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Abstract

Archaeobotanical remains contribute crucial evidence for shifts in human economy from foraging to farming, understand-
ing early village life and the strategies employed by people in the past to cope with changing environmental conditions.
However, differential preservation of plant proxies often leads to the over or under representation of some plant types. This
research analyses phytoliths and faecal spherulites to provide new perspectives on human economy at the Neolithic site of
Abu Hureyra, N. Syria (~ 11100-6000 Bc) and plant taphonomy by comparing results with those from previous extensively
analysed charred plant macro-fossils. This site is of especial importance as one of the earliest and largest pre-pottery Neo-
lithic B farming settlements in the world, however, it was flooded following the construction of the Tabqa dam in the 1970s.
This research therefore presents a case study for some of the methods that can be applied to archival material to continue
research in areas of high archaeological significance that are no longer accessible. The presence of dung spherulites sug-
gests a background faecal component in sediments throughout the lifespan of the site, and should therefore be considered
as a depositional pathway for some of the charred plant macrofossils and phytoliths. Phytolith analyses show that a diverse
range of vegetation types were exploited throughout the lifespan of Abu Hureyra, reflecting the site’s favourable position on

the border of several ecotones, which likely contributed to its longevity over several millennia.

Keywords Neolithic - Plant-use - Phytoliths - Faecal spherulites - Dung

Introduction

Current research increasingly demonstrates the diversity of
the Neolithisation process, pathways and variations between
different regions in SW Asia (Fuller et al. 2012; Arranz-
Otaegui et al. 2016). There is increasing evidence of highly
localised crop practices, community and household scale
strategies/adaptations (Bogaard et al. 2017) and the reflec-
tion of unique cultural identities of communities through
the selection of plant and animal resources (Kabukcu et al.
2021). The Middle Euphrates Valley is an important region
for understanding the shift from mobile hunter-gatherers and
the development of agricultural settlements (Nesbitt 2002;
Willcox et al. 2008; Fuller et al. 2011; Willcox 2012). Tell
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Abu Hureyra (Fig. 1) is significant for its longevity, with
evidence for occupation from ~ 11100 cal Bc as an Epipal-
aeolithic hunter-gatherer settlement spanning ~ 1,000 years,
and later pre-pottery Neolithic B (PPNB) occupation over
several millennia, ~ 8600 — 6000 cal Bc (Hillman 2000a, b,
c; Moore et al. 2000, pp 527-529). Abu Hureyra, therefore,
provides an important case study for advancing our under-
standing of the development of early agriculture, sedentism,
sustainable environmental management practices, resilience
and adaptation to changes in the environment (Roberts et al.
2018).

Carbonised plant remains provide key evidence for
domestication and changes in human economy as the Neo-
lithic developed in SW Asia (van Zeist and Waterbolk-Van-
Rooijen 1985; de Moulins 2000; Hillman 2000a, b, c; Hill-
man et al. 2001; Fairbairn et al. 2002; Willcox 2005; Willcox
et al. 2008; Bogaard et al. 2017; Arranz-Otaegui et al. 2018;
Weide et al. 2018; Wallace et al. 2019). However, these
remains are preserved under a restricted set of conditions
and may represent less than 20% of an assemblage compared
with desiccated plant remains (van der Veen 2007, p. 977;
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Fig. 1 Location map of Abu
Hureyra
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Dunseth et al. 2019) and sometimes less when compared
with micromorphological studies of the diverse plant mate-
rials preserved in archaeological deposits (Matthews 2010;
Matthews et al. 2020).

Phytoliths are highly durable, as they are inorganic and
therefore more resistant to destructive processes than other
plant materials (Piperno 2006, p. 5). They are present on
many sites globally, particularly in SW Asia, in soils with
pH between ~ 2 and 8 (Weiner 2010, p 175). Phytoliths are
microscopic bodies of silica, absorbed in a soluble state
by plants through groundwater (Piperno 2006). After the
decomposition of organic matter, silica is deposited into
soil or sediment, often replicating the cells in which it was
deposited in the plants. Following the decomposition of
organic matter, the phytoliths are deposited into the soil,
providing an indicator of the type of vegetation from which
it was derived. Some phytolith morphologies are diagnostic
of the parts of the plant in which they formed, for example,
the stems and leaves or inflorescences of grasses, and the
types and proportions of these can inform on cereal pro-
cessing activities (Harvey and Fuller 2005; Portillo et al.
2017b) and fuel choices (Gur-Arieh et al. 2013; Portillo
et al. 2014, 2017a). Unlike pollen, phytoliths are not usu-
ally highly airborne and tend to provide a localised signal of
the plants present in a specific deposit and have been used to
determine variations in uses of space at archaeological sites
(Tsartsidou et al. 2008, 2009; Portillo et al. 2012). Phyto-
liths are usually identified to the order or family, rather than
genus or species level, often providing a lower taxonomic
resolution compared with charred macro-fossils. Integration
of both proxies, however, provides the potential for a more
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complete overview of past-plant use (Dunseth et al. 2019).
Table 1 highlights some of the key preservation differences
between phytoliths and charred macro-fossils as past plant
proxies. This study integrates new phytolith data with the
previously published charred macro-fossil record from Abu
Hureyra (de Moulins 2000; Hillman 2000a, b, c) to provide
new perspectives on plant-use and resource management
practices during the Neolithic and on plant taphonomy in
archaeology more widely.

Knowledge of the depositional and taphonomic processes
of plant remains is essential for understanding the wider
significance of an assemblage (van der Veen 2007; Matthews
2010). A major challenge in archaeobotany is to disentangle
the potential origins of plant material which may contribute
to a single context. Animal dung, for example, has been used
as fuel since the Epipalaeolithic period in SW Asia (Miller
1984; Miller and Smart 1984; Matthews 2005; Portillo
et al. 2014; Spengler 2019; Smith et al. 2019, 2022) to the
present day (Miller and Smart 1984; Reddy 1998; Portillo
et al. 2017a) and may be a source of seeds and phytoliths
as these are preserved in modern and archaeological human
and animal coprolites (Shillito et al. 2011; Valamoti 2013;
Wallace and Charles 2013; Elliott et al. 2020; Portillo et al.
2020, 2021).

Faecal spherulites from flotation residues suggest the
presence of dung at Abu Hureyra during the Epipalaeo-
lithic, and the use of dung fuel from Period 1B (Smith
et al. 2022), as suggested by Naomi Miller, who argued
that herbivore dung could have contributed to the charred
assemblage at Epipalaeolithic Abu Hureyra (Miller 1996).
Therefore, increases in small-seeded grasses and legumes,
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Table 1 Preservation conditions and representation of plant material in the archaeological record for charred plant-macro fossil compared with

phytoliths

Charred macro-fossils

Phytoliths

e Represent plants burnt at low temperatures <400-500 °C (Boardman
and Jones 1990), above which carbon is generally oxidised and not
present

e May over-represent seeds and wood which are more robust than
stems, leaves and roots

e Can over-represent agricultural bi-products, deliberately burned as
waste, weed seeds and fuel (Hillman 1981)

o Usually under-represent cereal chaff which burns quickly (Board-
man and Jones 1990) (an important by-product to identify processing
strategies); roots and tubers which are often roasted by direct heat
(Colledge 1991); and oily seeds which may explode

e Withstand burning exceeding 400-850 °C and are preserved in non-
burnt contexts

o Preserve in a broad spectrum of soil types (pH 2-8) (Cabanes et al.
2011; Cabanes and Shahack-Gross 2015)

o Include some morphotypes that are diagnostic of parts of plants in
which they are formed

e May over represent agricultural by-products and cereal chaff as these
often have high silica content

e Under-represent dicot plants as monocots produce up to 20 times
more phytoliths (Albert et al. 2006; Tsartsidou et al. 2007)

e Taxonomic resolution is often lower than for charred macro-fossils

could represent animal diet, rather than a diversification of
the human diet in response to environment changes (Hillman
et al. 1997) or weed seeds signalling early cultivation (Hill-
man et al. 2001). Resolving the origins of plant material is
key to understanding human subsistence strategies.

During the pre-pottery Neolithic B (PPNB) at Abu
Hureyra, charred domesticated cereals and pulses become
more prevalent alongside a continued significant presence of
small-seeded grasses and legumes (de Moulins 2000; Hill-
man 2000a, b, ¢). The identification of dung is important
to resolve whether charred macrofossil evidence indicates
a continued reliance on a broad-spectrum biodiverse diet
of wild, gathered food (Flannery 1969) or whether some
of these remains were deposited by animal dung burnt as
fuel. A better understanding of whether plant remains repre-
sent human food, animal fodder or fuel enables more robust
interpretations of the broadening and narrowing of plant-use
through different phases of occupation and environmental
conditions (Miller 1996).

Furthermore, the presence of dung provides key insights
into changing human-animal relationships during the Neo-
lithic, and early stages of animal management, as changes
in animal bone morphology indicative of domestication can
take up to 1000 years to manifest and may be influenced
by environmental and anthropogenic factors (Zeder 2008;
Matthews 2010, p. 107; Fuller et al. 2011). Also of major
significance and interest is the use of dung as an important
secondary product for fuel, manuring or construction (e.g.
Bull et al. 2002; Zapata Pefia et al. 2003; Matthews 2010;
Portillo et al. 2014, 2017a; Gur-Arieh et al. 2019; Dudgeon
2023). Faecal spherulites have been identified in gypsum
floor plasters from Abu Hureyra, demonstrating the impor-
tance and ubiquity of dung as a resource (Smith et al. 2022;
Dudgeon 2023). The use of dung as fuel also provides infor-
mation on the nature and sustainability of fuel selection and

it may also be the preferred fuel choice for specific activities
for its long, regular burning properties (Zapata Pefia et al.
2003).

However, dung is challenging to identify during exca-
vation as it often appears as amorphous organic material
(Shillito et al. 2011) and requires specialised and targeted
analytical techniques to detect in archaeological deposits
and materials (for overview see Shahack-Gross 2011, p.
206). Dung often disintegrates during flotation and during
the phytolith extraction process, resulting in the mixing of
plant remains derived from dung with those from other dep-
ositional activities (Matthews 2010). One method to assess
whether dung is present in archaeological sediments is the
identification of faecal spherulites (Matthews 2005; Portillo
et al. 2017a; Smith et al. 2019; Garcia-Suarez et al. 2020),
microscopic, calcitic particles which form in animals’ guts,
particularly ruminants (Brochier et al. 1992; Canti 1997,
1998, 1999).

The key aim of this study is to identify the extent to which
dung was used as a resource at Abu Hureyra and was present
at the site by analysing faecal spherulites to inform on the
likelihood that dung contributed to the fossil plant assem-
blages and provide new insights into developing human-ani-
mal relations. A secondary aim of this study is to analyse
phytoliths to provide new perspectives on plant-use at Abu
Hureyra.

Study area

Tell Abu Hureyra is located in northern Syria in the Middle
Euphrates valley, 35.866°N and 38.400°E, ~ 130 km east of
the modern city of Aleppo (Fig. 1). The Neolithic occupation
of Abu Hureyra spans from ~ 8600 to 6000 cal Bc (Fig. 2a)
consistent with dates for the mid to late PPNB (Asouti and
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Fuller 2012, p. 150). The site was built in an area, which is
predominately calcareous with a chalk substrate, on a well-
drained terrace above the floodplain on the South bank of
the river Euphrates, which would have provided a depend-
able water supply (Moore et al. 2000, p. 28). Abu Hureyra
is situated in a key heartland of the development of agri-
culture, which hosted potentially favourable environmental
conditions in the rain-fed agricultural zone and on the banks
of the Euphrates. Many cultural developments associated
with the Neolithic first occur in the Middle Euphrates and
surrounding regions (Akkermans and Schwartz 2003) and
through cultural exchange and trade networks, Neolithic
Abu Hureyra was linked with contemporary societies in
Anatolia, the Southern Levant and Eastern Fertile Crescent
(Moore et al. 2000, p. 166). Situated on the border of sev-
eral ecozones, the inhabitants of Abu Hureyra would have
had advantageous access to a broad resource base, which
included riverine forest, woodland steppe, stands of wild
cereals (wheats, ryes and feather grasses) and park woodland
(Moore et al. 2000, pp 43-91).

The site is now flooded and inaccessible following the
construction of the Tabqa dam. Professor Andrew Moore
and colleagues excavated seven trenches (Fig. 2) during
two seasons in 1972 and 1973, revealing densely packed,
rectilinear mudbrick buildings across the substantial 11
ha+mound (Moore et al. 1975). However, it is not possi-
ble to assess whether all areas of the mound were occupied
contemporaneously or represent a series of small settlements
over a long period of time. Due to the unique lifespan and
significance of the site, and its imminent destruction, an
extensive archive of material was recovered (Moore et al.
2000, pp 547-548). Over 100 environmental archaeological
bulk samples from the site including soil, occupation resi-
dues and charcoal are housed at the University of Reading,
providing a unique archive for new environmental analyses.

Economy of Abu Hureyra

The occupation of Abu Hureyra is divided into three peri-
ods (Fig. 2a). Abu Hureyra 1 is the Epipalaeolithic settle-
ment, occupied predominately by sedentary hunter-gatherers
based on year-round seasons represented in faunal and floral
remains. A recent identification of dung spherulites from
flotation residues has been used to suggest a small number
of animals may have been kept on site and their dung used
as an occasional supplementary fuel (Smith et al. 2022).
The Neolithic settlement of Abu Hureyra is characterised
by densely packed rectilinear mudbrick buildings, with pol-
ished plaster floors, and plaster was also used for vessels and
storage containers (Moore et al. 2000, p. 256). The PPNB
charred macrofossil assemblage is characterised by high
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numbers of weed seeds, and the presence of some domesti-
cated type cereals.

In the zooarchaeological assemblage, period 2A is domi-
nated by gazelle, with low numbers of caprines, onager and
cattle as well as the sporadic presence of pig and fallow
deer. Domesticated cereals including rye, wheat (einkorn
and emmer) and barley (two and six rowed) are present,
alongside pulses such as lentils, peas and vetches (de Mou-
lins 2000).

The transition between periods 2A and 2B occurred
between 74657175 cal Bc at 95.4% probability (Jacobsson
2017) and is marked by significant settlement growth (~ 8
ha—~ 11 ha) and a switch from reliance on wild gazelle to
managed caprines in the faunal record (Legge and Rowley-
Conwy 2000; Moore et al. 2000, p. 257). There is also a
decline in the representation of onager in period 2B, while
pig and fallow deer become rare with an increase in cattle
exploitation.

In Trench B, there is a slight increase in cereal representa-
tion in period 2B, compared with period 2A, accompanied
by a decrease in the numbers of samples containing weed
seeds. In Period 2B, Trench E, the numbers of weed seeds
continue to dominate the assemblage, though cereals are
relatively low in number, there is also a gradual reduction
in small-seeded legumes (de Moulins 2000).

Materials and methods

Thirty-six samples, selected for phytolith and spherulite
analysis were sub sampled from bulk sediments (Table 2).
Collected during excavations in the 70s, the bulk samples
largely consist of occupation residues, primarily to recover
material for radiocarbon dating, and therefore mostly include
charred, ashy material, particularly fragments of charcoal.
Samples included in this study span the Epipalaeolithic
(n=3), Period 2A (n=11) and Period 2B (n=22), with a
focus on detecting changes in economy as the PPNB settle-
ment developed. Five of the available samples were included
in this study, as corresponding charred macrofossil have
been analysed from the same levels, and therefore provide
and opportunity to compare the representation of plants
through different proxies. Additional contextual information
and sample descriptions are provided in ESM 1. Further
contextual information including matrices, section drawings
and plans are available in Moore et al. (2000, pp 105-131,
189-259).

AH 1 A-C—trench E
Three samples are from the Epipalaeolithic period of occu-

pation at Abu Hureyra (11200-9800 cal Bc). E55.31 and
E435.15 are fill/occupation residues from pits dating to
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Table 2 Summary of results from phytolith and spherulite quantification

Sample ID, period, phase  Spatial context Deposit type, material

Phytoliths/g ~ Multi Degraded (%) Spherulites/g  Darkened

of sediment  cells of sediment spherulites

(%) (%)
E55.31:1 A-1 EX,F,P F,OR, A 2,600,000 11 3 3200 0
E435.15:1 A-1 EX,F,P F,OR, A 1,600,000 1 10 0 N/A
E402.14:1 C-3 F OR, A 1,800,000 2 17 3200 0
B203.99:2 A-5 IN OR, A, CH 870,000 8 13 48,000 6
B163.71:2 A-7 IN OR, A, CH 1,600,000 5 22 14,000 0
D14.28a:2 A-4 EX,F,P F, OR, CH 550,000 11 5 0 N/A
D54.71:2 A-4 EX OR, A, CH 850,000 5 2 6800 50
D55.69:2 A-4 EX OR, A 2,000,000 3 21 25,000 0
D57.75:2 A-4 EX OR, A, CH 770,000 3 3 20,000 0
D58.79:2 A-4 EX OR, A, CH 1,100,000 2 0 N/A
D59.84:2 A-4 EX OR, A 1,200,000 7 22 7000 50
D62.88:2 A-4 EX OR, A 1,700,000 1 14 3300 0
D68.100:2 A-4 EX OR, A 1,500,000 4 16 3300 0
D66.95:2 A-4 EX H,OR, A 1,000,000 2 25 6100 0
A207.64:2B M 680,000 9 20 0 N/A
E36.22:2B-5 EX OR, A 2,100,000 20 2 100,000 7
E39.33:2B-5 EX,F H,OR, A 7,000,000 14 10 64,000 37
E325.113:2B-5 EX OR, A, CH 2,300,000 5 5 6500 0
E329.123:2B-5 EX OR, A, CH 1,200,000 17 4 3400 67
E338.146:2B-5 IN OR, A, CH 770,000 5 33 18,000 40
E339.145:2B-5 EX OR, A, CH 930,000 2 27 18,000 0
E344.143:2B-5 IN OR, A, CH 1,500,000 2 17 36,000 36
E358.30:2B-5 EX OR, A 1,400,000 2 17 13,000
E361.10:2B-5 EX OR, A 1,100,000 3 16 130,000 7
E362.11:2B-5 EX OR, A 2,600,000 7 26 160,000 18
E21.7:2B-6 IN OR, A 1,400,000 5 14 7500 50
E210.62:2B-6 EX OR, A 700,000 1 28 27,000 0
E231.71:2B-6 IN OR, A 930,000 9 4 20,000 40
E265.76:2B-6 EX,F F,OR, A,CH 970,000 4 30 3300 0
E268.79:2B-6 EX OR, A 1,600,000 10 6 0 N/A
E18.3:2B-7 EX OR, A 1,000,000 16 5 8800 0
G67.35:2B-1 EX,F H, OR, A, CH 370,000 6 4 0 N/A
G57.32:2B-2 IN OR, A, CH 330,000 4 6 20,000 0
G62.33:2B-2 IN OR, A, CH 350,000 5 6 37,000 45
G18.9:2B-3 EX OR, A, CH 460,000 13 3 0 N/A
G24.15:2B-3 EX OR, A, CH 310,000 5 1 24,000 33

EXexternal, INinternal, Ppit, Ffeature. Deposit type/material: Ffill, ORoccupation residues, A Ashy, CH charcoal, Hhearth/fire spot, M mud-

brick

the earliest phase of occupation, Period 1A (11200-10850
cal Bc). Sample E402.14, also representing occupation
residues, is dated to the later Epipaleolithic, Period 1C
(10850-9800 cal Bc). All three samples were brown (10YR
4/3 to 10YR 5/3) silty and slightly ashy sediments.

AH 2A—trench B

Trench B was excavated along the north-south axis of
the site (Fig. 2b) and represents a particularly significant
area of the excavation because it documents sequential
occupation spanning periods 2A, 2B and 2C (Fig. 2a),
through 11 phases of building (Moore et al. 2000). The

@ Springer
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Fig.2 a Schematic diagram a
showing the years cal Bc for

key periods and trench specific

phases at Abu Hureyra, adapted

from Moore et al. (2000, p.

257, Fig. 8.75) and b site map

showing locations of trenches

and immediate environs of Abu

Hureyra adapted from Moore

et al. (2000, p. 34, Fig. 2.14) 2B
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change from reliance on wild gazelle to managed caprine
occurred during Trench B, phase 8 (7465-7175 cal BC
at 95.4% probability, Jacobsson 2017) and is therefore
particularly significant as it demonstrates that the change
occurs over time rather than reflecting use of different
spaces (Legge and Rowley-Conwy 2000, p. 434).

A limited number of sediment samples were available
for analysis from Trench B. B203.99 and B163.71, both
representing internal occupation residues dating to Period
2A, phases 5 and 7 respectively, were analysed because
the macrofossil assemblages are available (de Moulins
2000)

AH 2A—trench D, phase 4

Trench D was excavated down the western slope of the
Abu Hureyra mound (Fig. 2b), initially to ascertain the
extent of the settlement although much of the upper layer
had eroded away (Moore et al. 2000, pp 209, 218).

Eight samples are analysed in this study from Trench
D, all dated to phase 4 (Fig. 2a). Trench D, phase 4 con-
sists predominately of a large open area, between two
buildings, which extended beyond the limit of the trench
(Fig. 3a). The deposits in the large areas were ashy and
burnt, with high quantities of flint and bone, suggesting
the intensive use of this area for domestic activities such
as cooking (Moore et al. 2000, p. 218). Sample D14.28
is material from a pit, dug into a wall, which contained a
Bos primigenius skull. The other samples are all occupa-
tion residues from the external area. All of the sediment
samples were very dark and ashy, with frequent inclusions
of bone and charcoal fragments.
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AH 2B—trench A

One sample was included in this study from Trench A,
A207.64 (Fig. 2b). Very little contextual information is cur-
rently published from Trenches A or C. This sample was
selected as a control, and was sampled from a fragment of
mudbrick. There are some limitations to using mudbrick as
a control sample, however, in the absence of offsite control
samples for the site, the mudbrick provides a baseline for
comparing the other samples.

AH 2B—trench E, phases 4-7

During the earliest phase of Neolithic occupation identified
in Trench E, phase 4, three rectangular mudbrick houses
were identified (Moore et al. 2000, p. 231, Fig. 8.49). The
phase 4 buildings set the plan for the construction of build-
ings throughout period 2B in Trench E (Moore et al. 2000,
p. 225). Spaces in between buildings were generally narrow
and would have reduced the scope for changing the building
plots. The phase 6 buildings were built on the same align-
ment as the phase 5 buildings (Fig. 3b), however, the house
in the centre of the trench in phase 6, had one less room
than its phase 5 predecessor, which enlarged the external
space between the buildings (Moore et al. 2000, p. 233).
During phase 6, the exterior house walls were made much
thicker (80 cm long, 30—40 cm wide), although interior walls
remained thin (Moore et al. 2000, p. 235). A channel, 30 cm
wide and 10 cm deep, filled with ash and charred cultivated
chickpea seeds cut between the phase 6 buildings, which
excavators hypothesised had been formed by erosion from
trampling when animals were herded through the site over
a long period of time (Moore et al. 2000, p. 236). Similar
to the external areas in Trenches B, D and G, the external
areas between houses were filled with lenses of ash and other
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a

0 1 2 4 metres

Fig.3 Simplified plans showing a plan of Trench D, phase 4 (adapted
from Moore et al. 2000, p. 216, Fig. 8.33). All occupation residues
analysed from Trench D, phase 4 (except for D14.28) represent suc-
cessive layers of occupation in the external activity areas, b plan of
Trench E, phase 5 (adapted from Moore et al. 2000, p. 233, Fig. 8.51)

debris, and were likely the hub of domestic activities, such
as cooking (Moore et al. 2000, p. 237).

Sixteen samples are analysed from the Neolithic Period
in Trench E, representing phases 5 (n=10), 6 (n=5) and 7
(n=1). Most of the samples represent ashy occupation resi-
dues from external areas. E39.33 is from an external hearth
base, and E265.76 comes from an external pit filled with
ash and occupation debris. Additionally, four of the samples
analysed are from internal spaces (Table 2).

AH 2B—trench G, phases 1-3

Trench G was excavated to determine the sequence of occu-
pation in the northeast of the mound (Fig. 2b), the upper
parts of which were heavily eroded (Moore et al. 2000, p

4 metres

external activity area |

<D23.23>
<D30>

<D36.36>
<D54.71>
<D55.69>
<D57.75>
<D58.79>
<D59.84>
<D62.88>
<D68.100>
<D66.95>

. mudbrick wall

. internal space

I:I external activtiy areas
I:I burial

@post hole

unexcavated

0 1 2 4 metres

and ¢ plan of Trench G, phase 2 (adapted from Moore et al. 2000, p.
247, Fig. 8.65). Approximate sampling location of material analysed
in this study shown in bold, where applicable Samples are ordered in
stratigraphic sequence as dug (youngest at top)

241). Five sediment samples from Trench G were analysed
for phytoliths and spherulites, representing phases 1-3 from
external (n=2) and internal (n=2) occupation residues, and
an external fire pit (G67.35) (Table 2).

In Phase 1, this area was an open space, with significant
deposits of dark occupation soil, patches of burning, with
pits and hearths dug into the surface (Moore et al. 2000, p.
242). During phase 2, a mudbrick building was constructed
which extended beyond the edge of the trench to the north-
west and northeast, of which several rooms were excavated
(Fig. 3c). G57.32 represents occupation residues from Room
4 (phase 2), which was an exceptionally narrow room, ~ 70
cm X 100 cm, with a series of trodden surfaces, renewed
as debris built up and possibly used for storage. G62.33
was occupation soil recovered from room 1, where a large
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number of flint tools were recovered from, including 230
fresh flint blades and lightly retouched blade knives bundled
together, but with little flint waste in the deposit (Moore
et al. 2000, pp 244, 248). Both G57.32 and G62.33 have cor-
responding charred macrofossil samples analysed and pub-
lished which are compared with the phytolith assemblages
analysed in this study.

Soil pH

pH was measured for a subset of 16 sediment samples, which
were selected to represent different trenches, time periods,
deposit and material types to provide an overview of general
preservation conditions across the site. Ca. 10 g of air-dried
sediment was sieved at 2 mm and weighed into a 50 ml cen-
trifuge tube. 25 ml of ultra-pure water was added using an
automatic dispenser. The tube was then capped and placed
on an end over shaker working at 20-30 rpm for 15 min. The
pH meter was calibrated with pH 7.00 and 9.22 buffers. The
pH electrode was placed into the soil suspension, and the pH
reading was taken after 30 s. The electrode was cleaned with
ultra-pure water between samples to prevent contamination.

Faecal spherulites

The methodology for identifying and quantifying spheru-
lites is based on Canti (1999). Approximately 1 mg of dried
sediment was weighed on to a 25X 75 mm microscope slide,
mixed with ~48 ul of clove oil which was distributed evenly
over an area of ~22 %22 mm and cover slipped. The number
of spherulites were counted in a known number of fields
then related to the initial sediment weight and expressed as
number of spherulites per gram of sediment.

Spherulites were identified by size, the presence of a fixed
cross of extinction and colour; low order white becomes
blue/yellow in opposite quadrants when using the A plate
(Canti 1998) and compared with spherulites derived from
modern cow and sheep/goat samples. Spherulites were
counted on an optical microscope DMEP at x200 magnifica-
tion in crossed polarised light (XPL) with further examina-
tion at x400 as required. The number of spherulites present
in five transects (at x200) were counted.

Phytoliths

Phytoliths were extracted following the rapid extraction
method of Katz et al. (2010). Sediments were sieved to
remove fractions greater than 0.5 mm and combusted at
500 °C for ~90 min in a muffle furnace to remove organic
material. An aliquot of ~40 mg was weighed into a 0.5 ml
conical plastic centrifuge tube. 50 ul of 6NHCI was added to
dissolve carbonates, followed by 450 ul of Sodium Polytung-
state (SPT) (Nay,(H,W,WO,,)H,0) with a density of 2.4 g/
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ml to concentrate the phytoliths. The solution was sonicated
for 5 min then centrifuged for 5 min at 5,000 RPM. Micro-
scope slides were mounted with 50 ul of the supernatant,
which represents 10% of the total number of phytoliths in
the initially weighed sample and enabled quantitative com-
parisons between samples. A minimum of 200 phytoliths
with diagnostic morphologies were counted per sample in
a known number of fields (between 10 and 50) based on
the counting method outlined by Katz et al. 2010. Three or
more conjoined cells are counted as multicells and the indi-
vidual cell morphologies noted to identify the plant type or
part it originated from. Each multicell was counted as one
phytolith and combined with the single cell count to reach
200 phytoliths. Numbers of phytoliths were related to the
initial weight of material to provide an estimated number of
phytoliths per gram of sediment. Phytoliths were counted
using a Leica DMEP optical microscope at x200 magnifica-
tion and x400 for further morphological analysis. Digital
images were recorded using a Leica DFC420 camera and
DMPL optical microscope.

Phytolith morphologies were identified using standard
published literature (Twiss et al. 1969; Brown 1984; Piperno
1988; Mulholland and Rapp 1992; Rosen 1992; Fredlund
and Tieszen 1994; Stromberg 2004; Neumann et al. 2019),
the PhytCore online (Albert et al. 2016) and the University
of Reading phytolith reference collection. Nomenclature
used within this study follows the most recent International
Code for Phytolith Nomenclature, ICPN 2.0, (Neumann
et al. 2019) where possible, particularly for geometric mor-
phologies. Modern reference studies (Albert et al. 2003,
2008; Tsartsidou et al. 2007; Portillo et al. 2014) were
referred to for the interpretation of phytolith morphologies.
Key phytolith morphotypes relevant in this study and their
vegetative attributions are summarised in a Table in ESM 3,
and photomicrographs showing key morphotypes in ESM 4.
Phytoliths which could not be identified because of surface
pitting and etching caused by dissolution, were recorded as
‘degraded’ which are expressed as a % of the total phytolith
assemblage for each sample.

Comparison of charred macrofossil and phytoliths
assemblages

The charred macrofossil assemblages have been analysed
and published for six samples which came from the same
levels as sediment samples available for analysis in this
study; E402, D 59, G57, G62 and B163 (de Moulins 2000;
Hillman 2000c). Additionally, macrofossil sample B202
is compared with the sediment sample from B203, as the
levels are very close stratigraphically and represent similar
context types. As the raw count data for the charred macro-
fossils from Abu Hureyra was unavailable, the bar lengths
of the macrofossil records (de Moulins 2000; Hillman
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2000c) were measured to obtain the relative proportions
of each taxa per sample following a method similar to that
described by Colledge and Conolly (2010, p. 130). The taxa
were expressed as a percentage of the total identification per
sample. The comparison between the charred plant mac-
rofossils and phytoliths focus on Poaceae and Cyperaceae
plant families, as both of these families are visible in both
the charred and phytolith assemblages.

Results
Microfossil preservation and concentration

The soil pH in all sediments tested was between 6 and
8 (ESM 1), which is favourable for the preservation of
calcitic dung spherulites and silica phytoliths. Dung
spherulites were identified in 29 out of 36 samples ana-
lysed (Fig. 4a). Where present, concentrations of dung
spherulites ranged from an estimated 3,200 to 160,000/g
of sediment (Table 2; Fig. 4). Most of the spherulite con-
centrations were classified as “low” (1-5 spherulites iden-
tified and < 20,000 spherulites/g of sediment), although

moderate (6-15 spherulites=21,000-40,000/g sediment) and high
(16 + spherulites identified=41,000+ spherulites/g sediment) and ¢
box and whisker plots comparing individual samples from Trenches
D, Eand G

concentrations varied between trenches and time periods
(Fig. 4b). Overall, the concentrations of spherulites tended
to be higher on average in the later Period 2B (~ 33,509
spherulites/g of sediment, present in 18 out of 21 sam-
ples), compared with Period 2 A (~ 12,166 spherulites/g of
sediment, present in 9 out of 11 samples). However, when
Period 2B is separated into Trenches E and G, this trend
is less apparent (Fig. 4c), as spherulite concentrations are
relatively low and comparable between the samples from
Period 2A, Trench D (~ 7,935 spherulites/g of sediment,
present in 5 out of 7 samples) and Period 2B, Trench G
(~ 16,160 spherulites/g of sediment, present in 3 out of 5
samples). Faecal spherulites were present in much higher
concentrations in the samples from Period 2B, Trench E
(38,931/g of sediment, present in 15 out of 16 samples).

Phytoliths were identified in all material analysed in this
study, though the estimated number of phytoliths per gram
of sediment varied considerably between samples from an
estimated 310,000 to 7,000,000 phytoliths/g of sediment
(Fig. 5a; Table 2). Phytoliths no longer identifiable due to
surface pitting and etching, classified as “degraded”, were
also present in all samples and made up between 1 and
33% of the total phytolith assemblage (Table 2).
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Fig.5 a Bar graph showing estimated number of phytoliths per gram of sediment and b bar graph showing relative proportions of phytoliths

from grasses, sedges, dicots and degraded phytoliths

All assemblages were dominated by phytoliths from
monocots, particularly grasses (Poaceae) (Fig. 5b). Most of
the grasses which were likely derived from C; Pooid grasses,
based on the prevalence of grass silica short cells (GSSCPs)
RonDELs, CRENATES and TRAPEZIFORMS, but most samples also
contained GSSCP cells most likely derived from Panicoid
grasses (GSSCP BiLoBaTes and PoLyLoBaTES) (Fig. 6a). Phy-
toliths diagnostic of sedges (Cyperaceae) were identified in
15 out of the 36 samples analysed (Fig. 5b). Grass phytoliths
were derived from stems, leaves and inflorescences, although
the proportions of each varied between samples (ESM 2).
Plant parts represented by grasses were further explored by
calculating the percentage of single and multicell phytoliths
which were ELONGATE DENDRITICS which are diagnostic of
grass husks (Fig. 6b). All of the samples analysed included
some phytoliths most likely derived from woody or herba-
ceous plants which included phytoliths from the wood/bark
as well as dicot leaves (Figs. 5a and 6¢).

Particularly in SW Asia, multicell phytoliths often pro-
vide an opportunity to identify plants, particularly grasses
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and sedges, to a higher taxonomic resolution (see Table in
ESM 2). Although some multicell phytoliths (3 or more cells
in anatomical connection) were present in all of the samples
analysed in this study and made up between 1 and 20% of the
total phytolith assemblage (Table 2), the capacity to provide
additional taxonomic resolutions was relatively low. All phy-
tolith multicell count data is available in ESM 3. The results
of the spherulite and phytolith analysis are summarised by
time period and trench below.

AH 1—trench E

Faecal spherulites were identified in E55.31 and E402.14,
however, only a single Spherulite was counted in each sam-
ple, equating to ca. 3,200 Spherulites/g of sediment (Table 2;
Fig. 4). All three Epipalaeolithic samples had relatively high
concentrations of phytoliths, 1.6 to 2.6 million/g of sedi-
ment (Table 2; Fig. 5a). Phytoliths which were degraded and
exhibited surface pitting and etching, and no longer identifi-
able, were classified as “degraded”, and made up between
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Fig.7 Summary of the relative percentages of key phytolith multicells identified, grouped by key time periods and trenches

3 and 17% of the total phytolith assemblage in the Epipal-
aeolithic samples (Table 2). Phytoliths most likely derived
from grasses (Poaceae) made up between 72 and 93% of the
phytolith assemblages (Fig. 5b). All three samples contained
a mixture of different grass types; Pooids, Panicoids and
Chloridoids, based on the GSSCP morphologies (Fig. 6a).
E55.31 had slightly higher proportions of GSSCP BILOBATES
and PoLyLoBATES usually associated with Panicoid grasses
(12%), compared with GSSCP RonDELS, CRENATES and Tra-
PEZIFORMS, commonly associated with Pooid grasses (9%).
E435.15 and E402.14 had slightly higher proportions of
GSSCP cf. Pooid grasses (Fig. 6a). GSSCP SADpDLE phy-
toliths made up a relatively low proportion of the phytolith
assemblage (<3.5%) in all three samples (Fig. 6a). In all
three samples, phytoliths had originated from the stems,
leaves and inflorescences (ESM 3). The proportion of
ELONGATE DENDRITIC phytoliths usually formed in the husk
has been calculated and shows E55.31 had a relatively high
proportion of ELONGATE DENDRITIC phytoliths, >50% single
cells; >75% multicells, (Figs. 6b and 7).

Sedge (“hat shape”) phytoliths were present in E55.31
and E402.14 and made up 1 and 2% of the total phytolith
assemblage respectively (Fig. 5b). The relative proportions
of single and multicell sedge type phytoliths and BuLLIFORM
FLABELLATE phytoliths cf. reeds (Phragmites sp.) (Chen et al.
2020) were combined to provide an indicator of wetland
plant resources and made up between ~ 3 and 11% of the
total phytolith assemblage, however no other silica microfos-
sils which are also commonly associated with more moist
conditions (diatoms and sponge spicules) were identified in
any of the samples (ESM 1).

The phytoliths identified from dicots were derived from
both dicot leaves and dicot wood/bark (as defined by the
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morphotypes in Albert et al. 2003), in relatively equal pro-
portions (Fig. 6¢).

AH 2A—trench B

Faecal spherulites were identified in both samples, with
a relatively high concentration (48,000/g of sediment in
B203.99, 6% of which were darkened (Table 2), indicating
burning temperatures between 500 and 800 °C (Canti and
Nicosia 2018; Portillo et al. 2020).

Most phytoliths identified were indicative of grasses
(Poaceae), which made up 76 and 65% of the total phyto-
lith assemblages (Fig. 5a). Based on GSSCP morphologies,
Pooid grasses were most common in both assemblages
(~12%), but B203.99 also had a relatively high proportion
of cf. Panicoid grasses (9%). No GSSCP SappLEs were iden-
tified in B163.71 and made up less than 1% of the phyto-
lith percentage in B203.99. The proportion of single and
multicell ELONGATE DENDRITIC phytoliths as a percentage of
elongate is much higher in B203.99 (~40-49%), compared
with B163.71 (~ 12%) (Fig. 6b).

Although no phytoliths diagnostic of sedges were identi-
fied in either Trench B sample, BULLIFORM FLABELLATES cf.
reeds made up 5 and 12% of the phytolith assemblages in
B203.99 and B163.71, providing an indicator of wetland
type vegetation, along with a low number of diatoms which
were present in B203.99 (ESM 3).

Of the phytoliths likely derived from dicots, both Trench
B samples had slightly higher proportions of dicot leaves,
compared with phytoliths from the wood/bark (Fig. 6c¢).
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AH 2A—trench D, phase 4

Faecal spherulites were present in seven of the Trench D
sample in varying concentrations (Table 2; Fig. 4). Two
of the samples, D54.71 and D59.84, contained darkened
spherulites indicative of higher burning temperatures
(Table 2). The majority of phytoliths identified were indica-
tive of grasses, 61 to 82% of the total phytolith assemblage
(Fig. 5b). Based on GSSCP morphology, Pooid grasses were
most common, although all sample also contained some
GSSCP BirLoBates and PoLyLoOBATES indicative of a Pani-
coid grass origin, 0.4 to 8.5%, (Fig. 6a). GSSCP SADDLES
were present in five of the samples, and made up less than
3% of the phytolith assemblage (Fig. 6a). The proportions of
ELONGATE DENDRITIC phytoliths varied considerable between
samples, ~ 15-50% of single cells and 4 to 52% of multicells
(Fig. 6b).

Sedge phytoliths were present in four of the Trench D
samples and made up between 1 and 5% of the total phy-
tolith assemblage. Combined with BULLIFORM FLABELLATE
phytoliths, all of the samples contained some wetland plant
indicators, which ranged from ca. 7 to 17% of the total phy-
toliths assemblage (ESM 3). Diatoms were present in five
of the samples, two of which also contained sponge spicules
(ESM 1).

Dicot phytoliths made up between 9 and 36% of the
total phytolith assemblage (Fig. 5b), although the propor-
tions of dicot leaves derived from the leaves compared with
the wood/bark varied considerably between the samples
(Fig. 6¢).

AH 2B—trench A

No spherulites were identified in A207.64 (Fig. 4), although
some other microfossils were observed in cross polarised
light, such as starch grains, these were not quantified. The
phytolith concentration was relatively low (680,000/g of sed-
iment), though as it is possible the mudbrick was enhanced
with some kind of vegetative temper, the phytoliths should
be considered related in some way to anthropogenic input,
rather than a true reflection of non-anthropogenic soils in
the local environment.

AH 2B—trench E, phases 4-7

Faecal spherulites were identified in all but one of the sam-
ples (E268.79) in varying concentrations, from 3,400 to
134,000/g of sediment (Fig. 4). Nine of the samples also
contained darkened spherulites indicative of higher tempera-
ture burning (Table 2).

The majority of phytoliths in all assemblages were
derived from grasses (Poaceae), however, the proportions
varied considerably between samples from 44 to 90%

(Fig. 5b). Similarly, to the material analysed from other
trenches, GSSCP RoNDELs were most frequently observed
indicating the dominance of Pooid grasses in the assem-
blage, except in sample E344.143 which has a higher pro-
portion of GSSCP cf. Panicoids (~20% compared with 8%
GSSCP cf. Pooids) (Fig. 6a). The percentages of both single
and multicell ELONGATE DENDRITIC phytoliths varied consider-
ably between samples (Fig. 6b). Both E344.143 and E268.79
had particularly high proportions of multicell ELONGATE DEN-
DRITIC phytoliths from grass husks (Fig. 6b).

Phytoliths diagnostic of sedges were present in four of
the Trench E Neolithic samples, and made up 1 to 2% of the
total phytolith assemblage (Fig. 5b). Combined with Bur-
LIFORM FLABELLATE phytoliths, wetland plant indicators were
present in all samples and varied between ~ 3 and 14% of the
total phytolith assemblage, the lowest proportion represented
in the hearth base sample E39.33 (ESM 3). Other microfos-
sil indicators of more moist conditions included diatoms,
which were present in six of the samples, four of which also
contained sponge spicules. Interestingly, the presence of dia-
toms and sponge spicules wasn’t related to the presence of
sedges or reeds (ESM 3).

Corresponding to the differences in the proportion of
grass phytoliths between samples, the proportions of dicot
phytoliths also varied, and made up between 8 and 28% of
the total phytolith assemblage, with both the lowest and
highest proportions from external ashy occupation residues
(Fig. 5b). The samples with higher overall proportions of
dicots tended to also have higher proportions of dicot wood/
bark compared with dicot leaves (Fig. 6¢).

AH 2B—trench G, phases 1-3

Faecal spherulites were identified in three out of five of
the Trench G samples analysed, in low to moderate con-
centrations, 20,000 to 37,000/g of sediment, two of which
also included darkened spherulites (Table 2; Fig. 4). Sig-
nificantly, G67.35 from the fire pit contained no faecal
spherulites.

The material from Trench G is characterised by relatively
low concentrations of phytoliths, 310,000 to 460,000/g of
sediment, compared with the other material analysed in this
study (Fig. 5a). Similarly to the material from Trenches D
and E, grasses made up 61 to 76% of the total phytolith
assemblage (Fig. 5b). GSSCPs indicative of Pooid grasses
made up between ~2 and 17% of the total phytolith assem-
blage, and in all samples except for G18.9 and G24.15 were
more frequent than GSSCPs indicative of Panicoid grasses
(Fig. 6a). No GSSCP SappLEs were identified in any of the
Trench G samples (ESM 3). The percentage of single cell
ELONGATE DENDRITIC phytoliths varied from ~ 7 to 31%, and
0 to 33% for multicells.
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Sedge “hat shape” phytoliths were present in all of the
samples analysed from Trench G and made up between 1
and 7% of the total phytolith assemblage (Fig. Sb, ESM 3).
Combined with BULLIFORM FLABELLATE phytoliths, wetland
indicators made up between ~ 5 and 21% of the total phyto-
lith assemblage (ESM 3).

Phytoliths from dicots made up between 13 and 29%
of the total phytolith assemblage, which included slightly
higher proportions of phytoliths from the wood/bark com-
pared with dicot leaves (Figs. 5b and 6c).

Comparison with macros

Charred macrofossils have been analysed and published for
five of the same contexts as phytoliths have been analysed
from in this study; E402, D59, G57, G62 and B163. In addi-
tion, the charred macrofossil assemblage from B202 is com-
pared with the phytolith assemblage from B203, as these
contexts are closely related stratigraphically and are similar
in terms of context and deposit type. The integration of both
phytolith and charred macrofossil records from the same
assemblages enables this study to investigate how plants are
represented in these two different proxies at Abu Hureyra.

Faecal spherulites were observed in all five of the samples
with corresponding charred macrofossil samples, although
in some cases the concentrations were very low (Fig. 8).

The relative proportions of grasses (Poaceae) were con-
sistently higher in the phytolith assemblages compared with
the charred macrofossil record for all samples. In fact, sam-
ples with high relative proportions of grasses in the phytolith
assemblages tended to have relatively lower proportions of
grasses in the charred macrofossil assemblages.

Sedges (Cyperacaeae), where present, make up low pro-
portions of the overall plant assemblages in both the charred
macrofossil and phytolith records. Where sedges are present
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in the macro botanical record, they are not identified in the
phytolith record and vice versa in this study, with the excep-
tion of E402, where sedges are present in both.

The Abu Hureyra charred plant macrofossil assemblages
are characterised by exceptionally high relative proportions
of small-seeded grasses and legumes, interpreted as weeds of
agriculture, and evidence of an increased reliance on domes-
ticates as the Neolithic developed. Small-seeded legumes of
the tribe Trifolieae, particularly clovers and medicks, make
up over 50% of the charred macrofossil assemblage in all
of the above samples except for B163 where the amount is
~20%.

Interpretation and discussion
Dung at Abu Hureyra

The identification of faecal spherulites across the majority
(80%) of samples within this study indicates that ruminant
dung was both present throughout the occupation of Abu
Hureyra, and in places, ubiquitous. A similar conclusion was
drawn by Smith et al. (2022) through the identification of
faecal spherulites from flotation residue dust, which ana-
lysed a different set of samples. Combined therefore, these
two studies highlight the need to consider dung as a potential
depositional pathway for charred plant macrofossils at Abu
Hureyra.

Dung in the Epipalaeolithic at Abu Hureyra

Due to the limited number of sediment samples available
for analysis from the Epipalaeolithic period of occupation
at Abu Hureyra, this paper, focuses on dung use during the
Neolithic periods 2A and 2B. However, given the histori-
cal significance of the debate on the use of dung fuel at
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Epipalaeolithic Abu Hureyra (Miller 1996; Hillman et al.
1997), and the new data suggesting, by Period 1C, people
were keeping small numbers of animals on site and using
their dung as fuel (Smith et al. 2022), the threes samples
analysed from AH 1, are briefly discussed.

Two of the Epipalaeolithic flotation residue samples ana-
lysed by Smith et al. (2022) correspond to sediment sam-
ples analysed from the same levels in this study, E55.31 and
E402.15. The positive identification of faecal spherulites in
material from the same contexts from both studies corrobo-
rates the results. It is beyond the scope of this paper to quan-
titatively compare the results for the two methods employed
for identifying faecal spherulites, however, a comparison of
the two techniques, and integration of the results will be a
valuable future study.

Dung in the PPNB at Abu Hureyra

The study by Smith et al. (2022) identified an increase in
dung in Neolithic Period 2A compared with the preceding
Epipalaeolithic. Similarly, the presence of dung spherulites
in 9 out of 11 of the samples analysed from Period 2A in
this study, corroborates the findings of Smith et al. (2022).
Between Periods 2A and 2B, Smith et al. (2022) observe
a decrease in spherulites in flotation, which they attribute
to changes in animal management practices whereby as
the numbers of domesticated animals increased, they were
herded or kept further from the site. In contrast, this study
identified a slight increase in spherulite concentration in
Period 2B, particularly when comparing external areas from
Trench D, Period 2A, compared with Trench E, Period 2B.
Although Trench G samples from Period 2B, also have a
slightly high concentration of spherulites than Trench D, the
difference is negligible compared with the Trench E sam-
ples which have much higher concentrations of spherulites
(Fig. 4).

A possible reason for the increase in spherulite concen-
trations identified in this study between periods 2A and 2B
could be because of the increase in domesticated animals
identified in the archaeozoological record (Legge and Row-
ley-Conwy 2000). The increase in domestic animals would
have increased the availability of a reliable and constant
source of dung, whether collected on or offsite. The presence
of faecal spherulites in non-pyric features, particularly in
external areas in Trenches D and E, representing Periods 2A
and 2B, could suggest the continued presence of live animals
kept on the site during both periods. Even a small number
of live animals kept within the site could have generated
a significant amount of waste. Dung may have been burnt
to reduce noisome odours, which would have also reduced
opportunities for zoonotic diseases to spread. Dung may
have been harvested for its favourable burning properties.

A study by the author (Dudgeon 2023) has identified fae-
cal spherulites in gypsum floor plasters from PPNB Periods
A, B and C at Abu Hureyra, in samples from Trenches B, D
and E. While the study found some variations in the concen-
trations of spherulites, all of the analysed plaster fragments
contained very high concentrations (100,000-1,300,000
spherulites/g of sediment) compared to the sediment sam-
ples, indicative of the significant and routine input of dung
in plasters throughout the occupation of PPNB Abu Hureyra.
Therefore, it seems unlikely that the use of dung fuel
decreased in Period 2B based on a decrease in convenience
or availability if significant quantities of dung were being
used routinely in plaster manufacturing. At Agikli Hoyiik, it
has been argued that accumulations of dung between build-
ings encouraged dung to be recycled and incorporated into
construction material (Stiner and Kuhn 2016). In Trench E,
between phases 5 and 6, the external space between houses
was increased, and a narrow channel is formed, hypothesised
to have been created by animals led through the site (Moore
et al. 2000). The relatively high concentrations of dung
spherulites in external areas from phases 5 and 6, support
this hypothesis, and suggest that even if animals were not
kept on site, they may have regularly been led through. The
presence of faecal spherulites in bulk samples, not specifi-
cally targeted as dung deposits, indicates dung was likely
accumulating in external activity areas between buildings,
and therefore might have been a factor in the use of dung in
plaster manufacturing at Abu Hureyra (Smith et al. 2022;
Dudgeon 2023).

As argued by Hillman et al. (1997), it is clear wood was
routinely and frequently used as a fuel, based on the abun-
dance of wood charcoal. The use of dung as a supplemental
fuel has been suggested by the presence of dung spherulites
from pyric features by Smith et al. (2022). The identification
of dung spherulites in a Period 2B hearth base (E39.33) in
this study, also points to the use of dung fuel or the burning
of dung for other reasons. The absence of dung spherulites
in a fire spot from Trench G, also assigned to period 2B,
in this study, may suggest that dung burning practices var-
ied across the site and may have fluctuated over time scales
not perceptible in the archaeological record, perhaps even
reflecting different seasons where animals were kept closer
or further from the site. Variations in floor plaster compo-
sition (Dudgeon 2023) tentatively suggest household level
selection of specific manufacturing practices. Similarly, the
variations in the use of dung fuel in pyric features identified
by Smith et al. (2022) and in this study, could also suggest
that the selection of dung to supplement fuel could have
been a choice specific to different households within the
community. At Catalhdyiik, for example, variations in plant-
use are observed at a household level (Bogaard et al. 2017),
and variations in mudbrick composition have also been
attributed to differing recipes which reflect human agency
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and selection at a household level (Love 2012). It is possible
that at Abu Hureyra, as a site of a similar period and scale,
there too, were opportunities for households to experiment
and express individual preferences through fuel selection.

The presence of ruminant dung in all of the samples com-
pared with the charred macrofossil records in this study,
which also contain high proportions of weed seeds could
indicate that some of these seeds were deposited by animal
dung, which was either burnt as fuel or as a waste man-
agement strategy. It is particularly important to consider
changes in the relative abundance of possible weed seeds,
in light of the confirmation of at least a background faecal
component of dung across the site, including some burn-
ing of dung, as attested by the presence of spherulites in
pyric features (Smith et al. 2022 and this study). Changes in
proportions of potential weed-seeds, which have been inter-
preted as an intensification of the use of domestic crops,
could in fact represent fluctuations in animal populations
moved on/off or around the site if some of the seeds were
deposited by animal dung.

Environment and plant use at Abu Hureyra

All of the phytolith assemblages were dominated by phyto-
liths derived from monocots, specifically, grasses (Poaceae),
but with some sedges (Cyperaceae) or other indicators of
more moist environments in all samples, as well as phyto-
liths derived from the wood/bark and leaves of dicots. The
variety of morphologies present in each sample attest the
heterogeneous nature of the sediments analysed, which, col-
lected as bulk samples likely included plant input from a
number of depositional events. Similarly to at Abu Hureyra,
ashy phytolith assemblages identified at Sheikh-e Abad and
Jani in the Central Zagros also exhibit highly variable com-
positions of phytolith morphotypes within each sample,
though all ashy samples are fairly similar to one another
(Shillito and Elliott 2013, p. 197, Fig. 16.9).

The charred macrofossil assemblages were dominated
by dicot plants while monocots dominated the phytolith
assemblages (Fig. 8). One of the factors contributing to this
contrast is that monocotyledon plants produce up to 20 times
more phytoliths than dicots, which are therefore underrepre-
sented in the phytolith record (Albert et al. 2006; Tsartsidou
et al. 2007). Another significant factor is that archaeological
charred plant remains are dominated by fuel and burnt stor-
age contents (Hillman 1981) while phytoliths represent a
broader set of plant uses (Table 1). In addition, dicot wood
and bark, which may be used for fuel, can be contaminated
by up to 40 or 50% by airborne particles which land on the
bark (Albert et al. 2003; Tsartsidou et al. 2007). While both
the charred macrofossil and phytolith assemblages were
sampled from the same contexts, the methods of recovery
and sampling strategy were different, and therefore represent
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different plant uses and depositional pathways. The flot frac-
tions at Abu Hureyra were recovered in a 1 mm mesh and
heavy residues in a 3 mm mesh (Moore et al. 1975, p. 55),
though modern standards generally use a 0.25 mm mesh to
ensure the recovery of all small-seeded grasses, legumes
and chaff (Asouti et al. 2018, p. 25). Furthermore, phytolith
representation can vary significantly within a single context
(Zurro et al. 2009), which is a consideration in this study,
as phytoliths were extracted from bulk samples, and are
therefore unlikely to be representative of the whole con-
text. The parts of the plants represented are also different
in the charred macrofossil assemblage compared with the
phytolith assemblage, which may represent different uses of
different plant types. For example, although Pooid cereals
tend to produce high numbers of phytoliths; experimental
studies have shown phytoliths to be absent or very low in
number in the cereal grains (Tsartsidou et al. 2007, p. 1,268,
Fig. 2e). Therefore, the cereal grains themselves, identifed
in the charred macrofossil assemblage at Abu Hureyra (de
Moulins 2000, p. 400) are not necessarily synomonous with
high numbers of phytoliths.

Samples with higher proportions of dicot phytoliths,
especially those derived from the wood/bark, tended to be
from ashier samples with higher proportions of charcoal.
This material likely reflected wood burnt as fuel, consistent
with the abundant wood charcoal from Abu Hureyra, which
made up ~90% of all identified charred remains (Hillman
et al. 1997). Where present it is common for charcoal to
make up high proportions of charred assemblages compared
with other charred plant remains (e.g. seeds/chaff). The con-
sistent presence of dicot phytoliths (Fig. 5b), despite being
lower phytolith producers (Albert et al. 2003, p. 470; Tsartsi-
dou et al. 2007), attests the importance of woody vegetation
alongside grasses and wetland resources. This is supported
by the charred macro-fossil record and charcoal records (de
Moulins 2000, pp 399-416; Hillman 2000a, c, pp 341-348;
Roitel and Willcox 2000, p. 545).

During the Early Holocene from ca. 9700 cal Bc (11,650
cal Bp), woodland gradually expanded as a result of
increased precipitation and rapid warming (Roberts et al.
2018, p. 49). By period 2A, ~ 8600 cal Bc (10,550 cal
BP), regional vegetation reconstructions and charred plants
in occupation deposits suggest woodland resources were
abundant (de Moulins 2000). Dicots make up an average
of 11.8% of the phytolith assemblage during this period,
a very slight increase from the proportions of dicots rep-
resented in the AH1 samples (Fig. 5b). This could be a
reflection of the increasingly wetter conditions in the
region, demonstrated by the decrease in 8'%0 isotopes
from Lake Zeribar (Stevens et al. 2001) and Lake Van
(Wick et al. 2003; Kwiecien et al. 2014). However, more
likely, this reflects the compositions of the bulk samples,
which contained more fragments of charcoal. A climate
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anomaly resulting in cooler, drier conditions across much
of the Middle East occurred at 7250 cal Bc (~ 9,200 cal
Bp) (Fleitmann et al. 2008), although its impact was varied
(Flohr et al. 2016). There were no significant changes in
the types of vegetation identified in the phytolith record
in this study between Periods 2A and 2B which represent
occupation prior to and following the cooler, drier condi-
tions which occurred at about 7250 cal Bc. However, it
could have driven the intensification of already practiced
cereal and animal agriculture, resulting in the more wide-
spread agricultural practices in Abu Hureyra 2B compared
with period 2A.

Based on GSSCP morphologies, grasses from the Poo-
ideae sub-family, associated with temperate climates (Twiss
1992, pp 115-116) were the most ubiquitous. This is consist-
ent with the charred macro botanical record at Abu Hureyra
where Pooideae grasses, including cereals; wheat, barley and
rye, have been identified (de Moulins 2000, pp 399-416;
Hillman 2000a, c, pp 341-348).

GSSCP BiLoBATES are most commonly formed in Pani-
coid grasses (Twiss et al. 1969), however, do also form in
other grass sub-families, and in some cases can be distin-
guished based on their three-dimensional shape and mor-
phology (Neumann et al. 2019). GSSCP BILOBATES are occa-
sionally produced in Pooid grasses, particularly in Stipa sp.,
however, tend to be more trapezoidal in cross section com-
pared with BILOBATES from in Panicoids which are more flat
and symmetrical (Fredlund and Tieszen 1994; Stromberg
2004, p. 258, Fig. 4h). BiLoBaTEs formed in the Aristidoideae
and Arundinoideae families on the other hand, tend to have
longer, more slender shafts, with convex or “Saddle” like
lobes in contrast to the larger, straight or semi-rounded lobes
and short, wider shafts typical of BiLoBaTEs which form in
Panicoid grasses. The BiLOBATEs in this study were therefore
typically classed as representing Panicoid grasses, except
where the morphology, as described above, more closely
represented Pooid types.

Although stands of wild grasses of the millet sub fam-
ily exist in the Middle Euphrates region today, including
torpedo grass (Panicum repens) (Moore et al. 2000, p. 72),
Panicoid grasses were much rarer during the occupation of
Abu Hureyra. In the charred macrofossil record from Abu
Hureyra, Panicoid grasses were represented by low propor-
tions of Bristle grass (Setaria sp.). In Trench B, bristle grass
was recorded in B202, which corresponds to a relatively
high proportion of Panicoid-type phytoliths inn B203 (~ 9%
of the total phytolith assemblage), compared to B163, where
bristle grass was absent from the macrofossil record and
Panicoid-type phytoliths made up less than 1% of the total
phytolith assemblage (Fig. 6a). In D59, bristle grass was
present in the charred macrofossil assemblage and Panicoid-
type phytoliths made up ~ 6% of the charred macrofossil
assemblage. In contrast, in Trench G, no bristle grass was

reported, but Panicoid phytoliths made up 5-6% in both cor-
responding samples.

Sedges, as a sub-category of monocots, where present (15
out of 36 samples in this study), made up low proportions
of the overall plant assemblages in both the charred macro-
fossil and phytolith records. Where sedges were present in
the macro botanical record, they awere not identified in the
phytolith record and vice versa in this study, with the excep-
tion of E402, where sedges are present in both. As sedges
represent a potentially important resource for a variety of
uses including building, bedding, basketry and fuel (Rosen
2005; Ryan 2011; Ramsey et al. 2017, 2018), this contrast
highlights a key value of adopting a multi proxy approach.
One reason for the identification of sedges in phytolith but
not charred macrofossil assemblages is that phytoliths do
not require burning for preservation. Sedge type phytoliths,
identified in G57, G62 and B163, but absent from the macro-
fossil assemblage were all sampled from internal occupation
residues. The sedges could therefore represent construction
material or matting which would not have been burnt and
therefore seeds and other macro plant remains would not
have been preserved.

The development of agriculture has been traditionally
associated with an increased reliance on domestic cereals
and legumes (Moore et al. 2000; Weiss et al. 2004; Savard
et al. 2006), although a more recent synthesis of archaeobo-
tanical data sets from SW Asia argues there is no evidence
for a narrowing of the diet in Neolithic agricultural societies
(Wallace et al. 2019). The relative ubiquity of dung during
the Neolithic at Abu Hureyra, requires further quantitative
assessment alongside the charred macrofossils record to
ascertain the full significance of its contribution as a depo-
sitional pathway. Preliminarily, the results presented in this
study highlight the possibility that reliance on domesticated
crops did not necessarily intensify between Periods 2A and
2B, as fluctuations in possible weed seeds could have been
deposited by domesticated animals which were herded in the
diverse surrounding environs to Abu Hureyra.

Conclusions

Abu Hureyra continues to be an important site for under-
standing the shift from forging to farming and the develop-
ment of agricultural societies during the PPNB in SW Asia.
The identification of faecal spherulites indicate than dung
was present on the site and a potential depositional pathway
for at least some of the charred plant macrofossils and phy-
toliths recovered from the site.

The conclusions from analysis of faecal spherulites from
flotation residues in a study by Smith et al. (2022) broadly
agree with the outcomes of this study of faecal spherulites
from bulk sediment samples. Both studies highlight a faecal
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presence throughout the occupation of Abu Hureyra, and
suggest the use of dung fuel, alongside wood. Minor dif-
ferences between the spherulite data in both studies could
be attributed to the analysis of a different set of samples,
which therefore represent spatial differences across the site,
context specific variations, or relate to the methodological
approaches. A quantitative and empirical comparative study,
which integrates the two approaches, is an important avenue
for research both at Abu Hureyra and at other sites across
SW Asia.

As attested in the charred macrofossil assemblage, the
phytoliths also indicate that the inhabitants of Abu Hureyra
made use of the rich resource base, including park wood-
land, steppe grasslands and the valley bottom, which was a
likely a factor which contributed to the longevity of the site
over several millennia and through periods of climate fluctu-
ations. The presence of ruminant dung in samples with high
proportions of small-seeded grasses and legumes, classified
as weed seeds, requires further investigation, as some of the
possible weed seeds, could be derived from animal dung and
therefore represent changes practices in animal management
rather than the intensification of domestic crops.
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