
Deleterious effects of mercury 
contamination on immunocompetence, 
liver function and egg volume in an 
antarctic seabird 
Article 

Accepted Version 

Ibañez, A. E., Mills, W. F. ORCID: https://orcid.org/0000-0001-
7170-5794, Bustamante, P., Morales, L. M., Torres, D. S., D' 
Astek, B., Mariano-Jelicich, R., Phillips, R. A. and Montalti, D. 
(2024) Deleterious effects of mercury contamination on 
immunocompetence, liver function and egg volume in an 
antarctic seabird. Chemosphere, 346. 140630. ISSN 1879-
1298 doi: 10.1016/j.chemosphere.2023.140630 Available at 
https://centaur.reading.ac.uk/114106/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.chemosphere.2023.140630 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


1 
 

Deleterious effects of mercury contamination on immunocompetence, liver 1 

function and egg volume in an Antarctic seabird 2 

 3 

Ibañez Andrés E1,*, Mills William F2, Bustamante Paco3, Morales Lara M1, Torres 4 

Diego S1, D´ Astek Beatriz1, Mariano-Jelicich Rocío4, Phillips Richard A5, Montalti 5 

Diego1,6 6 

 7 

1Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), 8 

La Plata, Buenos Aires, Argentina 9 

2Department of Geography and Environmental Science, University of Reading, 10 

Reading, UK 11 

3Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle 12 

Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France 13 

4Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, 14 

Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 15 

5British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 16 

0ET, UK 17 

6Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina 18 

 19 

*Corresponding author:  20 

Dr. A.E. Ibañez Sección Ornitología, Div. Zool. Vert. Museo de La Plata (FCNyM-21 

UNLP), Paseo del Bosque s/n, (B1900FWA), La Plata, Buenos Aires, Argentina 22 

Tel: 54 (221) 425 7744 23 

E-mail: aeibanez@fcnym.unlp.edu.ar  24 



2 
 

GRAPHICAL ABSTRACT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

HIGHLIGHTS 25 

- Blood THg concentrations were measured in brown skuas on the Antarctic Peninsula. 26 

- Higher blood THg concentrations had deleterious effects on physiology. 27 

- Higher blood THg concentrations disrupted immune and liver function. 28 

- Higher blood THg concentrations were associated with lower egg volume. 29 
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ABSTRACT 30 

Mercury (Hg) is a globally important pollutant that can negatively impact metabolic, 31 

endocrine and immune systems of marine biota. Seabirds are long-lived marine top 32 

predators and hence are at risk of bioaccumulating high Hg concentrations from their 33 

prey. Here, we measured blood total mercury (THg) concentrations and relationships with 34 

physiology and breeding parameters of breeding brown skuas (Stercorarius antarcticus) 35 

(n = 49 individuals) at Esperanza/Hope Bay, Antarctic Peninsula. Mean blood THg 36 

concentrations were similar in males and females despite the differences in body size and 37 

breeding roles, but differed between study years. Immune markers (hematocrit, 38 

Immunoglobulin Y [IgY] and albumin) were negatively correlated with blood THg 39 

concentrations, which likely indicates a disruptive effect of Hg on immunity. Alanine 40 

aminotransferase (GPT) activity, reflecting liver dysfunction, was positively associated 41 

with blood THg. Additionally, triacylglycerol and albumin differed between our study 42 

years, but did not correlate with Hg levels, and so were more likely to reflect changes in 43 

diet and nutritional status rather than Hg contamination. Egg volume correlated 44 

negatively with blood THg concentrations. Our study provides new insights into the 45 

sublethal effects of Hg contamination on immunity, liver function and breeding 46 

parameters in seabirds. In this Antarctic species, exposure to sublethal Hg concentrations 47 

reflects the short-term risks which could make individuals more susceptible to 48 

environmental stressors, including ongoing climatic changes.   49 

 50 

Keywords: pollution; mercury; seabirds; physiology; reproduction; Antarctica  51 
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1. INTRODUCTION 52 

Mercury (Hg) is a global environmental pollutant that can have deleterious consequences 53 

for humans and wildlife (Corsolini 2009; Tan et al., 2009; Driscoll et al., 2013). Although 54 

Hg occurs naturally, its availability has increased in marine and terrestrial environments 55 

in different organic and inorganic forms (MeHg, inorganic Hg, etc) (Aronson et al., 2011). 56 

The gaseous, elemental form of Hg (Hg0) can spread through atmospheric transport from 57 

emission sources to distant regions (Calle et al., 2015). Once deposited in marine 58 

environments, the inorganic form of Hg (HgII) is methylated by microorganisms to the 59 

more toxic form, methyl-Hg (MeHg, [CH3Hg]+). MeHg bioaccumulates within the tissues 60 

of marine organisms and biomagnifies through marine food webs (Bargagli 2008; 61 

Driscoll et al., 2013; Ibañez et al., 2022a; Matias et al., 2022). Seabirds, which are 62 

typically long-lived and feed at high trophic positions, are potentially at risk of 63 

accumulating high Hg levels in their tissues from dietary exposure (Bearhop et al., 2000; 64 

Bargagli 2008; Tavares et al., 2013; McKenzie et al., 2021; Mills et al., 2020; 2022; 65 

Ibañez et al., 2022a).  66 

Hg in Antarctic ecosystems derives from natural and human sources, and the Antarctic 67 

continent constitutes a sink for Hg, which condensates in colder regions after evaporation 68 

and long-range transportation from lower latitudes (Angot et al., 2016). Artisanal and 69 

small-scale gold mining, which releases large quantities of Hg into the environment, is 70 

mostly concentrated in the Southern Hemisphere (Keane et al., 2023). There are also local 71 

sources of Hg, including volcanic activity and the release of Hg stored in sea ice which 72 

increase its bioavailability for microbial methylation (Cossa 2013; de Ferro et al., 2014; 73 

Gionfriddo et al., 2016). Human activity that is associated with nearby research stations 74 

on the Antarctic Peninsula increases during spring and summer, which results in the 75 

release of pollutants (heavy metals and organic compounds) from waste-disposal sites, 76 

construction materials and compounds used for treating effluent (Acero et al., 1999).  77 

Hg is a neurological, immune and endocrine disruptor (Tartu et al., 2013; Whitney and 78 

Cristol 2017), and, ultimately, can Hg contamination can have short- or long-term fitness 79 

consequences for seabirds (Bustnes et al., 2007; Roos et al., 2012; Dietz et al., 2019; 80 

Chételat et al., 2020; Mills et al., 2020; Goutte et al., 2014a, 2014b). Hg contamination 81 

may also negatively impact body condition (Tan et al., 2009; Ackerman et al., 2016; 82 

Chételat et al., 2020), although, in the wild, body condition indices are unreliable 83 
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indicators of Hg sublethal effects (Carravieri et al., 2022). Although many studies have 84 

examined inter- and intraspecific variation in Hg contamination of seabirds in the 85 

Southern Ocean (Carravieri et al., 2014a; 2016; 2017; Mills et al., 2020; 2022; Quillfledt 86 

et al., 2023), few have tested for relationships with fitness parameters. Indeed, these have 87 

only been investigated for the wandering albatross (Diomedea exulans) (Tavares et al., 88 

2013; Carravieri et al., 2014b; 2014c; Goutte et al., 2014a; Bustamante et al., 2016), 89 

Antarctic petrel (Thalassoica antarctica) (Carravieri et al., 2018; 2021), grey-headed 90 

albatross (Thalassarche chrysostoma) (Mills et al., 2020), and brown skua (Stercorarius 91 

antarcticus) (Ibañez et al., 2022a) and south polar skua (S. maccormicki) (Goutte et al., 92 

2014b).  93 

Brown skuas breed on the Antarctic continent and sub-Antarctic islands and are 94 

opportunistic predators that feed on a wide diversity of prey in both terrestrial and marine 95 

environments (Reinhardt et al., 2000; Phillips et al., 2004; Ritz et al., 2008; Carneiro et 96 

al., 2015; Graña Grilli and Montalti 2015; Borghello et al., 2019; Ibañez et al., 2022b). 97 

As the brown skua is a migratory seabird, birds are exposed to pollutants not just during 98 

the breeding season but also in the nonbreeding season when they visit regions with 99 

higher anthropogenic pressure (Albert et al., 2022). At Bahía Esperanza/Hope Bay–100 

located on the Antarctic Peninsula–brown skuas breed close to large colonies of Adélie 101 

penguins (Pygoscelis adeliae) and gentoo penguins (Pygoscelis papua). They feed mainly 102 

on penguins and to a lesser extent on marine prey (e.g., fishes and invertebrates) 103 

(Borghello et al., 2019; Ibañez et al., 2022b). Macro-plastics have been found recently in 104 

skua diet samples collected during the breeding season (Ibañez et al., 2020), which may 105 

represent a possible route for chemical pollutants such as Hg (Hamilton et al., 2023). 106 

Overall, there has been little research concerning the physiological effects of Hg 107 

contamination on Antarctic seabirds (Carravieri et al., 2021; Goutte et al., 2014), and 108 

more studies are needed to understand the potential sublethal effects. In the present study, 109 

we focus on the sublethal effects of Hg contamination of brown skuas. Total Hg (the sum 110 

of inorganic and organic Hg) concentration was measured in red blood cells of brown 111 

skuas at Esperanza/Hope Bay. Our aims were to: (i) compare blood THg concentrations 112 

between two breeding seasons and sexes; and (ii) relate blood THg concentrations to 113 

markers of energy metabolism, immunocompetence and liver function, and to egg 114 

volume.  115 

 116 
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2. MATERIALS AND METHODS 117 

2.1. Fieldwork and sample collection 118 

Fieldwork for this study was conducted at Bahía Esperanza/Hope Bay, Antarctic 119 

Peninsula (63°24′S, 57°01′W) (Fig. 1), from November to January during the 2018/19 120 

and 2019/20 breeding seasons. Brown skuas were sampled during the early incubation 121 

stage (5–10 days after clutch completion). Blood samples (~2 ml) were obtained from the 122 

brachial vein using a 25-G needles (n = 49, n = 24 and n = 25 in 2018/19 and 2019/20, 123 

respectively). Sampled birds included both individuals from 16 nests and one adult from 124 

17 nests. Once in the laboratory (within 2–6 hours after extraction) serum and red blood 125 

cells were separated by centrifugation (2000 rpm for 10 min), placed in sterile plastic 126 

eppendorf tubes and were stored frozen (–20°C) prior to laboratory analyses.  127 

Eggs were measured (length and breadth) using digital calipers and volumes (mm3) 128 

calculated as 0.00048 x length (mm) x breadth (mm)2 (Phillips et al., 2004). We calculated 129 

the total clutch volume as the average of the volume of both eggs. The sex of birds was 130 

initially assigned morphologically based on body size, and later confirmed by DNA 131 

analysis (Fridolfsson and Ellegren 1999; Phillips et al., 2002). 132 

   133 

2.2. Total Hg analysis 134 

Studies have demonstrated that Hg in blood is associated predominantly with the cellular 135 

fraction (i.e., red blood cells) rather than plasma (Bond and Robertson 2015; Renedo et 136 

al., 2018). THg in seabird RBCs is mostly (>90%) MeHg (Renedo et al., 2018; Albert et 137 

al., 2019). Prior to analysis, red blood cells were freeze-dried and homogenized. Blood 138 

THg concentrations were measured using an Advanced Mercury Analyser 139 

spectrophotometer (Altec AMA 254) (LIENSs, France). For each sample, a minimum of 140 

two aliquots (range: 1.02–1.86 mg dry weight [dw]) were analyzed, and the means and 141 

relative standard deviation (RSD) among measurements were calculated (all samples 142 

RSD <10%). THg concentrations are presented in µg g-1 dw. Accuracy was tested using 143 

certified reference material (CRM; dogfish liver DOLT-5, NRC, Canada; certified Hg 144 

concentration: 0.44 ± 0.18 µg g-1 dw) every 10 samples. Recovery of the CRM was 97.8 145 

± 1.7%. Blanks were analyzed at the beginning of each set of samples. The limit of 146 

quantification of the AMA was 0.1 ng and the detection limit of the method was 0.005 μg 147 

g− 1 dw. 148 
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 149 

2.3. Hematological determinations 150 

Serum concentrations of five energy metabolism markers (including total proteins, uric 151 

acid, triacylglycerol, cholesterol and glucose), albumin, aspartate aminotransferase 152 

(GOT) and alanine aminotransferase (GPT) enzymes were measured in each bird using 153 

colorimetric commercial kits (Wiener Lab). All assays were conducted using an 154 

automatic analyzer (Ibañez et al., 2015). 155 

Serum circulating levels of Immunoglobulin Y (IgY) were determined by direct ELISA 156 

using peroxidase conjugated anti-chicken IgY antibodies (Sigma, St Louis, MO, USA, 157 

A-9046) (Martínez et al., 2003; Ibañez et al., 2018). For this, 96-well microtiter plates 158 

(Nunc PolySorp; Nunc, Roskilde, Denmark) were coated during 1 h at 37 °C with serum 159 

samples diluted (1/30,000) in 0.1 M carbonate-bicarbonate buffer (pH = 9.6). Then the 160 

plates were washed three times with PBS- 0.05% Tween 20 and incubated with 1% non-161 

fat milk (Nestlé coffee-mate) in PBS-Tween-20 during 1 h at 37 °C to block the free 162 

binding sites. After new washing, the wells were incubated with peroxidase- conjugated 163 

anti-chicken IgY. Finally, the wells were washed and ABTS [2,2-azino-di (3-164 

ethylbenzthiazoline sulfonate)] was added as substrate. After incubating for 30 min (at 165 

room temperature) color development was stopped with oxalic acid 2% and then read as 166 

optical density (OD) at 405 nm. 167 

To determine the hematocrit value a heparinized capillary was filled in the laboratory 168 

with 100 μl of blood from the Eppendorf tube that contained heparinized blood obtained 169 

in the field. The capillary was then centrifuged at 5000 rpm for 15 min (Ibañez et al., 170 

2015), and a digital caliper used to measure the length (mm) of the red blood cell fraction 171 

and the total blood volume. Hematocrit values are presented as a percentage of total 172 

volume.  173 

 174 

2.4. Statistical analysis 175 

Data were analysed using R (R Core Team 2015). Blood THg concentrations, 176 

physiological parameters and egg volumes were checked for normality and homogeneity 177 

of variances using Shapiro-Wilk and Levene’s tests, respectively. Differences in blood 178 

THg between sexes and seasons were tested using general linear mixed models (GLMMs; 179 

Gaussian distribution and identity link function), with the individual identity and the 180 
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breeding pair included as random effects to account for partners potentially being more 181 

similar than non-partners in blood THg concentrations. Relationships between 182 

physiological markers (total proteins, uric acid, triacylglycerol, cholesterol, hematocrit, 183 

albumin, IgY, GOT and GPT), egg volume and blood THg concentrations were also 184 

tested using GLMMs, with sex (except in the case of egg volume) and season included as 185 

covariates, and individual identity included as a random effect. All GLMMs were fitted 186 

using the “nlme” package in R (Pinheiro et al. 2017).  187 

 188 

3. RESULTS 189 

3.1. Sex and annual variation in Hg contamination  190 

Detectable blood THg concentrations were found in all samples from brown skuas at 191 

Bahía Esperanza/Hope Bay in 2018/19 (mean ± SD, 0.73 ± 0.22 μg g-1 dw) and 2019/20 192 

(0.91 ± 0.44 μg g-1 dw) (Table 1). There were no significant differences in blood THg 193 

concentrations (log-transformed) between sexes (est = 0.23, p = 0.48) or seasons (est = 194 

0.19, p = 0.56) (Table 1). 195 

 196 

3.2. Physiological markers and egg volume  197 

Physiological parameters, in particular immune and hepatic functions, did not differ 198 

between sexes (all p > 0.05), but were negatively associated with blood THg 199 

concentrations. Significant negative relationships were found between albumin (est = -200 

0.31, p < 0.0001), hematocrit (%) (est = -9.27, p < 0.0001) and IgY (est = -0.06, p < 0.05) 201 

and blood THg concentrations (Fig. 2; Table 2). A significant positive relationship was 202 

found between GPT activity and blood THg concentrations (est = 13.10, p < 0.01) (Fig. 203 

2; Table 2). Mean albumin levels differed significantly between seasons (est = 0.31, p < 204 

0.0001). Triacylglycerol levels also varied annually (est = 55.89, p < 0.001) and were 205 

unrelated to blood THg concentrations (est = -11.04, p = 0.55) (Table 2). Uric acid, total 206 

proteins, cholesterol, glucose and GOT show no relationship with sex, season or blood 207 

THg (Table 2). Egg volume (mm3) showed a significant negative relationship with blood 208 

THg concentrations (est = -16.40, p < 0.05) (Fig. 3), and did not differ significantly 209 

between seasons (est = 4.25, p = 0.19). 210 

          211 

4. DISCUSSION 212 

In our study, blood THg concentrations of brown skuas ranged from 0.41 to 2.33 μg g-1 213 

dw (equivalent to 0.10 to 0.58 μg g-1 wet weight [ww], assuming a 79% moisture content; 214 
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Eagles‐Smith et al., 2008; Ackerman et al., 2016). These concentrations are comparable 215 

to those found in adults of other Antarctic seabirds, including snow petrels (Pagodroma 216 

nivea) (Tartu et al., 2015), and Antarctic petrels (Thalassoica antarctica) (Carravieri et 217 

al., 2021). However, they were lower than those reported in skuas at lower latitude 218 

breeding colonies in the southwest Atlantic Ocean sector of the Southern Ocean (Mills et 219 

al., 2022), but were comparable to those associated with reduced breeding success in 220 

south polar skuas at Adélie Land (Goutte et al., 2014b). Despite the low values of blood 221 

THg measured here, we found significant negative effects on immunity and hepatic 222 

enzymes, and on breeding parameters.  223 

 224 

4.1. Impacts of Hg contamination on immunocompetence 225 

Hg is often associated with immunosuppressive effects at sublethal levels, but mostly in 226 

captive studies (Fallacara et al., 2011; Kenow et al., 2007; Lewis et al., 2013a). Despite 227 

the relatively low concentrations (initially suggesting a low risk of MeHg toxicity; 228 

Ackerman et al., 2016), IgY and hematocrit were negatively related to blood THg 229 

concentrations in our study (Fig. 2). These results indicate a negative impact of Hg 230 

contamination on the immune status of brown skuas. Our results agree with previous 231 

studies on captive zebra finches (Taeniopygia guttata) that have shown negative effects 232 

of Hg exposure on B-cell proliferation (Lewis 2012; Lewis et al., 2013). Also, impaired 233 

macrophage phagocytosis was related to high Hg levels in black-footed albatrosses 234 

(Phoebastria nigripes) in the North Pacific (Finkelstein et al., 2007). Hematocrit values 235 

decreased with blood THg concentrations, which agrees with the hemolytic and anemia-236 

inducing effects of Hg (Zolla et al., 1997). Erythrocytes are an important target of Hg and 237 

the majority of Hg in blood is found in the cellular fraction (~90%) (Bond and Robertson 238 

2015). In vitro studies have demonstrated that the exposure of erythrocytes to low 239 

concentrations of Hg induce structural changes in the external surface of the membrane. 240 

These changes are mediated by the translocation of phosphatidylserine to the external 241 

surface of the erythrocyte cell membrane as a signal that may prompt cellular apoptosis 242 

(Eisele et al., 2006; Lim et al., 2010). Another possible explanation behind the decrease 243 

in hematocrit may be an association with lowered renal function, also linked to hemolytic 244 

processes (Rivarob et al., 1983; Chitra et al., 2013). 245 

Serum IgY and albumin are useful indicators of health in birds (Lumeij 1987; Ibañez et 246 

al., 2018). Fitness traits are mediated by hormones including luteinizing hormone, which 247 
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is a pituitary hormone involved in the onset of breeding (Dawson et al., 2001); 248 

corticosterone, an adrenal hormone in the stress response (Wingfield and Sapolsky 2003); 249 

and prolactin, a pituitary hormone involved in the expression of parental care (Angelier 250 

and Chastel 2009). Trace metal pollution may have different effects on hormones of the 251 

hypothalamic–pituitary–adrenal (HPA) axis, such as corticosterone (Tan et al., 2009; 252 

Tartu et al., 2013). Serum IgY and albumin concentrations were negatively related to 253 

blood THg concentrations of brown skuas in our study (Fig. 2). One possible explanation 254 

for this may be increasing immunosuppressive effects and catabolic activity associated 255 

with endocrine disruption of the HPA axis (Coutinho and Chapman 2011), as Hg 256 

accumulates in the pituitary gland and thyroid in vertebrates (Colborn et al., 1993; Tan et 257 

al., 2009; Meyer et al., 2014; Tartu et al., 2013). In this scenario, the levels of Hg found 258 

in brown skuas at Esperanza/Hope Bay may induce protein catabolism and 259 

immunosuppression (IgY and albumin decline) because corticosterone release is 260 

disrupted (Ibañez et al., 2018). Another possible explanation is impaired protein synthesis 261 

in the liver. However, these hypotheses would need to be confirmed in future studies on 262 

skuas, particularly as a Hg-induced deterioration in immunocompetence is likely to affect 263 

disease risk and, ultimately, population dynamics. 264 

 265 

4.2. Impacts of Hg contamination on liver function 266 

GPT was positively related to blood THg concentrations of brown skuas. This suggests 267 

that Hg contamination impacted the liver function of brown skuas. The liver is the major 268 

organ involved in the biotransformation, metabolism, protein synthesis and detoxification 269 

processes, which also reflect its susceptibility to pollutants, leading to tissue damage. 270 

GOT and GPT enzymes are considered to be biochemical markers of impaired liver 271 

function. Liver-cell damage, such as degeneration and necrosis, may increase GOT and 272 

GPT levels (Gowda et al., 2009; Mari et al., 2010; Ibañez et al., 2015; Yang et al., 2015; 273 

Choi et al., 2017). The biological mechanism of association between Hg exposure and 274 

liver dysfunction is mainly explained by oxidative stress, cell death, and impaired 275 

metabolism (Malhi et al., 2010). For instance, in male rodents exposed to Hg, levels of 276 

GOT, GPT, and gamma glutamyl-transferase activities were elevated, and tissue damage 277 

or necrotic changes observed in most livers (Waddam 2009). Also, histological analyses 278 

described degenerative changes and lysed areas in liver parenchyma in Hg-exposed 279 

zebrafish (Maricella et al., 2016). Hg exposure in zebrafish induced deregulation of 280 
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oxidative stress, intrinsic apoptotic pathways, and resulting hepatotoxicity through cell 281 

death, mitochondrial dysfunction, endocrine disruption, and metabolic disorders (Ung et 282 

al., 2010; Maricella et al., 2016). In the spectacled caiman (Caiman crocodilus), negative 283 

associations between Hg and alkaline phosphatase activity (a liver cytoplasmic enzyme 284 

involved in the hepatocytic functions) were observed (Lemaire et al., 2018). Therefore, 285 

our results suggest that variation in GPT activity in response to elevated blood Hg levels, 286 

may indicate hepatotoxicity even at the low levels of contamination found in Antarctica. 287 

 288 

4.3. Annual variations in Hg contamination and association with physiology 289 

In a previous study of brown skuas at Hope Bay, we found annual variation in blood THg 290 

concentrations was related to trophic ecology, but had no impact on adult body condition 291 

(Ibañez et al., 2022a). Blood THg concentrations were higher in 2019/20 than 2018/19 292 

(by ~0.2 μg g-1 dw) (Ibañez et al., 2022a). This was potentially due to changes in diet 293 

composition, and the consumption of more contaminated prey (Braune et al., 2014). Also, 294 

annual fluctuations in environmental conditions may influence Hg transport, MeHg 295 

production, and bioavailability to marine predators and their prey (Cossa et al., 2011; 296 

Driscoll et al., 2013; Renedo et al., 2020). In the current study, mean albumin and 297 

triacylglycerol levels differed between years, but were not linked directly to blood Hg 298 

contamination. Albumin and triacylglycerol are markers of nutritional status (Ibañez et 299 

al., 2018). In this scenario, annual dietary differences may affect nutritional status. This 300 

may in turn moderate the effects of Hg on metabolism, with potentially limited food 301 

resources (thus lower Hg levels) associated with lower albumins and triacylglycerols. 302 

 303 

4.4. Impacts of Hg contamination on egg volume 304 

Hg contamination of seabirds may induce changes on body condition that ultimately 305 

affect breeding fitness and survival (Evers et al., 2008; Labocha and Hayes 2012; 306 

Ackerman et al., 2016). Effects of Hg on reproduction can be reflected at different levels 307 

including egg neglect (Tartu et al., 2015), lower breeding success (Tartu et al., 2016), 308 

reproductive failure (Mills et al., 2020), or population dynamics (Goutte et al., 2014b, 309 

Goutte et al., 2015). However, the effects of Hg contamination during the non-breeding 310 

season on subsequent breeding success are poorly known. In little auks (Alle alle), Fort 311 

et al. (2014) suggested a carry-over effect, in that individuals with the highest Hg 312 

concentrations laid smaller eggs. In the present study, egg volume was negatively 313 

associated with female blood THg concentrations (Fig. 3). Although not significant, THg 314 
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concentrations were slightly higher in males than females in both seasons (Table 1; Mills 315 

et al., 2022; Ibañez et al., 2022a), possibly because egg production provides a route 316 

through which females are able to eliminate Hg (Robinson et al. 2012; Ackerman et al. 317 

2020). An explanation for the association of smaller eggs laid with higher blood THg 318 

concentrations of brown skuas relates to the trophic ecology and Hg contamination during 319 

female pre-laying exodus or differences in prey consumption prior to sampling. 320 

Therefore, our results support a previous study which also suggested carry-over effects 321 

of Hg on the reproduction of great skuas (Stercorarius skua) with a specific influence of 322 

female winter distribution and Hg contamination on egg volume (Albert et al., 2022). 323 

However, this would need to be confirmed in future studies by measuring THg in feathers 324 

grown during the nonbreeding season to infer the degree of Hg contamination since the 325 

last moult (Fort et al., 2014). 326 

The threshold of Hg toxicity in seabirds appears to be related to the latitude of the study 327 

site. Toxicity appears to differ in Antarctic compared with lower latitudes such as 328 

subantarctic or subtropical environments (Goutte et al., 2014b; Carravieri et al., 2021). 329 

Blood THg concentrations of brown skuas in our study would initially suggest a low risk 330 

of MeHg toxicity (Ackerman et al., 2016). These sublethal THg concentrations had 331 

deleterious effects on physiology and egg volume, but there was no relationship with 332 

breeding success (Ibañez et al., 2022a). Goutte et al. (2014b) reported short-term effects 333 

of Hg on breeding success in brown skuas and south polar skuas, though concentrations 334 

were higher than in brown skuas at our study site. Selenium (Se)-Hg interactions are often 335 

observed in the blood and internal tissues of marine predators, and Se has a protective 336 

effect against Hg toxicity when Se is in molar excess (Carravieri et al., 2017; 2020; 337 

Manceau et al., 2021). Our results may also be explained by the presence of Se, as was 338 

reported for brown skua chicks from the Southern Ocean (Carravieri et al., 2017), south 339 

polar skuas (Goutte et al., 2014b) and the spectacled caiman (Lemaire et al., 2018). If so, 340 

higher concentrations of Se at Antarctic latitudes may reduce the negative effects of Hg 341 

on physiology and reproduction; however, this hypothesis requires further investigation. 342 

5. CONCLUSIONS 343 

Our study demonstrated negative effects of Hg contamination on physiology and breeding 344 

parameters in brown skuas on the Antarctic Peninsula. Despite low blood THg 345 

concentrations, which are below or similar to those of other Antarctic seabirds, the 346 
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association between Hg and the physiological and breeding parameters are of concern. 347 

The detrimental impact on egg volume highlights the importance of investigating the 348 

relationships between blood THg and the hormones that play a role in stress responses 349 

and reproductive decisions, as well as, Hg concentration in chicks during development. 350 

This is particularly as skuas and other predators in the Antarctic may become more 351 

susceptible to pollutants and other environmental stressors, given the evidence for rapid, 352 

ongoing climatic changes in the region. 353 
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Figure 1. Location of the study site (black circle), Esperanza/Hope Bay, Antarctic 

Peninsula (63◦24′ S, 57◦01′ W). 
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Table 1. Total mercury (THg) concentrations (µg g-1 dw) in red blood cells of adult male 

and female brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay, Antarctic 

Peninsula (63°24′S, 57°01′W), in the 2018/19 and 2019/20 breeding seasons. Data are 

means ± SDs. 

 

  
Year N Sex THg (µg g-1 dw) Range (µg g-1 dw) 

2018-2019 11 F 0.66 ± 0.25 0.41 - 1.21 

13 M 0.79 ± 0.18 0.48 - 1.06 

24 Both 0.73 ± 0.22 0.41 - 1.21 

2019-2020 13 F 0.82 ± 0.39 0.49 - 1.94 

12 M 1.02 ± 0.50 0.44 - 2.33 

25 Both 0.91 ± 0.44 0.44 - 2.33 
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Table 2. Serum hematological markers of adult brown skuas (Stercorarius antarcticus) 

at Esperanza/Hope Bay, Antarctic Peninsula (63°24′S, 57°01′W), in the 2018/19 and 

2019/20 breeding seasons. Data are means ± SDs. Uric acid (mg/dl), triacylglycerol 

(mg/dl), total proteins (d/dl), cholesterol (mg/dl), glucose (mg/dl), albumin (g/dl), GOT 

(U/l) and GPT (U/l). Serum hematological markers that showed an association with 

season are indicated with a (p < 0.05). 

 

  Season 2018-2019 Season 2019-2020 

Parameter Mean ± SD Min-Max Mean ± SD Min-Max 

Uric acid 8.126 ± 2.776 3.87 - 14.37 6.234 ± 2.069 2.250 - 9.56 

Triacylglicerols 63.41 ± 18.40 31 - 99 118.1 ± 49.76 53 - 286 

Total proteins 2.809 ± 0.392 2.1 - 3.7 2.790 ± 0.497 1.9 - 3.5 

Cholesterol 245 ± 58.06 103.6 - 354.9 244.8 ± 65.63 113.3 - 351.5 

Glucose 340.6 ± 43.41 269 - 420 330.6 ± 49.95 170  379 

Albumin 1.020 ± 0.135 0.73 - 1.260 1.282 ± 0.233 0.87 - 1.63 

GOT 75.95 ± 27.20 25 - 160 105.4 ± 20.79 69 - 153 

GPT 27.70 ± 12.84 9.1 - 63 27.27 ± 7.192 15 - 39 

Hematocrit (%) 45.60 ± 4.967 35.6 - 53.5 41.33 ± 6.204 30.10 - 30.90 

IgY (OD 405nm) 0.215 ± 0.069 0.11 - 0.38 0.237 ± 0.075 0.104 - 0.430 
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Figure 2. Relationships between red blood cells THg concentrations (μg g−1 dw) and (a) albumin (g/dl), (b) hematocrit (%), (c) IgY (OD 405nm) 

and (d) GPT (U/l) in the blood of adult brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay, Antarctic Peninsula (63°24′S, 57°01′W) 

in the 2018/19 and 2019/20 breeding seasons. 
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Figure 3. Relationships between red blood cells THg concentrations (μg g−1 dw) and egg 

volume (mm3) of female brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay, 

Antarctic Peninsula (63°24′S, 57°01′W) in the 2018/19 and 2019/20 breeding seasons.  


