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ABSTRACT 

Current coupled climate models contain large biases in simulating tropical cyclogenesis, 

reducing the confidence in tropical cyclone (TC) projection. In this study, we investigated the 

influence of sea surface temperature (SST) biases on TC genesis in the Coupled Model 

Intercomparison Project Phase 6 simulations from 1979 to 2014. Positive TC genesis biases 

were found over the tropical Central North Pacific (CNP) in most of climate models, 

including the high-resolution models. Compared to coupled models, TC genesis density 

(TCGD) simulations over CNP in uncoupled models forced by observational SST improved 

obviously. A warm SST bias over the tropical CNP in the coupled models is the main cause 

of TC genesis biases. The SST bias-induced diabatic heating leads to an anomalous Gill-type 

atmospheric circulation response, which contributes to a series of favorable environmental 

conditions for TC formation over the CNP. Numerical experiments were also performed with 

HiRAM to demonstrate the influence of SST biases on the TCGD simulation, further 

confirmed our conclusion. The current results highlight the importance of improving TC 

simulation in state-of-the-art climate models by reducing SST simulation bias. 
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1. Introduction

Tropical cyclone (TC) is one of the most disastrous weather systems that can lead to

devastating winds, heavy rainfall, storm surge and huge economic losses upon landfall. With 

the ongoing threat of global warming, the prediction and long-term variability of TCs have 

become a hot topic of academic interest for a long time (McDonald et al. 2005; Li et al. 2010; 

Murakami et al. 2011a,b; Doi et al. 2013; Guo and Tan, 2018, 2022; Studholme et al. 2022). 

Benefited from the improvement of model performance, the state-of-the-art climate models 

have been widely used to study the long-term change of TC activities (Camargo and Wing 

2015; Nakamura et al. 2017; Sharmila et al. 2020; Murakami and Wang 2022).  

Tropical cyclogenesis is a basic aspect of TC activity in climate simulations, but this 

process contains large uncertainties (e.g., Tory et al. 2013; Shaevitz et al. 2014; Camargo et 

al. 2020; Sharmila et al. 2020). Sobel et al. (2021) provided a thorough and comprehensive 

review of research on the TC genesis in terms of observations, theories, model simulations, 

TC seeds and future research directions. In contrast to reanalysis data and TC best track data, 

models offer a longer timescale and more options for exploration, while series of idealized 

experiments can also be employed to help us uncovering the underlying physical mechanisms 

(Liu et al. 2012; LaRow et al. 2014; Zhao et al. 2020). However, TC biases arising from 

coarse resolution (e.g., Camargo et al. 2020; Roberts et al. 2020), inaccurate physical 

parameterization (e.g., Vitart et al. 2001; Kim et al. 2012), and sea surface temperature (SST) 

biases (e.g., Hsu et al. 2018; Chan et al. 2021) always bring large uncertainties to TC 

simulations. SST is an essential factor that impacts TC genesis simulations in climate models 

(e.g., Strazzo et al. 2013; Hsu et al. 2018; Dutheil et al. 2020; Zhang et al. 2021). For 

instance, the cold SST biases could be one of reasons for underestimated TCs in the North 

Atlantic (Kim et al. 2014; Sharmila et al. 2020), while inappropriate representation of 

monsoon characteristics was also found to be responsible for the errors in the annual cycle of 

simulated TC activity in the North Indian Ocean (Tory et al. 2020). A better simulation of TC 

activity in climate models could help to improve both TC seasonal prediction and future 

climate projection.  

SST biases exist at large across the current climate models in different ocean basins, with 

the most significant warm bias on the east coast of the Pacific Ocean (Richter 2015), which is 

an important source of uncertainty in TC simulations under climate change (Vecchi et al. 

2019). Dutheil et al. (2020) used an emergent-constraint method to correct the model SST 
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bias in the South Pacific, substantially reducing cyclogenesis bias. This indicates that the 

uncertainty in the projected SST patterns strongly affects the reliability of TC projections. 

Hsu et al. (2018) identified the key regions in which reducing SST biases could potentially 

improve TC representation in climate models. Meanwhile, efforts have also been made to 

correct the SST bias. Vecchi et al. (2014) attempted to use flux adjustment to correct the SST 

and the effects on TC simulation were remarkable. Chan et al. (2021) applied recently 

developed corrections for biases in historical SSTs, which lead to revisions in tropical to 

subtropical SST gradients and improved simulation of TC activity. 

The Coupled Model Intercomparison Project (CMIP) offers a large number of models and 

experiments, which provide a good testbed to evaluate the TC simulation in current climate 

models. Previous evaluations of different models in Phase 3 or 5 of the CMIP (CMIP3/5) 

have revealed future changes in TC activity, but obvious uncertainties also exist (Bell et al. 

2019; Camargo 2013; Kossin et al. 2016). The latest launched Coupled Model 

Intercomparison Project Phase 6 (CMIP6) includes most of the current state-of-the-art 

climate models on which future climate projections rely. Previous studies have revealed that 

the enhancement of model resolution can improve TC simulation (Nakamura et al. 2017; 

Camargo et al. 2020). Especially, the High Resolution Model Intercomparison Projection 

(HighResMIP; Haarsma et al. 2016) in CMIP6 performs well in simulating TC 

characteristics, such as intensity and rainfall due to their high spatial resolutions (Roberts et 

al. 2020; Zhang et al. 2021). However, obvious SST biases still exist in most of the CMIP6 

models, as they did in the previous CMIP5 models (Han et al. 2021; Zhang et al. 2023), 

which may affect TC simulation.  

Compared with atmospheric general circulation models (AGCMs) that use observed 

SSTs, coupled atmosphere-ocean general circulation models (AOGCMs) with SST biases can 

have some impacts on the simulation of TCs to some extent. For example, subsurface cold 

water plays a key role in reducing biases in the distribution of intense TCs in AGCMs (Ogata 

et al. 2015, 2016). Li and Sriver (2018) also confirmed this finding and further indicated that 

the key differences in storm number and distribution can be attributed to variations in the 

modeled large-scale climate mean state and variability that arises from the combined effect of 

intrinsic model biases and air-sea interactions. Morim et al. (2020) found that the surface 

wind bias is largely intrinsic to the atmospheric components of the models and 

inconsistencies between AGCM and AOGCM simulations are mainly driven by SST errors. 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
Brought to you by Nanjing University | Unauthenticated | Downloaded 12/12/23 11:46 AM UTC



5 

File generated with AMS Word template 2.0 

Finally, model evaluation of the ability of GCMs or multi-model ensemble to simulate TCs is 

also an essential aspect, and some studies also mentioned the impact of SST on this 

evaluation (Bengtsson et al. 2007; Camargo et al. 2016; Balaguru et al. 2020; Wu et al. 

2021). Sobel et al. (2021) emphasized the critical influence of atmospheric-ocean coupling 

and model resolution on the accurate simulation of TC genesis. Meanwhile, they also 

highlight that besides the large-scale environmental fields, TC seeds in climate models also 

have a great influence on TC frequency. 

The North Pacific accounts for nearly 70% TCs over the entire Northern Hemisphere. It 

remains unclear how the current state-of-the-art CMIP6 models perform in simulating TC 

genesis over the North Pacific (Patricola et al., 2022), given that CMIP5 shows large TC 

genesis bias over this region (Camargo 2013; Tory et al. 2020). The HighResMIP models, 

which have relatively higher model resolutions, also provide new opportunities for TC 

research, enabling the identification of biases. Wang et al. (2014) found cold SST biases over 

the CNP in CMIP5 models, while Zhang et al. (2023) revealed that the SST bias in CMIP6 

models underwent a warming change relative to CMIP5 models, including the CNP. The 

instability of SST simulations in climate models is likely to affect TC generation simulations 

over this region. Thus, whether the SST bias plays a role in inducing TC simulation bias also 

deserves further investigation. 

The remainder of this paper is organized as follows: Section 2 describes the data, models 

and methods used in this study, Section 3 presents the results in different experiments from 

CMIP6, Section 4 gives the analysis of large-scale environmental conditions and the 

numerical experiment, and Section 5 discusses the results and formulates conclusions. 

2. Data and methods

a. Observational data

The TC best track dataset was obtained from the Joint Typhoon Warning Center (JTWC)

in the International Best Track Archive for Climate Stewardship version 4 (IBTrACS V4; 

Knapp et al. 2010). TCs with the maximum intensity exceeding the tropical storm intensity 

(surface sustained wind speeds ≥ 34 kt) were considered in this study. TC genesis was 

defined as the first record with intensity above 34 kt. The European Center for Medium 

Range Weather Forecasts (ECMWF) monthly reanalysis 5 (ERA5) with 0.25° horizontal 
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resolution (Hersbach et al. 2020) was used to analyze the large-scale environmental fields. 

The monthly mean SST data were derived from the Hadley Centre Sea Ice and Sea Surface 

Temperature (HadISST; Rayner et al. 2003) with 1° horizontal resolution.  

b. CMIP6 simulations

The CMIP6 model output data used in this study were from four simulations, namely

“historical”, “AMIP”, “hist-1950” and “highresSST-present”. The historical simulation is 

coupled runs forced by externally imposed conditions like solar variability and volcanic 

aerosols based on historical observations over the period 1850–2014. The AMIP experiment 

employs the observational data based on the merged Hadley-OI sea surface temperature and 

sea ice concentration datasets since 1979 as boundary conditions to drive uncoupled 

atmospheric circulation models. The hist-1950 and highresSST-present simulations, on the 

other hand, belong to the HighResMIP experiments for 1950–2014 (Haarsma et al. 2016), 

which have higher horizontal resolutions (25–50km). “hist-1950” simulations are coupled 

runs, while the “highresSST-present” simulations are atmospheric models forced by SST 

from HadISST and sea-ice datasets. In this study, 16 “historical”, 10 “AMIP”, 10 “hist-

1950”, and 10 “highresSST-present” models were chosen. It should be emphasized that the 

same 10 models were chosen from both hist-1950 and highresSST-present simulations to 

investigate the effect of SST and air-sea interaction on model TC simulations (e.g., ECMWF-

IFS-HR from both hist-1950 and highresSST-present simulations). The first realizations of 

these model simulations were analyzed and more details about these models can be found in 

Table 1. We used 6-hourly data for TC detection and monthly data for analyzing the 

environmental fields connected with the simulated TC activity. 10 coarse-resolution 

uncoupled atmospheric models from the AMIP experiment, which corresponds to the 

historical models, are only used in the Section 3c for comparison. 

Experiments Model name Resolution (lon×lat) 

historical 

ACCESS-ESM1-5 192×144 

BCC-CSM2-MR 320×160 

CMCC-ESM2 288×192 

CNRM-CM6-1-HR 720×360 

EC-Earth3 512×256 

FGOALS-f3-L 288×180 

GFDL-ESM4 288×180 

GISS-E2-1-G 144×90 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
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HadGEM3-GC31-MM 432×325 

KIOST-ESM 192×96 

MIROC6 256×128 

MRI-ESM2-0 320×160 

NESM3 192×96 

NorESM2-MM 288×192 

SAM0-UNICON 288×192 

TaiESM1 288×192 

AMIP 

ACCESS-ESM1-5 192×144 

BCC-CSM2-MR 320×160 

CNRM-CM6-1-HR 720×360 

EC-Earth3 512×256 

HadGEM3-GC31-MM 432×325 

MIROC6 256×128 

MRI-ESM2-0 320×160 

NESM3 192×96 

SAM0-UNICON 288×192 

TaiESM1 288×192 

hist-1950 

CMCC-CM2-HR4 288×192 

CMCC-CM2-VHR4 1152×768 

CNRM-CM6-1-HR 720×360 

CNRM-CM6-1 256×128 

EC-Earth3P 512×256 

EC-Earth3P-HR 1024×512 

ECMWF-IFS-HR 720×361 

ECMWF-IFS-LR 360×181 

HadGEM3-GC31-HM 1024×768 

HadGEM3-GC31-MM 432×324 

highresSST-present 

CMCC-CM2-HR4 288×192 

CMCC-CM2-VHR4 1152×768 

CNRM-CM6-1-HR 720×360 

CNRM-CM6-1 256×128 

EC-Earth3P 512×256 

EC-Earth3P-HR 1024×512 

ECMWF-IFS-HR 720×361 

ECMWF-IFS-LR 360×181 

HadGEM3-GC31-HM 1024×768 

HadGEM3-GC31-MM 432×324 

Table 1. Details of CMIP6 models used in this study, including experiments, names, 

institutions and model resolution. 

c. TC detection algorithm

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
Brought to you by Nanjing University | Unauthenticated | Downloaded 12/12/23 11:46 AM UTC



8 

File generated with AMS Word template 2.0 

The TC detection algorithm used in this study is the TSTORMS method developed by 

the Geophysical Fluid Dynamics Laboratory (GFDL) (M. Zhao et al. 2009; J. Zhao et al. 

2020; Burnett et al. 2021; Song et al. 2022). The algorithm requires sea level pressure, 850-

hPa relative vorticity, near-surface wind, and warm core to detect TCs. First, the algorithm 

uses thresholds for the distance between the center of the minimum pressure of the vortex and 

the warm core, the magnitude of the relative vorticity and the intensity of the warm core to 

extract a single vortex for each time period (every six hours) in the model. Once the vortexes 

are extracted, they are tied together to form a trajectory if they reach the minimum wind 

speed and warm core intensity, and the distance between two reports should be less than the 

threshold. Finally, only the vortex that forms a section of the trajectory that reaches the 

lifetime maximum intensity threshold within a defined lifespan will be extracted as a TC. 

We used the 850-hPa wind speed instead of the surface wind speed in the historical 

models for the coarse resolution, while we used the surface wind speed in the HighResMIP 

models and HiRAM (Camargo et al. 2013; Song et al. 2022). We averaged the 250-, 500-, 

and 850-hPa temperatures to identify the warm core, because all models have at least these 

three levels. Limited by the model resolution, the TCs in most models are relatively weak, 

and the genesis frequency is low compared to the observation. Therefore, the thresholds are 

relaxed when detecting TCs in historical simulations, as has been done in previous studies 

(Camargo et al. 2013; Roberts et al. 2020). The thresholds in historical models were chosen 

in order to get closer TC frequency comparing to the observation. But for the same model in 

hist-1950 and highresSST-present simulations, we used uniform thresholds (e.g., ECMWF-

IFS-HR from both hist-1950 and highresSST-present simulations). In addition, for all the 

simulations, the lifespan of the vortexes was required to exceed two days (eight reports). The 

threshold for relative vorticity was larger than 3×10-5 s-1 and the distance between two reports 

cannot exceed 700km, more details about the thresholds can be found in Table 2. It needs to 

be emphasized that, our results weren’t affected by different detection algorithms such as 

TRACK, which will be further discussed in Section 3d. The conclusion also isn’t affected by 

altering the thresholds slightly, even if the criterion of TC genesis changes to the 17.2m/s 

(34kt) in all the models from the three experiments. 

Model 
Minimum wind 

speed (m/s) 

Lifetime maximum 

wind speed (m/s) 

Warm core intensity 

(℃) 

ACCESS-ESM1-5 10 14 0.3 

BCC-CSM2-MR 17 17 0.8 

CMCC-ESM2 8 14 0.3 

CNRM-CM6-1-HR 8 14 0.5 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
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EC-Earth3 8 14 0.3 

FGOALS-f3-L 17 17 1.0 

GFDL-ESM4 17 17 1.0 

GISS-E2-1-G 8 10 0.3 

HadGEM3-GC31-MM 12 17 0.8 

KIOST-ESM 15 17 0.5 

MIROC6 8 14 0.3 

MRI-ESM2-0 10 17 0.5 

NESM3 8 14 0.3 

NorESM2-MM 8 10 0.5 

SAM0-UNICON 17 17 1.0 

TaiESM1 8 14 0.3 

Table 2. Details of thresholds used in TSTORMS to detect TCs in 16 CMIP6 historical 

models. 

d. HiRAM model

The High Resolution Atmospheric Model (HiRAM; Zhao et al. 2009) developed by 

GFDL was used to perform two experiments with different SST forcing running from 1980 to 

2009 for 30 years to verify the mechanism in our study. The HiRAM has a horizontal 

resolution of ~60 km and 32 vertical levels and uses a finite-volume core by a cubed-sphere 

grid topology as the dynamical core (Putman and Lin 2007). It can be used to explicitly 

extract TC-like vortices and well represent the TC characteristics and climatology. Numerous 

past studies have used HiRAM for TC activities (M. Zhao et al. 2009, 2010; Camargo et al. 

2014; Knutson et al. 2015; J. Zhao et al. 2020; Chen et al. 2023) 

e. Statistics and definitions

Tropical cyclone genesis density (TCGD) in every 2.5° grid box was calculated in both 

observation and models. TC genesis in the observed data was defined as intensity exceeding 

the tropical storm intensity, while in the models it was defined as the first report detected by 

the TSTORMS (reaching every threshold). The relative TCGD in this study was defined as 

the proportion of TCGD of each grid point over the North Pacific relative to the total TCGD 

of the whole North Pacific. 

Due to the inherent variations in the frequency of TCs simulated by different models. A 

direct comparison of absolute TCGD may lead to misinterpretations and thus does not 

provide a comprehensive assessment of the actual scenario. Therefore, normalizing the 
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TCGD values with respect to the total TCGD of the North Pacific was performed to eliminate 

the biases introduced by inter-model discrepancies in the simulated TC frequency. 

All the monthly data above were interpolated to 2.5° × 2.5° grid using bilinear 

interpolation in the analysis. The study period is 1979–2014 for both the observations and the 

CMIP6 simulations. The TC season was defined as June–November (JJASON), and a 

Student’s t-test was applied to evaluate the statistical significance. 

In comparing the results of coupled and uncoupled models, we employed a significance 

test based on sign similar to Chand et al. (2017). Statistical robustness is determined when 

there is consistent agreement among a significant proportion of models regarding the sign of 

the difference according to the binomial distribution. 

3. TC genesis biases in CMIP6 models

Figure 1a shows the climatological distribution of JJASON TCGD in the observations

over the North Pacific region during 1979–2014. We can clearly see that there are two main 

genesis regions for TCs, WNP and ENP, while the Central North Pacific region 

(170°E~150°W, 0°~30°N) in the red box displayed less TC formation, attributed to the 

excessive dry air and the strong VWS associated with the Tropical Upper Troposphere 

Trough (TUTT) (Wang and Wu 2018; Tory et al. 2020). However, in the result of multi-

model ensemble mean (MME), calculated by all CMIP6 models, the TC genesis region is 

more dispersed and the TCGD over the ENP and WNP is significantly lower than observed, 

while more TCs are genesis over the CNP region (Fig. 1b).  

The MMEs of historical, hist-1950 and highresSST-present models used in this study 

were also calculated, respectively. We found that positive TCGD biases mainly came from 

coupled historical and hist-1950 models (Figs. 1c,d). Comparing historical models with 

normal resolution and high-resolution hist-1950 models, we can see that the increase in 

resolution improves the positive TCGD bias of the model to some extent, but a considerable 

and significant positive bias still exists over the CNP region. Nevertheless, comparing hist-

1950 and highresSST-present models from HighResMIP, such positive bias is significantly 

reduced (Figs. 1d,e). Previous studies have revealed that most of the deficiencies in TC 

simulations in the ENP and WNP stem from a lack of model resolution and narrow basin 

(Bengtsson et al. 2007; Davis 2018), while positive TCGD biases in the CNP region have 

rarely been noted. 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
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It is worth noting that the modeled TC activity may be affected the TC detection 

methods. To validate whether the overestimation of CNP TCGD relies on the TSTORMS 

method, we compared the extracted TCs in ERA5 reanalysis by using both TSTORMS and 

the Okubo-Weiss-Zeta (OWZ) method (Chand et al. 2017, 2022). It turns out that both 

methods keep good consistency in extracting climatological TC distribution from ERA5. The 

overestimation of the CNP TCGD in historical simulation is also reproduced by the OWZ 

method (not shown). 

Fig. 1. Climatological distributions of the JJASON TCGD in (a) IBTrACS and (b) multi-

model ensemble mean of all CMIP6 models. TCGD difference between IBTrACS and the 

multi-model ensemble mean of (c) historical, (d) hist-1950, (e) highresSST-present 

simulations during 1979–2014. The red boxes indicate the CNP region (170°E–150°W, 0°N–

30°N). Only values exceeding the 95% confidence level are stippled, with at least 11 out of 

16 models in (c) and 8 out of 10 models in (d–e) agreeing on the sign of difference. 

a. TCGD in historical runs

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
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Fig. 2. Spatial distributions of climatological TCGD difference between 16 CMIP6 

historical models and observation in JJASON during 1979–2014. Only values exceeding the 

95% confidence level are stippled. 

Figure 2 shows the JJASON TCGD difference between 16 historical models and 

observation over the North Pacific region during 1979–2014. The results show significant 

negative biases of TCGD in both WNP and ENP for most of the models, which is mainly due 

to coarse model resolution. Especially in the ENP, where a large number of TCs are 

concentrated in a very small basin in the observations, which is challenging to replicate in 

climate models with resolution lower than 100 km. Meanwhile, positive TCGD biases over 

CNP were also found in some historical models such as GFDL-ESM4, MRI-ESM2-0, 

HadGEM3-GC31-MM, SAM0-UNICON, FGOALS-f3-L, GISS-E2-1-G, KIOST-ESM, 

NESM3, BCC-CSM2-MR. In contrast, models like ACCESS-ESM1-5, MIROC6, TaiESM1, 

NorESM2-MM, CNRM-CM6-1-HR, EC-Earth3, CMCC-ESM2, exhibit TCGD closer to the 
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observation over the CNP, implying a smaller bias. It should be noted that in Fig. 1, we 

calculated the absolute TCGD, rather than the relative TCGD, so the positive TCGD biases 

over the CNP in some models that generated only a few TCs were not very large, but their 

positive relative TCGD biases over CNP still exist. 

Since the resolutions of most of the 16 coupled models from historical experiments are 

coarser than 100km, it’s difficult for these models to resolve TC structure or some other TC 

characteristics. Therefore, to examine whether this bias in the CNP could be reduced by 

improving the model resolution, we selected 10 high-resolution coupled models in hist-1950 

experiments from HighResMIP and then calculated their TCGD. 

b. TCGD in HighResMIP runs

Figure 3 presents the TCGD difference between 20 high resolution models from 

HighresMIP and observations. The left panel displays 10 coupled models from the hist-1950 

experiment, while the right panel shows 10 corresponding atmospheric models from the 

highresSST-present experiment. However, we found that there are still a number of coupled 

models in hist-1950 runs that displayed positive TCGD biases over the CNP, especially 

HadGEM3-GC31-HM and CMCC-CM2-VHR4. It is worth noting that, when comparing 

different resolution models from the same institution (e.g., CNRM-CM6-1 and CNRM-CM6-

1-HR), the increase in resolution does not reduce the positive TCGD biases of models in the

CNP. Instead, it generates more TCs in the CNP owing to the overall increase in the 

simulated TC frequency due to the improved model resolution. As a result, negative biases in 

the ENP and WNP are reduced while the positive bias in the CNP is also amplified. Roberts 

et al. (2020) and Vecchi et al. (2019) suggested that the reason for overall increased TC 

frequency with higher resolution is a higher conversion rate of pre-TC “seeds” into TCs. 

Roberts et al. (2020) also pointed out that the large biases in CMCC and HadGEM3 families 

are due to their grid point dynamical schemes, while TC underestimation in EC-Earth3P and 

ECMWF families arises from their dynamical cores. These results further indicate that 

improving the model resolution only partially refine the TCGD bias over the CNP. 
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Fig. 3. Spatial distributions of climatological TCGD difference between 20 CMIP6-

HighResMIP models and observation in JJASON during 1979–2014. Models in the left and 

right panels are from hist-1950 runs and highresSST-present runs, respectively. Only values 

exceeding the 95% confidence level are stippled. 

To further explore the possible causes of the TCGD bias, we conducted a comparison of 

models in the highresSST-present experiment (right panel in Fig. 3), which were forced with 

observed SST. We found that for the same model, the positive TCGD bias in the CNP region 

was significantly reduced, although some models such as CMCC-CM2-VHR4 still displayed 

significant positive TCGD biases over the CNP. However, the biases in these models, as well 

as in other models with small TCGD biases over the CNP, were reduced obviously, while 
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TCGD increases in the WNP and ENP compared to hist-1950 simulations. As showed in 

Figs. 3 and 4, TC genesis regions were more concentrated in the WNP and ENP, closer to the 

observations. Such a phenomenon could be seen in almost all models, particularly those that 

had not previously accurately simulated the TCGD climatology of the CNP. An improvement 

in TC simulation in highresSST-present experiment may be due to the usage of observed SST 

forcing. This will be discussed in the following sections. 

Fig. 4. Spatial distributions of climatological TCGD difference between coupled hist-

1950 and uncoupled highresSST-present models in JJASON during 1979–2014. Only values 

exceeding the 95% confidence level are stippled. 

Roberts et al. (2020) noted that the absolute frequency of TCs in models can be affected 

by different detection algorithms. Therefore, in our study, we compared the results extracted 

by TSTORMS with those of the simulated TC extracted by TRACK and TemptExtreme 

employed by Roberts et al. (2020), as illustrated in Fig. 5. From the Taylor diagrams of 

models’ TCGD climatology over the North Pacific obtained using different TC detection 

algorithms. The root mean square error, standard deviation, and pattern correlation 

coefficients for each model are very close to 1, indicating similar spatial distribution of 

TCGD climatology obtained from the different detection algorithms.  
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Fig. 5. Taylor diagram of monthly TCGD climatology over the North Pacific from hist-

1950 and highresSST-present models using three different TC detection algorithms. The 

spatial correlation is plotted as the azimuthal angle, and the normalized variance is plotted as 

the radial distance from origin. The REF represents the TCGD calculated by TSTORMS, thus 

the distance between the point and REF represents the RMSE. The positions of the dots 

denote the magnitude of TCGD bias between TSTORMS and (a) TRACK, (b) 

TemptExtreme. 

c. TCGD comparison between historical and AMIP simulations

In the comparison between high-resolution coupled and uncoupled atmospheric models 

discussed above, a significant improvement was observed in the simulation of TC genesis 

over the CNP for atmospheric models in Fig. 4. However, this improvement was not evident 

for some models with few absolute TC frequencies, only 4 out of 10 models displayed a clear 

shift in the sign and magnitude of the bias over the CNP. To make our findings more robust, 

we found 10 models corresponding to the coupled historical models in the uncoupled AMIP 

experiment, and analyzed whether this phenomenon was also present between the coarse-

resolution coupled and atmospheric models (Table1). Similar to the high-resolution models, 

the same model from both historical and AMIP experiment uses the same detection 

thresholds to eliminate the influence of the detection algorithm and thresholds on the results. 

As seen in Fig. 6, most of the low-resolution models exhibit a similar phenomenon to 

that of the high-resolution models in Fig. 4, with even a more obvious TCGD bias over the 

CNP. 8 out of 10 coupled models simulate more TCs in the CNP and western ENP compared 

to atmospheric models, while underestimating the frequency of TC genesis in the WNP and 

ENP. The distribution of TCGD simulated by the atmospheric models is closer to the 

observations compared to the coupled models. This further support our finding that the 
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coupling process of the model is more important in contributing to the TCGD biases over the 

CNP than an increase in model resolution. In the following sections, we will classify coupled 

and uncoupled models to investigate the underlying causes of this phenomenon. 

Fig. 6. Spatial distributions of climatological TCGD difference between 10 coupled 

historical and uncoupled AMIP models in JJASON during 1979–2014. Only values 

exceeding the 95% confidence level are stippled. 

d. TCGD results of multi-model ensemble

For ease of comparison, we classified the models according to the magnitude of TCGD 

biases over the CNP in the model simulations. All the models from historical and hist-1950 

experiments with positive TCGD biases commonly found over the CNP region were each 

divided into two groups. One group of models exhibits large TCGD biases in the CNP, while 

the other group shows smaller biases. The highresSST-present models with smaller biases 

were treated as a separate group, and resulting in a total of five groups labeled as G1–G5 

(Table 3). Similar to the definition of relative TCGD, we calculated the TCGD of each model 

in the red box in Fig. 1 as a percentage of the TCGD of the entire North Pacific (Fig. 6), 

which is referred to as TCGDCNP ratio hereinafter. Consequently, the effect of the absolute 
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TC frequency of each model can be removed, and the magnitude of the bias can be 

quantified, reflecting the ability of each model to simulate the TC formation over the CNP. 

Based on this parameter, we then grouped the historical and hist-1950 models. 

Experiments Groups Model name TCGDCNP ratio (%) 

observation IBTrACS 3.39 

historical 

G1 

GISS-E2-1-G 24.82 

FGOALS-f3-L 22.53 

GFDL-ESM4 20.56 

NESM3 19.57 

SAM0-UNICON 18.96 

MRI-ESM2-0 18.22 

HadGEM3-GC31-MM 17.63 

KIOST-ESM 17.34 

BCC-CSM2-MR 16.38 

G2 

CMCC-ESM2 13.4 

EC-Earth3 13.28 

CNRM-CM6-1-HR 12.26 

NorESM2-MM 10.86 

ACCESS-ESM1-5 10.85 

TaiESM1 9.04 

MIROC6 5.26 

hist-1950 

G3 

CMCC-CM2-VHR4 24.03 

HadGEM3-GC31-HM 21.48 

CMCC-CM2-HR4 17.49 

HadGEM3-GC31-MM 16.01 

G4 

EC-Earth3P 13.77 

CNRM-CM6-1-HR 11.72 

CNRM-CM6-1 11.24 

EC-Earth3P-HR 9.67 

ECMWF-IFS-HR 6.6 

ECMWF-IFS-LR 5.85 

highresSST-

present 
G5 

CMCC-CM2-VHR4 15.09 

CMCC-CM2-HR4 12.76 

HadGEM3-GC31-HM 11.41 

HadGEM3-GC31-MM 9.15 

CNRM-CM6-1-HR 9.13 

CNRM-CM6-1 4.96 

ECMWF-IFS-LR 4.3 

EC-Earth3P-HR 3.89 

ECMWF-IFS-HR 3.7 

EC-Earth3P 2.29 

Table 3. Classification of the CMIP6 models from three experiments used in this study 

and their TCGDCNP ratio values (%). 

In Figure 7a, we present the TCGDCNP ratio values of 16 historical models and 

observation. We divided these models into two groups (G1 and G2) based on a 15% cut-off 

value of TCGDCNP ratio (indicated by the black dashed line), which was calculated using the 

method described above. The models with red bars represent those with large TCGD biases 
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over the CNP, while those with blue bars represent models with smaller biases. The 

TCGDCNP ratio value of the observation data is represented by the black bar and is the 

smallest among all historical models, indicating that even the model with the best simulation 

in TCGDCNP ratio in the historical experiment (~6%) still has a certain distance from the 

observation. The TCGD in these models still has a small positive bias over the CNP, while 

the TCGDCNP ratio is only about 3% in the observations. It is important to note that all the 

model has TCGD biases over the CNP, but the magnitude of the bias differs. The purpose of 

our study is to find out why such biases exist and how to reduce them, so it is necessary 

classify the model results into two groups. The classification criteria do not affect our 

conclusions but enable us to distinguish between models with large and small TCGD biases. 

Fig. 7. TCGDCNP ratio (%) in (a) historical models and (b) HighResMIP models. The red 

bars represent models with large TCGD biases over the CNP grouped as G1, and the blue 

bars represent models with relatively small TCGD biases grouped as G2, the black bar 

represents the result from IBTrACS. The yellow bars represent models from coupled hist-
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1950 runs, while the green bars represent highresSST-present runs. The black dash lines in 

(a) and (b) indicate the value of 15%.

Figure 7b shows the results of comparing the same model from two HighResMIP 

experiments. The results indicate that all highresSST-present models show a decrease in 

magnitude when compared with hist-1950 models, which indicates a significant improvement 

in TC simulations across these models. The TCGDCNP ratio in the CNP region is reduced, and 

the spatial distribution of TC is getting closer to the observation. Similarly, we applied the 

same classification method as the historical runs and divided the hist-1950 models into two 

groups. 4 out of 10 models with large TCGD biases over the CNP were grouped as G3, and 

remaining 6 small biased models were grouped as G4. And it is worth noting that, the 

TCGDCNP ratio of almost all the models in highresSST-present experiments (G5) are lower 

than 15%, only the CMCC-CM2-VHR4 is slightly larger than 15%, indicating a better 

performance. The specific classification and the magnitude of the TCGDCNP ratio can be 

found in Table 3. 

By averaging models in these five groups, it can be seen from Fig. 8 that the models 

with large biases in TCGD over the CNP in the historical (G1) and hist-1950 (G3) 

experiments both exhibit positive biases over the CNP region. While there are almost no 

biases over the CNP in G2 and G4, despite the consistent underestimation of TC genesis 

frequency in the WNP and ENP in four groups. The multi-model ensemble mean of the 

highresSST-present simulation (G5) shows little TCGD bias in the CNP.  

Fig. 8. Composite climatological JJASON TCGD difference between (a) Models with 

large TCGD biases over the CNP from historical experiment and observation. (b) As in (a), 

but for models with small TCGD biases. (c–d) As in (a–b), but for the hist-1950 experiment. 
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(e) The difference between all 10 models from the highresSST-present experiment and the

observation. (f) The difference between all 10 models from hist-1950 and highresSST-

present. The number of composited models is indicated on the top-right corners of each plot.

Only values exceeding the 95% significance level are stippled.

Because hist-1950 and highresSST-present simulations have the same model resolution, 

and physical parametrization, comparing the TCGD differences between the hist-1950 and 

highresSST-present simulations could largely exclude systematic errors induced by the above 

factors. Fig. 8f shows the composite difference of TCGD between the hist-1950 and 

highresSST-present. It was found that the negative TCGD biases over the WNP and ENP 

almost disappear, whereas the positive TCGD differences over the CNP still exist. This 

suggests that the negative TCGD biases over the WNP and ENP are mainly systematic errors, 

while the CNP TCGD biases may be related to the SST biases in the coupled simulations, 

since the two experiments differ in their SST forcing, which is related to air-sea interaction 

processes in coupled models. This will be further verified in the following sections. 

Overall, it needs to be pointed out that most of the high-resolution hist-1950 models 

perform better in TC genesis simulation than the low-resolution historical models (Table 3). 

It further demonstrates that the increased resolution can indeed improve the TC simulation 

around the CNP (Figs. 1c and 1d). This can also be seen by comparing Figs. 2 and 3. But 4 

out of 10 high-resolution models still have obvious TCGD biases (Fig. 3). Due to different 

absolute TC frequencies between different models, the TCGDCNP ratio gives a better 

indication of how each model simulates the CNP TC (Table 3). 

The comparison between each hist-1950 and highresSST-present model in Fig. 7b and 

Table 3 further suggests that the source of such biases is not only related to resolution, but 

also to the differences between coupled and uncoupled models. The comparison between the 

high- and low-resolution models in hist-1950 experiment from the same institution (Fig. 4) 

also reveals that increasing the resolution actually amplifies the positive TCGD bias over the 

CNP. This indicates that the increase in resolution could not effectively reduce the TCGF 

bias. Comparing the coupled and uncoupled models demonstrates that the simulated SST bias 

may be the dominant reason for the TCGD bias. 

4. Physical mechanisms

a. Large-scale environmental conditions
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Fig. 9. Difference of (a) relative vorticity at 850 hPa (shading, unit: 10-5 s-1) and vertical 

wind shear between 200 hPa and 850 hPa (contours, unit: m s-1) between composite of 13 

large-biases models from historical and hist-1950 experiment (G1 and G3) and the 

observation in JJASON from 1979 to 2014. (b) As in (a), but for 13 small-biases models (G2 

and G4). (c) As in (a), but for all 10 models in the highresSST-present experiment (G5). (d) 

As in (a), but considering the difference between the composite of 13 large-biases models 

from historical and hist-1950 experiments and all 10 models from the highresSST-present 

experiment (i.e., (a–c)). (e–h) As in (a–d), but for outgoing longwave radiation (OLR, 

shading, unit: W m-2) and 850-hPa winds (vectors, unit: m s-1). Dashed contours represent the 

negative values, solid contours represent the positive values. Only values exceeding the 95% 

significance level are shown or hatched. 

To further explore the cause of the TCGD biases over the CNP, large-scale 

environmental conditions related to TC genesis were further analyzed. While in the following 

part of the analysis of large-scale environmental conditions, for convenience, we combined 

models in G1 and G3, which exhibited large TCGD biases over the CNP, for comparison 

with observational data. Similarly, models in G2 and G4, with smaller biases, were also 

combined. Models in G5, which are atmospheric models, were analyzed as a separate 

category. Finally, we compared the results of the composites of G1 and G3 with G5. 

The relative vorticity at 850 hPa (Vor850) and the vertical wind shear between 200 hPa 

and 850 hPa (VWS) were firstly analyzed (Figs. 9a-d). Both G1 and G3 show negative VWS 

anomalies over the CNP with positive Vor850 anomalies in the northwest compared with the 
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observations, which are favorable for TC genesis (Fig. 9a). In contrast, although the VWS 

and Vor850 anomalies in the G2, G4 and G5 are statistically significant, but they are much 

smaller than that in G1 and G3, indicating smaller biases in the large-scale environmental 

conditions (Figs. 9b,c). 

In order to figure out the cause of the VWS and Vor850 anomalies, the 850-hPa 

horizontal wind was further analyzed. Figure 9e shows an anomalous cyclonic circulation 

from the WNP to the CNP in G1 and G3 at 850 hPa, which contributes to the positive Vor850 

anomaly in Fig. 9a, along with a low-level westerly wind anomaly in the tropical WNP to 

CNP, while the wind in the tropical ENP is anomalously easterly. The wind field anomalies 

follow a Gill-type response induced by tropical diabatic heating (Gill, 1980). The cyclonic 

vorticity anomalies can be seen as a Rossby wave response, and the easterly wind anomaly 

was the Kelvin wave in Gill-type response. Overall, the low-level westerly wind anomaly 

reduces the background easterly wind, and the ascending motion triggers an anticyclonic 

divergence circulation at upper-level (Figs. 10a,e), causing an eastward displacement of the 

tropical upper-tropospheric trough (TUTT), which leads to strong vertical wind shear (Wang 

and Wu 2018). These dynamical environments could weaken the VWS in the CNP. However, 

the above environmental condition changes are not evident in G2, G4 and G5 (Figs. 9f,g), 

corresponding to significant but much smaller VWS and Vor850 anomalies (Figs. 9b,c). The 

difference between G1 (along with G3) and G5 shows an obvious cyclonic circulation in the 

tropical CNP (Fig. 9h), which is responsible for the positive TCGD biases in G1 and G3. This 

difference largely reduces the systematic errors. 

Then, we further analyzed the outgoing longwave radiation (OLR; Figs. 9e-h) and 

vertical velocity at 500 hPa (Omega500; Figs. 10a-d). The negative OLR and Omega500 

anomalies match well with the convergence zone of the low-level wind field in G1 and G3 

(Figs. 9e and 10a). While the composite low-level wind field, OLR, and Omega500 in the 

CNP are small for G2, G4 and G5 (Figs. 9f,g and 10b,c), without showing a Gill-type 

response. 
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Fig. 10. (a–d) As in Figs. 9a–d, but for precipitation (shading, unit: 10-5 kg m-2 s-1) and 

vertical velocity anomaly at 500hPa (contours, unit: hPa s-1). (e–h) As in (a–d), but for 

relative humidity at 600 hPa (shading, unit: %) and 200 hPa-winds (vectors, unit: m s-1), the 

green contours represent the climatological TUTT in observation. Only values exceeding the 

95% significance level are shown or hatched. 

To further seek the cause of the anomalous diabatic heating, SST simulations were 

evaluated. Recent studies have shown that relative SST (relative to the tropical mean SST) 

instead of absolute SST might be important to the TC genesis simulation in the models 

(Jonhson and Xie, 2010; Zhao et al., 2010; Murakami et al., 2011a). Here, Figure 11 shows 

the relative SST difference between the CMIP6 simulations and the observation. There is a 

positive SST bias extending from the northeastern Pacific to the tropical CNP in G1 and G3 

(Figs. 11a,c), which may be related to the footprinting mechanism (Vimont et al. 2003). The 

warm SST bias over the ENP leads to the convergence of low-level wind field and weakened 

climatological trade winds, which causes precipitation and wind biases (Figs. 9e and 10a). 

This physical process is similar to that of the SSTA arising from the footprinting mechanism 

in Vimont et al. 2003. In contrast, G2 and G4 only show slight SST biases over the CNP 

(Figs. 11b,d). These results confirm that the positive SST biases in the CNP (red box in Fig. 

11; 160°E–140°W, 5°N–15°N) for G1 and G3 may excite the Gill-type response, leading to a 

series of circulation anomalies in the CNP and creating favorable large-scale environmental 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0224.1.
Brought to you by Nanjing University | Unauthenticated | Downloaded 12/12/23 11:46 AM UTC



25 

File generated with AMS Word template 2.0 

conditions for TC formation. In contrast, the warm SST bias over the CNP largely reduces in 

G2 and G4 (Figs. 10b,c). In addition, the SST biases are accompanied by positive 

precipitation anomalies over the CNP, indicating intensification and displacement of the 

intertropical convergence zone (Fig. 10d), which is also a favorable environmental condition 

for TC genesis.  

Finally, the composite 600hPa relative humidity anomalies also show that the models in 

G1 and G3 with large TCGD biases exhibit more obvious and concentrated regions of 

positive relative humidity anomalies in the middle troposphere (Fig. 10e). Conversely, the 

small biased coupled models and atmospheric models display more dispersed and weaker 

positive anomalies (Figs. 10f,g). This is easily understood since the Gill-type response to the 

positive SST bias induced an ascending motion in which the lifting and condensation of water 

vapor from the ocean makes the atmosphere wetter. From the analysis of various large-scale 

environmental fields and the multi-model ensemble mean results of the SST biases, we can 

also find that the bias is not only concentrated in the CNP, but also tends to extend towards 

the ENP. This also explains the positive bias over the western part of ENP in the TCGD 

comparison between coupled and uncoupled atmospheric models (Figs. 4 and 6). 

Fig. 11. Composite relative SST bias (shading, unit: K) between (a) large-biases models 

from the historical experiments and observation in JJASON from 1979 to 2014. (b) As in (a), 

but for small-biases models. (c–d) As in (a–b), but for models from the hist-1950 experiment. 

Only values exceeding the 95% confidence level are stippled based on the sign of difference. 

b. Numerical experiments

To further validate the results, two numerical experiments were performed with 

HiRAM, which was forced by the prescribed SST. The control experiment was forced by the 

observed monthly SST from 1980 to 2009, similar to Zhao et al. (2020). The sensitive 
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experiment has the same SST forcing, but with the SST biases in the G1 and G3 simulations 

been exerted over 160°E–140°W and 5°N–15°N (red box in Fig. 11). Both experiments were 

integrated 30 years with 6-hourly outputs used to extract TCs and the monthly data to analyze 

the large-scale environmental conditions, respectively. 

Fig. 12. Spatial distribution of the difference between the sensitive and control 

experiments in the (a) TCGD, (b) relative vorticity at 850 hPa (shading, unit: 10-5 s-1) and 

vertical wind shear between 200 hPa and 850 hPa (contours, unit: m s-1; dashed lines 

represent the negative values, solid lines represent the positive values), and (c) OLR (shading, 

unit: W m-2) and 850-hPa winds (vectors, unit: m s-1). Only values exceeding the 90% 

significance level are shown or hatched. 

The TCGD difference between the sensitive and control experiments clearly shows a 

positive TCGD anomaly in the tropical CNP (Fig.12a), which is comparable to the CMIP6 

results (Fig. 8f). As expected above, the large-scale circulation difference also shows a Gill-

type response to the SST changes similar to those in the CMIP6 simulations (Figs. 12b and 

9a; Figs. 12c and 9e). Nevertheless, the Kelvin wave response observed over the ENP is not 

statistically significant. There is a positive Vor850 anomaly along with a negative VWS 

anomaly originating from the anomalous heating, inducing a low-level cyclonic circulation 
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and negative OLR in the tropical CNP (Figs. 12b,c). These findings are in accordance with 

the positive TCGD anomaly, further confirming the warm SST bias as the main cause of the 

positive TCGD bias in the CNP. 

5. Conclusion and discussion

This study evaluated the simulation of TCs in the most recent CMIP6 climate models.

Positive TCGD biases in the tropical CNP were found in some coupled models. We 

demonstrated that SST biases in the coupled models are the main cause of the TCGD biases. 

The physical mechanism underlying the relationship between SST biases and TCGD biases is 

depicted in Fig. 13. Specifically, a warm SST bias in the subtropical ENP extends to the 

tropical CNP, which induces a Gill-type response through increasing diabatic heating. This 

response triggers a Kelvin wave, leading to anomalous low-level easterly wind in the tropical 

ENP, and a cyclonic vorticity anomaly at the northwestern flank of the heating center through 

a Rossby wave response. The Rossby wave response also creates an anomalous low-level 

westerly flow in the southeastern WNP, which weakens the climatological easterly wind and 

extends the monsoon trough eastwards to the tropical CNP. Simultaneously, the ascending 

motion induced by SST warming generates anomalous anticyclonic divergence at the upper 

level, which brings about a wetter mid-troposphere, shifting the cyclonic TUTT accompanied 

by strong vertical wind shear to the east. The combined eastward shift of the TUTT and 

monsoon trough weakens the vertical wind shear over the tropical CNP, thus contributing to a 

favorable environment for TC genesis. 

Fig. 13. Schematic illustration of the physical mechanisms for the overestimation of TC 

genesis over the CNP in CMIP6 coupled simulations. The shading indicates the multi-model 

ensemble mean SST biases in G1 and G3. The green arrow represents the Rossby wave 

response, and the purple arrow represents the Kelvin wave response. The red solid and 

dashed curves as well as the blue arrow over the WNP indicate an eastward shift of the 

monsoon trough. The red solid and dashed curves and the blue arrow at the top of the picture 
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represent the eastward shift of the tropical upper-tropospheric trough. The red TC-like 

symbols in the CNP indicate the positive TC genesis density biases. The thick orange arrow 

represents the upward motion, which corresponds to more rainfall (blue cloud) in this area. 

The distribution of SST biases and the responses of the large-scale circulation in coupled 

models are pretty similar to those corresponding to the Pacific Meridional Mode (PMM) with 

interannual variability, which is described in Gao et al. (2018). Thus, we calculated the PMM 

index for each historical model following Chiang and Vimont (2004) to investigate whether it 

has a significant impact on TC genesis biases over the CNP in models. The correlation 

between the TCGDCNP ratio and the PMM index is not consistent throughout the models. In 

addition, it can also be seen from the figure that although the TCGDCNP ratio also has obvious 

interannual variations, systematic differences are also exists between the models. Indeed, 

some models, like HadGEM3-GC31-MM (r=0.58), show significant correlation between 

TCGD and PMM. There are still 12 out of the 16 models failed to reproduce such 

relationship (not shown). We hypothesize that their limited ability in simulating either PMM 

itself or the TCGD leads to the poor correlations. As we have put our main focus on the 

climatological biases of the CNP TCGD in this study, the interannual correlation between 

PMM and TCGD is beyond our scope. Thus, more studies on the TC-PMM relationship will 

be carried out in the future. On the other hand, although the SST bias and PMM may impact 

the large-scale environmental conditions over the CNP similarly, the TCGD bias caused by 

the SST bias in coupled models may not be directly linked to the PMM. 

Recently, Gao et al. (2022) pointed out that in El Niño years, despite the warming of 

SST over the CNP, the TC frequency is not significantly different from La Niña years, which 

is due to the negative correlation between SST and 26℃ isothermal depths. But for the 

climatological mean, 14 out of the 16 models display a consistent temperature bias from the 

surface to subsurface ocean compared to observations (not shown). This suggests that the 

inconsistent surface and subsurface warming on interannual timescales has little impact on 

our conclusions. However, it is indeed worth further investigating the influence of surface 

and subsurface inconsistent warming biases on the interannual variability of the TC genesis 

in CMIP6 models. 

The current results suggest that the SST simulation bias is one of the most important 

factors controlling the simulation of TC genesis over the North Pacific in climate models. As 

indicated in Zhang et al. (2023), the SST simulation changes from the cold bias to the warm 
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bias over the CNP in CMIP6, which is consistent with the warm SST biases of coupled 

models shown in our study. But it is worth pointing out that in CMIP5 models the CNP 

experienced a cold bias (Wang et al. 2014). Given the critical importance of the CMIP6 

climate models in projecting TC activity, a clear understanding of model biases and their 

origin are quite crucial for accurately predicting, interpreting, and even reducing the 

uncertainty of future TC activity, especially under the background of global warming. 

Therefore, it is imperative to have a thorough understanding of the effects of SST biases on 

TC genesis simulations for accurate projections of future TC activity under different climate 

scenarios. Our results attach importance to further understanding the impact of SST biases on 

TC simulations, which is essential for improving future TC projections with these climate 

models. 
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