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Abstract 35 

Soil compaction due to mechanized farming operations is a recurrent issue affecting 36 

crop growth and yield. Yet, how soil compaction affects plant functions and ecological 37 

strategies is poorly known. With Brassica napus, i.e. a widespread crop species as 38 

study object, we aim to understand (i) how soil compaction impacts root and shoot 39 

traits related to the plant’s well-being, nutrient acquisition of Brassica napus with 40 

different mechanical robustness, as well as their trade-offs, and (ii) how such impacts 41 

vary among different cultivars. To do this, we cultivated six cultivars of Brassica napus 42 

in non-compacted (control) and compacted (treatment) soils, respectively, in a sand 43 

culture system. After harvesting, a series of mechanical, morphological and chemical 44 

traits of roots and/or shoots were measured. Results showed that soil compaction 45 

significantly limited root penetration depth and root system establishment in 46 

morphological traits, leading further to significant reduction in nutrients acquisition and 47 

plant biomass accumulation. However, soil compaction significantly increases the 48 

average root diameter and root/shoot ratio, and facilitate more root exudates 49 

secretion (e.g. organic acids and polysaccharides) of Brassica napus cultivars. The 50 

Brassica napus cultivars with large root mechanical traits (e.g. root tensile force, root 51 

tensile strength and modulus of elasticity) had higher root cellulose and lignin 52 

concentrations and showed a stronger response in maximum root depth and specific 53 

root length compared with Brassica napus cultivars with small root mechanical traits in 54 

compacted treatment, which resulted in the greater fine root length and more root 55 

exudates secretion at root-soil interface. Furthermore, deep rooting enhanced 56 

nutrients acquisition and further biomass accumulation in compacted soil. Totally, the 57 

Brassica napus cultivars with large root mechanical traits with more fine roots and root 58 

exudates were critical for Brassica napus root penetration into a deep soil layer in 59 

compacted soil. 60 

Keywords: Brassica napus; Soil compaction; Root mechanical traits; Fine roots; Root 61 

exudates 62 
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Introduction 63 

In modern agricultural system, soil compaction is mainly sourced from the 64 

improper agricultural management, such as the use of heavy machinery, soil drying, 65 

long-term no-tillage and intensive agricultural production (Shah et al., 2017; Keller et 66 

al., 2019; Mirzavand and Moradi-Talebbeigi, 2021; Ferreira et al., 2021) and is a 67 

recurrent problem worldwide. Approximately 68 million hectares of the world’s land is 68 

degraded due to compaction (Flowers and Lal, 1998; Hamza and Anderson, 2005). 69 

The yield loss due to soil compaction has been estimated up to 20 % (Barken et al., 70 

1981) or even up to 50- 75% (Flowers and Lal, 1998; Hoque and Kobata, 2000; 71 

Wolkowski and Lowery, 2008). Soil compaction causes a degraded soil structure, 72 

which could decrease soil void space available for displacement of soil particles, 73 

increase penetrating cost for plant roots (Hamza and Anderson, 2005; Batey, 2009) 74 

and lead to low connectivity and continuity of the pore space to reduce water and air 75 

transport capability of soil (Kuncoro et al., 2014; Keller et al., 2017).  76 

Roots are the first and most direct plant organ subjected to soil compaction and 77 

their multifunctionality, such as water and nutrient uptake and scavenging, and 78 

resistance to uprooting, can be potentially affected in cultivated lands. Soil 79 

compaction can modify root morphological traits through limiting maximum rooting 80 

depth and decreasing the size of root system, reducing root elongation rate, 81 

increasing radial growth and changing the amount of root branching (Tracy et al., 82 

2012; Correa et al., 2019). Besides limited root growth, soil compaction significantly 83 

affects the shoot performance by nutrients deficiency (Lipiec and Stępniewski, 1995; 84 

Colombi and Keller 2019). Improving the adaptation ability of roots to soil compaction 85 

in deep soil layer will provide benefit for the plant establishment in shoot and root by 86 

enhancing the water and nutrients acquisition (Jin et al., 2015; Wang et al., 2019). Yet, 87 

the impact of soil compaction on roots’ functions and their adaptive strategies still 88 

remains poorly understood. 89 

Plasticity of roots to compacted soil has been studied previously mainly associated 90 

to morphological, biochemical and mechanical traits (Jin et al., 2017; Correa et al., 91 
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2019; Vanhees et al., 2020; Bello-Bello et al., 2022), which included (1) a plant with 92 

thicker roots tends to enhance its axial force and radial expansion in penetrating 93 

through the compacted soil (Chen and Weil, 2010; Colombi et al., 2017). Meanwhile, 94 

fine roots with small diameter relative to the small pores distribution in compacted soil 95 

could promote roots to penetrate and elongate in the textural pores spaces where 96 

there were sufficient small pores in compacted soil (Fukao and Bailey-Serres, 2004; 97 

Bodner et al., 2014). (2) The induction of organic and inorganic compounds in the 98 

root-soil interface by soil compaction could serve as the lubricant to decrease the 99 

resistance source from the friction between root surface and soil particles (Bengough 100 

and McKenzie, 1997; Groleau-Renaud et al., 1998; Iijima et al., 2004; More et al., 101 

2020), mainly through improving the soil compression characteristics to ease 102 

penetration and enhance the recovery of root induced soil compaction (Oleghe et al., 103 

2107); (3) plants with stronger (i.e., greater root tensile force and strength) and stiffer 104 

roots (i.e. greater modulus of elasticity) have an enhanced penetration ability against 105 

the strongly-compacted soil layers (Clark et al., 2008; Chimungu et al., 2015; Lee et 106 

al., 2020). Root thickening at the root tips can interpret the root penetration outcomes 107 

by increasing the root axial force in increased soil strength (Whiteley et al., 1982; 108 

Clark et al., 2002; Hanbury and Atwell, 2005; Jin et al., 2013).   109 

Root mechanical traits are key metrics in studying the plant anchorage and root 110 

penetration into soil (Chimungu et al., 2015). Root functions in compressive, buckling, 111 

twisting and/or bending behaviour are important in response to soil compaction and 112 

root setting (Bourrier et al., 2013; Mao et al., 2014; Schwarz et al., 2015; Johnson et 113 

al., 2016). The root mechanical traits mostly related to the tensile force, tensile 114 

strength, modulus of elasticity and tensile strain. Wide variations in root mechanical 115 

traits among species mainly depends on root size (Gray and Barker, 2004; Ghestem 116 

et al., 2014; Mao et al., 2018; Xu et al., 2021), root moisture contents (Yang et al., 117 

2016; Zhang et al., 2019; Ekeoma et al., 2021), root types (Loades et al., 2015; Mao 118 

et al., 2023), root structure (Genet et al., 2005; Zhang et al., 2014; Zhu et al., 2020) 119 

and root anatomy (Chimungu et al., 2015; Schneider et al., 2021). For example, the 120 
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roots with multiseriate cortical sclerenchyma have greater root lignin concentration 121 

and root bending strength, and greater root penetration depth in compacted soils 122 

(Schneider et al., 2021). The impact of the root mechanical traits on the root 123 

penetration ability needs to be explored, which will be helpful for revealing the 124 

potential adaptative mechanism of roots’ function traits driven by root mechanical 125 

traits in reaction to compacted soil (Stokes et al., 2009). 126 

Oilseed rape (Brassica napus L.) is the most important edible oil crops and has 127 

abundant germplasm resources in China as well as in the world (Hu et al., 2017; 128 

Friedt et al., 2018; Li et al., 2020). Most of the cultivated soil in the main planting area 129 

of Brassica napus in Yangtze River basin of central China are poorly drained clay soils, 130 

and have poor soil pore system (Xi, 1998; Wang et al., 2021). In addition, the 131 

frequency of mechanized harvesting of Brassica napus has aggravated the soil 132 

compaction recently (Zhang et al., 2006; Wang et al., 2015; Correa et al., 2019). For 133 

example, the average soil bulk density at topsoil (5-10 cm) is about 1.38 g/cm3, while 134 

the soil bulk density up to 1.52 g/cm3 at plow pan (Ji et al., 2013), which are much 135 

higher than the ideal soil bulk density of 1.2-1.3 g/cm3 (Li and Zhou 1994). Oilseed 136 

rape is sensitive to soil compaction (Blake et al., 2006) and the seed yield significantly 137 

decreased under high soil compaction stress (Alakukku and Elonen, 1995; Arvidsson 138 

and Håkansson, 2014; Bogunovic et al., 2018; Orzech et al., 2021). And the 139 

adaptability of different oilseed rape species to compacted soil depends on root 140 

characteristics, such as root morphology (Wang et al., 2021), root penetration depth 141 

(Peltonen-Sainio et al., 2011), root size (Chen and Weil, 2010; Zhang et al., 2022) and 142 

root type (Chen and Weil, 2010). 143 

In this study, we firstly determined the variation in root mechanical traits and its 144 

effect on root depth of six Brassica napus, and further investigated the root 145 

morphological and biochemical traits plasticity and their effects on nutrients 146 

acquisition and plant biomass accumulation of the Brassica napus cultivars grown in 147 

compacted soil. Thus, the objective of the study is 1) to clarify the responses of the six 148 

Brassica napus cultivars to soil compaction and 2) the root plasticity to soil 149 
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compaction for different Brassica napus cultivars.  150 

2. Materials and methods 151 

2.1 Plant materials and growth conditions 152 

In this study, six Brassica napus cultivars were selected from an association panel 153 

collected from major breeding centers across China (Liu et al., 2016), and among 154 

them, Brassica napus cultivars of MJDT, A148 and R2 have large root mechanical 155 

traits (F, Tr and Er) and cultivars of NY7, 11-Y7-117 and 1368 have small root 156 

mechanical traits (Table S1). A sand-culture system was used to investigate the 157 

response of Brassica napus to soil compaction in this study, which allows mechanical 158 

impedance to be varied independent of aeration and water status of the growing 159 

medium (Coelho Filho et al., 2013; Jin et al., 2015). Rigid plastic tubes with 45 cm in 160 

length and 15 cm in diameter were placed in tanks with nutrient solution on a base. 161 

Each tank contains six tubes, and each tube contains one Brassica napus seedling 162 

(Fig. S1A). The tubes were filled with mixed quartz sand (88.89% fine sand with 0.23 163 

mm particle size on average, and 11.11% coarse sand with 0.69 mm particle size on 164 

average) and adequate nutrient solution. Compaction is directly proportional to soil 165 

bulk density (Popova et al., 2016). Low (1.30 g cm-3) and high (1.60 g cm-3) bulk 166 

density were quantified by adding different masses of sand soil to the tubes with the 167 

same volume, which represented non-compacted and compacted treatments, 168 

respectively. The changes of penetration resistance along soil profile depth in 169 

non-compacted and compacted treatments were shown in Fig. 1, respectively. The 170 

penetration resistance was measured by a soil compaction meter (Field Scout SC900 171 

soil compaction meter, Spectrum Technologies, Inc., IL, USA) in 2.5 cm increments 172 

from soil surface to 30 cm depth with four repetitions. The total porosity and particle 173 

density of sand were calculated at non-compacted and compacted treatments (Table 174 

1 and Table S2). The soil water potential is basically similar between two bulk density 175 

treatments in the well-watered sands. Each treatment for each cultivar has four 176 

replications in this study. 177 



 

8 

Seeds were sterilized using 70% (v/v) ethanol and NaOCl (2.5% active chlorine), 178 

and then placed on gauze with pure water containing 0.5 μM CaCl2 for germination. 179 

The germinated seeds with about 1.0 cm length primary root were transplanted and 180 

grown in the center of sand core. Brassica napus seedlings were grown in an 181 

illuminated growth chamber under 16-h-light/8-h-dark photoperiod (with a photo flux 182 

density of 300- 320 μmol m-2 s-1 at plant height) and 60% relative humidity. The 183 

modified Hoagland nutrient solution contains 5.0 mM Ca(NO3)2·4H2O, 5.0 mM KNO3, 184 

2.0 mM MgSO4·7H2O, 1.0 mM KH2PO4, 50 μM Fe-EDTA, 50 μM H3BO3, 9.5 μM 185 

MnCl2·4H2O, 0.8 μM ZnSO4·7H2O, 0.3 μM CuSO4·5H2O and 0.4 μM Na2MoO4·2H2O. 186 

A total of 60 L nutrient solution was supplied in each tank. 187 

Brassica napus plants were harvested at 35 d after transplanting when the 188 

difference in the growth phenotypes were observed between plants grown in 189 

non-compacted and compacted treatments. Firstly, we tested the variations of root 190 

mechanical traits and maximum root depth of the six Brassica napus cultivars. 191 

Secondly, the root morphological traits (total root length, coarse root length, fine root 192 

length, root surface area, average root diameter and specific root length), root 193 

biochemical traits (organic acid concentration, xylose concentration, glucose 194 

concentration and uronic acid concentration), plant biomass parameters (root and 195 

shoot dry weight, root/shoot ratio), and nitrogen (N), phosphorus (P) and potassium (K) 196 

concentrations and contents in shoot and root of plants were determined. 197 

2.2 Measurement of maximum root depth 198 

At harvest time, the tube grown plants were pulled out carefully from the top of the 199 

sand column, and then the sand was carefully removed from the tube bottom till the 200 

root tips appeared (Fig. S1B). The maximum root depth was determined by the 201 

vertical distance measured from the primary root base to the root tips by ruler with the 202 

accuracy of 0.1 cm. 203 

2.3 Measurements of root mechanical traits and root cellulose and lignin 204 

content 205 
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The first-order lateral roots of more than 10 cm length of the plant were sampled to 206 

test root mechanical properties. Root samples were firstly preserved in an alcohol 207 

solution contained 15 % ethanol and then kept in a refrigerator at 4 oC (Bischetti et al., 208 

2003). Thirty to forty-five undamaged roots were used to test the root mechanical 209 

properties with a universal testing machine (model5967, Instron® Corporation) that 210 

was fitted with a 50-N load cell with an accuracy of 2 mN. Root segments were 211 

manually clamped with two grips and further fixed with strips of sandpaper and 502 212 

Super Waterglue to increase friction. Force of loaded was recorded during tensile 213 

testing with extension at the constant rate of 5 mm min-1 (Giadrossich et al., 2017). 214 

The diameters of root segment were gauged by vernier caliper with 0.02 mm accuracy. 215 

Each root segment was measured three times, in the center of the root segment, to 216 

the left and right of the center adhering to both grips, respectively. The average root 217 

diameter was used to calculate the root cross-sectional area (Mao et al., 2018). The 218 

root tensile force (F, N) and extension (ΔL, mm) were recorded until the root segment 219 

was broken. The root tensile strength (Tr, MPa) was calculated as maximum force at 220 

failure divided by root cross-sectional area. The root tensile strain (ɛr, %) was 221 

calculated by dividing root extension by unstrained root length. The elasticity of 222 

modulus (Er, MPa) corresponds to the slope of the curve of stress-strain within the 223 

quasi-liner elastic stage of a root in tension. The calculation method of elasticity of 224 

modulus was referenced from the method by Mao et al. (2018). The crude cell wall of 225 

roots was extracted by 95% ethanol and ethanol-hexane (1:2) separately and then 226 

dried at 55 oC in oven. And the cellulose content was measured by the phenol–sulfuric 227 

acid method based on the Masuko et al. (2005) and Nielsen (2010). Total lignin 228 

content was measured by the acetyl bromide method in Brassica napus roots based 229 

on the Iiyama and Wallis (1990). 230 

2.4 Measurements of root morphological and biochemical traits 231 

The collection method of root exudates was modified from Boeuf-Tremblay et al. 232 

(1995) and Pearse et al. (2006, 2007). At harvest time, the plant was lifted carefully 233 

from the plastic tube and bulk soil (sand) was shaken off from the root system 234 



 

10 

immediately, and the sand adhering to the roots was defined as rhizosphere soil. 235 

Roots were then immersed into a 200 mL container with 40 mL 0.2 mM CaCl2 solution 236 

for 1-2 min to remove mostly rhizosphere soil. All extracts were poured into a 50 mL 237 

centrifuge tube and then centrifugated using an Eppendrof 5810R centrifuge 238 

(Eppendorf, Hamburg, Germany) at 3000 g for 15 minutes to discard root debris and 239 

sloughed cells. The supernatant was freeze-dried and redissolved in 8 mL of distilled 240 

water. 241 

The extracts of separate 2 mL were used to quantify the glucose and xylose 242 

concentrations by anthrone-sulfuric acid assay, respectively (Leyva et al., 2008). A 243 

hydroxybiphenyl method was used to test the uronic acid concentration with 2 mL 244 

suspension (Filisetti-Cozzi and Carpita, 1991). The rest of the 2 mL extract was used 245 

to analyze carboxylates by a reversed phase high-performance liquid 246 

chromatography (HPLC) system on an Agilent column (Agilent 1200, equipped with a 247 

C18 250×4.6 mm ion-exclusion column, Alltima, America) (Wang et al., 2007; Li et al., 248 

2016). 249 

After collection of root exudates, the roots were cleaned by flow water and then 250 

scanned with a modified flatbed scanner (Epson V700, Nagano-ken, Japan). The total 251 

root length, fine root length, coarse root length, root surface area and average root 252 

diameter were analyzed by WinRHIZO software (Regent Instruments Inc., Quebec, 253 

Canada). 254 

2.5 Plant biomass and nutrients analyses 255 

Shoots and roots were dried at 80 oC for 3 days to test the root and shoot dry weight. 256 

Then, the dried samples were ground to powder and digested with sulfuric acid and 257 

hydrogen peroxide in a microwave oven. The N and P concentrations were 258 

determined using a fully automated flow-injection system and colorimetry (Sullivan 259 

and Havlin, 1991; Alves et al., 2000). The K concentration was determined by a flame 260 

photometry (Gao et al., 2005). 261 

2.6 Statistical analyses 262 
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The statistical analysis of the data was conducted by SPSS software (SPSS 19.0; 263 

IBM Corporation, Armonk, NY, USA). Analysis of Variance (ANOVA) was used to 264 

compare the effects of soil compaction on root morphological traits, root biochemical 265 

traits, plant biomass and nutrients concentrations and contents in root and shoot 266 

among six Brassica napus cultivars. Pearson’s correlation analysis was used to test 267 

the linear correlations among root morphological and root biochemical traits. Principal 268 

component analysis (PCA) was used to evaluate the relationships among eleven root 269 

traits (including root morphological traits and root biochemical traits) in 270 

non-compacted and compacted treatments, respectively. The first three principal 271 

components were used to describe the relationships among eleven root traits. 272 

3. Results 273 

3.1 Root mechanical traits and maximum root depth of Brassica napus in 274 

response to compacted soil 275 

The root tensile force (F) increased significantly with increasing diameter of six 276 

Brassica napus cultivars regardless of the compaction treatment (non-compacted 277 

versus compacted) (Fig. 2a, Fig. S2a and Table S3). The root tensile strength (Tr) and 278 

elasticity of modulus (Er) of Brassica napus cultivars decreased with increasing 279 

diameter following a non-linear relationship (Fig. 2b, c, Fig. S2b, c and Table S3). 280 

There was no significant difference in root mechanical traits (F, Tr and Er) among six 281 

Brassica napus cultivars in non-compacted treatment (Fig. S2). However, in the 282 

compacted treatment, the three LRM cultivars (MJDT, A148 and R2) had significantly 283 

larger root mechanical traits (F, Tr and Er) than SRM cultivars (NY7, 11-Y7-117 and 284 

1368) (Fig. 2). There was not significant difference among six Brassica napus 285 

cultivars for root tensile strain (ɛr) whether in non-compacted or compacted treatments 286 

(Fig. S3). And we also found higher cellulose and lignin concentration in roots of LRM 287 

cultivars compared with SRM cultivars, especially in compacted treatment (Fig. S4). 288 

The maximum root depth (MRD) of all the six cultivars of the compacted treatment 289 

was 59.4% smaller than that of the non-compacted treatment (Fig. 3). In compacted 290 

treatment, LRM cultivars had a significantly larger maximum root depth compared 291 
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with SRM cultivars (Fig. 3), while no significant difference between LRM and SRM 292 

cultivars was found in non-compacted treatment (Fig. 3). 293 

3.2 Root morphological and biochemical traits of Brassica napus in response to 294 

compacted soil 295 

The effects of soil compaction on root morphological and biochemical traits of 296 

Brassica napus were significant at P <0.05 to 0.001 (Table 2). The genotypic 297 

differences among six Brassica napus cultivars were also observed at P < 0.05 to 298 

0.01 in total root length (TRL), root surface area (RSA), specific root length (SRL) and 299 

fine root length (FRL). Significant differences were also observed in glucose 300 

concentration (GC), xylose concentration (XC), uronic acid concentration (UAC) and 301 

organic acid concentration (OAC) of root exudates at P <0.05 to 0.001 (Table 2). The 302 

interaction effects between compaction treatment and cultivars were observed only in 303 

RSA and average root diameter (ARD) (P <0.05) (Table 2). 304 

The mechanical impedance significantly impeded root growth and elongation in 305 

TRL, RSA, SRL, FRL and CRL, but increased ARD (Fig. 4). Compared with SRM 306 

cultivars, LRM cultivars were 23.4% greater in TRL, 17.8% greater in RSA, 22.8% 307 

greater in FRL, 6.8% greater in CRL and 23.9% greater in SRL, but 3.6% less in ARD 308 

in compacted treatment (Fig. 4). The mechanical impedance also stimulates Brassica 309 

napus roots to secrete more glucose, uronic acid, xylose and organic acid 310 

components in the rhizosphere (Fig. 5 and Table S4). Compared with SRM cultivars, 311 

LRM cultivars were 49.0% greater in glucose, 91.7% greater in xylose, 28.3% greater 312 

in uronic acid and 47.6% greater in organic acid of root exudates (Fig. 5). 313 

3.3 Trade-offs among root-related traits in response to compacted soil 314 

The principal component analysis of the eleven root functional traits of six Brassica 315 

napus cultivars in non-compacted treatment explained 77.2% of the variation in the 316 

first three principal components, and the first component (PC1) represented 38.6% of 317 

the variability and was dominated by TRL, CRL, SRL, RSA, OAC and XC; the second 318 

component (PC2) represented 22.1% of the variability and was dominated by UAC 319 

and GC; the third component (PC3) accounted for 16.4% of the variability and was 320 
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dominated by ARD and MRD (Fig. 6a and Table S5). And the LRM cultivar was 321 

clustered in the direction of OAC (e.g. LRM1), the direction of GC, UAC and MRD (e.g. 322 

LRM3) and the direction of RSA and TRL (e.g. LRM2). In compacted treatment, the 323 

first three traits of the PCA accounted for 39.2%, 25.8% and 10.9% of the total 324 

variation, respectively. The root morphological traits (such as TRL, CRL, FRL, MRD, 325 

SRL, RSA) scored high in PC1, the root biochemical traits (such as UAC, OAC, GC 326 

and XC) scored high in PC2, and the ARD and MRD scored high in PC3 (Fig. 6b and 327 

Table S5). Cultivars LRM1 and LRM3 were clusters in the direction of MRD, and the 328 

cultivar LRM2 was cluster in the direction of FRL and SRL (Fig. 6b). 329 

3.4 Correlations between maximum root depth and root morphological, 330 

biochemical traits of Brassica napus in compacted soil 331 

Across six Brassica napus cultivars, the MRD and CRL had significant positive 332 

correlation with ARD, and the FRL and RSA both had significant positive correlations 333 

with CRL in non-compacted treatment (P < 0.01 to 0.001, Fig. S5). However, in 334 

compacted treatment, MRD had significant negative correlation with ARD (P < 0.05, 335 

Fig. 7a). In addition, MRD had significant positive correlation with FRL (P < 0.05, Fig. 336 

7b), but had no significant correlation with CRL (P = 0.44) in compacted treatment (Fig. 337 

7c). Meanwhile, SRL had significant positive correlation with glucose, xylose, uronic 338 

acid and organic acid concentrations in compacted treatment (Fig. S6). The maximum 339 

root depth also had significant correlation with organic acid, glucose, xylose and 340 

uronic acid concentrations in compacted treatment (Fig. 8). 341 

3.5 Plant biomass and nutrients acquisition of Brassica napus in response to 342 

soil compaction 343 

A significant reduction of shoot dry weight (SDW), root dry weight (RDW) and 344 

nutrients (N, P and K) concentrations and contents of Brassica napus were observed 345 

in compacted treatment (Fig. 9a, b, Fig. 10 and Fig. S7). However, the root/shoot ratio 346 

significantly increased in compacted treatment compared with non-compacted 347 

treatment in both LRM and SRM cultivars (Fig. 9c). The genotypic differences were 348 

observed among six Brassica napus cultivars both in SDW and RDW (P =0.001, Fig. 349 
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9), and also in N, P and K contents of root (P =0.001) and shoot (P =0.013 to < 0.001) 350 

in both non-compacted and compacted treatments (Fig. 10). Soil compaction had 351 

significant effects on the nutrient concentrations of N, P and K in shoot and root (P < 352 

0.001, Fig. S7). There was no significant difference in shoot N, P and K 353 

concentrations among six cultivars, however, significant differences were found in root 354 

N and K concentrations among cultivars both in non-compacted and compacted 355 

treatments (Fig. S7). Compared with SRM cultivars, LRM cultivars had significantly 356 

larger SDW and RDW, and N, P and K contents in shoot and root both in compacted 357 

and non-compacted treatments (Fig. 9 and Fig. 10); and higher N, P and K 358 

concentrations in root in compacted treatment. There was no significant difference in 359 

shoot N, P and K concentrations whether in compacted or non-compacted treatment 360 

(Fig. S7). 361 

4. Discussion 362 

It is an important strategy to enhance the biological potential with superior root traits 363 

to break the limitation of soil compaction stress by plants (Alameda and Villar, 2012; 364 

Grzesiak et al., 2013; Correa et al., 2019). In this study, the Brassica napus cultivars 365 

with large root mechanical traits (LRM) had higher root lignin and cellulose 366 

concentrations and greater rooting depth compared with Brassica napus cultivars with 367 

small root mechanical traits (SRM) in compacted soil (Fig. 2, Fig. 3, Fig. 11 and Fig. 368 

S4). Additionally, the former had more fine roots accompanied by more root exudates 369 

in rhizosphere than the latter in compacted treatment. These result in more nutrients 370 

uptake and higher biomass accumulation in LRM cultivars than SRM cultivars (Fig. 4, 371 

Fig. 5, Fig. 9 and Fig. 10). The penetration of roots through the compacted soil 372 

promotes plant growth while increasing soil voids due to the large taproot system of 373 

Brassica napus (Kautz, 2015; Semwal et al., 2020). It is beneficial for the root 374 

establishment of staple crops along the soil pores in structural soil and adherence to 375 

more water and nutrients (Gao et al., 2012; Jin et al., 2013). 376 

Deep root development in compacted soil is associated with the root traits 377 

modification, maximum root system establishment and elongation in vertical and 378 
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horizontal directions (Comas et al., 2013; Pérez-Ramos et al., 2013; Zwicke et al., 379 

2015; Wu et al., 2022). However, the soil properties significantly affect deep root 380 

development, especially in the drought and high soil bulk density condition associated 381 

to the soil compaction (Cairns et al., 2011; Correa et al., 2019). In this study, rooting 382 

depth of Brassica napus in compacted treatment was 59.4% smaller than in 383 

non-compacted treatment (Fig. 3). In addition, LRM cultivars had larger root 384 

biomechanical properties parameters including tensile force, tensile strength and 385 

modulus of elasticity, and had a deeper rooting growth compared with SRM (Fig. 3). 386 

These are consistent with previous studies that stiffer roots with large tensile force, 387 

tensile strength and modulus of elasticity are associated with greater rooting depth in 388 

strong soil (Clark et al., 2008; Chimungu et al., 2015; Lee et al., 2020). Meanwhile, 389 

high cellulose or lignin concentrations in cell wall are associated with larger root 390 

tensile strength and modulus of elasticity values (Marga et al., 2003; Genet et al., 391 

2005; Zhang et al., 2014), especially for lignin, deposited in the walls of secondarily 392 

thickened cells, making them rigid and impervious (Degenhardt and Gimmler, 2000; 393 

Zhang et al., 2011). Lee et al. (2020) has reported tree species with large root tensile 394 

strength and Young’s modulus has deeper and more abundant root system. We 395 

hypothesized that large root mechanical traits might be attributed to the stiff root cell 396 

wall structure decided by the cell wall components (Fig. 3 and Fig. S5). 397 

In this study, with the increasing root diameter, the root tensile force of Brassica 398 

napus grows larger in both non-compacted and compacted treatments (Fig. 2 and Fig. 399 

S3). Generally, compared with fine roots, coarse roots with a large axial force and 400 

radial expansion could increase root penetration probability when roots encounter a 401 

strong soil layer (Whiteley et al., 1982; Clark et al., 2008). However, our results 402 

showed that the trade-offs of root morphological traits with more fine roots, rather than 403 

coarse roots, had significant positive correlation with root penetration depth in 404 

compacted treatment (Fig. 7). Fine roots had an important function in resistance to 405 

compacted soil stress, which might be depended on that (1) the shorter and narrower 406 

root caps benefit to increase axial force per root cross-sectional area and facilitate 407 
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penetration through the dense soil layer in mechanical impedance (Souty and Rode, 408 

1987; Iijima et al., 2003) and that (2) the micro-pores proportion increased in 409 

compacted soil with the decreasing total soil priority, and the fine roots had a strongly 410 

adaptive response to the local constriction in micropores in compacted soil (Fig. 7, Fig. 411 

11 and Table 1). Additionally, a larger fine root length was found in LRM cultivars than 412 

SRM cultivars in compacted treatment (Fig. 4b). Specially, LRM cultivars tend to have 413 

larger SRL and finer and larger MRD in compacted treatment compared with SRM 414 

cultivars (Fig. 6). Thus, we suggest that greater fine roots with large root tensile 415 

strength and modulus of elasticity facilitate roots to penetrate into the deep soil layer 416 

in compacted soil, and increase the soil volume exploring and nutrients acquisition by 417 

proliferating more roots per unit carbon investment (Fig. 3 and Fig. 4) (Ho et al., 2005; 418 

Laliberté et al., 2015). 419 

In our study, greater specific root length and larger rooting depth were also found in 420 

LRM cultivars than SRM cultivars in compacted soil stress (Fig. 3 and Fig. 4e). In 421 

maize, roots with larger specific root length stimulated by localized fertilizer 422 

application had more fine roots proliferation, which could further facilitate the roots to 423 

grow into the small pores and elongate into the deep soil layers in compacted soil (Wu 424 

et al., 2022). In addition, under compacted soil stress, the organic acids secretion was 425 

significantly induced (Ahmed et al., 2014; Oleghe et al., 2017) and the reduction of 426 

soil pore size could limit soil solution movement and restrict proton diffusion, all 427 

leading to the rhizosphere acidified (McNear, 2013). Low rhizosphere soil pH could 428 

regulate root proliferation and cell wall mechanical properties to contribute to the root 429 

proliferation (Bloom et al., 2002). This might be supported by our results that specific 430 

root length had significant positive correlation with organic acids concentration under 431 

compacted soil stress (Fig. S6b). Greater specific root length could be associated with 432 

more organic acids secretion in the rhizosphere, and contributed to roots proliferation 433 

in compacted soil. 434 

Previous studies reported that root secreted mucilage from root tip could lubricate 435 

roots to reduce friction as they penetrate through deeper soil layers (Bacic et al., 1986; 436 
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Read and Gregory, 1997). We found that root exudates polysaccharides and organic 437 

acids had significant correlations with maximum root depth in compacted treatment 438 

(Fig. 7). The increase of root exudates with more sugars and organic acids can 439 

decrease the penetration resistance and increase compression index of soils, and 440 

facilitate the roots to grow deeper in compacted soil (Ahmed et al., 2014). In addition, 441 

organic acids of exudates can disperse soil structure and decrease soil hardness 442 

(Naveed et al., 2017, 2018), and thus enhancing the roots to penetrate into the soil 443 

layer (Jin et al., 2013). Although sugars secretion in the soil could offset this effect to 444 

stabilize soil structure (Oades, 1984), the most important function of root exudates 445 

with sugars-rich mucilage formed a soil sheath to envelope the roots, and relieve the 446 

friction at root-soil interface and penetrate roots deep (Bengough and McKenzie, 1997; 447 

Carter et al., 2019; Liu et al., 2019). Thus, we suggest that greater root exudates 448 

stimulated by mechanical impedance could facilitate roots to penetrate and elongate 449 

into the deep soil layer for LRM than SRM, which was achieved by lubricating the 450 

passage of biopores in the process of roots elongation (Fig. 11, Hinsinger et al., 2009; 451 

Oleghe et al., 2017), and the coordination of more fine roots with more root exudates 452 

in rhizosphere for LRM cultivars had the positive function in root penetration and 453 

elongation in compacted soil. 454 

A significant higher N, P and K contents in root and shoot, and biomass in LRM 455 

cultivars than SRM cultivars were observed in compacted soil (Fig. 9, Fig. 10 and Fig. 456 

11). Deeper roots and greater root proliferation in compacted soil provide benefit for 457 

roots resistance to resources stress distributed in the deep soil layer, such as N and 458 

water uptake (Yu et al., 2015; Battisti and Sentelhas, 2017; Xie et al., 2021; Wu et al., 459 

2022). In this study, compared with SRM cultivars, LRM cultivars had a deeper root 460 

growth and greater specific root lengths, which facilitates the roots to absorbe more N, 461 

P and K in compacted soil (Fig. 10), and which might be achieved by (1) greater total 462 

root length and root surface area of roots dealing with the soil compaction stress 463 

driven by larger root biochemical properties parameters (De Baets et al., 2008; 464 

Vergani et al., 2014); and (2) more nutrients mobilization by root secreting organic 465 
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acids into the rhizosphere that increased the bioavailability of nutrients (Ström et al., 466 

2002; Gharu and Tarafdar, 2004; Carvalhais et al., 2011; Terzano et al., 2015) and (3) 467 

a deeper root system beneficial to the nutrients absorption from the tank by 468 

shortening the distance of mass flow between roots and nutrients (Lipiec and 469 

Stępniewski, 1995; Chapman et al., 2012). 470 

5. Conclusion 471 

Soil compaction limited root penetration depth and root system establishment, while 472 

facilitating root exudates secretion of Brassica napus. LRM cultivars had higher root 473 

penetration ability, greater fine roots and more exudates, more biomass accumulation 474 

and nutrients uptake than SRM cultivars in the compacted treatments. LRM cultivars 475 

could be planted in the agricultural soils where soil compaction increases due to the 476 

intensity of agricultural activities or the pressure of heavy farm machinery. 477 
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Figure Captions 838 

Fig. 1. Penetration resistance at different soil profile depth in non-compacted (a) and 839 

compacted (b) treatment, respectively. 840 

Fig. 2. Correlations between root tensile force (a), root tensile strength (b), modulus of 841 

elasticity (c) and root diameter of LRM or SRM cultivars in compacted treatment. LRM, 842 

Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus 843 

cultivars with small root mechanical traits. 844 

Fig. 3. Maximum root depth of LRM and SRM cultivars in non-compacted (NC) and 845 

compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical 846 

traits; SRM, Brassica napus cultivars with small root mechanical traits. The different 847 

small letters above the column indicate significant difference among four treatments at 848 

P <0.05. 849 

Fig. 4. Root morphological traits of LRM and SRM cultivars in non-compacted (NC) 850 

and compacted (C) treatments. Total root length (a), fine root length (b), coarse root 851 

length (c), root surface area (d), specific root length (e) and average root diameter (f). 852 

LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus 853 

cultivars with small root mechanical traits. The different small letters above the column  854 

indicate significant difference among four treatments at P <0.05. 855 

Fig. 5. The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose 856 

(d) of root exudates of LRM and SRM cultivars in non-compacted (NC) and 857 

compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical 858 

traits; SRM, Brassica napus cultivars with small root mechanical traits. The different 859 

small letters above the column indicate significant difference among four treatments at 860 

P <0.05. 861 

Fig. 6. Principal component analysis of root morphological traits (TRL, CRL, FRL, 862 

RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six 863 

Brassica napus cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in 864 

non-compacted (a) and compacted (b) treatments, respectively. TRL, total root length; 865 

CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific 866 

root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose 867 
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concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC, 868 

organic acid concentration; LRM, Brassica napus cultivars with large root mechanical 869 

traits; SRM, Brassica napus cultivars with small root mechanical traits. 870 

Fig. 7. Correlations between maximum root depth and average root diameter (a), fine 871 

root length (b) and coarse root length (c) of six Brassica napus cultivars in compacted 872 

treatment. The shaded areas indicate the 95% confidence range, derived from the 873 

models. 874 

Fig. 8. Correlations between maximum root depth and organic acids (a), glucose (b), 875 

uronic acid (c) and xylose (d) concentrations of six Brassica napus cultivars in both 876 

non-compacted (NC) and compacted (C) treatments. The shaded areas indicate the 877 

95% confidence range, derived from the models. *P <0.05, **P <0.01. 878 

Fig. 9. Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and 879 

SRM cultivars in non-compacted (NC) and compacted (C) treatments. LRM, Brassica 880 

napus cultivars with large root mechanical traits; SRM, Brassica napus cultivars with 881 

small root mechanical traits. The different small letters above the column indicate 882 

significant difference among four treatments at P <0.05. 883 

Fig. 10. The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c) 884 

and root (d-f) of LRM and SRM cultivars in non-compacted (NC) and compacted (C) 885 

treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM, 886 

Brassica napus cultivars with small root mechanical traits. The different small letters 887 

above the column indicate significant difference among four treatments at P <0.05.  888 

Fig. 11. A proposed diagram on how root traits (especially fine roots and root 889 

exudates) of Brassica napus contribute to root penetration through the compacted soil. 890 

LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus 891 

cultivars with small root mechanical traits. 892 

 893 

Table Captions 894 

Table 1 Soil bulk density and total porosity of soil in non-compacted and compacted 895 

treatments. 896 

Table 2 The effects of soil compaction on the root morphological and biochemical 897 
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traits of six Brassica napus cultivars. 898 

 899 

Supplementary information 900 

Supplementary Fig. S1. A schematic representation of the root growth system (a) 901 

and root collection system (b).   902 

Supplementary Fig. S2. Correlation between root tensile force (a), tensile strength (b) 903 

and modulus of elasticity (c) and root diameter of LRM and SRM cultivars in 904 

non-compacted treatment. LRM, Brassica napus cultivars with large root mechanical 905 

traits; SRM, Brassica napus cultivars with small root mechanical traits. 906 

Supplementary Fig. S3. Correlations between root tensile strain and root diameter of 907 

LRM and SRM cultivars in non-compacted (a) and compacted (b) treatments. LRM, 908 

Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus 909 

cultivars with small root mechanical traits. 910 

Supplementary Fig. S4. Root cellulose (a) and lignin (b) concentrations of Brassica 911 

napus cultivars with LRM and SRM in non-compacted (NC) and compacted (C) 912 

treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM, 913 

Brassica napus cultivars with small root mechanical traits. 914 

Supplementary Fig. S5. Correlations between maximum root depth (a), coarse root 915 

length (b) and average root diameter, and correlations between fine root length (c), 916 

root surface area (d) and coarse root length of six Brassica napus cultivars in 917 

non-compacted treatment. 918 

Supplementary Fig. S6. Correlations between glucose (a), organic acid (b), uronic 919 

acid (c) and xylose (d) concentrations and specific root length of six Brassica napus 920 

cultivars in compacted treatments. The shaded areas indicate the 95% confidence 921 

range, derived from the models. *P <0.05, **P< 0.01. 922 

Supplementary Fig. S7. The concentrations of nitrogen (N), phosphorus (P) and 923 

potassium (K) in shoot (a-c) and root (d-e) of LRM and SRM cultivars in 924 

non-compacted (NC) and compacted (C) treatments. LRM, Brassica napus cultivars 925 

with large root mechanical traits; SRM, Brassica napus cultivars with small root 926 

mechanical traits. The different small letters above the column indicate significant 927 
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difference among four treatments at P <0.05. 928 

Table S1 Brassica napus cultivars used in this study. 929 

Table S2 Particle density of sand in non-compacted and compacted treatments in this 930 

study. 931 

Table S3 Fitting equations of root tensile force, root tensile strength and modulus of 932 

elasticity with root diameter of LRM and SRM cultivars in non-compacted and 933 

compacted treatments, respectively. 934 

Table S4 The compositions and amounts of organic acids in the rhizosphere of six 935 

Brassica napus cultivars in non-compacted and compacted treatments. 936 

Table S5 The loading scores of eleven root-related traits in the principal component 937 

analysis among six Brassica napus cultivars.938 
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 939 

Fig. 1. Penetration resistance at different soil profile depth in non-compacted (a) and 940 

compacted (b) treatment, respectively. 941 
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 942 

Fig. 2. Correlations between root tensile force (a), root tensile strength (b), modulus of elasticity (c) and root diameter of LRM or SRM 943 

cultivars in compacted treatment. LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus cultivars with 944 

small root mechanical traits.945 
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 946 

Fig. 4. Root morphological traits of LRM and SRM cultivars in non-compacted (NC) 947 

and compacted (C) treatments. Total root length (a), fine root length (b), coarse root 948 

length (c), root surface area (d), specific root length (e) and average root diameter (f). 949 

LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus 950 
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cultivars with small root mechanical traits. The different small letters above the column 951 

indicate significant difference among four treatments at P <0.05. 952 

 953 

Fig. 3. Maximum root depth of LRM and SRM cultivars in non-compacted (NC) and 954 

compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical 955 

traits; SRM, Brassica napus cultivars with small root mechanical traits. The different 956 

small letters above the column indicate significant difference among four treatments at 957 

P <0.05.958 
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 961 

Fig. 5. The concentrations of glucose (a), organic acids (b), uronic acid (c) and xylose 962 

(d) of root exudates of LRM and SRM cultivars in non-compacted (NC) and 963 

compacted (C) treatments. LRM, Brassica napus cultivars with large root mechanical 964 

traits; SRM, Brassica napus cultivars with small root mechanical traits. The different 965 

small letters above the column indicate significant difference among four treatments at 966 

P <0.05.967 
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 968 

Fig. 6. Principal component analysis of root morphological traits (TRL, CRL, FRL, 969 

RSA, SRL, ARD and MRD) and root biochemical traits (UAC, GC, XC and OAC) of six 970 

Brassica napus cultivars (LRM1, LRM2, LRM3, SRM1, SRM2 and SRM3) in 971 

non-compacted (a) and compacted (b) treatments, respectively. TRL, total root length; 972 

CRL, coarse root length; FRL, fine root length; RSA, root surface area; SRL, specific 973 

root length; ARD, average root diameter; MRD, maximum root depth; GC, glucose 974 

concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC, 975 

organic acid concentration; LRM, Brassica napus cultivars with large root mechanical 976 

traits; SRM, Brassica napus cultivars with small root mechanical traits.977 

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

PC1 (39.2%)

P
C

2
(2

5
.8

%
)

XCGC
OAC

UAC
MRD

SRL

FRL

TRL

RSA

CRL

ARD

LRM1

LRM2

LRM3

SRM1

SRM2

SRM3

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

PC1 (38.6%)

P
C

2
(2

2
.1

%
)

XC

GC

OAC

UAC

MRD
SRL

FRL
TRL
RSA

CRL

ARD
LRM1

LRM2

LRM3

SRM1

SRM2

SRM3

a b 



 

41 

 978 

Fig. 7. Correlations between maximum root depth and average root diameter (a), fine root length (b) and coarse root length (c) of six Brassica 979 

napus cultivars in compacted treatment. The shaded areas indicate the 95% confidence range, derived from the models980 
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 981 

Fig. 8. Correlations between maximum root depth and organic acids (a), glucose (b), 982 

uronic acid (c) and xylose (d) concentrations of six Brassica napus cultivars in both 983 

non-compacted (NC) and compacted (C) treatments. The shaded areas indicate the 984 

95% confidence range, derived from the models. *P <0.05, **P< 0.01.985 
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 986 

Fig. 9. Shoot dry weight (a), root dry weight (b) and root/shoot ratio (c) of LRM and SRM cultivars in non-compacted (NC) and compacted (C) 987 

treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM, Brassica napus cultivars with small root mechanical traits. The 988 

different small letters above the column indicate significant difference among four treatments at P <0.05.989 
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 990 

Fig. 10. The contents of nitrogen (N), phosphorus (P) and potassium (K) in shoot (a-c) 991 

and root (d-f) of LRM and SRM cultivars in non-compacted (NC) and compacted (C) 992 

treatments. LRM, Brassica napus cultivars with large root mechanical traits; SRM, 993 

Brassica napus cultivars with small root mechanical traits. The different small letters 994 

above the column indicate significant difference among four treatments at P <0.05.995 
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 996 

Fig. 11. A proposed diagram on how root traits (especially fine roots and root exudates) of Brassica napus contribute to root penetration 997 

through the compacted soil. LRM: Brassica napus cultivars with large root mechanical traits, SRM: Brassica napus cultivars with small 998 

root mechanical traits. 999 
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Table 1 Soil bulk density and total porosity of soil in non-compacted and compacted 1000 

treatments. 1001 

  Treatment Soil bulk density (g cm-3) Total porosity of soil (%)1 

 
 
Non-compacted treatment 1.30 51.33 

  Compacted treatment 1.60 40.10 

Note: 1 The total porosity of soil (%) was calculated with the formula by Hao et al. 1002 

(2008). 1003 
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Table 2 The effects of soil compaction on the root morphological and biochemical traits of six Brassica napus cultivars. 1004 

 Root morphological traits  Root biochemical traits 

Effect 
TRL (cm 

plant-1) 

RSA (cm2 

plant-1) 

ARD (mm 

plant-1) 

SRL (m root 

length g-1 RDW) 

CRL (cm 

plant-1) 

FRL (cm 

plant-1) 

MRD (cm 

plant-1) 
 
GC (mg g-1 

RDW) 

XC (mg g-1 

RDW) 

UAC (mg g-1 

RDW) 

OAC (mmol g-1 

RDW) 

Compaction 38.13*** 40.56*** 16.67*** 7.79*** 5.90* 41.95*** 167.02***  10.57** 10.72*** 25.93*** 10.37** 

Cultivars 7.96** 9.34** 1.32ns 7.07* 1.01ns 3.63* 1.52ns  48.07*** 75.73*** 3.43* 7.35** 

Compaction 

× Cultivars 
0.93ns 4.21* 4.43* 0.04ns 1.47ns 0.07ns 2.71ns  0.71ns 0.05ns 1.11ns 0.16ns 

Note: TRL, total root length; RSA, root surface area; ARD, average root diameter; SRL, specific root length; CRL, coarse root length; FRL, 1005 

fine root length; MRD, maximum root depth; GC, glucose concentration; XC, xylose concentration; UAC, uronic acid concentration; OAC, 1006 

organic acid concentration and RDW, root dry weight. A two-way ANOVA was conducted to test the significance of genotypes, treatments 1007 

and their interaction on the investigated traits. ns, no significant differences, *: P < 0.05, **: P < 0.01, ***: P < 0.001. 1008 


