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ABSTRACT: Reptiles, squamates in particular, can be extremely valuable as indicator species due to their
commonly small fundamental niche ranges. Yet these taxa are often overlooked in North American Cenozoic
palaeoecological studies in favour of mammalian specimens. At the Coyote Canyon Mammoth Site (CCMS) on the
Columbia Plateau (eastern Washington State, USA) excavation has focused on the collection and subsequent
identification of all diagnostic fossil specimens, whether associated directly with the mammoth remains or not,
including small non-mammalian vertebrates and invertebrates. Here we show that with appropriate excavation
techniques, microvertebrate fossils are recoverable and can be identified to at least the genus level. We place the
identification of two fossils of Phrynosoma at the CCMS, dated to ~13 and 15 ka, in the context of all recorded fossils
identified to this genus in North America since the Middle Miocene. These specimens represent the first fossils of
Phrynosoma adequately described and reported from the Columbia Plateau and the greater Pacific Northwest.

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction

There is a growing appreciation of the value of using
palaeoecological proxies to aid in modern conservation
efforts for various species (Jackson, 2007; Gillson, 2015, 2021;
Jackson and McClenachan, 2017; Gillson and Ekblom, 2020;
Djamali and Segarra-Moragues, 2021; Dirk, 2022). It is now
widely recognized that the current global biodiversity crisis is a
direct result of anthropic influences (Begum et al., 2022).
However, conservation efforts typically rely on ecological
studies encompassing a few decades (Foster et al., 1990;
Birks, 2012; Meadows, 2012; Seddon et al.,, 2013) to
determine the impact these alterations have on an ecosystem
(Foster et al., 1990; Birks, 2012).

The melding of ecological conservation and palaeoecology
provides the opportunity to study species abundance, composi-
tion and richness in assemblages over temporal scales ranging
from 100 years to over 100 000 years in regions exhibiting the
absence of modern anthropic influence. Such data provide the
opportunity to study dynamic fluctuations in species composition
at specific locations and biological responses to climatic shifts
over varying spatial, temporal and taxonomic scales (Gillson and
Ekblom, 2020; Blanco et al., 2021; Djamali and Segarra-
Moragues, 2021; Gillson, 2021; Goodenough and Webb, 2022).
Although the practical use of palaeoecological data in modern
conservation biology is sound (Foster et al., 1990; Bennington
et al., 2009; Willis et al., 2010; Gillson, 2015; Jackson and
McClenachan, 2017), the link between the two is currently weak.
One reason for this lies in the temporal, spatial and taxonomic
resolution being too coarse (Birks, 2012), with certain taxonomic
groups (e.g. mammals) being the focus of study and others often
ignored or overlooked. For example, in the Pacific Northwest,
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reptile fossil remains from the Pleistocene have received little
attention compared to their mammalian counterparts (Martin
et al., 1983; Rensberger et al., 1984; Spencer, 1989; MacEachern
and Roberts, 2013; Bader et al., 2016).

Late Pleistocene reptile responses to climate
change in North America

The Late Pleistocene (126-12 ka) experienced both glacial and
interglacial periods (Rasmussen et al., 2014; Ehlers et al., 2016).
Such temperature fluctuations would have put pressure on
existing biota requiring them to disperse and/or adapt to
these changes (Hewitt, 2003) or risk extirpation (Hadly and
Barnosky, 2017).

Holman (1995) researched reptile species’ responses to
Pleistocene climate changes by studying 170 Pleistocene sites
in the USA, distributed within eight regions; however, none
were within the Pacific Northwest.

Southeastern Washington palaeontolgical studies

A commonality amongst palaeontological research sites located
in the Columbia Plateau region, southeastern Washington State,
USA, is the focus on the identification of mammalian fossils to the
level of genus or species using recovered skeletal (Martin
et al, 1983; Rensberger et al., 1984; Spencer, 1989; Bader
etal.,, 2016; Last et al., 2022) and ichnological trace (MacEachern
and Roberts, 2013) material, along with invertebrates (O’'Geen
and Busacca, 2001), and vegetation (Blinnikov et al., 2002). If
reptile fossils were recovered, taxonomic identification would
only go as far as placing them within Reptilia (Bader et al., 2016),
Serpentes or Squamata (Rensberger et al., 1984).

Taxonomic classification beyond class is not a common practice
due to a scarcity of reptile remains in museums and universities for
comparative purposes (Olsen, 1968), and the personal collection
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of comparative specimens poses an ethical dilemma due to the
sensitive nature of reptile conservation efforts (Olsen, 1968;
Holman, 1995; Broughton and Miller, 2016). Additionally, the
under-representation of such animals in North American archae-
ological sites does not lend itself to collections of reptiles
compared to mammals (Lyman, 1994; Broughton and Mill-
er, 2016); however, we note that the latter may be a consequence
of inadequate or inappropriate sampling techniques or research
focus rather than a true absence of reptile faunal material.

For various reasons, the methods of excavation and recovery are
rarely standardized across palaeontological sites. For example, the
volume of bulk sample excavation is often arbitrary unless a
concerted effort is made to sample to the point at which recovery
leads to redundancy (Lyman, 2008). A common practice in the
recovery of organics relies on surface prospecting (Martin
et al., 1983; Barnosky et al., 2004; Rogers et al., 2010) and,
possibly, filtering excavated material using a mesh screen of a
specific size (Barnosky et al., 2004; Rogers et al., 2010). By its very
nature, the screen mesh size results in a bias towards recovering
organics too large to pass through the screen (Nagaoka, 1994;
Shaffer and Sanchez, 1994; Nagaoka, 2005). Hence, if no or
minimal search effort is expended on checking the material that
passed through the smallest mesh size, the remains of organisms in
these smaller size categories will not be recovered. Depending on
the taphonomic processes, the number of skeletal bone elements
available for identification may be limited (Nagaoka, 2005; Su and
Croft, 2018). Additionally, some taxonomic groups (e.g. reptiles
and amphibians) only have a few diagnostic skeletal elements that
can be used for identification to the species level (Lyman, 2008).
Therefore, the screen mesh size may prove crucial for recovering
rare species and skeletal remains that allow for precise taxonomic
identification. Greater precision in identification allows for the
interpretation of ecological characteristics such as relative
abundance, modes of life, feeding types, population dynamics
and trophic interactions (Kowalewski, 2017), which are valuable
metrics for conservation purposes (Hadly and Barnosky, 2017;
Diele-Viegas and Rocha, 2018).

The value of palaeo-reptile proxies for modern
conservation

Reptiles are useful indicators of environmental change
because they commonly have low individual body mass (e.g.
mean body mass for North American lizards <200 g; Olalla-
Tarraga et al., 2006) and small home ranges coupled with high
reproductive efficiency. These factors also make them im-
portant components of modern and palaeo food webs
(Valencia-Aguilar et al., 2013; Hocking and Babbitt, 2014).
In present-day ecosystems, reptiles provide a range of direct
and indirect ecosystem services that impact human well-being
on a global scale, including food consumption, medicines,
control of disease-carrying invertebrates and agricultural pests,
and cultural relevance. Despite their ecological importance
and utility as indicators of ecosystem change, the impact of
glacial cycles on reptiles has received relatively little attention.
In this study we focused on the identification of reptile
remains recovered from a fossil site on the Columbia Plateau
(Washington State, USA) dated to the Late Pleistocene. Our
primary objective was to determine whether sufficiently
detailed excavation techniques would generate reptile fossil
material that could be identified beyond class or order, and
preferably to genus and/or species level. If this objective was
met we would follow up by placing the fossils within the wider
context of other published North American specimens at the
same level, thus providing valuable palaeontological data for
reptile conservationists in their efforts to better understand
these responses to current and predicted climate drivers.

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

Materials and Methods
Excavation and recovery of microvertebrates

In 2008, the discovery of mammoth bones provided an
opportunity for researchers to investigate a locale that might
otherwise have been ignored due to its atypical characteristics.
The site was very dry and sloping, not a catchment
environment or a cave shelter environment, and typically
there would have been little attention devoted to examining
any microelements. In fact, the site was only explored due to
community interest in the megafauna remains. A purposedful
decision was made (by B.R.B.) to excavate with a focus on the
collection of provenience data to provide the palaeoenviron-
mental context of microfossils and macrofossils for the site
versus merely quarrying for the mammoth elements for
museum display purposes.

This location is now known as the Coyote Canyon Mammoth
Site (CCMS) located in Benton County, Washington (46°9'31"N,
119°15’53”W), at an elevation of ~315-319 m asl (211 m above
the Columbia River; Last and Rittenour, 2021). Starting in 2010,
a palaeoecological excavation and site reconstruction was
initiated using a blend of palaeontological and archaeological
methodologies. This time and labour-intensive systematic
methodology occurs in three major stages: recovery, prepara-
tion/conservation and analysis. Recovery involves modified
standard archaeological excavation techniques, preparation
utilizes wet screening and quick drying techniques, followed
by descriptive analysis using sample sorting and picking,
microscopy, taxonomic and taphonomic analyses (Richter
et al., 2020; Supporting Information Figure S1).

A grid system at CCMS was established resulting in
13 excavation units (henceforth referred to as XUs). Each
XU’s maximum surface area measures 2 x 2 m and is divided
vertically into 10-cm spits (levels). The total volume of
matrix e>§cavated from XU1, the unit of interest here, totalled
~4.25 m”.

Chronology of the Coyote Canyon Mammoth Site

A chronology of the CCMS sediments and finds was generated
with the analysis of four optically stimulated luminescence
(OSL) ages and two accelerator mass spectrometry (AMS)
14C dates (Figure 1; Barton et al., 2012; Last and Ritte-
nour, 2021). The ages of each OSL sample are as follows
[mean = 95% confidence interval (Cl)], with depth calculated
below the maximum elevation of 319 m asl: OSL-1 (slackwater
flood deposit) collected at a depth of 4 m is 20.87 +1.12 ka;
OSL-2 (slackwater flood deposit) at a depth of 3.65 is
16.77 £ 1.32 ka; OSL-3 (loess deposit) at a depth of 2.2 m is
14.01 +1.02 ka; and OSL-4 (loess deposit) at a depth of 1.8 m
is 10.88 + 1.03 ka (Figure 1). These data were plotted to
generate a polynomial regression line of mean age to provide a
numerical dating approximation for bone elements recovered
from levels 1-35 with a maximum depth of 3.5 m (Figure 2).

Taxonomic analysis

In October 2010, XU1 level 15 was excavated and processed
following the CCMS methodologies described in Figure S1.
A year later, in April 2011, XU1 level 20 was completed. During
initial analysis of organics from these levels, one of the authors
(B.R.B.), spotted the presence of a lizard maxilla (CCMS XU1 L15
FSO21 1a), later noting its striking resemblance to a fragmented
maxilla belonging to Phrynosoma sp. in the faunal analysis of
herpetofauna recovered from the Porcupine Cave, in Colorado,
USA (Bell et al., 2004). The authors contacted Dr Christopher Bell
at the University of Texas at Austin for verification that the

J. Quaternary Sci., 1-11 (2024)

95U SUOWILLOD SAITES.D 3|cedtdde 8y} Ag pausenof afe sopilie YO 9sn JO Sa|nJ 40} Aeud 1T 8UljuO 8|1/ UO (SUOTIPUOD-PUe-SWLBI/LI0D" AB | 1M Aleid U1 |UO//SA1IY) SUONIPUOD pUe SIS | au) 89S *[7202/60/50] Uo Akeiqiauliuo (1M 891 Aq S6SE 'sbl/200T OT/Iop/woo" A9 | Alelq 1jeuljuo//:SAny o) papeoumod ‘0 LTy T660T



PHRYNOSOMA SPP. PNW FOSSIL REPORT 3

(317.3)

14.0 £1.02 ka

Loess/Reworked ’
(317.1) Flood Deposit

Calcified Slackwater ~ * . -2
Flood Deposits ~

Slackwater Flood

L Deposit
-~
Y
-~
= e
¢ OoSL*:
209 1.
B
Elevation XUA
(masl NAVDS88) Levels
3189 1
318.5
5
[] slope wash
318.0
[ Loess

317.

317.0

316.

[Z7] Loess/Reworked flood deposit

[ slackwater flood deposit

*. Phrynosoma sp. maxilla

Figure 1. (A) Elevation view of the Coyote Canyon Mammoth Site excavation (adapted from an image provided by G. V. Last, personal
correspondence, 30 August 2018). Four OSL sample ages (mean + 95% Cl) are indicated by yellow dots and yellow ‘?’ (Last and Rittenour, 2021) and
radiocarbon dating of in situ mammoth bones (Barton et al., 2012). Elevations are measured in metres (asl NAVD88) bracketed in parentheses. Green
triangles represent the elevation from which each Phrynosoma maxilla element was recovered. (B) Stratigraphy of XU1 showing elevations and
corresponding levels along with the substrate composition and levels/elevations from which each fossil maxilla was recovered. [Color figure can be

viewed at wileyonlinelibrary.com]

specimen is from Phrynosoma. Further analysis (by A.J.R.) of the
digital specimen files resulted in the preliminary identification of a
second similar lizard maxilla (XU1 L20 FS038 1c). This led to the
more robust quantitative and qualitative analyses of the two
maxilla specimens (by A.J.R.) described below.

Results
Lizard maxillae temporal resolution

The first lizard maxilla (CCMS XU1 L15 FS021 1a) was excavated
from level 15 (elevation 317.4 m asl), which is found in ‘loess’

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

(Figure 1). The CCMS OSL polynomial regression curve suggests
an approximate age (mean + 95% Cl) of this bone of ~13.2 +1.14
ka (Figure 2). The second maxilla (CCMS XU1 L20 FS 038 1¢) was
recovered from level 20 (elevation 316.9 m asl), found within
flood deposits, which were a result of the multiple glacial outburst
floods known as the late Wisconsinan Missoula Floods occurring
between 20 and 14 ka (Figure 1; O’Connor et al., 2020) and has
been similarly plotted and dated to ~15.4 +1.14 ka (Figure 2).

Taxonomic identification

Morphological variables for each lizard maxilla were identi-
fied and coded (Figures 3 and 4) similarly to Meyers et al.’s

J. Quaternary Sci., 1-11 (2024)
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Figure 2. Polynomial regression of OSL data at the CCMS locale placing Phrynosoma maxillae within the temporal context of the site. The
Phrynosoma maxillae were recovered from levels 15 (CCMS XU1 L15 FS021 Ta) and 20 (CCMS XU1 L20 FS038 1c), dating to a mean + 95% Cl
of ~13.2 + 1.14 ka (orange horizontal line and orange shaded vertical area) and ~15.4 + 1.14 ka (light blue horizontal line and light blue shaded
vertical area), respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3. Morphological variables measured for XU1 L15 FS021 1a. (A), maxilla length (ml), medial process length (mpl). (B), medial process length
(mpl). (C), anterior ascending process angle (aaa), distance between anterior and ascending process (aap), height of dentary at the most anterior tooth
(adh), ascending process height (aph), distance between foramina (dbf), length of tooth row (ltr), distance between posterior and ascending process
(pap). (D), anterior-most tooth height (ath), anterior-most tooth width (atw), longest tooth height (Ith), longest tooth width (Itw), distance between
posterior and posterior-most tooth (ppt), posterior-most tooth height (pth), and posterior-most tooth width (ptw).
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Figure 4. Morphological variables measured for XU1 L20 FS038 1c. (A), maxilla length (ml). (B), ventral side of maxilla showing the conical shape
of the teeth at the parapet. (C), distance between foramina (dbf). (D), longest tooth height (Ith), longest tooth width (ltw), distance between posterior
and posterior-most tooth (ppt), posterior-most tooth height (pth), and posterior-most tooth width (ptw).

Table 1. Morphometric measurements for XU1 L15 FS021 1a Table 2. Morphometric measurements for XU1 L20 FS038 1c
Code Description Measurement Code Description Measurement
aaa Anterior ascending process angle 135 mm aaa Anterior ascending process No data
aap Distance between the anterior 1.53 mm angle
and ascending process aap Distance between anterior and No data
aat Distance between anterior and 1.0 mm ascending process
anterior-most tooth adh Height of dentary at the most No data
adh Height of dentary at the most 0.76 mm anterior tooth
anterior tooth aph Ascending process height No data (fractured)
aph Ascending process height 2.35 mm ath Anterior-most tooth height No data
ath Anterior-most tooth height 0.35 mm atw Anterior-most tooth width No data
atw Anterior-most tooth width 0.29 mm chr Crown height range (distance 0.25-0.5 mm
chr Crown height range (distance 0.18-0.41 mm between labial edge/parapet
between labial edge/parapet and apex of tooth)
and apex of tooth) dbf Distance between foramen 0.38 mm
dbf Distance between foramen 0.6 mm Ith Longest tooth height 1.0 mm
Ith Longest tooth height 1.0 mm Itr Length of tooth row No data
Itr Length of the tooth row 4.24 mm ltw Longest tooth width 0.29 mm
ltw Longest tooth width 0.24 mm ml Maxilla length 5.11 mm (apparent)
ml Maxilla length 5.5 mm mpl Medial process length No data (fractured)
mpl Medial process length 1.4 mm nf Number of foramina 4
nf Number of foramina 22 nt Number of teeth 11
nt Number of teeth 12 pap Distance between posterior No data
pap Distance between the posterior 1.75 and ascending process
and ascending process ppt Distance between posterior 1.06 mm
pth Posterior-most tooth height 0.6 mm and posterior-most tooth
ptw Posterior-most tooth width 0.24 mm pth Posterior-most tooth height 0.65 mm
ts Tooth shape Non-cuspate, conical, ptw Posterior-most tooth width 0.24
peg-like and blunt ts Tooth shape Non-cuspate, conical, peg-

(2006) work on morphological characteristics of Phrynosoma
lizards. Morphometric measurements were recorded in milli-
metres (Tables 1 and 2).

Specimen CCMS XUT L15 FS021 1a

Compared to Hotton’s (1955) survey on the morphological
relationships of teeth for three species of Phrynosoma
(P. platyrhinos, P. cornutum and P. douglassii subsp. orna-
tissimum) and species belonging to the genera Sceloporus,

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

like with some
bulbous ends

Uta, Crotaphytus, Gambelia, Holbrookia, Callisaurus, Dipso-
saurus, Sauromalus and Ctenosaura, XU1 L15 FS021 1a is
identified as belonging to the genus Phrynosoma. In addition,
all the teeth of the maxilla are non-cuspate with crowns being
blunt, rounded and peg-like (Hotton, 1955; Holman, 1995;
C. Bell, pers. comm., 12 November 2019), with the tips of the
teeth being non-striated (Holman, 1995). The highest teeth are
found in the range from tooth number 1 to 6, and the lowest

J. Quaternary Sci., 1-11 (2024)
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are found in the tooth range from 10 to 12 (Hotton, 1955).
Hotton (1955) described all three species of Phrynosoma with
an ‘increase in crown width from anterior to posterior not
distinguishable ... Teeth set very close together in maxilla’ (p.
96), which is evident in Figure 4. Measurements from this
maxilla show a slight tooth width increase from 0.24 to 0.30
mm, anterior-most to posterior-most tooth, respectively.
Additional diagnostic characteristics include an anteroposter-
iorly shortened facial process (C. Bell, pers. comm., 12
November 2019) and the synapomorphic characteristic of a
‘triangular ascending process that terminates in a sharp dorsal
tip’ (Bell et al., 2004; p. 119).

Specimen CCMS XUT L20 FS038 1c

This fossil shows evidence of fractures on the dorsal, medial
and anterior sides thus reducing the number of morphometric
measurements available. Regardless, CCMS XU1 L20 FS038
1c shows many characteristics consistent with identification to
the genus Phrynosoma. On the lateral side, there is a large
foramen posterior to where the ascending dorsal process may
have been with a smaller foramen directly posterior (Robinson
and Van Devender, 1973). Additionally, the crowns of the
teeth are conical with several being bulbous (Robinson and
Van Devender, 1973), and all teeth being non-cuspate,
peg-like (Hotton, 1955; Holman, 1995) with no striations
(Holman, 1995) and close together (Hotton, 1955). The
crown height and the highest crown width are within the
range reported for Phrynosoma. Finally, there is no distinguish-
able difference in crown width for any of the teeth
(Hotton, 1955).

Era Series/Epoch Stage/Age ?Mg:)
Present
CCMS
0.0117
Upper/Late
0.129
JER R Middle
(e} 0.774
N
o
c
()
(@) 2.58
Pliocensa 3.600
5.333

Discussion

First identification of Phrynosoma sp. from the Late
Pleistocene of the Pacific Northwest

The two specimens reported in this work are, to our knowledge,
the first published accounts of fossil Phrynosoma in the Pacific
Northwest (specifically the area north of San Francisco Bay,
California, and west of Split Rock, Central Wyoming) throughout
the Neogene and Quaternary (Figure 5; Table S1; Oelrich, 1954;
Etheridge, 1958; Holman, 1968, 1970, 1977, 1980, 1995;
Robinson and Van Devender, 1973; Gehlbach and Holman, 1974;
Rickart, 1976; Mead et al., 1984; Rogers, 1984; Johnson, 2007;
Messing, 1986; Parmley, 1988; Devender et al., 1991; Czaplewski
et al., 1999; Mead et al., 1999; Hockett, 2000; Bell et al., 2004;
Schap et al., 2023). There are undoubtedly many such specimens
awaiting discovery and publication.

After comparing these two elements to maxillae of extant
lizard genera within this region, both lack sharply pointed
anterior teeth that curve posteriorly, as are common in species
of Elgaria, Eumeces, Gambelia, Sceloporus, Uta and Crota-
phytus. Furthermore, Gambelia and Sceloporus have posterior
tricuspid teeth (Etheridge 1958; Robinson and Van Deven-
der, 1973; Van Devender and Mead, 1978; Mead et al., 1984).
Many Cnemidophorus (now Aspidoscelis) have unicuspid
anterior teeth and tricuspid posterior teeth, with the middle
consisting of bicuspid teeth (Hollenshead and Mead, 2006).
Although the taxonomic placement for each of these elements
is consistent with belonging to the genus Phrynosoma, species
designation for each is more speculative. Accurate species-
level identification of skeletal remains may not always be
possible due to insufficient morphometric variation within a

Figure 5. Spatial extent of all published Phrynosoma fossil bone elements dating from the Miocene to ~6 ka. The blue-shaded regions covering
northern North America represent two glacial events. The darker blue represents the Last Glacial Maximum (LGM) and the lighter blue represents
ancient glaciation extent during the Brunhes Chron dating as far back as 781 ka (Ehlers et al., 2016). The timescale table is colour-coded to match the
temporal age of the locale where Phrynosoma was recovered. Elements dating from the Late Pleistocene to early Holocene are represented by both
colours. The geographical range of extant species of Phrynosoma is represented by the tan shaded area provided by www.hornedlizards.org
accessed on 29 June 2022. The star represents the two maxillae belonging to Phrynosoma recovered from CCMS. [Color figure can be viewed at

wileyonlinelibrary.com]
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genus, and this is often a recognized problem when diagnosing
skeletal elements from small reptiles (Bell et al., 2010). Modern
reptile geographical locations suggest the most likely species
for the CCMS specimens would be P. douglasii, whose current

University of Texas at Austin
Paleontology Collections
M-13064

range extends from eastern Washington to central and south-
eastern Oregon, southern ldaho, and the northern tips of
California and Nevada (COSEWIC, 2007; Figure 6). A greater
number of comparative skeletal specimens of Phrynosoma

University of Texas at Austin
Paleontology Collections
M-12708

Phrynosoma platyrhinos

Figure 6. Modern geographical ranges for the extant species P. platyrhinos and P. douglasii. Both comparative specimens are from the University of

Phrynosoma douglasii

Texas Vertebrate Paleontology Recent Skeleton Collections (used with permission). Left: P. platyrhinos (specimen number M-13064) maxilla in
medial (top) and lateral (bottom) views with geographical range shaded pink (http://www.zo.utexas.edu/faculty/pianka/phryno.html). Right: P.
douglasii (specimen number M-12708) maxilla in medial (top) and lateral (bottom) views with geographical range shaded red (https://fieldguide.mt.
gov/speciesDetail.aspx?elcode=ARACF12030). [Color figure can be viewed at wileyonlinelibrary.com]
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spp. would need to be analysed to determine whether it is
possible to identify these elements at the species level through
taxonomic analysis.

Ecological significance of Phrynosoma spp

Hotton (1955) and Meyers et al. (2006) argued that the teeth of
Phrynosoma show significant evidence of the reduction of
morphological features, e.g. shape and the number of teeth,
compared to two outlying species belonging to the genera
Uma and Callisaurus, which correlates positively with
myrmecophagy (a specialist diet of ants). It may be of interest
to conduct a wider community analysis of ant species
recovered from CCMS to potentially aid in reptile species
identification based on dietary preferences. For example, there
is evidence that carpenter ants make up a high proportion
of P. douglasii's diet in present-day central Washington
State (Meyers et al., 2006; Lahti and Beck, 2008) whereas
P. platyrhinos prefers larger members of a variety of ant species
(Newbold and MacMahon, 2009).

Extant species of Phrynosoma are located in habitats that
range from dry to semi-arid open country, with rocky and
sandy soil having low vegetation (Behler and King, 1979;
Brown et al., 1995; St. John, 2002; Stebbins, 2003), with
certain species found in vegetation ranging from grasses,
shrubs, coniferous forests and broadleaf woodland (Brown
et al.,, 1995; St. John, 2002; Stebbins, 2003; Hammer-
son, 2005). Habitat elevations range from 0 to 3400 m (Behler
and King, 1979; Munger, 2002).

Phrynosoma bioclimatic envelope
palaeoecological proxies

The Phrynosoma maxilla (CCMS XU1 L20 FS038 1c¢) is dated
to ~15.4 + 1.14 ka, whereas the second specimen (CCMS XU1
L15 FS021 1a) is dated to ~13.2 + 1.14 ka. Pollen analysis
from three sites in proximity to CCMS, Kahlotus-Pasco-1 (KP-1,
96 km, 410 m asl, 46°31'10”N, 118°37/30"W), Wildcat Lake
(~145 km, 342 m asl, 47.6045°N, 122.7668°W) and Carp Lake
(~204 km, 755 m asl, 47.1513°N, 122.5635°W), provides
estimates of the vegetation composition during the period from
21 to 9 ka (Figure 7).

The KP-1 site, which is the site closest to CCMS, and Carp
Lake are estimated to have mainly been shrub steppe prior to
16 ka (Blinnikov et al., 2002) with colder and much drier
conditions compared to the present (Webb et al., 1993;
Blinnikov et al., 2002). From ~16 to 14 ka, there was a
warming trend in the northern hemisphere and a decrease in
snow accumulation (Alley, 2000). This change in climate was
followed at the KP-1 site by a transition to Festuca—Agropyron
grassland with some Pinus ponderosa between 16 and 11 ka
(Blinnikov et al., 2002), with a relatively cooler and wetter
climate than today (Webb et al., 1993; Alley, 2000; Blinnikov
et al., 2002). Whereas the vegetation for the Wildcat Lake site
remained conifer dominant, the Carp Lake site habitat
transitioned to a Picea parkland during this period.

The estimated vegetation communities from the period
15.4-13.2 ka match present-day habitats in which extant
Phrynosoma are commonly found. The only extant species of
Phrynosoma found in the Columbia Basin ecoregion is the

Kahlotus-Pasco-1 Wildcat Lake Carp Lake
410 m asl 342 m amsl 755 m amsl Age '*C
TLka
. cal B.P.
W Warmer and drier than present
Pinus-Quercus woodland

9 - Agropyron-Festuca S ta 9

grassland, teppe vegetation Warmer and drier than present
10 Grass dominant, Grassland, , - 10

~9,000 to 13,000 \
1 Steppe vegetation with Poaceae [~ 11
and Chenopodium - type,
12 4 Cooler and wetter than 12
13 Festuz:;ze:to ron - o1e
a2 JropyIon CCMS XU1 L15 FS021 1a o

14 4 gluo3+$nu whhsome <, 0001010000 14

ponderosa, . . . Picea parkland - cooler and

Conifer dominant vegetation,, o gt
15 2 wetter-tf -W— 15
16 CCMS XU1 L20 FS038 1c 16
174 ¢ , _ 17
older and much drier than Colder and much drier than
18 - ~ present present -18
Artemisial Stlpa'Poa'FeStuca Artemisia shrub steppe with
19 - shrub steppe, Picea near site, ~19
20 - ~20
\

21 4 -21

1 Blinnikov et al., 2002; 2 Fulkerson, 2012

Figure 7. Pollen and phytolith analysis of three sites in proximity to CCMS. Orange and light blue horizontal bars represent the placement of the
CCMS XUT L15 FS021 T1a and CCMS XU1 L20 FS038 1c elements, respectively. The KP-1 age is measured in TL ka (column to the left of the thick
vertical black line; Blinnikov et al., 2002) and Wildcat Lake and Carp Lake ages in '“C cal sp (columns to the right of the thick vertical black line;
Fulkerson, 2012). Image adapted from Alley (2000), Blinnikov et al. (2002) and Fulkerson (2012). [Color figure can be viewed at

wileyonlinelibrary.com]
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pygmy short-horned lizard Phrynosoma douglasii whose
current range extends to elevations from 275 to 3400 m with
habitats including woodland-mixed, grassland/herbaceous and
shrubland-chaparral (Hammerson, 2005). Hence, Phrynosoma cf.
douglasii appears the most likely option, although this remains
speculative and more support is needed to refine identification
below the genus level. Further analysis of material from extant
Phrynosoma species using geometric morphometric techniques
(Gray et al., 2017) may eventually enable confident placement of
our maxillae to the species level.

Conclusions

To our knowledge, no previous fossils of Phrynosoma have been
recovered and published from the Columbia Plateau or indeed the
Pacific Northwest north of San Francisco Bay. Given the
specialized nature of Phrynosoma’s feeding niche, the site age
of ~13-15+1.14 ka, and the vegetation communities estimated
for that period, we believe that our identification lends further
support to a wider palaeoenvironmental reconstruction of the
CCMS locale and the greater Columbia Plateau region.
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