root-related traits in the principal component
938 analysis among six *Brassica napus* cultivars.



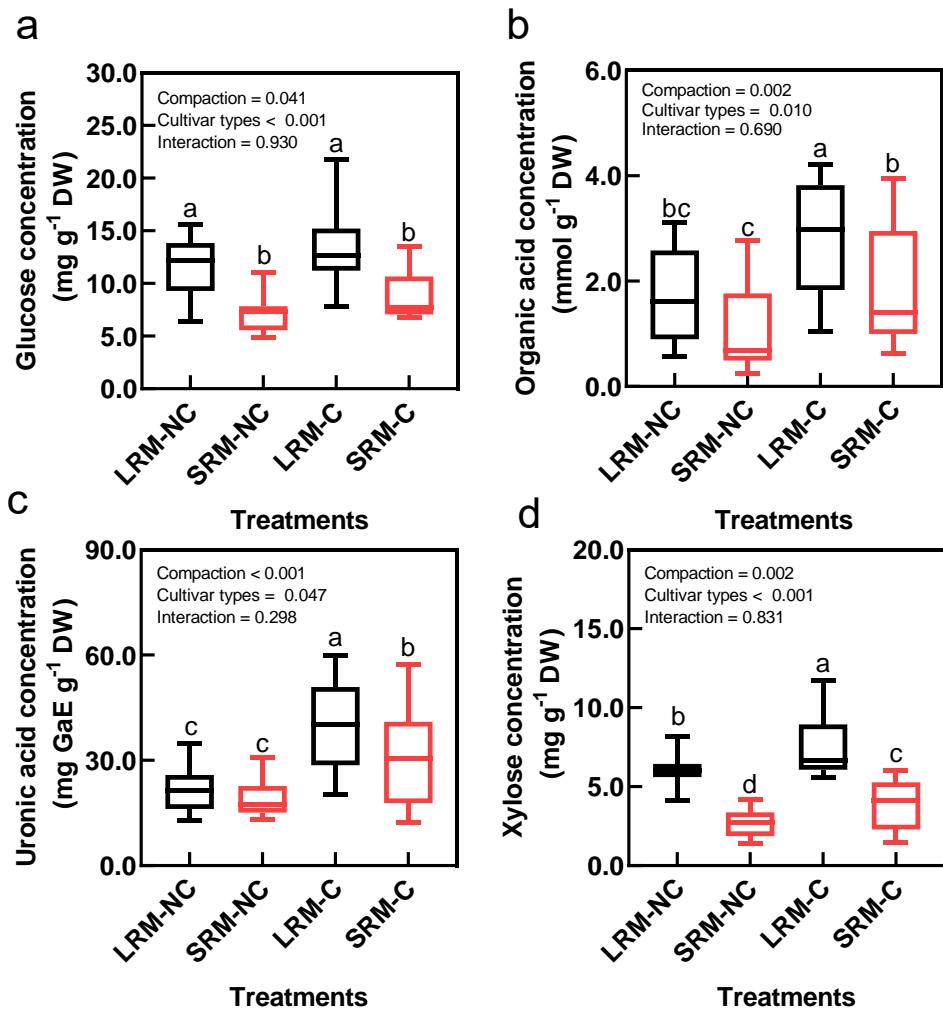
939

940 Fig. 1. Penetration resistance at different soil profile depth in non-compacted (a) and
941 compacted (b) treatment, respectively.

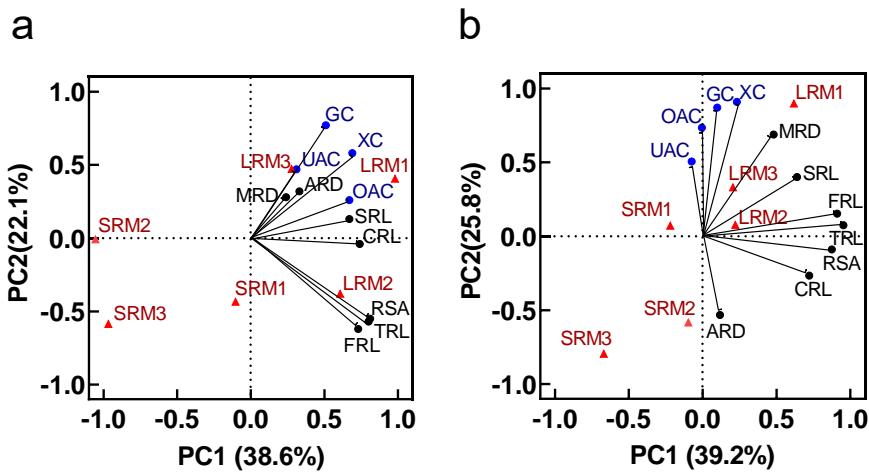

942
943 Fig. 2. Correlations between root tensile force (a), root tensile strength (b), modulus of elasticity (c) and root diameter of LRM or SRM
944 cultivars in compacted treatment. LRM, *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus* cultivars with
945 small root mechanical traits.

946

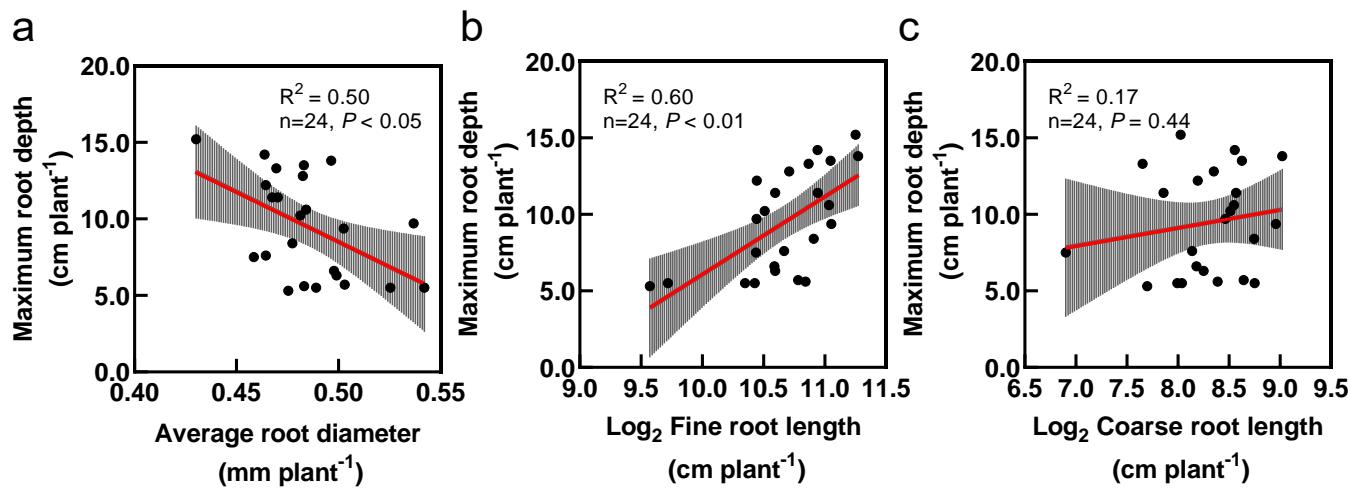
947 Fig. 4. Root morphological traits of LRM and SRM cultivars in non-compacted (NC)
 948 and compacted (C) treatments. Total root length (a), fine root length (b), coarse root
 949 length (c), root surface area (d), specific root length (e) and average root diameter (f).
 950 LRM, *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus*


951 cultivars with small root mechanical traits. The different small letters above the column
952 indicate significant difference among four treatments at $P < 0.05$.

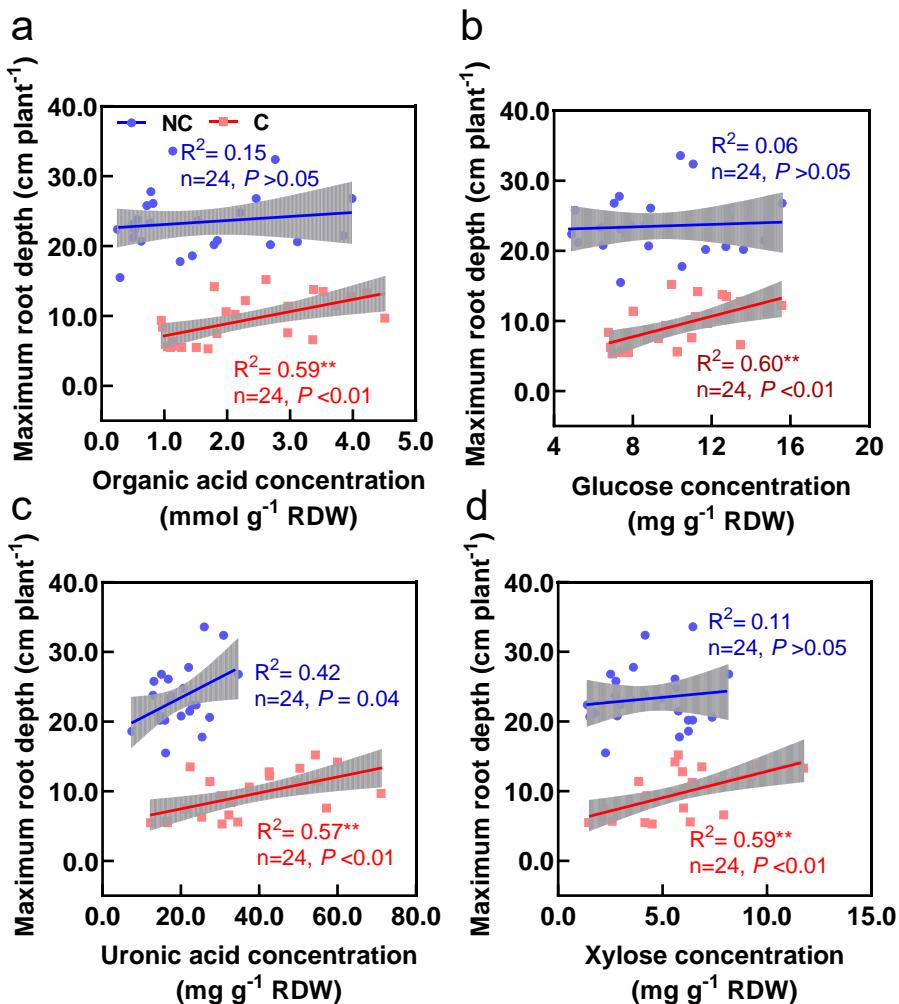
953
954 Fig. 3. Maximum root depth of LRM and SRM cultivars in non-compacted (NC) and
955 compacted (C) treatments. LRM, *Brassica napus* cultivars with large root mechanical
956 traits; SRM, *Brassica napus* cultivars with small root mechanical traits. The different
957 small letters above the column indicate significant difference among four treatments at
958 $P < 0.05$.


959

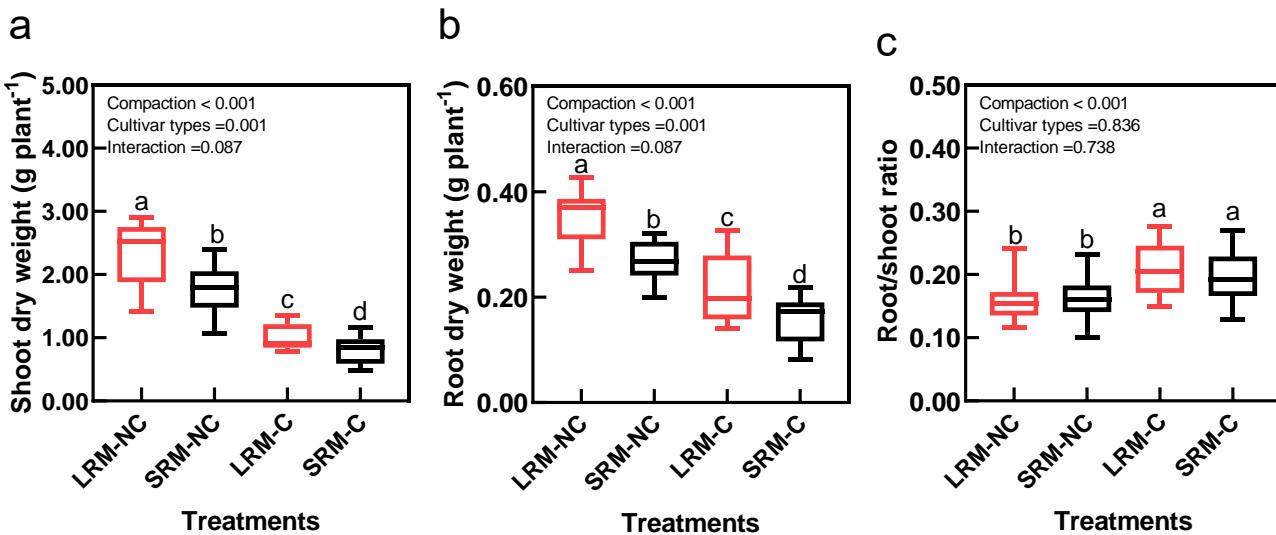
960


961

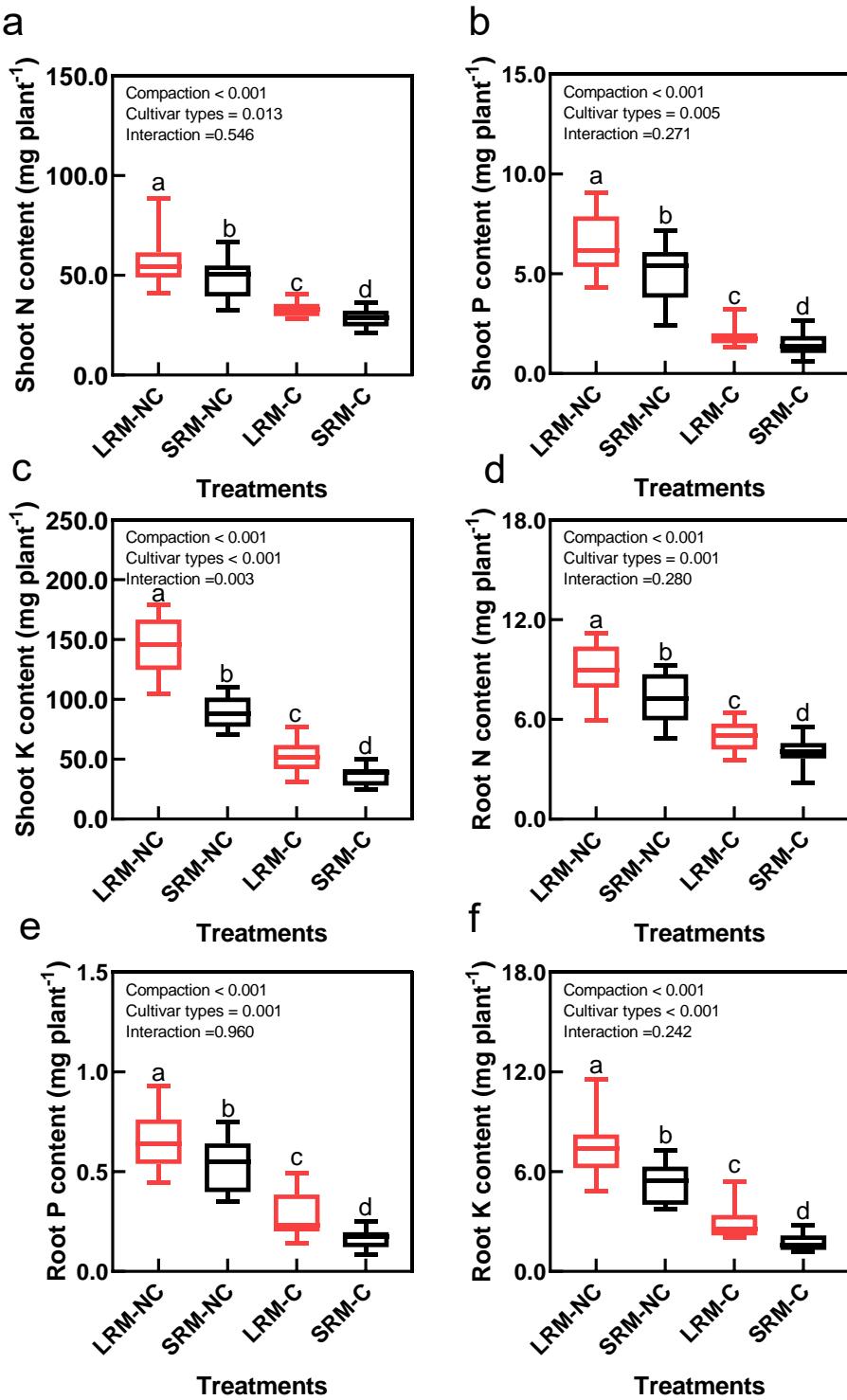
962 Fig. 5. The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose
 963 (d) of root exudates of LRM and SRM cultivars in non-compacted (NC) and
 964 compacted (C) treatments. LRM, *Brassica napus* cultivars with large root mechanical
 965 traits; SRM, *Brassica napus* cultivars with small root mechanical traits. The different
 966 small letters above the column indicate significant difference among four treatments at
 967 $P < 0.05$.


968

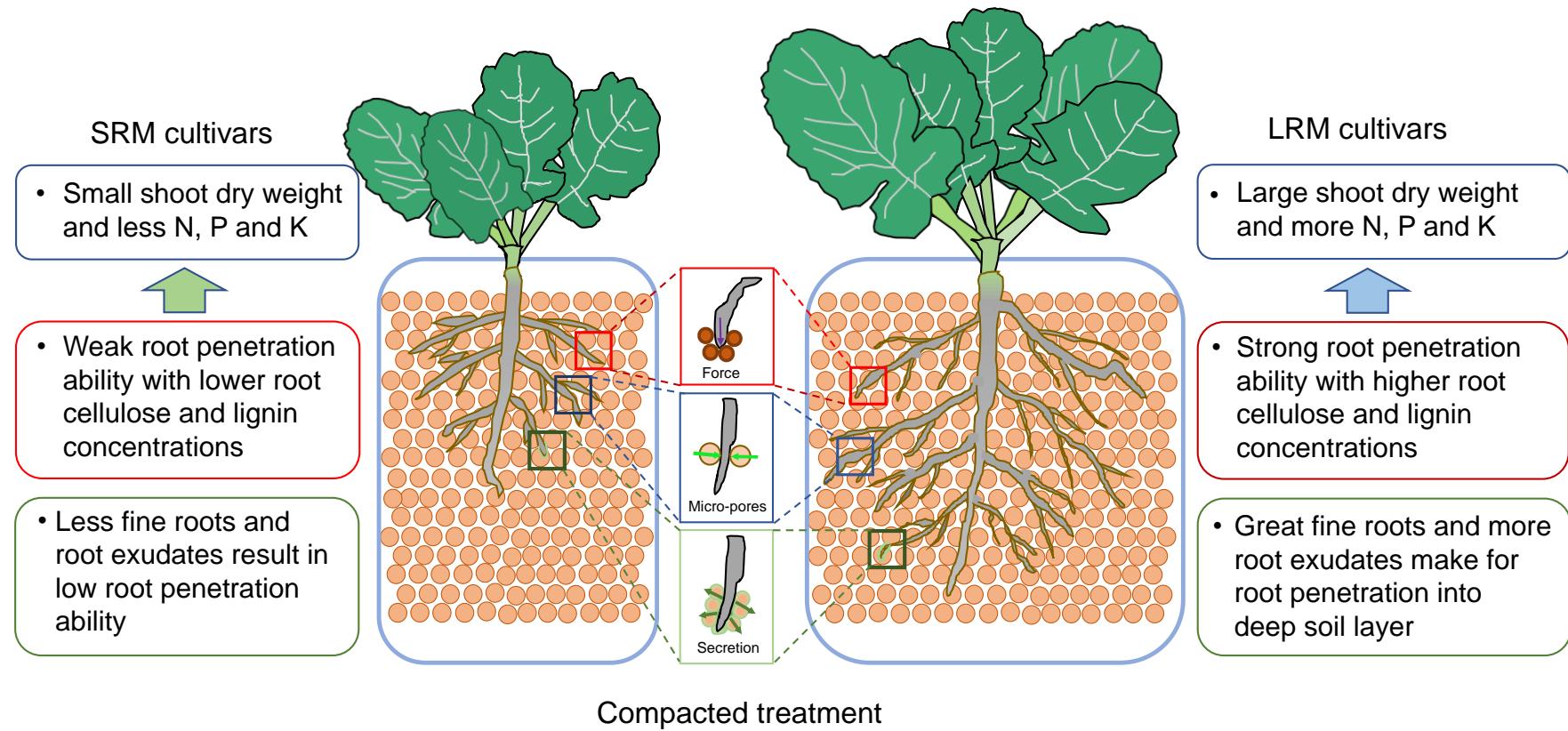
969 Fig. 6. Principal component analysis of root morphological traits (TRL, CRL, FRL,
 970 RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six
 971 *Brassica napus* cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in
 972 non-compacted (a) and compacted (b) treatments, respectively. TRL, total root length;
 973 CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific
 974 root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose
 975 concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
 976 organic acid concentration; LRM, *Brassica napus* cultivars with large root mechanical
 977 traits; SRM, *Brassica napus* cultivars with small root mechanical traits.


978

979 Fig. 7. Correlations between maximum root depth and average root diameter (a), fine root length (b) and coarse root length (c) of six *Brassica*
 980 *napus* cultivars in compacted treatment. The shaded areas indicate the 95% confidence range, derived from the models


981

982 Fig. 8. Correlations between maximum root depth and organic acids (a), glucose (b),
 983 uronic acid (c) and xylose (d) concentrations of six *Brassica napus* cultivars in both
 984 non-compacted (NC) and compacted (C) treatments. The shaded areas indicate the
 985 95% confidence range, derived from the models. * $P < 0.05$, ** $P < 0.01$.


986

987 Fig. 9. Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and SRM cultivars in non-compacted (NC) and compacted (C)
 988 treatments. LRM, *Brassica napus* cultivars with large root mechanical traits; SRM, *Brassica napus* cultivars with small root mechanical traits. The
 989 different small letters above the column indicate significant difference among four treatments at $P < 0.05$.

990

991 Fig. 10. The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c)
 992 and root (d-f) of LRM and SRM cultivars in non-compacted (NC) and compacted (C)
 993 treatments. LRM, *Brassica napus* cultivars with large root mechanical traits; SRM,
 994 *Brassica napus* cultivars with small root mechanical traits. The different small letters
 995 above the column indicate significant difference among four treatments at $P < 0.05$.

996

997 Fig. 11. A proposed diagram on how root traits (especially fine roots and root exudates) of *Brassica napus* contribute to root penetration
 998 through the compacted soil. LRM: *Brassica napus* cultivars with large root mechanical traits, SRM: *Brassica napus* cultivars with small
 999 root mechanical traits.

1000 Table 1 Soil bulk density and total porosity of soil in non-compactated and compacted
1001 treatments.

Treatment	Soil bulk density (g cm ⁻³)	Total porosity of soil (%) ¹
Non-compactated treatment	1.30	51.33
Compacted treatment	1.60	40.10

1002 Note: ¹ The total porosity of soil (%) was calculated with the formula by Hao et al.
1003 (2008).

1004 Table 2 The effects of soil compaction on the root morphological and biochemical traits of six *Brassica napus* cultivars.

Effect	Root morphological traits						Root biochemical traits				
	TRL (cm plant ⁻¹)	RSA (cm ² plant ⁻¹)	ARD (mm plant ⁻¹)	SRL (m root length g ⁻¹ RDW)	CRL (cm plant ⁻¹)	FRL (cm plant ⁻¹)	MRD (cm plant ⁻¹)	GC (mg g ⁻¹ RDW)	XC (mg g ⁻¹ RDW)	UAC (mg g ⁻¹ RDW)	OAC (mmol g ⁻¹ RDW)
Compaction	38.13***	40.56***	16.67***	7.79***	5.90*	41.95***	167.02***	10.57**	10.72***	25.93***	10.37**
Cultivars	7.96**	9.34**	1.32ns	7.07*	1.01ns	3.63*	1.52ns	48.07***	75.73***	3.43*	7.35**
Compaction x Cultivars	0.93ns	4.21*	4.43*	0.04ns	1.47ns	0.07ns	2.71ns	0.71ns	0.05ns	1.11ns	0.16ns

1005 Note: TRL, total root length; RSA, root surface area; ARD, average root diameter; SRL, specific root length; CRL, coarse root length; FRL,
 1006 fine root length; MRD, maximum root depth; GC, glucose concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
 1007 organic acid concentration and RDW, root dry weight. A two-way ANOVA was conducted to test the significance of genotypes, treatments
 1008 and their interaction on the investigated traits. ns, no significant differences, *: $P < 0.05$, **: $P < 0.01$, ***: $P < 0.001$.