

Whey–pectin microcapsules improve the stability of grape marc phenolics during digestion

Article

Accepted Version

De La Cruz Molina, A. V., Gonçalves, C., Neto, M. D., Pastrana, L. ORCID: <https://orcid.org/0000-0002-0852-826X>, Jauregi, P. ORCID: <https://orcid.org/0000-0003-4438-191X> and Amado, I. R. (2023) Whey–pectin microcapsules improve the stability of grape marc phenolics during digestion. *Journal of Food Science*, 88 (12). pp. 4892-4906. ISSN 1750-3841 doi: 10.1111/1750-3841.16806 Available at <https://centaur.reading.ac.uk/113940/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1111/1750-3841.16806>

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Whey-pectin microcapsules improve the stability of grape marc**
2 **phenolics during digestion**

3 Aimara V. De La Cruz-Molina¹, Catarina Gonçalves², Mafalda D. Neto², Lorenzo
4 Pastrana², Paula Jauregi ^{1,3,4}, Isabel R Amado^{2*}

5 ¹Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK,
6 RG6 6A

7 ²INL- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330
8 Braga, Portugal

9 ³ Current address: AZTI, Food Research, Basque Research and Technology Alliance (BRTA),
10 Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio, Bizkaia 48160, Spain

11 ⁴ Current address: Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain

12 *** Correspondence:** Isabel R. Amado: isabel.rodriguez@inl.int

13 **Abstract**

14 Grape marc is an agri-food residue from the wine industry valuable for its high content
15 of phenolic compounds. This study aimed to develop an encapsulation system for grape
16 marc extract (GME) using food-grade biopolymers resistant to gastric conditions for its
17 potential use as a nutraceutical. For this purpose, a hydroalcoholic GME was prepared
18 with total phenolics content of 219.62 ± 11.50 mg gallic acid equivalents (GAE)/ g dry
19 extract and 1389.71 ± 97.33 μ mol Trolox equivalents (TE)/ g dry extract antioxidant
20 capacity, assessed through ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
21 acid) assay. Moreover, the extract effectively neutralised reactive oxygen species (ROS)
22 in Caco-2 cells, demonstrating an intracellular antioxidant capacity comparable to Trolox.
23 The GME was encapsulated using whey protein isolate and pectin through nano-spray
24 drying (73% yield), resulting in spherical microparticles with an average size of 1 ± 0.5

25 μm and a polydispersity of 0.717. The encapsulation system protected the microcapsules
26 from simulated gastrointestinal digestion, where at the end of the intestinal phase, 82%
27 of the initial phenolics were bioaccessible compared to 54% in the free GME. Besides, the
28 encapsulated GME displayed a higher antioxidant activity by the ferric reducing
29 antioxidant power (FRAP) assay than the free extract after gastrointestinal digestion
30 (GID). These results show the potential of this encapsulation system for applying GME
31 as a nutraceutical with a high antioxidant capacity and protective effect against cellular
32 oxidation.

33 **Keywords: grape marc phenolics, biopolymer, nano-spray drying, *in vitro* digestion,**
34 **encapsulation.**

35

36

37 **1. Introduction**

38 Grape marc is a food by-product composed of the skins, seeds and stems recovered at the
39 end of the winemaking process. This by-product has attracted significant attention due to
40 its high phenolic content (Lavelli et al., 2016; Peixoto et al., 2018). Phenolics are a family
41 of molecules with antioxidant properties, including phenolic acids and polyphenols such
42 as flavonols and flavan-3-ols (Cao et al., 2021; Tsao, 2010). It has been found that they
43 can play a significant role in the management and prevention of several diseases,
44 especially cardiovascular and type 2 diabetes (Dias et al., 2022; Fraga et al., 2019)

45 Phenolics are extensively researched for their properties but are challenging molecules.
46 They are susceptible to temperature changes, moisture, oxygen, and high/low pH values.
47 In addition, once ingested, they present low stability and bioavailability in the human
48 body due to their low solubility and low membrane permeability (Ludwig et al., 2015;
49 Scalbert & Williamson, 2000; Stalmach et al., 2009; Teng & Chen, 2019). For these
50 reasons, phenolics are unlikely to be used in their pure form and encapsulation is foreseen
51 as an alternative to improve their stability and preserve their properties within food
52 products and bioavailability after consumption (Brezoiu et al., 2019; Sessa et al., 2013;
53 Spigno et al., 2013). The encapsulation process involves using materials to embed,
54 complex, or create a protective wall around bioactives, and by carefully selecting these
55 materials, a targeted release of the bioactives can be achieved.

56 Polysaccharides and proteins are vastly used biopolymers for encapsulation, and
57 interestingly, many of these materials can be obtained from by-products, like whey
58 protein isolate (WPI). WPI is a by-product of the cheese-making process, which contains
59 proteins with high nutritional quality (de Wit, 1998; Jauregi & Welderufael, 2010; Yalçin,
60 2006). Furthermore, WPI forms complexes with polyphenols, stabilising them by

61 improving their solubilisation and protecting their antioxidant activity from heat-induced
62 loss (Guo & Jauregi, 2018). On the other hand, polysaccharides like pectin are found in
63 the peel of citrus, apple, and other fruits. Pectin, as insoluble fibre, is poorly absorbed in
64 the upper gastrointestinal tract (GIT), but pectinolytic enzymes produced by colonic
65 microflora degrade the polysaccharide (Dongowski & Anger, 1996; Rehman et al., 2019).
66 Pectin biodegradability is an interesting property to take advantage of as an effective
67 carrier for the targeted release of bioactive compounds absorbed in the colon. Polyphenols
68 can be absorbed in different parts of the GIT, and those reaching the colon are known to
69 be metabolised by the microbiota into additional low molecular weight phenolic acids
70 (Scalbert et al., 2002). Besides, pectin has other interesting technological properties like
71 emulsifying, gelling and complexation properties (Rehman et al., 2019). In particular,
72 pectin is known for its interaction with WPI through covalent/non-covalent interactions,
73 and their complexes have been studied for their application in food colloidal systems (Du
74 et al., 2022). All these properties of pectin and WPI, together with their known interaction
75 with polyphenols, are expected to protect these labile compounds from processing and
76 digestive conditions, providing their selective release in the lower intestine where they
77 can be absorbed.

78 Among the most used encapsulation methods is spray drying, an efficient, fast, cost-
79 effective, and protective method to obtain dry particles (Annunziata et al., 2020; De La
80 Cruz-Molina et al., 2021; Fang & Bhandari, 2012). This encapsulation technique involves
81 the formation of microcapsules by producing a mixture of bioactive compounds with
82 carriers in solution or suspension and then atomising this mixture in a hot air stream to
83 obtain a dry powder (Dias et al., 2022). Nano spray drying (NSD) has emerged as a
84 technology to reduce particle size. With smaller particles, physiological fate is
85 significantly enhanced due to the higher surface: volume ratio offering a higher

86 penetration rate into the cells, stability, target release and bioavailability (Chopde et al.,
87 2020; Jafari et al., 2021)

88 Several studies have been carried out to study the use of these protein-polysaccharide
89 interactions for spray drying of grape by-products and further *in vitro* digestion due to the
90 excellent source of phenolics they represent (Brown Da Rocha & Zapata Noreña, 2020;
91 Constantin et al., 2021; Du et al., 2022). However, few studies have investigated nano
92 spray drying for raw extracts and their behaviour during gastrointestinal digestion. Desai
93 et al. (2020) used nano spray drying to encapsulate a raw green coffee extract with
94 maltodextrin; their findings showed that maltodextrin protected the chlorogenic acid and
95 its antioxidant activity from digestion conditions and storage. Other works have used the
96 nano spray dryer for the encapsulation of saffron and soy extracts; however, in these
97 works, a purification of specific compounds was carried out before the encapsulation (Del
98 Gaudio et al., 2016; Kyriakoudi & Tsimidou, 2018). Moreover, these mentioned studies
99 investigate only the use of maltodextrin even though nano spray drying has been used for
100 encapsulation of specific whey proteins such as bovine serum albumin and lactoferrin
101 (Bourbon et al., 2020; Lee et al., 2011).

102 This work aims to produce nano spray dried microcapsules with whey protein-pectin as
103 encapsulants for the encapsulation of a raw grape marc extract and to study the effect on
104 the stability and bioaccessibility of the polyphenols. Moreover, the biocompatibility and
105 antioxidant capacity of the extract are assessed using a Caco-2 cell line and compared
106 against the commercial antioxidant compound Trolox.

107

108 **2. Materials and methods**

109

110 Casa Emma Winery (Firenze, Italy) kindly supplied commercial grape marc flour from
111 Sangiovese grapes. The grape marc flour is obtained by drying the grape marc at 42 °C
112 for three days to preserve the phenolics. The grape marc is constantly mixed to avoid
113 mould growth, and after the drying process, it is pulverised to a 250-micron particle size.
114 The final product has the following specifications (supplied by the manufacturer): 8.53%
115 moisture, 8% carbohydrates (from which sugars are 0.56%), 58.6% fibre, and 11.8%
116 protein. Whey protein isolate was purchased from Volac International Ltd (Hertfordshire,
117 UK) with the following specifications (supplied by the manufacturer): protein: 92% min,
118 lactose: 0.9% max, fat: 0.8% max, pH: 5.8 min (10% sol). Pectin from citrus peel with
119 ≥74.0% of galacturonic acid and ≥ 6.7% of methoxy groups; pepsin from porcine gastric
120 mucosa ≥ 250 units/mg solid, pancreatin from porcine pancreas 8 x USP, bile, 2,4,6-
121 Tris(2-pyridyl)-s-triazine (TPTZ), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
122 acid) diammonium salt (ABTS), fetal bovine serum (FBS) Superior, Hanks' balanced salt
123 solution (HBSS) Resazurin sodium salt, 2',7'-Dichlorofluorescin diacetate (DCFH-DA),
124 3-Morpholinosydnonimine (Sin-1), (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
125 carboxylic acid (Trolox), and tert-butyl hydroperoxide (tBOOH) were purchased from
126 Sigma-Aldrich. Minimum essential medium Eagle (MEM) (with 2 mM L-Glutamine, 1
127 mM Sodium pyruvate, non-essential amino acids (NEAA)) and Penicillin-Streptomycin
128 (10,000 U/mL-10 mg/mL, respectively) were from PAN-Biotech GmbH.

129

130 **2.1 Extraction of phenolics from grape marc**

131

132 A hydroalcoholic extraction was applied following the methodology previously
133 developed in our group (MohdMaidin et al., 2018) to extract phenolics from grape marc.
134 The extraction was carried out in an 8:1 ratio (solvent: solid) using a solution of 60%

135 ethanol under magnetic stirring for 2 h at 60°C. After the extraction, the solids were
136 separated through vacuum filtration using No. #1 Whatman paper. Later, the ethanol was
137 removed from the extract using a rotavapor (RV 10 auto pro-V-C Complete, IKA,
138 Staufen, Germany). Then, the grape marc extract (GME) was freeze-dried and stored at -
139 18 °C for further analysis, described in sections 2.6 and 2.7.

140

141 **2.2 *In vitro* cell culture studies**

142 **Cell culture**

143 Caco-2 cell line (ATCC, HTB-37) from human colon epithelial carcinoma was routinely
144 expanded in MEM, supplemented with 20% FBS, and 1% Penicillin/Streptomycin (final
145 concentration of 100 U/mL and 100 µg/mL, respectively). The cells were kept in a
146 humidified atmosphere of 5% CO₂, at 37 °C, in 75 cm² flasks. Cells were used in passages
147 33–52, being the cell culture media replaced every other day. Upon reaching confluence,
148 cells were detached using 0.25% trypsin- ethylenediaminetetraacetic acid (EDTA)
149 solution, then pelleted by centrifugation at 300 ×g for 5 min and resuspended in fresh
150 MEM at a concentration of 1 × 10⁵ cells·mL⁻¹. Cells were seeded onto 96-well plates at
151 a density of 1 × 10⁴ cells (100 µL of cellular suspension) per well and left to adhere for
152 over 24 h.

153

154 **Cell viability assay**

155 The cytotoxicity of GME was determined indirectly by the resazurin conversion assay.
156 After adhesion, the culture medium was removed, cells were washed twice with pre-

157 warmed phosphate buffered saline (PBS) solution, and 200 μ L of samples or controls
158 were applied and incubated for 24 h. GME was prepared as described in section 2.1, then
159 further diluted with culture medium (10%, v/v) and tested at 33, 67 and 100 GAE μ g/mL
160 final concentrations based on total phenolic content (TPC) in GME. These concentrations
161 were chosen based on preliminary studies using concentrations reported by Freitas et al.
162 (2020). Negative control was performed using cells growing in MEM (considered 100%
163 cell viability), and 40% (v/v) dimethyl sulfoxide (DMSO) was used as a positive control.
164 After incubation, samples or controls were removed and washed twice with pre-warmed
165 PBS. After this, 100 μ L of 10% (v/v) resazurin in the culture medium (0.01 mg/mL final
166 concentration) was added. The fluorescence intensity, proportional to the number of
167 viable cells, was measured after 5 h of incubation using a microplate fluorescence reader
168 (Synergy H1, BioTek, Vermont, USA) at an excitation wavelength of 560 nm and an
169 emission wavelength of 590 nm. The % cell viability was expressed as the fluorescence
170 of treated cells compared to that of cells growing in the culture medium.

171 **Intracellular reactive oxygen species (ROS) quantification**

172 The antioxidant activity of GME was determined in an *in vitro* cell assay using DCFH-
173 DA as a cell-permeable probe to detect intracellular ROS. After cell adhesion, the culture
174 medium was removed, and 100 μ L of 10 μ M DCFH-DA solution was added to each well
175 and incubated for 1 h. Afterwards, the solution was removed, and 100 μ L of GME
176 solubilised in HBSS was added to each well at a final concentration of 33 and 67 GAE
177 μ g/mL, based on TPC content in GME, and incubated for 4 h. The fluorescence intensity
178 was measured using a microplate fluorescence reader (Synergy H1, BioTek, Vermont,
179 USA) at an excitation wavelength of 495 nm and an emission wavelength of 525 nm.

180 Cells exposed to HBSS, Sin-1 (5 μ M) and Trolox (50 μ g/mL) were used as basal, positive,
181 and negative controls, respectively.

182 Then, the protective effect of GME against oxidative stress was investigated using Sin-1
183 as an oxidative stress inducer. First, Caco-2 cells were exposed to GME at a 33 and 67
184 GAE μ g/mL concentration based on TPC content in GME for 4 h. Then, Sin-1 was added
185 to the cells at a final concentration of 5 μ M and incubated for 1 h. The fluorescence
186 intensity was measured every 15 min using a microplate fluorescence reader (Synergy
187 H1, BioteK) at an excitation wavelength of 495 nm and an emission wavelength of 525
188 nm. Cells exposed to HBSS, Sin-1 (5 μ M) and Trolox (50 μ g/mL) were used as basal,
189 positive, and negative controls, respectively.

190

191 **2.3 Nano-spray drying (NSD)**

192 First, 50 mL of 4% WPI and 0.4% pectin solutions were prepared separately and
193 solubilised overnight at room temperature to ensure complete hydration. Then, 550 mg
194 of GME was resuspended in the pectin solution (50 mL) and mixed with a magnetic stirrer
195 for 5 min. This solution (pectin-GME) was mixed with the WPI solution (50 ml) and
196 stirred for 10 min (magnetic stirring). Then the WPI-pectin-GME solution was
197 centrifuged to remove any large undissolved particles and filtrated through a 0.45 μ m
198 PVDF filter before passing it through the NSD. The final solution had a final
199 concentration of 2% WPI, 0.2% pectin and 0.55% GME. A solution containing the same
200 proportion of WPI and pectin, but no GME was prepared to compare physical
201 characteristics. The encapsulation was performed using a Nano-spray Dryer B-90
202 (BÜCHI Labortechnik AG, Flawil, Switzerland). Compressed air was used as the drying
203 gas, and the flow rate was set to about 100 or 110 L/min. The inlet temperature was set

204 to 90°C, the spray rate to 65%, and the pump to 30%. WPI-pectin-GME (W-P-GME) and
205 WPI-pectin (W-P) particles were stored at 4 °C.

206 **2.4 Characterisation of the microparticles**

207

208 **Scanning electron microscopy (SEM)**

209

210 The samples' surface morphology was evaluated through SEM using a Quanta FEG 650
211 (FEI, Oregon, USA). Dried samples were affixed on aluminium stubs covered by carbon
212 ribbon and coated with gold, and samples were observed using an accelerating voltage of
213 5 kV under vacuum conditions.

214 **Size and polydispersity index**

215 The size of the particles was determined by analysing SEM images with the program
216 ImageJ (National Institutes of Health, Maryland, USA). The scale was adjusted according
217 to the parameters from SEM images, and the size of 175 particles was determined. After
218 this, the mean and standard deviation was calculated, and from those values, the
219 polydispersity index (PDI) was calculated with the following formula:

220 **Equation 1**

221
$$PDI = \sqrt{\frac{\text{size } \sigma}{\text{size } \bar{x}}}$$

222 Where σ is the standard deviation of the particle size and \bar{x} is the mean size of the
223 particles.

224

225

226 **Yield**

227 The drying yield was calculated from the ratio of total solids out (microcapsules) to total
228 solids in (solids in extracts + encapsulants).

229 **Equation 2**

230
$$EY\% = \frac{\text{Total solids out}}{\text{Total solids in}} \times 100$$

231

232 **Z-potential**

233 The particles' surface charge (Z- potential) was measured by dynamic light scattering
234 using an SZ-100 particle analyser (Horiba Scientific, Kyoto, Japan). Microparticles (1
235 mg/mL) were measured at 25 °C using a He-Ne laser (633 nm) in folded capillary cells.
236 Five independent measurements of each sample were done, and data were expressed as
237 mean \pm SD.

238 **Fourier Transform Infrared Spectroscopy**

239 Fourier Transform Infrared (FTIR) Spectroscopy determined functional groups and the
240 bonding arrangement of sample constituents. FTIR analyses were carried out with an
241 ALPHA II (Bruker, Ettlingen, Germany) spectrometer with a diamond composite in the
242 400–4000 cm⁻¹ wavenumber region.

243 **2.5 In vitro digestion**

244 Particles were tested under simulated digestive conditions to evaluate the protective effect
245 of polymeric particles on GME's activity and polyphenol content. First, the activity of
246 the digestive enzymes (pepsin and trypsin in pancreatin) was quantified. Then, the
247 experimental conditions were applied according to the *in vitro* static INFOGEST method
248 (Brodkorb et al., 2019). The addition of gastric lipase was omitted due to the limited

249 access to the commercially available enzyme, and amylase was not used in the oral phase
250 since there was no starch in the sample.

251 W-P-GME particles (200 mg) or free GME (100 mg) were resuspended in 1 mL of
252 distilled water and digested. The sample was diluted 1:1 (v/v) in oral digestion with
253 simulated salivary fluid, CaCl_2 0.3 M and water. The tubes were incubated in an orbital
254 incubator (Fisher Scientific) for 2 min at 37 °C and 150 rpm. For gastric digestion (GD),
255 a pepsin solution (2000 U/mL) in water was prepared based on the previously determined
256 activity. The 2 mL of oral phase were diluted 1:1 (v/v) with simulated gastric fluid, pepsin
257 solution, CaCl_2 0.3 M, HCl 1 M (to pH 3.0) and water. The samples were incubated for 2
258 h at 37 °C and 150 rpm. A 1.8 mL sample was collected after the 2 h of GD. For intestinal
259 digestion (ID), bile solution and pancreatin were prepared in simulated intestinal fluid.
260 The 2.2 mL of gastric phase were diluted 1:1 (v/v) with simulated intestinal fluid,
261 pancreatin solution, bile, CaCl_2 0.3 M, NaOH 1 M (to pH 7.0) and water. The samples
262 were incubated for 2 h at 37 °C and 150 rpm. Then the samples were put in an ice water
263 bath for 30 min to stop the enzyme's activity.

264 After digestion, each digested sample was centrifugated in a Ministar blueline
265 microcentrifuge (fixed speed 2,000 $\times g$) at room temperature for 5 min. The supernatants
266 were collected and stored for analysis. Digestion of polyphenols was evaluated according
267 to the analytical determinations described in sections 2.6 and 2.7 after GD and after
268 gastrointestinal digestion (GID).

269 The residual values of polyphenols were calculated as a percentage of the total mass of
270 TPC (mg) remaining after GD and after the overall GID in relation to the initial mass. In
271 the case of the antioxidant capacity, the values correspond to the trolox equivalents (TE)

272 (mg) for ABTS and ascorbic acid equivalents (AAE) (mg) for FRAP remaining after each
273 phase of the digestion in relation to the initial ones.

274

275 **2.6 Analytical determinations**

276

277 **Total Phenolic Content**

278 The total phenolic content (TPC) was determined by the Folin-Ciocalteu method
279 (Singleton & Rossi, 1965). For the assay, 75 μ L de Folin-Ciocalteu reagent (1:10) was
280 added in a 96-well microplate, with 15 μ L of the sample and 60 μ L of 7.5% Na_2CO_3 . The
281 samples were incubated in the dark for 30 min. After this time, the microplate was read
282 at 765 nm in a microplate reader (Synergy H, BioTek, Vermont, USA). The results were
283 quantified from a Gallic acid calibration curve ranging from 0.1 to 1.0 mg/ml and
284 expressed as milligrams of gallic acid equivalents (GAE) per gram of dried extract (mg
285 GAE / g de).

286

287 **Total Monomeric Anthocyanin Content**

288 Total monomeric anthocyanins content (TMAC) levels were quantified by the AOAC
289 Official Method 2005.02 pH differential method (Lee et al., 2005). A sample of GME
290 was combined in a 1:20 ratio (v:v) with potassium chloride and sodium acetate buffers
291 (pH 1.0 and 4.5, respectively) separately. After an equilibration period of 15 min, the
292 absorbance of each solution was measured at 520 and 700 nm in a microplate reader
293 (Synergy H, BioTek, Vermont, USA). The values were calculated with the following
294 formula.

295 **Equation 3**

296 Monomeric Anthocyanins =
$$\frac{A \times MW \times DF \times 1000}{\varepsilon \times 1}$$

297 Where:

298 - A= corrected absorbance value calculated as $[(A_{520} - A_{700})_{pH\ 1.0} - (A_{520} - A_{700})_{pH\ 4.5}]$

300 - MW= molecular weight of malvidin 3-O-glucoside (493.43 g/mol)

301 - DF= dilution factor

302 - ε = molar absorption: 28,000 L/mol · cm

303 The results were expressed as milligrams of malvidin 3-O-glucoside equivalents per litre
304 (mg M3GE/L)

305

306 **Total Flavonoid Content**

307 The total flavonoid content (TFC) was measured using the aluminium method (Zhishen
308 et al., 1999) with some modifications. Briefly, 100 μ L of the sample were added to an
309 Eppendorf tube, and 430 μ L of solution A (1.8 mL of 5% NaNO₂ mixed with 24 mL of
310 distilled water) was added to the sample and incubated for 5 min. Later 30 μ L of 10%
311 AlCl₃ were added and left to rest for 1 min. Finally, 440 μ L of solution B (12 mL of NaOH
312 1M mixed with 14.4 mL of distilled water) was added without further incubation. From
313 this reaction, 150 μ L were transferred to a 96-well microplate in triplicate. The samples
314 were read at 496 nm in a microplate reader (Synergy H1, BioTek, Vermont, USA). The
315 absorbance was compared with a Catechin standard curve ranging from 0.1 to 1 mg/ml.
316 The results were expressed as milligrams of Catechin equivalents (CE) per gram of dried
317 extract (mg CE/ g de).

318 **2.7 Antioxidant Capacity assessment by ABTS and FRAP methods**

319 The total antioxidant activity of all samples was measured by ABTS (2,2'-Azino-bis(3-
320 ethylbenzothiazoline-6-sulfonic acid)) assay (Re et al., 1999) with some modifications.
321 The ABTS•+ stock solution was prepared by mixing 5 ml of 7 mM ABTS solution and
322 88 µl of 140 mM potassium persulfate ($K_2S_2O_8$) solution. Then, the mixture was kept in
323 the dark and at room temperature for at least 16 h before use. The working solution of
324 ABTS•+ was obtained by diluting the ABTS•+ stock solution with distilled water to an
325 absorbance of 0.70 ± 0.02 at 734 nm. Then, 5 µl of the sample was added to 245 µl of
326 ABTS•+ working solution, and the mixture was homogenised and then incubated in the
327 dark for 5 min. The absorbance of the control and the samples were recorded at 734 nm
328 using a microplate reader (Synergy H1, BioTek, Vermont, USA). The scavenging activity
329 of each sample on ABTS•+ was calculated from a Trolox standard curve at concentrations
330 of 0.04 to 0.4 mg/mL. Results were expressed as micromole Trolox equivalents (TE) per
331 gram of dry extract.

332 For the Ferric Reducing Antioxidant Power (FRAP) assay (Benzie & Strain, 1996), 10 µl
333 of the sample was added to 300 µl of FRAP reagent in a microcentrifuge tube and
334 vortexed for 10s. Then, in triplicate, 100 µl of this mixture was transferred into a 96-well
335 microplate, and absorbance was measured at 595 nm in a microplate reader (Synergy H1,
336 BioTek, Vermont, USA). An ascorbic acid standard curve from 0.01 to 0.2 mg/mL was
337 used for the quantification. Results were expressed as micromole ascorbic acid
338 equivalents (AAE) per gram of dry extract.

339

340

341 **2.8 Statistical Analysis**

342 The data were subjected to a One-Way ANOVA using IBM® SPSS® Statistics 27
343 software, where statistical differences were noted. Differences among different
344 treatments were determined using independent samples t-test for particle size and
345 gastrointestinal results. For the metabolic activity, differences were determined by
346 Dunnett's multiple comparison test, as this is more suitable for the mean comparison of
347 different experimental groups against a control group. The significance level was defined
348 at $p < 0.05$, and the results are reported as means \pm SD.

349

350 **3. Results and discussion**

351 **3.1 Characterization of grape marc extract**

352 Hydroalcoholic extractions have proven to be efficient for extracting phenolics from
353 grape by-products (MohdMadin et al., 2018, 2019; Spigno et al., 2007, 2017). Indeed,
354 we obtained a phenolics-rich extract with high total phenolic content (TPC), total
355 flavonoid content (TFC) content, and antioxidant capacity (Table 1). The phenolics
356 content was higher than those reported by Pintać et al. (2018) and Aresta et al. (2020).
357 They obtained 69 and 70 mg gallic acid equivalents (GAE)/ g de, respectively, when
358 conventional extraction of polyphenols from grape marc. However, we obtained a lower
359 content of total monomeric anthocyanin content (TMAC), which might be explained by
360 a combination of factors such as extraction method, grape variety, growing region, and
361 processing, these conditions play a significant role since not all grapes bear the same
362 TMAC (Rinaldi et al., 2020; Spigno et al., 2015).

363

364 **3.2 Biocompatibility of grape marc extract**

365 Studying the potentially toxic effects of bioactive compounds is essential to determine
366 whether they are safe to consume without harming the host. The grape marc extract
367 (GME) showed a dose-responsive effect after 24 h of incubation with Caco-2 cells (Fig.
368 1). We observed cellular compatibility, *i.e.*, more than 70% of cell viability, for 33 and
369 67 µg/mL TPC based on GAE. However, cell viability below 70% was observed at the
370 highest concentration tested (100 GAE µg/mL), which is considered toxic. Studies in the
371 grape phenolic extract have shown that concentrations between 0.1 to 10 µg/mL present
372 no toxicity in Caco-2 cells with up to 93% viability (Wang et al., 2016). Another study
373 by Costa et al. (2019) showed that concentrations of up to 2% of GME were non-toxic
374 for Caco-2 cells before and after simulated *in vitro* digestion. Also, Wolfe et al. (2008)
375 observed that concentrations below 60 mg/mL of different extracts, e.g., wild blueberry,
376 red grape, and strawberry, showed no cytotoxicity in HepG2 cells. However, in a
377 preliminary assay, we observed that concentrations of 5 mg/mL GME, in the
378 concentration range of some reports, were highly toxic (0% viability) for Caco-2 cells
379 (data not shown), highlighting the importance of assessing each extract for its safe
380 application.

381

382 **3.3 Cellular antioxidant activity (CAA) of grape marc extract**

383 Reactive oxygen species (ROS) are natural by-products of cell activity and essential
384 signaling molecules (Zhang et al., 2016). However, an imbalance between oxidant-
385 producing systems and antioxidant defense mechanisms can trigger cell damage and
386 cause cell death (Alfadda & Sallam, 2012). Cell-based assays have been used to assess
387 the effectiveness of dietary antioxidant compounds (Kellett et al., 2018).

388 Studies of intracellular oxidant production in Caco-2 cells were evaluated using 2'-7'-
389 Dichlorodihydrofluorescein (DCFH) fluorescence, testing GME at non-toxic
390 concentrations (33 and 67 GAE μ g/mL based on TPC). As shown in Fig. 2A, both GME
391 concentrations decreased the intracellular ROS basal levels, comparing with the control
392 (cells treated with Hanks' balanced salt solution (HBSS)) to a similar level to the one
393 observed for (\pm)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, 50
394 μ g/mL). This result suggests that GME can reduce ROS naturally produced by the Caco-
395 2 cells, demonstrating a possible antioxidant effect (intracellular) against ROS.

396 To evaluate the potential protective effect of GME against intracellular oxidation, Caco-
397 2 cells were pre-treated with GME at the non-toxic concentrations of 33 and 67 μ g
398 GAE/mL based on TPC for 4 h. Then, cells were stimulated with 5 μ M of the oxidising
399 agent 3-Morpholinosydnonimine (Sin-1), selected according to the literature (PD ISO/TS
400 19006:2016). Cells treated with HBSS and stressed with Sin-1 were used as a positive
401 control. As shown in Fig. 2B, cells pre-treated with non-toxic concentrations of GME
402 significantly reduced intracellular ROS level produced after stimulation with Sin-1
403 compared to cells pre-treated with HBSS (control). This reduction was similar to that
404 observed for treated cells with 50 μ g/mL Trolox which was used as a potent antioxidant
405 model compound.

406 GME showed a similar antioxidant effect to a well-known compound at similar
407 concentrations, suggesting that GME polyphenols can effectively neutralise ROS-
408 induced production (protective effect) in Caco-2 cells, demonstrating intracellular
409 antioxidant capacity. The results of the CAA also corroborate the high antioxidant
410 capacity of the GME observed by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
411 (ABTS) and ferric reducing antioxidant power (FRAP) methods. Wang et al. (2016)

412 induced ROS production using t-BOOH (tert-butyl hydroperoxide) in Caco-2 cells treated
413 with grape phenolic extract for 1 h, and their results showed that concentrations of 0.1 to
414 10 µg/mL exert an antioxidant effect over ROS. Other studies have reported that
415 concentrations of 100µ/mL, 200µ/mL and 500µ/mL reduced ROS production in Caco-2
416 cells treated with grape pomace extract for 5 h (Martins et al., 2017, 2020). However, at
417 500 µg/mL, the production of ROS was significantly reduced due to the pro-oxidant effect
418 of polyphenols (Martins et al., 2020). Milinčić et al. (2021) observed an EC50 of ABAP
419 (2,2'-azobis(2-amidopropane)) radical at a 54 mg TPC/mL concentration of grape pomace
420 skin extract on the same cell line. The concentrations used in the previously mentioned
421 studies are considerably higher than the ones we reported, indicating that while grape
422 pomace is an excellent source of antioxidants, the analyses of cell biocompatibility and
423 antioxidant capacity need to be carried out before their formulation as nutraceuticals or
424 functional food ingredients.

425

426 **3.4 Encapsulated GME morphology, size, and Z-potential**

427 The morphology and size of the encapsulated GME were studied through scanning
428 electron microscopy (SEM) analysis. Fig. 3A shows the formation of large crystals with
429 a wide distribution of submicron and micron particles during freeze-drying of GME
430 (Table 2). For the nano spray dried particles, different morphologies were observed for
431 the W-P particles with and without GME. Blank microparticles (W-P) had a spherical
432 shape and smooth surface (Fig. 3B), while microparticles loaded with GME (W-P-GME)
433 (Fig. 3C) kept their spherical shape but presented some wrinkles in their surface.
434 Moreover, no breakage was seen in W-P and W-P-GME. Regarding the size, W-P-GME
435 particles showed a smaller and narrower size distribution than W-P particles (Table 2).

436 Studies on the encapsulation of raw grape marc extract by conventional spray drying have
437 reported sizes of 9.8 μm when using pectin and casein, and 15 μm when using whey
438 protein isolate (WPI) alone. (Carra et al., 2022; Moreno et al., 2018). The results obtained
439 here (1 μm) demonstrate that nano spray drying significantly affects the particles'
440 reduction size. Moreover, the particles we obtained displayed a more homogeneous and
441 well-defined particle shape than those in previously mentioned studies, where irregular
442 and dented surfaces were obtained, and in the case of WPI, holes were seen in the
443 microparticles (Moreno et al., 2018). The zeta potential of W-P-GME (Table 2) showed
444 a medium to high particle surface charge, which confers the particles' colloidal stability.

445

446 **3.5 Fourier Transform Infrared (FTIR) analysis**

447 FTIR analysis was used to examine interactions between the biopolymers and GME. The
448 infrared spectra of the carriers, GME and microparticles are shown in Fig. 4. For WPI,
449 characteristic amide I and II bands can provide information about protein secondary
450 structures, and their change in vibration frequencies is related to the interaction between
451 their functional groups. Amide I, represents the C=O carbonyl stretching vibration of the
452 peptide backbone (1600-1700 cm^{-1}), and the amide II band (<1550 cm^{-1}) represents the
453 C-N stretching and N-H bending (López-Rubio & Lagaron, 2012; Meng et al., 2021). As
454 for the GME, the characteristic bands of grape phenolic compounds were observed
455 between 1700 and 900 cm^{-1} . The band at 1710 cm^{-1} was attributed to the stretching in the
456 carbonyl group (C=O) band, 1600 and 1510 cm^{-1} bands correspond to the C=C stretching,
457 characteristic of aromatic systems. The peak around 1440 cm^{-1} corresponds to the
458 antisymmetric in-plane bending of -CH₃ related to aromatic rings and flavonoids (Moreno
459 et al., 2018; Zhao et al., 2015). Characteristic peaks of pectin can be observed at 2920,

460 1740, 1610 and 900-1250 cm^{-1} corresponding to the C-H stretching of the CH, CH₂ and
461 CH₃ groups, C=O stretching vibration of the ester carbonyl, C=O stretching of the
462 vibration the carbonyl group, C-O-C and O-H of pyranose rings respectively (Khodaiyan
463 & Parastouei, 2020).

464 Looking at the infrared spectra of W-P and W-P-GME, slight shifts in the amide I and
465 amide II regions were observed compared to WPI (1517 to 1535 cm^{-1}). These shifts can
466 be attributed to the interaction between carboxyl groups of pectin and the charged amino
467 groups of the main WPI proteins' composition (beta-lactoglobulin, alpha-lactalbumin,
468 and serum albumin) (Raei et al., 2018). An increase in the intensity was observed for the
469 W-P particles, which can be attributed to the rise in random coils and the previously
470 mentioned interaction between WPI and pectin (El-Messery et al., 2020; He et al., 2016).
471 However, when GME is added, a decrease in intensity is observed. This result is
472 consistent with those obtained by Meng and Li (2021), where Gallic acid, chlorogenic
473 acid, and epigallocatechin gallate-WPI complexes showed decreased intensity in the
474 amide I band. This change can be attributed to the reduction of α -helical structures as a
475 result of protein conformational modifications upon phenolics complexation by hydrogen
476 bonding and hydrophobic interactions between the phenolic compounds and hydrophobic
477 groups of the protein, so there are not only interactions but also changes in the secondary
478 structure of the proteins (Bourassa et al., 2013; He et al., 2016). According to previous
479 reports, W-P-GME did not show any characteristic band from GME, indicating that
480 phenolics distinct peaks can be hidden when in contact with other biopolymers like WPI.
481 This change could mean the formation of complexes that reduce the bending and
482 stretching of the bonds in GME polyphenols.

483 **3.6 *In vitro* digestion of free and encapsulated GME**

484 The results of the residual TPC and antioxidant activity for both free and encapsulated
485 GME are shown in Fig. 5. These results represent the fraction of TPC (or activity which,
486 is quantified as Trolox equivalents (TE) or ascorbic acid equivalents (AAE)) remaining
487 after gastric digestion (GD) or gastrointestinal digestion (GID), the latter indicating the
488 bioaccessible fraction. Therefore, these values show the fraction of TPC (or activity) that
489 resisted the simulated gastrointestinal conditions in free GME. In contrast, for W-P-GME,
490 these values account for the fraction of TPC that resisted the conditions and/or was
491 encapsulated and effectively released from the microcapsules during digestion.

492 A different behaviour was observed for free and encapsulated GME, suggesting the
493 microcapsules play an essential role in the phenolic content and their activity during
494 digestion. For free GME, we observed that the TPC underwent some degradation due to
495 the gastric conditions (acidic pH), as shown by a 76% residual TPC content (24%
496 unaccounted for; Fig. 5A). The moderate stability of GME polyphenols to gastric
497 digestion agrees with previous studies (Li et al., 2023). The free GME suffered further
498 degradation after intestinal conditions, resulting in a further 30% TPC loss in relation to
499 that remaining after GD; low stability of polyphenols has been reported at neutral pH
500 conditions (Li et al., 2023). So, after GID, the overall bioaccessible TPC was 54%. In the
501 case of encapsulated GME, about 30% of TPC was unaccounted for after GD (Fig. 5A),
502 which may represent the fraction not released from the microparticles. Indeed, high
503 preservation of the TPC was expected during GD since strong electrostatic interactions
504 stabilise the WPI- pectin complex at acidic pHs (3.6-4.5) (Raei et al., 2017), which should
505 protect phenolics from degradation. However, some release of phenolics will still occur
506 as WPI is susceptible to enzymatic hydrolysis, but pectin should have a stabilising effect
507 in the system (Reichembach & Lúcia de Oliveira Petkowicz, 2021; Wusigale et al., 2020).
508 Yet, the released fraction can also undergo similar degradation as that observed for the

509 free extract (GME). Therefore, assuming the residual 70% TPC content in W-P-GME
510 will undergo similar degradation as that of the free extract during GID, values close to 54
511 % of residual TPC (as in GME) would be expected however, it was found that 83% of the
512 TPC remained after GID. This indicates a protective effect of the microcapsules, which
513 resulted in about 30% of the TPC in the gastric phase and their release at intestinal
514 conditions, with an overall increase in the remaining TPC compared to free GME.

515 The behaviour of antioxidant activity during GID for both free and encapsulated GME
516 showed a similar trend to TPC. Thus, the free GME showed a slight loss of activity after
517 GD followed by a more pronounced decrease after GID, while for W-P-GME, the activity
518 was slightly increased after GID compared to GD (Fig. 5B & 5C). Besides, free GME's
519 bioactivity directly correlates with residual TPC values after GD and GID, achieving
520 values of 73% and 57% of the initial activity, as assessed by the ABTS method. Although
521 a similar trend was observed in both phases, lower values were recorded using the FRAP
522 method.

523 For encapsulated GME, although a positive correlation was observed between residual
524 TPC and antioxidant activity, the latter showed lower values than the residual TPC. For
525 instance, 29 and 61% of the activity was observed using the ABTS method after GD and
526 GID in W-P-GME. The reduced activity compared to the residual TPC might be due to
527 released polyphenols from the capsules bearing lower antioxidant activity than those that
528 were still encapsulated or that they might be complexed with the capsule components
529 since they are known to interact with whey proteins and their peptides (Guo & Jauregi,
530 2018), which has been confirmed by the FTIR spectra.

531 Overall, the results of GID showed that the encapsulation succeeded in preserving the
532 TPC and increasing their bioaccessibility. For the antioxidant activity, similar results to

533 free GME were observed according to the ABTS method, and slightly higher activity
534 according to the FRAP method.

535

536 **4. Conclusions**

537 A raw ethanolic extract of a winery by-product (grape marc) with antioxidant capacity
538 was successfully encapsulated using whey protein isolate (WPI) and pectin and nano
539 spray drying (73% yield), resulting in spherical smoothed-surface microparticles with an
540 average size of 1 μ m, polydispersity index (PDI) of 0.717, and a surface charge (Z-
541 potential) close to -30 mV. The Fourier Transform Infrared (FTIR) analysis of
542 the microparticles confirmed the complexations between WPI, pectin and the phenolics
543 in grape marc extract (GME) through non-covalent interactions. The developed
544 encapsulation system protected the GME phenolics and the antioxidant activity during
545 gastrointestinal digestion (GID), improving bioaccessibility. The potent antioxidant
546 intracellular protective effect of GME observed, and its improved resistance to GID when
547 encapsulated compared to the free form suggest this encapsulation system could be a
548 promising strategy towards preserving the antioxidant activity of this high-value-added
549 by-product of the wine industry. The selected wall materials proved that the
550 microcapsules resisted gastric conditions and could provide a targeted release in the lower
551 intestine, where phenolic compounds are absorbed and can be metabolised by the
552 microbiota. Although further studies are needed to test the stability, biocompatibility, and
553 *in vivo* bioactivity of the WPI-pectin-GME microcapsules, the presented results are
554 promising towards using encapsulated GME as a nutraceutical.

555

556 **Conflict of Interest**

557 *The authors declare that the research was conducted without any commercial or*
558 *financial relationships that could be construed as a potential conflict of interest.*

559

560 **Author Contributions**

561 *Data curation; Formal analysis; Methodology; Writing-original draft:* Aimara V. De La
562 *Cruz Molina. Conceptualisation:* Isabel Rodriguez, & Lorenzo Pastrana. *Funding*
563 *acquisition:* Lorenzo Pastrana. *Resources:* Lorenzo Pastrana. *Writing-review & editing:*
564 *Isabel Rodriguez, Aimara V. De La Cruz Molina, Catarina Gonçalves, Mafalda D. Neto*
565 *& Paula Jauregi. Cell assays:* Catarina Gonçalves, Mafalda D. Neto. *Supervision:* Isabel
566 *Rodriguez, Lorenzo Pastrana, &Paula Jauregi.*

567 **Funding**

568 The research leading to these results received funding from the European Union's H2020.
569 Research and Innovation Programme under the Maria Skłodowska-Curie grant agreement
570 no. 778388 (H2020 MSCA-RISE-2017 project Food for Diabetes and Cognition
571 (FODIAC), and the SbDtoolBox - Nanotechnology-based tools and tests for Safer-by-
572 Design nanomaterials, with the reference NORTE-01-0145-FEDER-000047, funded
573 by Norte 2020 – North-Regional Operational Programme under the PORTUGAL 2020
574 Partnership Agreement, through the European Regional Development Fund (ERDF).

575

576 **Acknowledgements**

577 The authors would like to thank the Food Processing group at INL, especially Arlete

578 Marques and Isabel Bourbon.

579

580 **References**

581

582 Alfadda, A. A., & Sallam, R. M. (2012). Reactive oxygen species in health and disease.
583 *Journal of Biomedicine and Biotechnology*, 2012.
584 <https://doi.org/10.1155/2012/936486>

585 Annunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G. C.,
586 Sureda, A., & Tejada, S. (2020). Microencapsulation is a tool to counteract the
587 typical low bioavailability of polyphenols in the management of diabetes. *Food*
588 and *Chemical Toxicology*, 139. <https://doi.org/10.1016/j.fct.2020.111248>

589 Aresta, A., Cotugno, P., De Vistro, N., Massari, F., & Zambonin, C. (2020).
590 Determination of Polyphenols and Vitamins in Wine-Making by-Products by
591 Supercritical Fluid Extraction (SFE). *Analytical Letters*, 53(16), 2585–2595.
592 <https://doi.org/10.1080/00032719.2020.1749846>

593 Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a
594 measure of “antioxidant power”: the FRAP assay. *Analytical Biochemistry*, 239(1),
595 70–76. <https://doi.org/10.1006/abio.1996.0292>

596 Bourassa, P., Bariyanga, J., & Tajmir-Riahi, H. A. (2013). Binding sites of resveratrol,
597 genistein, and curcumin with milk α - And β -caseins. *Journal of Physical*
598 *Chemistry B*, 117(5), 1287–1295. <https://doi.org/10.1021/jp3114557>

599 Bourbon, A. I., Barbosa-Pereira, L., Vicente, A. A., Cerqueira, M. A., & Pastrana, L.
600 (2020). Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels.
601 *Food Hydrocolloids*, 101, 105550. <https://doi.org/10.1016/j.foodhyd.2019.105550>

602 Brezoiu, A.-M., Matei, C., Deaconu, M., Stanciu, A.-M., Trifan, A., Gaspar-
603 Pintilieescu, A., & Berger, D. (2019). Polyphenols extract from grape pomace.
604 Characterisation and valorisation through encapsulation into mesoporous silica-
605 type matrices. *Food and Chemical Toxicology*, 133, 110787.
606 <https://doi.org/10.1016/j.fct.2019.110787>

607 Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T.,
608 Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M.,
609 Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le
610 Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A. R., Martins, C., Marze, S.,
611 McClements, D. J., Ménard, O., Minekus, M., Portmann, R., Santos, C. N.,
612 Souchon, I., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Weitschies, W., &
613 Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food
614 digestion. *Nature Protocols*, 14(4), 991–1014. [https://doi.org/10.1038/s41596-018-0119-1](https://doi.org/10.1038/s41596-018-
615 0119-1)

616 Brown Da Rocha, C., & Zapata Noreña, C. P. (2020). *Drying Technology*
617 *Microencapsulation and controlled release of bioactive compounds from grape*
618 *pomace Microencapsulation and controlled release of bioactive compounds from*
619 *grape pomace*. <https://doi.org/10.1080/07373937.2020.1741004>

620 Cao, H., Saroglu, O., Karadag, A., Diaconeasa, ta, Zoccatelli, G., Adam Conte-Junior,
621 C., Gonzalez-Aguilar, G. A., Ou, J., Bai, W., Mara Zamarioli, C., Alexandre Pedro
622 de Freitas, L., Shpigelman, A., Campelo, P. H., Capanoglu, E., Lik Hii, C., Mahdi
623 Jafari, S., Qi, Y., Liao, P., Wang, M., Zou, L., Bourke, P., Simal-Gandara, J., Xiao,
624 J., & Jesus Simal-Gandara, C. (2021). Available technologies on improving the
625 stability of polyphenols in food processing. *Food Frontiers*, 2, 109–139.
626 <https://doi.org/10.1002/fft2.65>

627 Carra, J. B., Matos, R. L. N. de, Novelli, A. P., Couto, R. O. do, Yamashita, F., Ribeiro,
628 M. A. dos S., Meurer, E. C., Verri, W. A., Casagrande, R., Georgetti, S. R.,
629 Arakawa, N. S., & Baracat, M. M. (2022). Spray-drying of casein/pectin
630 bioconjugate microcapsules containing grape (*Vitis labrusca*) by-product extract.
631 *Food Chemistry*, 368(February 2021).
632 <https://doi.org/10.1016/j.foodchem.2021.130817>

633 Chopde, S., Datir, R., Deshmukh, G., Dhotre, A., & Patil, M. (2020). Nanoparticle
634 formation by nanospray drying & its application in nanoencapsulation of food
635 bioactive ingredients. *Journal of Agriculture and Food Research*, 2(November),
636 100085. <https://doi.org/10.1016/j.jafr.2020.100085>

637 Constantin, O. E., Stănciuc, N., Yan, Y., Ghinea, I. O., Ungureanu, C., Cîrciumaru, A.,
638 Wang, D., Poklar Ulrich, N., & Râpeanu, G. (2021). Polymers and protein-
639 associated vesicles for the microencapsulation of anthocyanins from grape skins
640 used for food applications. *Journal of the Science of Food and Agriculture*, 101(7),
641 2676–2686. <https://doi.org/10.1002/jsfa.10892>

642 Costa, J. R., Amorim, M., Vilas-Boas, A., Tonon, R. V., Cabral, L. M. C., Pastrana, L.,
643 & Pintado, M. (2019). Impact of: In vitro gastrointestinal digestion on the chemical
644 composition, bioactive properties, and cytotoxicity of *Vitis vinifera* L. cv. Syrah
645 grape pomace extract. *Food and Function*, 10(4), 1856–1869.
646 <https://doi.org/10.1039/c8fo02534g>

647 De La Cruz-Molina, A. v., Ayala Zavala, J. F., Bernal Mercado, A. T., Cruz Valenzuela,
648 M. R., González-Aguilar, G. A., Lizardi-Mendoza, J., Brown-Bojorquez, F., &
649 Silva-Espinoza, B. A. (2021). Maltodextrin encapsulation improves thermal and
650 pH stability of green tea extract catechins. *Journal of Food Processing and
651 Preservation*, 45(9), 1–13. <https://doi.org/10.1111/jfpp.15729>

652 de Wit, J. N. (1998). Nutritional and Functional Characteristics of Whey Proteins in
653 Food Products. *Journal of Dairy Science*, 81(3), 597–608.
654 [https://doi.org/10.3168/jds.S0022-0302\(98\)75613-9](https://doi.org/10.3168/jds.S0022-0302(98)75613-9)

655 Del Gaudio, P., Sansone, F., Mencherini, T., De Cicco, F., Russo, P., & Aquino, R.
656 (2016). Nanospray Drying as a Novel Tool to Improve Technological Properties of
657 Soy Isoflavone Extracts. *Planta Medica*, 83(05), 426–433.
658 <https://doi.org/10.1055/s-0042-110179>

659 Desai, N. M., Gilbert Stanley, J., & Murthy, P. S. (2020). Green coffee nanoparticles:
660 optimisation, *in vitro* bioactivity and bio-release property. *Journal of
661 Microencapsulation*, 37(1), 52–64.
662 <https://doi.org/10.1080/02652048.2019.1692946>

663 Dias, M., Romaní-Pérez, M., Romaní, A., de la Cruz, A., Pastrana, L., Fuciños, P., &
664 Amado, I. R. (2022). Recent Technological Advances in Phenolic Compounds
665 Recovery and Applications: Source of Nutraceuticals for the Management of
666 Diabetes. In *Applied Sciences (Switzerland)* (Vol. 12, Issue 18). MDPI.
667 <https://doi.org/10.3390/app12189271>

668 Dongowski, G., & Anger, H. (1996). Metabolism of pectin in the gastrointestinal tract.
669 In *Progress in Biotechnology* (Vol. 14, Issue C, pp. 659–666). Elsevier.
670 [https://doi.org/10.1016/S0921-0423\(96\)80300-5](https://doi.org/10.1016/S0921-0423(96)80300-5)

671 Du, Q., Zhou, L., Lyu, F., Liu, J., & Ding, Y. (2022). The complex of whey protein and
672 pectin: Interactions, functional properties and applications in food colloidal
673 systems – A review. *Colloids and Surfaces B: Biointerfaces*, 210(November 2021).
674 <https://doi.org/10.1016/j.colsurfb.2021.112253>

675 El-Messery, T. M., Mwafy, E. A., Mostafa, A. M., El-Din, H. M. F., Mwafy, A.,
676 Amarowicz, R., & Ozçelik, B. (2020). Spectroscopic studies of the interaction
677 between isolated polyphenols from coffee and the milk proteins. *Surfaces and
678 Interfaces*, 20, 100558. <https://doi.org/https://doi.org/10.1016/j.surfin.2020.100558>

679 Fang, Z., & Bhandari, B. (2012). Encapsulation Techniques for Food Ingredient
680 Systems. *Food Materials Science and Engineering*, 320–348.
681 <https://doi.org/10.1002/9781118373903.ch12>

682 Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The
683 effects of polyphenols and other bioactives on human health. *Food and Function*,
684 10(2), 514–528. <https://doi.org/10.1039/c8fo01997e>

685 Freitas, F. M. C., Cerqueira, M. A., Gonçalves, C., Azinheiro, S., Garrido-Maestu, A.,
686 Vicente, A. A., Pastrana, L. M., Teixeira, J. A., & Michelin, M. (2020). Green
687 synthesis of lignin nano- and micro-particles: Physicochemical characterization,
688 bioactive properties and cytotoxicity assessment. *International Journal of
689 Biological Macromolecules*, 163, 1798–1809.
690 <https://doi.org/10.1016/j.ijbiomac.2020.09.110>

691 Guo, Y., & Jauregi, P. (2018). Protective effect of β -lactoglobulin against heat induced
692 loss of antioxidant activity of resveratrol. *Food Chemistry*, 266(January), 101–109.
693 <https://doi.org/10.1016/j.foodchem.2018.05.108>

694 He, Z., Zhu, H., Xu, M., Zeng, M., Qin, F., & Chen, J. (2016). Complexation of bovine
695 β -lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape
696 skin anthocyanin extracts. *Food Chemistry*, 209, 234–240.
697 <https://doi.org/10.1016/j.foodchem.2016.04.048>

698 Jafari, S. M., Arpagaus, C., Cerqueira, M. A., & Samborska, K. (2021). Nano spray
699 drying of food ingredients; materials, processing and applications. *Trends in Food
700 Science and Technology*, 109(July 2020), 632–646.
701 <https://doi.org/10.1016/j.tifs.2021.01.061>

702 Jauregi, P., & Welderufael, F. T. (2010). Added-value protein products from whey.
703 *Nutrafoods*, 9(4), 13–23. <https://doi.org/10.1007/bf03223344>

704 Kellett, M. E., Greenspan, P., & Pegg, R. B. (2018). Modification of the cellular
705 antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell
706 line. *Food Chemistry*, 244(August 2017), 359–363.
707 <https://doi.org/10.1016/j.foodchem.2017.10.035>

708 Khodaiyan, F., & Parastouei, K. (2020). Co-optimization of pectin and polyphenols
709 extraction from black mulberry pomace using an eco-friendly technique:
710 Simultaneous recovery and characterization of products. *International Journal of
711 Biological Macromolecules*, 164, 1025–1036.
712 <https://doi.org/10.1016/j.ijbiomac.2020.07.107>

713 Kyriakoudi, A., & Tsimidou, M. Z. (2018). Properties of encapsulated saffron extracts
714 in maltodextrin using the Büchi B-90 nano spray-dryer. *Food Chemistry*, 266,
715 458–465. <https://doi.org/10.1016/j.foodchem.2018.06.038>

716 Lavelli, V., Torri, L., Zeppa, G., Fiori, L., & Spigno, G. (2016). Recovery of
717 Winemaking By-Products. *Italian Journal of Food Science*, 28(4), 542–564.
718 <https://doi.org/10.14674/1120-1770/ijfs.v507>

719 Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric
720 anthocyanin pigment content of fruit juices, beverages, natural colorants, and
721 wines by the pH differential method: Collaborative study. *Journal of AOAC
722 International*, 88(5), 1269–1278. <https://doi.org/10.1093/jaoac/88.5.1269>

723 Lee, S. H., Heng, D., Ng, W. K., Chan, H. K., & Tan, R. B. H. (2011). Nano spray
724 drying: A novel method for preparing protein nanoparticles for protein therapy.
725 *International Journal of Pharmaceutics*, 403(1–2), 192–200.
726 <https://doi.org/10.1016/J.IJPHARM.2010.10.012>

727 Li, C. X., Wang, F. R., Zhang, B., Deng, Z. Y., & Li, H. Y. (2023). Stability and
728 antioxidant activity of phenolic compounds during in vitro digestion. *Journal of
729 Food Science*, 88(2), 696–716. <https://doi.org/10.1111/1750-3841.16440>

730 López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through
731 electrospraying for the encapsulation of bioactives. *Innovative Food Science and
732 Emerging Technologies*, 13(JANUARY), 200–206.
733 <https://doi.org/10.1016/j.ifset.2011.10.012>

734 Ludwig, I. A., Mena, P., Calani, L., Borges, G., Pereira-Caro, G., Bresciani, L., Del Rio,
735 D., Lean, M. E. J., & Crozier, A. (2015). New insights into the bioavailability of
736 red raspberry anthocyanins and ellagitannins. *Free Radical Biology and Medicine*,
737 89, 758–769. <https://doi.org/10.1016/J.FREERADBIOMED.2015.10.400>

738 Martins, I. M., Macedo, G. A., & Macedo, J. A. (2020). Biotransformed grape pomace
739 as a potential source of anti-inflammatory polyphenolics: Effects in Caco-2 cells.
740 *Food Bioscience*, 35. <https://doi.org/10.1016/j.fbio.2020.100607>

741 Martins, I. M., Macedo, G. A., Macedo, J. A., Roberto, B. S., Chen, Q., Blumberg, J. B.,
742 & Chen, C. Y. O. (2017). Tannase enhances the anti-inflammatory effect of grape
743 pomace in Caco-2 cells treated with IL-1 β . *Journal of Functional Foods*, 29, 69–
744 76. <https://doi.org/10.1016/j.jff.2016.12.011>

745 Meng, Y., & Li, C. (2021). Conformational changes and functional properties of whey
746 protein isolate-polyphenol complexes formed by non-covalent interaction. *Food*
747 *Chemistry*, 364(February), 129622.
748 <https://doi.org/10.1016/j.foodchem.2021.129622>

749 Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., Li, A., Shao, H., Li, C., & Liu,
750 L. (2021). Ultrasonic modification of whey protein isolate: Implications for the
751 structural and functional properties. *Lwt*, 152(March), 112272.
752 <https://doi.org/10.1016/j.lwt.2021.112272>

753 Milinčić, D. D., Stanisavljević, N. S., Kostić, A., Soković Bajić, S., Kojić, M. O., Gašić,
754 U. M., Barać, M. B., Stanojević, S. P., Lj Tešić, Ž., & Pešić, M. B. (2021).
755 Phenolic compounds and biopotential of grape pomace extracts from Prokupac red
756 grape variety. *LWT*, 138, 110739. <https://doi.org/10.1016/J.LWT.2020.110739>

757 MohdMadin, N., Michael, N., Oruna-Concha, M. J., & Jauregi, P. (2018). Polyphenols
758 extracted from red grape pomace by a surfactant based method show enhanced
759 collagenase and elastase inhibitory activity. *Journal of Chemical Technology and*
760 *Biotechnology*, 93(7), 1916–1924. <https://doi.org/10.1002/jctb.5459>

761 MohdMadin, N., Oruna-Concha, M. J., & Jauregi, P. (2019). Surfactant TWEEN20
762 provides stabilisation effect on anthocyanins extracted from red grape pomace.
763 *Food Chemistry*, 271, 224–231. <https://doi.org/10.1016/j.foodchem.2018.07.083>

764 Moreno, T., Cocero, M. J., & Rodríguez-Rojo, S. (2018). Storage stability and
765 simulated gastrointestinal release of spray dried grape marc phenolics. *Food and*
766 *Bioproducts Processing*, 112, 96–107. <https://doi.org/10.1016/J.FBP.2018.08.011>

767 Peixoto, C. M., Dias, M. I., Alves, M. J., Calhelha, R. C., Barros, L., Pinho, S. P., &
768 Ferreira, I. C. F. R. (2018). Grape pomace as a source of phenolic compounds and
769 diverse bioactive properties. *Food Chemistry*, 253(January), 132–138.
770 <https://doi.org/10.1016/j.foodchem.2018.01.163>

771 Pintać, D., Majkić, T., Torović, L., Orčić, D., Beara, I., Simin, N., Mimica-Dukić, N.,
772 & Lesjak, M. (2018). Solvent selection for efficient extraction of bioactive
773 compounds from grape pomace. *Industrial Crops and Products*, 111(October
774 2017), 379–390. <https://doi.org/10.1016/j.indcrop.2017.10.038>

775 Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of
776 whey protein-pectin complex coacervates. *Journal of Food Engineering*, 228, 25–
777 31. <https://doi.org/10.1016/J.JFOODENG.2018.02.007>

778 Raei, M., Shahidi, F., Farhoodi, M., Jafari, S. M., & Rafe, A. (2017). Application of
779 whey protein-pectin nano-complex carriers for loading of lactoferrin. *International*
780 *Journal of Biological Macromolecules*, 105, 281–291.
781 <https://doi.org/10.1016/j.ijbiomac.2017.07.037>

782 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999).
783 Antioxidant activity applying an improved ABTS radical cation decolorization
784 assay. *Free Radical Biology and Medicine*, 26(9–10), 1231–1237.
785 [https://doi.org/10.1016/S0891-5849\(98\)00315-3](https://doi.org/10.1016/S0891-5849(98)00315-3)

786 Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M., Zhao,
787 L., Riaz, T., & Tong, Q. (2019). Pectin polymers as wall materials for the nano-
788 encapsulation of bioactive compounds. *Trends in Food Science and Technology*,
789 90(March), 35–46. <https://doi.org/10.1016/j.tifs.2019.05.015>

790 Reichembach, L. H., & Lúcia de Oliveira Petkowicz, C. (2021). Pectins from alternative
791 sources and uses beyond sweets and jellies: An overview. *Food Hydrocolloids*,
792 118(April), 106824. <https://doi.org/10.1016/j.foodhyd.2021.106824>

793 Rinaldi, A., Louazil, P., Iturmendi, N., Moine, V., & Moio, L. (2020). Effect of marc
794 pressing and geographical area on Sangiovese wine quality. *Lwt*, 118(October
795 2019), 108728. <https://doi.org/10.1016/j.lwt.2019.108728>

796 Scalbert, A., Morand, C., Manach, C., & Rémesy, C. (2002). Absorption and
797 metabolism of polyphenols in the gut and impact on health. *Biomedicine &*
798 *Pharmacotherapy*, 56(6), 276–282. [https://doi.org/10.1016/S0753-3322\(02\)00205-6](https://doi.org/10.1016/S0753-3322(02)00205-6)

800 Scalbert, A., & Williamson, G. (2000). Dietary Intake and Bioavailability of
801 Polyphenols. *The Journal of Nutrition*, 130(8), 2073S-2085S.
802 <https://doi.org/10.1093/JN/130.8.2073S>

803 Sessa, M., Casazza, A. A., Perego, P., Tsao, R., Ferrari, G., & Donsì, F. (2013).
804 Exploitation of Polyphenolic Extracts from Grape Marc as Natural Antioxidants by
805 Encapsulation in Lipid-Based Nanodelivery Systems. *Food and Bioprocess
806 Technology*, 6(10), 2609–2620. <https://doi.org/10.1007/s11947-012-0911-9>

807 Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with
808 Phosphomolybdic-Phosphotungstic Acid Reagents. *American Journal of Enology
809 and Viticulture*, 16, 144–158.
810 <http://www.ajevonline.org/content/16/3/144.full.pdf+html>

811 Spigno, G., Amendola, D., Dahmoune, F., & Jauregi, P. (2015). Colloidal gas aphrons
812 based separation process for the purification and fractionation of natural phenolic
813 extracts. *Food and Bioproducts Processing*, 94, 434–442.
814 <https://doi.org/10.1016/J.FBP.2014.06.002>

815 Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., & De Faveri, D. M. (2013).
816 Nanoencapsulation systems to improve solubility and antioxidant efficiency of a
817 grape marc extract into hazelnut paste. *Journal of Food Engineering*, 114(2), 207–
818 214. <https://doi.org/10.1016/j.jfoodeng.2012.08.014>

819 Spigno, G., Marinoni, L., & Garrido, G. D. (2017). State of the Art in Grape Processing
820 By-Products. *Handbook of Grape Processing By-Products: Sustainable Solutions*,
821 1–27. <https://doi.org/10.1016/B978-0-12-809870-7.00001-6>

822 Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time,
823 temperature and solvent on concentration and antioxidant activity of grape marc
824 phenolics. *Journal of Food Engineering*, 81(1), 200–208.
825 <https://doi.org/10.1016/j.jfoodeng.2006.10.021>

826 Stalmach, A., Troufflard, S., Serafini, M., & Crozier, A. (2009). Absorption,
827 metabolism and excretion of Choladi green tea flavan-3-ols by humans. *Molecular*
828 *Nutrition and Food Research*, 53(SUPPL. 1).
829 <https://doi.org/10.1002/MNFR.200800169>

830 Teng, H., & Chen, L. (2019). *Critical Reviews in Food Science and Nutrition*
831 *Polyphenols and bioavailability: an update.*
832 <https://doi.org/10.1080/10408398.2018.1437023>

833 Tsao, R. (2010). Chemistry and Biochemistry of Dietary Polyphenols. *Nutrients*, 2,
834 1231–1246. <https://doi.org/10.3390/nu2121231>

835 Wang, S., Mateos, R., Goya, L., Amigo-Benavent, M., Sarriá, B., & Bravo, L. (2016). A
836 phenolic extract from grape by-products and its main hydroxybenzoic acids protect
837 Caco-2 cells against pro-oxidant induced toxicity. *Food and Chemical Toxicology*,
838 88, 65–74. <https://doi.org/10.1016/j.fct.2015.12.005>

839 Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2008). Cellular
840 antioxidant activity of common fruits. *Journal of Agricultural and Food*
841 *Chemistry*, 56(18), 8418–8426. <https://doi.org/10.1021/jf801381y>

842 Wusigale, Liang, L., & Luo, Y. (2020). Casein and pectin: Structures, interactions, and
843 applications. *Trends in Food Science and Technology*, 97(January), 391–403.
844 <https://doi.org/10.1016/j.tifs.2020.01.027>

845 Yalçın, A. S. (2006). Emerging therapeutic potential of whey proteins and peptides.
846 *Current Pharmaceutical Design*, 12(13), 1637–1643.
847 <https://doi.org/10.2174/138161206776843296>

848 Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and
849 ROS-Mediated Cellular Signaling. *Oxidative Medicine and Cellular Longevity*,
850 2016. <https://doi.org/10.1155/2016/4350965>

851 Zhao, X., Zhu, H., Zhang, G., & Tang, W. (2015). Effect of superfine grinding on the
852 physicochemical properties and antioxidant activity of red grape pomace powders.
853 *Powder Technology*, 286, 838–844. <https://doi.org/10.1016/j.powtec.2015.09.025>

854 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid
855 contents in mulberry and their scavenging effects on superoxide radicals. *Food*
856 *Chemistry*, 64(4), 555–559. [https://doi.org/10.1016/S0308-8146\(98\)00102-2](https://doi.org/10.1016/S0308-8146(98)00102-2)

857