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HIGHLIGHTS
Blood THg concentrations were measured in brown skuas on the Antarctic Peninsula.
Higher blood THg concentrations had deleterious effects on physiology.
Higher blood THg concentrations disrupted immune and liver function.

Higher blood THg concentrations were associated with lower egg volume.
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ABSTRACT
Mercury (Hg) is a globally important pollutant that can negatively impact metabolic,
endocrine and immune systems of marine biota. Seabirds are long-lived marine top
predators and hence are at risk of bioaccumulating high Hg concentrations from their
prey. Here, we measured blood total mercury (THg) concentrations and relationships with
physiology and breeding parameters of breeding brown skuas (Stercorarius antarcticus)
(n = 49 individuals) at Esperanza/Hope Bay, Antarctic Peninsula. Mean blood THg
concentrations were similar in males and females despite the differences in body size and
breeding roles, but differed between study years. Immune markers (hematocrit,
Immunoglobulin Y [IgY] and albumin) were negatively correlated with blood THg
concentrations, which likely indicates a disruptive effect of Hg on immunity. Alanine
aminotransferase (GPT) activity, reflecting liver dysfunction, was positively associated
with blood THg. Additionally, triacylglycerol and albumin differed between our study
years, but did not correlate with Hg levels, and so were more likely to reflect changes in
diet and nutritional status rather than Hg contamination. Egg volume correlated
negatively with blood THg concentrations. Our study provides new insights into the
sublethal effects of Hg contamination on immunity, liver function and breeding
parameters in seabirds. In this Antarctic species, exposure to sublethal Hg concentrations
reflects the short-term risks which could make individuals more susceptible to

environmental stressors, including ongoing climatic changes.

Keywords: pollution; mercury; seabirds; physiology; reproduction; Antarctica
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1. INTRODUCTION

Mercury (Hg) is a global environmental pollutant that can have deleterious consequences
for humans and wildlife (Corsolini 2009; Tan et al., 2009; Driscoll et al., 2013). Although
Hg occurs naturally, its availability has increased in marine and terrestrial environments
in different organic and inorganic forms (MeHg, inorganic Hg, etc) (Aronson et al., 2011).
The gaseous, elemental form of Hg (Hg®) can spread through atmospheric transport from
emission sources to distant regions (Calle et al., 2015). Once deposited in marine
environments, the inorganic form of Hg (Hg") is methylated by microorganisms to the
more toxic form, methyl-Hg (MeHg, [CH3Hg]"). MeHg bioaccumulates within the tissues
of marine organisms and biomagnifies through marine food webs (Bargagli 2008;
Driscoll et al., 2013; Ibafiez et al., 2022a; Matias et al., 2022). Seabirds, which are
typically long-lived and feed at high trophic positions, are potentially at risk of
accumulating high Hg levels in their tissues from dietary exposure (Bearhop et al., 2000;
Bargagli 2008; Tavares et al., 2013; McKenzie et al., 2021; Mills et al., 2020; 2022;
Ibafiez et al., 2022a).

Hg in Antarctic ecosystems derives from natural and human sources, and the Antarctic
continent constitutes a sink for Hg, which condensates in colder regions after evaporation
and long-range transportation from lower latitudes (Angot et al., 2016). Artisanal and
small-scale gold mining, which releases large quantities of Hg into the environment, is
mostly concentrated in the Southern Hemisphere (Keane et al., 2023). There are also local
sources of Hg, including volcanic activity and the release of Hg stored in sea ice which
increase its bioavailability for microbial methylation (Cossa 2013; de Ferro et al., 2014;
Gionfriddo et al., 2016). Human activity that is associated with nearby research stations
on the Antarctic Peninsula increases during spring and summer, which results in the
release of pollutants (heavy metals and organic compounds) from waste-disposal sites,
construction materials and compounds used for treating effluent (Acero et al., 1999).

Hg is a neurological, immune and endocrine disruptor (Tartu et al., 2013; Whitney and
Cristol 2017), and, ultimately, can Hg contamination can have short- or long-term fitness
consequences for seabirds (Bustnes et al., 2007; Roos et al., 2012; Dietz et al., 2019;
Chételat et al., 2020; Mills et al., 2020; Goutte et al., 2014a, 2014b). Hg contamination
may also negatively impact body condition (Tan et al., 2009; Ackerman et al., 2016;

Chetelat et al., 2020), although, in the wild, body condition indices are unreliable
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indicators of Hg sublethal effects (Carravieri et al., 2022). Although many studies have
examined inter- and intraspecific variation in Hg contamination of seabirds in the
Southern Ocean (Carravieri et al., 2014a; 2016; 2017; Mills et al., 2020; 2022; Quillfledt
et al., 2023), few have tested for relationships with fitness parameters. Indeed, these have
only been investigated for the wandering albatross (Diomedea exulans) (Tavares et al.,
2013; Carravieri et al., 2014b; 2014c; Goutte et al., 2014a; Bustamante et al., 2016),
Antarctic petrel (Thalassoica antarctica) (Carravieri et al., 2018; 2021), grey-headed
albatross (Thalassarche chrysostoma) (Mills et al., 2020), and brown skua (Stercorarius
antarcticus) (lbafiez et al., 2022a) and south polar skua (S. maccormicki) (Goutte et al.,
2014b).

Brown skuas breed on the Antarctic continent and sub-Antarctic islands and are
opportunistic predators that feed on a wide diversity of prey in both terrestrial and marine
environments (Reinhardt et al., 2000; Phillips et al., 2004; Ritz et al., 2008; Carneiro et
al., 2015; Graiia Grilli and Montalti 2015; Borghello et al., 2019; Ibafiez et al., 2022b).
As the brown skua is a migratory seabird, birds are exposed to pollutants not just during
the breeding season but also in the nonbreeding season when they visit regions with
higher anthropogenic pressure (Albert et al., 2022). At Bahia Esperanza/Hope Bay—
located on the Antarctic Peninsula—brown skuas breed close to large colonies of Adélie
penguins (Pygoscelis adeliae) and gentoo penguins (Pygoscelis papua). They feed mainly
on penguins and to a lesser extent on marine prey (e.g., fishes and invertebrates)
(Borghello et al., 2019; Ibafiez et al., 2022b). Macro-plastics have been found recently in
skua diet samples collected during the breeding season (lbafiez et al., 2020), which may
represent a possible route for chemical pollutants such as Hg (Hamilton et al., 2023).
Overall, there has been little research concerning the physiological effects of Hg
contamination on Antarctic seabirds (Carravieri et al., 2021; Goutte et al., 2014), and
more studies are needed to understand the potential sublethal effects. In the present study,
we focus on the sublethal effects of Hg contamination of brown skuas. Total Hg (the sum
of inorganic and organic Hg) concentration was measured in red blood cells of brown
skuas at Esperanza/Hope Bay. Our aims were to: (i) compare blood THg concentrations
between two breeding seasons and sexes; and (ii) relate blood THg concentrations to
markers of energy metabolism, immunocompetence and liver function, and to egg

volume.
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2. MATERIALS AND METHODS

2.1. Fieldwork and sample collection
Fieldwork for this study was conducted at Bahia Esperanza/Hope Bay, Antarctic
Peninsula (63°24'S, 57°01'W) (Fig. 1), from November to January during the 2018/19
and 2019/20 breeding seasons. Brown skuas were sampled during the early incubation
stage (5-10 days after clutch completion). Blood samples (~2 ml) were obtained from the
brachial vein using a 25-G needles (n =49, n = 24 and n = 25 in 2018/19 and 2019/20,
respectively). Sampled birds included both individuals from 16 nests and one adult from
17 nests. Once in the laboratory (within 2—6 hours after extraction) serum and red blood
cells were separated by centrifugation (2000 rpm for 10 min), placed in sterile plastic
eppendorf tubes and were stored frozen (—20°C) prior to laboratory analyses.

Eggs were measured (length and breadth) using digital calipers and volumes (mm?)
calculated as 0.00048 x length (mm) x breadth (mm)? (Phillips et al., 2004). We calculated
the total clutch volume as the average of the volume of both eggs. The sex of birds was
initially assigned morphologically based on body size, and later confirmed by DNA
analysis (Fridolfsson and Ellegren 1999; Phillips et al., 2002).

2.2. Total Hg analysis

Studies have demonstrated that Hg in blood is associated predominantly with the cellular
fraction (i.e., red blood cells) rather than plasma (Bond and Robertson 2015; Renedo et
al., 2018). THg in seabird RBCs is mostly (>90%) MeHg (Renedo et al., 2018; Albert et
al., 2019). Prior to analysis, red blood cells were freeze-dried and homogenized. Blood
THg concentrations were measured using an Advanced Mercury Analyser
spectrophotometer (Altec AMA 254) (LIENSs, France). For each sample, a minimum of
two aliquots (range: 1.02-1.86 mg dry weight [dw]) were analyzed, and the means and
relative standard deviation (RSD) among measurements were calculated (all samples
RSD <10%). THg concentrations are presented in pg g* dw. Accuracy was tested using
certified reference material (CRM; dogfish liver DOLT-5, NRC, Canada; certified Hg
concentration: 0.44 + 0.18 pg g* dw) every 10 samples. Recovery of the CRM was 97.8
+ 1.7%. Blanks were analyzed at the beginning of each set of samples. The limit of
quantification of the AMA was 0.1 ng and the detection limit of the method was 0.005 pg
g !dw.
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2.3. Hematological determinations
Serum concentrations of five energy metabolism markers (including total proteins, uric
acid, triacylglycerol, cholesterol and glucose), albumin, aspartate aminotransferase
(GOT) and alanine aminotransferase (GPT) enzymes were measured in each bird using
colorimetric commercial kits (Wiener Lab). All assays were conducted using an
automatic analyzer (Ibariez et al., 2015).

Serum circulating levels of Immunoglobulin Y (IgY) were determined by direct ELISA
using peroxidase conjugated anti-chicken IgY antibodies (Sigma, St Louis, MO, USA,
A-9046) (Martinez et al., 2003; Ibafiez et al., 2018). For this, 96-well microtiter plates
(Nunc PolySorp; Nunc, Roskilde, Denmark) were coated during 1 h at 37 °C with serum
samples diluted (1/30,000) in 0.1 M carbonate-bicarbonate buffer (pH = 9.6). Then the
plates were washed three times with PBS- 0.05% Tween 20 and incubated with 1% non-
fat milk (Nestlé coffee-mate) in PBS-Tween-20 during 1 h at 37 °C to block the free
binding sites. After new washing, the wells were incubated with peroxidase- conjugated
anti-chicken 1gY. Finally, the wells were washed and ABTS [2,2-azino-di (3-
ethylbenzthiazoline sulfonate)] was added as substrate. After incubating for 30 min (at
room temperature) color development was stopped with oxalic acid 2% and then read as
optical density (OD) at 405 nm.

To determine the hematocrit value a heparinized capillary was filled in the laboratory
with 100 pl of blood from the Eppendorf tube that contained heparinized blood obtained
in the field. The capillary was then centrifuged at 5000 rpm for 15 min (Ibafiez et al.,
2015), and a digital caliper used to measure the length (mm) of the red blood cell fraction
and the total blood volume. Hematocrit values are presented as a percentage of total

volume.

2.4. Statistical analysis
Data were analysed using R (R Core Team 2015). Blood THg concentrations,
physiological parameters and egg volumes were checked for normality and homogeneity
of variances using Shapiro-Wilk and Levene’s tests, respectively. Differences in blood
THg between sexes and seasons were tested using general linear mixed models (GLMMs;

Gaussian distribution and identity link function), with the individual identity and the
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breeding pair included as random effects to account for partners potentially being more
similar than non-partners in blood THg concentrations. Relationships between
physiological markers (total proteins, uric acid, triacylglycerol, cholesterol, hematocrit,
albumin, IgY, GOT and GPT), egg volume and blood THg concentrations were also
tested using GLMMs, with sex (except in the case of egg volume) and season included as
covariates, and individual identity included as a random effect. All GLMMs were fitted
using the “nlme” package in R (Pinheiro et al. 2017).

3. RESULTS
3.1. Sex and annual variation in Hg contamination
Detectable blood THg concentrations were found in all samples from brown skuas at
Bahia Esperanza/Hope Bay in 2018/19 (mean + SD, 0.73 + 0.22 ug g™ dw) and 2019/20
(0.91 + 0.44 pg g* dw) (Table 1). There were no significant differences in blood THg
concentrations (log-transformed) between sexes (est = 0.23, p = 0.48) or seasons (est =
0.19, p = 0.56) (Table 1).

3.2. Physiological markers and egg volume
Physiological parameters, in particular immune and hepatic functions, did not differ
between sexes (all p > 0.05), but were negatively associated with blood THg
concentrations. Significant negative relationships were found between albumin (est = -
0.31, p <0.0001), hematocrit (%) (est = -9.27, p < 0.0001) and IgY (est =-0.06, p < 0.05)
and blood THg concentrations (Fig. 2; Table 2). A significant positive relationship was
found between GPT activity and blood THg concentrations (est = 13.10, p < 0.01) (Fig.
2; Table 2). Mean albumin levels differed significantly between seasons (est = 0.31, p <
0.0001). Triacylglycerol levels also varied annually (est = 55.89, p < 0.001) and were
unrelated to blood THg concentrations (est = -11.04, p = 0.55) (Table 2). Uric acid, total
proteins, cholesterol, glucose and GOT show no relationship with sex, season or blood
THg (Table 2). Egg volume (mm?3) showed a significant negative relationship with blood
THg concentrations (est = -16.40, p < 0.05) (Fig. 3), and did not differ significantly

between seasons (est = 4.25, p = 0.19).

4. DISCUSSION
In our study, blood THg concentrations of brown skuas ranged from 0.41 to 2.33 ug g*

dw (equivalent to 0.10 to 0.58 ug g* wet weight [ww], assuming a 79% moisture content;

9
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Eagles-Smith et al., 2008; Ackerman et al., 2016). These concentrations are comparable
to those found in adults of other Antarctic seabirds, including snow petrels (Pagodroma
nivea) (Tartu et al., 2015), and Antarctic petrels (Thalassoica antarctica) (Carravieri et
al., 2021). However, they were lower than those reported in skuas at lower latitude
breeding colonies in the southwest Atlantic Ocean sector of the Southern Ocean (Mills et
al., 2022), but were comparable to those associated with reduced breeding success in
south polar skuas at Adélie Land (Goultte et al., 2014b). Despite the low values of blood
THg measured here, we found significant negative effects on immunity and hepatic

enzymes, and on breeding parameters.

4.1. Impacts of Hg contamination on immunocompetence

Hg is often associated with immunosuppressive effects at sublethal levels, but mostly in
captive studies (Fallacara et al., 2011; Kenow et al., 2007; Lewis et al., 2013a). Despite
the relatively low concentrations (initially suggesting a low risk of MeHg toxicity;
Ackerman et al., 2016), IgY and hematocrit were negatively related to blood THg
concentrations in our study (Fig. 2). These results indicate a negative impact of Hg
contamination on the immune status of brown skuas. Our results agree with previous
studies on captive zebra finches (Taeniopygia guttata) that have shown negative effects
of Hg exposure on B-cell proliferation (Lewis 2012; Lewis et al., 2013). Also, impaired
macrophage phagocytosis was related to high Hg levels in black-footed albatrosses
(Phoebastria nigripes) in the North Pacific (Finkelstein et al., 2007). Hematocrit values
decreased with blood THg concentrations, which agrees with the hemolytic and anemia-
inducing effects of Hg (Zolla et al., 1997). Erythrocytes are an important target of Hg and
the majority of Hg in blood is found in the cellular fraction (~90%) (Bond and Robertson
2015). In vitro studies have demonstrated that the exposure of erythrocytes to low
concentrations of Hg induce structural changes in the external surface of the membrane.
These changes are mediated by the translocation of phosphatidylserine to the external
surface of the erythrocyte cell membrane as a signal that may prompt cellular apoptosis
(Eisele et al., 2006; Lim et al., 2010). Another possible explanation behind the decrease
in hematocrit may be an association with lowered renal function, also linked to hemolytic
processes (Rivarob et al., 1983; Chitra et al., 2013).

Serum IgY and albumin are useful indicators of health in birds (Lumeij 1987; Ibafiez et

al., 2018). Fitness traits are mediated by hormones including luteinizing hormone, which

10
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is a pituitary hormone involved in the onset of breeding (Dawson et al., 2001);
corticosterone, an adrenal hormone in the stress response (Wingfield and Sapolsky 2003);
and prolactin, a pituitary hormone involved in the expression of parental care (Angelier
and Chastel 2009). Trace metal pollution may have different effects on hormones of the
hypothalamic—pituitary—adrenal (HPA) axis, such as corticosterone (Tan et al., 2009;
Tartu et al., 2013). Serum IgY and albumin concentrations were negatively related to
blood THg concentrations of brown skuas in our study (Fig. 2). One possible explanation
for this may be increasing immunosuppressive effects and catabolic activity associated
with endocrine disruption of the HPA axis (Coutinho and Chapman 2011), as Hg
accumulates in the pituitary gland and thyroid in vertebrates (Colborn et al., 1993; Tan et
al., 2009; Meyer et al., 2014; Tartu et al., 2013). In this scenario, the levels of Hg found
in brown skuas at Esperanza/Hope Bay may induce protein catabolism and
immunosuppression (IgY and albumin decline) because corticosterone release is
disrupted (Ibafiez et al., 2018). Another possible explanation is impaired protein synthesis
in the liver. However, these hypotheses would need to be confirmed in future studies on
skuas, particularly as a Hg-induced deterioration in immunocompetence is likely to affect

disease risk and, ultimately, population dynamics.

4.2. Impacts of Hg contamination on liver function
GPT was positively related to blood THg concentrations of brown skuas. This suggests
that Hg contamination impacted the liver function of brown skuas. The liver is the major
organ involved in the biotransformation, metabolism, protein synthesis and detoxification
processes, which also reflect its susceptibility to pollutants, leading to tissue damage.
GOT and GPT enzymes are considered to be biochemical markers of impaired liver
function. Liver-cell damage, such as degeneration and necrosis, may increase GOT and
GPT levels (Gowda et al., 2009; Mari et al., 2010; Ibafiez et al., 2015; Yang et al., 2015;
Choi et al., 2017). The biological mechanism of association between Hg exposure and
liver dysfunction is mainly explained by oxidative stress, cell death, and impaired
metabolism (Malhi et al., 2010). For instance, in male rodents exposed to Hg, levels of
GOT, GPT, and gamma glutamyl-transferase activities were elevated, and tissue damage
or necrotic changes observed in most livers (Waddam 2009). Also, histological analyses
described degenerative changes and lysed areas in liver parenchyma in Hg-exposed

zebrafish (Maricella et al., 2016). Hg exposure in zebrafish induced deregulation of

11
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oxidative stress, intrinsic apoptotic pathways, and resulting hepatotoxicity through cell
death, mitochondrial dysfunction, endocrine disruption, and metabolic disorders (Ung et
al., 2010; Maricella et al., 2016). In the spectacled caiman (Caiman crocodilus), negative
associations between Hg and alkaline phosphatase activity (a liver cytoplasmic enzyme
involved in the hepatocytic functions) were observed (Lemaire et al., 2018). Therefore,
our results suggest that variation in GPT activity in response to elevated blood Hg levels,
may indicate hepatotoxicity even at the low levels of contamination found in Antarctica.

4.3. Annual variations in Hg contamination and association with physiology
In a previous study of brown skuas at Hope Bay, we found annual variation in blood THg
concentrations was related to trophic ecology, but had no impact on adult body condition
(Ibafez et al., 2022a). Blood THg concentrations were higher in 2019/20 than 2018/19
(by ~0.2 pg g* dw) (lbafez et al., 2022a). This was potentially due to changes in diet
composition, and the consumption of more contaminated prey (Braune et al., 2014). Also,
annual fluctuations in environmental conditions may influence Hg transport, MeHg
production, and bioavailability to marine predators and their prey (Cossa et al., 2011;
Driscoll et al., 2013; Renedo et al., 2020). In the current study, mean albumin and
triacylglycerol levels differed between years, but were not linked directly to blood Hg
contamination. Albumin and triacylglycerol are markers of nutritional status (Ibafiez et
al., 2018). In this scenario, annual dietary differences may affect nutritional status. This
may in turn moderate the effects of Hg on metabolism, with potentially limited food

resources (thus lower Hg levels) associated with lower alboumins and triacylglycerols.

4.4. Impacts of Hg contamination on egg volume
Hg contamination of seabirds may induce changes on body condition that ultimately
affect breeding fitness and survival (Evers et al., 2008; Labocha and Hayes 2012;
Ackerman et al., 2016). Effects of Hg on reproduction can be reflected at different levels
including egg neglect (Tartu et al., 2015), lower breeding success (Tartu et al., 2016),
reproductive failure (Mills et al., 2020), or population dynamics (Goutte et al., 2014b,
Goutte et al., 2015). However, the effects of Hg contamination during the non-breeding
season on subsequent breeding success are poorly known. In little auks (Alle alle), Fort
et al. (2014) suggested a carry-over effect, in that individuals with the highest Hg
concentrations laid smaller eggs. In the present study, egg volume was negatively

associated with female blood THg concentrations (Fig. 3). Although not significant, THg

12



315
316
317
318
319
320
321
322
323
324
325
326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

343
344
345
346

concentrations were slightly higher in males than females in both seasons (Table 1; Mills
et al., 2022; Ibafiez et al., 2022a), possibly because egg production provides a route
through which females are able to eliminate Hg (Robinson et al. 2012; Ackerman et al.
2020). An explanation for the association of smaller eggs laid with higher blood THg
concentrations of brown skuas relates to the trophic ecology and Hg contamination during
female pre-laying exodus or differences in prey consumption prior to sampling.
Therefore, our results support a previous study which also suggested carry-over effects
of Hg on the reproduction of great skuas (Stercorarius skua) with a specific influence of
female winter distribution and Hg contamination on egg volume (Albert et al., 2022).
However, this would need to be confirmed in future studies by measuring THg in feathers
grown during the nonbreeding season to infer the degree of Hg contamination since the
last moult (Fort et al., 2014).

The threshold of Hg toxicity in seabirds appears to be related to the latitude of the study
site. Toxicity appears to differ in Antarctic compared with lower latitudes such as
subantarctic or subtropical environments (Goutte et al., 2014b; Carravieri et al., 2021).
Blood THg concentrations of brown skuas in our study would initially suggest a low risk
of MeHg toxicity (Ackerman et al., 2016). These sublethal THg concentrations had
deleterious effects on physiology and egg volume, but there was no relationship with
breeding success (Ibafiez et al., 2022a). Goutte et al. (2014b) reported short-term effects
of Hg on breeding success in brown skuas and south polar skuas, though concentrations
were higher than in brown skuas at our study site. Selenium (Se)-Hg interactions are often
observed in the blood and internal tissues of marine predators, and Se has a protective
effect against Hg toxicity when Se is in molar excess (Carravieri et al., 2017; 2020;
Manceau et al., 2021). Our results may also be explained by the presence of Se, as was
reported for brown skua chicks from the Southern Ocean (Carravieri et al., 2017), south
polar skuas (Goutte et al., 2014b) and the spectacled caiman (Lemaire et al., 2018). If so,
higher concentrations of Se at Antarctic latitudes may reduce the negative effects of Hg

on physiology and reproduction; however, this hypothesis requires further investigation.

5. CONCLUSIONS
Our study demonstrated negative effects of Hg contamination on physiology and breeding
parameters in brown skuas on the Antarctic Peninsula. Despite low blood THg

concentrations, which are below or similar to those of other Antarctic seabirds, the
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association between Hg and the physiological and breeding parameters are of concern.
The detrimental impact on egg volume highlights the importance of investigating the
relationships between blood THg and the hormones that play a role in stress responses
and reproductive decisions, as well as, Hg concentration in chicks during development.
This is particularly as skuas and other predators in the Antarctic may become more
susceptible to pollutants and other environmental stressors, given the evidence for rapid,
ongoing climatic changes in the region.
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Figure 1. Location of the study site (black circle), Esperanza/Hope Bay, Antarctic
Peninsula (63224’ S, 57°01' W).
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Table 1. Total mercury (THg) concentrations (ug g dw) in red blood cells of adult male

and female brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay, Antarctic
Peninsula (63°24'S, 57°01'W), in the 2018/19 and 2019/20 breeding seasons. Data are

means  SDs.
Year N Sex THg(ugg!dw) Range (uggtdw)
2018-2019 11 F 0.66 + 0.25 041-1.21
13 M 0.79 +0.18 0.48 - 1.06
24 Both 0.73+0.22 0.41-1.21
20192020 13 F 0.82 +0.39 0.49 - 1.94
12 M 1.02 + 0.50 0.44 -2.33
25 Both 0.91+0.44 0.44 - 2.33
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Table 2. Serum hematological markers of adult brown skuas (Stercorarius antarcticus)
at Esperanza/Hope Bay, Antarctic Peninsula (63°24'S, 57°01'W), in the 2018/19 and

2019/20 breeding seasons. Data are means + SDs. Uric acid (mg/dl), triacylglycerol
(mg/dl), total proteins (d/dl), cholesterol (mg/dl), glucose (mg/dl), aloumin (g/dl), GOT

(U/) and GPT (U/l). Serum hematological markers that showed an association with

season are indicated with # (p < 0.05).

Season 2018-2019

Season 2019-2020

Parameter Mean + SD Min-Max Mean + SD Min-Max
Uric acid 8.126 +2.776 3.87-14.37 6.234+2.069 2.250-9.56
Triacylglicerols 63.41 + 18.40 31-99 118.1 + 49.76 53 - 286
Total proteins 2.809 +0.392 2.1-3.7 2.790 + 0.497 19-35
Cholesterol 245 +58.06 103.6-354.9 244.8+65.63 113.3-351.5
Glucose 340.6 + 43.41 269 -420  330.6 £49.95 170 379
Albumin 1.020+0.135 0.73-1.260 1.282+0.233 0.87-1.63
GOT 75.95 + 27.20 25-160 105.4 + 20.79 69 - 153
GPT 27.70+12.84 9.1-63 27.27 +7.192 15-39
Hematocrit (%) 4560+4967 356-535 41.33+6.204 30.10-30.90
IgY (OD 405nm) 0.215+0.069 0.11-0.38 0.237£0.075 0.104-0.430
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Figure 2. Relationships between red blood cells THg concentrations (ng g dw) and (a) albumin (g/dl), (b) hematocrit (%), (c) IgY (OD 405nm)
and (d) GPT (U/l) in the blood of adult brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay, Antarctic Peninsula (63°24'S, 57°01'W)
in the 2018/19 and 2019/20 breeding seasons.
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Figure 3. Relationships between red blood cells THg concentrations (ug g~* dw) and egg
volume (mmq) of female brown skuas (Stercorarius antarcticus) at Esperanza/Hope Bay,
Antarctic Peninsula (63°24'S, 57°01'W) in the 2018/19 and 2019/20 breeding seasons.
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