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The Unequal Implications of Industry 4.0 Adoption:
Evidence on Productivity Growth

and Convergence across Europe

Abstract

Do new manufacturing technologies of the Industry 4.0 (14.0) boost TFP growth? By adopting a
distance-to-frontier framework, this paper explores whether the adoption of (advanced) digital
technologies affect the sectoral TFP growth rates across manufacturing industries of 14 European
countries, during the period 2009-2019. We rely on a novel measure of adoption of 14.0 technologies
(namely, advanced industrial robots, additive manufacturing and industrial internet of things),
exploiting highly detailed (8-digit level) information on imports of capital goods embodying such
technologies. Our results suggest that adopting new digital manufacturing technologies of the 14.0
brings quantitatively important and statistically significant contributions to sectoral TFP growth rates,
although these are mostly concentrated in countries close to the technology frontier. In turn, these
technologies seem to have hampered the process of convergence between European technological
leaders and laggards over the last decade.

Keywords: Industry 4.0; fourth industrial revolution; technology diffusion; total factor productivity
(TFP); technological convergence.

JEL classification: O11; O33; O47.



1. Introduction

Over the last decade, academics, policymakers, and practitioners ranging from engineers to
managers and entrepreneurs have looked at technological changes in production processes —
embodied by the advent of new digital and ‘smart’ technologies — with a growing interest
(Brynjolfsson and McAfee, 2014). The fourth industrial revolution (4IR), also known as ‘Industry
4.0’ (14.0) in manufacturing (Skilton and Hovsepian, 2017), is leading to new digital paradigms
driven by the diffusion of a vast array of automation technologies.

The combination of robots, additive manufacturing (or 3D printing), the internet of things,
big data, artificial intelligence, and other new digital technologies enables the creation of cyber-
physical systems which integrate seamlessly physical operations with digital insight (Davies, 2015;
Eurofound, 2018; Kagermann et al., 2013; Mariani and Borghi, 2019), enabling the creation of
smart factories (Wang et al., 2016).

Overall, digital manufacturing and automation technologies of the 4IR can provide firms
with new capabilities to perform flexibly, collaboratively and resiliently (Dalenogare et al., 2018;
Frank et al., 2019; Marcucci et al., 2021), leading to higher cost-efficiency and productivity
(Kagermann et al., 2013; Muiller, Buliga and Voigt, 2018) while also benefitting the market
competition and contribute to overall economic and productivity growth, particularly in more
developed economies.

As such, the growing diffusion of 14.0 technologies may offer the opportunity to revert the
downward trend in productivity growth (Mokyr, 2018; Pompei and Venturini, 2022) and the
process of divergence between more productive (frontier) and laggard firms (Andrews et al., 2019).

Despite the attention given to the 4IR by academics and institutional actors, the empirical
evidence concerning these phenomena is still limited, along with suitable measures of 14.0
technology adoption enabling the investigation of their effects across countries, industries and over

time. In particular, the 4IR-productivity nexus has attracted an increasing amount of research in the



last few years. However, most empirical contributions focus on the adoption of specific
technologies, mainly industrial robots (Cette et al., 2021; Du and Lin, 2022; Graetz and Michaels,
2018) or look at a single country (Acemoglu et al., 2020; Ballestar et al., 2020; Bonfiglioli et al.,
2020). Other works provide only descriptive evidence on the adoption pattern across countries (e.g.,
Foster-McGregor et al., 2019), while most studies focusing on technologies of the 4IR primarily
investigate the impact of adoption on occupation and jobs (e.g., Acemoglu and Restrepo, 2020;
Dauth et al., 2021).

We take stock of this growing literature and move it forward by exploring the role played by
a larger set of technologies in generating productivity growth and convergence, using a panel of 13
manufacturing industries across 14 European countries over the 2009-2019 period. Specifically, we
focus on three “physical’ advanced manufacturing technologies of the 14.0 technologies — namely,
advanced industrial robots (AIRs), additive manufacturing (AM) and industrial internet of things
(loT) — considered as potentially ‘game-changing’ (i.e., disrupting) in manufacturing (Eurofound,
2018, p. 3),! and we test whether their adoption triggers additional productivity gains, potentially
facilitating the catching-up of countries and sectors more distant from the frontier or further
deepening the technological gap between more developed and laggard economies across Europe.

Beyond consistent physical and monetary investments, they also require a certain level of
absorptive capacity, prior investments in enabling technologies to be effectively adopted. In turn,
the presence of such barriers to an effective adoption of these technologies may slow down or even

‘disable’ the process of technological convergence. This motivates our interest towards the

! Their disruptive potential results from their potential for a widespread application across every manufacturing industry
due to their “versatility and complementarity” (Eurofound, 2018, p. 3). Furthermore, while we already acknowledged
the impact 14.0 technologies have on manufacturing operations — e.g., higher operational flexibility, higher production
efficiency and quality, lower set-up costs and integration along the value chain, resulting in higher productivity and
better performance overall (see also Skilton and Hovsepian, 2017; Eurofound, 2018) — additional high-level impact
resides in the world of work and, in general, the entire society. On the one hand, a general concern around the “risks of
new monopolies, mass redundancies, spying on workers, and the extension of precarious digital work” (Davies, 2015,
p. 9) emerges. On the other hand, this transformation calls for a policy debate on the upcoming changes in the task
content and occupational profiles of manufacturing employment (Frey and Osborne, 2017; Eurofound, 2018).

4



existence of potentially different effects across countries and industries, depending on the relative
distance to the technology frontier.

Guided by these premises, the present study investigates the productivity effects associated
with the adoption of 14.0 technologies by looking at: (i) their effects on total factor productivity
(TFP) growth; (ii) the potential heterogenous effect across different technologies; and (iii) their
potential role of enablers of productivity catch-up (convergence) across manufacturing industries of
European economies. We follow a robust empirical approach, that is the distance-to-frontier (DTF)
framework, widely used in previous works looking at different levels of aggregation (Andrews et
al., 2019; Cameron et al., 2005; Griffith et al., 2004; Griffith et al., 2009; Mason et al., 2020;
Minniti and Venturini, 2017; Pompei and Venturini, 2022).

The empirical analysis exploits a panel of 13 manufacturing industries across 14 European
countries over the 2009-2019 period. We measure 14.0 technology adoption by using import data
for highly disaggregated (8-digit) product categories related to AIRs, AM and 10T since they are
embodied technologies, requiring the physical installation of specialised capital goods (Domini et
al. 2021). Our results highlight that 14.0 technologies brought relevant contributions to TFP growth
rates over the last decade. Looking at individual technologies, we find that AM and AIRs are the
most beneficial (on average) for European economies across manufacturing industries, while the
effect of 1loT on TFP growth is weaker and mostly confined to more developed economies. At the
same time, we find that productivity gains from 14.0 technology adoption mostly concentrate in
countries closer to the technology frontier, thus suggesting that (on aggregate) these technologies
are not currently helping productivity convergence.

We contribute to the literature in two main ways: first, we address the debate on global
productivity slowdown and secular stagnation by analysing the effect that adopting new
technologies of the 4IR may have on reverting such trends. While our results indicate that the
diffusion of 14.0 technologies may indeed result in sustained TFP growth in the long-run, so far this

has been happening at a different pace across European countries, thus hindering convergence. This
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evidence provides support to the recent discussion on these technologies’ requirements in terms of
absorptive capacity and investments in enabling technologies (Ciffolilli and Muscio, 2018;
Corradini et al., 2021). Second, from a methodological and empirical standpoint, our work is one of
the first to use highly detailed import data for several 14.0 technologies and across countries to
measure sectoral adoption. As compared to other data sources (e.g., surveys, data on IT staff/Al
expert hirings/expenditure), our approach is scalable over time and across countries, and provides
comparable estimates across different technologies. Additionally, while the focus of this paper is at
a national and sectoral level, trade data is increasingly available at the establishment level, thus
allowing to adopt our proposed methodology at this much granular level of analysis. Indeed, several
statistical offices are allowing researchers to access detailed import and export data at the
transaction level.

The rest of the paper is structured as follows. Section 2 discusses the relevant literature on
the topic, Section 3 highlights the analytical framework and the empirical strategy for our empirical
investigation. Section 4 discusses the data used, while Section 5 presents and discusses the results
of our econometric analysis and the related robustness tests. Finally, Section 6 discusses results, the

related policy implications, and concludes by discussing limitations and outlining future research.

2. Background literature

The 41IR and its technologies have been at the core of academics’ debate for over a decade now.
From a conceptual standpoint, these technologies represent a new and more advanced form of
capital. By substituting or complementing traditional types of automated machinery, 14.0
technologies can perform a growing number of tasks in a faster and more efficient way, in turn,
rising productivity, but also generating new ideas and boosting innovation.

In the smart factory, latest improvements in dynamic programming paired with the use of

smart sensors enable advanced industrial robots (AIRs) to perform a broader range of tasks as



compared to their predecessors, offering accuracy, flexibility, and both collaborative (human-
machine) and autonomous applications (Davies, 2015; Eurofound, 2018; Frey and Osborne, 2017).
At the same time, additive manufacturing (AM) provides firms with the possibility to expand their
product range, for instance by creating new niche markets, offers new opportunities for real-time
customization, enabling to speed up the entire product development cycle, and paves the way to
innovative business models (Bogers et al., 2016; Rayna and Striukova, 2016), while also reducing
the number of production stages, production (e.g., material consumption) and logistic costs, and
overall operational complexity (Felice et al., 2022; Weller et al., 2015). Furthermore, the extensive
adoption of sensors, actuators and distributed systems (e.g., NFC microchips, RFID tags and GPS)
enables the creation of industrial internet of things (110T) environments (Atzori et al., 2010) which
provide high communication and integration potential, eventually empowering a more efficient
management of industrial operations and digital integration between firms operating along the value
chain (Wang et al., 2016). This infrastructure allows to pull together a variety of data from
interconnected devices (e.g., efficiency, machine usage, energy consumption), which are used to
increase reliability of productive assets and for predictive maintenance, to automate and optimise
production, minimise costs and improve output quality, but also to increase communication and
coordination along the supply chain (Dalenogare et al., 2018; Frank et al., 2019; Marcucci et al.,
2021; Mller, Buliga and Voigt, 2018), ultimately increasing productivity.

However, given the lack of extensive and detailed sources of information on the adoption of
14.0 technologies (Brynjolfsson et al., 2019; Cockburn et al., 2019), most of the studies in the field
have focused on AIRs thanks to data from the International Federation of Robotics (IFR), mostly
looking at the occupational and wage effects of robotisation at different level of analysis (e.g.,
Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021).

Recently, a growing body of works has looked at the productivity effects (both labour

productivity and TFP) deriving from the adoption of specific ‘physical’ automation or 14.0-related



technologies.? Using the growth accounting approach and looking at 30 OECD countries, Cette et
al. (2021) find that aggregate AIR adoption does not appear to have been a quantitatively significant
source of productivity growth between 1975 and 2019. Similarly, also Edquist et al. (2019) and
Espinoza et al. (2020) leverage on growth accounting to investigate productivity gains associated
with the adoption of 10T. The former authors use data on licensed 10T connections across 82
countries for the period 2010-2017 finding that a 10% increase in the growth rate of 10T
connections per inhabitant is associated with a 0.23% increase in economy-wide TFP growth.
Espinoza et al. (2020) combine earlier findings on the contribution of ICT to (labour) productivity
growth with new cross-country data on lIoT expenditure, estimating the share of ICT-related
productivity gains coming from loT investments to be about 0.01 percentage points (pp) in the US
and 0.006 pp across EU10 countries.

Looking at industry-level growth, Graetz and Michaels (2018) estimate that the rising
adoption of AIRs can explain from 0.4 to 1% of the increase in labour productivity and from 0.3 to
0.8% of TFP growth between 1993 and 2007, in a sample of 17 OECD economies. Similarly, Du
and Lin (2022) exploit sectoral data on AIR adoption to measure robotisation rates across Chinese
regions — following the empirical approach by Acemoglu and Restrepo (2020) — and uncover a U-
shaped relationship with TFP growth for which productivity gains are mostly located in regions
showing high robotisation.

At the firm level, Jager et al. (2015) find significant higher labour productivity gains
associated with AIR adoption in manufacturing operations by looking at around 1,400 Swiss and

Dutch businesses. Similarly, Ballestar et al. (2020) analyse a sample of Spanish firms between 2008

2 In this work, we focus on studies addressing the implications of ‘physical’ 14.0 technology adoption. We stress the
difference between ‘physical’ (i.e., capital embodied) and ‘digital’ (i.e., software-related) 14.0 technologies as such
characteristic represents a crucial distinction, as also observed by Foster-McGregor et al. (2019). In so doing, we
intentionally avoid a detailed review of studies addressing the productivity implication of 14.0 technology development
and innovation (e.g., patenting artificial intelligence; for a recent contribution, see Venturini, 2022) as this would fall
outside the purpose of our research. Notwithstanding, we redirect the reader to recent studies from Czarnitzki et al.
(2023) and Miiller, Fay and Brocke (2018) who explore the productivity effects of ‘digital’ 14.0 technology adoption,
i.e. artificial intelligence and big data, respectively.



and 2015, uncovering a rise in productivity of about 3% across small and medium sized firms
(SMEs) associated with AIR adoption, but no effect on large companies. Acemoglu et al. (2020)
and Bonfiglioli et al. (2020) look at AIR adoption across French firms, although uncovering mixed
findings: while the former authors find unconclusive and not robust evidence on the impact of AIR
adoption on TFP growth between 2010 and 2015, the latter find a positive and significant effect
over a longer period from 1994 to 2013, robust to several checks.

Although previous studies have moved the debate forward, they bear some limitations. First,
they measure the adoption of single technologies (mostly AIR and, in some cases, 10T) and neglect
the implications coming from a wider and more complete nexus of technologies. Second, they focus
on different levels of aggregation (country vs sector vs firm level) and on different periods, thus
making it hard to compare insights. Furthermore, while providing interesting insights, these works
base their analysis on different and only partially comparable measures for the same technology:
e.g. IFR data in Graetz and Michaels (2018), Cette et al. (2021) and Du and Lin (2022), AIR
adoption dummy in Ballestar et al. (2020), and AIR imports in Acemoglu et al. (2020) and
Bonfiglioli et al. (2020). Finally, some of these works bear important limitations from an empirical
standpoint: on the one hand, cross-sectional data (Ballestar et al., 2020; Jager et al., 2015) or too
short time series (Edquist et al., 2019) do not allow to investigate causal relationships; on the other
hand, studies performing sensitivity analyses do not enable to produce accurate estimates (Espinoza
et al., 2020).

This study addresses these limitations by providing a unified measurement framework for
different 14.0 technologies, testing their effect on productivity growth of 14 European countries and
13 manufacturing industries over a decade (2009-2019). We employ a panel data econometric
model which assumes that in each industry there is a stable, long-run, relationship between TFP
levels of frontier and laggard countries.

All the above discussion conceptualises, with empirical support, a direct effect of 14.0

technologies and productivity. However, the effect of the adoption could generate catching-up
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mechanisms helping lagging countries to reduce their distance to the technological frontier.
Following this line, some recent studies looking at innovation activities of 14.0 related technologies
have found a catching-up effect, where companies introducing 14.0 patents enjoy significantly
higher TFP growth, proportional to their distance from frontier firms (Pompei and Venturini, 2022).
However, 14.0 technologies are characterised by peculiar features and embody some of the most
recent forms of technological change, hence they could require both absorptive capacity and
complementarity with existing enabling technologies to be efficiently adopted (Ciffolilli and
Muscio, 2018; Corradini et al., 2021).

Thus, while at the aggregate level we expect positive TFP gains from adopting 14.0
technologies, their effect might be larger and concentrated in more developed economies and not
consistently beneficial for technological laggards. Moreover, we expect differential patterns and
magnitudes when distinguishing between 14.0 technologies, since some countries might have easier
access — in terms of capital requirements — and higher capabilities to use and exploit some
technologies (e.g., additive manufacturing) rather than others (e.g., industrial internet of things), due

to their peculiar characteristics.

3. Empirical setting

In line with our conceptualisation, our analysis of the sectoral productivity effects of 14.0
technologies is based on the distance-to-frontier (DTF) framework (Bernard and Jones, 1996),
which assumes that, in each industry, there is a stable, long-run, relationship between TFP levels of
frontier (F) and laggard countries (i). In laggard countries i, TFP in sector j can grow as a result of
technological improvements at the frontier F and technology transfer from the frontier. TFP (A) is
allowed to vary across countries, industries and time and is derived from the following production
function:

Yiie = AijeGij(Xijer Lijie, Kije) (1)
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where Y denotes gross output produced in each country using intermediate inputs X, labour L and
capital K inputs; function G (:,-) is assumed to be homogeneous of degree one and to exhibit
diminishing marginal returns to the accumulation of each individual production factor and constant
returns to scale. The model also allows any country to switch endogenously from being a frontier to
a non-frontier country and vice versa, in a way that in steady state the frontier for sector j will be
whichever country featuring the highest TFP level in that sector. Each non-frontier country i will be
at an equilibrium distance behind the leader F such that all countries feature the same TFP growth
rate.

Under the standard assumptions discussed above, the relationship between the TFP level of
laggard countries and the TFP level at the frontier can be formalised as an equilibrium correction
model (ECM) representation, featuring a first-order autoregressive distributed lag model
(ADL(1,1)) which assumes a long-run cointegrating relationship between a country’s own TFP and
technological leader’s TFP:

nA;jr = MInAjje_q + AInApje + A3InApj_q + uyje. @)
where InA;;, denotes TFP level of laggard countries and InAg;, denotes TFP level of the frontier, in

each sector j. Assuming long-run homogeneity (1; + 1, + A3 = 1), Eq. (2) can be expressed as:

Aty 3)

where the term In(Ar/A;) jc—1 (i.e., InDTF;j,_,) represents the distance-to-frontier expressed as a
function of the lagged productivity differentials in sector j between country i and country F,
capturing the potential for country i’s productivity growth from catching-up. The rationale for Eq.
(3) is that, for a non-frontier country i the potential for catching-up to the leader (InDTF;j;_1) is
positive and larger the further away country i lies from the frontier in sector j, rising the potential
for productivity gains. In the case of the frontier instead, the sole source of productivity growth

resides in domestic innovation, such that the second term in the right-hand side of Eq. (3) is null.
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Following the literature on endogenous growth we recognise the role variables such as
R&D, international trade and ICTs have in determining productivity growth. At the same time,
following the convergence literature, we assume these variables can affect TFP growth through both
domestic innovation and technology transfer. In addition to these traditional determinants of TFP
growth, here we augment the model with variables measuring the adoption of 14.0 technologies.
Our final econometric specification becomes:

AlnA;j; = a;AlnAgje + a;InDTFj_q + a3l40;,_1 + @4l40;5,_1 X INDTF;j;_4
(4)
tasXiji1 + aXijr-1 X lnDTFijt_l + 1 + T + &t

where AlnA; ., AlnAgj, and InDTF;;,_, are defined as above, 140;;,_, is our main explanatory

variable capturing the stock of investments in the three 14.0 technologies (i.e., AIRs, AM and I10T)

at the country-sector level and X; ;. is a vector of control variables. A positive value for a,

implies that technology transfer is relevant for technological laggards, thus translating in
productivity catch-up. If 14.0 technology adoption spurs productivity gains, as should be positive;
at the same time, if it brings greater TFP growth for countries closer to (farther away from) the
frontier a, should be negative (positive).

As described in Castellani et al. (2022), the 4IR technologies investigated here show a
distinct pattern of diffusion across Europe. Following the discussion in Section 2, we expect
positive TFP gains from 14.0 technologies adoption (i.e., a positive a3), while it is likely that their
effect will be very limited for technological laggard. Hence, we expect a negative a,.

Eqg. (4) includes unobserved heterogeneity arising from country-industry characteristics not
captured by our explanatory variables, affecting rates of TFP growth, and possibly correlated with
our controls. For instance, there may be some specific characteristics related to the production
technology in specific countries and sectors that might push TFP to grow faster in exactly those
country-sector pairs showing higher intensities in investments in 14.0 technologies, R&D or trade

patterns. For this reason, our identification strategy is based on the within-groups estimator, i.e. we
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include country-sector fixed effects (7;;, hereafter FE). We further include time FE (z) to capture

the potential component of technical change, evolving over time, which is common to all countries
and sectors, as well as common macroeconomic trends and shocks. Since heteroskedasticity is
pervasive in our industry-level data, and hypotheses tests on our sectoral variables indicates that
variances are heterogeneous across country-sector groups, we estimate all specifications of Eq. (4)
by Weighted Least Squares (WLS) using value added shares in total economy as weights. In
Section 5.3, we discuss the robustness of our results to potential endogeneity concerns by providing
several econometric checks, and we test the robustness of our main results to a range of alternative

specifications.

4. Data

4.1. TFP growth and levels

To compute our dependent variable, TFP growth rate, we use sectoral data on gross output, value
added, labour, total capital stock and intermediate inputs for European countries, the US and Japan
from the 2021 release of EU KLEMS database (February 2022 revision). We complement EU
KLEMS data with comparable information from OECD STAN data set.

We adopt the superlative index approach first introduced by Caves et al. (1982). The
approach assumes that the underlying production function is translog and is widely used in cross-
country analysis at various levels of aggregation (Cameron et al., 2005; Griffith et al., 2004; Griffith
et al., 2009; Mason et al., 2020; Pompei and Venturini, 2022; Venturini, 2015). Following
Jorgenson et al. (2005), we compute TFP growth rates as:

AlnAje = AlnYyj — U5 AlnX ;e — U5, AIK; jp — U5 AlnLgj, (5)
where ¥75,, ¥X, and %%, represent the share of nominal intermediate inputs, the share of capital

compensation and the share of labour compensation in gross output, respectively. Terms 7; ;;
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represent the ‘divisia index’ and are computed as ¥;;; = 0.5(v;;; + v;j,—1). Assuming constant

returns to scale implies that ¥, + U, + v, = 1.
We measure TFP levels using the same approach, evaluating TFP relative to a common

reference point (i.e., the geometric mean of the TFP levels of all other countries):
Y; X; K;
Ind;j, = In (71) — ¥ In (?) — 7 dn (?l)

jt
where Y, X, K and L denote the country-level geometric means of gross output, intermediate inputs,

— Bk, In (%) (6)

jt jt jt

aggregate capital stock and labour, and ¥;;; = 0.5(v;j; + 7;j,) are the averages of nominal input

cost shares and their geometric means. In each time t and sector j, we take the country with the
highest TFP level as the frontier, so that InDTF;;, is computed as the difference between [nAr;, and
InAje.

In order to better specify our econometric model using the DTF framework, although we
look at European countries, we also use data on the US and Japan to compute TFP levels and
growth rates to expand the range of more developed economies possibly featuring as the frontier.

We also deal with measurement issues related to differences across countries in hours
worked and skills levels by computing alternative TFP measures, adjusted for differences in hours
worked and skills levels. Appendix A reports details on how we compute these alternative TFP

measures.

4.2. Measuring 14.0 technology adoption

To compute our main variables of interest, the adoption of the three 14.0 technologies considered in
the study (i.e., AIRs, AM and 110T), we use country-level highly disaggregated trade data from
Eurostat’s Comext database, providing fine-grained 8-digit product codes related to such
technologies. Comext dataset includes virtually complete information on trade transactions, since
intra- and extra-EU trade data are electronically collected through customs when goods transit

EU28’s borders, granting full coverage.
14



Product codes reported in Comext data follow the Combined Nomenclature (CN), a more
detailed breakdown of the Harmonised System. We followed a structured approach to identify
product codes in the CN specifically capturing trade of 14.0 technologies. Details on the
methodology followed for the identification and the validation of 14.0-related product codes are
reported in Appendix B. We checked for changes occurred in the CN classification between 2009
and 2019 in each year, so to track all potential changes related to the selected codes. Whenever the
CN classification changed over time, we followed Van Beveren et al. (2012), creating ‘synthetic’
codes grouping together the relevant CN codes. The procedure grants full consistency in the
correspondence between trade data over time and has been increasingly used in recent works
looking at highly disaggregated trade dynamics (e.g., Castellani and Fassio, 2019; Bontadini and
Vona, 2023).

We then computed our measures proxying the adoption of 14.0 as the sum of the import
values for all product codes relating to AIRs AM and 1loT, for each country and year of
observation. This measure is inspired by Caselli and Coleman (2001) and similar measures of
technology adoption have been used in some recent studies (Acemoglu et al., 2020; Acemoglu and
Restrepo, 2022; Bonfiglioli et al., 2020; Domini et al., 2021; 2022;). However, these works look at
more aggregated (6-digit) product categories, capturing a broader definition of automation
technologies and reaching outside the boundaries of the 4IR.

Since sectoral import data at a high level of detail (allowing an accurate identification of
14.0-related products) is not available, we follow the approach used in previous studies (Acemoglu
and Restrepo, 2020; Felice et al., 2022; Venturini, 2022), building our sectoral 14.0 measure as

import-weighted shares of technology adoption.® We exploit: i) the information on each country’s

3 This measure is similar to the robot exposure index proposed by Acemoglu and Restrepo (2020) to measure robot
adoption at the local labour market level, used in several empirical studies, and to the import-weighted measures of 14.0
technology production proposed by Felice et al. (2022) and Venturini (2022).
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share of imported 14.0-related goods over total imports from 14.0-producing sectors;* ii) cross-
country and cross-sector data on imported intermediate inputs from WIOD data set (Timmer et al.,
2015). In so doing, we assume that each industry adopts 14.0 technologies in the same proportion as
it uses 14.0-related inputs from the sector producing each specific technology (i.e., 28 for AIRs and

AM, 26 for lloT):

. .28 .28
Ycint;” Y.int”;
140 _ AIR AIR ¢ LJj AM AM ¢ i,j
M = <Mi,t X @i X Z—Z int“) + (Mi,t X @i X Z—Z intc,s‘)
c s ML j c s ML j

(7)

HoT 1oT Xe intic.‘j26
+ (Ml-’to X @; %" % m)
where i and j denote the country and the sector buying intermediates (i.e., the destination); c and s
denote the country and the sector selling intermediates (i.e., the source); /% = MAR /M8
denotes, in each country i, the share of AIR imports in all imports of goods produced by sector 28;
o™ = MM /M?® denotes the same share for AM; @//°T = M/'°T /M?¢ denotes the share of lloT

l

imports in all imports of goods produced by sector 26. The last term in each parenthesis of Eq. (7)

(e.9., X intﬁfg /2 X intff) represents, for each country i and sector j, the share of intermediates

produced by the 14.0-producing sector and imported from any other country in all imported
intermediates.

Formally, for each country i, sector j and year t, 14.0 imports (M{j‘t") are equal to the sum of

imports of each 14.0 technology in each country, weighted by the ratio of 14.0-related intermediate
goods bought by sector j of country i from the sector producing each specific technology (i.e., 28

for AIRs and AM, 26 for 110T) in all other countries (c # i) over total intermediate goods used by
sector j in country i (int;;). We take predetermined weights (i.e., in 2008) in order to avoid

potential reverse causality bias. The idea behind this measure is that true sectoral 14.0 technology

4 This information is computed by matching the 8-digit CN product codes for 14.0-related capital and intermediate
goods with the corresponding 8-digit codes in Prodcom classification. In the Prodcom list, the first 4 digits of each
product code coincide with the 4-digit NACE sector producing the good (Eurostat, 2021).

16



adoption (unfortunately, not available for all technologies, countries and years) should be positively
correlated with our measure, i.e. the more a sector buys 14.0-related inputs from 14.0 producing
sectors, the larger its level of adoption.

We then compute the stock of sectoral 14.0 imports (140;;.) following the perpetual

inventory method as 140, = M];’ + (1 — 6)140;;,_,, assuming a depreciation rate of 15%. We
also test specifications of our model in which we delve into the specific relationship, and related
magnitude, of each single 14.0 technology. The related measures for AIRs, AM and 10T are built

following the same methodology.®> All these measures are included in our models as shares in value

added.

4.3. Other independent variables

In addition to country-sector and year fixed-effects, we include controls for R&D and ICT capital
stocks as shares of value added. To avoid that our 14.0 adoption variables pick up a general effect
from imported goods, we also control for the share of imports in value added. All these variables
vary over countries, sectors, and years. We sourced this information from EU KLEMS database,
OECD STAN, ANBERD and BTDIXE data sets. When building all our variables, we adjusted
current values using specific sectoral deflators from OECD STAN and converting all data in USD.®
Our sample consists of 14 European countries’ and 13 manufacturing industries® over the
2009-2019 period. Table 1 below presents summary statistics of all variables, while Table C1 in

Appendix C reports a detailed description of all variables and a summary description.

> Data on 14.0 adoption measures (i.e., flows and stocks, aggregate and for each technology) are available upon request.
& We do not use sectoral PPPs, which would enable a more precise comparison across countries and sectors, since these
are hardly available for all countries, sectors and years in our analysis. However, this is a lesser concern for our work as
by using the within-groups estimator we should be able to filter out cross-country and cross-sector differences in prices.
7 Country list: Austria (AUT), Belgium (BEL), Czech Republic (CZE), Germany (DEU), Denmark (DNK), Spain
(ESP), Finland (FIN), France (FRA), United Kingdom (GBR), Italy (ITA), Netherland (NLD), Portugal (PRT), Slovak
Republic (SVK), Sweden (SWE).

8 Manufacturing industries list (NACE rev.2): 1 - Food products, beverages and tobacco (10-12); 2 - Textiles, wearing
apparel, leather and related products (13-15); 3 - Wood and paper products; printing and reproduction of recorded
media (16-18); 4 - Coke and refined petroleum products (19); 5 - Chemicals and chemical products (20); 6 - Basic
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5. Results

5.1. Main results

Before presenting our main results, we test the presence of unit roots in the data used for our
analysis by employing Im, Pesaran and Shin (2003) test. Table 2 shows that all the variables
included in our models are stationary. We further test the long-run cointegrating relationship among
the variables included in our model by using the panel cointegration test proposed by Pedroni
(2004). The results presented in Table 3 confirm a long-run cointegrating relationship among model
variables testing residuals of both Phillips—Perron (PP) and Augmented Dickey—Fuller (ADF)

regressions, all significant at the 1% level.

Table 4 shows our estimates of the model described by Eqg. (4). Our starting point is to estimate a
benchmark model including only determinants of TFP growth extensively studied in the literature,
i.e. R&D, imports and ICT intensity.

We begin in column (1) by estimating the long-run relationship between TFP growth rates

and R&D, import and ICT variables between 1995 and 2019. This baseline model provides us with

pharmaceutical products and pharmaceutical preparations (21); 7 - Rubber and plastics products, and other non-metallic
mineral products (22-23); 8 - Basic metals and fabricated metal products, except machinery and equipment (24-25); 9 -
Computer, electronic and optical products (26); 10 - Electrical equipment (27); 11 - Machinery and equipment n.e.c.
(28); 12 - Transport equipment (29-30); 13 - Other manufacturing; repair and installation of machinery and equipment
(31-33).
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a robust starting point for the analysis, increasing comparability with prior studies. TFP growth of
the frontier (AlnAg) and the distance-to-frontier (InDTF) terms are positive and statistically
significant at the 1% level. This indicates that, within each manufacturing industry, European
countries benefitted from both technological progress at the frontier and from productivity gains
associated with catching-up. This result is in line with prior sector-level evidence for developed
economies spanning between the 70s and early 2000s (Griffith et al., 2004; Cameron et al., 2005;
Mc Morrow et al., 2008; Minniti and Venturini, 2017; Mason et al., 2020), and persistent up to
before the Covid-19 pandemic, as shown by our results.

Along with other studies (Griffith et al., 2004; Madsen et al., 2010), we find a positive and
statistically significant (at the 1% level) relationship between R&D investments and TFP growth
rates, but these gains are concentrated in countries closer to the frontier (i.e., the interaction with the
InDTF term is also statistically significant and negative). Conversely, import intensity seems to
feature a negative direct relationship with TFP growth, but at the same time facilitates catching-up
(both coefficients are significant at the 5% level), in line with prior works (Griffith et al., 2004).
Finally, and similarly to other studies (Bakhshi and Larsen, 2005; Martinez et al., 2010; Venturini,
2015; Bergeaud et al., 2016), our estimates highlight that ICT investments had a positive effect on
TFP growth rates (significant at the 5% level), yet mostly concentrated in more developed European
economies.

In columns (2) and (3) we then split the sample period, looking at the period 1995-2008 in
column (2) and at the period 2009-2019 in column (3). As discussed by Castellani et al. (2022), the
year 2009 represents a meaningful starting point for our investigation since: i) only after the 2008
global financial crisis these technologies started receiving increasing attention from European
policymakers and the worldwide demand for advanced mechanical and automation equipment
returned to normal (Kagermann et al., 2013; De Backer et al., 2018); ii) several core patents

protecting AM technologies, such as fused deposition modelling and selective laser sintering,
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expired between 2009 and 2014 (Felice et al., 2022), leading to a proliferation of spill-over
inventions and machinery producers.

From column (2), we note that imports had a no significant effect between 1995 and 2008.
Similarly, the effect of ICT investments is estimated less precisely and turns out not significant,
pointing at similar results as found in some studies looking at manufacturing industries over the
same period (Mc Morrow et al., 2008; Edquist and Henrekson, 2017). Conversely, looking at the
2009-2019 period in column (3), ICT investments appear to have a positive and significant effect
on TFP growth rates across manufacturing industries, again concentrated in more developed
countries. This finding provides updated evidence of the role of ICTs both as a driver of
productivity growth and as a facilitator of catching-up for laggard countries, highlighting that the
downward trend observed in previous studies (Bergeaud et al., 2016; Chung, 2018) has partially
reversed, especially in the more technologically advanced European countries.®

Finally, we introduce our measure of sectoral 14.0 technology adoption alone (column (4))
and allowing it to have an effect on the productivity growth of lagging countries (column (5)). In
column (4), the direct effect of adopting 14.0 technologies is estimated with little precision,
resulting not statistically different from zero. However, when accounting for the role of 14.0
technologies as facilitators of catching-up (140 x InDTF) in column (5), the 14.0 adoption variable
increases in magnitude and become statistically significant at the 1% level, while the interaction
term enters our specification with a negative and statistically significant (1% level) coefficient. This
result suggests that 14.0 technologies bring productivity gains for economies closer to the frontier
while countries lagging behind the frontier do not enjoy any additional 14.0-related technological
catch-up.

In columns from (6) to (8) we explore additional specifications where TFP measures reflect

cross-country differences in the skill composition of the workforce (column (6)), in hours worked

9 See, for instance, Cardona et al. (2013) and Schweikl and Obermaier (2020) for recent surveys of the literature on ICT
and productivity.
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and skill composition (column (7)), and account for an alternative definition of the technology
frontier'® (column (8)). Our main results are robust and qualitatively unchanged cross these
specifications, confirming a positive effect of adopting 14.0 technologies on productivity growth.
Notably, the specifications correcting TFP measurement for hours worked and skills also highlight
that accounting for these factors reduces the importance of spill-overs from the leader’s growth (i.e.,
AlnApg's coefficient reduces in magnitude and is no longer significant), while it also uncovers a
consistently bigger role of R&D investments (in column (6), RD’s coefficient becomes three times
bigger than in column (5), while its interaction with InDTF remains virtually unchanged) and a

more uncertain role of ICTs (ICT’s coefficients are less precisely estimated in column (7)).

In Table 5, we test the sensitivity of our main results when using three different and disaggregated
measures for each 14.0 technology, i.e. we estimate Eq. (4) including disaggregated measures for

AIRs, AM and 11oT. In column (1) we only consider the direct relationship between AIR adoption
on TFP growth, which results positive and statistically significant at the 10% level. When we also
consider the (AIR X InDTF) interaction term in column (2), we observe a positive direct effect of
AIR investments, which increases in magnitude, and a negative sign for the interaction term (both
statistically significant at the 10% level). This result suggests similar implications as for the 14.0

variable: while AIRs spur TFP gains across manufacturing industries, these gains are larger for

10 The model described in Section 3 assumes that it is not the identity of the technology frontier that is relevant in Eq.
(4), but the distance from the frontier itself, capturing the potential for technological catch-up. As the model allows for
any country to switch endogenously from being a frontier to a non-frontier country and vice versa, only requiring that
the InDTF term correlates with the potential for technology transfer and productivity gains from catching-up. Thus, in
column (8) we test an alternative specification of our model in which we measure InDTF using the average TFP level
for the two countries featuring the highest value as the frontier, and by computing AlnAg as the average growth rate
between these two countries.
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European economies closer to the frontier as AIRs do not favour additional catching-up
mechanisms.

Columns (3) and (4), (5) and (6) replicate the same specifications considering the adoption
of AM and 1loT, respectively. While our results for both the main and the moderated relationships
are qualitatively unchanged across specifications reported in Table 5 as compared to the main
results of Table 4, the estimates presented in columns (2), (4) and (6) of Table 5 highlight that each
specific 14.0 technology exerts a different (in magnitude) direct effect on TFP growth and catching-

up from the frontier.

5.2. Quantitative importance of the estimated effects

In this Section, we focus on the interpretation of the estimated coefficients — which represent rates

of return (see, for instance, Griffith et al., 2004) — and on their quantitative importance.

The average marginal effect of 14.0 adoption on TFP growth rates across all countries and sectors in
our sample computed as a3 + a, X InDTF is positive (i.e., 0.329-0.313x0.899=0.047), based on
estimates from column (7) of Table 4, meaning that a 10% increase in 14.0 adoption implies a
positive average marginal effects across all countries and manufacturing industries in our sample of
+0.047 percentage points (pp). To get a more in-depth view, Figure 1 plots the marginal effects of
adoption, considering heterogeneity across countries. The box-plot graph shows, for each country,
the mean, the median, the interquartile range and the upper and lower adjacent values (excluding

outliers).
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Between 2009 and 2019, imports of 14.0 technologies had a positive effect on TFP growth in
many sectors and countries in our sample. In 5 out of 14 countries (i.e., Germany, the UK, France,
Italy and Spain), the adoption of 14.0 technologies has boosted productivity growth in virtually all
manufacturing industries. In the Netherlands, about 75% of the sector-year distribution experienced
positive gains, together with just more than 50% of the distribution for Austria, Belgium and
Sweden. Conversely, in Finland and Czech Republic, more than 50% of the sector-year distribution
experienced a negative effect on TFP growth rates. Denmark, Portugal and Slovakia were the
European countries less able to harness benefits from the 14.0 adoption, with about 75% of sector-
year observations showing a negative effect on TFP growth.

In quantitative terms, more developed countries like Germany, the UK, France and Italy
experienced a positive average (black dots) marginal effects across all manufacturing industries
ranging between +0.1 pp and +0.18 pp associated with a 10% increase in 14.0 adoption. Conversely,
Portugal and Slovakia suffered a negative average marginal effect, mild in the case of Portugal (i.e.,
about —0.024 pp), more severe for Slovakia (i.e., about —0.062 pp).

Figure 2 explores differences in the average marginal effect of adopting each 14.0
technology singularly (i.e., AIRs, AM and IloT) on TFP growth, based on estimates from columns
(2), (4) and (6) of Table 5. Decomposing the aggregate measure helps identifying which technology
of the 4IR has contributed more, on average, to productivity growth between 2009 and 2019. Our
estimates highlight that a 10% increase in the adoption of AIRs resulted in about +0.194 pp rise in
TFP growth (black dot), while the same increase in AM adoption spurred a mean growth of about
+0.308 pp. The lower contribution we estimate is associated with IloT adoption (i.e., +0.062 pp, on
average). In the case of AIRs and I1oT, the estimated marginal effects are positive for the large

majority of the country-sector distribution (i.e., more than 75%): productivity gains from the former

1 While such result may be related to the yet mentioned lack of necessary conditions (e.g., a certain level of absorptive
capacity) in the case of Slovakia and, to a certain extent, Portugal, the findings for Denmark may relate to the sectoral
composition of the country, with a small and decreasing share of manufacturing as compared to services (similarly to
other Nordic countries in our sample, i.e. Sweden and Finland).
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spans over a larger positive range (i.e., up to about +0.7), while those associated with the latter are
much lower (i.e., only up to about +0.22 pp). Most strikingly, our results highlight that AM
adoption boosted TFP growth across European manufacturing industries the most amongst 14.0
technologies investigated: even the bottom percentiles of the distribution experienced moderate
positive marginal effects and TFP gains above the 25" percentile of the distribution range between
+0.23 and +0.55 pp.

Compared to previous studies, our results on AIR and IloT adoption are on average more
conservative, but in line with evidence from Graetz and Michaels (2018) and Edquist et al. (2019).
To the best of our knowledge, so far there is no evidence on the relationship between AM adoption
and productivity measures and this work represents the first attempt of quantifying AM contribution

to TFP growth.

In Figure 3, we further delve into the heterogeneity of effects associated with each different 14.0
technology by plotting marginal effects for the European countries considered here. In the case of
AIRs and 10T, most countries enjoyed net TFP gains from their adoption above the 25™ percentile
of the distribution. Only Portugal and Slovakia present a consistent portion of their sector-year
distribution (i.e., about 50% or more) experiencing negative marginal effects of TFP growth.
However, TFP gains and losses from IloT adoption spans over a narrower range compared to that
resulting from AIR adoption. Furthermore, almost all countries and sectors experience positive
marginal effects from AM adoption (except the bottom percentiles of the Slovak distribution),
reflecting the pattern seen in Figure 2.

To conclude, findings presented in Figure 3 suggest that AM adoption spurs a more
homogeneous overall positive effect on productivity growth across countries and manufacturing

sectors, i.e. accounting for both the direct adoption effect and indirect effect by facilitating (or
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hampering) catching-up mechanisms. Moreover, the effect of AIRs and 10T is positive for most (if
not all) sectors in European countries closer to the technology frontier and negative in many

industries in laggard countries.

5.3. Robustness checks

Endogeneity: The first concern might relate with the effect of 4IR technologies on TFP growth
rates not being properly estimated by our main econometric strategy. Specifically, it could be
overestimated because firms operating within sectors in our sample might import, invest in, and
adopt more 14.0 technologies in periods of faster productivity growth. Since our specifications in
Tables 4 and 5 highlight a strong correlation between our measures proxying the 14.0 adoption and
TFP growth, we need to be cautious in interpreting our results as causal, as we cannot rule out
reverse causality. To address this issue, we employ the (System-)GMM estimator (Blundell and
Bond, 1998) considering all our regressors as endogenous, and instrumenting them with their
appropriate lags (i.e., lags one and two).12 Since it assumes that current shocks in the error term do
not affect lagged values of the regressors and that lagged values of the regressors do not directly
affect current values of the dependent variable, the GMM estimator is particularly efficient to deal
with reverse causality. Although we acknowledge that using external instruments would be the ideal
option to deal with endogeneity, we also recognise that it is difficult to find appropriate exogenous
instruments for the adoption of both 14.0 technologies overall and for each specific technology,
varying across countries, sectors and years. For this reason, the traditional instrumental variables

approach may not efficiently solve our potential endogeneity issues.

12 We followed Roodman (2009) guidelines in the choice of the number of instruments.
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Some studies (e.g., Bogliacino et al., 2012) highlight that GMM estimator perform poorly
when the panel is characterised by a low number of units (like the 176 country-sector units in our
study), as additional check we employ Bruno’s (2005) Least Squares Dummy Variable Corrected
(LSDVC) estimator, which is initialised by a GMM estimator and then recursively corrects the bias
of the FE estimator. We confirm statistical significance by computing bootstrapped standard errors
(50 iterations). Finally, we further test the consistency of the GMM estimator by computing the
Feasible Generalized Least Square (FGLS) estimator (Parks, 1967). Beyond heteroscedasticity
across panels and panel-specific serial correlation, the FGLS estimator also control for cross-
sectional dependence, which may lead to more efficient estimates (Chen et al., 2010). Table C2 in
Appendix C shows estimates replicating the main specifications from Tables 4 and 5, highlighting
qualitatively similar and statistically robust results, thus indicating our main estimates not to be
affected by reverse causality issues.

Alternative 140 variables: Our main explanatory variables capturing overall 14.0 adoption
and the adoption AIRs, AM and 110T at the sector level are built as exposure measures, by
accounting for the existing linkages between aggregate 14.0 imports and sectoral trade patterns.
Despite these variables should proxy true sectoral imports of 4IR technologies, not otherwise
available, their construction is based on the assumption that the 14.0 adoption of each industry is
proportional to its use of 14.0-related inputs sourced from 14.0 producing sectors from every other
country. To provide further robustness to our main results, we relax this assumption and use
observed 14.0 imports at the country level as a measure of adoption. We estimate specifications of
the model described in Eq. (4) in which our adoption variables only exploit variation across
countries and time. This implies that, differently from our main results, these estimates should be
interpreted only as the average relationship between 14.0 technology adoption and TFP growth
across countries. Table C3 in Appendix C presents estimates replicating specifications in Tables 4

and 5.
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Additionally, we check the sensitivity of the main results by estimating Eqg. (4) including
sectoral measures of 14.0 technology adoption computed using sectoral depreciation rates specific
for each type of capital, as provided by EU KLEMS (results are reported in Table C4 in Appendix
C). Specifically, we used the depreciation rate for machinery and equipment “OMach” for
computing our AIR and AM variables, and alternatively (a) the average of sectoral depreciation
rates for information technologies “IT” (0.315), computing technologies “CT” (0.115) and software
and databases “Soft_DB” (0.315), which results in a depreciation rate of 0.248, and; (b) a fixed
depreciation rate of 0.315, for computing our 10T variable. Results are qualitatively unchanged and
statistically robust, confirming our main findings.

Alternative TFP growth measure: In our econometric analysis we account for two main
factors which might lead to deviations from real patterns when measuring TFP growth (i.e.,
differences in hours worked and skill composition). Likewise, we acknowledge that there are other
potential sources of measurement error which might affect the measurement of TFP growth rates. In
order to provide robustness the adopted methodology to measure TFP growth (Caves et al., 1982)
and to our main results by using an alternative approach, we use data on TFP growth rates provided
by EU KLEMS?*? to measure our dependent variable AlnA;;; and one of the explanatories (i.e., TFP
growth at the frontier, AlnAg;.). Table C5 in Appendix C reports estimates comparable to that in
Tables 4 and 5: our main results are robust to the use of this alternative measure. Nonetheless, we
note that using EU KLEMS’ TFP growth measure as dependent variable — which better accounts
changes in for skills, hours worked and capital inputs — results in much larger coefficients for the
distance-to-frontier (InDTF) term, for the ICT variable and for their interaction term (also, more
stable and statistically significant for the ICT and for the (ICT x InDTF) variables). Conversely, the

large contribution to TFP growth from R&D investments observed in our main estimates here

13 Computed following the growth accounting approach as described Stehrer et al. (2019).
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appears to be limited. This potentially suggests that the effect of ICT investments and catching-up is
underestimated in our baseline results, while that of R&D might be overestimated.

Unweighted/differently weighted regressions: Our main results are estimated through WLS-
FE (i.e., using the within-groups estimator). We use industry-level shares of value added in total
economy to account for differences in size across manufacturing industries and in their relative
weight on total economy when compared across countries. Thus, our model implies that 14.0
adoption might have a relatively more important role in some sectors, depending on their relative
importance in the whole economy. To further test the robustness of our main results, in Table C6 in
Appendix C we report estimates from unweighted regressions, estimated through OLS-FE
(comparable to those reported in Tables 4 and 5). In so doing, we test the less restrictive assumption
that all sectors have the same relative weight across countries.

Additionally, we also test for the sensitivity of our main results by estimating weighted
regressions using industry-level shares of employment in total economy as weights (Table C7 in
Appendix C shows results comparable to those reported in Tables 4 and 5). Our main findings are
robust to these further checks.

Additional checks: Finally, we checked for the sensitivity of our main results by excluding
country-sector-year observations presenting extreme values (i.e., outliers) and excluding initial
years (i.e., 2009 and 2010) in order to eliminate the potential bias associated to the potential
overshooting of industry-level TFP growth after the 2008 global financial crisis. Results are

qualitatively unchanged and available upon request.

6. Discussion and conclusions

Total factor productivity has been stagnating across European economies ever since the second half
of the 90s and throughout the early 2000s as a result of the inability of European countries to

harness the benefits of investments R&D, human capital accumulation and the diffusion of ICTs
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(Mc Morrow et al., 2008). Overall economic convergence has been hampered by institutional
factors (e.g., weak policy), existing structural rigidities and the economic downturns observed in
Europe after the 2008 global financial crisis (ECB, 2015; Bergeaud et al., 2016; Eurofound, 2020),
culminating in 2020 with the Covid-19 pandemic. This evidence signs a clear break with the pattern
of TFP growth and convergence observed in several empirical works looking at earlier decades, i.e.
between the 70s and early 90s (Griffith et al., 2004; Cameron et al., 2005). Similarly, recent firm-
level studies reaffirm this pattern by highlighting an ongoing process of divergence between most
productive and laggard firms (Andrews et al., 2019; Pompei and Venturini, 2022).

This study investigates to what extent the adoption of 14.0 technologies could contribute to
end this pattern of sluggish productivity growth. Our results suggest that 14.0 technologies could
play an important role in the long-run to reverse the observed productivity growth stagnation.
However, we find that gains related to the rising adoption of embodied 4IR technologies are
unevenly distributed across Europe, with countries closer to the technology frontier benefitting
more, while technological laggards seem unable to exploit 14.0-enabled technology transfer. For
instance, one of the most technologically advanced European economies, Germany, is a leading
actor in 14.0 (UNIDO, 2018; Martinelli et al., 2021). Conversely, other European countries like
Portugal and Slovakia still lag behind in the adoption of enabling technologies, in the development
of 4IR-related competences and in the implementation of dedicated policies (Ciffolilli and Muscio,
2018; Corradini et al., 2021). Overall, this hampers productivity gains potentially deriving from
investments in 14.0 and may contribute to widen the productivity gap between more developed and
laggard countries, ultimately increasing inequality across European countries.

Furthermore, our analysis sheds light on the heterogeneous productivity effects of different
technologies, offering estimates based on comparable adoption measures. Our results on AIRs and
I1oT are in line with evidence from previous studies (Graetz and Michaels, 2018; Edquist et al.,
2019), although we find more conservative estimates of the associated productivity gains. At the

same time, to the best of our knowledge, our work provides a first quantification of productivity

29



gains deriving from the adoption of AM. Notably, our results suggest such gains to be positive and
quantitatively important as much as that coming from AIRs.

Contextualised in our DTF framework, the adoption of AIRs and AM seem to bring larger
contributions to productivity gains across European manufacturing sectors, while TFP growth
coming from lloT adoption is found to be lower. Furthermore, while such gains are more evenly
distributed across countries in the case of AM (suggesting the technology can facilitate catching-up
for lagging countries), only most technologically advanced economies (closer to the technology
frontier) are found to benefit from AIRs and I10T adoption. Potential reasons behind these results
might relate with either the level of technological maturity associated with different 14.0
technologies or with the differences in the associated investment costs, acting as a barrier.!*
Chiacchio et al. (2019) and Martinelli et al. (2021) also discuss how high investment costs and lack
of sufficient absorptive capacity remain two of the main factors limiting the adoption of these
technologies, especially for SMEs, while large companies (mostly multinationals) are better suited
to efficiently adopt 4IR technologies.

Another barrier to the adoption of 4IR technologies is the lack of precise and unified
standards (above all, technical) across countries and industries (Martinelli et al., 2021), enabling
interoperability between different technologies. While leading producers sponsor proprietary
standards, adopters ask for more open and universal standards like the Reference Architectural
Model Industrie 4.0 (Schweichhart, 2017) or alternatives emerging under the supervision of

international bodies like the International Telecommunication Union (ITU) or the ISO. This issue is

14 According to estimates from Acemoglu and Restrepo (2020), the average price of AIR ranges between 50,000 and
100,000 USD, while the average price for an industrial AM machine is between 200,000 and 250,000 USD according to
our computations based on data from all major AM producers worldwide and reported by Senvol. Senvol’s data are
available at http://senvol.com/machine-search/. Concerning l10oT, the total cost of deployment greatly varies depending
on the sector and on the scale of the project. Using total cost of ownership (TCO) calculator for 10T applications by
NOKIA, we estimate cost for a medium-sized factory to range between 1.6min and 0.8mIn USD. NOKIA’s IoT TCO
calculator is available at https://pages.nokia.com/T007K9-Compare-Wireless-Critical-Connectivity-Options.
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particularly important for 10T, given its crucial and infrastructural role within the 14.0 architecture
(Atzori et al., 2010).

Finally, this paper also adds to the literature on investment-specific technological change
(Greenwood et al., 1997, 2000), which recognises the role of capital investments in specific types of
machinery and equipment as one of the most relevant sources of productivity growth. Since, from
an empirical standpoint, we model the technological change associated with 14.0 by studying the
adoption of the new technologies of the 4IR, embodied in capital goods, our work goes along
several studies looking at the role played by ICT (vs non-ICT) investments in determining
productivity growth (Bakhshi and Larsen, 2005; Chung, 2018; Martinez et al., 2010; Venturini,
2015). Just as we found here, these works highlight how investments in technologies like ICTs
bring productivity effects which are not fully measured via growth accounting due to excess returns
beyond capital accumulation (Edquist and Henrekson, 2017; Hulten, 2010). Furthermore, this paper
contributes to the debate on the source of differences in productivity across countries and their
implications for economic and technological convergence (Bergeaud et al., 2016; Cameron et al.,

2005; Griffith et al., 2004; Madsen et al., 2010; Mason et al., 2020; Minniti and Venturini, 2017).

6.1. Policy implications

The above discussion leads directly to the debate on whether the bulk of dedicated 14.0 policy
initiatives put in place by European countries over the last decade has led to significant results in
boosting the diffusion of such advanced technologies (lately, the 2021-2026 Next Generation EU
initiative launched in the aftermath of the Covid-19 pandemic). While more traditional top-down,
science-driven industrial policies may still be relevant, it becomes paramount to boost policy
incentives fostering innovation and 14.0 adoption across SMEs. This would bring more widespread
benefits across European economies, given the major role played by these firms: a more integrated
approach across different technologies must go along with dedicated incentives and approaches for

individual technologies, which are more exposed to inefficient implementation.

31



At the same time, these initiatives need to be paired with a broader recognition among
policymakers that integrating economic incentives with local dissemination of competencies and
specific 14.0 knowledge content. For instance, the creation of industry-university clusters would
provide the adequate stock of skills to the local workforce, tax credits would boost private R&D
spending, infrastructural investments (e.g., high-speed broadband connections, 5G) would boost
technology adoption by providing enabling conditions for more advanced 14.0 systems. All these
actions eventually promoting knowledge transfer and resulting in faster and more effective
technology diffusion. Similarly, coordinated national and regional policies across the continent (i.e.,
following a common framework and standards) would create the potential for larger gains, not
confined to productivity growth alone but also in terms of aggregate economic growth and better

employment conditions in the decades ahead.

6.2. Limitations and future research

Our findings should be considered under the light of the caveats that characterise our analysis: as
trade data for highly disaggregated products are not directly available at the industry level, we can
only link them to the importing sector by means of input-output tables, i.e. by creating proxies of
sectoral adoption. This is a limitation of our approach as compared to studies exploiting purely
sectoral variables (e.g., Du and Lin, 2022; Graetz and Michaels, 2018). Nonetheless, these studies
focus on a single technology, while our research follows an established approach (e.g., Acemoglu
and Restrepo, 2020; Felice et al., 2022) and offers the advantage of a cross-country and cross-sector
perspective on the effects of adopting multiple (embodied) 14.0 technologies on TFP growth.
Furthermore, we acknowledge that our 14.0 adoption measures are based on import data
alone. At the same time, more developed European countries also feature as major producers of
these technologies worldwide (e.g., Germany’s KUKA and EOS producer; see also Castellani et al.,
2022). Since our findings highlight that more technologically advanced countries, like Germany, are

those benefitting the most from 14.0 adoption, we recognise that our estimates could underestimate
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the real impact of these technologies across 14.0 producing countries. However, following Caselli
and Coleman (2001), two proxies adoption can be calculated: imports of AMT capital goods, and
net consumption = (production + import — export). The latter accounts for two sources of
capital investments determining adoption of AMTSs, that is domestic and foreign production.
Nevertheless, Castellani et al. (2022) show that the two measures of adoption are highly correlated
at the country level. Since the second measure is not available for all countries and technologies
considered, as production data on goods embodying AMTSs are in some cases missing or not
reliable, we rely on the proxy based on imports.

Since our import-based measure of 14.0 adoption provides robust results which are in line
with prior findings in the literature, it could be used to delve into several possible avenues for future
research. Since import data at the fine-grained product level are available for a growing number of
countries and for long and constantly updated time series, our measure is scalable and can be used
to analyse larger samples of countries and industries. Furthermore, international transaction-level
data are available and increasingly accessible in many countries. This can allow an extension of this
analysis to the firm level, possibly linking adoption of 4IR technologies to firm productivity,
international competitiveness, offshoring and reshoring or employment dynamics and composition.

Further research in this area might investigate the role of different contextual conditions in
explaining why we witness heterogeneous results in the way European countries benefits from 14.0
adoption. As discussed above, following the wave of 14.0 policy initiatives introduced by European
countries during latest years, incentives targeted more towards some technologies than others might
have had a role in explaining the differences documented here. Another interesting direction of
research should investigate the underlying mechanisms at place, which might either help or hinder
productivity effects of 4IR technology adoption, such as the degree of capital/labour

complementarity featured by each of these technologies.
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Tables and Figures

Table 1. Summary statistics of the main variables

AlnAi]-t AlnApjt lnDTFl-jt_l RDijt—l Mijt—l ICTijt—l 140ijt—1 AIRijt—l AMijt—l IIOTijt—l
Mean 0.0082 0.0165 0.8992 0.0599 4.2768 0.0973 0.2436 0.3438 0.3583 0.2368
SD 0.0610 0.0844 0.3298 0.0938 24.2155 0.3909 0.2212 0.2394 0.4750 0.2190
Max 0.8993 0.6955 2.0327 1.8348 981.4395 15.6755 1.4864 2.7346 6.0443 1.4432
Median 0.0035 0.0064 0.9295 0.0299 2.1856 0.0648 0.1692 0.2667 0.2068 0.1637
Min -0.4817 -0.1321 0.1303 -0.0043 0.2567 0.0003 0.0007 0.0013 0.0005 0.0007

Notes: Sample size for all variables is 1,760 observations over the 2009—2019 period. Table C1 in Appendix C reports a full
description of how variables are defined. AlnA;;;, AlnAg;; and InDTF;j;_1 variables include controls for differences in hours
worked and skill composition. We discuss potential multicollinearity concerns in Appendix B.

Table 2. Panel unit root test

Variables

Im, Pesaran and Shin (2003): Integration order 1(1)

t Standardised t p-value
AlnA;j; -3.8361 -17.2055 0.0000
AlnAth -2.2471 -7.8142 0.0000
InDTF;je—q -3.4265 -15.5618 0.0000
RD;je_q -2.8077 -10.0887 0.0000
Ml-jt_l -2.5229 -9.1750 0.0000
ICTyje—q -2.3497 -5.9674 0.0000
140ijt_1 -2.3239 -5.2674 0.0000
AlR;jr_q -2.1187 -2.4660 0.0068
AMjje_y -3.4108 -14.8992 0.0000
HoTyj—q -3.4433 -14.9749 0.0000

Notes: AR parameter is assumed to be panel-specific, panel means and time trend are

included. Critical values for t are: -2.420 (1%), -2.340 (5%), -2.300 (10%). The null
hypothesis is that all panels have a unit root. The alternative hypothesis is that the fraction
of panels that are stationary is non-zero. Significance levels: *** p <0.01, ** p < 0.05, * p <

0.1.

Table 3. Panel cointegration test

Pedroni (2004) t p-value

Common AR parameter
PP (140;j,_4 regressions) -53.3666  0.0000
ADF (140;;;_1 regressions) -45.7697  0.0000
PP (AIR;j;_, regressions) -51.9008 0.0000
ADF (AIR;j;_4 regressions) -45.2471  0.0000
PP (AM;;;_, regressions) -43.2549  0.0000
ADF (AM;j;_, regressions) -38.5914  0.0000
PP (I10T;j;—1 regressions) -43.0745 0.0000
ADF (I10T;j;_, regressions) -37.6625 0.0000

Panel-specific AR parameter
PP (1404 regressions) -63.5133  0.0000
ADF (140;;;_, regressions) -52.5356  0.0000
PP (AIR;j¢_, regressions) -59.5140  0.0000
ADF (AIR;j,_4 regressions) -51.0050  0.0000
PP (AM;;;_, regressions) -51.2505 0.0000
ADF (AM;j._4 regressions) -43.6695  0.0000
PP (I10T;j;_q regressions) -49.1412  0.0000
ADF (I10T;j;_, regressions) -43.4648 0.0000

Notes: The null hypothesis is no cointegration. The
alternative hypothesis is that the variables are
cointegrated in all panels.
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Table 4. WLS-FE estimates: relationship between sectoral 14.0 technology adoption and TFP growth

1995-2019 1995-2008 2009-2019
AlnA;j (1) (2) (3) (4) (5) (6) (7) (8)
AlnAgj, 0.163*** 0.199*** 0.257**%*  (0.258***  (.258***  (.021 0.029 0.299%**
(0.030) (0.047) (0.036) (0.036) (0.035) (0.050) (0.057) (0.092)
InDTF;jr_q 0.102%*** 0.167*** 0.243**%% (0. 244%*%*  (,238**%* (0, 207***  (.223*** (3]11***
(0.012) (0.026) (0.036) (0.036) (0.036) (0.029) (0.037) (0.042)
RDjjr_q 0.177*** 0.134%** 0.282%**  (0,282**%*  (,243**%*  (,892*** ] 23G*** ] 274%**
(0.039) (0.045) (0.071) (0.071) (0.067) (0.173) (0.250) (0.216)
(RD X InDTF)jt—1 -0.248%** -0.175** -0.965***  -0.970*** -0.849*** .0.874*** _1,150%** -1,228%**
(0.070) (0.075) (0.237) (0.239) (0.235) (0.195) (0.254) (0.240)
Mije_q -0.001** 0.004 -0.003*** .0.003*** -0.004*** -0.005*** -0.010*** -0.009***
(0.000) (0.002) (0.001) (0.001) (0.001) (0.002) (0.003) (0.003)
(M X InDTF);jt—1  0.002** -0.004 0.006***  0.006**  0.007***  0.005***  0.008***  (0.009***
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
ICTyjp_4 0.052** 0.045 0.197***  (0.189***  (0.216*** 0.181 0.491**  0.465**
(0.025) (0.037) (0.061) (0.058) (0.045) (0.129) (0.234) (0.198)
xcr -0.083* -0.046 -0.387**%* .0,379*** .0.400*** -0.157 -0.526* -0.568**
X INDTF)ije—1 (0.046) (0.055) (0.143) (0.137) (0.114) (0.163) (0.279) (0.262)
140404 -0.007 0.292%**  0.206***  0.329%**  (,311%**
(0.029) (0.057) (0.059) (0.102) (0.089)
(140 X InDTF) ¢4 -0.544%%% 0. 247**%*  _0,313**%* _(0,323***
(0.096) (0.059) (0.089) (0.087)
TFP controls - - - - - S h,s h,s,2c
Observations 4,048 2,291 1,757 1,757 1,757 1,757 1,760 1,760
R-squared (within)  0.488 0.577 0.423 0.422 0.439 0.324 0.305 0.339

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-
group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP controls are h: hours

worked; s: skill composition; 2c: two-country frontier. The dependent variable is the growth rate of TFP. AlnAgj, is the
contemporaneous growth rate of TFP for the frontier; InDTF;j;_, is the lagged distance from the technology frontier;

RD;j;_4 is the lagged sectoral share of R&D stock in value added; M;j;_ is lagged sectoral share of imports in value added;
ICT;jy_ is lagged sectoral share of ICT stock in value added; 140;;;_, is lagged sectoral share of 14.0 technologies import stock in
value. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table 5. WLS-FE estimates: relationship between sectoral AIR, AM and lloT adoption measures and TFP growth

AlnAje (1) (2) (3) (4) (5) (6)
AlnAgj; 0.032 0.030 0.029 0.034 0.029 0.030
(0.057) (0.057) (0.057) (0.057) (0.057) (0.057)
InDTF;jr—q 0.191%** 0.202%** 0.188*** 0.209*** 0.197%** 0.219%**
(0.035) (0.037) (0.032) (0.033) (0.035) (0.039)
RDjjr_4 1.270%*** 1.323%** 1.208*** 1.260%*** 1.294%** 1.254***
(0.245) (0.254) (0.242) (0.237) (0.248) (0.250)
(RD X InDTF);jt_1 -1.180*** -1.226%** -1.139*** -1.162%** -1.210*** -1.163***
(0.249) (0.256) (0.245) (0.235) (0.252) (0.254)
Mje_q -0.009*** -0.011*** -0.005* -0.008*** -0.009*** -0.010***
(0.003) (0.004) (0.002) (0.003) (0.003) (0.003)
(M X InDTF);jt—4 0.007*** 0.010*** 0.004 0.006** 0.008*** 0.008***
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)
ICTje—4 0.435%* 0.538** 0.189 0.357** 0.464** 0.493%**
(0.215) (0.247) (0.165) (0.171) (0.195) (0.198)
(ICT X InDTF)jt—1 -0.481%* -0.589** -0.250 -0.445* -0.515** -0.530**
(0.265) (0.296) (0.213) (0.234) (0.249) (0.247)
AlR;ji_4 0.267* 0.788*
(0.160) (0.424)
(AIR X InDTF);jt—1 -0.661*
(0.401)
AMijt—l 0.024 0.596***
(0.017) (0.193)
(AM X InDTF);jt—4 -0.320***
(0.109)
HoT;je—q 0.081%** 0.248%***
(0.034) (0.076)
(10T X InDTF)j¢— -0.207***
(0.068)
TFP controls h,s h,s h,s h,s h,s h,s
Observations 1,760 1,760 1,760 1,760 1,760 1,760
R-squared (within) 0.291 0.298 0.287 0.309 0.295 0.302

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group
estimator) and are estimated through WLS using value added shares in total economy as weights. TFP controls are h: hours
worked; s: skill composition. The dependent variable is the growth rate of TFP. AlnAj; is the contemporaneous growth rate of TFP
for the frontier; InDTF;j;_, is the lagged distance from the technology frontier; RD;j;_, is the lagged sectoral share of R&D stock
in value added; M;;;_4 is lagged sectoral share of imports in value added; ICT;;;_, is lagged sectoral share of ICT stock in value
added; AIR;j;_4 is lagged sectoral share of advanced industrial robots import stock in value added; AM;;;_ is lagged sectoral
share of additive manufacturing import stock in value added; 110T;j;_1 is lagged sectoral share of industrial internet of things
import stock in value added. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Figure 1. Marginal effect of 14.0 technology adoption on TFP growth rates, by country
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Notes: Authors’ own estimates. Average marginal effects of 14.0 technology adoption on TFP growth rates computed as a3 +

a4 X InDTFj, using a3 = 0.329 and a, = —0.313 from column (7) of Table 4. The black dot indicates the mean value across
sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the
lower adjacent value (25t %ile — 1.5*IQR) on the left and the upper adjacent value (75t %ile + 1.5*IQR) on the right; outliers are
excluded.
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Figure 2. Marginal effect of AIR, AM and lloT adoption on TFP growth rates
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Notes: Authors’ own estimates. Average marginal effects of AIR, AM and lloT adoption on TFP growth rates computed as a3 +
ay X InDTFyjy, using ag'™® = 0.788 and af'® = —0.661 from column (2) of Table 5, ag™ = 0.596 and af™ = —0.320 from
column (4) of Table 5, and a%°T = 0.248 and a}/°T = —0.207 from column (6) of Table 5. The black dot indicates the mean value

across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values
are the lower adjacent value (25" %ile — 1.5*IQR) on the left and the upper adjacent value (75t %ile + 1.5*IQR) on the right;
outliers are excluded.
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Figure 3. Marginal effect of AIR, AM and IloT adoption on TFP growth rates, by country
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column (2) of Table 5, 4™ = 0.596 and a£™ = —0.320 from column (4) of Table 5, and a%°T = 0.248 and a}/°T = —0.207 from column (6) of Table 5. The black dot indicates the mean value

across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the lower adjacent value (25t %ile — 1.5*IQR) on the left
and the upper adjacent value (75% %ile + 1.5*IQR) on the right; outliers are excluded.
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Appendix A: Alternative TFP measures

We compute different TFP measures, correcting for two different characteristics which may be
sources of cross-country differences: (a) we adjust the measure of labour inputs for differences in
the skill composition of the workforce; (b) we adjust the measure of labour inputs for differences in
hours worked.

Differences in the skill composition of the workforce: Our baseline TFP measures uses the
number of people employed in sector j of country i as a measure of the labour input in the
production function. First, we control for differences in the quality of the labour inputs. Using a
similar index to that proposed by Griffith et al. (2004), we express employment in each country,

Sector, and year as:
W_h;j wW_my; W_l;;
Lije = (Egje X H_hyze)" "7 x (Eyje X Homgje)" 0 x (Eije X H L) (A1)

where E;;; denotes the number of people employed in sector j of country i, at time t; H_h; ¢,
H_m;;, and H_l;;, denote shares of hours worked by employees with high, medium and low
education level across manufacturing sectors, respectively; W_h;;;, W_m,;, and W _l;;; denote
shares of workers with high, medium and low education level in the wage bill across manufacturing
sectors, respectively. Since our analysis only covers manufacturing industries and information on
the skill composition of the workforce in EU KLEMS dataset are available only at the 1-digit level
of sectoral aggregation (i.e., the whole manufacturing), shares of hours worked and wages by
employees with different education are proportionally derived by weighting 1-digit manufacturing
data on composition by the share of hours worked in each 2-digit manufacturing industry.
Differences in hours worked: The second adjustment we make is using the number of hours

worked by people employed. This is a sector-specific adjustment.
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Appendix B: Identification of 14.0-related product codes

As explained in Section 4.2, we use highly disaggregated data (at the 8-digit level) on the value of
import flows from Eurostat’s Comext data set. A complete overview of the identification procedure
for selecting the CN product codes strictly related to Industry 4.0 (14.0), of the technical caveats
associated with Comext data, and of the validation process corroborating the selected product codes
is described in Castellani et al. (2022). In sum, the procedure followed these steps:

1. Analysis of different sources of information to gather knowledge and understanding of the
technologies of interest (e.g., standard international terminology approved by ASTM
International and International Organisation for Standardization (ISO) for AM technologies,
concepts and definitions on 10T provided by International Telecommunication Union
(ITU); product catalogues of worldwide leaders in 14.0 production and sales; the World
Customs Organisation (WCO) and Eurostat);

2. Definition of a set of keywords capturing technological characteristics, machinery,
equipment, and components associated with 14.0 technologies, as well as related processes;

3. Use of keywords to identify product codes in the CN classification by means of matching
with detailed product descriptions, subsequent screening of false-positive and false-negative
matches at different levels of disaggregation (i.e., 8-, 6- or 4-digit codes) and final
disambiguation of the 8-digit product codes strictly related to 14.0;

4. Validation of the identified CN product codes by: (a) means of a survey sent to 229
producers of industrial robots, additive manufacturing/3D printing machines, and industrial
loT and automation equipment in order to collect information on the CN product codes used
by 14.0 producers when exporting their products worldwide; (b) consulting experts from the
Italian Customs Agency and practitioners working at a private customs broker and logistic
service provider operating in two Milan (IT) airports.

Table B1 below reports the detailed list of 8-digit CN product codes identified, 4-digit HS
categories and product descriptions. Hereafter, we report for each technology considered in this

work the 8-digit product categories embodying 14.0 technologies.

Advanced industrial robots: These capital goods are defined by the 6-digits HS code
847950 and the 8-digits CN code 84795000. In fact, no substantial difference exists between the 6-
and the 8-digits product codes; hence, trade data associated with the two codes are fundamentally
the same. This code was previously identified and used in other works (e.g., Acemoglu and
Restrepo, 2022; Domini et al., 2021), providing confidence in its goodness. The authors also
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identify the 6-digits HS code 847989 as a further set of automatic and dedicated machinery
potentially including industrial robots. Yet, by looking at more disaggregated product codes
stemming from 847989, we find no 8-digits CN code specifically referring to alternative forms of
advanced industrial robots of the type we are interested, but only references to older types of
automatic machines. Thus, we only consider CN code 84795000.

Additive manufacturing: Seven different additive manufacturing processes having distinct
technical characteristics, embodied in different types of machinery and using different types of
material can be identified; these are: (1) binder jetting, (2) directed energy deposition, (3) material
extrusion, (4) material jetting, (5) powder bed fusion, (6) sheet lamination and (7) vat
photopolymerization. These capital goods are captured by different 8-digits CN codes. Machinery
embodying processes (1) and (7) involve either the deposition of chemical liquid bonding agents or
shaping objects by selectively curing liquid polymers with light and should be consistently captured
by CN code 84778011 (Machines for processing reactive resins). Processes (2) and (5) require
machines using focused thermal energy to melt materials as they are deposited on the building
surface, or to selectively melt shapes on the surface of a powder bed composed of different
materials (metallic, ceramic, etc.); the CN code including machinery adopting this process is CN
code 84639000 (Machine tools for working metal or cermets, without removing material). Also,
machinery adopting process (6) achieve the desired 3-dimensional object by bonding together
sheets of material, usually metals, and should be traded under CN code 84639000. Finally, CN
codes 84778019 and 84778099 refer to machinery for working plastic products, and other chemical
materials (e.g., foam) and hence should capture capital goods embodying processes (3), (4), and
partially (1) and (5), as they involve the extrusion of material and the deposition of either droplets
of building or bonding materials, usually photopolymers, wax or foam.

Industrial internet of things: This category includes both 8-digits CN codes referring to
intermediates and capital goods.*® Specifically, capital goods referring to wireless sensors and
actuators should be traded under CN codes 84718000 and 84719000 as they capture network
communications equipment (e.g., hubs, routers, gateways) for LANs and WANSs and other network
and similar cards for automatic data processing machines. Non-wireless communication equipment
should be captured by CN code 85176200 (Machines for the reception, conversion and transmission
or regeneration of voice, images or other data, including switching and routing apparatus). CN
codes 85269120 and 85269200 relates to radio navigational apparatus, receivers and controls, thus
they should capture distributed systems such as RFID tag and GPS. Microchips (including NFC

15 In identifying the product codes in which some capital and intermediate goods referring to 10T are traded we refer to
guidelines provided by Eurostat and available at https://trade.ec.europa.eu/tradehelp/classifying-computers-software.
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chips) and integrated circuits are traded under CN codes 85423111, 85423119, 85423190,
85423911, 85423919 and 85423990. Automatic regulating or controlling instruments and apparatus
used in industrial processes are traded under CN codes 90321020, 90321080, 90322000, 90328100
and 90328900.

Table B1. List of initially identified CN product codes related to 14.0 technologies

4-digits HS product codes, 8-digits CN product codes and CN product descriptions

Advanced Industrial Robots

8479 Machines and mechanical appliances having individual functions, not specified or included elsewhere in this
chapter
84795000 Industrial robots, not elsewhere specified or included

Additive Manufacturing

8463 Other machine tools for working metal or cermets, without removing material
84639000 Other machine tools for working metal or cermets, without removing material; Other

8477 Machinery for working rubber or plastics or for the manufacture of products from these materials, not specified
or included elsewhere in this chapter
84778011 Machines for the manufacture of foam products; Machines for processing reactive resins
84778019 Machines for the manufacture of foam products; Others

84778099 Other machinery; Other; Other

Industrial Internet of Things

8471 Automatic data-processing machines and units thereof; magnetic or optical readers, machines for transcribing
data onto data media in coded form and machines for processing such data, not elsewhere specified or included
84718000 Other units of automatic data-processing machines
84719000 Other

8517 Telephone sets, including telephones for cellular networks or for other wireless networks; other apparatus for the

transmission or reception of voice, images or other data, including apparatus for communication in a wired or
wireless network (such as a local or wide area network), other than transmission or reception apparatus of
heading 8443, 8525, 8527 or 8528

85176200 Machines for the reception, conversion and transmission or regeneration of voice, images or other
data, including switching and routing apparatus
8526 Radar apparatus, radio navigational aid apparatus and radio remote control apparatus
85269120 Radio navigational aid apparatus; Radio navigational receivers
85269200 Radio remote control apparatus
8542 Electronic integrated circuits
85423111 Processors and controllers, whether or not combined with memories, converters, logic circuits,

amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to
chapter 85; Multi-component integrated circuits (MCOs)

85423119 Processors and controllers, whether or not combined with memories, converters, logic circuits,
amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to
chapter 85; Other

85423190 Processors and controllers, whether or not combined with memories, converters, logic circuits,
amplifiers, clock and timing circuits, or other circuits; Other

85423911 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Multi-component integrated circuits
(MCOs)

85423919 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Other

85423990 Other; Other

9032 Automatic regulating or controlling instruments and apparatus

90321020 Thermostats; Electronic

90321080 Thermostats; Other

90322000 Manostats

90328100 Other instruments and apparatus; Hydraulic or pneumatic

90328900 Other instruments and apparatus; Other

Notes: The reference CN classification is the 2017 version.
Source: Castellani et al. (2022).
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Caselli and Coleman (2001) also argue that an alternative approach would be to exploit both
production and trade data, so to account for both domestic and foreign sources of adoption of a
technology. Such a measure would capture the net consumption (i.e., production + import — export)
of a technology. In the case of the 14.0 technologies studied here, Castellani et al. (2022) highlight
that the availability of production data is constrained by the actual presence of local producers
across European countries. However, for producing countries, the authors also show that, import
and net consumption measures are highly correlated, thus reassuring on our import-based measure

being a good proxy of 14.0 technology adoption across European countries.

Potential multicollinearity concerns: Since ICT and some 14.0 technologies are quite close
in nature (particularly, 110T), one might be concerned about potential multicollinearity issues
between our ICT capital stock variable and our 14.0 import stock variables. Similarly, another
concern might arise to the extent to which capital goods used to compute our 14.0 variables are
already accounted for in the ICT stock. To ease such potential concern, we highlight that the
identification procedure we followed to create our I10T variable (as well as the AIRs and the AM
variables) using Comext CN 8-digit data should exclude such issue. Specifically, in order to avoid
double counting with any ICT control variable, we specifically checked product categories
capturing computing equipment as described by Caselli and Coleman (2001) and we excluded them
from our selection of product categories for 14.0-related product categories (e.g., in the case of 10T,
we only focused on sensors, actuators, and all other 10T specific capital equipment). Still, we
controlled for the potential presence of multicollinearity by computing variance inflation factors

(VIF): these are never above the critical value of five for any of our 14.0-related variables.
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Appendix C: Additional Tables

Table C1. Description of the variables

Variable Label

Variable Description

AlnAijt
AlnAth
lnDTFl‘jt_l

RD;je 4
Mije_q
ICTyje—q

14054
AlR;je—q
AM;je 4

IIOTijt—l

Growth rate of total factor productivity (TFP)
Growth rate of total factor productivity (TFP) of the frontier country

1-year lagged distance from the technology frontier

1-year lagged ratio between sectoral stock of R&D investments and sectoral value
added

1-year lagged ratio between sectoral imports from the rest of the world and sectoral
value added

1-year lagged ratio between sectoral stock of ICT investments and sectoral value added

1-year lagged ratio between sectoral stock of 14.0 technology imports (AIRs + AM +
11oT) and sectoral value added

1-year lagged ratio between sectoral stock of advanced industrial robot imports (AIRs)
and sectoral value added

1-year lagged ratio between sectoral stock of additive manufacturing imports (AM) and
sectoral value added

1-year lagged ratio between sectoral stock of industrial internet of thing imports (lloT)
and sectoral value added

Notes: Data on aggregate imports comes from Eurostat’s Comext data sets; data on sectoral variables comes
from EU KLEMS, STAN, ANBERD and BTDIxE data sets.
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Table C2. Econometric checks: productivity effects of 14.0 technology adoption

System-GMM LSDVC FGLS
AlnA;j;, (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
AlnAth 0.025 0.032 0.037 0.028 0.028 0.029 0.032 0.029 0.007 0.010 0.012 0.008
(0.066) (0.066) (0.034) (0.066) (0.020) (0.020) (0.020) (0.020) (0.009) (0.009) (0.009) (0.009)
InDTF;je_4 0.027** 0.010 0.010 0.016 0.219%** 0.199*** 0.208*** 0.217%** 0.021*** 0.020*** 0.015%** 0.020***
(0.011) (0.012) (0.010) (0.010) (0.023) (0.023) (0.023) (0.024) (0.003) (0.003) (0.003) (0.003)
RDijt—l 0.617*** 0.484*** 0.505** 0.391%** 1.266*** 1.339*** 1.311%** 1.284*** 0.403%** 0.442%** 0.422%** 0.403***
(0.170) (0.168) (0.173) (0.145) (0.153) (0.148) (0.150) (0.151) (0.043) (0.045) (0.043) (0.043)
(RD x lnDTF)U-t_l -0.555*** -0.452%** -0.487** -0.337** -1.193*** -1.256*** -1.222%** -1.208*** -0.382*** -0.413*** -0.395%** -0.380***
(0.167) (0.161) (0.191) (0.137) (0.146) (0.142) (0.144) (0.145) (0.045) (0.046) (0.045) (0.045)
Mije_q -0.004*** -0.003*** -0.000 -0.004*** -0.009*** -0.011*** -0.008*** -0.009*** -0.003*** -0.003*** -0.002*** -0.003***
(0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001)
(M x lnDTF)ijt—l 0.004*** 0.003** -0.001 0.004*** 0.008%*** 0.009*** 0.006*** 0.007*** 0.002%** 0.002%** 0.001** 0.002%**
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
ICTje—q 0.197* 0.103 -0.056 0.238** 0.495%** 0.536*** 0.354*** 0.490%*** 0.146*** 0.123%** 0.066** 0.137%**
(0.118) (0.066) (0.065) (0.106) (0.080) (0.078) (0.068) (0.072) (0.035) (0.032) (0.027) (0.035)
(ICT X InDTF)je—1 -0.169 -0.038 0.142* -0.221* -0.535%** -0.591*** -0.447*** -0.533%** -0.128*** -0.096*** -0.043 -0.122%**
(0.148) (0.080) (0.067) (0.132) (0.089) (0.086) (0.082) (0.083) (0.038) (0.032) (0.028) (0.038)
14004 0.153** 0.332%** 0.100***
(0.065) (0.047) (0.023)
(140 X InDTF) ¢4 -0.137*** -0.307*** -0.073***
(0.051) (0.056) (0.020)
AlR;ji_q 0.310* 0.813%** 0.342%**
(0.175) (0.148) (0.101)
(AIR X InDTF)j¢_, -0.323* -0.665%** -0.307%**
(0.175) (0.152) (0.091)
AMje_y 0.103*** 0.577%** 0.028
(0.022) (0.092) (0.049)
(AM X InDTF)j_, -0.044%* -0.312%** -0.013
(0.017) (0.053) (0.030)
HoTyj,_4 0.120%* 0.245%%* 0.080%**
(0.051) (0.043) (0.019)
(lIoT X InDTF);,_, -0.095** -0.196*** -0.058%**
(0.037) (0.053) (0.017)
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s h,s h,s h,s h,s
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
Groups 176 176 176 176 176 176 176 176 176 176 176 176
AR(1) test (p-value) 0.001 0.001 0.000 0.001
AR(2) test (p-value) 0.326 0.286 0.437 0.313
Hansen test (p-value) 0.704 0.606 0.681 0.691

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator). Models (1) to (4) present estimates from System-GMM estimator: Hansen tests for
overidentifying restrictions confirm the validity of instruments used (all regressors are assumed to be endogenous and instrumented with lags 1 and 2); AR(1) tests are rejected but AR(2) tests cannot be rejected. Models (5) to (8)
present estimates from LSDVC estimator: bootstrapped standard errors (50 iterations) in parentheses (see Bruno, 2005). Models (9) to (12) present estimates from FGLS estimator: AR process is assumed to be panel-specific. TFP
controls are h: hours worked; s: skill composition. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table C3. WLS-FE estimates: relationship between aggregate 14.0 technology adoption measures and TFP growth

AlnAe (1) @) 3) (4) (5) (6) @) (8) (©) (10) (11)
AlnAgj; 0.257*** 0.332%** 0.040 0.040 0.354%** 0.028 0.035 0.029 0.032 0.029 0.040
(0.036) (0.038) (0.046) (0.053) (0.091) (0.057) (0.053) (0.058) (0.055) (0.058) (0.053)
InDTFyj_4 0.244%** 0.307*** 0.246*** 0.259%** 0.358*** 0.183*** 0.237%** 0.183*** 0.221%** 0.183%*** 0.258***
(0.036) (0.040) (0.032) (0.040) (0.045) (0.032) (0.037) (0.032) (0.035) (0.032) (0.040)
RD;je_q 0.283%** 0.248*** 0.855%** 1.168*** 1.204%** 1.239%*** 1.148*** 1.251%** 1.266*** 1.262*** 1.173%**
(0.071) (0.064) (0.153) (0.224) (0.195) (0.245) (0.227) (0.243) (0.228) (0.242) (0.226)
(RD X InDTF) ;4 -0.969%** -0.816%** -0.793%** -1.046%** -1.122%** -1.164%** -1.041%** -1.176%** -1.159%** -1.185%** -1.051%**
(0.244) (0.233) (0.166) (0.223) (0.208) (0.247) (0.227) (0.247) (0.226) (0.247) (0.224)
Mje_q -0.003*** -0.002*** -0.003*** -0.005*** -0.005*** -0.006*** -0.007*** -0.006*** -0.006*** -0.006*** -0.005***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(M X InDTF);j¢-1 0.006*** 0.006*** 0.004*** 0.006*** 0.006*** 0.007*** 0.008*** 0.007*** 0.008*** 0.007*** 0.006***
(0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
ICTyje—q 0.196*** 0.109** 0.060 0.183 0.180* 0.224 0.345%* 0.256* 0.255** 0.256* 0.182
(0.060) (0.048) (0.070) (0.117) (0.108) (0.150) (0.138) (0.147) (0.126) (0.144) (0.118)
(ICT X InDTF);je—q -0.384%*** -0.171 -0.020 -0.209 -0.254 -0.280 -0.419** -0.310 -0.327* -0.314 -0.207
(0.139) (0.121) (0.104) (0.166) (0.168) (0.201) (0.196) (0.198) (0.186) (0.199) (0.167)
140;_4 -0.001 0.093*** 0.288*** 0.370%** 0.401%**
(0.014) (0.026) (0.054) (0.079) (0.083)
(140 X InDTF);j¢—41 -0.367*** -0.438%** -0.507*** -0.600***
(0.082) (0.079) (0.104) (0.118)
AlRy_, -0.038*** 0.229***
(0.013) (0.054)
(AIR X InDTF);j¢_4 -0.262***
(0.051)
AMy,_, -0.003 0.113***
(0.008) (0.025)
(AM X InDTF)j;_, -0.155%**
(0.032)
10Ty, 0.006 0.376%**
(0.019) (0.082)
(IIoT X InDTF);j¢_4 -0.511%**
(0.106)
TFP controls - - s h,s h,s,2c h,s h,s h,s h,s h,s h,s
Observations 1,757 1,757 1,757 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared (within) 0.422 0.457 0.376 0.359 0.409 0.289 0.353 0.285 0.323 0.285 0.357

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP
controls are h: hours worked; s: skill composition; 2c: two-country frontier. The dependent variable is the growth rate of TFP. AlnAp;, is the contemporaneous growth rate of TFP for the frontier; InDTF;j,_, is the lagged distance from
the technology frontier; RD;j;_; is the lagged sectoral share of R&D stock in value added; M;;,_, is lagged sectoral share of imports in value added; ICT;;;_, is lagged sectoral share of ICT stock in value added; [40;,_, is lagged country
share of 14.0 technologies import stock in value added; AIR;;_, is lagged country share of advanced industrial robots import stock in value added; AM;;_, is lagged country share of additive manufacturing import stock in value added;
110T;;_ is lagged country share of industrial internet of things import stock in value added. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table C4. WLS-FE estimates: relationship between sectoral 14.0 adoption measures (computed using specific depreciation rates) and TFP growth

AlnAyj, (1) (2) (3) (4) (5) (6) (7) (8)
AlnAth 0.031 0.030 0.029 0.034 0.029 0.029 0.029 0.029
(0.057) (0.057) (0.058) (0.057) (0.057) (0.057) (0.057) (0.057)
InDTFje_4 0.190*** 0.202%** 0.183%** 0.202%** 0.183*** 0.225%** 0.183*** 0.225%**
(0.035) (0.037) (0.032) (0.034) (0.032) (0.037) (0.032) (0.037)
RDm,1 1.268*** 1.323%** 1.223%** 1.229%** 1.305*** 1.231%** 1.302*** 1.233***
(0.244) (0.254) (0.237) (0.233) (0.248) (0.248) (0.248) (0.248)
(RD x lnDTF)U-t_l -1.180%** -1.227%** -1.152%** -1.146*** -1.215%** -1.145%** -1.213%** -1.146%**
(0.249) (0.256) (0.241) (0.234) (0.252) (0.253) (0.252) (0.253)
Mije_q -0.008*** -0.011*** -0.005* -0.008*** -0.009*** -0.009*** -0.009*** -0.009***
(0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
(M x lnDTF)ijt,1 0.007*** 0.010*** 0.005 0.005 0.008*** 0.008*** 0.008*** 0.008***
(0.002) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)
ICT;je—y 0.426** 0.530** 0.209 0.365** 0.439* 0.470** 0.436* 0.468**
(0.213) (0.244) (0.169) (0.177) (0.232) (0.231) (0.231) (0.230)
(ICT X InDTF)je—1 -0.474* -0.581** -0.265 -0.432* -0.487* -0.506* -0.484* -0.504*
(0.263) (0.294) (0.220) (0.234) (0.283) (0.276) (0.282) (0.276)
drAIRj._, 0.225 0.685*
(0.138) (0.371)
(drAIR X InDTF) ey -0.583
(0.373)
drAM;j._, 0.015 0.496***
(0.023) (0.165)
(drAM X InDTF);je_q -0.257***
(0.087)
driloTj—, 0.100 0.463%**
(0.072) (0.138)
(drlloT X InDTF) ;1 -0.466***
(0.127)
drlloTj2? 0.117 0.555%**
(0.085) (0.164)
(drlloT 315 x InDTF) e -0.561%**
(0.151)
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared (within) 0.290 0.298 0.285 0.305 0.290 0.305 0.290 0.305

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP

controls are h: hours worked; s: skill composition. All variables are defined as in Table C1, but drAIR;,_,, drAM;,_,, drlloT;,_, and drlloTi(}f_lf, which are computed using sectoral- and capital-specific depreciation rates as discussed in

Section 5.3. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table C5. WLS-FE estimates: relationship between sectoral 14.0 technology adoption measures and TFP growth using alternative measure from EU KLEMS

1995-2019 1995-2008 2009-2019
AlnA;;, (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
AlnAth 0.337*** 0.416%** 0.376%** 0.349%** 0.355%** 0.308*** 0.375%** 0.361%** 0.388*** 0.350%** 0.354***
(0.089) (0.096) (0.059) (0.069) (0.069) (0.073) (0.069) (0.061) (0.063) (0.069) (0.070)
lnDTFijt,l 0.414%** 0.538*** 0.692%** 0.719%** 0.813*** 0.709%** 0.770%** 0.590%** 0.875%** 0.719*** 0.808***
(0.068) (0.094) (0.160) (0.168) (0.164) (0.144) (0.151) (0.169) (0.189) (0.169) (0.164)
RD;j—q 0.900%*** 0.487*** 0.704* 0.756** 0.654* 0.680* 0.633* 0.619 0.590 0.755** 0.652*
(0.204) (0.171) (0.393) (0.384) (0.363) (0.365) (0.361) (0.406) (0.385) (0.384) (0.363)
(RD X InDTF);j¢_4 -1.236*** -0.718*** -0.606 -0.776 -0.560 -0.697 -0.411 -0.229 -0.919 -0.770 -0.545
(0.352) (0.259) (0.982) (0.944) (0.951) (0.911) (0.954) (0.991) (0.964) (0.945) (0.952)
Mije_q 0.022** 0.022** 0.018 0.017 0.016 0.019 0.018 0.013 0.006 0.017 0.016
(0.009) (0.009) (0.016) (0.015) (0.012) (0.015) (0.014) (0.015) (0.012) (0.015) (0.012)
M x lnDTF)ijt_l -0.020* -0.026*** -0.016 -0.014 -0.010 -0.017 -0.013 -0.008 0.002 -0.015 -0.010
(0.010) (0.009) (0.028) (0.028) (0.021) (0.028) (0.024) (0.026) (0.022) (0.028) (0.021)
ICTij:—l 0.629%*** -0.162 1.078*** 0.998%*** 0.704* 0.998%*** 0.910** 1.070*** 0.952%** 1.000*** 0.705*
(0.197) (0.178) (0.412) (0.375) (0.363) (0.379) (0.388) (0.383) (0.368) (0.377) (0.363)
(ICT x lnDTF)ijt_l -0.778** 0.270 -2.679*** -2.638*** -1.805** -2.578*** -2.318** -2.949*** -2.611%** -2.636%** -1.802**
(0.315) (0.243) (0.933) (0.889) (0.871) (0.887) (0.911) (0.911) (0.873) (0.890) (0.869)
140Ut_1 0.042 0.341%**
(0.073) (0.122)
(140 X InDTF);j¢—41 -1.070***
(0.351)
AlR;je 4 -0.051 0.126*
(0.031) (0.066)
(AIR X InDTF)j,_4 -0.430**
(0.189)
AMje_y 0.104* 0.301%**
(0.053) (0.073)
(AM X InDTF);j_4 -0.396***
(0.111)
HoTjj—4 0.041 0.338***
(0.073) (0.123)
(IIoT X InDTF)j¢_4 -1.089***
(0.361)
Observations 3,827 2,227 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600
R-squared (within) 0.951 0.979 0.688 0.777 0.878 0.867 0.746 0.647 0.879 0.756 0.880

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. Data
on TFP growth rate for manufacturing industries in Portugal are missing in EU KLEMS dataset. The dependent variable is the growth rate of TFP as taken from EU KLEMS data. All other variables are defined as in Table C1. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table C6. OLS-FE estimates: relationship between sectoral 14.0 technology adoption measures and TFP growth (unweighted)

AlnA;j;, (1) (2) (3) (4) (5) (6) (7) (8)
AlnAFﬂ 0.029 0.029 0.032 0.030 0.029 0.033 0.029 0.030
(0.061) (0.061) (0.061) (0.061) (0.062) (0.061) (0.061) (0.061)
lnDTFijt_l 0.187*** 0.227*** 0.197*** 0.206*** 0.195%** 0.215%** 0.203*** 0.224***
(0.036) (0.040) (0.039) (0.043) (0.034) (0.038) (0.040) (0.043)
RD;j—q 1.361%** 1.274%** 1.316*** 1.354%** 1.277*** 1.320*** 1.336*** 1.294***
(0.318) (0.327) (0.309) (0.327) (0.300) (0.305) (0.317) (0.324)
(RD x lnDTF)L-}-t,1 -1.259%** -1.184%** -1.221%** -1.254%** -1.201%** -1.215%** -1.248%** -1.199%**
(0.309) (0.314) (0.305) (0.319) (0.296) (0.293) (0.309) (0.314)
Mijt—l -0.009** -0.010*** -0.009*** -0.011%** -0.005 -0.008** -0.009%*** -0.010%**
(0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003)
(M X InDTF)j¢_4 0.008*** 0.009*** 0.007*** 0.010*** 0.004 0.007 0.008*** 0.008***
(0.003) (0.003) (0.002) (0.004) (0.004) (0.004) (0.003) (0.003)
ICTyjeq 0.474%* 0.507* 0.450* 0.553* 0.201 0.368* 0.477** 0.505**
(0.276) (0.272) (0.250) (0.285) (0.200) (0.205) (0.225) (0.226)
(ICT X InDTF);j¢—1 -0.524 -0.544* -0.499 -0.605* -0.267 -0.459 -0.530* -0.545*
(0.336) (0.323) (0.308) (0.342) (0.257) (0.281) (0.289) (0.282)
140,54 0.087 0.338***
(0.060) (0.127)
(140 X InDTF);j¢—1 -0.319**
(0.126)
AlR;je—4 0.282 0.829*
(0.190) (0.441)
(AIR X InDTF);j¢—1 -0.700*
(0.396)
AM;jey 0.024 0.609%**
(0.018) (0.124)
(AM X InDTF);je—q -0.328%**
(0.071)
HoT;je—q 0.084** 0.254%**
(0.038) (0.093)
(I1oT X InDTF);je—q -0.210**
(0.087)
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared (within) 0.232 0.246 0.232 0.239 0.228 0.251 0.236 0.244

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through OLS. TFP controls are h: hours worked; s: skill composition. All
variables are defined as in Table C1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table C7. WLS-FE estimates: relationship between sectoral 14.0 adoption measures and TFP growth (employment weighted)

AlnA;; (1) (2) (3) (4) (5) (6) (7) (8)
AlnAFj[ 0.030 0.030 0.033 0.031 0.031 0.035 0.030 0.031
(0.056) (0.056) (0.056) (0.056) (0.056) (0.056) (0.056) (0.056)
lnDTFijt_l 0.182%*** 0.222%** 0.190*** 0.201*** 0.188*** 0.209*** 0.197*** 0.218***
(0.031) (0.037) (0.034) (0.036) (0.032) (0.033) (0.035) (0.038)
RD;j—q 1.301%** 1.218%** 1.253*** 1.306*** 1.193*** 1.243*** 1.279*** 1.239***
(0.245) (0.244) (0.240) (0.249) (0.238) (0.232) (0.244) (0.245)
(RD x lnDTF)L-}-t,1 -1.204%** -1.133%** -1.163%** -1.209%** -1.122%** -1.144%** -1.195%** -1.147%**
(0.248) (0.249) (0.245) (0.251) (0.241) (0.232) (0.248) (0.250)
Mijt—l -0.009*** -0.009%*** -0.008*** -0.011%** -0.004* -0.008*** -0.009%*** -0.009%***
(0.003) (0.003) (0.003) (0.004) (0.002) (0.003) (0.003) (0.003)
(M X InDTF)j¢_4 0.008*** 0.008*** 0.007*** 0.010*** 0.004 0.006** 0.008*** 0.008***
(0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.002) (0.002)
ICTje—y 0.442* 0.473%* 0.422%* 0.523%* 0.182 0.347** 0.453%* 0.479%*
(0.227) (0.226) (0.209) (0.240) (0.160) (0.166) (0.189) (0.192)
(ICT X InDTF);j¢—1 -0.487* -0.506* -0.466* -0.571** -0.239 -0.430* -0.501** -0.514**
(0.277) (0.270) (0.258) (0.289) (0.206) (0.227) (0.243) (0.240)
140,54 0.078 0.321%**
(0.053) (0.099)
(140 X InDTF);j¢—1 -0.309%**
(0.087)
AlR;je—4 0.258* 0.760*
(0.156) (0.416)
(AIR X InDTF);j¢—1 -0.636
(0.420)
AM;je_q 0.024 0.587%**
(0.017) (0.192)
(AM X InDTF);je—q -0.315%**
(0.108)
HoT;je—q 0.079** 0.243%**
(0.034) (0.074)
(I1oT X InDTF);je—q -0.204%**
(0.067)
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared (within) 0.291 0.305 0.291 0.298 0.288 0.310 0.295 0.302

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using employment shares in total economy as weights. TFP
controls are h: hours worked; s: skill composition. All variables are defined as in Table C1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

57



Acknowledgements

We thank the Editor and two anonymous reviewers for their most constructive and helpful
suggestions. The authors are especially grateful to Marco Grazzi and to Eduardo Ibarra-Olivo for
their valuable comments and suggestions, and to the participants of the Italian Trade Study Group
meeting (Ancona, November 2020) and of the seminar at the Economics Department (University of
Perugia, May 2021) for their comments on earlier versions of this paper.

58



Author biography

Fabio Lamperti*, E-mail: fabio.lamperti@unipg.it

Fabio Lamperti is a Research Fellow in Economics at University of Perugia (Italy) and an Affiliated
Member at CIRCLE, Lund University (Sweden). He holds a PhD in Management (International
Business and Strategy) from Henley Business School, University of Reading (UK) and a MSc in
Management Engineering from Polytechnic University of Milan (Italy). Before joining Perugia,
Fabio was a teaching and research assistant at Henley Business School, University of Reading and
at the Department of Management Engineering, Polytechnic University of Milan. His research
focuses on the impact of technological change associated with Industry 4.0 technologies on
employment, economic growth and productivity, and firm’s restructuring decisions. His
publications have appeared in leading journals such as Industry and Innovation and Research
Policy.

Katiuscia Lavoratori, E-mail: k.lavoratori2@henley.ac.uk

Katiuscia Lavoratori is an Assistant Professor in International Business at Henley Business School,
University of Reading (UK). Before joining Reading, Katiuscia worked as a research fellow at
Warwick Business School, University of Warwick (UK). Her research lies at the intersection of
International Business and Economic Geography, with special reference to the economic analysis of
location choices, the relation between agglomeration and productivity, Industry 4.0 and the new
geography of global value chains. Katiuscia’s work on these topics has won several awards,
including the Copenhagen Business School Prize, Global Strategy Journal Best Paper Award and
European International Business Academy Best Paper Award. Her work has appeared in leading
journals such as the Journal of International Business Studies, Regional Studies, Global Strategy
Journal, Management International Review and Journal of Regional Science.

Davide Castellani, E-mail: davide.castellani@henley.ac.uk

Davide Castellani is a Professor of International Business and Strategy at the Henley Business
School, University of Reading (UK) and an Affiliated Member at CIRCLE, Lund University
(Sweden). His research focuses on the determinants of firms’ internationalization choices —
including the location choice of different activities across the value chain — and their effects on
trade, innovation and economic performances of firms, regions, and countries. His publications
have appeared in leading journals such as: Journal of International Business Studies, Journal of
International Economics, Oxford Economic Papers, Regional Studies, Research Policy, Global
Strategy Journal, Technological Forecasting and Social Change. He has been involved in a number
of international collaborative research projects and acted as an advisor to the European Commission
and other international organisations.

* Corresponding author

59


mailto:fabio.lamperti@unipg.it
mailto:k.lavoratori2@henley.ac.uk
mailto:davide.castellani@henley.ac.uk

