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Abstract

Soil compaction due to mechanized farming operations is a recurrent issue affecting
crop growth and yield. Yet, how soil compaction affects plant functions and ecological
strategies is poorly known. With Brassica napus, i.e. a widespread crop species as
study object, we aim to understand (i) how soil compaction impacts root and shoot
traits related to the plant’'s well-being, nutrient acquisition of Brassica napus with
different mechanical robustness, as well as their trade-offs, and (ii) how such impacts
vary among different cultivars. To do this, we cultivated six cultivars of Brassica napus
in non-compacted (control) and compacted (treatment) soils, respectively, in a sand
culture system. After harvesting, a series of mechanical, morphological and chemical
traits of roots and/or shoots were measured. Results showed that soil compaction
significantly limited root penetration depth and root system establishment in
morphological traits, leading further to significant reduction in nutrients acquisition and
plant biomass accumulation. However, soil compaction significantly increases the
average root diameter and root/shoot ratio, and facilitate more root exudates
secretion (e.g. organic acids and polysaccharides) of Brassica napus cultivars. The
Brassica napus cultivars with large root mechanical traits (e.g. root tensile force, root
tensile strength and modulus of elasticity) had higher root cellulose and lignin
concentrations and showed a stronger response in maximum root depth and specific
root length compared with Brassica napus cultivars with small root mechanical traits in
compacted treatment, which resulted in the greater fine root length and more root
exudates secretion at root-soil interface. Furthermore, deep rooting enhanced
nutrients acquisition and further biomass accumulation in compacted soil. Totally, the
Brassica napus cultivars with large root mechanical traits with more fine roots and root
exudates were critical for Brassica napus root penetration into a deep soil layer in

compacted soil.

Keywords: Brassica napus; Soil compaction; Root mechanical traits; Fine roots; Root

exudates
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Introduction

In modern agricultural system, soil compaction is mainly sourced from the
improper agricultural management, such as the use of heavy machinery, soil drying,
long-term no-tillage and intensive agricultural production (Shah et al., 2017; Keller et
al., 2019; Mirzavand and Moradi-Talebbeigi, 2021; Ferreira et al., 2021) and is a
recurrent problem worldwide. Approximately 68 million hectares of the world’s land is
degraded due to compaction (Flowers and Lal, 1998; Hamza and Anderson, 2005).
The yield loss due to soil compaction has been estimated up to 20 % (Barken et al.,
1981) or even up to 50- 75% (Flowers and Lal, 1998; Hoque and Kobata, 2000;
Wolkowski and Lowery, 2008). Soil compaction causes a degraded soil structure,
which could decrease soil void space available for displacement of soil particles,
increase penetrating cost for plant roots (Hamza and Anderson, 2005; Batey, 2009)
and lead to low connectivity and continuity of the pore space to reduce water and air

transport capability of soil (Kuncoro et al., 2014; Keller et al., 2017).

Roots are the first and most direct plant organ subjected to soil compaction and
their multifunctionality, such as water and nutrient uptake and scavenging, and
resistance to uprooting, can be potentially affected in cultivated lands. Soll
compaction can modify root morphological traits through limiting maximum rooting
depth and decreasing the size of root system, reducing root elongation rate,
increasing radial growth and changing the amount of root branching (Tracy et al.,
2012; Correa et al., 2019). Besides limited root growth, soil compaction significantly
affects the shoot performance by nutrients deficiency (Lipiec and Stepniewski, 1995;
Colombi and Keller 2019). Improving the adaptation ability of roots to soil compaction
in deep soil layer will provide benefit for the plant establishment in shoot and root by
enhancing the water and nutrients acquisition (Jin et al., 2015; Wang et al., 2019). Yet,
the impact of soil compaction on roots’ functions and their adaptive strategies still

remains poorly understood.

Plasticity of roots to compacted soil has been studied previously mainly associated

to morphological, biochemical and mechanical traits (Jin et al., 2017; Correa et al.,
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2019; Vanhees et al., 2020; Bello-Bello et al., 2022), which included (1) a plant with
thicker roots tends to enhance its axial force and radial expansion in penetrating
through the compacted soil (Chen and Weil, 2010; Colombi et al., 2017). Meanwhile,
fine roots with small diameter relative to the small pores distribution in compacted soil
could promote roots to penetrate and elongate in the textural pores spaces where
there were sufficient small pores in compacted soil (Fukao and Bailey-Serres, 2004;
Bodner et al., 2014). (2) The induction of organic and inorganic compounds in the
root-soil interface by soil compaction could serve as the lubricant to decrease the
resistance source from the friction between root surface and soil particles (Bengough
and McKenzie, 1997; Groleau-Renaud et al., 1998; lijima et al., 2004; More et al.,
2020), mainly through improving the soil compression characteristics to ease
penetration and enhance the recovery of root induced soil compaction (Oleghe et al.,
2107); (3) plants with stronger (i.e., greater root tensile force and strength) and stiffer
roots (i.e. greater modulus of elasticity) have an enhanced penetration ability against
the strongly-compacted soil layers (Clark et al., 2008; Chimungu et al., 2015; Lee et
al., 2020). Root thickening at the root tips can interpret the root penetration outcomes
by increasing the root axial force in increased soil strength (Whiteley et al., 1982;

Clark et al., 2002; Hanbury and Atwell, 2005; Jin et al., 2013).

Root mechanical traits are key metrics in studying the plant anchorage and root
penetration into soil (Chimungu et al., 2015). Root functions in compressive, buckling,
twisting and/or bending behaviour are important in response to soil compaction and
root setting (Bourrier et al., 2013; Mao et al., 2014; Schwarz et al., 2015; Johnson et
al., 2016). The root mechanical traits mostly related to the tensile force, tensile
strength, modulus of elasticity and tensile strain. Wide variations in root mechanical
traits among species mainly depends on root size (Gray and Barker, 2004; Ghestem
et al., 2014; Mao et al., 2018; Xu et al., 2021), root moisture contents (Yang et al.,
2016; Zhang et al., 2019; Ekeoma et al., 2021), root types (Loades et al., 2015; Mao
et al., 2023), root structure (Genet et al., 2005; Zhang et al., 2014; Zhu et al., 2020)

and root anatomy (Chimungu et al., 2015; Schneider et al., 2021). For example, the
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roots with multiseriate cortical sclerenchyma have greater root lignin concentration
and root bending strength, and greater root penetration depth in compacted soils
(Schneider et al., 2021). The impact of the root mechanical traits on the root
penetration ability needs to be explored, which will be helpful for revealing the
potential adaptative mechanism of roots’ function traits driven by root mechanical

traits in reaction to compacted soil (Stokes et al., 2009).

Oilseed rape (Brassica napus L.) is the most important edible oil crops and has
abundant germplasm resources in China as well as in the world (Hu et al., 2017;
Friedt et al., 2018; Li et al., 2020). Most of the cultivated soil in the main planting area
of Brassica napus in Yangtze River basin of central China are poorly drained clay soils,
and have poor soil pore system (Xi, 1998; Wang et al., 2021). In addition, the
frequency of mechanized harvesting of Brassica napus has aggravated the soil
compaction recently (Zhang et al., 2006; Wang et al., 2015; Correa et al., 2019). For
example, the average soil bulk density at topsoil (5-10 cm) is about 1.38 g/cm?, while
the soil bulk density up to 1.52 g/cm? at plow pan (Ji et al., 2013), which are much
higher than the ideal soil bulk density of 1.2-1.3 g/cm? (Li and Zhou 1994). QOilseed
rape is sensitive to soil compaction (Blake et al., 2006) and the seed yield significantly
decreased under high soil compaction stress (Alakukku and Elonen, 1995; Arvidsson
and Hakansson, 2014; Bogunovic et al., 2018; Orzech et al., 2021). And the
adaptability of different oilseed rape species to compacted soil depends on root
characteristics, such as root morphology (Wang et al., 2021), root penetration depth
(Peltonen-Sainio et al., 2011), root size (Chen and Weil, 2010; Zhang et al., 2022) and
root type (Chen and Weil, 2010).

In this study, we firstly determined the variation in root mechanical traits and its
effect on root depth of six Brassica napus, and further investigated the root
morphological and biochemical traits plasticity and their effects on nutrients
acquisition and plant biomass accumulation of the Brassica napus cultivars grown in
compacted soil. Thus, the objective of the study is 1) to clarify the responses of the six

Brassica napus cultivars to soil compaction and 2) the root plasticity to soil
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compaction for different Brassica napus cultivars.
2. Materials and methods
2.1 Plant materials and growth conditions

In this study, six Brassica napus cultivars were selected from an association panel
collected from major breeding centers across China (Liu et al., 2016), and among
them, Brassica napus cultivars of MJDT, A148 and R2 have large root mechanical
traits (F, T, and E;) and cultivars of NY7, 11-Y7-117 and 1368 have small root
mechanical traits (Table S1). A sand-culture system was used to investigate the
response of Brassica napus to soil compaction in this study, which allows mechanical
impedance to be varied independent of aeration and water status of the growing
medium (Coelho Filho et al., 2013; Jin et al., 2015). Rigid plastic tubes with 45 cm in
length and 15 cm in diameter were placed in tanks with nutrient solution on a base.
Each tank contains six tubes, and each tube contains one Brassica napus seedling
(Fig. S1A). The tubes were filled with mixed quartz sand (88.89% fine sand with 0.23
mm particle size on average, and 11.11% coarse sand with 0.69 mm particle size on
average) and adequate nutrient solution. Compaction is directly proportional to soil
bulk density (Popova et al., 2016). Low (1.30 g cm™) and high (1.60 g cm?) bulk
density were quantified by adding different masses of sand soil to the tubes with the
same volume, which represented non-compacted and compacted treatments,
respectively. The changes of penetration resistance along soil profile depth in
non-compacted and compacted treatments were shown in Fig. 1, respectively. The
penetration resistance was measured by a soil compaction meter (Field Scout SC900
soil compaction meter, Spectrum Technologies, Inc., IL, USA) in 2.5 cm increments
from soil surface to 30 cm depth with four repetitions. The total porosity and particle
density of sand were calculated at non-compacted and compacted treatments (Table
1 and Table S2). The soil water potential is basically similar between two bulk density
treatments in the well-watered sands. Each treatment for each cultivar has four

replications in this study.
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Seeds were sterilized using 70% (v/v) ethanol and NaOCI (2.5% active chlorine),
and then placed on gauze with pure water containing 0.5 yM CacCl, for germination.
The germinated seeds with about 1.0 cm length primary root were transplanted and
grown in the center of sand core. Brassica napus seedlings were grown in an
illuminated growth chamber under 16-h-light/8-h-dark photoperiod (with a photo flux
density of 300- 320 pmol m2 s at plant height) and 60% relative humidity. The
modified Hoagland nutrient solution contains 5.0 mM Ca(NO3)2-4H20, 5.0 mM KNOs,
2.0 mM MgSO4-7H20, 1.0 mM KH2PO4, 50 uM Fe-EDTA, 50 uM H3BOs, 9.5 uM
MnClz-4H20, 0.8 yM ZnS0O4-7H20, 0.3 yM CuS0O4-5H,0 and 0.4 yM Na;MoO4-2H,0.

A total of 60 L nutrient solution was supplied in each tank.

Brassica napus plants were harvested at 35 d after transplanting when the
difference in the growth phenotypes were observed between plants grown in
non-compacted and compacted treatments. Firstly, we tested the variations of root
mechanical traits and maximum root depth of the six Brassica napus cultivars.
Secondly, the root morphological traits (total root length, coarse root length, fine root
length, root surface area, average root diameter and specific root length), root
biochemical traits (organic acid concentration, xylose concentration, glucose
concentration and uronic acid concentration), plant biomass parameters (root and
shoot dry weight, root/shoot ratio), and nitrogen (N), phosphorus (P) and potassium (K)

concentrations and contents in shoot and root of plants were determined.
2.2 Measurement of maximum root depth

At harvest time, the tube grown plants were pulled out carefully from the top of the
sand column, and then the sand was carefully removed from the tube bottom till the
root tips appeared (Fig. S1B). The maximum root depth was determined by the
vertical distance measured from the primary root base to the root tips by ruler with the

accuracy of 0.1 cm.

2.3 Measurements of root mechanical traits and root cellulose and lignin

content



206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

The first-order lateral roots of more than 10 cm length of the plant were sampled to
test root mechanical properties. Root samples were firstly preserved in an alcohol
solution contained 15 % ethanol and then kept in a refrigerator at 4 °C (Bischetti et al.,
2003). Thirty to forty-five undamaged roots were used to test the root mechanical
properties with a universal testing machine (model5967, Instron® Corporation) that
was fitted with a 50-N load cell with an accuracy of 2 mN. Root segments were
manually clamped with two grips and further fixed with strips of sandpaper and 502
Super Waterglue to increase friction. Force of loaded was recorded during tensile
testing with extension at the constant rate of 5 mm min' (Giadrossich et al., 2017).
The diameters of root segment were gauged by vernier caliper with 0.02 mm accuracy.
Each root segment was measured three times, in the center of the root segment, to
the left and right of the center adhering to both grips, respectively. The average root
diameter was used to calculate the root cross-sectional area (Mao et al., 2018). The
root tensile force (F, N) and extension (AL, mm) were recorded until the root segment
was broken. The root tensile strength (T,, MPa) was calculated as maximum force at
failure divided by root cross-sectional area. The root tensile strain (¢, %) was
calculated by dividing root extension by unstrained root length. The elasticity of
modulus (E;, MPa) corresponds to the slope of the curve of stress-strain within the
quasi-liner elastic stage of a root in tension. The calculation method of elasticity of
modulus was referenced from the method by Mao et al. (2018). The crude cell wall of
roots was extracted by 95% ethanol and ethanol-hexane (1:2) separately and then
dried at 55 °C in oven. And the cellulose content was measured by the phenol—sulfuric
acid method based on the Masuko et al. (2005) and Nielsen (2010). Total lignin
content was measured by the acetyl bromide method in Brassica napus roots based

on the liyama and Wallis (1990).
2.4 Measurements of root morphological and biochemical traits

The collection method of root exudates was modified from Boeuf-Tremblay et al.
(1995) and Pearse et al. (2006, 2007). At harvest time, the plant was lifted carefully

from the plastic tube and bulk soil (sand) was shaken off from the root system
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immediately, and the sand adhering to the roots was defined as rhizosphere soil.
Roots were then immersed into a 200 mL container with 40 mL 0.2 mM CacCl. solution
for 1-2 min to remove mostly rhizosphere soil. All extracts were poured into a 50 mL
centrifuge tube and then centrifugated using an Eppendrof 5810R centrifuge
(Eppendorf, Hamburg, Germany) at 3000 g for 15 minutes to discard root debris and
sloughed cells. The supernatant was freeze-dried and redissolved in 8 mL of distilled

water.

The extracts of separate 2 mL were used to quantify the glucose and xylose
concentrations by anthrone-sulfuric acid assay, respectively (Leyva et al., 2008). A
hydroxybiphenyl method was used to test the uronic acid concentration with 2 mL
suspension (Filisetti-Cozzi and Carpita, 1991). The rest of the 2 mL extract was used
to analyze carboxylates by a reversed phase high-performance liquid
chromatography (HPLC) system on an Agilent column (Agilent 1200, equipped with a
C18 250x4.6 mm ion-exclusion column, Alltima, America) (Wang et al., 2007; Li et al.,

2016).

After collection of root exudates, the roots were cleaned by flow water and then
scanned with a modified flatbed scanner (Epson V700, Nagano-ken, Japan). The total
root length, fine root length, coarse root length, root surface area and average root
diameter were analyzed by WinRHIZO software (Regent Instruments Inc., Quebec,
Canada).

2.5 Plant biomass and nutrients analyses

Shoots and roots were dried at 80 °C for 3 days to test the root and shoot dry weight.
Then, the dried samples were ground to powder and digested with sulfuric acid and
hydrogen peroxide in a microwave oven. The N and P concentrations were
determined using a fully automated flow-injection system and colorimetry (Sullivan
and Havlin, 1991; Alves et al., 2000). The K concentration was determined by a flame

photometry (Gao et al., 2005).

2.6 Statistical analyses

10
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The statistical analysis of the data was conducted by SPSS software (SPSS 19.0;
IBM Corporation, Armonk, NY, USA). Analysis of Variance (ANOVA) was used to
compare the effects of soil compaction on root morphological traits, root biochemical
traits, plant biomass and nutrients concentrations and contents in root and shoot
among six Brassica napus cultivars. Pearson’s correlation analysis was used to test
the linear correlations among root morphological and root biochemical traits. Principal
component analysis (PCA) was used to evaluate the relationships among eleven root
traits (including root morphological traits and root biochemical traits) in
non-compacted and compacted treatments, respectively. The first three principal

components were used to describe the relationships among eleven root traits.
3. Results

3.1 Root mechanical traits and maximum root depth of Brassica napus in

response to compacted soil

The root tensile force (F) increased significantly with increasing diameter of six
Brassica napus cultivars regardless of the compaction treatment (non-compacted
versus compacted) (Fig. 2a, Fig. S2a and Table S3). The root tensile strength (T,) and
elasticity of modulus (E;) of Brassica napus cultivars decreased with increasing
diameter following a non-linear relationship (Fig. 2b, c, Fig. S2b, ¢ and Table S3).
There was no significant difference in root mechanical traits (F, T- and E;) among six
Brassica napus cultivars in non-compacted treatment (Fig. S2). However, in the
compacted treatment, the three LRM cultivars (MJDT, A148 and R2) had significantly
larger root mechanical traits (F, T- and E;) than SRM cultivars (NY7, 11-Y7-117 and
1368) (Fig. 2). There was not significant difference among six Brassica napus
cultivars for root tensile strain (¢;) whether in non-compacted or compacted treatments
(Fig. S3). And we also found higher cellulose and lignin concentration in roots of LRM
cultivars compared with SRM cultivars, especially in compacted treatment (Fig. S4).
The maximum root depth (MRD) of all the six cultivars of the compacted treatment
was 59.4% smaller than that of the non-compacted treatment (Fig. 3). In compacted
treatment, LRM cultivars had a significantly larger maximum root depth compared

11
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with SRM cultivars (Fig. 3), while no significant difference between LRM and SRM

cultivars was found in non-compacted treatment (Fig. 3).

3.2 Root morphological and biochemical traits of Brassica napus in response to

compacted soil

The effects of soil compaction on root morphological and biochemical traits of
Brassica napus were significant at P <0.05 to 0.001 (Table 2). The genotypic
differences among six Brassica napus cultivars were also observed at P < 0.05 to
0.01 in total root length (TRL), root surface area (RSA), specific root length (SRL) and
fine root length (FRL). Significant differences were also observed in glucose
concentration (GC), xylose concentration (XC), uronic acid concentration (UAC) and
organic acid concentration (OAC) of root exudates at P <0.05 to 0.001 (Table 2). The
interaction effects between compaction treatment and cultivars were observed only in
RSA and average root diameter (ARD) (P <0.05) (Table 2).

The mechanical impedance significantly impeded root growth and elongation in
TRL, RSA, SRL, FRL and CRL, but increased ARD (Fig. 4). Compared with SRM
cultivars, LRM cultivars were 23.4% greater in TRL, 17.8% greater in RSA, 22.8%
greater in FRL, 6.8% greater in CRL and 23.9% greater in SRL, but 3.6% less in ARD
in compacted treatment (Fig. 4). The mechanical impedance also stimulates Brassica
napus roots to secrete more glucose, uronic acid, xylose and organic acid
components in the rhizosphere (Fig. 5 and Table S4). Compared with SRM cultivars,
LRM cultivars were 49.0% greater in glucose, 91.7% greater in xylose, 28.3% greater

in uronic acid and 47.6% greater in organic acid of root exudates (Fig. 5).
3.3 Trade-offs among root-related traits in response to compacted soil

The principal component analysis of the eleven root functional traits of six Brassica
napus cultivars in non-compacted treatment explained 77.2% of the variation in the
first three principal components, and the first component (PC1) represented 38.6% of
the variability and was dominated by TRL, CRL, SRL, RSA, OAC and XC; the second
component (PC2) represented 22.1% of the variability and was dominated by UAC

and GC; the third component (PC3) accounted for 16.4% of the variability and was

12
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dominated by ARD and MRD (Fig. 6a and Table S5). And the LRM cultivar was
clustered in the direction of OAC (e.g. LRM1), the direction of GC, UAC and MRD (e.g.
LRM3) and the direction of RSA and TRL (e.g. LRM2). In compacted treatment, the
first three traits of the PCA accounted for 39.2%, 25.8% and 10.9% of the total
variation, respectively. The root morphological traits (such as TRL, CRL, FRL, MRD,
SRL, RSA) scored high in PC1, the root biochemical traits (such as UAC, OAC, GC
and XC) scored high in PC2, and the ARD and MRD scored high in PC3 (Fig. 6b and
Table S5). Cultivars LRM1 and LRM3 were clusters in the direction of MRD, and the
cultivar LRM2 was cluster in the direction of FRL and SRL (Fig. 6b).

3.4 Correlations between maximum root depth and root morphological,

biochemical traits of Brassica napus in compacted soil

Across six Brassica napus cultivars, the MRD and CRL had significant positive
correlation with ARD, and the FRL and RSA both had significant positive correlations
with CRL in non-compacted treatment (P < 0.01 to 0.001, Fig. S5). However, in
compacted treatment, MRD had significant negative correlation with ARD (P < 0.05,
Fig. 7a). In addition, MRD had significant positive correlation with FRL (P < 0.05, Fig.
7b), but had no significant correlation with CRL (P = 0.44) in compacted treatment (Fig.
7c). Meanwhile, SRL had significant positive correlation with glucose, xylose, uronic
acid and organic acid concentrations in compacted treatment (Fig. S6). The maximum
root depth also had significant correlation with organic acid, glucose, xylose and

uronic acid concentrations in compacted treatment (Fig. 8).

3.5 Plant biomass and nutrients acquisition of Brassica napus in response to

soil compaction

A significant reduction of shoot dry weight (SDW), root dry weight (RDW) and
nutrients (N, P and K) concentrations and contents of Brassica napus were observed
in compacted treatment (Fig. 9a, b, Fig. 10 and Fig. S7). However, the root/shoot ratio
significantly increased in compacted treatment compared with non-compacted
treatment in both LRM and SRM cultivars (Fig. 9c). The genotypic differences were

observed among six Brassica napus cultivars both in SDW and RDW (P =0.001, Fig.
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9), and also in N, P and K contents of root (P =0.001) and shoot (P =0.013 to < 0.001)
in both non-compacted and compacted treatments (Fig. 10). Soil compaction had
significant effects on the nutrient concentrations of N, P and K in shoot and root (P <
0.001, Fig. S7). There was no significant difference in shoot N, P and K
concentrations among six cultivars, however, significant differences were found in root
N and K concentrations among cultivars both in non-compacted and compacted
treatments (Fig. S7). Compared with SRM cultivars, LRM cultivars had significantly
larger SDW and RDW, and N, P and K contents in shoot and root both in compacted
and non-compacted treatments (Fig. 9 and Fig. 10); and higher N, P and K
concentrations in root in compacted treatment. There was no significant difference in
shoot N, P and K concentrations whether in compacted or non-compacted treatment
(Fig. S7).

4. Discussion

It is an important strategy to enhance the biological potential with superior root traits
to break the limitation of soil compaction stress by plants (Alameda and Villar, 2012;
Grzesiak et al., 2013; Correa et al., 2019). In this study, the Brassica napus cultivars
with large root mechanical traits (LRM) had higher root lignin and cellulose
concentrations and greater rooting depth compared with Brassica napus cultivars with
small root mechanical traits (SRM) in compacted soil (Fig. 2, Fig. 3, Fig. 11 and Fig.
S4). Additionally, the former had more fine roots accompanied by more root exudates
in rhizosphere than the latter in compacted treatment. These result in more nutrients
uptake and higher biomass accumulation in LRM cultivars than SRM cultivars (Fig. 4,
Fig. 5, Fig. 9 and Fig. 10). The penetration of roots through the compacted soil
promotes plant growth while increasing soil voids due to the large taproot system of
Brassica napus (Kautz, 2015; Semwal et al., 2020). It is beneficial for the root
establishment of staple crops along the soil pores in structural soil and adherence to

more water and nutrients (Gao et al., 2012; Jin et al., 2013).

Deep root development in compacted soil is associated with the root traits

modification, maximum root system establishment and elongation in vertical and
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horizontal directions (Comas et al., 2013; Pérez-Ramos et al., 2013; Zwicke et al.,
2015; Wu et al., 2022). However, the soil properties significantly affect deep root
development, especially in the drought and high soil bulk density condition associated
to the soil compaction (Cairns et al., 2011; Correa et al., 2019). In this study, rooting
depth of Brassica napus in compacted treatment was 59.4% smaller than in
non-compacted treatment (Fig. 3). In addition, LRM cultivars had larger root
biomechanical properties parameters including tensile force, tensile strength and
modulus of elasticity, and had a deeper rooting growth compared with SRM (Fig. 3).
These are consistent with previous studies that stiffer roots with large tensile force,
tensile strength and modulus of elasticity are associated with greater rooting depth in
strong soil (Clark et al., 2008; Chimungu et al., 2015; Lee et al., 2020). Meanwhile,
high cellulose or lignin concentrations in cell wall are associated with larger root
tensile strength and modulus of elasticity values (Marga et al., 2003; Genet et al.,
2005; Zhang et al., 2014), especially for lignin, deposited in the walls of secondarily
thickened cells, making them rigid and impervious (Degenhardt and Gimmler, 2000;
Zhang et al., 2011). Lee et al. (2020) has reported tree species with large root tensile
strength and Young’s modulus has deeper and more abundant root system. We
hypothesized that large root mechanical traits might be attributed to the stiff root cell

wall structure decided by the cell wall components (Fig. 3 and Fig. S5).

In this study, with the increasing root diameter, the root tensile force of Brassica
napus grows larger in both non-compacted and compacted treatments (Fig. 2 and Fig.
S3). Generally, compared with fine roots, coarse roots with a large axial force and
radial expansion could increase root penetration probability when roots encounter a
strong soil layer (Whiteley et al., 1982; Clark et al., 2008). However, our results
showed that the trade-offs of root morphological traits with more fine roots, rather than
coarse roots, had significant positive correlation with root penetration depth in
compacted treatment (Fig. 7). Fine roots had an important function in resistance to
compacted soil stress, which might be depended on that (1) the shorter and narrower

root caps benefit to increase axial force per root cross-sectional area and facilitate
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penetration through the dense soil layer in mechanical impedance (Souty and Rode,
1987; lijima et al., 2003) and that (2) the micro-pores proportion increased in
compacted soil with the decreasing total soil priority, and the fine roots had a strongly
adaptive response to the local constriction in micropores in compacted soil (Fig. 7, Fig.
11 and Table 1). Additionally, a larger fine root length was found in LRM cultivars than
SRM cultivars in compacted treatment (Fig. 4b). Specially, LRM cultivars tend to have
larger SRL and finer and larger MRD in compacted treatment compared with SRM
cultivars (Fig. 6). Thus, we suggest that greater fine roots with large root tensile
strength and modulus of elasticity facilitate roots to penetrate into the deep soil layer
in compacted soil, and increase the soil volume exploring and nutrients acquisition by
proliferating more roots per unit carbon investment (Fig. 3 and Fig. 4) (Ho et al., 2005;

Laliberté et al., 2015).

In our study, greater specific root length and larger rooting depth were also found in
LRM cultivars than SRM cultivars in compacted soil stress (Fig. 3 and Fig. 4e). In
maize, roots with larger specific root length stimulated by localized fertilizer
application had more fine roots proliferation, which could further facilitate the roots to
grow into the small pores and elongate into the deep soil layers in compacted soil (Wu
et al., 2022). In addition, under compacted soil stress, the organic acids secretion was
significantly induced (Ahmed et al., 2014; Oleghe et al., 2017) and the reduction of
soil pore size could limit soil solution movement and restrict proton diffusion, all
leading to the rhizosphere acidified (McNear, 2013). Low rhizosphere soil pH could
regulate root proliferation and cell wall mechanical properties to contribute to the root
proliferation (Bloom et al., 2002). This might be supported by our results that specific
root length had significant positive correlation with organic acids concentration under
compacted soil stress (Fig. S6b). Greater specific root length could be associated with
more organic acids secretion in the rhizosphere, and contributed to roots proliferation

in compacted soil.

Previous studies reported that root secreted mucilage from root tip could lubricate

roots to reduce friction as they penetrate through deeper soil layers (Bacic et al., 1986;
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Read and Gregory, 1997). We found that root exudates polysaccharides and organic
acids had significant correlations with maximum root depth in compacted treatment
(Fig. 7). The increase of root exudates with more sugars and organic acids can
decrease the penetration resistance and increase compression index of soils, and
facilitate the roots to grow deeper in compacted soil (Ahmed et al., 2014). In addition,
organic acids of exudates can disperse soil structure and decrease soil hardness
(Naveed et al., 2017, 2018), and thus enhancing the roots to penetrate into the soil
layer (Jin et al., 2013). Although sugars secretion in the soil could offset this effect to
stabilize soil structure (Oades, 1984), the most important function of root exudates
with sugars-rich mucilage formed a soil sheath to envelope the roots, and relieve the
friction at root-soil interface and penetrate roots deep (Bengough and McKenzie, 1997,
Carter et al., 2019; Liu et al., 2019). Thus, we suggest that greater root exudates
stimulated by mechanical impedance could facilitate roots to penetrate and elongate
into the deep soil layer for LRM than SRM, which was achieved by lubricating the
passage of biopores in the process of roots elongation (Fig. 11, Hinsinger et al., 2009;
Oleghe et al., 2017), and the coordination of more fine roots with more root exudates
in rhizosphere for LRM cultivars had the positive function in root penetration and

elongation in compacted soil.

A significant higher N, P and K contents in root and shoot, and biomass in LRM
cultivars than SRM cultivars were observed in compacted soil (Fig. 9, Fig. 10 and Fig.
11). Deeper roots and greater root proliferation in compacted soil provide benefit for
roots resistance to resources stress distributed in the deep soil layer, such as N and
water uptake (Yu et al., 2015; Battisti and Sentelhas, 2017; Xie et al., 2021; Wu et al.,
2022). In this study, compared with SRM cultivars, LRM cultivars had a deeper root
growth and greater specific root lengths, which facilitates the roots to absorbe more N,
P and K in compacted soil (Fig. 10), and which might be achieved by (1) greater total
root length and root surface area of roots dealing with the soil compaction stress
driven by larger root biochemical properties parameters (De Baets et al., 2008;

Vergani et al., 2014); and (2) more nutrients mobilization by root secreting organic
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acids into the rhizosphere that increased the bioavailability of nutrients (Strém et al.,
2002; Gharu and Tarafdar, 2004; Carvalhais et al., 2011; Terzano et al., 2015) and (3)
a deeper root system beneficial to the nutrients absorption from the tank by
shortening the distance of mass flow between roots and nutrients (Lipiec and

Stepniewski, 1995; Chapman et al., 2012).
5. Conclusion

Soil compaction limited root penetration depth and root system establishment, while
facilitating root exudates secretion of Brassica napus. LRM cultivars had higher root
penetration ability, greater fine roots and more exudates, more biomass accumulation
and nutrients uptake than SRM cultivars in the compacted treatments. LRM cultivars
could be planted in the agricultural soils where soil compaction increases due to the

intensity of agricultural activities or the pressure of heavy farm machinery.
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Figure Captions

Fig. 1. Penetration resistance at different soil profile depth in non-compacted (a) and
compacted (b) treatment, respectively.

Fig. 2. Correlations between root tensile force (a), root tensile strength (b), modulus of
elasticity (c) and root diameter of LRM or SRM cultivars in compacted treatment. LRM,
Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus
cultivars with small root mechanical traits.

Fig. 3. Maximum root depth of LRM and SRM cultivars in non-compacted (NC) and
compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical
traits; SRM, Brassica napus cultivars with small root mechanical traits. The different
small letters above the column indicate significant difference among four treatments at
P <0.05.

Fig. 4. Root morphological traits of LRM and SRM cultivars in non-compacted (NC)
and compacted (C) treatments. Total root length (a), fine root length (b), coarse root
length (c), root surface area (d), specific root length (e) and average root diameter (f).
LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus
cultivars with small root mechanical traits. The different small letters above the column
indicate significant difference among four treatments at P <0.05.

Fig. 5. The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose
(d) of root exudates of LRM and SRM cultivars in non-compacted (NC) and
compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical
traits; SRM, Brassica napus cultivars with small root mechanical traits. The different
small letters above the column indicate significant difference among four treatments at
P <0.05.

Fig. 6. Principal component analysis of root morphological traits (TRL, CRL, FRL,
RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six
Brassica napus cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in
non-compacted (a) and compacted (b) treatments, respectively. TRL, total root length;
CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific
root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose
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concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
organic acid concentration; LRM, Brassica napus cultivars with large root mechanical
traits; SRM, Brassica napus cultivars with small root mechanical traits.

Fig. 7. Correlations between maximum root depth and average root diameter (a), fine
root length (b) and coarse root length (c) of six Brassica napus cultivars in compacted
treatment. The shaded areas indicate the 95% confidence range, derived from the
models.

Fig. 8. Correlations between maximum root depth and organic acids (a), glucose (b),
uronic acid (c) and xylose (d) concentrations of six Brassica napus cultivars in both
non-compacted (NC) and compacted (C) treatments. The shaded areas indicate the
95% confidence range, derived from the models. *P <0.05, **P <0.01.

Fig. 9. Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and
SRM cultivars in non-compacted (NC) and compacted (C) treatments. LRM, Brassica
napus cultivars with large root mechanical traits; SRM, Brassica napus cultivars with
small root mechanical traits. The different small letters above the column indicate
significant difference among four treatments at P <0.05.

Fig. 10. The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c)
and root (d-f) of LRM and SRM cultivars in non-compacted (NC) and compacted (C)
treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM,
Brassica napus cultivars with small root mechanical traits. The different small letters
above the column indicate significant difference among four treatments at P <0.05.
Fig. 11. A proposed diagram on how root traits (especially fine roots and root
exudates) of Brassica napus contribute to root penetration through the compacted soil.
LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus

cultivars with small root mechanical traits.

Table Captions

Table 1 Soil bulk density and total porosity of soil in non-compacted and compacted
treatments.

Table 2 The effects of soil compaction on the root morphological and biochemical
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traits of six Brassica napus cultivars.

Supplementary information

Supplementary Fig. S1. A schematic representation of the root growth system (a)
and root collection system (b).

Supplementary Fig. S2. Correlation between root tensile force (a), tensile strength (b)
and modulus of elasticity (c) and root diameter of LRM and SRM cultivars in
non-compacted treatment. LRM, Brassica napus cultivars with large root mechanical
traits; SRM, Brassica napus cultivars with small root mechanical traits.
Supplementary Fig. S3. Correlations between root tensile strain and root diameter of
LRM and SRM cultivars in non-compacted (a) and compacted (b) treatments. LRM,
Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus
cultivars with small root mechanical traits.

Supplementary Fig. S4. Root cellulose (a) and lignin (b) concentrations of Brassica
napus cultivars with LRM and SRM in non-compacted (NC) and compacted (C)
treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM,
Brassica napus cultivars with small root mechanical traits.

Supplementary Fig. S5. Correlations between maximum root depth (a), coarse root
length (b) and average root diameter, and correlations between fine root length (c),
root surface area (d) and coarse root length of six Brassica napus cultivars in
non-compacted treatment.

Supplementary Fig. S6. Correlations between glucose (a), organic acid (b), uronic
acid (c) and xylose (d) concentrations and specific root length of six Brassica napus
cultivars in compacted treatments. The shaded areas indicate the 95% confidence
range, derived from the models. *P <0.05, **P< 0.01.

Supplementary Fig. S7. The concentrations of nitrogen (N), phosphorus (P) and
potassium (K) in shoot (a-c) and root (d-e) of LRM and SRM cultivars in
non-compacted (NC) and compacted (C) treatments. LRM, Brassica napus cultivars
with large root mechanical traits; SRM, Brassica napus cultivars with small root
mechanical traits. The different small letters above the column indicate significant
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difference among four treatments at P <0.05.

Table S1 Brassica napus cultivars used in this study.

Table S2 Particle density of sand in non-compacted and compacted treatments in this
study.

Table S3 Fitting equations of root tensile force, root tensile strength and modulus of
elasticity with root diameter of LRM and SRM cultivars in non-compacted and
compacted treatments, respectively.

Table S4 The compositions and amounts of organic acids in the rhizosphere of six
Brassica napus cultivars in non-compacted and compacted treatments.

Table S5 The loading scores of eleven root-related traits in the principal component

analysis among six Brassica napus cultivars.
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950 LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus
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951 cultivars with small root mechanical traits. The different small letters above the column

952  indicate significant difference among four treatments at P <0.05.
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954  Fig. 3. Maximum root depth of LRM and SRM cultivars in non-compacted (NC) and
955  compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical
956 traits; SRM, Brassica napus cultivars with small root mechanical traits. The different

957  small letters above the column indicate significant difference among four treatments at

958 P <0.05.
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Fig. 5. The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose
(d) of root exudates of LRM and SRM cultivars in non-compacted (NC) and
compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical
traits; SRM, Brassica napus cultivars with small root mechanical traits. The different
small letters above the column indicate significant difference among four treatments at

P <0.05.
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Fig. 6. Principal component analysis of root morphological traits (TRL, CRL, FRL,
RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six
Brassica napus cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in
non-compacted (a) and compacted (b) treatments, respectively. TRL, total root length;
CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific
root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose
concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
organic acid concentration; LRM, Brassica napus cultivars with large root mechanical

traits; SRM, Brassica napus cultivars with small root mechanical traits.
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982  Fig. 8. Correlations between maximum root depth and organic acids (a), glucose (b),
983  uronic acid (c) and xylose (d) concentrations of six Brassica napus cultivars in both
984  non-compacted (NC) and compacted (C) treatments. The shaded areas indicate the

985  95% confidence range, derived from the models. "P <0.05, “"P< 0.01.
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987  Fig. 9. Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and SRM cultivars in non-compacted (NC) and compacted (C)
988 treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus cultivars with small root mechanical traits. The

989 different small letters above the column indicate significant difference among four treatments at P <0.05.
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990
991  Fig. 10. The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c)

992  and root (d-f) of LRM and SRM cultivars in non-compacted (NC) and compacted (C)
993 treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM,
994  Brassica napus cultivars with small root mechanical traits. The different small letters

995  above the column indicate significant difference among four treatments at P <0.05.
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997  Fig. 11. A proposed diagram on how root traits (especially fine roots and root exudates) of Brassica napus contribute to root penetration
998 through the compacted soil. LRM: Brassica napus cultivars with large root mechanical traits, SRM: Brassica napus cultivars with small

999 root mechanical traits.
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Table 1 Soil bulk density and total porosity of soil in non-compacted and compacted

treatments.

Treatment Soil bulk density (g cm-3) Total porosity of soil (%)
Non-compacted treatment 1.30 51.33
Compacted treatment 1.60 40.10

Note: ' The total porosity of soil (%) was calculated with the formula by Hao et al.

(2008).
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1004 Table 2 The effects of soil compaction on the root morphological and biochemical traits of six Brassica napus cultivars.

Root morphological traits Root biochemical traits
Effect TRL (cm RSA (cm? ARD (mm SRL (m root CRL (cm FRL(cm MRD (cm GC (mg g’ XC (mg g UAC (mg g* OAC (mmol g
plant) plant) plant) length g'' RDW) plant') plant’) plant) RDW) RDW) RDW) RDW)
Compaction 38.13***  40.56*** 16.67*** 7.79*** 5.90* 41.95***  167.02*** 10.57** 10.72%** 25.93*** 10.37*
Cultivars  7.96** 9.34* 1.32ns 7.07* 1.01ns 3.63* 1.52ns 48.07*** 75.73** 3.43* 7.35**
Compaction
. 0.93ns 4.21* 4.43* 0.04ns 1.47ns 0.07ns 2.71ns 0.71ns 0.05ns 1.11ns 0.16ns
x Cultivars

1005 Note: TRL, total root length; RSA, root surface area; ARD, average root diameter; SRL, specific root length; CRL, coarse root length; FRL,
1006 fine root length; MRD, maximum root depth; GC, glucose concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC,
1007  organic acid concentration and RDW, root dry weight. A two-way ANOVA was conducted to test the significance of genotypes, treatments

1008  and their interaction on the investigated traits. ns, no significant differences, *: P < 0.05, **: P <0.01, ***: P< 0.001.
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