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Abstract

The growing research and commercial pressures for novel therapeutics development accentuate
why better strategies are needed for drug discovery. The costly nature of developing a
pharmaceutical compound as well as the shrinking pool of ‘easy’ targets are some of the key
reasons why there is a research paradigm shift towards integrative and systems biology driven
approaches. Moreover, multifactorial aspects of many diseases require more innovative clinical
strategies rather than just focusing on a single target. Cardiovascular diseases as well as associated
immune components exemplify this complexity well. This thesis aimed to introduce a gradual and
highly integrative analytical framework by incorporating a full range of studies from disease target
selection to high-throughput virtual screening so that a cost-effective and efficient stratification of
targets and associated compounds could be achieved. Heart failure served as a case study for
complex diseases where the first in-depth omics study on cardiomyopathies helped to elucidate new
therapeutic avenues. This research tied in with a development of a novel scoring function and
integrated machine learning approach for multiple therapeutic target classification and exploration.
Finally, all pieces of the introduced research were used to create a highly integrative in silico
screening workflow. Some of the key results included the first reported molecular dynamics
analyses for a complex immunotherapeutic target, c-Rel, as well as 15 new therapeutic compounds
that could potentially modulate this transcription factor subunit. Thus, this dissertation provided
several important improvements for target identification, validation, and drug discovery that could

significantly advance current development strategies and accelerate new therapeutics production.
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Summary

Major advances in the pharmaceutical industry were primarily driven by the need to identify
good therapeutic targets. However, it quickly became apparent that it is not enough to just screen
multiple compounds or perform various genomic/phenotype screens for potential hit identification.
As a result, there is an urgent need to develop new methods for biological data integration, network-
centric target exploration, and in silico drug discovery. Moreover, paradigms in drug discovery are
beginning to shift from target- to network-centric approaches so that better therapeutic options can
be found for complex diseases. This was also addressed in the first experimental chapter of the
thesis demonstrating that current strategies in treating multifactorial diseases are not sufficient and
more integrative solutions are needed. As a case study, heart failure (specifically, dilated and
ischemic cardiomyopathies) was investigated through the combination of bulk and single cell RNA-
seq as well as the proteome and interactome datasets to reveal a high heterogeneity of various
biological data resources. In addition, a scoring function was derived to better capture the
interactome complexity and disease associations. This study also introduced a two-step machine
learning pipeline to cluster and extract information on the targets that show favourable profiles for
therapeutics development. The analysis revealed that despite the complex aetiology of heart failure,
it is possible to elucidate metabolic and functional pathways that show therapeutic potential. This
part of the research was accompanied by a development of a specialised software package to make
such analyses more accessible to researchers (Chapter 3). The third experimental chapter of the
dissertation aimed to address the need of better categorisation and exploratory approaches for
multiple identified targets so that the data can be grouped based on physicochemical and structural
features. For this purpose, a novel scoring system/methodology was devised helping to capture both
local and distant topological as well as conformational features that can allow differentiating
specific structural motifs in a protein. That is, the core goal of this analysis was to provide an
effective method to characterise proteins prior to in silico screening by evaluating potentially
dynamically active regions. The ability to categorise such highly dimensional data in an easy-to-
store-and-retrieve way could significantly fast-track drug screening studies. Finally, the
demonstrated machine learning approaches can expand the analysis of multiple targets by extracting
and defining structural elements and motifs of various proteins. In order to aid with the

implementation of the introduced scoring and machine learning methods, a special software



package was developed supplementing this experimental chapter (Chapter 5). The final
experimental chapter of the thesis introduced a pipeline for an efficient development of therapeutic
agents by building on the previous studies. The human c-Rel protein, as a challenging
immunotherapeutic target, was chosen to demonstrate the existing hurdles and how they can be
overcome using an integrative analytical approach starting with a careful selection of a target,
followed by the evaluation of its druggability potential, and finally performing a stepwise in silico
screening. A compound library of an unprecedented size (34 M) was prepared from an even larger
set of compounds (659 M) which after gradual screening led to the identification of 15 high-scoring
drug-like structures that could be used for preclinical screens as potentially highly selective c-Rel
inhibitors/modulators. In addition, state-of-the-art molecular modelling and dynamics analyses
provided for the first time some hints at how the target protein might interact with the DNA
sequence. A cheminformatics software package was also created to help with screening compound

selection and assessment (Supplementary materials).

Overall, the innovative biophysical, computational biology, bioinformatics, and
cheminformatics methods presented here could significantly improve target selection and pre-
screening analysis as well as accelerate pharmaceuticals development. Importantly, the developed
highly integrative and network-centric approaches allow for a better understanding of pathological

perturbations and can help deliver so much needed therapies faster and with a safer profile.



1. Introduction

1.1. Drug discovery and development: a historical perspective on how global R&D trends

changed and shaped therapeutics development

The origins of the modern pharmaceutical industry can be traced back to the middle of the
19t century when companies, such as Eli Lilly, Merck, and Roche, moved into large-scale
production of drugs. Moreover, newly established pharmaceutical businesses, such as Bayer, ICI,
Sandoz, as well as Pfizer, started developing research labs to focus on medical applications and
scale-up their chemical production!. Early in the 20th century, major pharmacological advances in
synthetic organic chemistry and new compound exploration transformed the drug industry into
large-scale manufacturing to meet the increasing demands of newly introduced drugs, such as
analgesics and antibiotics!. The expanding pharmaceuticals market also prompted governments to
undertake research and introduce necessary regulatory steps to establish safety and distribution
policies. Furthermore, turbulent 20th century history and economic changes created a perfect
environment for a small number of very large multi-national companies to dominate the market by
the end of the century. Growing pharmaceutical businesses took advantage of the extraordinary
scientific progress that allowed to associate a specific gene with a disease which in turn led to the
emergence of new premises in research and discovery (R&D)!-3. One such novel concept was a
‘blockbuster’ drug that addressed a significant medical need and generated annual sales of at least
$1 billion!4. Particularly, a ‘blockbuster’ is characterised by its market dominance for a specific
indication, wide population use, and ability to achieve substantial profits. Such drugs typically
represent a particular therapeutics class, e.g., statins!. In light of the growing number of potential
therapeutic targets, this also marked the change from low-throughput studies to the development of
high-throughput strategies as increasing production outputs became a necessity in both biology and
chemistry to meet the demand of new drugs23.5-7. The abundance of data and funding allowed to
identify obvious links between pathological phenotypes and the offending protein or proteins!.2.
However, the era of 'low hanging fruit' in drug discovery started to dwindle towards the end of 20t
century as accumulating costs, growing regulatory oversight, and the shrinking pool of ‘easy’
targets reduced companies’ outputs!-3:58, This became especially evident over the last twenty years
when companies began to rethink old paradigms and search for innovative approaches to develop

therapeutics?:3-12, Therefore, changing motivations of pharmaceutical companies as well as the



undercurrents that shaped today’s R&D practices can be better understood when considering how

drug discovery evolved during the turn of the century.

Revisiting the past 50 years of drug discovery, we can see how significant scientific
advancements created both new opportunities and the vacuum space in R&D which may help
explain current trends in the pharmaceutical industry. Since the 1980s, the scope, quality, and even
the cost efficiency of the scientific and technological methods have markedly improved.
Biopharmaceutical industry took full advantage of combinatorial chemistry by not only increasing
the number of drug-like molecules that could be synthesised, but also scaling up considerably the
size of chemical libraries’.13. Everything from sequencing to the fewer man-hours required to
determine a three-dimensional protein structure facilitated the identification of lead compounds and
targets!3. High-throughput screening (HTS) of compound libraries against proteins of interest
became ten times less expensive between mid-1990s and 20085. Overall, the introduction of new
discovery tools, such as computational analyses and transgenic mice to model pathologies, not only
improved the scientific understanding of disease mechanisms, but also helped to form target-guided
strategies!3. While such improvements should have guaranteed a higher reliability in therapeutics
development, the contrasting uneconomical R&D management and low numbers of new
therapeutics pointed to many overlooked aspects in research. Particularly, shortcomings in industrial
research organisation as well as an insufficient appreciation of the complex chemical and biological
space stood out!3.14, The exhaustion of obvious druggable targets have also often been used to
explain the decreasing numbers of new molecular entity (NME) approvals and growing R&D
expenditures!4. This observation is based on the predicted druggable biological space which is
approximated to contain around 600—1500 ‘drug targets’ that could become the focus of industrial
research!4.15. Additional hurdles in improving NME outputs may also stem from the fact that the
search for new targets often begins with basic academic research which is only later transferred to
the industrial drug discovery setting!4. Basic research in the context of pharmaceutical R&D is
typically more risk-averse, while academic institutions tend to pursue novel and higher-risk targets
with long-term investments in basic research!3.14.16, This dichotomy may also explain the
differences in the novelty of identified therapeutic targets and why pharmaceutical companies are
now seeking to establish stronger partnerships with academia to identify potential therapeutic
breakthroughs!4:16. Finally, to better appreciate the changing landscape of R&D challenges and the
low numbers of NMEs over the last decades, it is also important to consider the asymmetric

situation caused by the patents system. Investments reaching billions in search for new drugs might



not bring in profit if the pipeline fails. Yet, pharmaceuticals that succeed to reach the market can be
priced excessively to withstand commercial pressures and cover R&D past and future expenditures.
The global patenting systems enabled and are still enabling pharmaceutical business to exploit
various pricing schemes because once a therapeutic is out of patent it can be sold as a ‘generic’ at a
considerably lower cost!:19, Thus, opposing business models in pharma companies pursuing new
drugs and those capitalising on generic pharmaceuticals also add to the creation of an uneven risk
and cost distribution which further increases R&D pressures and product costs!. All these factors
contribute towards present day R&D issues, as core strategies in drug development programs
evidently did not catch up with growing market constraints and the shrinking space of viable targets

that can move quickly and successfully through the pipeline.

In order to better appreciate the business and research models that have emerged during the
past 50 years, it is also necessary to consider the research timelines and expenditure dynamics since
discovery and development of a new drug can not only take decades to reach patients, but can also
require significant investments?10.13.17.18 Tt is estimated that there was a steady rise in drug
development costs since the 1950s with a linear increase on a logarithmic scale in R&D spending
for every newly approved drug!®. Such a steep growth in R&D spending to develop a single drug
can result in much higher actual production costs than usually quoted 1.6 billion US §$ per drug
successfully released into the market20. Considering not only the investment needed for drug
development but also calculating in the attrition rates, i.e., failed compounds for a specific
indication, the price for therapeutics production increases dramatically. Some estimates indicate that
the cost of developing a drug and bringing it to the market was as high as 4 billion US $ or more
between 1997 and 201117, Despite continuously increasing R&D expenditures, the number of new
therapeutics has been in a steady decline20. Stagnation in NME development has been evident in the
past decades with the overall approvals by the US Food and Drug Administration (FDA) remaining
low since the 2000s after peaking in the mid-1990s!4. These trends can be attributed to the high
drop-out rates of candidate drugs during preclinical screening and later attrition in clinical testing
phases due to safety or efficacy issues!!.20.21, Late-stage attrition rates are estimated to be as high as
75%20.22 representing one of the reasons for a high production and sale cost cycle. In addition, our
prognostic abilities to predict the success or failure of a therapeutic candidate are not sufficient. In
this context, only 13.8% of drug programs successfully progressed from Phase I to the final
approval by the FDA (2000-2015)21.23-26, It was found that cancer drugs had the lowest success rate

of 3.4%24-26, Similarly, drugs targeting the central nervous system also have poor success rates and



require longer development times when compared to other drug classes. Specifically, the success
rate of neuropsychiatric drug candidates reaching the market is low (8.2%) and this trend can likely
be explained by on average longer clinical development and trial time. Moreover, neurological
agents typically fail during later clinical phases which also makes them a particularly expensive
drug class to develop!®. It is also important to note that clinical trial outcome tracking is dependent
on the available information and statistical assessment methods which can introduce various
discrepancies and biases in the reported statistics2>. Such high failure rates lower investors’
confidence in pursuing new drug discovery programs or alternative therapies, especially since the
process might take years before a program’s clinical potential is seen!7.18.22_ [t has been argued that
the industry needs to develop improved analytical frameworks for R&D pipelines; for example,
early proof-of-concept screens, clinical risks identification, and a robust integration of risk
evaluation with experimental medicine procedures have been listed as crucial factors to reform the
discovery infrastructure?.10-13.18.27 However, it appears that boosting existing practices might not be
enough as low success rates primarily reflect that the current understanding of selected targets and

their tractability is insufficient2.8.10.22,28,

Considering the historical and economic context of the last half a century it becomes evident
that innovating therapeutics development, accelerating R&D pipelines, and expanding the
druggable target space can only be achieved if the fundamental approaches in drug discovery
change!l.13.17.18.22.27 Moreover, while one of the key research areas in current drug discovery
remains finding better methods to identify unwanted toxicity or low efficacy as early in the pipeline
as possiblel?, it is crucial to establish a more integrative approach towards drug discovery and take
advantage of developments in the computational R&D space?28. In other words, today’s fractioned
R&D space, despite the overall science progress, highlights why seeing the ‘big picture’ of
discovery pipelines and focusing on integrative holistic approaches can help with the current

challenges.

1.2. Shifting paradigms in drug discovery and development: from high-throughput target-

specific approaches to searching for new multi-network strategies

Developing new strategies for drug discovery rests on transforming the existing scientific
and technological tools!. Specifically, rethinking some of the prevailing paradigms in target
identification and tractability evaluation in early preclinical screens is believed to be necessary in

order to improve the development of therapeutics and open the markets for more innovative



Introduction

treatments?:13.18.19.27, Yet, this shift towards new approaches is gradual since recently introduced
discovery and development protocols are also subject to regulatory validation!-8.10, Consequently, in
order to understand the evolution from target-centric screening to disease network exploration, it is
necessary to consider how preclinical strategies advanced during the past decades and how this
affected R&D approaches!-3.6-829,

Broadly, drug development can be divided into several stages that build on early exploratory
studies with increasingly complex assays and screens!-3.11, The process begins with disease-related
genomics as well as target identification and validation studies. This is followed by lead discovery
and optimisation studies which, if successful, conclude with clinical trials3? (Fig. 1). However,
before a complete pipeline is outlined and decided on, identifying a new drug starts by defining a
particular disease of interest which might be studied in academia or in a pharmaceutical company's
basic science division25.14, Typically, only once the research narrows down a specific target whether
it is a gene, protein, or any other biological element that can be modulated, can further discovery
work begin to define chemical entities that have the potential to engage that target!. This is an
iterative process with feedback loops from preclinical development and clinical trials where many
discovery steps intertwine (Fig. 1). Although a preclinical drug discovery program aims to deliver at
least one clinical candidate molecule with sufficient biological activity, most discovery programs
are designed to generate more than one potential drug candidate to minimise safety, potency,
kinetics, and other clinical risks!:2. Despite this R&D outline, there is no one blueprint for finding
good clinical candidate molecules and an extensive collaboration of biology, chemistry, toxicology,

and pharmacokinetics is paramount for tailoring a specific pipeline to ensure clinical success!8:14.16

(Fig. 1).
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Introduction

Figure 1. Drug discovery and development stages from the basic research to approval. This process can be
focused on small molecules (NMEs) or biological molecules (NBEs). Throughout the process various
feedback loops exist that are represented with green arrows. Blue arrows depict the timelines for quality
assurance processes, such as good laboratory practice (GLP), good manufacturing practice (GMP), and good

clinical practice (GCP). Other abbreviations: absorption, distribution, metabolism, and excretion (ADME);
cytochrome P450 (CYP). Based on the information from Mohs et al., 2017 and Earm et al., 2014216,

Until the 1990s, drug discovery and development largely followed a phenotypic or
observation-based approach which was quite problematic as it was difficult to predict toxicity or
understand the mode of action of a drug?. Moreover, before 1985, screening capacity was low and
traditional biochemical as well as pharmacological drug discovery methods operated with, by
today’s standards, large reaction volumes (1 ml) to test individual compounds3. Thus, laboratory
assay capacity ranged from around 20 to 50 compounds per week and further limitations were
imposed by a relatively small compound selection (averaging 3000) which could take 1-2 years to
test3. The inadequacy of such approaches was further highlighted with the advent of the
recombinant DNA technology that expanded new therapeutic target selection and underscored the
need to quickly assess a more diverse chemical space?. Only after enough biological knowledge
accumulated, was there a shift towards target-based approaches where screening became driven by
selected targets2. Between 1985 and 2000, research pressures and the need for new technological
solutions to automate, maximise, and multiplex screening capacity led to the development of HTS3.
This period represents a fast growth in the screening scalability, cost reduction, and data integration
as well as target-centric and toxicology-centric method creation? (Fig. 2). This need to innovate also
helped to overcome the technical limitations of biology and chemistry research so that more viable

targets and candidate compounds could be identified and screened!.6:8.
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Figure 2. Chronological sequence of key breakthrough developments describing the origin and evolution of
high-throughput screening (HTS). The timeline depicts the first emergence of important concepts, HTS
scaling, and new advances. Other abbreviations: reverse transcription-quantitative polymerase chain reaction
(RT-qPCR), liquid chromatography—mass spectrometry (LC-MS), the National Institutes of Health (NIH).
Adapted from Pereira & Williams, 20075.

Turn of the century was marked by a rapid adoption of new methods in R&D and the
expanding cellular biology space that was studied. In order to appreciate the changing discovery
philosophy, it is necessary to consider the technical innovations that created the basis for target-
centric approaches. Pre-2000, target selection and validation depended on specifically designed
assays to understand what cells express targets, what interactions exist, and what can be
therapeutically exploited. Studying differential gene expression was one of the first crucial steps in
drug discovery at that time since traditional techniques, such as Northern blot analysis, became
gradually complemented and/or replaced by a number of newer methods, e.g., in situ hybridisation
(ISH)!.6.8. Even with technical advancements, these methods were still very labour intensive. This
pushed for further development of methods that could be expanded into a multi-assay format.
Microarray gridding (GeneChip™) and TagMan® polymerase chain reaction (PCR) became
prominent in the high-throughput analysis of genes. In addition, microarrays, real time (RT)-PCR-
based TagMan assays, as well as Spotfire® data analysis helped to introduce a comprehensive
framework where differential expression readouts were integrated and analysed!-3.7.8.31. While these
methods could not pick-up low abundance genes and suffered from noise, next-generation
sequencing (NGS) leveled out the field over the following 20 years with the earlier technologies
paving the way for increased research robustness and speed3!-34. Early in the post-Human Genome
Project era, RNA-mediated post-transcriptional gene silencing (e.g., miRNA) has opened new
possibilities for gene expression modulation in many organisms and cells35. These breakthroughs
led to the formation of the functional genomics field that combined physiology and pharmacology
allowing the integration of many new experimental approaches, e.g., in vivo imaging (i.e., magnetic
resonance imaging), mass spectrometry (MS), and microarray hybridisation, to determine particular
gene functions8. Consequently, around the 2000s, research began to change with growing
capabilities to quickly parallelise and process multiple samples or experimental set-ups. As high-
throughput drug discovery continued to progress with emphasis on the genome, it also began to
expand into proteome and metabolome research!-8. This was primarily caused by the realisation that
mRNA expression does not necessarily correlate with protein levels3¢ and that post-translational
modifications or proteins resulting from alternative splicing might have different biological

activitiess. As a result, proteomic and metabolomic analysis permitted the capture of specific



pathological profiles that could be modulated via therapeutic intervention. Even though microarrays
dominated the assessment of gene expression via cDNA and RNA analysis, their applications were
expanded to include, for example, protein arrays to capture enzyme-substrate, protein-protein, and
DNA-protein interactions37-38. Similarly, metabolomics integration into discovery and development
allowed to characterise new disease markers and metabolic patterns by nuclear magnetic resonance
(NMR) spectroscopy, MS, and chromatographic analysis of cell extracts!:8:39. Thus, from mid-1995s
to 2005, there was a steady replacement of laborious and less optimal methods with a growing HTS
dominance allowing the discovery of novel molecular targetss:40,

This change in R&D throughput offered many new hit compounds (identified via HTS) and
allowed the creation of more focused screening libraries to quickly progress from hit identification
to lead generation$. Advances in robotics, automation, and data handling allowed applying diverse
biochemical assays to large chemical libraries (50,000-100,000 samples in a day)!.

With developments in ultra-high-throughput screening (UHTS), HTS efforts have shifted into high
gear since 2010 as the processing power has increased to 1,000,000 samples a day!. Typically, any
screening that generates lead compounds takes place in several stages from broad identification to
more specialised assays to achieve better pharmacokinetic profiles, such as absorption, distribution,
metabolism, and excretion (ADME). Thus, after hit identification and triage, the next step is lead
optimisation to reduce the number of potential leads from around 10—15 to 3—41.41. It is important to
highlight that this type of research is not linear and various new assays are explored to establish
efficacy, bioavailability, as well as interaction characteristics. Similarly, compound modifications
are also tested. This might take around 2-3 years since this time is also needed to design the process
chemistry (to produce trial batches) and outline potential clinical trials!-16:41.42. Once activity
characterisation is complete, a lead compound or compounds will move into clinical testing to
establish if there is a usable pharmaceutical2. As can be seen, crystallisation of drug discovery and
development principles required both the technological innovation and the broadening of our
scientific understanding. This process is well reflected through the HTS evolution (Fig. 2) since
target-centric discovery programs became paramount in the industrial research23.531. Furthermore,
as R&D became centred around disease-targeting paradigms, companies tried to counteract market
pressures with increased investments in their discovery platforms to produce more new leads!.2.20.43,

Yet, the significant technological progress and growing research interdisciplinarity did not
result in larger therapeutics outputs. Increasing failure rates in clinical phases and the reduced
number of first-in-class targets or compounds highlighted that disease-specific processes are more

complex than anticipated!0.132444, In addition, more than two decades of the target-based approach



did not boost productivity levels in new drug development and many selected targets failed to be
druggable!2. Poor disease linkage, off-target effects, and toxicity underscored that biological
processes cannot be solely defined by a single gene or a protein2. While discovery methods and
technology evolved, companies failed to diversify their approaches and look ahead beyond the
classical framework of drug searching for a single-target disease which was largely dictated by the
existing HTS practices35.2431, In other words, the reductionist approach for new drug identification
has been dominating R&D pipelines and the complexity of disease biology has just relatively
recently forced companies to change such attitudes and embrace systems biology ideas2:45.46,

To address R&D challenges, there has been increasingly more reliance on in silico
approaches to evaluate targets and select the most optimal pharmacological intervention options
where integrative and systems biology-based methods began to guide pipeline design and
therapeutic decisions?31:47-51, Various computational and biotechnological advances, including next-
generation sequencing, transcriptomics, metabolomics, and proteomics, started to be combined
using systems biology principles. This new type of biological Big Data integration used to study
complex biological interactions is known as ‘omics 246, Thus, ‘omics’ represents a new concept in
research where the dynamic picture of the pathological mechanisms, genomic variability,
pharmacological readouts, and drug screening outcomes become a prerequisite to decrease attrition
rates. Here, bioinformatics, cheminformatics, systems biology, and computational biology have
become critical in drug discovery and reforming R&D. These computational methods are now
employed to provide cost-effective target and drug candidate selection, identify potential toxicity
events early in the pipeline, and prepare large-scale information integration for present and future
studies®2. Furthermore, the growing data volumes in screening studies necessitate the development
of rational selection and storage methods to organise hundreds of thousands of compounds, their
targets, and associated activity readouts!9:53-56, Similarly, historical data on its own can save
resources in future screens by allowing mining of the existing data220. Bringing computational
methods into drug development also helps to limit the use of animal models in pharmacological
research and encourages the advancement of alternative high-throughput systems, such as organoids
or induced pluripotent stem cell (iPSC) screening assays223. In other words, transferring aspects of
medicinal chemistry and pharmacology into the computational space creates a flexible research
environment where in vitro and in vivo studies can be complemented by in silico and fast data

integration.



Seeing the obvious benefits of highly integrative computational approaches, many
pharmaceutical companies have opted to integrate in silico discovery platforms into their pipelines.
Such investments are expected to help accelerate therapeutics discovery efforts and improve the
overall success232, However, in order to significantly boost current drug discovery and development
strategies, the fast-developing field of computational drug discovery needs structured and well-
defined methods to identify promising targets, characterise compound engagement, and store
valuable information20.28.57-60, Successful drug target identification and prioritisation primarily
depend on the establishment of a causal association between a target (or targets) and a specific
disease!:15.24. Thus, in silico methods need to avoid repeating reductionist strategies that are still
often seen in classical therapeutics research where the focus is directed towards a very narrow
spectrum of targets or a single target is believed to completely alter the disease phenotype?. The
reality is much more complicated because of complex disease aetiologies and the underlying
pathological heterogeneity?2.15:45:46.61.62 As a result, shifting towards network-centric approaches to
better understand pathological perturbations, promoting early and advanced in silico screening, as
well as the systematic analysis of the selected targets can be invaluable in addressing the current
challenges in pharmaceuticals development245:46.63-67_ In other words, the algorithms used in
screening should move away from the notion of ‘a single target equals a disease’ to a network-
centric approach in order to capture the complexity of the full disease interactome. This
appreciation should lead to a better analytical framework for studying cellular perturbations in a
pathological state and assessing potential off-target effects2:45.46.66-71, Similarly, it is important to
consider how a compound interacts with a target or targets by exploring the energetics of the
interactions, binding dynamics, and molecular movements. Finally, all this information must be
integrated into a format that allows to parse and categorise multiple targets so that valuable insights
are not lost224.28.52.72 There are a growing number of highly integrated research examples where
computational methods in drug discovery have already proven their value in urgent situations, such
as the COVID-19 pandemic crisis’3, or the changing landscape of chronic as well as emerging
infections, namely tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA)47.74,

While computational methodologies allow the expansion of the analytical space which
undoubtedly helps to select relevant targets and their modulation approaches, further development
of methods is necessary to improve today’s in silico strategies and create a more regulated research
ecosystem?28.52.70.75 Only by focusing on these questions and embracing a holistic discovery

approach, can we begin to untangle the key elements in health and disease.



1.3. Novel R&D framework for complex diseases: rethinking therapeutics development with

case studies on cardiomyopathies and inflammatory disease components

Understanding the full scope of the complex mechanisms underlying diseases is still
challenging and a simplistic perspective of ‘one gene-one disease’ has proven to be
unsuccessful245.76. Many diseases result not only from multiple genetic determinants, but also from
regulatory and network interactions+6.76. Thus, the multifactorial nature of many pathologies, such
as depression, asthma, epilepsy, diabetes, rheumatoid arthritis, hypertension, or coronary artery
disease, earn them a label of ‘complex disease’ where a combination of genetic, regulatory, or even
environmental factors can all contribute at a varying degree’’.78. Such stochastic aspects of diseases
created new hurdles for drug discovery programs, especially considering what can be used as a
good drug target2.15.78, While the human genome contains approximately 25,000 genes, only about a
tenth of the expressed proteins are amenable to small-molecule modulation with less than a half of
that subset believed to have any therapeutic potential!5.60.61.79, Since the development of therapeutic
compounds has a very low success rate with less than 2% of lead compounds reaching the market,
generating effective pharmaceuticals might become especially challenging for immunotherapeutics
or other complicated pharmacological categories!-25. These difficulties arise because a therapeutic
entity can potentially have far reaching side effects through multiple interactions, such as
homology-based or unspecific binding and conformation-dependent engagement®!.80. Considering
the growing need for methods to analyse intricate disease interactors and regulatory
mechanisms?2.28:45.46,52,53.78 ' this thesis will address how we can better investigate the underlying
disease mechanisms and potential therapeutic targets when integrating different levels of biological

data for both complex diseases and targets.

The first two experimental chapters (Chapter 2: Insights into therapeutic targets and
biomarkers using integrated multi-‘omics’ approaches for dilated and ischemic cardiomyopathies
and Chapter 3: Omiclnt package: exploring omics data and regulatory networks using integrative
analyses and machine learning) will introduce new strategies to study complex diseases and identify
promising targets. In order to address the lack of integrative and network-centric approaches in
R&D, these chapters will focus on the development of an integrative analytical strategy that
combines omics analyses for robust target classification and assessment with a special focus on
complex and unmet need diseases. The following chapters (Chapter 4: Fi-score: a novel approach to
characterise protein topology and aid in drug discovery studies and Chapter 5: Fiscore package:

effective protein structural data visualisation and exploration) will describe newly developed



methods for multiple target investigation in preparation for functional analyses, target validation,
and drug screening. In addition, limited options in protein structural and topological exploration as
well as machine learning, classification, and relational data storage prompted addressing these
questions through a first-of-its-kind scoring function and a user-friendly software package. The
final experimental chapter (Chapter 6: In silico drug discovery for a complex immunotherapeutic
target - human c-Rel protein) will tie together all the pieces of the research presented in this thesis
by demonstrating a highly-parallelised and integrative in silico screening platform that was
developed for accelerated drug discovery. Seeing existing limitations in computational chemistry
strategies, such as disjoined analyses, limited analytical protocols, and the lack of solutions for
complex targets, encouraged to devise this analysis and screening methodology. Heart failure (HF)
and a complex immunological target were selected as case studies to illustrate the present
challenges in drug discovery and use these models to formulate potential solutions. Particularly, HF
represents a multifactorial disease with the treatment targeting only the symptoms based on the
severity of left ventricle dysfunctiond!. The exploration of immunological disease components
through complex immune regulators can also help create new and broadly applicable therapeutic
strategies’s2-86,

Despite cardiovascular disease (CVD) being the dominating global cause of death,
investments and efforts in CVD drug development are declining8187. CVD progresses to a clinical
syndrome (or HF) which can be caused by a broad spectrum of diseases affecting the pericardium,
endocardium, myocardium, heart valves, and vessels. The underlying structural and/or functional
heart dysfunction in HF results in impaired ventricular filling or blood ejection88. The statistics for
HF are worrying with approximately 2% of the adult population being affected world wide?°. Since
HF is an age-dependent clinical syndrome, fewer than 2% of HF sufferers belong to the population
younger than 60 years; however, this proportion increases five-fold for those older than 75 yearssd.
Patients with HF usually present with symptoms, such as reduced exercise tolerance, dyspnea,
breathlessness, pulmonary crackles, and fluid retention which manifests through pulmonary and
peripheral oedema (Fig. 3). Regardless of the physiological compensatory mechanisms in HF, such
as increased muscle mass, cardiac filling pressure, and heart rate, this pathophysiological condition

progressively worsens$s:89,
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Figure 3. Summary for cardiovascular pathology progression with key features described as well as the
anatomical feature depiction. The diagram on the left depicts cardiovascular disease (CVD) progression to
heart failure (HF) with specific subtypes, classification criteria, causes, symptoms, and main risk factors.
Specific disease aspects, such as left ventricular dysfunction and late stage HF, are also summarised. On the
right, the dilated cardiomyopathy (DC) and ischemic cardiomyopathy (IC) (or cardiac ischemia) cases are
shown next to the normal heart. Clinical illustrations were adapted from cidg.org.nz and omicsonline.org.

HF resulting from left ventricular dysfunction is further categorised according to left

ventricular ejection fraction (LVEF) into HF with reduced ejection fraction (LVEF 40% or less), or

HFrEF, and HF with preserved ejection fraction (HFpEF). While the exact definition of HFrEF is

known to vary among different guidelines and studies, where LVEF cut-offs can be in a range of

<30%, <35%, and <40%, many clinicians, in their routine practice, would consider EF <40% as a

significant systolic dysfunction to warrant the designation of HFrEF38. Hypertension, ischemic

cardiomyopathy (IC), and dilated cardiomyopathy (DC) precede late-stage HFrEF which

encompasses a diverse pathological spectrums8!.88.89. The progression of HFrEF can be influenced by

a number of risk factors resulting in cardiac injury and a subsequent development of myocardial

dysfunction. The risk factors are shared with coronary artery disease where obesity, hypertension,

hypercholesterolaemia, diabetes, as well as a familial history of HF, or exposure to cardiotoxic

agents (e.g., alcohol, amphetamines, and cancer treatment) can promote cardiac injury (Fig. 3).

Even though the initial pathophysiological condition is asymptomatic, it gradually worsens leading

to end-stage HF81.88.89. Moreover, HFTEF exemplifies well how a limited investigation into a

complex disease can lead to a long-standing paradigm formation of a single common pathway

where only a limited number of genes are used to explain the observed pathological

heterogeneity281.90, Early high-throughput studies did not account for the technical and analytical
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limitations and focused on a very generalised explanation for HF, which inevitably led to the
oversimplification of the processes at a molecular level29l. With the growing evidence of complex
regulatory networks in cardiopathologies92-94, it became clear that several genes (as it is the case
with a ‘single common pathway’ theory in heart disease) did not provide an adequate measure of
pathology development or progression. Furthermore, by simplifying the pathological premise, we
lost opportunities to develop new therapeutics as evidenced by the fact that most current therapies
for HFrEF did not specifically focus on disease aetiology or in-depth differentiations!.87.95. DC, IC,
or HFrEF are managed with oral diuretics to treat hypervolemia. Angiotensin [-converting enzyme
(ACE) inhibitors, angiotensin II receptor blockers (ARB), and statins have also shown benefit in the
treatment of HF$8.96-98 Thus, the existing symptomatic management highlights why there is a need
for new therapeutic insights and why an improved analysis of underlying HF mechanisms is still

urgently needed8!.87.91.95,

Limited research in the therapeutic area of cardiopathologies is typically attributed to the
low tolerance for side-effects and a lack of good biomarkers®s. Thus, a more in-depth understanding
of the disease aetiology on a molecular level beyond symptomatic treatment would allow for a
better monitoring of the pathology progression, treatment efficacy evaluation, or even the discovery
of new therapeutic targets$!.89.95.99_ In addition, the lack of systematic studies to uncover underlying
heterogeneous mechanisms on the genomic, transcriptional, and expressed protein scale signifies
the need to shift the analytical paradigm towards network-centric and data mining
approaches8!.87.91.95.100,101 ' A erowing number of RNA-seq and metabolomics studies create an
excellent resource for an in-depth look into cardiomyopathies where gaps in datasets can be
enriched with the information collected from similar studies8!.102,103, Moreover, multi-omics
approaches can help to uncover the intricate biological mechanisms of pathological processes by
recreating the complex interactome. These techniques can also be applied to many different
indications?45.104.105_ Current HF treatment options rely on targeting the symptoms associated with
the left ventricular failure without taking into account the heterogeneity of underlying
mechanisms81.87.83. Due to this lack of therapeutic diversity and the urgent need for improvements in
HF treatment, the reported research (Chapter 2) focused on human left ventricular dysfunction
(a clinically significant reduction in LVEF) and the development of a new methodology to uncover
disease-associated genes.

The study of cardiomyopathy signatures and targets (Chapter 2) hinted at the immune

system alterations via the NF-xB pathway (or NF-kappaB, nuclear factor kappa-light-chain-



Introduction
enhancer of activated B cells, pathway) (Fig. 4). The identified leukocyte migration signatures, such
as CXCL10, and other inflammatory markers in IC suggested the involvement of major regulatory
networks, such as the NF-kB pathway. The NF-kB pathway had already been linked to various
hypertrophic, remodelling, and ischemic heart conditions3¢.106-108, Moreover, the exemplified need
for novel immunotherapeutics that could be used for HF to improve treatment specificity and
tolerability!03-110 motivated to focus on the immune system and the exploration of potential
pharmacological strategies for relevant target modulation. As a result, the NF-kB pathway was
selected as an excellent opportunity to develop discovery pipelines because of a significant unmet
need for drugs that could effectively target this complex (Chapter 6)3¢.111, Importantly, formulated

pipelines and methods can be widely applied to other problematic targets.
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Figure 4. Simplified schematic representation of NF-kB signalling showing the canonical and non-canonical
pathways; the illustration was adapted from Peng et al., 2020112, NF-kB hetero- or homo-dimers are formed
by the Rel transcription factor family members: p50, p52, Rel A (p65), Rel B, and c-Rel. The canonical
pathway (p65/p50) is inducible through TLRs, TNFRs, and IL-1R leading to the phosphorylation and
degradation of the inhibitory protein IkB. This occurs primarily via the activation of the IxB kinase (IKK).
IKK is composed of the catalytic IKKa and IKKf subunits and a regulatory protein termed NEMO (NF-kB
essential modulator) or IKKy. After NF-«B is released from the IkB-containing complex the activated NF-«xB
complex translocates into the nucleus. The non-canonical pathway (p52/RelB) is activated by BAFFR,
CD40, and RANK. This cascade results in the phosphorylation of the NF-xB inducing kinase (NIK) and
IKKa. This is followed by the translocation of the activated p52-RelB heterodimer into the nucleus. NF-xB
signalling regulates various cellular processes that may involve inflammation, apoptosis, and immune
response.
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The NF-«B pathway illustrates well how far reaching immune-modulatory effects can be
and why creating better immunotherapeutics can have a significant impact in many pathologies.
NF-kB encompasses a broad spectrum of activities realised through the regulation of key genes in
pro-survival and pro-apoptotic pathways (Fig. 4). NF-kB hetero- or homo-dimers are formed by the
Rel transcription factor family members: p50, p52, Rel A (p65), Rel B, and c-Rel. It is important to
note that due to post-translational processing the pS0 and p52 proteins have no intrinsic ability to
activate transcription as they lack the C-terminal transactivation domain in contrast to the other
family members!13.114, This multimeric transcription factor is regulated through the binding of kB
inhibitor proteins, which are subjected to proteosomal degradation after the activation of the IxkB
kinase complex (IKK) leading to the release of NF-kB!1!-114, The complexity of this master gene
regulator lies in the fact that different multimer compositions exist and that NF-xB can be activated
either through the canonical or non-canonical pathway. The canonical pathway (p50 and p65 or p50
and c-Rel heterodimers) controls multiple cellular functions including immune system activation
and cellular survival, while the non-canonical pathway (mostly p52-RelB) is primarily involved in
lymphoid organogenesis (Fig. 4)!14-116, In addition, the NF-kB complexes containing either p65 or
c-Rel are known to be involved in distinct biological roles, where multimers with p65 maintain
cellular metabolism and inflammatory response regulation and c-Rel containing transcription
factors play a role in a more specialised immune response and lymphoid development!17.118, Even
though NF-«B is at the nexus of multiple regulatory pathways and metabolic processes, so far no
significant therapeutic advancements have been achieved to offer optimal pharmacological
engagement!19-121, Difficulties in establishing good drug candidates for NF-kB might be linked to
the ubiquitous expression of NF-«B in multiple tissues, complex interaction dynamics, and a lack of
understanding regarding various oligomer functions!14-116.120.122 Nevertheless, these aspects of NF-
kB signalling can be exploited to advance our drug discovery efforts!14.115.123, As NF-kB is
assembled from different dimers that vary between tissues and pathologies, this signalling feature
can be strategically capitalised on to increase specificity and reduce off-target effects. The efficacy
of this approach has recently been demonstrated through the inhibition of c-Rel function to delay
melanoma growth by impairing effector Treg-mediated immunosuppression!2!.124, Furthermore, as
we begin to better understand NF-kB function, it becomes apparent that dimer-forming proteins are
not equivalent and possess different characteristics which can be utilised to accommodate new drug
design!24, These observations are especially relevant for cardiopathologies because NF-kB activity
is also increased in such states!06.107.123,125,126 and there is evidence that the c-Rel subunit stimulates

cardiac hypertrophy and fibrosis!23. Gaspar-Pereira and colleagues demonstrated that c-Rel-



deficient mice have smaller hearts and do not develop cardiac hypertrophy and fibrosis during
chronic angiotensin II infusion. The authors also reported for the first time that c-Rel is highly
expressed and localised in the nuclei of diseased adult human hearts, whereas in normal hearts
c-Rel was restricted to the cytoplasm!23. Other studies have also hinted at the complex regulatory
network of NF-kB showing that transcriptional regulation can have far reaching effects, including
the promotion of global changes in the chromatin landscape to control cellular calcium regulating
genes and cardiac function!%6. The growing evidence strongly suggests that NF-kB plays a role in
heart disease, where the development and progression of inflammation and cardiac as well as
vascular damage seem to be orchestrated by this transcription factor!27.128, Furthermore, the
reported c-Rel-dependent signalling in cardiac remodelling and hypertrophy presents an interesting
opportunity to explore a novel therapeutic strategy that could be expanded to other diseases with
abnormal tissue growth, such as cancer and fibrosis. c-Rel can be used as a target model and the
developed screening blueprint can be directly applied to any Rel family member if, for example,
another subunit of NF-kB needed to be targeted to achieve a therapeutic effect. As a result, c-Rel, a
promising target in many human inflammatory and oncological pathologies, was selected as a case
study for the development of an effective in silico screening platform since the NF-kB transcription
factor currently has no successful therapeutic inhibitors or modulators (Chapter 6). In addition, the
established analytical and screening pipeline can be transferred and adapted to any therapeutically

relevant target.

Cardiovascular diseases underpin the development of HF and are a leading cause of death
worldwide; thus, there is an undeniable need to rethink therapeutic protocols and search for novel
treatment options81.88.89.123,126-129 Tn order to formulate a novel discovery framework for complex
diseases, cardiomyopathies and an inflammatory component/target were selected as case studies to
develop and test new methodologies. As demonstrated in the present thesis (Chapters 2 and 3),
employing multi-omics centred approaches allows to explore multifactorial diseases in-depth and
identify new clinical avenues. In the case of cardiomyopathies, the introduced integrative strategy
enabled capturing a subtle differentiation between ischemic and hypertrophic states. Moreover,
recent reports suggesting a strong involvement of NF-«kB in cardiac remodelling123.126-130 aso
motivated to find new disease targeting strategies to offer better clinical management options for
patients (Chapter 6). The reported studies bridged multi-omics, computational biology, structural
bioinformatics, as well as computational chemistry and helped to create an adaptable premise for

future research since developed methodologies are robust and widely transferable.



1.4. Development of a network-centric and highly integrative discovery process: addressing

R&D challenges and creating new opportunities

The growing research and commercial pressures for novel therapeutics accentuate why
better strategies are needed for R&D and drug discovery211.13.17.18. The costly nature of developing
a therapeutic compound as well as the shrinking pool of ‘easy’ targets are some of the key reasons
why pharmaceuticals companies, research institutions, and researchers are shifting their focus
towards integrative and systems biology driven approaches!0.19.28.45.46,67.131 Moreover, multifactorial
aspects of many diseases require more innovative treatment solutions rather than just focusing on a
single target2.46.76.78 CVD as well as HF associated immune components demonstrate well how
discerning network elements that contribute to a pathology might expedite the creation of better
therapeutic solutions for patientss6.89.95.101 As a result, to address major challenges in drug
discovery, this thesis aimed to introduce a gradual and highly integrative analytical framework by
incorporating a full range of studies from disease target selection to high-throughput virtual
screening (HTVS) so that a cost-effective and efficient stratification of targets and associated

compounds could be achieved.

Specifically, it was first necessary to develop a multi-omics based process to capture
complex gene interaction patterns, establish disease association parameters, identify gene clusters of
interest for the downstream analysis, and subsequently determine key interactors that could be used
to build pathway maps (Chapters 2 and 3). In addition, creating a first-of-its-kind protein topology
and conformational analysis function allowed not only to classify but also to identify therapeutically
relevant features of selected targets for the downstream druggability analysis (Chapters 4 and 5). All
this concluded with a demonstration of how existing drug discovery pipelines for in silico screening
can be further improved with the expansion of compound screening strategies (Chapter 6). That is,
the unification of molecular dynamics, modelling, topology, and physicochemical analyses provided
solutions for challenging target investigation and led to the identification of potential therapeutic
modulators. Thus, the outlined comprehensive and highly integrative analytical framework which
builds on the network-centric and systems biology ideas offers new strategies for accelerating drug

discovery and significantly reducing research costs and turnaround time.

In order to establish a network-centric premise for druggable target identification, it was
necessary to build an integrative investigation framework. The developed methods will be

introduced in the first experimental chapter of the thesis (Chapter 2) which will focus on the study



that showed for the first time how bulk and single cell RNA-sequencing as well as the proteomics
analysis of the human heart tissue can be integrated to uncover specific networks. The explored HF
regulome indicated how potential therapeutic targets or biomarkers can be studied for this
multifactorial cardiac syndrome with limited therapeutic options81.87-89.95_ Existing challenges in the
in silico pharmacology field and the already laid out analytical groundwork in multi-network
analyses also motivated to devise a highly integrative network-centric approach which could be
used to build complex interaction pathways and extract information for shared expression patterns
(Fig. 5). Moreover, the method introduced in this thesis is highly adaptable, which allows for
further development as more data and algorithms become available.

Multi-omics research, that will be discussed in chapters 2 and 3, built on network
pharmacology and systems biology where the disease causality is primarily believed to result from
multiple players distributed unevenly throughout the transcriptome, expressome, and
regulome#5:67.132, Thus, phenotype modifications depend on a simultaneous modulation of multiple
network nodes as outlined by the network biology theory245.105.132. The observed phenotypic
robustness after gene deletion further confirms that polypharmacological modulation might be more
successful than a highly selective drug engaging a single target since a disease phenotype is
dependent on multiple genetic factors!32-134, These observations were also supported by the network
analysis studies where the exploration of links between drugs and drug targets revealed rich
networks of polypharmacological interactions20.132-134, Moreover, similar systemic studies unveiled
interesting patterns where drug targets were positioned between proteins that have overall more
interactions than an average protein but less network connections than essential proteins!32.
Together, these findings encouraged researchers to consider how drug targets can be identified
based on their position in the interactome20:132-135, These insights, however, also presented a
challenge as merely mapping targets based on screening studies is unlikely to help recover more
complex targets. Limitations in unifying the genomic, transcriptomic, proteomic, and metabolomic
data can be traced back not only to analytical shortcomings, but also to the limited availability of
high-quality datal36.137, In other words, while the recent advances in multi-omics data acquisition
introduced new platforms for studying complex diseases, comprehensive methods for multi-
dimensional readout integration are still lacking!38. This was a key motivator for chapters 2 and 3 to
not only integrate existing methods, but also expand and improve currently employed techniques.

To better understand the analytical premise and challenges in network pharmacology and
systems biology, it is essential to examine the fundamental analytical methodologies employed in

these fields. Methods used to reconstruct the underlying relationships and dependencies from the



observed data range from relatively simple estimations using correlation or mutual information to
probabilistic graph models, such as Bayesian network inference, and machine learning54.138.139,
Furthermore, pathway and network analyses are the most common methods currently employed to
assess cellular perturbation events where data might be generated from transcriptome studies; these
studies represent high-level analyses aimed to elucidate disease associated processes (Fig. 5)138.140,
Typically, these analytical techniques, also known as pathway enrichment analyses, can be split into
several categories based on the underlying analytical principles: over-representation analysis, rank-
based approaches, and topology-based methods!38. Over-representation analysis is often listed as a
first-generation approach and it is still widely used for various analyses because of its statistical
simplicity achieved through hypergeometric distribution, chi-square, or Fisher’s exact statistics!38.
However, at the same time, the method suffers from the assumed significance for all inputs, need
for arbitrary thresholds that might not be optimal, and a considerable variation in significance!38:141,
In contrast, network enrichment methods using rank-based evaluation can account for the over-
representation method limitations by including significance parameters in the calculations. Despite
these improvements, this method is susceptible to the effects of a few highly significant markers
and it also depends on the statistical analysis applied!38.140-142, One of the more recent analytical
techniques relies on the topology-based assessment where the pathway structure is an important
component for the analysis. An example of this methodology is the EnrichNet tool which uses an
enrichment score for every pathway via the estimated distance of that pathway to all other candidate
genes in the network!38.141, Overall, a shared shortcoming of all these techniques is the dependency
on gene annotations to establish relevant associations where the available information can be
influenced by the curation quality!38. All this calls for new methodology that could help integrate
several omics layers and subsequently incorporate the derived scores into machine learning or other
classification pipelines.

To address this need, a highly integrative network-centric approach was developed
(Chapters 2 and 3). One of the principal elements of this method is the determination of
differentially expressed genes based on the negative binomial distribution to balance between the
detection sensitivity and specificity!43. Significantly changed genes in a selected condition are
scaled based on their links to a specific disease where the association data is retrieved from
database and text mining. Target-disease association consolidation was primarily calculated using
the harmonic sum of scores dependent on data sources as previously described!44.145, If omics
datasets, such as protein expression levels or single cell expression data, are available for a specific

study, they can also be incorporated to add additional weights to the score. Similarly, gene set



enrichment analysis (GSEA) was used as an intermediate quality control step to determine if any of
the significantly changed genes show phenotypic or functional enrichment. GSEA estimates this by
using ranked genes where the enrichment score is generated through a random walk using the
weighted Kolmogorov-Smirnov-like statistic!38.142. For each established gene that was significantly
changed and potentially had a known association to a disease an interactor network was assigned.
The interactor network was derived by retrieving threshold-regulated data from the STRING
database that contains information on known protein interactions, indirect associations, as well as
predicted links between proteins!46.147, This new information layer allowed the integration of
relevant data points, specifically the transcriptome, proteome, as well as regulome (Fig. 5). To
identify meaningful clusters based on the network complexity (i.e., how many interactors a gene-
protein is expected to have) and the adjusted expression score, Gaussian mixture models (GMMs)
were selected as a primary machine learning classifier. The strength of GMMs lies in the
probabilistic model nature where all data points are assumed to be derived from a mixture of a finite
number of Gaussian distributions with unknown parameters!43. It becomes evident that the soft
classification of GMMs where a data point has a probability of belonging to a cluster is much more
suitable to assess biological parameters compared to other hard classification techniques in machine
learning, such as k-means, which provide a strict separation between classes. In other words, GMM
clustered genes have a degree of membership for every specific category which could be especially
helpful when using the derived probability values with downstream analyses or other machine
learning techniques to find pathway convergence points as well as elements belonging to several
networks/regulatory systems. Incorporation of information criterion (i.e., evaluating the quality of a
statistical model for a given dataset) in model building also allows to fine tune the expected number
of clusters. In addition, GMM in combination with the expectation-maximisation algorithm models
parameters to maximise the likelihood of data point assignments!48-151, Overall, the devised method
provides a means to connect the expression, disease association, and network complexity values.
Depending on the model used for the differential gene expression analysis and inclusion of
additional weights (e.g., single cell readouts), the weighted expression scoring might provide a way
to probabilistically differentiate gene expression values if, for example, an identified gene has a
strong disease association. Moreover, this method can help evaluate what clusters are formed based
on the local interactome for genes that changed significantly to become either upregulated or
downregulated. This classification approach can link disease-associated genes with new candidates

and help establish seed points around which a relevant pathway can be recreated. The developed



Introduction
methodology could be particularly useful for target selection and evaluation during the preclinical

development stage.
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Figure 5. A schematic view of the integrative drug discovery process where different omics analyses are
merged to establish disease, drug, and target links. The graph represents the considerations for the proposed
integrative drug-discovery approach with different branches interlinked to capture relevant multi-omics
aspects from target selection to pharmacological assessment.

1.5. Biophysical and computational chemistry method development: streamlining complex

target evaluation and therapeutics discovery

Since target evaluation and rational drug design rely on identifying and characterising small-
molecule binding sites on therapeutically relevant target proteins, developing a discovery process
that incorporates both structural biology and computational chemistry becomes essential for the
success of therapeutics screening!5:152-154, [n order to develop analytical solutions for target
identification and successful screening implementation, this dissertation also introduced a newly
developed method to investigate structural features and protein topology (Chapters 4 and 5). The

presented approach can help to categorise multiple targets and extract core structural characteristics



during the pre-screening stage so that proteins of interest can be included in relational databases for
a quick retrieval. Development of such approaches is critical for early research and discovery in a
clinical pipeline as it is often possible to generate multiple potential targets that later need to be
screenedo0.155.156, This was also reflected in the case study of HF (Chapter 2) showing that disease
pathway and interactor investigation can generate a diverse set of therapeutic candidates. Such
targets of interest would typically need to be further hierarchically ordered and prioritised based on
their structural characteristics to facilitate the downstream screening and compound-based assays.
Moreover, large compound library testing against a therapeutically relevant target poses a challenge
of storing and keeping track of all the relevant readouts33.80.157, It is necessary not only to maintain
the information of the physicochemical compound parameters or biochemical assay outputs but also
to efficiently capture the key topological features for easier bi-directional clustering using
compound and target information#:131.158, Seeing the existing limitations of structure-based data
collection in the industry, one of the aims of the thesis was to address this need by introducing a
topology and structure driven target categorisation (Chapters 4 and 5) that could be easily supplied
to screening, data storage, or machine learning pipelines!3.159.160,

To aid with pre-screening and screening preparation, a method was developed to classify
multiple regions of interest within a target. It was hypothesised that having such information prior
to the screening would enable the comparison and grouping of relevant topological characteristics.
Such a classification system could be used to compare newly identified target proteins with a
reference set of binding sites. If reference sites contained the information of known binders, then
target biomolecules could be further classified based on the compound properties and identified
pockets. In other words, this type of scoring provides an opportunity to easily integrate topological
features of new proteins into relational databases¢8.161.162, Furthermore, in some instances a binding
site might be conserved and it could be helpful to compare protein regions of interest across
homologous and non-homologous protein sets!63.164, Specifically, a topology-based scoring method
could give insights into the conformation and not just the amino acid composition!65-169. Finally,
characterising protein sites through scoring could be used to compare proteins that have known
drug binders with a newly identified target which has no known compounds. The described
approach could be particularly useful in drug repurposing because protein sites that share similar
characteristics could be used to infer drug binding in a new site based on already explored
ones5.09.70,105,170 Therefore, the established methodology to classify sites of interest could be
extremely helpful in solving data organisation questions, reducing screening time and costs, as well

as helping to achieve a faster turnaround?849.30,



Target pre-screening and evaluation primarily depend on establishing protein-ligand
interactions which are exploited by most of the currently marketed small-molecule drugs and such
interaction information is typically based on the crystallographic analysis!54. Thus, computational
modelling primarily uses X-Ray-based data to evaluate energetics, cavity geometry, and
physicochemical properties of a potential binding pocket!7!. Despite the growing number of
computational chemistry tools, there is not one universal algorithm developed to incorporate
sequence, structural, and conformational features that could be used for comparative studies?s.172,
As a result, combining multiple levels of analysis to capture the key structural features, such as B-
factor values and dihedral angles, enabled establishing a comparative measure for physicochemical
and spatial characteristics of a protein of interest. The established parameter could be used to
analyse a single motif, binding site, or the whole protein. The usefulness of dihedral angle and B-
factor values can be appreciated when considering the high information content that they provide.
Specifically, a dihedral angle is the angle between two intersecting planes or half-planes and in the
case of a protein this geometric representation is the internal angle of polypeptide backbone at
which two adjacent planes meet!73.174, Two dihedral angles per residue (¢: C-N-Ca-C, and y: N-Ca-
C-N) can be used to describe the conformation of the backbone since the polypeptide chain is
locked between a pair of juxtaposing Ca atoms in a single plane!73.175. Consequently, protein
dihedral angles contain the information on the local and global protein conformation as well as
backbone restrains that result from the sequence composition!75.176, B-factors, or oscillation
amplitudes of the atoms around their equilibrium positions in the crystal structures, capture a
decrease in the intensity of X-Ray diffraction because of the static as well as dynamic disorder
where the latter is caused by the temperature-dependent atom vibrations. It has been shown that this
parameter provides many additional layers of information, such as thermal motion paths, protein
superimposition, packing, flexibility, and allows predicting the rotameric state of amino acids side-
chains!77-183,_ Considering the above, it becomes apparent that B-factors carry a lot of information
on the complex intramolecular relationships. By incorporating B-factor estimates with protein
dihedral angle values, we can capture both the local and global mobility of Ca atoms as well as side
chain influences. These observations led to the derivation of the Fi-score that fingerprints
physicochemical and topological qualities of a region of interest taking into account conformation
dependencies. Moreover, the scoring of any site can be subsequently visualised via distribution
plots, 3D region visualisation, or integrated into machine learning to derive probability density

distributions based on physicochemical properties.



A streamlined analytical process from therapeutically promising target identification to a
detailed characterisation can enable the creation of a discovery platform that connects the
information derived from biological assays and other studies with pharmacologically relevant
compounds (Chapter 6). The identified hits can be subsequently improved in hit-to-lead phase to
ensure optimal bioavailability and toxicity profiles!52. In order to develop a holistic screening
framework, the NF-kB pathway served as a model since it was implicated in the introduced HF
study (Chapter 2) and has known links to cardiomyopathies!16.123.126-130.184,185 Specifically, the c-Rel
protein, as a complex immunotherapeutic target, was selected to model the screening pipeline
(Chapter 6). Prior to the study reported in this thesis (Chapter 6), there were no in-depth reports of
c-Rel structure models, interactions, or physicochemical analyses aside from the insights generated
through X-Ray crystallography or sequence analysis studies!86.187, Ag a result, an exhaustive
computational analysis of likely and/or unusual binding sites in this target protein was performed to

reveal therapeutically relevant characteristics (Chapter 6).

The cheminformatics and structural bioinformatics toolbox provides multiple methods to
explore targets of interest from sequence based analysis to complex molecular modelling that can
unveil important information about what structural elements could be susceptible to
pharmacological modulation?28.159.188-193 Broadly, the computer-assisted chemistry methods
integrate ligand- and structure-based drug design strategies. Structure-based drug design relies on
homology modelling, molecular dynamics, molecular docking, and structure-based virtual
screening to evaluate potential ligand-target interactions. Ligand-based drug design focuses on
pharmacophore modelling (i.e., abstractions of important molecular features), quantitative structure-
activity relationships (QSAR), and ligand-based virtual screening to explore molecule databases
where the focus of the analysis is to establish correlations between chemical features and
pharmacological activity53.194.195_ In the case of the c-Rel protein, the analytical process began with
structure-based drug design where a focused analysis allowed to evaluate the physicochemical
properties and determine potentially druggable sites. Using various molecular dynamics set-ups,
comparative analyses, protein structure modelling, as well as GMMs!48 for Fi-scores enabled a
computational characterisation of this NF-kB subunit. These techniques also helped to address the
common issue when the crystal structures do not reflect protein native conformations or when a
target does not have a good structure to analyse!¢8.196, Normal mode analysis was employed to
model the conformational changes in c-Rel since this method provides a fast and simple calculation

of vibrational modes and protein flexibility. That is, atoms in a protein (or sometimes Ca only) are



modelled as point masses connected by springs representing the interatomic force fields and this
implementation (with possible variations in model types) is used to predict molecular motions!97-
199 Tn addition, a more in-depth molecular dynamics simulation was performed using GROMACS
software tools where a selection of force fields, solvation models, temperature gradients, and other
restrictions were customised to capture more intricate movements within the protein!®3.
Furthermore, ligand-based drug discovery was also utilised to select compounds from a large
compound library (659 M drug candidates) and refine this diverse set of compounds based on their
physicochemical features (34 M). This was achieved employing compound fingerprinting and
classification where small molecules in a matrix-like representation were encoded with a fingerprint
of the same type and length to create a searchable database of compound topological features!58.200,

All these analyses created a premise for a highly integrative screening platform conceptualisation
(Fig. 5).

In order to create an analytical pipeline for binding site selection, compound docking, and
interaction evaluation, computational chemistry analyses were done using Schrédinger
cheminformatics suite20!. This cheminformatics software offers the full range of HTVS options to
screen hundreds of thousands of ligands and achieve higher enrichment of hits through GlideScore.
Schrédinger’s empirical scoring function is designed to maximise discovery of strong binders since
GlideScore accounts for the physics of the binding process using multiple parameters, including a
lipophilic-lipophilic term, hydrogen bond terms, a rotatable bond penalty, and contributions from
protein-ligand Coulomb-vdW energies. In addition, GlideScore takes into account hydrophobic
enclosure which is the displacement of water molecules by a ligand?01. To accommodate the
screening of an unprecedented library size80:157, a hierarchical in silico high-throughput screening
was combined with the binding site selection, similar target analysis (e.g., p65!11-118)_and structural
characterisation. This parallelisation led to the discovery of 15 hit compounds specific for the
human c-Rel protein as well as the identification of potential drug-protein interaction mechanisms.
Specifically, compound binding poses and protein subdomain movements were assessed using
cutting-edge molecular dynamics methods to explore a wider spectrum of interactions. This strategy
permitted to identify hit compounds and infer potential action mechanisms (e.g., disorder induced
degradation). In addition, the inclusion of other homologous target screening data could be
employed to develop multi-target approaches where a compound modulates several targets at a
varying degree (this was explored as a control step with p65 that has high similarity with

c-Rel)68.70.76,116-121,124,132,134,202_ Moreover, the first in-depth structural modelling exploration of the



c-Rel subunit offered hints at how highly dynamically this protein might engage its target DNA.
The hit compounds were additionally tested with a different docking and compound binding
evaluation program/algorithms — Autodock Vina20 and yielded similar results. The generated
compounds and new target-ligand insights pave the way for the future development of highly
selective human c-Rel inhibitors and/or modulators where therapeutics with novel action
mechanisms could provide better options for pharmacological intervention in diseases, such as
cardiomyopathies, since the current treatment is primarily based on the symptomatic
management8!.88.89.98204 Broader applicability of this study also enables focusing not only on the
druggable genome, but also on new target classes or polypharmacological approaches (i.e., working

with complex targets).

Overall, creating a framework for a highly integrative target assessment and therapeutics
development allowed highlighting that none of the R&D stages can be treated as separate entities
but rather one step needs to inform the other?.28:45.202, To account for high attrition rates and the
growing need to tackle complex targets, it is paramount to rethink present strategies and embrace
holistic adaptable methods!718:56.205.206, Moreover, the introduced analytical framework together
with the screening pipeline showcases the potential of new network-centric methods where targets

are seen as a part of the complex interactome with a multi-modulation potential2.105.202,



Experimental chapter

Integrative omics approaches for new target identification and therapeutics

development

2. Insights into therapeutic targets and biomarkers using integrated multi-
‘omics’ approaches for dilated and ischemic cardiomyopathies

The experimental chapter is based on the following publication

Kanapeckaité A, Burokien¢ N. Insights into therapeutic targets and biomarkers using integrated
multi-‘omics’ approaches for dilated and ischemic cardiomyopathies. Integrative Biology. 2021
May;13(5):121-37; doi: 10.1093/intbio/zyab007. PMID: 33969404.*

* The publisher’s error resulted in swapped Figures 2 and 3. The error has been reported and is being addressed by the
publisher.

Conclusion of this chapter

Current strategies to treat heart failure mainly target symptoms based on the left ventricle
dysfunction severity. There is a notable lack of systemic ‘omics’ studies for an in-depth analysis of
heterogeneous disease mechanisms. This study, for the first time, demonstrated how bulk and single
cell RNA-seq as well as the proteomics analysis of the human heart tissue can be integrated to
uncover HF-specific networks and potential therapeutic targets or biomarkers for dilated and
ischemic cardiomyopathies. Thus, my analysis allowed to reveal that despite a smaller number of
samples which is often the case in some preclinical settings or smaller-scale studies, it is possible to
discover new therapeutically relevant insights. Moreover, by devising a novel scoring system and
applying machine learning methods, I was able to derive a method to untangle complex expression
profiles to elucidate gene clusters that can be selected for downstream analyses. This study could be
the first step towards a more systematic analysis that could be freely shared among researchers.
Finally, my work helped to demonstrate that cardiopathology treatment can go beyond symptom
management and that there are indeed distinct gene network and pathway profiles that could be of
therapeutic interest.

Contribution to this chapter (95%)

* Methodology development which included equation and scoring function derivation as well as
machine learning pipeline creation.

 Performed all the analytical, data mining, and experimental work as well as formulated
conclusions.

* Conceptualised and wrote the manuscript, including the figure preparation.

* Corresponding author.
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Abstract

At present, heart failure (HF) treatment only targets the symptoms based on the left ventricle dysfunction severity; however,
the lack of systemic ‘omics’ studies and available biological data to uncover the heterogeneous underlying mechanisms
signifies the need to shift the analytical paradigm towards network-centric and data mining approaches. This study, for the
first time, aimed to investigate how bulk and single cell RNA-sequencing as well as the proteomics analysis of the human
heart tissue can be integrated to uncover HF-specific networks and potential therapeutic targets or biomarkers. We also
aimed to address the issue of dealing with a limited number of samples and to show how appropriate statistical models,
enrichment with other datasets as well as machine learning-guided analysis can aid in such cases. Furthermore, we
elucidated specific gene expression profiles using transcriptomic and mined data from public databases. This was achieved
using the two-step machine learning algorithm to predict the likelihood of the therapeutic target or biomarker tractability
based on a novel scoring system, which has also been introduced in this study. The described methodology could be very
useful for the target or biomarker selection and evaluation during the pre-clinical therapeutics development stage as well as
disease progression monitoring. In addition, the present study sheds new light into the complex aetiology of HF,
differentiating between subtle changes in dilated cardiomyopathies (DCs) and ischemic cardiomyopathies (ICs) on the single
cell, proteome and whole transcriptome level, demonstrating that HF might be dependent on the involvement of not only
the cardiomyocytes but also on other cell populations. Identified tissue remodelling and inflammatory processes can be
beneficial when selecting targeted pharmacological management for DCs or ICs, respectively.

Key words: target identification; biomarker discovery; dilated cardiomyopathy; ischemic cardiomyopathy; omics data
integration; machine learning for target prediction

INSIGHT BOX

First report of an integrated multi-omics analysis for DCs and ICs led to the identification of metabolic and regulatory
network differences for two types of cardiomyopathies. These findings revealed new therapeutic opportunities as well
as highlighted the need to focus on genetic networks in disease development. To achieve this, a new scoring system was
introduced allowing to evaluate genes/biomarkers based on the size of their network and disease association. Two-step
machine learning pipeline employed the scoring system to uncover the potential therapeutic target clusters. Gained
insights can be easily extended to other studies to take advantage of multi-omics approaches in therapeutic target
investigation.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death glob-
ally; however, both investment and efforts in CVD drug develop-
ment are declining. This contrasts sharply with funding and drug
approvals for other indications, such as oncology [1, 2]. While
there are many factors contributing to this trend, low tolerance
for side effects and lack of good biomarkers are some of the
key challenges in implementing new therapies [2]. Thus, all of
these call to revisit currently used approaches in the therapy
development for CVD. Specifically, combining high-throughput
RNA-sequencing (RNA-seq), proteome analysis and biological
data mining could potentially facilitate the identification of
new therapeutic targets by deconvoluting complex pathways
involved in the pathological processes. Subsequently, gaining a
better understanding of the disease aetiology on the molecular
level could also be advantageous for a better monitoring of the
pathology progress and treatment efficacy.

CVD leads to a clinical syndrome, known as heart failure
(HF), which can be preceded by a structural and/or functional
heart dysfunction. HF can be caused by a broad spectrum of
diseases, involving the pericardium, endocardium, myocardium,
heart valves and vessels; this heart function dysregulation leads
to impaired ventricular filling or blood ejection [3].

HF affects approximately 40 million people globally as
recorded in 2015, and an estimated 2% of the adult population
is suffering from HF [4]. HF dominates in the elderly population,
with the incidence rate being 6-10% for those over 65 years
and more than 10% for the population older than 75 years[4,
5], with men showing a higher predisposition for CVD [6].
Most cardiomyopathies have complicated underlying causes
where chronic or poorly controlled hypertension can lead to
increased afterload resulting in higher cardiac workload, which
in turn can precipitate the hypertrophy of the left ventricle.
Decreased heart contractility and output in CVD can also
be caused by a direct ischemic damage to the myocardium,
which induces further scar formation and tissue remodelling
[1]. Hypertension, ischemic cardiomyopathy (IC) and dilated
cardiomyopathy (DC) precede later-stage HF with reduced
ejection (HFrEF) [1, 4]. HFYEF encompasses a diverse pathologic
spectrum and it is a good case example when long-standing
paradigms of a single common pathway [1, 7] do not provide an
adequate measure of the pathology development or progression.
That is, most current therapies for HFfEF do not specifically
focus on disease aetiology or in-depth differentiation [1, 2, 8];
thus, the heterogeneous nature of HF remains insufficiently
addressed. As a result, the need of new therapeutic insights
and an improved analysis of the underlying HF mechanisms
was the divining force behind this study to develop a novel
approach with integrated multi-‘omics’ and machine learning
methods.

The dramatic expansion of RNA-seq and metabolomics
screening capabilities provides an excellent resource for an in-
depth look into cardiomyopathies. Moreover, cardiac sample
collection cannot always be optimal and there are technical
variations, and this can become especially problematic in
clinical and small-scale studies when patient samples might be
limited in number. However, a robust growth in novel statistical
approaches allows researchers to better glean information from
noisy datasets and clean the data from technical errors or
batch effects. To address the discussed issues, we aimed to
emulate scenarios when only a limited number of samples
are available and to show that the statistical modelling and

enrichment with external resources can be a powerful method
to compensate for a lower sample number or sample drop-
out due to quality issues. It is, however, important to highlight
that while we selected a small sample size for the analysis, it
does not mean that small and large sample size groups can be
regarded as equivalent. Moreover, this study also does not aim
to provide a comparison between the outcomes of larger and
smaller sample studies as there are so many great resources
already addressing that [9-11]; the core aim is to demonstrate
how researchers who have a limited number of samples can
still successfully analyse their data to identify meaningful
gene expression patterns and changes. Thus, with this study,
we demonstrated how multi-‘omics’ approaches can help to
uncover the intricate biological mechanisms of pathological
processes.

As aresult of the urgency to improve therapeutic solutions in
HF, we selected the human left ventricle as a case study. Current
HF treatment options rely on targeting the associated symptoms
with left ventricular failure without taking into account the
heterogeneity of the underlying mechanisms [1, 7] (Fig.1;
Supplementary Tables S1 and S2). With our study, we introduced
an approach to uncover new genes that might be important
candidates in understanding the heterogeneous nature of HF.
That is, we wanted to highlight the fact that not all patients
with the same clinical condition share the same mutations
and the disease progression might have multiple converging
paths. Thus, using our proposed method to aggregate results,
we can explore how these genes are associated with more
dominant genetic factors which could lead to new therapeutic
insights.

METHODS

Sample selection

Publicly available datasets were used to randomly select 12
human left ventricular RNA-seq samples (PRJNA477855, EBI:
European Nucleotide Archive) [12] which were categorized to
form non-failing (healthy), DC and IC groups; similar sets of
samples were selected for the proteome analysis (PXD008934,
EMBL-EBIL: PRIDE) [13] (Supplementary Tables S1 and S2) with
matched representation for all ages and sexes. RNA-seq and
proteome analysis samples represent a small biological set for
an independent analysis. Single cell RNA-seq of the murine
non-myocyte cardiac cellulome (E-MTAB-6173) was downloaded
from ArrayExpress databasea [14]. Human left ventricular
myocardium was downloaded from publicly available Visium
data from 10x Genomics [15].

RNA-seq data pre-processing and exploratory analysis

The number of reads per sample averaged 59 million. Reads were
filtered for quality and trimmed using Trimmomatic tool [16] and
were aligned to the human genome reference GRchr37/hg19 [17]
using HISAT? [18] with a 95% average alignment rate. Ensembl
GRCH37/hg19 [17] GTF was used for featureCounts [19] tool to
count reads based on genomic features. Quality control was per-
formed both pre- and post-alignment using MultiQC [20]. Single
cell counts were acquired after the raw data were processed with
CellRanger version 1.3 (10x Genomics) [15].
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Figure 1. Diagram showing the steps for data processing and integration.

Differential expression analysis

RStudio 3.6 [21] environment was used for raw RNA-seq counts
pre-processing and quality control (Supplementary Fig. S2) and
further analysis was done using package DESeq2 [22] as well as
dependent packages for graphical processing and data manip-
ulation. Seurat R package [23] was used to analyse single cell
data maintaining mitochondrial DNA content at <5% for non-
cardiomyocyte samples and <40% for cardiomyocytes. R pack-
ages: SingleR [24], CellDex [25] and Clustermole [26] were used to
determine the cell types. Differential expression was established
based on disease status while controlling for gender differences.

Protein-level analysis

Protein abundance data were retrieved from earlier raw spec-
tra analyses using MaxQuant version 1.5.3.30 [27]. Label-free
quantification (LFQ) intensity values were used in lieu of protein
abundance and were pre-processed to remove proteins with
median distributions across all samples that were equal to 0
LFQ. LFQs were scaled by a factor of 107 prior to DESeq2-based
normalization and model fitting to find differences between
conditions while controlling for gender effects. For the protein
and gene set overlap per condition, only significantly changed
(P.adj < 0.05) genes and proteins were selected.

Gene enrichment and pathway modelling

ClusterProfiler [28] and DEGReport [29] as well as dependent
packages were used for gene ontology and pathway analysis.
Open Targets [30] and STRING (version 11, score_threshold = 200)

‘ Cross-referencing
and shared gene
networks analysis

Two-step machine ’

learning pipeline for
gene cluster
identification

[31] were used for data mining to build interactor networks.
STRING database provides a source of known and predicted
protein-protein interactions which may include direct (physical)
and indirect (functional) associations, computational analysis-
based predictions as well as other interaction data aggregated
from primary databases [32]. Since STRING database does
not provide disease-specific links, another database, namely
Open Targets, was used to retrieve information on the human
gene and disease associations for target identification and
prioritization [30].

Machine learning and disease-centric scoring

For the initial clustering, Gaussian mixture models (GMMs) were
chosen since they function as a density estimator to estab-
lish cluster patterns. The probabilistic nature of GMM was best
suited to perform parameter separation [33]. Identified clus-
ters with GMM were isolated and subjected to agglomerative
hierarchical clustering [34] since this method is the most opti-
mal to find small sub-clusters determined by Silhouette and
Elbow methods [35, 36]. GMMs (with the following parameters:
max_iter = 1000, covariance_type="‘full’ or ‘spherical’, tol = 0.001,
random_state = 0) were implemented to cluster genes based on
their scaled log?2 fold change (selected LFCscore > |1.5]) and the
number of interactors (i.e. expressed gene’s degree) (Supplemen-
tary Equation (1)). Scaling factor was determined by the cumula-
tive score of multiple mined resources (Open Targets) [30] where
a gene was assigned a value (from 0 to 1) based on its probabilis-
tic links to a specific disease (denoted as « in Supplementary
Equation (1)). The number of interactors was identified using
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Figure 2. Human left ventricle bulk RNA-seq gene count clustering and distribution analysis showing Spearman correlation calculated distances (A) and Euclidean
distances (B) for rlog-transformed counts; PCA plots provide grouping by condition (C) and gender (D).

the STRING database of known protein-protein interactions [31].
GMM clustering evaluation was performed using probabilistic
statistical measures quantifying the model performance for the
different number of clusters. Evaluation parameters were based
on Akaike information criterion (AIC) [37] and the Bayesian
information criterion (BIC) [37]. Python Scikit-Learn GMM (scikit-
learn 0.22.2) [38] was used to determine and project the Gaus-
sian mixture modelled density and distribution of selected gene
parameters.

Machine learning pipeline validation

Genome-wide association studies (GWAS) dataset of human
genetic variants [39] was cross-referenced against the identified
clusters retrieving the normalized association score for a CVD
category (set size 5551). Open Targets platform search (target set
screen: >28000 genes) for cluster genes against any indications
related to heart disease (e.g. hypertension, cardiomyopathy and
HF) was also performed. Complete records of PubMed [40] (>30
million) were text-mined for CVD-associated terms retrieving
the number of articles/studies where the gene is mentioned in
the disease context. Scoring and machine learning analyses were
validated with an independent dataset of biopsies for dilated and
non-failing heart (GEO: GSE3585) [41] as well as diabetic HF and
healthy samples (GEO: GSE26887) [41] by selecting significantly
changed genes (P.adj > 0.05) in the disease.

Statistical analysis and graphs

Statistical analyses (including plots and graphs) were performed
in RStudio [21] environment. Machine learning and GMM plots
were done in Python [42] programming environment.

RESULTS

RNA-seq captured specific gene changes in dilated and
ischemic heart conditions

Exploratory analysis of the human left ventricle bulk RNA-seq
data (PRJNA477855) revealed that the sample count distribu-
tion and coverage depths were consistent (Supplementary Figs
S1-S3) without any marked batch effects. However, clustering
analysis (Fig. 2A and B) indicated that samples were relatively
homogenous based on their gene expression, with only the non-
failing (healthy) group showing the clearest separation. More-
over, dilated and ischemic groups were intertwined without min-
imal subdivision. This trend was also reflected in the principal
component analysis (PCA) (Fig. 2C), where the disease groups
not only had a marked overlap but the intra-sample variability
was also higher when compared to the healthy group. Employ-
ing pre-processing quality controls, such as batch effect, count
distribution, coverage depth and count correlation analyses as
well as PCA, allows to assess if the expected high patient sample
variability can be reasonably modelled with the downstream
statistical models. It is advised to start the analytical pipelines
with exploratory analyses as samples generated from patient
tissues tend to have a high variability.

Despite high homology between samples, it is possible to
identify biologically meaningful genes if they had a marked
upregulation or downregulation. This assumption was con-
firmed by the proportion of significantly changed genes for
dilated (11.1%) and ischemic (17.6%) pathological states when
contrasted to the healthy tissue (Supplementary Fig. S4).

Interestingly, the genes that changed significantly for each
investigated contrast showed some overlap, which can be
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attributed to the complex nature of the regulatory pathways
involved [1, 8]. Both unique and full sets of significantly
changed genes per contrast group (Supplementary Fig. S5)
were used to enrich for marker genes as it was necessary to
examine the shared and disease-specific expression patterns
in the pathology. Genes that had the most notable change
based on P-adjusted value when comparing DC versus healthy
samples showed a clear separation for these two conditions
(Supplementary Fig. S6A). However, the same set of genes did
not show such a pattern in ischemic disease. When selecting
genes based on the lowest P-adjusted value for the contrast of
IC versus healthy heart samples (Supplementary Fig. S6B), the
ischemic heart sample genes formed a separate cluster, while
the healthy and DC samples were dispersed and were relatively
similar in their expression values. Further investigation of the
most significantly changed genes in DC (Supplementary Fig.
S6A) revealed that the ribosomal protein S17 (RPS17) expression
is the most notably changed. While ribosomal proteins might
be a leftover due to the sample preparation, there is emerging
evidence of ribosomal protein expression and/or mutational
changes being involved in numerous diseases [43]. Since
there was no other over-representation for ribosomal genes,
it is possible that the observed expression levels might be
biologically meaningful. Other groups of genes, such as SLIT and
NTRK-like family member 4 (SLITRK4) and glycosyltransferase
8 domain containing 2 (GLT8D2), have been reported to have
links to tissue structural changes [30]. Upregulated myozenin-1
(MYOZ1), enolase 2 (ENO2) and bone morphogenetic protein
2 (BMP2) are all linked to heart tissue hypertrophy or were
identified as potential biomarkers in the disease [30, 44, 45].
These findings are especially interesting when compared to the
downregulated genes, specifically carbonic anhydrase 11 (CA11),
intercellular adhesion molecule 3 (ICAM3) and ELOVL fatty acid
elongase 2 (ELOVL2), as these molecules have been associated
with HF, vascular injury and changes in tissue metabolism
[30, 46, 47].

In contrast to the dilation of the heart, ischemic condi-
tions were found to be dominated by the immune system,
fibrosis- and cell proliferation-linked genes, namely, C-X3-
C motif chemokine ligand 1(CX3CL1), proto-oncogene c-Fos
(FOS), transmembrane protein 259 (TMEM259), REC8 meiotic
recombination protein (REC8) and formin homology 2 domain
containing 1 (FHOD1), that were significantly expressed and,
some of the genes, such as CX3CL1 and TMEM259, are candidate
genes for novel biomarkers and/or therapeutic targets for the
ischemic heart disease [30, 48-50]. The group of downregulated
genes in ischemia, for example, TAO kinase 1 (TAOK1) and
MINDY?2 (lysine 48 deubiquitinase 2), is categorized as being
involved in some inflammatory processes [30].

Exploring uniquely and significantly changed genes in DC
or IC but ranking based on the fold change (Supplementary
Fig. S7), we can immediately see that DC showed interesting
metabolic patterns, such as the upregulation of 5-HT transporter
(serotonin transporter, SLC6A4), with dependence on sodium
and chloride movement across the membrane as well as an
increase in CYP3AS5 expression; RPS17 also belonged to this LFC
ranked category. As in previous P-adjusted value categorization,
the ischemic heart tissue had a more pronounced signature of
immune process involvement, for example, major histocompat-
ibility complex, class I, C (HLA-C) and immunoglobulin lambda
variable 6-57 (IGLV6-57) (Supplementary Fig. S7). It was also
further demonstrated that the significantly changed genes for
the contrasts of interest showed no marked sex biases (Supple-
mentary Figs S8 and S9); thus, the following analyses focused

on the biological processes driving the observed changes in the
expression patterns.

RNA-seq revealed a clear pathological process
bifurcation for DCs and ICs

Emerging differences between the ischemic and dilated heart
were further cemented by exploring gene enrichment and
the associated biological processes. Not surprisingly, enriched
processes for the dilated heart (Fig. 3A and B) belonged to
myocardium remodelling, ventricular cardiac muscle tissue
morphogenesis and muscle tissue development. However,
a specific set of enriched process was found for the genes
that were only significantly changed in the dilated and not
ischemic heart (Fig.3C and D); these genes are involved in
the microtubule, myofibril, sarcomere and contractile fibre
processes. There are 64 genes (Supplementary Table S3) that
were not only significantly changed when comparing the dilated
heart state with a healthy sample but were also clustered into
distinct cellular processes (Fig. 3C and D). Some of those genes,
namely, myosin light chain 1 (MYL1), dynein axonemal heavy
chain 6 (DNAH6), MYOZ1 and atypical chemokine receptor 2
(ACKR2), showed a significant upregulation in a disease state
and could be of interest as potential therapeutic targets or
biomarkers [30, 44].

Enrichment of the gene networks for ischemic conditions
revealed a specific involvement in heart ventricular cardiac
muscle tissue morphogenesis and broader metabolic functions,
such as GTPase activity-linked processes (Supplementary Fig.
S10A and B). While tissue remodelling is expectedly shared
between ischemic and DC, there were more subtle differences in
ischemic conditions that hint towards ER stress and inflamma-
tory processes (Supplementary Fig. S10C and D). For example,
spingomyelinase (SMPD3) has been previously implicated in
Golgi vesicular protein transport where the inactivation of
this enzyme disrupted proteostasis, leading to ER stress [30,
51]. At the intersection of the ER stress and immunological
processes, there was another significantly upregulated gene,
formyl peptide receptor 2 (FPR2), whose downregulation has
been shown to alleviate the oxidative and inflammatory burden
[52]. Intriguingly, there were a number of chemokine ligands
(e.g. CXCL11, CXCL10 and CCLS) that were highly expressed
as well as some chemokine receptors (e.g. CXCR3 and CCR7)
and other markers, such as CD2 (Supplementary Table S4).
While chemokine ligands can be expressed on a number of
cells [30, 48, 53], the receptor role is more associated with
T-cells and other lymphoid cells or tissues [48, 53]. CD2 marker
expression is very clearly ascribed to T-cells and complex
immune regulatory environment [54], and these findings likely
point to a heterogeneous nature of the heart samples with other
lymphoid cells infiltrating the affected tissues. Nevertheless,
there is a clear shift in the ischemic tissue state with an
increased inflammatory burden and with multiple regulatory
mechanisms engaged (e.g. CX3CL1) [48].

Proteome analysis highlighted underlying metabolic
differences in ischemic and hypertrophic heart states

Correlation between the expression levels of mRNA and protein
is relatively difficult to establish with poor predictive power for
the protein levels based on the gene expression [55]. Despite
that, it was necessary to establish if proteome from a myocardial
tissue-rich left human ventricle (Supplementary Fig. S11) could
complement the RNA-seq data.
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Figure 3. Enrichment analysis for all significantly changed genes in the DC versus healthy contrast group where enriched cellular processes (A) and the visualization
of the top highest ranking processes and corresponding genes (B) are provided in the distribution plots and network maps, respectively. Enrichment analysis for genes
that changed significantly in DC versus healthy but not in IC versus healthy are plotted as cellular processes distribution (C) and the visualization of the top highest
ranking processes and corresponding genes are shown in network maps (D). Gene set size that was enriched and P-adjusted value provided with the plots.

While investigating protein abundances, it became clear that
the samples were quite similar as was the case with RNA-seq
data (Fig. 2); yet, it was possible to see some sub-divisions for DC,
IC as well as the non-failing samples and pathological state sam-
ples varied less, showing a clear separation between ischemic
and hypertrophic conditions with no gender-dependent effects
(Supplementary Fig. S12).

The next step of the analysis was to investigate for protein
enrichment and compare with the data from RNA-seq study.
Proteome data had a substantially lower recovery of data points
(close to 3000) when compared to nearly 19000 for RNA-seq
(Supplementary Figs S4 and S13). As expected, heart dilation
leads to not only increased strain over heart but also causes
subsequent muscle tissue remodelling (Fig. 4A). There were 13
genes that showed a significant change in the RNA-seq samples
as well as their matching counterparts on the protein level
in the same contrast category (Supplementary Tables S5 and
S6). For example, natriuretic peptides precursor A (NPPA), aortic
carboxypeptidase-like protein (AEBP1) and collagen type XIV
alpha 1 chain (COL14A1) genes as well as their corresponding
proteins showed a significant upregulation in DC; in a simi-
lar fashion, myosin heavy chain, « isoform (MYH6) and ADP-
ribosyltransferase 3 (ART3) were downregulated. All of these
genes point to the remodelling events within the tissue, how-
ever, only several genes that showed enrichment on the protein
level could be clustered based on their cellular role (Fig. 4C).
Interestingly, titin (TTN) expression levels dropped significantly,
but the reverse was true when evaluating for its protein levels
(Supplementary Tables S5 and S6; Supplementary Fig. S12). This
bifurcation might likely occur due to multiple factors, namely,
mRNA stability and protein half-life [55], which also demon-
strates that gene or protein expression values cannot be used
as sole measures, but rather a systematic approach is needed.

A completely different picture can be seen when looking
into ischemic heart transcriptome and proteome (Supplemen-
tary Tables S7 and S8) and, while functional enrichment in the
proteome study pointed towards lipid biogenesis and cellular
respiration processes, the overlap between transcriptome and
proteome only showed the enrichment for heart muscle hyper-
trophy, regulation of the heart rate as well as contraction force
(Fig. 4B and D). Trying to compare protein versus gene expres-
sion further complicated the picture (Supplementary Tables S7
and S8; Supplementary Fig. S14) as there was less agreement in
the expression changes. As a case example, myosin heavy chain
7 (MYH7) had a slight upregulation under ischemic conditions
on the gene expression level, but this was markedly reduced on
the protein level. This division in the expression values likely
points to the complex regulatory mechanism for MYH7 under
ischemic conditions as it is usually linked to the dilation and
hypertrophy of the heart [56]. Several other genes, specifically,
cytochrome C oxidase subunit 8A (COX8A) and coenzyme Q-
binding protein COQ10 homologue B (COQ10B), which are linked
to the ischemic injury and loss of mitochondrial integrity, [30,
46, 57] showed similar patterns in gene and protein LFC. Reverse
was true for some of the genes that are reportedly involved
in the HF kininogen 1 (KNG1) [58], retinol binding protein 4
(RBP4) [59] and, apolipoprotein B (APOB) [60] (Supplementary
Tables S7 and S8; Supplementary Fig. S14). This time, no immune
system-associated enrichment was found for myocardial tissue-
rich samples as compared to RNA-seq data (Fig. 4), which likely
confirms the complex composition of heart cellulome and the
presence of other cells that might be infiltrating tissues at dif-
ferent time points as the disease progresses. Overall, enrichment
data (Supplementary Fig. S10B and D) for ischemic cardiomyopa-
thy demonstrated metabolic changes involving lipid generation
and other proteins responsible for cellular respiration integrity.
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Figure 4. Enrichment analysis for all significantly changed proteins in DC and IC when compared to healthy samples with enriched cellular processes for DC versus
healthy (A) and enriched cellular processes for IC versus healthy in human left ventricle proteome (B). Gene names that are shared between significantly changed

proteome and transcriptome for DC (C) and IC (D) contrasts versus healthy tissue.

Single cell RNA-seq analysis of mice heart tissues
revealed intricate cellulome composition that shared
definitive markers with human heart RNA-seq data

To better appreciate the cellular composition of the heart, an
available single cell study on the murine non-myocyte cardiac
cellulom was analysed and integrated with earlier studies. While
differences between species are a hurdle, this initial analysis
aimed to get a better understanding of what cells can be found in
the heart, their relative proportions and associated marker genes
and to compare all of that with the findings in the human heart

samples. Earlier analyses hinted at the possibility of other cells
infiltrating the heart; thus, it was necessary to explore further
what cellular composition can be expected.

Mouse heart preparations with cardyomyocyte cell pop-
ulation mostly removed (Supplementary Fig. S15, and Table
S9) split the remaining cells between the matrix fibroblasts
and subtypes of fibroblasts (the largest proportion) as well as
various types of lymphocytes and leukocytes. Several interesting
subgroups, for example, axin2+ cells, displaying stem-like cell
properties and involved in fibrotic and regenerative events
[30] were found. Comparative analysis between human bulk
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RNA-seq significantly changed genes (either up- or down-
regulated) and mouse single cell RNA-seq markers revealed
a number of matches (Table 1). Most notably, DC conditions
were predominated by cardyomyocites and fibroblast-like cells
with some immune cell types. This was reversed in ischemic
conditions with a high immune cell infiltration (Table 1).
Comparing how different and non-cardiomyocyte-enriched
cells cluster in mice heart tissues (Fig.5), we can see that the
separation was quite distinct where marker gene patterns
(Supplementary Figs S16 and S17) allowed to differentiate
this rich cellulome. Cross-referencing single cell sequencing
data with proteome analysis as well as bulk RNA-seq data
(DC) revealed two genes, ART3 and microfibril-associated
glycoprotein 4 (MFAP4), to be also matched with mice heart
cellulome markers. ART3 has been reported previously to be
expressed in the heart [30], but MFAP4 has several strong links
to the heart hypertrophy [30, 61]. Ischemic heart dataset analyses
did not reveal such an overlap between bulk and single RNA-seq
datasets as well as the proteome analysis.

Single cell RNA-seq analysis of the human heart left
ventricle indicated the existence of divergent cell types
for hypertrophic and ischemic tissue conditions

Single cell sequencing of the human left ventricle revealed a
complex mixture of cell types with expected cardiomyocytes,
myoblasts and heart smooth muscle cells comprising nearly 65%
of all cells and lymphoid cells adding up to more than a quarter
of all cell populations combined (Supplementary Figs S18 and
S19). These observations confirmed earlier findings (Figs 5 and
6) where gene expression patterns suggested the involvement
of immune and other cell types that might contribute to fibrotic
and remodelling events within the heart tissue. Specific marker
genes for the human left ventricle showed varying expression
patterns but a clear distinction between cardiomyocytes, heart
smooth muscle cells or myofibroblasts and required an elabo-
rate combination of multiple marker genes to differentiate the
groups precisely (Supplementary Figs S20 and S21).

Further exploration of the DC genes that changed signifi-
cantly and had corresponding markers in the human left ven-
tricle bulk RNA-seq identified a change in the expression for
genes likely involved in heart tissue remodelling; however, when
this set was cross-referenced with matching proteome anal-
ysis, it did not return any hits. Haemoglobin subunit alpha
and beta (HBA1/2, HBB) was significantly upregulated in human
bulk RNA-seq (contrast: DC vs. healthy) but showed a moderate
change in single cell myocyte/myoblast population when this
cell group was compared against the rest of heart cells (Table 1).
Alpha subunit expression of the said globins has been implicated
in the vascular tone and function maintenance [30]; together,
haemoglobin expression might suggest compensatory mecha-
nisms for the tissue undergoing contractile and remodelling
stress. Similarly, orphan nuclear receptor 4A1 (NR4A1) showed
a marked upregulation in the hypertrophic state, while in a
healthy left ventricle, it was low (Table 1). NR4A1 has recently
been described to play a role in cardiac stress responses and
hypertrophic growth [62]. As a complete contrast, DC showed a
marked loss in adipocyte signatures (Table 1), for example, fatty
acid-binding protein 4 (FABP4) has been shown to contribute
to cardiac metabolism [30, 63]; thus, observed alterations might
indicate a change in the energy metabolism of the heart.

Interestingly, ischemic heart tissue was very similar to the
hypertrophic state when compared to human left ventricle cel-
lulome. For example, a notable upregulation in most of the

genes, HBB, HBA1/2 and NR4A1, was matched between the dif-
ferent pathological states; however, lumican (LUM) and HBB
were also found to be significantly upregulated in the ischemic
heart proteome analysis. LUM has been shown to propagate
the pro-fibrotic events in the HF [64]. The downregulated genes
in ischemic conditions also followed similar patterns to the
hypertrophic heart observed earlier, notably, FABP4 and glycerol-
3-phosphate dehydrogenase 1 (GPD1) belong to the gene group
involved in lipid and amino acid metabolism [30]. While IC
downregulated genes are dominated by adipocyte-associated
markers in this cross-reference analysis, TTN was also found
to be downregulated under myoblast/myocytes group. TTN has
been linked to remodelling and changes in the ischemic heart
[65], which based on the present study findings, could be used to
differentiate between hypertrophic and ischemic changes.

New scoring system to evaluate genes using a two-step
machine clustering approach revealed sets of
disease-specific interactors

The richest data available are from bulk RNA-seq experiments;
thus, a scoring system was devised to take the advantage of
RNA-seq data and match with the data mined from multiple
resources. Thatis, our derived scoring equation, LFCgcore (Supple-
mentary Equation (1)) scales LFC value for a given contrast (e.g.
disease vs. healthy state) by a total association score (denoted
as « in Supplementary Equation (1)) retrieved from the Open
Targets platform [66]. The score takes into consideration mul-
tiple data resources and evidence for a given gene (e.g. clini-
cal precedence, reports in literature and/or known interactors).
LFCscore introduces an important concept of adding weights to
contrast LFC values based on known links to diseases or relevant
phenotypes.

Two hundred and twenty-nine associations were retrieved for
IC, and a far larger number of gene scores (3521) was downloaded
for DC [30].

To identify the potential links between significantly changed
genes in a given contrast, a two-step machine learning approach
was employed using GMMs to identify gene clusters with the
highest probability to share similar expression patterns, number
of interactors (e.g. the gene’s degree in our interaction network)
and, subsequently, each cluster can be further analysed using
agglomerative hierarchical clustering to achieve a better refine-
ment between associations. To estimate the impact of expres-
sion changes as evaluated by LFC score and the protein network
size, an assumption was made that if a protein is known to
have multiple interactions, then it is likely that more cellular
processes will be perturbed when compared to a smaller and
isolated network. GMM-based clustering revealed approximately
the same number of features across DC and IC groups (Fig. 6). To
test the impact of the LFC gcore, the analysis was compared with
aregular LFC. In the case of DC, there was a notable difference in
the identified cluster distributions; by contrast, IC did not show
such a noticeable difference primarily because the association
scores were few and very low for this cardiopathology (IC mean
for association score: 0.00023; max value: 0.01960; DC mean for
association score: 0.07050; max value: 1). It became apparent
that the more associations are used as weights, the better is the
resolution in clustering that can be achieved.

This was followed by the extraction of identified clusters
and a downstream hierarchical clustering. For example, a gene
set from one of the bigger GMM clusters—cluster 0 (Fig.7;
Supplementary Table S10) for DC was probed further to
reveal subtle variations between genes. A case example of
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Significantly unregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log2 fold 1fcSE Stat P-value Padj Single cell Type P_val_adj avg logFC
change cluster
ALAS2 9.880762 3.658381 0.9682434 3.778369 1.578586e-04 3.595666e-03 4 Myoblast/myocytes 1.768096e-28 0.1815624
CD74 15295999951  1.396172 0.4761631 2.932130 3.366455e-03 3.194793e-02 5 Lymphoid 1.959989%-17 0.3724019
cells/macrophages
HBA1 127.857722 4.147787 0.6848996 6.056051 1.395042e-09 4.125772e-07 4 Myoblast/myocytes 7.535268e-128 1.4673468
HBA2 321.183281 3.855863 0.5223493 7.381772 1.561965e-13 1.494525e-10 4 Myoblast/myocytes 2.312018e-135 1.4857391
HBB 1783.859396 4.697214 0.6945263 6.763191 1.349853e-11 8.444890e-09 4 Myoblast/myocytes 3.858435e-141 1.5070114
LUM 8659.295482 1.059213 0.3698468 2.863924 4.184283e-03 3.705038e-02 1 Smooth 8.399361e-30 0.2002449
muscles/adipocyte- and
fibroblast-like cells
NR4A1 1352.267936 1.607393 0.2756688 5.830884 5.513446e-09 1.318849e-06 2 Myofibroblasts 1.293227e-76 0.7037670
Significantly downregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq
Symbol Base mean Log?2 fold 1fcSE stat P-value P.adj Cluster Type P_val_adj avg logFC
change
FABP4 3699.5330 —1.2801910 0.20011132 —6.397394 1.580509e-10 6.121084e-08 6 Adipocytes 1.618486e-23 1.3383664
G0S2 1384.9720 —1.8636480 0.48482019 —3.843998 1.210458e-04 3.010598e-03 6 Adipocytes 3.875007e-09 1.0612945
GPD1 386.2192 —1.7924675 0.40377314 —4.439294 9.025461e-06 4.192406e-04 6 Adipocytes 3.141539e-26 0.8650561
S100A8 212.1838 —1.2542770 0.42169215 —2.974390 2.935715e-03 2.920633e-02 4 Myoblast/myocytes 1.000000e+00 0.1923214
Significantly upregulated genes in DC versus healthy that had matching markers in mouse heart single cell RNA-seq
Symbol Base mean Log2 fold 1fcSE Stat P-value P.adj Cluster Names P_val_adj avg logFC
change
CCN2 2930.87706 1.444716 0.4096894 3.526370 4.212979e-04 7.368635e-03 5 Fibr reticular cells/Con.  2.497010e-204 1.0816956
tissue fibr
CD74 15295.99995 1.396172 0.4761631 2.932130 3.366455e-03 3.194793e-02 6 Macr 0.000000e+-00 2.7764279
activated/monocytes
COMP 357.97479 4.500956 1.1484004 3.919326 8.879678e-05 2.399283e-03 3 Activated fibr 3.683388e-232 1.9834490
CXCL2 141.19737 1.377606 0.4822002 2.856918 4.277768e-03 3.769349e-02 6 Macr 5.346760e-71 2.1222650
activated/monocytes
EGR1 1125.64888 1.934639 0.4455200 4.342429 1.409161e-05 6.016120e-04 1 Con. tissue 1.872001e-249 0.9102685
fibr/adipocytes
FMOD 2086.27650 2.208960 0.7861859 2.809718 4.958497e-03 4.160662e-02 3 Activated fibr 0.000000e+-00 1.9923917
HSD11B1 77.58577 1.182886 0.3795059 3.116911 1.827567e-03 2.081737e-02 0 Matrix fibr 3.150651e-149 0.8352948
LPL 44 694.70260 1.321233 0.2591931 5.097484 3.441981e-07 3.413857e-05 0 Matrix fibr 2.054064e-163 0.6813763
MFAP4 3545.32414 1.184731 0.3634084 3.260055 1.113907e-03 1.496186e-02 5 Fibr reticular cells/Con.  1.956096e-207 1.4763358
tissue fibr
PI16 1678.73870 2.389334 0.5017015 4.762461 1.912466e-06 1.269721e-04 4 Skin-like fibr/axin2+ 1.567072e-116 0.7149607
cells
VTN 1746.66613 1.226781 0.3230142 3.797917 1.459171e-04 3.434858e-03 10 Pericytes/cardiomyocytes 0.000000e+-00 3.2261843
Significantly downregulated genes in DC versus healthy that had matching markers in mouse heart single cell RNA-seq
Symbol Base mean Log2 fold 1fcSE Stat P-value P.adj Cluster Names P_val_adj avg logFC
change
ART3 2301.6166 —1.0665936 0.3073363 —3.470444 5.195979e-04 8.695246e-03 10 Pericytes/cardiomyocytes 0.000000e+00 2.2127282
DBI 5957.5961 —1.1071120 0.1736465 —6.375667 1.821688e-10 6.891065e-08 15 Oligodendrocytes/glia- 3.093461e-105 2.3971686
like
cells
FABP4 3699.5330 —1.2801910 0.2001113 —6.397394 1.580509e-10 6.121084e-08 8 Vascular endo cells 0.000000e+00 3.6800042
S100A8 212.1838 —1.2542770 0.4216922 —2.974390 2.935715e-03 2.920633e-02 18 Lymphocytes/neutrophils 4.135267e-134 5.8014206
S100A9 553.8739 —1.2624115 0.4214594 —2.995333 2.741451e-03 2.794013e-02 18 Lymphocytes/neutrophils 4.414938e-164 5.5492214
Significantly upregulated genes in IC versus healthy that had matching markers in human heart single cell RNA-seq
Symbol  Base mean Log? fold 1fcSE Stat P-value P.adj Cluster Type P_val_adj avg logFC
change
CD74 15 296.0000 1.924495 0.4761500 4.041783 5.304634e-05 1.013193e-03 5 Lymphoid 1.959989%e-17 0.3724019
cells/macrophages
FOS 552.7522 2433294 0.4614677 5.272945 1.342517e-07 8.238896e-06 2 Myofibroblasts 4.594938e-92 0.8547702
HBA1 127.8577 3.458750 0.6857723 5.043584 4.568919e-07 2.177241e-05 4 Myoblast/myocytes 7.535268e-128 1.4673468
HBA2 321.1833 3.467975 0.5225764 6.636303 3.216483e-11 8.491005e-09 4 Myoblast/myocytes 2.312018e-135 1.4857391
HBB 1783.8594 3.862919 0.6946055 5.561314 2.677515e-08 2.137861e-06 4 Myoblast/myocytes 3.858435e-141 1.5070114
JUNB 1004.2035 1.196043 0.3565928 3.354087 7.962727e-04 7.967078e-03 2 Myofibroblasts 3.138348e-93 0.7437075
LUM 8659.2955 1.082989 0.3698410 2.928255 3.408707e-03 2.320516e-02 1 Smooth 8.399361e-30 0.2002449
muscles/adipocyte- and
fibroblast-like cells
NR4A1 1352.2679 1.134481 0.2758204 4.113114 3.903568e-05 8.076799e-04 2 Myofibroblasts 1.293227e-76 0.7037670
PTN 1172.3506 1.240390 0.3404728 3.643141 2.693317e-04 3.524197e-03 1 Smooth 3.016167e-15 0.1970879

muscles/adipocyte- and
fibroblast-like cells

(Continued)
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Table 1. Continued.

Significantly unregulated genes in DC versus healthy that had matching markers in human heart single cell RNA-seq

Symbol Base mean Log?2 fold 1fcSE Stat P-value Padj Single cell Type P_val_adj avg logFC
change cluster
Significantly downregulated genes in IC versus healthy that had matching markers in human heart single cell RNA-seq
Symbol  Base mean Log2 fold IfcSE Stat P-value Padj Cluster Type P_val_adj avg logFC
change
FABP4 3699.53303 —1.0361608 0.19998439 —5.181208 2.204529e-07 1.255600e-05 6 Adipocytes 1.618486e-23 1.3383664
GPD1 386.21920 —1.7856639 0.40352890 —4.425120 9.638855e-06 2.593913e-04 6 Adipocytes 3.141539%-26 0.8650561
MGST1 331.26691 —1.6291823 0.53631060 —3.037759 2.383446e-03 1.795248e-02 6 Adipocytes 2.222223e-19 1.1258766
RBP4 51.50649 —3.0112881 0.80596479 —3.736253 1.867829e-04 2.658098e-03 6 Adipocytes 3.371234e-200 1.1091309
TTN 26 0372.84301 —1.1102638 0.14893528 —7.454673 9.009087e-14 6.590030e-11 4 Myoblast/myocytes 2.237662e-21 0.2690609
Significantly upregulated genes in IC versus healthy that had matching markers in mouse heart single cell RNA-seq
Symbol Base mean Log2 fold 1fcSE Stat P-value P.adj Cluster Names P_val_adj avg logFC
change
CCL3 21.12713 2.193338 0.8185624 2.679500 7.373228e-03 4.046710e-02 14 Lymphocytes 1.108071e-21 1.7594966
CCL5 120.60019 2.805093 0.7345592 3.818744 1.341331e-04 2.082883e-03 16 T/NK cells 1.515124e-71 4.2358648
CD74 15295.99995  1.924495 0.4761500 4.041783 5.304634e-05 1.013193e-03 6 Macr 0.000000e+00 2.7764279
activated/monocytes
CD79A 11.17099 4.595454 1.3925479 3.300033 9.667345e-04 9.22418%-03 12 B cells: memory, naive, 0.000000e+-00 3.0975730
mature
EGFL7 2239.74334 1.112055 0.1924802 5.777502 7.581777e-09 7.461096e-07 8 Vascular endo cells 0.000000e+-00 2.4291359
EGR1 1125.64888 2.589524 0.4453014 5.815216 6.055571e-09 6.324236e-07 1 Con. tissue 1.872001e-249 0.9102685
fibr/adipocytes
HCST 80.97730 1.980339 0.6233735 3.176809 1.489050e-03 1.279152e-02 16 T/NK cells 1.892737e-273 1.5809485
IGHM 1109.34675 6.381438 1.5602478 4.090015 4.313446e-05 8.611875e-04 12 B cells: memory, naive, 0.000000e+-00 2.8022132
mature
JUNB 1004.20349 1.196043 0.3565928 3.354087 7.962727e-04 7.967078e-03 1 Con. tissue 8.491950e-212 0.9091541
fibr/adipocytes
MS4A1 12.48049 3.681749 1.2067727 3.050905 2.281524e-03 1.732604e-02 12 B cells: memory, naive, 0.000000e+-00 2.0164658
mature
NKG7 46.03626 2.189070 0.6864901 3.188786 1.428714e-03 1.239486e-02 16 T/NK cells 0.000000e+-00 2.6245828
PI16 1678.73870 1.637016 0.5018133 3.262201 1.105506e-03 1.023131e-02 4 Skin-like fibr/axin2+ 1.567072e-116 0.7149607
cells
SMOC2 1903.44520 1.314703 0.3295271 3.989667 6.616609e-05 1.205266e-03 0 Matrix fibr 9.428873e-297 0.9696528
TRBC2 120.39393 2.705592 0.7875605 3.435408 5.916620e-04 6.389565e-03 16 T/NK cells 0.000000e+-00 2.0733703
Significantly upregulated genes in IC versus healthy that had matching markers in mouse heart single cell RNA-seq
Symbol  Base mean Log2 fold 1fcSE Stat P-value Padj Cluster Names P_val_adj avg logFC
change
ART3 2301.6166 —1.7021963 0.3075560 —5.534590 3.119575e-08 2.413100e-06 10 Pericytes/cardiomyocytes 0.000000e+00 2.2127282
FABP4 3699.5330 —1.0361608 0.1999844 —5.181208 2.204529e-07 1.255600e-05 8 Vascular endo cells 0.000000e+00 3.6800042

Filtering parameters: LFC < |1|; P.adj < 0.005. Bulk RNA-seq samples (PRJNA477855) were categorized to form: non-failing (healthy), DC and IC groups; similar sets of
samples were selected for proteome analysis (PXD008934) with matched representation for ages and sexes. Single cell RNA-seq of the murine non-myocyte cardiac

cellulome (E-MTAB-6173) was used to identify additional markers for the heart.

one of the sub-clusters, SMAD7, syntaxin-1B (STX1B) and
transcription factor SOX-17 (SOX17), show how genes with
similar expression and network profile can be grouped and,
in this case, these genes belong to the different branches of
a complex network regulating tissue morphogenesis, vesicle
docking and growth [30, 31]. Some of the IC sub-cluster
members, such as tumour necrosis factor receptor superfam-
ily member 11B (TNFRSF11B) and serine/threonine-protein
kinase pim-2 (PIM2), showed a convergence of two signalling
branches via Myc proto-oncogene protein (MYC) [31] (Fig.7;
Supplementary Table S11).

To achieve a better organization of identified clusters and to
cross-reference the findings, GWAS dataset of human genetic
variants was searched against the identified clusters, retrieving
associations for a CVD category (set size 5551). In order to expand
the search for all known heart diseases, taking into account
text mining, expression data as well as clinical evidence, Open
Targets platform was used to retrieve the association scores for
cluster genes; by parsing the platform, it was possible to retrieve
the values for more than 28000 genes [30]. Finally, for the most

up-to-date analysis of complete PubMed records PubMed [40]
(>30 million), a text-mining based search was performed for
any CVD-associated term, retrieving the number of articles/s-
tudies where the gene is mentioned in the disease context. This
analysis returned two comprehensive tables for DCs and ICs
(Supplementary Tables S10 and S11), where each cluster had
a number of genes linked to cardiovascular pathologies either
based on all or some of the parameters (i.e. GWAS association,
Open Targets knowledge-base association or the number of pub-
lications where gene appears in the context of cardiopathology).
What is especially useful is that genes which have sparser or
even no known links to the disease belong to clusters with better-
defined members. This could lead to the identification of new
biomarkers or a better understanding of their function since
they were classified based on their interaction network complex-
ity and expression. For example, the mentioned SMAD7, SNCA
and SOX17 have clearly established links to heart pathology;
however, their cluster (number 0) has some less well-defined
members, such as SLC6A12 or SPNS3, and these carriers/trans-
porters could be interesting candidates for further exploration
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Figure 5. Mouse non-cardiomyocyte single cell RNA-seq cellulome UMAP decomposition showing relative distances and the uncovered clusters of different cells. Some
longer names were abbreviated; for full names, please refer to Supplementary Table S9.
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Figure 6. Human heart left ventricle bulk RNA-seq GMM clustering showing specific grouping based on either LFC or LFC g.qye against known or predicted number of
interactions for that gene. Colour bar shows the specific cluster number and colour association.

based on their grouping. As can be seen, our approach helps
to uncover new genes that might be important candidates in
understanding the heterogeneous nature of HF; such findings
point to the fact that not all patients with the same clinical
condition share the same mutations, disease progression might
have multiple converging paths and using aggregated results we

52

can explore how these genes are associated with more dominant
genetic factors.

The genes that are shared between two conditions, namely
DC and IC, when the initial clustering was performed via
GMM were extracted (to find the overlap) and that over-
lap alone was clustered further to see underlying patterns
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Figure 7. Human heart left ventricle bulk RNA-seq GMM analysis identified
multiple clusters which were further subjected to hierarchical clustering (dendro-
gram panels). Representative clusters are shown where the gene distribution for
DC versus healthy (cluster 0) can be seen in the dendrogram (A) and distribution
plot (B), similarly IC versus healthy (cluster 2) gene distribution is shown in the
dendrogram (C) and distribution plot (D). All dot plots (C and D) show grouped
gene distribution for z-score scaled parameters on which the sub-clustering was
performed.

(Supplementary Fig. S22). Some of the juxtaposed groups
(coloured branches) are matched between two pathologies
based on the gene-disease association, LFC and the degree
number that the expressed protein has. For example, one such
shared group of protein Wnt-9a (WNT9A), HBB and F-box and
leucine-rich repeat protein 16 (FBXL16) belong to the same large
network of interactors [31] likely playing a role in tissue function
and local signalling events. The described analysis could be very
useful in understanding the potential convergence points for
diseases and how shared genes are grouped per disease profile.

Validation of machine learning approach

In order to assess if our developed analysis can uncover gene
groups that have similar expression and network size profiles,
two independent RNA-seq studies were analysed to test the
analytical pipeline and explore whether the identified gene
clusters allowed to group well-defined genes with unknown new
candidates or provided new insights based on the network size
and expression changes.

Differentially expressed genes (P.adj > 0.05) derived from the
first dataset consisting of DC and healthy tissue biopsies [67]
were introduced into the previously described pipeline. In the
same manner, the second dataset was tested; the samples of this
dataset were comprised of heart tissue from diabetic patients
affected by post-ischemic HF as well as healthy tissue [68]. GMM-
identified clusters (Supplementary Fig. S23) were subjected to
cross-referencing with Open Targets, GWAS and PubMed records
to retrieve the records associated with heart disease.

Interestingly, while selected pathologies have different
underlying causes, every cluster had a number of genes
associated with CVD when cross-referenced against different
databases (Supplementary Tables S12 and S13). For example,
significantly changed genes in DC biopsies formed nine clusters
(Supplementary Fig. S23; Supplementary Table S12) via GMM
of which some gene groups pointed to epigenetically active
biomarkers, namely, H2AFZ and H1FO (cluster 0), that are
relatively newly linked to the disease. However, when newly
identified genes cluster closely with other more established
candidate genes, it is possible to use that information either
for targeted screens or for trying to deconvolute the involved
pathways. Another example from genes that were significantly
changed in diabetic patients affected by post-ischemic HF
revealed similar patterns in terms of cluster formation (Sup-
plementary Fig. S23; Supplementary Table S13).

By juxtaposing the complexity of the interaction network as
well as expression changes, it is possible to establish groups of
similar patterns which can be further hierarchically clustered to
refine the relationships within a selected group. This refinement
can aid when selecting specific genes for testing panels because
selections can be spread out through clusters, avoiding picking
all candidate genes from the same group. It is also worth men-
tioning that the choice to use a more diverse set of public records
for validation was aimed at reducing any inherent biases and at
representing a broader spectrum of information available on the
heart disease.

DISCUSSION

DC is an important cause of HF, which is characterized by the
ventricular enlargement and subsequent systolic dysfunction.
By contrast, IC is a clinical manifestation with a complex causal-
ity ranging from coronary artery disease to other changes in the
heart muscle which decrease the nutrient and oxygen supply. A
wide spectrum of etiologies, including inherited, inflammatory
and/or infectious diseases, can predispose the heart to this
pathological remodelling [1, 4, 30, 69, 70].

Studying the cardiac impairment resulting from heart dila-
tion or ischemia is complicated by the mixture of known as
well as idiopathic causes. Moreover, integrating a complex tran-
scriptional landscape might be difficult as evident in the past
studies reporting on experimental or meta-analyses [1, 71]; this
is because, collected tissues for experiments differ to some
extent and a sample population might introduce various other
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confounding factors (e.g. treatment and co-morbidities). In addi-
tion, depending on the statistical assumptions made and the
model selection, the results may vary. This becomes especially
evident when analysing smaller sample sets, which is often the
case in the clinical and smaller-scale studies. Our study goal was
to emulate these scenarios and show that the statistical mod-
elling and enrichment with external resources can be a powerful
method to compensate for a lower sample number or sample
drop-out due to quality issues. We also want to stress that while
our study used a small sample size for the analysis, it does not
mean that small and large sample size groups can be regarded
as equivalent; there are many excellent works discussing the
sample size effects and associated analytical complexities [9-
11]. As a result, we wanted to demonstrate how researchers who
have a limited number of samples can still successfully analyse
their data to identify meaningful gene expression patterns and
changes. Furthermore, we explored how the different ‘omics’
resources for cardiomyopathy can be used to study the differ-
ential gene expression and functional processes as well as what
we could learn from integrating such datasets.

The first part of the analysis focused on the human left
ventricle tissue bulk RNA-seq analysis for two indications:
DC and IC. By analysing significantly changed genes, it was
possible to see a subtle separation between hypertrophic
and ischemic heart conditions. For example, DC tissue had a
number of significantly upregulated genes (BMP2, MYOZland
ENO2) that showed strong associations with myocardial tissue
remodelling and structural changes when compared to the
healthy samples [30, 44, 45]. Some other genes, such as RPS17,
SLITRK4 and GLT8D2, belong to newer additions of potentially
valuable genes and have just recently been implicated in
DC. These genes are involved in protein synthesis and post-
translational modifications as well as cell growth control [30,
43]. An opposing group of genes that were downregulated
(CA11, ICAM3 and ELOVL2) hints at the metabolic perturbations
[30, 46, 47] spanning the spectrum from cellular respiration
changes to the potential loss of the membrane integrity in
the tissue that is actively being remodelled. When contrasting
these findings with ischemic heart conditions, there was a
notable change in the upregulation of the pro-inflammatory
and pro-fibrotic genes. For example, CX3CL1 is an especially
intriguing gene as it encodes an atypical chemokine which
can exist in either a membrane-bound form or as a soluble
chemokine; the membrane-integrated form is largely expressed
on the endothelial cells in myocardial ischemia and HF [30, 48,
53]. Another candidate gene and potential biomarker of note,
TMEM259, has some associations with ischemic conditions as
well as ER protein degradation pathways [30, 72]. A number of
other genes, FOC, REC8, FHOD1 as well as TAOK1 and MINDY?2,
are involved in the modulation of cell proliferation, immune
signalling and protein turnover [30, 49, 73]. These findings
provided the first hints of the potential exacerbation of ER
stress as well as inflammation-induced damage propagating the
ischemia and tissue fibrosis cycle. Managing the exacerbation of
the inflammation might be helpful in preserving the heart tissue
function. In addition, gene expression changes comprising the
broad spectrum of cellular metabolism and growth processes
were more pronounced in DC, and further exploration would
help to determine if targeting energy metabolism could suppress
the hypertrophy.

The differences between DC and IC were further highlighted
when clustering genes based on their involvement in cellular
processes. Myocardium remodelling, ventricular cardiac muscle
tissue morphogenesis and muscle tissue development as

well as other tissue structure- and integrity-related processes
were enriched for DC (Figs 3 and 4). With a further refine-
ment—uniquely and significantly changed genes showed a
specific clustering under microtubule, myofibril, sarcomere
and contractile fibre process group (Figs 3 and 4). Some of
those genes, MYL1, DNAH6, MYOZ1 and ACKR2, could be of a
special interest as potential therapeutic targets or biomarkers
because of their reported roles in heart muscle function. For
example, MYL1, DNAH6 and MYOZ1 were named in various
reports linking them to hypertrophy, changes in contractility
and myocardium cell function [30, 44, 75]. Tissue overgrowth
mediated by these genes could be targeted to reduce the
excessive strain on the myocardium in the early stages of the
disease development. ACKR2 has been demonstrated to reduce
inflammation and vascular remodelling after myocardium
injury, and this identified upregulation might indicate the
compensatory mechanism for the tissue remodelling [30, 53].
Thus, enhancing or stimulating this protective signalling might
be a valuable therapeutic option (Supplementary Table S3).

In contrast to hypertrophic heart muscle, ischemic heart-
enriched gene networks had clear links to ER stress; for exam-
ple, SMPD3, TMEM259, epidermal growth factor (EGF) and APOB
have been shown to lead to ER stress when their normal func-
tion is perturbed [30, 51, 60, 72]. In addition, FPR2 as well as
CX3CL1interlink inflammatory processes with higher ER protein
turnover burden [48, 52] (Supplementary Fig S6, Table S4 and
Figure S10). Under ischemic conditions, perturbations in oxygen
and nutrient supply as well as undergoing cellular stress can lead
to mitochondrial and proteome stability changes which likely
propagate fibrotic remodelling events [46, 69]. Thus, pharmaceu-
tical management of poor tissue oxygenation and inflammation
could be a useful therapeutic approach to limit tissue injury.

It was intriguing to find that the levels of chemokine lig-
ands (e.g. CXCL11, CXCL10 and CCLS5), chemokine receptors (e.g.
CXCR3 and CCR7) as well as other markers, such as CD2, were sig-
nificantly changed under myocardial ischemia (Supplementary
Table S4). This, however, might be likely attributable to the T-cells
and other lymphoid cells infiltrating heart tissue as can also be
seen in a mouse left ventricle non-myocardial cellulome study
(Supplementary Figs S15 and S16). A significant proportion of
fibroblast and fibroblast-like cells can also be found in a healthy
human heart (Supplementary Fig. S18; Table 1), and this popula-
tion, under myocardial stress conditions, can change its propor-
tions further by propagating pro-inflammatory and pro-fibrotic
environment. Moreover, normal subpopulations of immune cells
identified in the heart, such as monocytes, macrophages, mast
cells, eosinophils, neutrophils B cells and T-cells, can also be
activated and lead to a pro-inflammatory state [53, 75]. These
considerations need to be taken into account when analysing
data at different resolution levels where different types of cells
can show a varying degree of contribution in the bulk transcrip-
tome.

This was especially evident when juxtaposing enriched pro-
tein groups to the corresponding gene values from the RNA-seq
studies. As proteome data had about six times lower recovery
than bulk RNA-seq (Fig. 3; Supplementary Fig. S14), it became
clear that it is only possible to identify genes and their networks
that are above the detection level and show substantial abun-
dance. Despite these limitations, important marker molecules
associated with DC were found, that is, NPPA, AEBP1, MFAP4 and
COL14A1 were upregulated both on the gene and protein levels.
All of these genes and their readouts on a protein level could
potentially be used as biomarkers since there is experimental
and clinical evidence for their role in the dilated left ventricle
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remodelling [30, 61, 76, 77]. MFAP4 was also matched to the
mice heart cellulome fibroblast markers; this target is quite
interesting as it reoccurred in all three types of ‘omics’ datasets
and it not only has several strong links to the heart hypertro-
phy but has also been investigated as a potential therapeutic
target [61].

In the case of downregulated genes and their proteins, MYH6
and ART3 form a unique group; while MYH6 mutations are
linked to hereditary cardiomyopathies [30, 71, 77], ART3 function
remains to be defined, but it was found in cardiac proteome
profiling [30]. The present study also identified ART3 as a per-
icyte/cardiomyocyte marker from a single cell study for mouse
heart cellulome with most myocytes removed. This not only
confirms that ART3 expression allows it to be associated with
cardiomyocytes and differentiated from other cells but could
also suggest that the reversal of this downregulation might be
a new therapeutic opportunity. In addition, TTN had a con-
trasting pattern where gene expression levels were decreased
and the protein expression was upregulated (Supplementary
Fig. S14). TTN mutations are well-documented for DC; however,
while mutated and truncated TTN proteins lead to the disease
parthenogenesis, the higher expression role is not clear [30,
65]. In addition, TTN was also found to be of low expression
under myoblast/myocytes group in the human left ventricle
single cell RNA-seq (Table 1). It is possible to hypothesize that
as the heart muscle remodelling progresses, some of the com-
pensatory mechanisms might increase the contractile fibre and
associated protein production; at the same time, RNA expression
levels drop by secondary regulatory mechanisms to reduce the
protein production burden. More in-depth experimental studies
investigating TTN and its expression dynamics are necessary to
understand whether there is any prognostic or therapeutic value.

Ischemic heart transcriptome and proteome (Supplementary
Tables S7 and S8; Supplementary Fig. S14) overlap only showed
the enrichment for heart muscle hypertrophy, regulation of
the heart rate as well as contraction force (Fig. 4B and D). For
example, while MYH7, COX8A, COQ10B had a slightly increased
gene expression, protein expression values were markedly
suppressed. MYH? is a well-known driver of cardiac tissue hyper-
trophy [30, 56, 77]; thus, lack of nutrients reaching heart might
prevent tissue growth and dampen related pathways. Moreover,
decrease in COX8A might be a protective mechanism to reduce
oxidative metabolism [30]. However, other perturbations, such
as the loss of COQ10B ensuring mitochondrial integrity [57]
likely overcome measures against oxidative stress, leading to
the ischemic tissue injury propagation (Supplementary Tables
S7 and S8; Supplementary Fig. S14). Other gene products,
namely, APOB, RBP4 and KNG, playing the role in the HF were
overexpressed despite reduced mRNA levels, which could give a
glimpse into the perturbed energy metabolism and tissue blood
perfusion [30, 58-60]. This sharp contrast could hint towards
potential therapeutic avenues to inhibit RBP4-based signalling
and APOB-induced ER stress that are likely contributing to
further tissue injury and remodelling. While the heart left
ventricle proteome did not capture strong immune associations
as previously shown in bulk RNA-seq, it is noteworthy that
lipid metabolism-associated proteins had a clear presence
(Supplementary Tables S7 and S8; Supplementary Fig. S14).
Moreover, cardiomyocytes are not a homogenous group of cells
as can be seen in bulk and single cell RNA-seq, and this is
also true on the protein level where a small subset of proteins
show variability between cardiomyocytes in a mosaic pattern
and can likely be further altered under pathological conditions

[30, 74, 77]. This analytical direction of comparing the RNA-
seq and proteome set overlap could be further developed in
the future studies to increase the analysis resolution; that is, a
potential next avenue of such an analysis could be establishing
the significance of the overlap to assess how the differentially
expressed gene levels translate to the protein expression. This
kind of evaluation could be tested by performing additional
statistical tests to capture what LFC as well as P.adj value
thresholds lead to the most significant overlap.

In parallel, all of the above findings were also compared to the
human left ventricle single cell RNA-seq. While the majority of
cells were mostly cardiomyocytes and other muscle tissue cells,
more than a quarter was comprised of various immune cells
(Table 1, Supplementary Figs S18-521). One of the most inter-
esting findings was a matched significant upregulation between
bulk and single cell RNA-seq as well as the proteome data that
returned LUM and HBB genes for the ischemic heart conditions.
Experiments with LUM demonstrated its ability to increase the
levels of lysyl oxidase, collagen type I alpha 2 and transforming
growth factor-g1 and to decrease the activity of the collagen-
degrading enzyme matrix metalloproteinase-9; thus, these pro-
fibrotic events are associated with a higher potential for HF
[30, 64]. Targeting LUM might help control the fibrotic tissue
transformation in the heart and it could also be used as a
prognostic marker. Yet, the expression dynamics of LUM are not
entirely clear as more recent reports indicate that LUM might be
involved in compensatory and counterbalancing functions dur-
ing active HF [78]. Such contradictions reaffirm the complexities
of the underlying pathology mechanisms, and further research
is needed to understand at what HF stages these expression
changes occur and when it is best to have a pharmacologi-
cal intervention. Furthermore, alpha subunit expression of the
globins has been implicated in vascular tone and function main-
tenance [30, 79]; thus, it is possible that beta subunit expression
might be involved in similar compensatory mechanisms for the
tissue undergoing ischemic stress, but again, further research
would help to establish the therapeutic potential of HBB and
other globins.

Another interesting candidate target was identified for the
DC, namely, NR4A1. This orphan receptor showed a marked
upregulation in the hypertrophic state, while in a healthy left
ventricle, its expression remained low (Table 1). NR4A1l has
recently emerged as one of the key players in cardiac stress
responses and hypertrophic growth [62]. Also, hypertrophic
tissue state showed a marked loss in adipocyte signatures
(Table 1), and some of the downregulated genes followed similar
patterns in the ischemic heart observed earlier—notably, FABP4
and glycerol-3-phosphate dehydrogenase 1 (GPD1). FABP4 has
been suggested to influence the cardiac size and myocardial
function under pathological states, and it might indicate
changes in the energy metabolism of the heart [63]. GPD1 is
known to play a role in oxidative stress responses as well as
affect lipid and amino acid metabolism [30], and it is possible
that the observed downward shift in GDP1 expression is a
compensatory mechanism and could be a valuable marker.

All of these observations clearly delineate the need to appre-
ciate the different levels of ‘omics’ datasets. While bulk and
single cell transcriptome as well as proteome analyses [1, 71, 74]
provide us with varying degrees of resolution in cases of complex
tissue and more so, in cases of wide spectrum pathologies, it
might become difficult to integrate such variable datasets. Thus,
to address the main challenge of biological data integration, a
scoring system that would take the advantage of bulk RNA-seq
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data and match with the data mined from multiple resources for
each gene was devised and introduced in this study. As demon-
strated earlier, the richest biological data are still only available
from bulk RNA-seq experiments, and all other resources, such as
proteomics or single cell RNA-seq, had only a very small overlap
with the genes identified from bulk sequencing (Supplemen-
tary Tables S5-S8); moreover, regular RNA-seq is still a more
universal research choice to untangle transcriptional profiles.
As a result, a scoring system was used to capture the level of
gene expression change (LFC) along with any mined disease
associations for that gene so that it was possible to supply this
information to machine learning pipelines and group existing
data points to predict biologically meaningful gene expression
patterns. Specifically, our devised LFCscore method allows to
evaluate how a gene participates in the network and to what
extent it can cause a perturbation if the gene function is dis-
rupted. Such grouping is the first step to integrate LFC, differ-
entially expressed genes and protein-protein interactions when
recreating a signalling network. This could be especially useful if
researchers enriched the scoring with additional weights to add
new information for the clustering.

Our two-step machine learning approach returned multiple
subgroups which showed similar multi-profile characteristics;
for example, SMAD7, STX1B and SOX17 not only belonged to the
same sub-cluster [31] (Supplementary Fig. S15) but are also a part
of a complex network regulating tissue morphogenesis, vesicle
docking and growth in DC significantly changed genes [30, 77].
Similarly, TNFRSF11B, PIM2 converged via MYC in the network
[30] linked to angiogenesis and anti-apoptotic pro-growth effects
in IC group (Supplementary Fig. S15). While genes belonging to
the same cluster hint towards interesting target candidates, they
are not necessarily direct interactors, and the observed degree
of separation for these genes could be useful when building
network models or using them as seed points to predict the
extent of local network perturbations. Moreover, newly iden-
tified genes that could potentially be important candidates in
driving the pathological state can be found using aggregated
results where we can explore how these genes are associated
with more dominant genetic factors. This strategy can be very
useful when selecting genes for downstream screening studies
and when prioritizing new targets. Another application of this
method is to cluster genes that are shared between two patholo-
gies. As we demonstrated in this study, gene subsets that show
similar profiles in different conditions can be further clustered
and assessed. For example, WNT9A, HBB and FBXL16 were both
clustered to the same group for dilated and IC when a pool of 160
shared genes was subjected to agglomerative hierarchical clus-
tering. This could be very useful in understanding the potential
convergence points for diseases, establishing shared expression
patterns and selecting therapeutic targets that are substantially
unique.

To further verify the scoring and machine learning method,
all of the identified clusters were extensively cross-referenced
with the GWAS dataset of human heart disease genetic variants
[39], clinical/experimental evidence from Open Targets platform
[30] as well as complete PubMed [40] records for any cardiovascu-
lar pathologies. This analysis revealed that the proposed method
allows to juxtapose rarer or newly discovered targets with more
known genes linked to the DCs and ICs (Supplementary Tables
510 and S11). The extensive search on disease parameters (i.e.
GWAS association, Open Targets knowledge-base association,
PubMed records) allowed to capture genes with different lev-
els of information. Moreover, the same trend was verified for
two additional datasets of cardiopathologies where genes with

sparser or even no known links to the disease belonged to clus-
ters with better-defined members. This strategy could lead to
the identification of new biomarkers or a better understanding
of their function because the proposed analysis is based on
the gene interaction network complexity and expression. Most
importantly, researchers can adjust the scoring system based
on their in-house data and known associations to perform a
more focused analysis prior to selecting targets for downstream
screens and to avoid selecting groups of genes that belong to the
same effector network.

Current strategies to treat the HF mainly target symptoms
based on the left ventricle dysfunction severity. There is a
notable lack of systemic ‘omics’ studies for an in-depth analysis
of heterogeneous disease mechanisms. This study, for the first
time, demonstrated how bulk and single cell RNA-seq as well
as the proteomics analysis of the human heart tissue can
be integrated to uncover HF-specific networks and potential
therapeutic targets or biomarkers for DCs and ICs. Thus, we
showed that despite a smaller number of samples which is often
the case in some pre-clinical settings or smaller-scale studies,
it is possible to discover new therapeutically relevant insights.
Moreover, by applying the novel scoring system and machine
learning methods, we can untangle complex expression
profiles to elucidate gene clusters that can be selected for
downstream analyses. This study could be the first step towards
a more systematic analysis that could be freely shared among
researchers. Finally, it was demonstrated that cardiopathology
treatment can go beyond symptom management and that there
are indeed distinct gene network and pathway profiles that
could be of therapeutic interest.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics

development

3. Omiclnt package: exploring omics data and regulatory networks using
integrative analyses and machine learning

The experimental chapter is based on the published software package and publication in
preparation

1. Kanapeckaité¢ A. Omiclnt: Omics Network Exploration. CRAN. 2021 Oct. 15. Version 1.1.7;
https://cran.r-project.org/web/packages/Omiclnt/index.html

2. Kanapeckaité A. Omiclnt package: exploring omics data and regulatory networks using
integrative analyses and machine learning. Accepted and in preparation.

Conclusion of this chapter

My developed Omiclnt package provides a unique combination of functions and tools for
researchers to explore gene expression data sets. A special focus of the package is also making
machine learning, specifically Gaussian mixture models, more accessible to the researchers that do
not have a background in the ML/AI field. In addition, advanced functions for epigenomics analysis
permit the exploration of the epigenetic regulatory layer. This might be helpful when identifying
genes that may depend on the epigenetic regulation. Specifically, if a CpG island containing gene
changed expression during treatment or disease progression, this might indicate a dependence on
the epigenetic regulation. Similarly, exploring a gene’s miRNA network could hint at other
interacting genes which might not have been picked up by the differential expression analysis.
Exploring miRNA networks could also help prepare for RNA interference studies. Moreover,
miRNA interactome analysis provides the first in-depth look into what genes are controlled by the
same set of miRNAs. Thus, Omiclnt offers a comprehensive, evolving, and adaptable platform for
gene expression analysis in the context of the transcriptome, proteome, and epigenome.

Contribution to this chapter (100%)

* Methodology development which included equation and scoring function derivation as well as
machine learning pipeline creation.

* Developed new programmatic features to accompany the related publication.
* Performed software package development and testing.

* Conceptualised and wrote the documentation files, vignettes, and manuscript, including the figure
preparation.

* Corresponding author and maintainer.
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Omiclnt is an R software package developed for a user-friendly and in-depth exploration of significantly changed
genes, gene expression patterns, and the associated epigenetic features as well as the related miRNA environment.
In addition, OmicInt offers single cell RNA-seq and proteomics data integration to elucidate specific expression
profiles. To achieve this, OmicInt builds on a novel scoring function capturing expression and pathology associa-
tions. The developed scoring function together with the implemented Gaussian mixture modelling pipline helps
to explore genes and the linked interactome networks. The machine learning pipeline was designed to make the
analyses straightforward for the non-experts so that researchers could take advantage of advanced analytics for
their data evaluation. Additional functionalities, such as protein type and cellular location classification, provide
useful assessments of the key interactors. The introduced package can aid in studying specific gene networks,
understanding cellular perturbation events, and exploring interactions that might not be easily detectable other-
wise. Thus, this robust set of bioinformatics tools can be very beneficial in drug discovery and target evaluation.
OmicInt is designed to be freely accessible to involve a larger bioinformatics community and continuously improve

the developed algorithmic methods.

1. Introduction

Omiclnt is an R software package developed for an in-depth explo-
ration of significantly changed genes, gene expression patterns, and the
associated epigenetic features as well as the related miRNA environ-
ment. The package helps to assess gene clusters based on their known in-
teractors (proteome level) using several different resources, e.g., UniProt
and STRING DB [1-3]. Moreover, Omiclnt provides an easy Gaussian
mixture modelling [4-6] pipeline for an integrative analysis that can
be used by a non-expert to explore gene expression data. Specifically,
the package builds on a previously developed method to explore gene
networks using significantly changed genes, their log-fold-change val-
ues (LFC), and the predicted interactome complexity [5]. This approach
can aid in studying specific gene networks, understanding cellular per-
turbation events, and exploring interactions that might not be easily
detectable otherwise [5]. To this end, the package offers many different
utilities to help researchers quickly explore their data in a user-friendly
way where machine learning is made easily accessible to non-experts
(Figs. 1 and 2). It is also important to highlight that the lack of freely
available tools to explore complex expressome data motivated the cre-
ation of this set of tools. For example, commercial solutions, such as
Clarivate analytics [7], are almost inaccessible to individual users be-
cause of the very expensive software. Freely available tools, namely
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GeneMANIA or Cytoscape platforms [8-11], while very useful, do not
permit machine learning applications or complex regulome integration.
Thus, seeing the existing need for omics dedicated tools that could evolve
as more bioinformaticians get involved encouraged creating the OmicInt
package.

Machine learning which offer effective methods to assess multi-
dimensional biological data is also a very important part of the devel-
oped package. For the purpose of biological data evaluation, Gaussian
mixture models (GMMs) were selected as they employ a probability
based classification where each data point assignment has a different
probability of belonging to one of the clusters [4-6]. The probabilistic
nature of GMM relies on the assumption that the data can be explained
by a finite mixture of Gaussian distributions with unknown parameters
[4]. As a result, this is a soft classification method that is more suit-
able to assess biological parameters in comparison to hard classification
techniques (e.g., k-means) [4-6]. This is because gene or protein inter-
action networks are dynamic systems and probabilistic feature separa-
tion allows for more flexibility in defining boundaries between groups
[5]. Moreover, the extracted probability values can be incorporated into
other analytical pipelines to further refine the data. The developed GMM
pipeline automates the assessment of the information criterion to opti-
mise the number of clusters for modelling and also predicts the best
suited model for the expectation-maximisation (EM) algorithm which

2667-3185/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Example table with only LFC values

Example table with LFC, beta, and gamma values
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A | B | c | A | B | c | D | E

1 |Symbol log2FoldChange pvalue 1 |Symbol log2FoldChange pvalue beta gamma
2 |SAR1A -2.18777269502012 2.65652091646361E-05 2 [SAR1A -2.18777269502012 2.65652091646361E-05 0.25 0
3 |Cc6orf62 -2.6742131704395 1.6915673694844E-07 3 |C6orf62 -2.6742131704395 1.6915673694844E-07 0 0.3
4 |AXL -2.78650785919511 0.000173959539412 4 |AXL -2.78650785919511 0.000173959539412 0 0.56
5 [BICC1 -3.59855326113771 0.00027388866015 5 |BICC1 -3.59855326113771 0.00027388866015 0 0
6 |CAPZAl -1.73278403064529 0.000232183462116 6 |CAPZAl -1.73278403064529 0.000232183462116 0.4 0
7 |[TXNIP 1.46062912017625 7.34720482186151E-05 7 |TXNIP 1.46062912017625 7.34720482186151E-05 0 0.75
8 |HNRNPH1 -1.81995372081358 0.000592319156385 8 |HNRNPH1 -1.81995372081358 0.000592319156385 0 0
9 |RAB31 -1.79837938364367 0.00041973140141 9 |RAB31 -1.79837938364367 0.00041973140141 0 0.02
10 |UBE2B -2.06138280667398 0.000125275768063 10 |UBE2B -2.06138280667398 0.000125275768063 0.41 0
11 |PAFAH1B2 -1.56007182816026 0.001391919840109 PAFAH1B2 -1.56007182816026 0.001391919840109 0 0
12 |[EIF2S3 -1.74298250448705 0.001063319998638 12 |[EIF2S3 -1.74298250448705 0.001063319998638 0.7 0
13 [YWHAG -1.55076880524874 0.000815638927099 13 |YWHAG -1.55076880524874 0.000815638927099 0.8 0
14 |[ENAH -1.69808760167615 0.000269611887499 14 |ENAH -1.69808760167615 0.000269611887499 0 0.015
15 |PPP3CA -2.67216823748962 3.98459567587323E-06 15 |PPP3CA -2.67216823748962 3.98459567587323E-06 0 0

Metadata file example Normalised count table example

| A | B |

_1 |Sample_ID Condmon. n B \ & ‘ B I = J B |

_2 |CAD1 hypertension 1 |Symbol CAD1 cAD2 cAD3 CAD4 CAD5S

_3 |CAD2 hypertension 2 |MT-CYB 9384.55030132127 11923.5039503911 34985.4747081763 4216.00298751307 12402.4413183367

4 |CAD3 hypertension 3 |MT-ND4 10934. 12360. 24509.2381415289  5360.27179089838  12871.5303032926

“s ICAD4 hypertension 4 |MT-CcO1 9722.28571644071 11516.7510834493 12063.1580920346  5587.18655703799  11504.0474618033

~o ICADS h ; 5 MT-cO3 8205.9264136993 10957.0042717434  17443.7581673424 5740.20990972336  13001.314416671

ELE ypertension "6 FN1 192.371263022342 249.538399563515  211.313998100786  748.609107229636 _466.544198419069

_7 |CAD6 hypertension 7 |COL1A2 138.536021504896 178.317080449193  135.124152051885 504.138579737424  331.670511967011

8 |CAD10 hypertension 8 ACTB 777.02198590181 690.05544741877  1249.03562947764  1889.20954257112  2393.7958689793

"9 |CAD11 hypertension 9 |MT-ATP§ 6347.89277812717 7713.00507741775 11965.5224075336 3373.85049516584  7503.72723493652

10 IN10 health 10 |MT-CO2 5702.58768313804 4504.3527 8569 1882.92091163884  5782.60327385963

- Y 11 |MT-ND1 6299.08215915135 9499.34127387032 10046.9718242743  4573.4068454974  11624.5849002453

1 N12 healthy 1z MT-ND5 3404.89957517343  3910.3142020397 5409.21359962516  2197.61448454146  2744.12814888307

12 N13 healthy | 13 |MALAT1 6320.61625575833 6583.48771279727 2876.10032088432  2196.56637938608  3348.09082029103

13 |N14 healthy 14 |SARIA 3043.84455539642 4617.25173991510 9943.43858399882  3869.86625994907  4469.49342085468

“14 IN15 healthy | 15 |MT-ND4L 21447 7 3601 7763 3118.47429106776 1752.16979350528 3407.46917281709

15 |RF2 CKD

Fig. 1. Examples for the required data formats which include the normalised gene expression values, log fold change (LFC) values, and the meta data file.
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Fig. 2. Schematic representation of package functions and specific analyses.

helps to maximise the likelihood of data point assignments [4,12]. As a
result, the users do not need to have an extensive knowledge to fine-tune
their GMM parameters as the process is streamlined for them.

The key analytical parameter in the machine learning pipeline and
exploratory analyses is a specific score, namely LFC.,., which can have
a different derivation depending on the selected parameters Eqs. (1)-

(3). The user has several options to select from since the equations
were expanded with additional data based on the earlier derivation of
the multi-omics Eq. (5). The score a values are downloaded automati-
cally from curated database images which were generated via text min-
ing to retrieve, update, and integrate data in an easier-to-use format
(i.e., database image) for the analyses. Databases used include Disgenet,
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Uniprot, and STRING DB [1,3,13]. For example, a,g,. score allows to in-
fer how strongly a gene is linked to a disease or pathological phenotype
ranging from 0 (no link) to 1 (the strongest association) Eq. (1) [13].
Similarly, age. captures how specific a gene is when describing the
pathology Eq. (2) [13]. Association scores are based on different curated
resources as described earlier [13]. The user can choose from different
types of scores (“association_score”, “specificity_score”, or the geomet-
ric mean of both) when selecting the type of the equation for LFCy, .
Scores pcell and yprot are the scaled values for single cell and proteome
data, respectively. That is, fcell has to be provided by the user if they
have such experimental information integrated where a gene value from
a single cell data cluster is extracted using a pseudo-bulk differential
gene expression approach. The LFC scores from pseudo-bulk data need
to be scaled according to the Eq. (4). The same approach should be ap-
plied when calculating yprot for protein (corresponding gene) values.

LFCscore = LFC(I + Ays0c + ﬁcell + yprot) (1)

LFCg.ore equation where LFC - Log Fold Change, base 2; a,. - a disease
association score; fy - scaled single cell LFC; yp - scaled proteome
LFC.

LFCscore = LFC(I + aspec + ﬁcell + yprot) (2)

LFCycore €quation where LFC - Log Fold Change, base 2; gy - a disease
specificity score; fiey - scaled single cell LFC; yp - scaled proteome
LFC.

LFCscore = LFC<1 + (asoc aspec) + ﬁcell + Ypml) (3)

LFCqore €quation where LFC - Log Fold Change, base 2; @50, and agpec
are integrated using a geometric average score; . - scaled single cell
LFC; 7prot - scaled proteome LFC.

LFCscaled = LFCgene /LFCmedian “

Beell OF ¥pror scaling example where LFCg., - a gene specific value and
LFCjyedian - @ median value for all available LFC values per specific con-
dition and gene set.

OmicInt provides many other valuable tools to map the interac-
tome using information on the target cellular location or protein
class/function type. In addition, density functions allow for an exhaus-
tive assessment of gene distributions which may hint at potential func-
tions or dominant processes within a specific condition. Epigenetic fea-
ture (CpG islands, GC%) and miRNA exploration tools also provide ad-
ditional information on the epigenome and non-coding regulome which
might be relevant for some genes and conditions, especially if a higher
enrichment of these patterns can be found. Currently, the analyses are
only available for human data sets. The software package is freely dis-
tributed via Github and CRAN repositories to make the analyses acces-
sible to researchers [14,15]. Github environment also provides oppor-
tunities to submit requests or suggestions and participate in further al-
gorithm development [14].

2. Methods

Omiclnt package architecture (Fig. 2) is divided into gene expression,
gene cluster/pattern, and epigenetic feature/regulatory network analy-
sis with a detailed vignette to guide the user [14,15]. Machine learning
pipeline is based on Gaussian mixture models which is designed to in-
clude the optimal cluster number (Bayesian information criterion), auto-
matic model fitting during the expectation maximisation phase of clus-
tering, model-based hierarchical clustering, as well as density estimation
and discriminant analysis [4,12]. The package enables advanced options
to perform a user-specified clustering to use the data in other workflows.
Omiclnt also retrieves data from multiple databases by generating com-
bined and curated database images for easier use [1,3,13]. The pack-
age was built using functional programming principles and the analyses
were benchmarked using the following studies distributed via NCBI GEO
database [16]: GSE160145, GSE3585, GSE26887, and GSE116250.
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3. Results
3.1. Data preprocessing

Before starting the analysis the user must ensure that the supplied
data is in the right format. There are several different options to prepare
a data frame (CSV format) that contains all the relevant experimental
information Fig. 1; Egs. (1)-(4). Depending on the selection, the down-
stream analyses will provide interactive graphs and maps (Fig. 2). Con-
sistent data preparation and integration allow for a stable processing
workflow which enables an efficient organisation of data sets.

Data pre-processing relies on the score genes function that collects
data from the STRING database and other disease association data sets
to scale and prepare additional score integration [3,13]. Several key pa-
rameters should be provided; the data parameter requires a data frame
containing gene names as row names and a column with LFC values.
The example is provided in Fig. 1; the parameter alpha (a) has a default
value set as “association” which gives a score from 0 to 1 based on how
strongly a gene is associated with a pathological phenotype; other op-
tions are “specificity” - to give values based on how specific a gene is
when describing a disease and “geometric” - to give a geometric mean
score of both association and specificity. The « score is calculated au-
tomatically for the genes in the data set. In addition, it is possible to
add weighted single cell and proteomics data by selecting additional
parameters. The parameter beta is set to have a default value as FALSE;
if TRUE, the user needs to supply data with a column beta that contains
information on gene associations from single cell studies. Similarly, pa-
rameter gamma has a default value FALSE; if TRUE, the user is required
to supply data with a column gamma that contains information on gene
associations from proteome studies. The function returns a data frame
for the downstream analyses.

#Code example for data preprocessing
#data<-score_genes("data.csv")
#head(data)

#  Symbol Log2FoldChange pvalue Interactors Association_score

#1 SARIA -2.187773 2.656521e-05 24 0.0000000
#2 Cé6orf62 -2.674213 1.691567e-07 2] 0.0000000
#3 AXL -2.786508 1.739595e-04 2 0.3230769
#4 BICC1 -3.598553 2.738887e-04 3 0.3000000
#5 CAPZA1 -1.732784 2.321835e-04 66 0.3789474
#6 TXNIP 1.460629 7.347205e-05 30 0.3000000
# Specificity score LFCscore
#1 0.000 -2.187773
#2 0.000 -2.674213
#3 0.590 -3.686764
#4 0.751 -4.678119
#5 0.601 -2.389418
#6 0.631 1.898818

3.2. Exploratory analyses

Function density plot plots a density plot for gene expression data
prepared by the score genes function. The plots can be used for a quick
assessment and summarisation of the overall parameters (Fig. 3). Specif-
ically, the plots allow the evaluation of how key parameters, such as LFC,
LFCy.ore, and disease association or specificity scores, associate with the
highest frequency protein classes and cellular locations. For example,
the most frequent protein classes may have specific distribution patterns
hinting at predominant cellular processes. Similarly, examining distri-
butions for cellular locations might highlight the most involved and/or
affected cellular strictures.

#An example of a function call to get density plots
#density_plot(data)



A. Kanapeckaite

10 highest frequency classes distribution for interactors
Cancer-related gene
Cellular structure
Disease related gene
Enzyme
G-protein coupled receptor
Kinase

Predicted intracellular protein
Regulatory protein
Transporter

1 1 1 L
0.05 -

0.04 =
0.03 \ -
0.02 7 B
0.01 ,M -

0.00 — - -
T T T T

-200 0 200 400

Density

Interactors

10 highest frequency classes distribution for specificity score
Cancer-related gene
Cellular structure
Disease related gene
Enzyme
G-protein coupled receptor
Kinase

Predicted intracellular protein
Regulatory protein
Transporter

Density
©Canwaa
1

Specificity_score

10 highest frequency locations distribution for interactors

Centrosome
Cytoplasm
Cytosol

Gggi apparatus
NA

Nuclear bodies
Nucleoli
Nucleoplasm
Plasma membrane
Vesicles

004 ~
& oo \
é 002 -
0.00 — N

T T T T T T
-100 0 100 200 300 400

Interactors

Artificial Intelligence in the Life Sciences 1 (2021) 100025

10 highest frequency classes distribution for LFCscore

Cancer-related gene
Cellular structure

Disease related gene
Enzyme

G-protein coupled receptor
Kinase

NA
Predicted intracellular protein
Regulatory protein

Transporter
1 1 '

04 b
£ 03 L
é
8 02 + b

0.1 -

0.0 e o

LFCscore
10 highest frequency classes distribution for association score
Cancer-related gene
Cellular structure
Disease related gene
Enzyme
G-protein coupled receptor
Kinase
NA
Predicted intracellular protein
Regulatory protein
Transporter
A1 A '
25 4 | -
20 + -

g 15 :

c

8 10 A d

5 -
0 - W E
T T T
1 0 1
Association_score
10 highest freq y | i distrib for LFCscore
Centrosome
Cytoplasm
S opparatus
k] al
NA i
Nuclear bodies
Nucleol
N
Plasma membrane
Vesicles
i 4 A
06
Z o4
g 02 /_,3 —
oo . S e R
T T
5 [} 5
LFCscore

Fig. 3. Density plot examples for different parameters.

Function feature distribution also provides a way to visualise main
feature distributions through density plots combined with LFCy. and
interactor number scatter plots (Fig. 4). These plots allow to quickly
assess if there are any dependencies between LFC,,. and the interactor
numbers. Such plots also help to see if any obvious gene clusters emerge.
In early analyses this can aid in understanding whether the expression
is dependent on any cellular site or protein class which could suggest a
specific functional enrichment. This function might issue a warning if
the data points were missing or too few for density plotting; however,
it does not affect the overall visualisation.

#A simple call to implement the feature distribution analysis
#feature_distribution(data)

Function plot 3D _distribution allows to explore 3D distributions be-
tween the number of interactors, LFC,.., and p.adj values. In addition
to providing a data parameter, the user can select how to color data
points depending on the association or specificity score (e.g., selecting
“specificity”) (Fig. 5). This analysis can help identify specific clusters

for the expression patterns and interactors based on the significance of
how the gene expression changed in a given condition. In addition, data
point coloring based on gene association or specificity in the context of
diseases can help capture additional patterns in the data.

#A function call example to explore the data in the interactive 3D plot
#plot_3D distribution(data)

Function class summary provides analysis on main protein classes
where a barplot helps to visualise the class distribution. Similarly, the
function location summary summarises the location distribution data
(Fig. 6). Assessing this information can highlight if there are any spe-
cific biases in data for target location or function which might indicate
underlying cellular perturbations or changes in the function.

#Functions class_summary and Llocation_summary are called for the preprocessed data

frame

#class_summary(data)

#location_summary(data)
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Function location map allows the visualisation of how the highest and
lowest LFC,.,.. genes cluster based on the protein cellular location data
(Fig. 7). The user can specify the number of the top and lowest genes to
consider. The function returns a dendogram generated based on LFC.,
values. The “euclidean” method is used for distance calculation and the
“Ward.D2” method - for hclust generation. Gene labels are colored to
indicate major clusters where the hclust generated cluster number is
doubled to select for more subgroups. In addition, to achieve a finer sep-
aration of lower dendogram branches the following equation is used to
set the height for the color differentiation of different branches Eq. (5).
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Feature distribution plot examples.

Fig. 5. Interactive 3D feature distribution.
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This equation takes the mean value for hclust function height calcula-
tion and multiplies by the dendrogram cluster number scaled twice. The
plot also provides cellular location visualisation for each gene (Fig. 7).

(O]

The height calculation for the color differentiation of different den-
dogram branches.

Hdendogram = (hCIUStheight/ hCIUStn) : dendOgrarncluster_number -2

#Location mapping is done using a single function call

#location_map(data)
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Fig. 7. Dendogram with mapped cellular locations where coloured gene symbols represent the identified clusters and coloured branches show smaller subclusters.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Similarly, the function class map provides a visualisation of how the
highest and lowest LFC,,.. genes cluster based on protein class. In addi-
tion to a data frame generated by score_genes, the function also requires
a num parameter to specify the number of genes to consider from the
top upregulated and downregulated genes, if this option is not selected
all genes will be used (Fig. 8).

#Class mapping is done using a single function call

#class_map(data, 20)

HK genes function provides a convenient overview of the house-
keeping genes and allows to check if these genes varied through-
out conditions. Depending on the number of conditions separate
plots will be generated (Fig. 9). Inspecting housekeeping genes can
help understand if there was any significant variation between sam-
ple groups which might have arisen from biological or technical
variation.

# To retrieve h keeping gene a ment only a single function call 1is required

#HK_genes (data)

3.3. Gene cluster and expression pattern analyses

Function cluster genes helps to select an optimal number of clusters
and a model to be fitted during the EM phase of clustering for GMM. The
function provides summaries and helps to visualise gene clusters based
on generated data using score genes function. Weighted gene expression

is clustered based on the interactome complexity, i.e., the number of
known interactors according to the STRING database [3], with a cut-
off of 700 for the score threshold. The threshold is set automatically to
control for the reliability of the interactions [2,3]. The function also pro-
vides scatter and dimension reduction plots to analyse the clusters and
features in the data (Fig. 10). Required parameters include a data frame
containing a processed expression file from score_genes with LFC,.. and
a max_range number for cluster exploration during the model selection
(the default value is 20 clusters). The clusters parameter can be provided
for the number of clusters to test when the cluster number estimation
is not based on the best BIC output (the user then also needs to supply
modelNames). This option allows users to perform GMM for a specific
number of clusters. The modelNames parameter can only be supplied
when the clusters value is also specified. This option will model the data
based on the user parameters for the cluster assignment (Fig. 10) which
can be helpful if a different number of clusters helps to explain the data
better. The function not only provides a summarised modelling output
and plots but also returns a data frame with assigned clusters which can
be used by more advanced users in other machine learning pipelines
or data comparison studies. For example, gene set clustering based on
the interactome size provides insights on the emerging patterns for gene
expression changes and the size of the involved network. Selecting spe-
cific genes can help build signalling networks based on the identified
seed points. Feature distribution analysis also helps to assess the emerg-
ing trends in the data based on the variability. That is, gene variation
patterns in the experiment might indicate functionally related groups
which could be used to reconstruct relevant pathways (Fig. 10). The
user is advised to set seed before using the function to get reproducible
results.
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#A machine Llearning pipeline is implemented using a simple call
#The output data frame can be stored in a new object for further analyses

#model_report<-cluster_genes(data)

# The function will automatically output the Bayesian information criterion (BIC) and
the type of the model for fitting
# Detailed explanation of the model selection is provided with a dependency package -

Mclust.

#Best BIC values:

# WI, 6 WiI,7 WI, 5
#BIC -2481.986 -2483.544400 -2485.429861
#BIC diff 0.000 -1.558131 -3.443592

# An example of the model report summary output

# head(model_report)

# Interactors LFCscore Cluster Symbol
#CAPZA1 66 -2.389418 1 CAPZA1
#RAB31 0 -2.542398 2 RAB31
#UBE2B 2 -2.061383 2 UBE2B
#YWHAG 21 -2.111448 1 YWHAG
#ENAH 29 -2.207514 1 ENAH
#PPP3CA 51 -3.500322 1 PPP3CA

Function cluster links provides the same Gaussian mixture modeling
pipeline as cluster_genes; however, instead of the interactor number clus-
tering, the user can select a specific disease score type (the default selec-
tion is “association”). This parameter can define either the association
or specificity for a disease, i.e., if the gene has known links to disease
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phenotypes and how specific it is when describing a pathology. The func-
tion also provides scatter and dimension reduction plots to analyse the
clusters and features in the data. An additional output is a model report
summarising the cluster assignments which can be used in other mod-
elling analyses. This information can be used to compare association
and network size influences for different clusters and gene expression
patterns.

Function pattern search explores the occurrences of specific patterns
in gene sets. That is, it searches each condition for emerging patterns
(e.g., if multiple conditions are provided) to group genes that changed
in a similar manner (Figs. 11 and 12). The search algorithm works by
first generating potential patterns to search depending on the number of
subclasses. For example, if a condition has several subclasses as in the
case example, where Condition 1 has healthy, hypertensive, and chronic
kidney disease (CKD) groups, then potential pattern scenarios are gen-
erated, e.g., “up-up-up” or “down-up-down”. Following this, the overall
expression for each gene is calculated using geometric mean across all
conditions, this gives a basal line against which an individual gene ex-
pression value is weighed to deduce if it is in a ‘up’ or ‘down’ state. Com-
paring against a baseline is a more universal approach than performing
a pair wise comparisons which may not be effective for multiple sub-
classes or complex interactions. In addition, averaging expression using
a geometric mean method provides a baseline for comparisons taking
into account all the extreme values which might result either from bio-
logical or technical effects. It is important to note that taking a geometric
mean might not be optimal in all cases, but in a balanced experiment
it should provide additional information for the downstream analyses.
The function returns a summary of how many genes are identified for
each pattern type across conditions.
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Fig. 9. An example of the housekeeping gene distribution. The red marker indicates the mean for the group and violin plots allow to assess global distribution
patterns. CKD — chronic kidney disease patient group, healthy — healthy population group, and hypertension — hypertensive patient group. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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# Condition subclasses

# "CKD" "healthy" "hypertension”

#

# The algorithm can be implemented using a single function call where a meta data file
is also provided to extract information on the subclasses
# pattern_search(data, meta)

#

# Gene count

#down_down_down o

2679

670

1076

5503

2550

2856

361

#down_down_up
#down_up_down
#down_up_up
#up_down_down
#up_down_up
#up_up_down
#up_up_up

The returned gene list contains groups of genes for the different types
of patterns. A pattern of interest can be selected to further explore the
genes that changed their expression in a specific manner.

# Example pattern selection

#$up_up_down

# [1] "A4GALT" "AASDHPPT" "AATF"
# [4] "ABCC11" "ABCCY" "ABCG2"
# [7] "ABHD13" "ABHD2" "ABI3"
# [10] "ABI3BP" "ABITRAM" "ABO"

This analysis can be followed by pattern plots which allows to ex-
plore distributions for a selected pattern group. The user must pro-
vide a subsetted data frame and low/high parameters to select a spe-
cific range. The selection is needed because in some instances the
expression values might differ significantly and visualising all data
points will prevent exploring any meaningful subsets. The outputs al-
low to evaluate how genes distribute in a subset for different conditions
(Fig. 11) and how individual gene values vary in a selected subgroup
(Fig. 12).

Function cluster heatmap uses the information mined from the
STRING database [3] to map experimental, referenced, and inferred in-
teractions to see if there are any interactors in the set of significantly
changed genes. This heatmap function provides a clustered visualisa-
tion of all the genes that have shared interactions (Fig. 13). This infor-
mation allows to quickly assess how many genes in a specific condition
that changed significantly might be part of the same regulatory cluster.
Such data can help select specific targets depending on the therapeutic
strategy.

#Finding interacting proteins and mapping them using a heatmap can be achieved via a

single function call

#cluster_heatmap (data)

Function interactor. map helps to visualise the information mined
from the STRING database [3] and map direct and referenced interac-
tions to see if there are any interactors in the set of significantly changed
genes and how they are linked. This visual network is an alternative for
a heatmap with additional information on the functional gene features
(Fig. 14).

#Mapping interactors can be done through a single function call

#interactor_map(data)

10
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Fig. 13. Cluster heatmap examples where known interactors are connected via
the red squares. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

3.4. Epigenomics data integration and analysis

Function CpG_summary provides information on the gene CpG island
and GC content. The function checks genes against known CpG islands
and provides various plots to assess emerging data features. CpG islands
were retrieved from the data available with the Genome Reference Con-
sortium (Human Build 38) [17], this information was cross-referenced
with the Ensembl database [18] to retrieve overlaps between CpG is-
lands and genes. The function provides a number of analytical plots to
assess whether the CpG profile (via GC %) has any influence on the
gene expression, interactor number, disease specificity, and disease as-
sociations (Figs. 15 and 16). All this information is provided in the con-
text of the assigned protein classes/functional groups. This analysis of-
fers additional insights into the complex interplay between the genome,
transcriptome, and epigenome [19]. In addition, the function outputs a
data table that contains genomic locations and gene information based
on the Ensembl database [18] so that the user can perform additional
analyses.

#CpG summary requires a single function call to retrieve relevant information. The

output can be assigned to a new R object for further analyses

#cpg_genes<-CpG_summary (data)

Function miRNA_summary validated allows to check how many of
the differentially expressed genes have known miRNAs (Figs. 17 and
18). The information on validated/known miRNAs is collected from
mining multiple databases, namely miRecords, TarBase, miRTarBase,
PhenomiR, miR2Disease, Pharmaco-miR. The function also returns a
data table with miRNA information that can be used for designing RNA
interference experiments.


http://c1.accurascience.com/miRecords/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8\0452Findex
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847718/
https://pubmed.ncbi.nlm.nih.gov/18927107/
http://www.pharmaco-mir.org/
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#head(cpg_genes)

#output example

#  Symbol Log2FoldChange pvalue Association_score

#1  SARIA -2.187773 2.656521e-05 0.0000000

#2 Céorf62 -2.674213 1.691567e-07 0.0000000

#3 AXL -2.786508 1.739595e-04 0.3230769

#4  BICC1 -3.598553 2.738887e-04 0.3000000

#5 CAPZA1 -1.732784 2.321835e-04 0.3789474

#6 TXNIP 1.460629 7.347205e-05 0.3000000

# Specificity_score LFCscore CpG GC_content
#1 0.000 -2.187773 chrl:1211340:1214153 76.33
#2 0.000 -2.674213 NA NA
#3 0.590 -3.686764 chrl:1471765:1497848 58.83
#4 0.751 -4.678119 NA NA
#5 0.601 -2.389418 NA NA
#6 0.631 1.898818 NA NA
# Class

#1 Receptor

#2 NA

#3 Pseudogene

#4 Enzyme

#5 Enzyme

#6 Regulatory protein

Function miRNA_summary predicted is similar to the earlier func-
tion; however, it allows to check how many of the differentially ex-
pressed genes have predicted miRNAs. The information is collected from
mining multiple databases that use algorithms to infer likely miRNAs.
The databases include miRTarBase, PITA, PicTar, miRecords, miRanda,
DIANA-microT, miRDB, TarBase, TargetScan, MicroCosm, and EIMMo.
The function also returns a data table with miRNA information that can
be used in designing RNA interference experiments.

Cancer-related gene
Cellular structure
Disease related gene
Enzyme

®  G-protein coupled receptor

®  Immune system

® lon channel

®* Kinase

= Mixed function protein

= NA

=  Nuclear receptor

= Plasma protein

®= Predicted intracellular protein
Pseudogene

= Receptor

= Requlatory protein
RNA species

® Transporter
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#miRNA analysis example
#df<-miRNA_summary_validated(data)

Function miRNA_network allows to examine if a gene set has shared
regulatory miRNAs (Fig. 19).This function could be especially useful as
it could help exploring the non-coding layer of the regulatory network.
This information can aid in studying how some genes are controlled by
several miRNAs and detect additional links between genes that changed
expression. Moreover, using miRNA analyses can be applied in design-
ing RNA interference studies to select the most optimal interference se-
quences. miRNA content information can be access through the func-
tion’s output.

#An example of calling miRNA summary function for the predicted miRNAs based on the
submitted data
#df<-miRNA_summary_predicted(data)

4. Discussion

OmicInt package provides a unique combination of functions and
tools for researchers to explore gene expression data sets. A special focus
of the package is also making machine learning, specifically Gaussian
mixture models [4-6], more accessible to the researchers that do not
have a background in the ML/AI field. In addition, the lack of tools for
the exploration of the complex expressome data highlighted the need for
such a set of bioinformatics tools. For example, commercial solutions,
such as Clarivate analytics [7], are very expensive and cannot be easily
used by individual researchers. Freely available tools, namely GeneMA-
NIA or Cytoscape platforms [9-11,20], do not permit machine learning
applications or complex regulome integration. As a result, the OmicInt
package was developed for advanced and user-friendly omics analyses.
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Fig. 14. Interactor map examples.
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Interactor heatmap fo il ganes and reguiatory mRNA

Fig. 19. miRNA network plot example where genes and miRNAs are mapped using a heatmap so that shared links are highlighted in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The developed scoring functions and GMM pipeline enables exhaus-
tive analysis of the expressome and the associated interactome com-
plexity. The automated processing takes care of the machine learning
model optimisation making this analysis easily adaptable to individual
researcher’s needs. The implementation of probabilistic modelling cre-
ates opportunities for new insights based on gene expression changes,
disease associations, and the size of the network for a specific gene. Ex-
tracting this information can establish relevant seed points to recreate
complex signalling pathways or use this data to select genes that should
be subjected to downstream in vitro studies ensuring that a diverse se-
lection is made.

In addition, advanced functions for epigenomics analysis permit the
exploration of the epigenetic regulatory layer. This might be very helpful
when identifying genes that may depend on epigentic regulation [19].
Specifically, if a CpG island containing gene changed expression during
treatment or disease progression, it might suggest that there is an epige-
netic component controlling the expression levels. Similarly, exploring
a gene’s miRNA network could hint at other interacting genes which
might not have been picked up by the differential expression analysis
or help prepare for RNA interference studies. Moreover, miRNA interac-
tome analysis provides the first in-depth look into what genes are con-
trolled by the same set of miRNAs.

Additional functionalities of the package create an analytical envi-
ronment to summarise gene functional classes or infer what cellular
compartments are typically associated with the gene/protein. Such as-
sessments in the context of expression changes or disease association can
highlight emerging patterns in specific cellular states under the investi-
gation. A specially designed function to extract gene pattern profiles can
aid in a further refinement of causal gene networks when considering a
specific phenotype or a condition.

Thus, Omiclnt offers a comprehensive, evolving, and adaptable plat-
form for gene expression analysis in the context of the transcriptome,
proteome, and epigenome. The analyses are made freely available to all
researchers where further contributions and algorithmic development
are also made possible.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics

development

4. Fi-score: a novel approach to characterise protein topology and aid in
drug discovery studies

The experimental chapter is based on the following publication

Kanapeckaité A, Beaurivage C, Hancock M, Verschueren E. Fi-score: a novel approach to
characterise protein topology and aid in drug discovery studies. Journal of Biomolecular Structure
and Dynamics. 2020 Dec 7:1-1; doi: 10.1080/07391102.2020.1854859; PMID: 33297860.

Conclusion of this chapter

This chapter introduces a new method that I developed helping to characterise proteins prior to in
silico screening by evaluating potentially dynamically active regions or predicting sites that share
similar qualities in the side chain distribution and movement. Incorporating the Fi-score with other
physicochemical parameters, such as hydrophobicity, could greatly improve detecting multiple
functionally relevant sites within a target or capturing similar profiles across different proteins. The
detected sites could be subjected to docking studies. Moreover, my developed analytical pipeline
helped to show that using machine learning approaches expands the analytical scope by extracting
and defining structural elements or motifs of various proteins. Thus, Fi-score focused analysis can
aid in primary target selection studies and also advance drug or biologics formulation methods by
evaluating potential binding sites or interaction surfaces. This innovative biophysical analysis
method could significantly improve target selection, pre-screening analysis and speed up biologics
engineering.

Contribution to this chapter (95%)

* Derived the scoring equation and machine learning pipeline.

 Performed all the analytical, data mining, and experimental work as well as formulated
conclusions.

* Performed benchmarking and comparative analyses.
* Conceptualised and wrote the manuscript, including the figure preparation.

* Corresponding author.



JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS
https://doi.org/10.1080/07391102.2020.1854859

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

Fi-score: a novel approach to characterise protein topology and aid in drug

discovery studies

Austé Kanapeckaité®

, Claudia Beaurivage®<, Matthew Hancock® and Erik Verschueren?

®Galapagos NV, Mechelen, Belgium; bGalapagos BV, Leiden, The Netherlands; “Department of Biomedical Science, Faculty of Science,

University of Sheffield, Sheffield, UK

Communicated by Ramaswamy H. Sarma

ABSTRACT

Target evaluation is at the centre of rational drug design and biologics development. In order to suc-
cessfully engineer antibodies, T-cell receptors or small molecules it is necessary to identify and charac-
terise potential binding or contact sites on therapeutically relevant target proteins. Currently, there are
numerous challenges in achieving a better docking precision as well as characterising relevant sites.
We devised a first-of-its-kind in silico protein fingerprinting approach based on the dihedral angle and
B-factor distribution to probe binding sites and sites of structural importance. Our derived Fi-score can
be used to classify protein regions or individual structural subsets of interest and the described scor-
ing system could be integrated into other discovery pipelines, such as protein classification databases,
or applied to investigate new targets. We further demonstrated how our method can be integrated
into machine learning Gaussian mixture models to predict different structural elements. Fi-score, in
combination with other biophysical analytical methods depending on the research goals, could help
to classify and systematically analyse not only targets but also drug candidates that bind to specific
sites. The described methodology could greatly improve pre-screening stage, target selection and
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drug repurposing efforts in finding other matching targets.

HIGHLIGHTS

e Description and derivation of a first-of-its-kind in silico protein fingerprinting method using B-factors

and dihedral angles.

e Derived Fi-score allows to characterise the whole protein or selected regions of interest.
e Demonstration how machine learning using Gaussian mixture models on Fi-scores captures and

allows to predict functional protein topology elements.

e Fi-score is a novel method to help evaluate therapeutic targets and engineer effective biologics.

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; HTS: high-

throughput screening; PLI: target protein-ligand interactions

Introduction

The identification of lead compounds showing pharmaco-
logical promise is the focal point of early-stage drug discov-
ery. While large libraries of compounds against a
therapeutically relevant target are subjected to high-through-
put screening (HTS) to select new lead compounds, this
method becomes more and more supplemented or preceded
by in silico HTS within the pharmaceutical industry. This shift
in the paradigm can be attributed to the high costs and
time-consuming nature of the design and completion of HTS
screens (Dias & de Azevedo, 2008). In contrast, early stage in
silico screening offers not only a better understanding of
relevant biological topology, potential active sites but also
allows a progressive optimisation of the pharmacological
properties and potency of selected compounds. Yet, structur-
ally complex sites or sites with a wide dynamic range pose a

challenge; especially, when selecting between a family of tar-
gets or targets with similar topology (Gangadharan
et al.,, 2017).

While the human genome contains approximately 25,000
genes, only about 10% of the expressed proteins are amen-
able to small-molecule modulation and less than a half of
that subset has therapeutic potential. In addition, the devel-
opment of therapeutic compounds have a very low success
rate as less than 2% of lead compounds succeed to get to
the market (Dias & de Azevedo, 2008; Gangadharan et al.,
2017; Knapp, 2016; Santos et al., 2017).The picture gets even
more complicated for immunotherapeutics development as
lead compounds can have potentially far reaching side
effects and the identification and validation of disease-spe-
cific targets is also complicated by the fact that numerous
proteins can undergo significant conformational changes
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throughout their immune cycle (Gangadharan et al, 2017;
Knapp, 2016). Consequently, we theorise that having the
means to compare multiple regions of interest within the tar-
get prior to the screening would be extremely beneficial. For
example, if a reference set of binding sites that are known to
bind compounds can be classified based on their topology
and physicochemical properties, this information could be
used to compare and evaluate new sites of interest for the
compound binding after these new sites are scored on the
same parameters. That is, such scoring could be easily inte-
grated into a relational database of protein targets in a dis-
covery pipeline. Moreover, in some instances a binding site
might be conserved and it could be useful to compare pro-
tein regions of interest between multiple homologous pro-
teins using a scoring method that could give insights into
the conformation and not just the amino acid composition.
Another example could be characterising a protein site with
a score that has known binders and comparing it to a score
of a new target which has no known binding compounds.
This could be especially helpful in drug repurposing because
protein sites of similar characteristics would potentially allow
to infer drug binding in a new site based on already
explored one. The compound could then be docked in silico
or subjected to in vitro studies and if the investigational
pipeline has multiple new targets such a pre-screening strat-
egy could help to prioritise. Thus, we believe that establish-
ing an effective methodology to classify sites of interest
could be extremely beneficial in terms of the screening cost
reduction and faster turnaround.

Most currently marketed small-molecule drugs are devel-
oped to target protein-ligand interactions (PLI) (Fuller et al.,
2009) and this information is primarily provided by the crys-
tallographic analysis. Crystallographic structure analysis has
revealed that PLI sites are hydrophobic pockets concave in
shape with more complex topological features than those
found on protein surfaces, but they can also be relatively flat
and large (Buckle et al., 1996; Fauman et al, 2011; Fuller
et al, 2009; Mann & Hermans, 2000; Pérot et al.,, 2010). As a
result, computational analysis to probe potential binding
sites of proteins exploits these features to evaluate energet-
ics, cavity geometry and physicochemical properties of a
potential binding pocket. However, there are additional chal-
lenges as the selected sites might be topologically con-
strained and because of growing computational costs
broader conformational changes may not be incorporated
into the binding grid analysis. Furthermore, there is not one
universal algorithm developed that could be suitable for all
scenarios; therefore, we aimed to combine multiple levels of
analysis, capturing B-factor values and the dihedral angle
structure to establish a comparative measure of physico-
chemical characteristics of a protein of interest that could be
used to analyse a single motif, expanded to a site or the
whole protein (Siglioccolo et al, 2010). We here describe a
method to derive a score for a site of interest which could
be visualised via distribution plots, 3D region visualisation or
integrated into machine learning to derive probability dens-
ity distributions based on physicochemical properties; all of

these applications of a site score could be used to infer char-
acteristics of a region under investigation.

Protein dihedral angles contain information on the local
protein conformation in such a way that a protein backbone
conformation can be highly accurately rebuilt based on the
native dihedral angles. Extracting this information can facili-
tate in narrowing down the conformational space, which in
turn can be superimposed on specific physicochemical prop-
erties of the region of interest (De Juan et al., 2013; Faraggi
et al, 2009; Heffernan, 2015; Schlessinger & Rost, 2005).
While Ramachandran basin allows a holistic description of
conformation, this approach lacks statistical description with
a focus on the torsion angle distributions of specific
sequence and thus, in consideration of the circular nature of
angles, traditional parametric or non-parametric density esti-
mation methods cannot work properly to approximate
Ramachandran distributions; this is also supported by the
findings of the current study. As a result, all of this calls for a
more unified approach in analysing local protein regions and
extracting the high information content from dihedral angle
distribution. By extension, capturing sequence information
content can facilitate current efforts to build improved pre-
dictive models for dihedral angle and protein three-dimen-
sional structure determination as well as target evaluation
for drug screens (Faraggi et al., 2009; Heffernan, 2015). To
achieve this additional parameter, the oscillation amplitudes
of the atoms around their equilibrium positions (B-factors) in
the crystal structures were used; this relationship is described
in the first equation.

B = 8(n?)u? (1)

Equation (1): B-factor evaluation, where oscillation ampli-
tude is u.

While B-factors are used in the atomic form factor calcula-
tion to measure scattering amplitude (Eq. (2)), B-factors have
a much more complex influence on atoms and the overall
structure because of their dependence on conformational
disorder, dynamic alterations of the sequence seen via the
changes in the positional dispersion of B-factors (Fauman
et al,, 2011; Tang et al., 2019).

. i 2
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Equation (2): Scattering amplitude evaluation, where B is
the B-factor, fo is the atomic form factor, and 2 is the X-
ray wavelength.

In addition, B-factors provide means to gain insight into
many aspects of molecular dynamics, such as thermal motion
paths, protein superimposition and predict the rotameric
state of amino acids side-chains (Carugo, 2018; Carugo &
Argos, 1999; Carugo & Eisenhaber, 1997; Weiss, 2007). B-fac-
tors were shown to be related to protein packing and
depend on the three-dimensional structure (Heffernan, 2015;
Parthasarathy & Murthy, 1997; Vihinen 1987; Weiss, 2007; Yin
et al, 2011) and there are numerous other studies investigat-
ing protein flexibility through B-factors (Bornot et al., 2011;
Liu et al., 2014; Parthasarathy & Murthy, 1997; Vihinen et al.,
1994). Moreover, B-factors allow the capture of differences



between crystal packing sites and biologically relevant pro-
tein-protein interaction sites (Liu et al., 2014). It becomes
apparent that B-factors carry a lot of information on both
local and distant protein topologies and by incorporating B-
factor estimates we include additional information on the
local mobility of a Ca atom. This leads to our derived equa-
tion (Eq. (4)) that provides a fingerprint score or Fi-score
through the cumulative sum of standard deviation normal-
ised dihedral angles and scaled B-factors divided by the
amino acid residue number of a selected region of interest.
The fingerprint value captures physicochemical qualities of a
region of interest dependent on conformation; moreover, by
normalising and scaling we can effectively compare regions
of different targets.

Bi—norm = Lm(g) (3)

max(B) — min(B)

Equation (3): Min-max normalisation and scaling of B-fac-
tor where Bi-norm is scaled B-factor, Bi is the B-factor for Ca,
Bmax is the largest B-factor value for the total protein B-fac-
tors for all Co, Bmin is the smallest B-factor value for the
total protein B-factors for all Ca. B-factor normalisation is
based on the full length protein.

Fiscore = Z G(z \III

Equation (4): Fi-score evaluation where N is the total num-
ber of atoms for which dihedral angle information is avail-
able, ¢ and \/ values represent dihedral angles for an Ca
atom, o and o\ represent corresponding standard devia-
tions for the torsion angles and Bi-norm is a normalised B-
factor value for the Co atom. B-factor, ¢ and o\ normalisa-
tion are based on the full length protein.

The described methodology could be of great pharma-
ceutical interest to identify families of targets that are
affected by drug treatment and to characterise binding sites
after mutational studies. For example, when a signalling pro-
tein family contains known drug targets, fingerprinting can
define additional druggable family members without relying
on the sequence similarity alone but actually measuring
physicochemical parameters (Brazhnik et al., 2002). That is,
Fi-score can be employed to capture a region of interest in a
single value form and the generated scores of multiple such
sites could be clustered to enrich based on the similarity
between profiles. This could be useful in building relational
databases since it is still difficult to capture protein region or
domain information in a meaningful and concise way.
Moreover, Fi-score visualisation can also aid to accurately
evaluate the score distribution of different regions along the
protein sequence. For example, domain alignment algorithms
rely on the direct amino acid sequence, while dihedral angles
and B-factors capture both local and distal information as
their distribution is dependent not only on the immediate
sequence but also on the stearic hindrances as well as the
conformation of other protein regions. As a result, Fi-score
could be applied in machine learning to cluster Fi-scores so
that dynamically similar sites can be grouped and evaluated
prior to computationally expensive in silico HTS.

I norm (4)

1
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In summary, we aimed to devise an equation to capture
selected protein site properties that could be used to evalu-
ate structural motifs. This can be achieved either focusing on
individual amino acids and inspecting Fi-score distributions
or selecting a region of interest to generate a single value to
classify sites.

Methods
Protein set selection and analysis

A total of 3352 proteins structures were downloaded directly
from RCSB Protein Data Bank (RCSB PDB, n.d.) by first select-
ing proteins based on their features using Pfam 32.0 (Pfam,
n.d.) and Structural Classification of Proteins (SCOP) data-
bases (SCOP, n.d.) (Table 1, Supplementary material). This
diverse set of randomly selected proteins was used for com-
parative studies of secondary structure elements (50,043 in
total) (Figure 1, supplementary material). We then proceeded
to select the representative examples (Table 1, PDB IDs in
bold) which were analysed using protein BLAST (BLAST: Basic
Local Alignment Search Tool, n.d.) to find good candidates
to form protein pairs that showed a varying degree of simi-
larity (Table 1, PDB IDs not highlighted). From this initial
pool, candidate proteins were selected maintaining diversity
of resolution and R-factor. All paired proteins were subjected
to local alignment to identify regions with as much diversity
as possible in their identity and similarity scores. These
regions were extracted and sequences were globally aligned
to get the final score on the identity, similarity and gaps
since only that region of interest will be used for Fi-scoring.
The alignment and testing was performed with the following
tools and parameters MSA (MUSCLE algorithm, default
parameters; UGENE software version 1.32 (Okonechnikov
et al,, 2012), pairwise alignment (Smith-Waterman algorithm-
Water (EMBOSS), matrix: BLOSSUM62; gap opening: 10; gap
extension: 0.5) , global pairwise alignment (Needleman-
Wunsch algorithm- Needle (EMBOSS), matrix: BLOSSUM62;
gap opening: 10; gap extension: 0.5) (EMBOSS programs,
EMBL-EBI, n.d.) and Protein-Blast/PSI-Blast analyses using
default settings were employed to assess the sequences
(BLAST: Basic Local Alignment Search Tool, n.d.).

Protein dihedral angle analysis and site scoring

Protein dihedral angles were analysed using R package:
Bio3D (Grant et al., 2006) with specific modifications to allow
dihedral angle retrieval, fingerprint calculation and visualisa-
tion (R studio, version 1.1.463) (RStudio, n.d.). Additional
functionalities were introduced to better capture dihedral
angle and B-factor distribution. Hydrophobicity scoring for a
selected site was calculated based on Kyte-Doolittle scale (R
package: Peptides) (Osorio et al., 2015). We selected Kyte-
Doolittle scale since it is a widely used hydrophobicity scale
and has been previously successfully employed in various
algorithms predicting protein secondary structure elements
and their distribution (Kyte & Doolittle, 1982; Zhao &
London, 2006).
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Table 1. Characterisation and scoring of different target protein regions.

Protein Amino Hydrophobicity
Protein name PDBID  Chain acid number Fi-score score Alignment scores RSMD AFi-score
Human GABA-A receptor, 6D6U A 209-300 0.04467536 0.7630435 Identity: 58/96 (60.4%) 1.148  0.07702
subunit beta-2 Similarity: 75/96 (78.1%)
Human glycine receptor 5CFB A 211-306 —0.03234241 0.8642857 Gaps: 4/96 (4.2%)
alpha-3
Interleukin-1 beta 1TTWM A 5-100 —0.2749203 —0.5885417 Identity: 15/109 (13.8%) 11.407  0.58062
mutant F146Y Similarity: 27/109
Therapeutical antibody 4G5Z H 151-215 —0.8555358 —0.08 (24.8%)
fragment of canakinumab Gaps: 57/109 (52.3%)
Therapeutical antibody 4G5Z H 12-214 —0.574754 —0.1655172 Identity: 64/210 (30.5%) 2535 0.21784
fragment of canakinumab Similarity: 95/210
Therapeutical antibody 4G5Z L 13-207 —0.7925909 —0.4451282 (45.2%)
fragment of canakinumab Gaps: 22/210 (10.5%)
Catalytic antibody 21H3 1Um4 L 103-212 —0.4737261 —0.5027273 Identity: 109/110 (99.1%) 0416  0.5890659
with hapten Similarity: 109/110
Therapeutical antibody 4G5Z L 101-210 —1.062792 —0.5027273 (100.0%)
fragment of canakinumab Gaps: 0/110 (0.0%)
Heat shock protein 90-HSP90 2QF6 A 20-220 —0.1866865 —0.2333333 Identity: 207/207 0.023  0.04451
Heat shock protein 90-HSP90 2QF6 B 20-220 —0.2311956 —0.2333333 (100.0%)
Similarity: 207/207
(100.0%)
Gaps: 0/207 (0.0%)
p53 Tetramers, conserved DNA 2ACO A 249-262 —0.434457 0.3285714 Identity: 5/14 (35.7%) 0.679  0.3655604
binding site Similarity: 7/14 (50.0%)
HDM2 in complex with a beta- 2AXI A 29-42 —0.0688966 0.1857143 Gaps: 0/14 (0.0%)
hairpin, SWIB/
MDM2 domain
Src homology 2 (SH2) domain 4EIH A 239-261 —0.1131818 0.2391304 Identity: 6/23 (26.1%) 0.212  0.0608529
Rad18 ubiquitin ligase RING 2Y43 A 66-87 —0.0523289 —0.4409091 Similarity: 13/23 (56.5%)

domain structure

Gaps: 1/23 (4.3%)

* AFi-score—an absolute value of the difference in Fi-scores; PDB IDs in bold—proteins selected initially for screen that were matched to another protein in the

pair based on different similarity and identity values.

Protein visualisation and structural analysis

PyMOL (Molecular Graphics System, Version 2.0 Schrodinger,
LLC) (Delano, 2002) was used for protein visualisation and
superimposition studies (RMSD calculations) as well as struc-
tural analysis integrating python code for robust parsing.

Protein feature capture

Gaussian mixture models (GMMs) (with the following param-
eters: max_iter = 1000, covariance_type="full’ or ‘spherical’,
tol = 0.001, random_state = 0) were implemented to cluster
Fi-score profiled protein sequences. Model selection and
evaluation was performed using probabilistic statistical meas-
ures that are used to quantify the model performance. We
opted for Akaike information criterion (AIC) (Vrieze, 2012)
and the Bayesian information criterion (BIC) (Vrieze, 2012)
since AIC provides an estimate of in-sample error prediction
and information loss, while BIC helps to evaluate for poten-
tial overfitting using the likelihood function to estimate the
number of parameters. The number of components for clus-
tering and correction of the over-fitting was established
using AIC and BIC where the smallest difference between
YAIC and YBIC information criterion values was used to
determine a component number (usually spanning the inflec-
tion point of both curves). Python Scikit-Learn GMM (scikit-
learn 0.22.2) (scikit-learn, n.d.) was used for the above analy-
ses where Gaussian mixture and expectation-maximisation
algorithms where defined by Egs. (5)-(7) to estimate the
density and distribution of Fi-scores for amino acids.

K K
p(Xa) =Y p(Xal2)p(Z) = > mN(Koli =) (5)
k=1 k=1

Equation (5): Equation defining a Gaussian Mixture; where
Yk-covariance for the Gaussian, K is the number of clusters
of the dataset, pk-cluster centre, nk-mixing probability, z - a
latent variable defining a probability that data point comes

from the Gaussian.

Q(0%,0) = E[Inp(X,Z|6")] = > p(Z|X,0)Inp(X,2|6")  (6)

Equation (6): Expectation step defining the equation
where the current value of the parameters 6* is used to find
the posterior distribution of the latent variables given by
P(Z|X,0%).

0" = arg maxpQ(0*,0) 7)
Equation (7): Maximisation step defining the equation to

find the expectation under the posterior distribution of the
latent variables with a new estimate for the parameters.

Results
Fi-score derivation

We developed a method allowing to capture the side chain as
well as the mean atomic displacement distribution in a single
fingerprint score or ‘Fi-score’. Fi-score equation through the
use of standard deviation normalised dihedral angle values
and scaled B-factor using min-max method allows to
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Figure 1. Superimposition of representative examples of human protein regions listed in Table 1 where PDB ID and colour is specified next to the structure.

Images rendered with PyMol.

effectively compare the resulting score across different targets
or sites. We looked into how conformational criteria can be
extracted from the backbone torsion angles (i, ¢) that follow a
very specific local geometry to avoid steric clashes (Figure 2,
Supplementary material); this led us to adopt a standard devi-
ation normalisation for the observed torsional angles. While
several different normalisation approaches exist for dihedral
angles (Shen et al, 2018; Tosatto & Battistutta, 2007), the
mathematical techniques directly depend on the parameter
incorporation into further equations which, in our case,
needed to be formulated in a way to preserve Ramachandran
plot directionality based on positive and negative value so
that multiplication operation allowed to predict either
B-sheet/strand type of conformation (negative) or o-helix
(positive) for the most predominant secondary structure ele-
ments (Figures 1 and 2, Supplementary material). When the
cumulative score is calculated the ultimate value can indicate
the predominance of the said structures and in rarer situations
a less dominant conformations, such as a left-handed a-helix.
Similarly, B-factor values needed to be scaled since values may
be on different scales owing to dissimilar refinement proce-
dures (Figures 3 and 4, Supplementary material) (Carugo,
2018; Carugo & Argos, 1998; Parthasarathy & Murthy, 1997;
Yuan et al., 2003); we applied scaling specifically to take that
into account where scale normalised values of B-factors
ranged from 0 to 1 allowing them to be conceptually inte-
grated into the fingerprint score equation (Figure 3, supple-
mentary material). Finally, dividing the cumulative sum by the
number of residues we can measure an average value for the
region or Fi-score.

Protein characterisation and Fi-score
performance testing

A diverse set of 3352 randomly selected proteins was used for
the comparative studies (Figure 1 and Table 1, supplementary

material) which allowed us to contrast varied regions of target
proteins based on their Fi-score values. After seeing that Fi-
score differentiated between different structural motifs of
50,043 element test set (Figure 1, supplementary material), we
further probed Fi-score, normalised B-factor as well as dihedral
angle distributions and sequence alignment data of selected
proteins (Figure 1, Table 1; Figure 3, supplementary material).
In addition, the selected region was scored for hydrophobicity
and a RMSD value was identified for two target sequences.
Target sequences that share higher similarity have closer Fi-
score values which also correspond to a more similar distribu-
tion profile (Figure 2), for example, a sequence from human
GABA-A receptor, subunit beta-2 (PDB ID: 6D6U) sharing 78.1%
similarity with human glycine receptor alpha-3 (PDB ID: 5CFB)
differ by 0.07702 in their Fi-scores. When compared to a case
of 100% similarity as is for the chain A and B of human heat
shock protein 90, AFi-score value drops to 0.04451. However,
the sequence similarity alone does not play a defining role as
illustrated by catalytic antibody 21H3 with hapten (PDB ID:
1UM4) and therapeutical antibody fragment of canakinumab
light chains (PDB ID: 4G5Z) that although share 100%
sequence similarity have almost a half of Fi-score difference
between them; this is because the Fi-score captures the 3D
distribution of the amino acids, side chain orientation and the
predicted atom movements. The slight shifts in the amino acid
and their side change orientation (Figure 1) will have a notice-
able effect on the Fi-score. Moreover, protein regions that
have large structural differences as showcased by the interleu-
kin-1 beta mutant F146Y (PDB ID: 1TTWM) and therapeutical
antibody fragment of canakinumab (PDB ID: 4G5Z) will have
large corresponding differences between the Fi-score and
RMSD values (RMSD = 11.407A) (Table 1). In many cases
smaller AFi-score values will mean that protein regions have
similar structural and physicochemical profiles but in more
ambiguous cases hydrophobicity analysis should be included
as it indirectly captures the nature of amino acid composition
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Figure 2. Dihedral angle and Fi-score distribution, respectively left and right panels, where ¢ dihedral angle is represented in red and y—blue. Blue region delin-
eates the protein section that was used to calculate Fi-score and in Table 1, supplementary material. Right panels of the corresponding protein structure are colour
coded in arbitrary increments of 50 amino acids. 3D molecule images rendered with PyMol and tables created with R/RStudio.

in the selected region as illustrated by the representative cases
(Table 1). This information can be especially useful as it allows
to compare protein regions of similar mobility or amino acid
composition that have a matching structural profile, for
example, the conserved DNA binding site of p53 (PDB ID:
2ACO0) is quite similar to a region of SWIB/MDM2 domain (PDB
ID: 2AXI) and a similar profile can be seen for the heavy and
light chains of therapeutic antibody fragment of canakinumab
(PDB ID: 4G5Z) (Figure 1, Table 1). These examples illustrate
that depending on the 3D organisation of a region of interest,
conservative substitutions of amino acids, dihedral angle and
B-factor values will have an impact on the individual Fi-score
values for amino acids and the overall cumulative score. There
are many studies that support these findings as it has been
established that B-factors can be used to identify flexibility in
proteins and can also be linked to hydrophilicity as well as
absolute net charge (Kuczera et al., 1990; Liu et al, 2014;
Radivojac et al., 2004; Schlessinger & Rost, 2005; Vihinen et al.,
1994). B-factors can also aid in identifying biologically active
small molecules for a site of interest (Bornot et al.,, 2011; Li
etal, 2017; Liu et al,, 2014; Smith et al., 2003).

Another important criterion is the region size selected for
the analysis since the Fi-score encapsulates conformational
information and does not rely on sequence values alone

80

(where sequence influence arises in a form of dihedral angle
and B- factor distribution) (Pang, 2016; Radivojac et al., 2004;
Weiss, 2007; Yang et al., 2016; Yuan et al., 2003).

Selected window size for the analysis will have an effect
on what information is contained within the Fi-score. A
smaller window size of approximately 20-50 amino acids can
reflect the profile of an average motif in a protein (Figure 2);
however, larger window sizes averaging 100 or more amino
acids reveal the averaged physicochemical information of
that larger window size (Figure 1). This is especially evident
when looking at individual Fi-score values per amino acid
(Figure 2) where the Fi-score distribution captures different
protein regions not easily recognised by looking at the dihe-
dral angle or B- factor distribution alone (Figure 2; Figures 2
and 3, supplementary material).

Verification of Fi-score’s ability to capture structural
topology features

These observations prompted us to investigate a varied set
of proteins with various structural elements ranging from
B-sheets/strands to a-helices as well as mixed or disordered
regions (Table 2, Figure 3). By narrowing down to a unique
structural motif we can capture not only its physicochemical
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Table 2. Structural motif and domain physicochemical characterisation for selected protein structural elements and motifs.

Protein PDB ID Description Amino acid number Fi-score Hydrophobicity score
6534 ao-helix with disordered linker 2-19 —0.1727632 0.3277778
6534 Iregular C-end a-helix 11-17 0.6483593 -0.7
6RZ3, A Single outer a-helix of cellular tumour antigen p53 278-290 0.06747168 —2.646154
6RZ3, B Outer a-helix surrounded by smaller helices and 741-752 0.1493196 0.175
unstructured regions of the carboxyl-terminal conserved
region of inhibitor of apoptosis-stimulating protein of
p53 (iASPP)
6RZ3, B Four o-helices with long stretches of disordered linkers of 661-715 —0.02906267 0.4854545
the carboxyl-terminal conserved region of inhibitor of
apoptosis-stimulating protein of p53 (iASPP)
1W78B Contorted a-helix joining two separate a-helices 154-176 —0.4146927 —0.1521739
1W7B Contorted a-helix joining three separate a-helices 238-276 0.02634468 —-04
1W7B Single outer a-helix 187-200 0.0995633 —1.264286
1W7B Single region of left handed o-helix like structure 89-93 —1.233356 0.72
1DEE, G Protein A ImG binding domain, a-helical motif, chain G 1810-1852 0.122619 —0.7627907
1QCF Antiparallel B-strands 183-207 —0.8710873 —1.108
1QCF Antiparallel B-strands 266-296 —0.2612031 —0.4129032
1A0S, R B-barrel, with three random coil motifs 76-476 —0.3455974 —0.4897756
1A0S, R Three antiparallel B-sheets; outer pore region 351-401 —0.3455974 —0.4960784
1A0S, R Three antiparallel B-sheets connected via o-helix; inner 91-146 —0.2178924 —0.5375
pore region
8TIM TIM barrel 11-241 —0.04860643 —0.1311688
8TIM TIM barrel motif of two B-sheets and a-helix 6-41 —0.1594032 —0.09166667
1DEE, E ImG Fab B-sheet, chain E 2006-2076 —0.6376855 —0.2239437
1DEE, A ImG Fab B-sheet, chain A 6-76 —0.2326242 —0.2239437
6RZ3, B A single stretch of B-sheet strand 806-811 —1.700738 —1.016667
6RZ3, B Disordered region of a protein 764-781 —0.7002029 —0.5944444
6RZ3_A 278-290 aa 6RZ3 B 8TIM  6-41aa
741-752 aa 801-806 aa
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Figure 3. Representative protein structural motifs and regions from Table 2 are colour coded for specific amino acids. 3D molecule images rendered with PyMol.

properties but also reliably categorise it to either a-helix or
B-sheets/strands -like structures. However, structures that are
a mixture of several components, e.g. PDB ID: 6534 (Table 2),
might have opposite sign values or values closer to 0 for Fi-
scores because some less predominant structures of a-helices
and [-sheets occupy negative and positive basins,
respectively.

The higher absolute Fi-score value, the more flexible the
region is likely to be, for example, the outer a-helix of DNA-
binding domain of p53 (chain A, PDB ID: 6RZ34; Table 2, col-
our - red) might appear untethered and relatively flexible;
however, based on the low absolute Fi-score value and a fur-
ther inspection on the inter-chain H-bond formation (Figure

4, supplementary material), this structure is accurately pre-
dicted to be of a limited dynamic range. Other o-helices
complexes within the chain B of the inhibitor of apoptosis-
stimulating protein of p53 (iASPP; chain B, PDB ID: 6RZ34;
Table 2) are of varying flexibility because they are at the con-
tact point between two chains, specifically: a shorter a-helix
(chain B) is less constrained by the polar contacts and inter-
action surface than the other participating elements of this
contact site. Similar patterns can be observed in a-helices
and their complexes of annexin A2 (PDB ID: 1W7B, Table 2,
Figure 3) where flexibility and the Fi-score value depends on
the conformation. In the case of B-strands and pB-sheets,
these secondary structure elements have the same trend of
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Figure 4. Representative proteins and their fi-score clustering based on density estimation GMM where colours of the clusters as well as density lines match struc-
tural element colours of a protein on the right. 3D molecule images rendered with PyMol and tables created with R/RStudio.

higher flexibility associated with higher Fi-score values
(iASPP; PDB ID: 6RZ34, chain B; Table 2, Figure 3). More com-
pact sites have minimal space of side chain and motif move-
ment as can be seen in triose phosphate isomerase (PDB ID:
8TIM, chain A; Table 2, Figure 3). Finally, disordered regions
or regions that combine several secondary structure ele-
ments might have a sign value depending on the dominat-
ing structural sub-motif. All of the above findings are
supported by earlier studies showing that B-factors can act
as indicators of the relative vibrational motion of atoms
where low values belong to a well-ordered site, and the
highest values come from the most flexible regions (Li et al.,
2017; Obradovic et al., 2003; Pang, 2016; Siglioccolo et al.,
2010; Tang et al., 2019; Yuan et al., 2003).

Fi-score classification to capture and predict topological
features using machine learning

Based on the findings that the Fi-score captures and allows
to differentiate among varied protein regions, we wanted to
check if applying clustering would allow us to categorise Fi-
score values as we have already observed clear distribution
patterns (Figure 1). However, some protein regions might be
in transition states and thus, have similar or overlapping Fi-
score values and in order to address that we selected
Gaussian mixture models (GMM) (Dubey, 2004; Mann &
Hermans, 2000; Parthasarathy & Murthy, 1997; Zhang et al.,
2017). GMM is often categorised as a clustering algorithm,
but it has much broader implications functioning as a dens-
ity estimator. Since fundamentally GMM is a generative

probabilistic model, this algorithm was chosen to describe
the distribution of the Fi-scores.

The covariance type for the fits of the majority of studied
cases was left to be modelled as an ellipse of an arbitrary
orientation for each cluster and the optimal number of com-
ponents for a given dataset was determined using AIC and
BIC approaches to avoid overfitting. Fi-score clustering
revealed that GMM allows not only to capture different sec-
ondary structure elements (Figure 4) but at the same time
group them into physicohemically similar units based on the
dihedral angle determined side chain orientation and B-fac-
tor predicted amino acid oscillations amplitude. In the case
study of catalytic antibody 21H3 with hapten (PDB ID: 1UM4,
chains H and L; Figure 4; Figure 6, supplementary material)
we can see that the Fi-score evaluation and clustering suc-
cessfully determined complementarity determining region
B-turns and different B-strands in the immunoglobulin fold.
The heavy and light chain contact sites are also captured
through different chain topology and relevant atomic move-
ment. Another case study of triose phosphate isomerase
(PDB ID: 8TIM) demonstrated how a Fi-score based method
allows to differentiate secondary structure elements of o-heli-
ces and loops at the C-terminal ends of the B-barrel which
are known to be involved in catalytic activity (Reardon &
Farber, 1995). Similarly, N-terminal loops performing a stabil-
ising function were also distinguished from the surrounding
structural elements. This ubiquitous enzyme fold can be fur-
ther resolved into different motifs of interchanging a-helices
and B-strands forming the structure’s core (Figure 4).

As illustrated, Fi-score centered analysis can be a powerful
tool to gain insight into structural topology of a target of
interest. Furthermore, by including density estimation
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contours we can predict the changes of a protein region if,
for example, the structure is not in a crystal but in a solution
(Bryn Fenwick et al., 2014; Powers et al., 1993). This method
could also be expanded to estimate effects of mutations and
what changes in the Fi-score value are the most optimal.
Finally, drug screening studies can benefit from classifying
target sites and cross-referencing with known binders which
could reduce off-target effects as well as allow to address
and better understand cases of unspecific binding or
dynamic instability.

Discussion

In silico target evaluation and compound screening have
become a focal point in drug discovery studies
(Gangadharan et al., 2017); this paradigm shift from in vitro
to computational setting during early stages of pilot studies
represents a need to establish reliable approaches in select-
ing targets and evaluating pharmacological intervention
strategies. The druggability of a protein of interest can be
defined as the likelihood that the target will be amendable
to functional modulation by a compound. This concept can
be also extended to biologics and new therapeutic modal-
ities where the main therapeutic requirement is that there is
an active binding spot to be engaged by the said modulator
(Dias & de Azevedo, 2008; Huang & Dixit, 2016). Thus, our
research aim was to devise an effective way to capture struc-
tural and physicochemical features and use that to not only
investigate sites of interest but also to classify the protein
features providing a scalable way to compare proteins under
investigation.

Protein conformation determination and capturing of the
physicochemical properties remain one of the most import-
ant topics in drug discovery (Huang & Dixit, 2016; Yang
et al,, 2016). That is, defining protein regions that share simi-
lar dynamic range is a significant challenge and in order to
address that we developed a method to capture the side
chain as well as mean atomic displacement distribution to
provide a value that can aid in comparing and characterising
regions of interest which we call a fingerprint score or ‘Fi-
score’. We showed that the Fi-score can capture both local
and distal information via dihedral angle and B-factor distri-
bution which allows us to evaluate potential physicochemical
properties and also extract information on structural motifs
(Figures 1-3; Tables 1 and 2; Table 1, supplementary mater-
ial). Numerous past reports (Hartmann et al., 1982; Kuczera
et al, 1990; Liu et al, 2014; Radivojac et al, 2004;
Schlessinger & Rost, 2005; Vihinen et al., 1994) have already
established that B-factors can be employed to define protein
region hydrophobicity, flexibility or can even be used for
small molecule search against a target site (Bornot et al.,
2011; Li et al,, 2017; Liu et al., 2014; Smith et al., 2003); simi-
larly, dihedral angles (De Juan et al., 2013; Faraggi et al,
2009; Heffernan, 2015; Schlessinger & Rost, 2005) are used
for protein structure modelling and interaction predictions.
However, despite these insights, to our knowledge, there
have been no attempts to capture this information in a uni-
fied way. As a result, we, for the first time, demonstrate that
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the information of both, B-factors and dihedral angles, can
be successfully combined in a single equation.

One of the main challenges of successful therapeutics
development is the establishment of the binding site profile
that could be compared to other sites in a target or other
proteins with similar features (Dias & de Azevedo, 2008;
Fauman et al., 2011; Fuller et al., 2009; Gangadharan et al.,
2017; Hartmann et al., 1982; Knapp, 2016; Li et al, 2017;
Pérot et al., 2010; Santos et al, 2017). This is especially
important when trying to minimise off-target effects or
designing high-throughput virtual screenings with multiple
hot spots in proteins (Bryn Fenwick et al., 2014; Powers
et al., 1993). Our described method provides a solution by
allowing to inspect the differences in dihedral angle and B-
factor distributions as well as score individual motifs and
compare them across all sites of interest. As illustrated, the
Fi-score can provide valuable insights into structural profiles
across different target groups (Figures 2-4). By applying
machine learning approaches we can get density estimation
contours which can then be used to predict the changes in
a specific protein region (Figure 4).

The described methodology could aid in the identification
of target families that are affected by drug treatment since
fingerprinting does not rely on the scanning of sequence
similarity but actually measures physicochemical properties
of the binding site. Fi-score visualisation provides a way to
capture amino acid interactions over a selected span of a
protein sequence and the clustering of Fi-scores can reveal
dynamically similar sites.

This strategy can become especially relevant in the future
as the pharmaceutical industry is shifting toward more com-
plex targets and protein complexes and this requires a sys-
temic approach that could be easily applied to many
different proteins and would not rely on just the sequence
information but would also take into account multidimen-
sional distributions (Brazhnik et al, 2002; Huang &
Dixit, 2016).

All of this could help reduce costs and the time needed
in computationally expensive screenings by helping to priori-
tise targets, their sites as well as estimate potential off-target
effects. In addition, topological feature based evaluation
could allow to predict compound action by juxtaposing simi-
lar sites based on the Fi-score when one site has known
interactors and the other does not. Finally, our work sets the
ground for protein feature scoring that could be used in a
relational way across multiple targets and we aim with our
future research to deliver a robust R package so that a scien-
tific user could quickly test their Fi-score for a
selected target.

Conclusion

We provide a new method to characterise proteins prior to
in silico screening by evaluating potentially dynamically
active regions or predicting sites that share similar qualities
in the side chain distribution and movement. Incorporating
the Fi-score with other physicochemical parameters, such as
hydrophobicity, could greatly improve detecting valuable
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multiple sites within a target or capturing similar profiles
across different targets which in turn could be subjected to
docking studies. Moreover, we showed that by using
machine learning approaches we can expand the analysis of
multiple targets by extracting and defining structural ele-
ments and motifs of various proteins. Fi-score focused ana-
lysis can aid in not only primary target selection studies but
also advance drug or biologics formulation methods by eval-
uating potential binding sites or interaction surfaces. In sum-
mary, this innovative biophysical analysis method could
significantly improve target selection, pre-screening analysis
and speed-up biologics engineering.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics

development

5. Fiscore package: effective protein structural data visualisation and
exploration

The experimental chapter is based on the published software package and publication in
preparation

1. Kanapeckaité A. Fiscore: Effective Protein Structural Data Visualisation and Exploration.
CRAN. 2021 Sep. 02. Version 0.1.3; https://cran.r-project.org/web/packages/Fiscore/index.html

2. Kanapeckaité A. Fiscore: effective protein structural data visualisation and exploration.
Accepted and in preparation.

Conclusion of this chapter

My goal when developing the Fiscore package was to allow a user-friendly exploration of PDB
structural data and the integration of that information into various machine learning methods. The
package was benchmarked through several analytical stages that involved a diverse set of proteins
(3352) to assess scoring principles and package functionalities (1337 structures). With a number of
helpful functions, including distribution analyses or hydrophobicity assessment in the context of
structural elements, Fiscore enables the exploration of new target families and comprehensive data
integration since the described fingerprinting captures protein sequence and physicochemical
properties. Such analyses could be very helpful when exploring therapeutically relevant proteins.
Similarly, Fiscore could aid in drug repurposing studies when a chemical compound needs to be
juxtaposed to a number of potential targets. This was also demonstrated during a native ligand
search for the Nur77 protein. Thus, the Fiscore package provides an extensive analytical
environment where in-depth analyses are streamlined for non-experts.

Contribution to this chapter (100%)

* Methodology development, equation and scoring function derivation, as well as machine learning
pipeline implementation.

* Developed new programmatic features expanding various structural analyses.

* Performed software package development and testing.

* Conceptualised and wrote the documentation files and vignettes, including the figure preparation.
* Conceptualised and wrote the manuscript, including the figure preparation.

* Corresponding author and maintainer.
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ABSTRACT

The lack of bioinformatics tools to quickly assess protein conformational and topological features motivated to create an integrative and user-friendly R package.
Moreover, the Fiscore package implements a pipeline for Gaussian mixture modelling making such machine learning methods readily accessible to non-experts. This
is especially important since probabilistic machine learning techniques can help with a better interpretation of complex biological phenomena when it is necessary
to elucidate various structural features that might play a role in protein function. Thus, Fiscore builds on the mathematical formulation of protein physicochemical
properties that can aid in drug discovery, target evaluation, or relational database building. In addition, the package provides interactive environments to explore
various features of interest. Finally, one of the goals of this package was to engage structural bioinformaticians and develop more robust and free R tools that could
help researchers not necessarily specialising in this field. Package Fiscore (v.0.1.3) is distributed free of charge via CRAN and Github.

1. Introduction

Fiscore R package was developed to quickly take advantage of protein
topology/conformational feature assessment and perform various anal-
yses allowing a seamless integration into relational databases as well as
machine learning pipelines [1]. The package builds on protein structure
and topology studies which led to the derivation of the Fi-score equa-
tion capturing protein dihedral angle and B-factor influence on amino
acid residues (Egs. (1) and (2)) [1]. The introduced tools can be very
beneficial in rational therapeutics development where successful engi-
neering of biologics, such as antibodies, relies on the characterisation
of potential binding or contact sites on target proteins [1,2]. Moreover,
translating structural data into scores can help with target classification,
target-ligand information storage, screening studies, or integration into
machine learning pipelines [1,2]. As a result, Fi-score, a first-of-its-kind
in silico protein fingerprinting approach, created a premise for the devel-
opment of a specialised and freely distributed R package to assist with
protein studies and new therapeutics development [1].

Fiscore package allows capturing dihedral angle and B-factor effects
on protein topology and conformation. Since these physicochemical
characteristics could help with the identification or characterisation of a
binding pocket or any other therapeutically relevant site, it is important
to extract and combine data from structural files to allow such informa-
tion integration [1,3,4]. Protein dihedral angles were selected as they
contain information on the local and global protein structural features
where protein backbone conformation can be highly accurately recre-
ated based on the associated dihedral angles [1,4]. Furthermore, since
Ramachandran plot, which provides a visualisation for dihedral angle
distributions, namely ¢ (phi) and y (psi), allows only a holistic descrip-
tion of conformation and cannot be integrated with traditional para-
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metric or non-parametric density estimation methods, a specific trans-
formation was required to use this data. An additional parameter, specif-
ically the oscillation amplitudes of the atoms around their equilibrium
positions (B-factors) in the crystal structures, was also used. B-factors
encompass a lot of information on the overall biomolecule structure;
for example, these parameters depend on conformational disorder, ther-
mal motion paths, and the rotameric state of amino acids side-chains.
B-factors also show dependence on the three-dimensional structure as
well as protein flexibility [1,4]. Normalised dihedral angles (standard
deviation scaling to account for variability and distribution) and scaled
B-factors (min-max scaling) (Eq. (1)) were integrated into the Fi-score
equation (Eq. (2)). It is important to highlight that B-factors need to be
scaled so that different structural files can be compared and that the di-
hedral angle normalisation transforms angular data into adjusted values
based on the overall variability [1]. Thus, combining dihedral angle and
B-factor values into a single parameter provides a way to extract infor-
mation on individual residues, residue clusters, motifs, and structural
features. This information can be efficiently transferred into machine

learning to detect data characteristics not easily identifiable otherwise.
Bifnorm = BBi_BgiI“
'max — “min
Equation 1. Min-max normalisation and scaling of B-factors where
B, _,,rm is a scaled B-factor, B, - B-factor for a selected C,, atom in a chain,
Bmax - the largest B-factor value for all C, B-factors in a protein, Bmin
- the smallest B-factor value for all C, B-factors in a protein. B-factor
normalisation is based on the full length protein.
Fi:core = % Zi U::Zl:/i B
Equation 2. Fi-score evaluation where N is the total number of atoms
for which dihedral angle information is available, ¢ and y values rep-
resent dihedral angles for a specific C, atom, o4, and o,, represent cor-

i—norm
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responding standard deviations for the torsion angles and B,_,,,,, is a
normalised B- factor value for the C, atom. B-factor, o, and ¢, nor-
malisation is based on the full length protein.

In order to identify meaningful clusters based on the structural com-
plexity, Gaussian mixture models (GMM) were selected as a primary
machine learning classifier [1]. The strength of GMM lies in the proba-
bilistic model nature since all data points are assumed to be derived from
a mixture of a finite number of Gaussian distributions with unknown
parameters [1,5]. Consequently, the soft classification of GMM where
a data point has a probability of belonging to a cluster is much more
suitable to assess biological parameters compared to other hard classifi-
cation techniques in machine learning, such as k-means, which provide
only a strict separation between classes. GMM pipeline offers a number
of benefits to categorise protein structural features and the information
can be used to explore amino acid grouping based on their physico-
chemical parameters. The designed GMM implementation takes care of
the information criterion assessment to fine tune the number of clusters
for modelling and predicts the best suited model for the expectation-
maximisation (EM) algorithm to maximise the likelihood of data point
assignments [1,5]. As a result, protein residues can be grouped based on
their Fi-scores where this information can be used to identify emerging
patterns in the protein conformation or topology.

Nur77 protein was used as a case example to demonstrate various
package functionalities. Nuclear receptor subfamily 4 group A member
1 (NR4A1), also known as Nur77/TR3/NGFIB, is a member of the nu-
clear receptor superfamily and regulates the expression of multiple tar-
get genes [6]. This nuclear receptor is classified as an orphan receptor
since there are no known endogenous ligands. Nur77 has the typical
structure of a nuclear receptor which consists of N-terminal, DNA bind-
ing, and ligand-binding domains. This regulatory protein plays many po-
tentially therapeutically relevant roles regulating cell proliferation and
apoptosis [6]. Consequently, the Nur77 protein is an excellent example
to highlight how in-depth structural analysis and classification could be
used in better understanding protein functions and finding druggable
binding sites or identifying ligands.

Based on the need to develop integratable and specialised tools for
protein analyses, the Fiscore package was developed to assist with a
wide spectrum of research questions ranging from exploratory analy-
ses to therapeutic target assessment (Fig. 1). The introduced set of new
tools provides an interactive exploration of targets with an easy integra-
tion into downstream analyses. Importantly, the package and associated
tools are written to be easy to use and freely available facilitating anal-
yses for non-specialists in structural biology or machine learning.

2. Methods

Fiscore package architecture is divided into exploratory and ad-
vanced functions (Fig. 1). Several key packages, such as ggplot2 [7],
Bio3D [8], plotly [9], and mclust [10], are also employed to create an
easy-to-use analytical environment where a user-friendly machine learn-
ing pipeline of GMM [1] allows for a robust structural analysis. GMM
implementation is designed to include the optimal cluster number eval-
uation (Bayesian information criterion; BIC), automatic model fitting
in the EM phase of clustering, model-based hierarchical clustering, den-
sity estimation, as well as discriminant analysis [1,11]. Researchers also
have an option to perform advanced exploratory studies or integrate the
package into their development pipelines. Fiscore also takes care of raw
data pre-processing and evaluation with optional settings to adjust how
the analyses are performed. The package was built using functional pro-
gramming principles with several R S3 methods to create objects for PDB
files [12]. Fiscore is accompanied by documentation and vignette files
to help the users with their analyses [11]. Since PDB files are typically
large, the documentation provides a compressed testing environment
as well as a detailed tutorial. Additional visualisations were generated
with PyMol [13]. Proteins were retrieved from the Protein Data Bank
database [14]. Protein sequence alignments were performed with PSI-
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BLAST using default parameters and a single iteration [15]. Hydropho-
bicity plots for Nur77 functional analysis were generated with the fol-
lowing parameters: window = 15,weight = 25, model="exponential”.
Student’s t-test (two-sided, unpaired, sig. level=95%) was performed in
the R programming environment.

3. Results

3.1. Data preparation

The workflow begins with the PDB file pre-processing and prepara-
tion. The user should also generally assess if the structure is suitable for
the analysis; that is, the crystallographic data provides a good resolution
and there are no or a minimal number of breakages within the reported
structure. Function PDB process takes a PDB file name which can be
expressed as 6KZ5.pdb or path/to/the/file/6KZ5.pdb. One of the func-
tion’s dependencies is package Bio3D [8], this useful package provides
several tools to begin any PDB file analysis. In addition, the PDB_process
function can take a path parameter which can point to a directory where
to split PDB files into separate chain files (necessary for the downstream
analysis). If this option is left empty, a folder in the working directory
will be created automatically. If the user splits multiple PDB files in a
loop, they will be continuously added to the same folder. After the pro-
cessing, the function PDB process returns a list of split chain names. It is
important to highlight that PDB files need to be split for the downstream
processing so that separate chains can be analysed independently.

After a file or files are pre-processed the function PDB prepare can be
used to prepare a PDB file to generate Fi-score and normalised B-factor
values as well as secondary structure designations. The function takes
a PDB file name that was split into separate chains, e.g., 6KZ5_A.pdb,
where a letter designates a split chain. The file is then cleaned and
only the complete entries for amino acids are kept for the analysis, i.e.,
amino acids from the terminal residues that do not contain both dihe-
dral angles are removed. The function returns a data frame with pro-
tein secondary structure information ‘Type’, Fi-score values per residue
‘Fi_score’, as well as normalised B-factor values for each amino acid C,
‘B_normalised’ (Fig. 2). Extracting protein secondary structure informa-
tion, i.e., ‘Type’, helps to prepare a data object so that the information
about a target can be supplied into cheminformatics or other bioinfor-
matics pipelines where structural features are important to assess pro-
tein sites and amino acid composition. These features are new and ex-
tend structural file exploration possibilities compared to, for example,
other software packages, such as Bio3D [8].

Function calls are simple and user-friendly:

#General function for pre-processing raw PDB files

pdb_df<-PDB_process(pdb_path)
#Cleaning and preparation of PDB file
pdb_df<-PDB_prepare(pdb_path)
#Explore the output

head(pdb_df)

#The  package allows to call test data
for the Nur77 example file

directly

” o«

pdb_path<- system.file(“extdata”, “6kz5.pdb”, package=“Fiscore”)

3.2. Exploratory analyses

The scope of the exploratory analyses provides options to evaluate
physicochemical parameters, such as dihedral angles, B-factors, or hy-
drophobicity scores, and visualise their distribution (Fig. 1).
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Fig. 1. Schematic visualisation of the package features.

Basic analyses are accessed through simple function calls to ex-
plore how dihedral angles and B-factors are distributed. These anal-
yses offer interactive and easy visualisations of key parameters that
are currently not offered in any other package. For example, while
Bio3D [8] has many useful functionalities for the exploration of PDB
files, ‘Fi score’ extends exploratory analyses by allowing a simplified
and in-depth look into the key physicochemical parameters, such as B-
factor value visualisation or generation of Ramachandran plots. Simi-
larly, other freely available tools (distributed as an online service), such
as Expasy ProtScale [16,17], provide only one dimensional assessment
without incorporating structural features and do not process PDB files.
‘Fi_score’, however, combines sequence, structural, and physicochemical
analyses in simple function calls to quickly explore the user data.

## phi psi chil chi2 chi3 chi4 chi5 df_resno
## 31.A.ALA 54.94701 53.80667 NA NA  NA NA NA 31
## 32.A.ASN -60.91976 -18.01379 -157.93838 -76.10748 NA NA NA 32
## 33.A.LEU -64.18792 -45.94048 176.74103 46.17107 NA NA NA 33
## 34.A.LEU -65.44501 -38.46630 -88.61643 158.49518 NA NA NA 34
## 35.A.THR -67.68541 -43.43184 75.18019 NA NA NA NA 35
## 36.A.SER -76.88914 -17.40880 157.45159 NA  NA NA NA 36
## df res B factor B normalised Fi score Type
## 31.A.ALA ALA 30.07 0.35506724 0.37663226 Right-handed alpha helix
## 32.A.ASN ASN 15.68 0.18227666 0.07176640 Right-handed alpha helix
## 33.A.LEU LEU 7.79 0.08753602 0.09261096 Right-handed alpha helix
## 34.A.LEU LEU 9.85 0.11227185 0.10140389 Right-handed alpha helix
## 35.A.THR THR 20.79 0.24363593 0.25696344 Right-handed alpha helix
## 36.A.SER SER 23.69  0.27845821 0.13372748 Right-handed alpha helix

Fig. 2. PDB file processing output.

#Calling a Ramachandran plot function

phi_psi_plot(pdb_df)
#Visualisation of dihedral angle juxtaposed distributions

phi_psi_bar_plot(pdb_df)

#B plot value visualisation

B_plot_normalised(pdb_df)

#Interactive plot to map amino acids via 2D distribution
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Fig. 3. Hydrophobicity plot with secondary structure superimposition.

#to precisely see what parameters an individual amino acid has
phi_psi_interactive(pdb_df)

#3D visualisation of dihedral angles and B-factor values
phi_psi_3D(pdb_df)

An especially useful functionality is the hydrophobicity visualisation
with the superimposed secondary structure elements. To the author’s
knowledge, there are currently no tools implementing such a visuali-
sation (Fig. 3). In contrast to Expasy ProtScale [16,17], it is possible
to visualise hydrophobicity values and their corresponding secondary
structure elements as extracted from the PDB file. Such an assessment
provides a direct way to compare structural features based on their affin-
ity to water. This can be very helpful in evaluating or predicting poten-
tial binding sites as well as bioengineering new proteins.

The package provides an easy to use wrapper:

#Alternatively an exponential model can be selected

hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = "ex-
ponential”)

The nuclear receptor was assessed to provide a case example for the
introduced hydrophobicity analysis. The evaluation revealed an overall
dynamic profile for the protein. Moreover, Nur77 evidently contains a

Fig. 4. Nur77 protein where magenta highlights are used to define a likely dis-
ordered region between 50 and 70 amino acids and the cyan color indicates a
region between 127 and 140 amino acids.

relatively large number of right-handed alpha helices with the majority
showing a hydrophobic profile, i.e., the larger the score, the more hy-
drophobic the region. Some likely disordered regions can be seen span-
ning 50-70 amino acids (Fig. 4). Another interesting region is around
126-136 amino acids since these amino acids undergo significant shifts
in their hydrophilicity and hydrophobicity. Similarly, the region around
180-210 amino acids appears to be actively changing preferences from



A. Kanapeckaite

Fi-score value distribution

Artificial Intelligence in the Life Sciences 1 (2021) 100016

2.5 -
D0~
4
E
o s
5
25~
50«
50 100 160 200 260
Residue number
Fig. 5. Fi-score distribution for Nur77.
= Fig. 6. Gaussian mixture modelling output show-
S i /%;923 ﬁ-ﬁ—ﬁi!:‘:g g ing Bayesian information criterion evaluation.
% F=A /l—.;H\'. Ef;grgf%fﬁ:’grgzaig
A4 a
o
S
3 4
®
2 8
& g A/A/A“A*A
A/A/A/
A Ell  * VEE
o R A VI © EVE
3 / e EEl ¢ VVE
b & = VEI # EEV
@ EVI ® VEV
/ o VI B EVV
o A = EEE O VVV
S
8 I T I T T T T T T T I T T T T T T T T I
172 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of components

little solvent to being solvent exposed. This might suggest that the site
undergoes considerable movements or actively engages other proteins
or the DNA sequence. The disordered elements in this sequence stretch
also imply that the region has to likely accommodate various rearrange-
ments. Thus, studying these sites could provide hints at functionally im-
portant protein domains or subdomains (Figs. 3 and 4). Finally, evalu-

ating N and C terminal sites for the purpose of protein engineering, we
can see that a histidine tag would not significantly disrupt the confor-
mation of the molecule and the C-terminus is probably the best site for
the tag.

It is worth commenting on the derivation of the hydrophobicity scor-
ing since the algorithmic nature of the process provides several impor-
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Fig. 7. Output table for Gaussian mixture modelling evaluation.

tant analytical angles. The function builds on the Kyte-Doolittle hy-
drophobicity scale [1,18] to detect hydrophobic regions in proteins.
Regions with a positive value are hydrophobic and those with neg-
ative values are hydrophilic. This scale can be used to identify both
surface-exposed as well as transmembrane regions, depending on the

Cluster distribution across the protein
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window size used. However, to make comparisons easier, the original
scale is transformed from O to 1 (similar scaling is also implemented
in Expasy ProtScale [16,17]). The function requires a PDB data frame
generated by PDB prepare and the user needs to specify a window pa-
rameter to determine the size of the window for hydrophobicity cal-
culations. The selection must be any odd number between 3 and 21
with the default being 21. Another parameter is weight that needs to
be supplied to the function to establish a relative weight of the window
edges compared to the window center (%); the default setting is 100%.
Finally, a model parameter provides an option for weight calculation;
that is, the selection determines whether weights are calculated linearly
(y = k - x + b) or exponentially (y = a - b*); the default model is ‘linear’.
The function evaluates each amino acid in a selected window where a
hydrophobic influence from the surrounding amino acids is calculated
in. While the terminal amino acids cannot be included into the window
for centering and weighing, they are assigned unweighted values based
on the Kyte-Doolittle scale [18]. The plot values are all scaled from 0
to 1 so that different proteins can be compared without the need to
convert.

Thus, the hydrophobicity analysis can be especially useful when
preparing to engineer proteins for various expression systems as the
superimposition of structural features and hydrophobicity scores can
help deciding if a protein region or domain is likely to be solvent ex-
posed or prefer hydrophobic environments. For example, assessing the
hydrophobicity and structural milieu of the N or C terminal amino acids
can help selecting which terminal site should be tagged (as was demon-
strated with Nur77). Moreover, this tool could be broadly applied in
drug discovery studies involving the assessment of protein-protein in-
teractions, protein-nucleic acid interactions, and membrane association
events based on physicochemical characteristics.

Type
Cluster
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(1,Right-handed alpha helix)
(2,NA)
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(2,Right-handed alpha helix)
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Fig. 8. The Nur77 protein cluster identification with secondary structure elements.
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3.3. Advanced analyses

Advanced analyses provide an opportunity to evaluate Fi-score dis-
tributions and take advantage of a streamlined GMM pipeline (Fig. 1).
The main impetus for the development of this pipeline was the need
for functions and data modelling tools that could be made freely

accessible to non-experts. By contrast, commercial solutions, namely
Schrndinger chemical simulation software [19], or non-commercial/
semi-commercial solutions, including PSIPRED, AutoDock, MGLtools,
and Expasy [16,20-22], lack a simple software platform to summarise
and assess protein structural data that can be integrated into machine
learning. While the mentioned software suites or online workbenches
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provide many useful functionalities, there is no one solution to use ma-
chine learning based inferences on the user’s structural data. ‘Fi score’
enables researchers to quickly extract, assess, and summarise key fea-
tures of their data and incorporate that information into downstream
analyses or custom pipelines. That is, more advanced users are also given
opportunity to supply custom parameters for the GMM workflow and
extract probabilities from the output to use scores in other analyses or
integrate the values in their own discovery pipelines.

#Fi-score distribution plot to explore scores for correspond-
ing amino acids

Fi_score_plot(pdb_df)

#Fi-score for a selected region

#this value for multiple sites can be stored in relational databases

Fi_score_region(pdb_df,50,70)

#Plot of Fi-score values with superimposed secondary structures

Fiscore_secondary(pdb_df)

For example, a Fi-score distribution plot captures several interesting
regions in Nur77 around the 50, 130, and 180 amino acids (Fig. 5) that
coincide with the Fi-score shifts and mirroring patterns. Some other re-
gions are also picked up which should be studied in more detail based on

the amino acid composition and 3D conformations. The uncovered char-
acteristics can be juxtaposed to other similar sites to better understand

interaction mechanisms. Such approaches are especially useful when
comparing known structures with the newly identified or investigating
potential structural outliers.

Extracted Fi-score values can be used in machine learning modelling
and this is enabled through the function cluster ID. This function groups
structural features using the Fi-score and Gaussian mixture modelling
where an optimal number of clusters and a model to be fitted during the
EM phase of clustering for GMM are automatically selected (Fig. 6). The
output of this analytical tool summarises cluster information and also
provides plots to visualise the identified clusters based on the cluster
number and BIC value (Fig. 7). These outputs can be used to better
assess model performance for the select parameters if the users chose to
customise their model building.

#User selected parameters
df<-cluster_ID(pdb_df,clusters = 5, modelNames = ”"VVI”)

The users are advised to set seed for more reproducible results when
initiating their projects. cluster ID takes a data frame containing a pro-
cessed PDB file with Fi-score values as well as a number of clusters to
consider during model selection; by default 20 clusters (‘max_range’) are
explored. In addition, a ‘secondary_structures’ parameter is needed to
define whether the information on secondary structure elements from
the PDB file needs to be included when plotting; the default value is
TRUE. Researchers also have an option to select a cluster number to
test ‘clusters’ together with ‘modelNames’. However, it is important to
stress that both optional entries need to be selected and defined, if the
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Fig. 12. Fi-score distribution plots with the Nur77 ligand binding domain (PDB ID:6KZ5), retinoic acid receptor alpha (PDB ID: 1FBY), and estrogen-related receptor
gamma (PDB ID: 6KNR). Rainbow spectrum of the Nur77 structure allows to visualise the sequence from N-terminal (blue) to C-terminal (red). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

user wants to test other clustering options that were not provided by the
automated BIC output. This is an advanced option and the user should
assess the BIC output to decide which model and what cluster number
he or she wants to try out. It is important to note that cluster ID offers
a user-friendly implementation of GMM where most technical decisions
are already incorporated automatically.

A dimension reduction method for the visualisation of clustering is
also automatically provided (Fig. 10). Dimension reduction is a use-
ful technique to explore multi-dimensional biological data through key
eigenvalues that define the largest information content of the explored
features [10]. In other words, one can infer how well the explored char-
acteristics define the data and if the classification is sufficient for down-
stream analyses. For example, in the case of Nur77 Fi-score clustering,
this analysis allowed assessing how well the number of clusters separates
data points based on their distribution features. Nur77 has six clusters
which might indicate functionally and structurally distinct regions in
the target protein. It appears that the data points are well separated into
groups accounting for the different variability. The dimension reduction
approach could also help deciding if a different number of clusters might
better classify Fi-scores. One of the goals of building this software pack-
age was not only to provide accessible and easy-to-use functions but also
to generate additional plots allowing to assess model performance and
data point distribution.

In addition, one of the most valuable features of this set of functions
is to generate clusters with secondary structure information (Figs. 8 and
9).The produced interactive plots enable researchers to explore struc-
tural characteristics of a protein of interest (Figs. 8 and 9). Thus, the
subdivision of a protein structure based on the physicochemical features

offers a new way to detect and explore functional sites or structural el-
ements. Figs. 9 and 10 clearly indicate that some structural elements in
Nur77 are likely similar in their function and physicochemical charac-
teristics. For example, different types of helices as well as beta sheets in
some cases overlap in their Fi-score characteristics and the assigned clus-
ter type. This detailed capture of structural elements can help evaluate
conformational outliers or infer similarities for different motifs. More-
over, it can be clearly seen that the region around the 50 amino acid is
set to be distinct from the other two sites around 130 and 180 amino
acids which could suggest overall different motion and interaction pro-
files. These findings also correspond with the earlier observations for
the hydrophobicity features (Fig. 3). A similar trend can be seen for N
and C terminus clusters which form distinct groups and might indicate
sites where the receptor mediates specific functions [6]. GMM guided
analyses offer a novel way to extract patterns that might not be observ-
able using other methods dependent on sequence based analytics, e.g.,
Expasy [16,17].

All previous analyses tie in with the function density plots which pro-
vides a density plot set for ¢/y angle distributions, Fi-scores, and nor-
malised B-factors. 3D visualisation of dihedral angle distribution for ev-
ery residue is also included. These plots can be used for a quick as-
sessment of the overall parameters as well as to summarise the obser-
vations. Density plots are very useful when evaluating how well the
selected features or scores separate protein structural elements and if a
protein structure is of good quality (i.e., dihedral angles, B-factors, or Fi-
scores provide reasonable separation between elements). The function
also gives another reference point to establish if the selected number
of clusters differentiates residues well based on the secondary structure
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Fig. 13. PyMol generated plots to visualise protein structures where blue colors indicate the region identified through Fi-score patterns where cis-9 retinoic acid is
highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

elements. In order to get this information, the user is only required to
supply the output from the cluster ID function (Fig. 11).
Data summary and evaluation

density_plots(pdb_df)
Data summary and evaluation including GMM outputs
cluster_IDs<-cluster_ID(pdb_df)

density_plots(cluster_IDs)

3.4. Case study: exploring potential ligands for the Nur77 orphan receptor

To demonstrate some of the Fiscore applications, potential ligands
were searched for the Nur77 receptor which can be considered as a
complex target since no endogenous ligands are known for this orphan
receptor [6]. The first analysis step involved searching for other similar
human proteins that did not belong to the Nuclear receptor subfam-
ily 4. PSI-BLAST alignment analysis led to several candidate proteins,
namely the retinoic acid receptor alpha (PDB ID: 1FBY) and estrogen-
related receptor gamma (PDB ID: 6KNR) [15]. These proteins showed
a good alignment to the Nur77 ligand binding domain sequence (av-
erage percent identity 31.68%; Suppl. Table 1) and were subsequently
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used for the structural and functional exploration. Comparing Nur77 Fi-
scores with the retinoic acid receptor alpha and estrogen-related recep-
tor gamma Fi-score distributions revealed several interesting patterns
(Fig. 12). The shaded blue region highlights a matching distribution
pattern for all the proteins and the Student’s t-test confirmed that none
of the distributions differed significantly (Fig. 12; Suppl. Table 2). In-
triguingly, this region is involved in mediating interactions with retinoic
acid in the retinoic acid receptor alpha (Fig. 13). Similarly, the estrogen-
related receptor gamma (PDB ID: 6KNR) has a known inverse agonist
binding to the same cavity created by paired alpha-helices, an anti-
parallel beta sheet, and disordered stretches [23]. The inverse agonist
exhibits several structural features, such as the scaffold size/orientation
and key aromatic groups, that are similar to retinoic acid. Moreover,
despite the different amino acid composition, the key physicochemical
features are preserved in this site across the investigated proteins as can
be seen from the superimposition studies (Fig. 13). These observations
point to the fact that this region might be essential in accommodating
binding events. Importantly, machine learning exploration (Fig. 8& 9)
helped to classify Fi-scores around this region which revealed a repeat-
ing pattern very different from a surrounding N- and C-terminal regions.
This further implies a site of special functional importance where data
was grouped based on emerging probabilistic patterns in data point val-
ues. This case study suggests an interesting possibility that Nur77 with
no known ligands might bind to chemical entities similar to retinoic
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acid [6]. This is also supported by the alignment data and hydrophobic-
ity plots (Suppl. Figs. 1-3) where Nur77 and the retinoic acid receptor
alpha show substantial structural and physicochemical overlaps for this
interactor site. Further molecular modelling and docking studies could
aid in better understanding binding energetics and emerging interac-
tions.

Overall, this example reveals that extracting patterns through scor-
ing and machine learning could help identify proteins that have shared
and functionally related features. Thus, Fiscore allows an easy implemen-
tation of protein structural data mining and classification without nec-
essarily performing multiple visual inspections of the structures. These
analytical principles can also be applied to explore other proteins of
interest and their potential ligands.

4, Discussion

Fiscore package was developed to address the need for a simple-to-
use, freely available, and adaptable set of tools for protein physicochem-
ical feature exploration via machine learning. By contrast, other com-
mercial, semi-commercial, or free software tools lack machine learn-
ing pipeline implementation to explore structural features and in most
cases users need special knowledge to employ these pieces of software
[8,16,19-22].

Fiscore package (Fig. 1) allows a user-friendly exploration of PDB
structural data and integration with various machine learning methods.
The package was benchmarked through several analytical stages that
involved a diverse set of proteins (3352) to assess scoring principles
[1] and package functionalities (1337 structures) [11]. With a number
of helpful functions, including distribution analyses or hydrophobicity
assessment in the context of structural elements, Fiscore enables the ex-
ploration of new target families and comprehensive data integration
since the described fingerprinting captures protein sequence and physic-
ochemical properties. Such analyses could be very helpful when explor-
ing therapeutically relevant proteins. In addition, provided tutorials and
documentation should guide researchers through their analysis and al-
low adapting the package based on individual project needs [1]. Fiscore
could also aid in drug repurposing studies when a chemical compound
needs to be juxtaposed to a number of potential targets. This was demon-
strated during a native ligand search for Nur77 where a case study of a
nuclear receptor revealed the usefulness of the introduced scoring and
physicochemical data capturing via GMM. Furthermore, the novel scor-
ing system as well as machine learning applications can lead to inter-
esting insights about sites of structural and functional importance. The
retrieved information could be used in comparative studies to search for
other proteins that share similar features. For example, some of the shifts
in Fi-score values coincide or precede post-translational modifications
in Nur77 (Fig. 5) [24]. This information could be included in the fu-
ture studies together with fingerprinting to better understand structural
characteristics of this receptor.

Another important aspect of the Fiscore package is the simplification
of complex analytical steps so that the researchers without an exten-
sive background in structural bioinformatics or machine learning could
still use the tools for their analyses, such as protein engineering, pro-
tein assessment, and data storage based on specific target sites. Thus,
the interactive analytical and visualisation tools could become espe-
cially relevant in the pharmaceutical research and drug discovery stud-
ies as more complex targets and protein-protein interactions need to
be assessed in a streamlined fashion. In other words, ability to trans-
late structural data into parameters could accelerate target classifica-
tion, target-ligand studies, or machine learning integration. Since target
evaluation is paramount for rational therapeutics development, there is
an undeniable need for specialised analytical tools and techniques that
can be used in R&D or academic research. Implementing these novel
approaches could significantly improve our ability to assess new targets
and develop better therapeutics. As a result, the Fiscore package was de-
veloped to aid with therapeutic target assessment and make machine
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learning techniques free-to-use and more accessible to a wider scientific
audience.
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Experimental chapter

Integrative omics approaches for new target identification and therapeutics

development

6. In silico drug discovery for a complex immunotherapeutic target -
human c-Rel protein

The experimental chapter is based on the following publication

Kanapeckaité A, Beaurivage C, JanCorien¢ L, Mazeikiené A. In silico drug discovery for a complex
immunotherapeutic target-human c-Rel protein. Biophysical Chemistry. 2021 Sep 1;276:106593;
doi: 10.1016/5.bpc.2021.106593. Selected as the issue cover.

Conclusion of this chapter

In this chapter I introduce my work on the efficient development of therapeutic agents through an
early in silico analysis which can reduce both the costs and time needed to discover promising lead-
like compounds. My developed screening methodology is an efficient drug screening approach
when no crystal structure exists for a target of interest. This variant of in silico screening can
become central in drug discovery and can be used to better understand the molecular basis of target
interactions prior to performing costly in vitro screens. By using computational methods and the 3D
structural information of c-Rel, it was possible to investigate the differences in ligand-c-Rel binding
and validate that with HTVS. Computational analysis resulted in the identification of 15 promising
compounds that could be further tested in vitro for the c-Rel protein inhibition or modulation.
Finally, my research helped to demonstrate that immunotherapies can be developed by relying more
on discovering new drug candidates in silico which could be more quickly and cost-efficiently
translated into in vitro screens.

Contribution to this chapter (95%)

* Devised the methodology and screening pipeline.

 Performed all the analytical, data mining, molecular modelling, screening, and experimental work
as well as formulated conclusions.

* Performed benchmarking and comparative analyses.
* Conceptualised and wrote the manuscript, including the figure preparation.
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Target evaluation and rational drug design rely on identifying and characterising small-molecule binding sites on
therapeutically relevant target proteins. Immunotherapeutics development is especially challenging because of
complex disease etiology and heterogenous nature of targets. c-Rel protein, a promising target in many human
inflammatory and cancer pathologies, was selected as a case study for an effective in silico screening platform
development since this transcription factor currently has no successful therapeutic inhibitors or modulators. This
study introduces a novel in silico screening approach to probe binding sites using structural validation sets,
molecular modelling and describes a method of a computer-aided drug design when a crystal structure is not
available for the target of interest. In addition, we showed that binding sites can be analysed with the machine
learning as well as molecular simulation approaches to help assess and systematically analyse how drug can-
didates can exert their mode of action. Finally, this cutting-edge approach was subjected to a high through-put
virtual screen of selected 34 M drug-like compounds filtered from a library of 659 M compounds by identifying
the most promising structures and proposing potential action mechanisms for the future development of highly

selective human c-Rel inhibitors and/or modulators.

1. Introduction

High-throughput screening (HTS) of large compound libraries
against a therapeutically-relevant target allows to identify compounds
showing pharmacological promise and select new hit compounds that
could be further optimised in hit-to-lead phase. In order to reduce costs
and delivery time many leading pharmaceutical companies have their
HTS preceded by in silico screens. The main advantage of the preparatory
computational analysis is increased resource savings and a better un-
derstanding of relevant biological activity. As a result, a varied assort-
ment of computational platforms are used for early stage screening
studies to successfully identify candidates and narrow down the chem-
ical search space [1-5]. With the advance of new computational
methods, it is possible to achieve a more accurate and robust optimi-
sation of the pharmacological properties of selected compounds which
leads to the overall improvement of in vitro HTS. This study aimed to
combine the best existing practices of high through put virtual screening

* Corresponding author.
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(HTVS) and introduce additional analytical and control approaches to
formulate an effective HTVS pipeline for complex immunotherapy
targets.

The human genome contains about 25,000 genes, but only about a
tenth of expressed proteins is amenable to small-molecule modulation
[6-9]. In addition, less than 5% of proteins that can be pharmacologi-
cally targeted show any therapeutic potential and drug development is
further complicated by a very low success rate since less than 2% of lead
compounds successfully reach the marketing stage [6,10]. Immuno-
therapeutics development is made even more difficult by a complex
network of interactors that might share a varying degree of similarity
which can lead to off-target effects and limit disease-specific therapeutic
approaches. Consequently, knowing the binding sites and physico-
chemical properties of any complex target prior to the screening or
optimisation of lead compounds would be extremely beneficial in terms
of cost reduction and faster turnover. In addition, introducing molecular
dynamics analyses for the target site characterisation permits
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researchers to better evaluate large-scale motions in molecules and
predict compound binding effects. For example, conformational flexi-
bility can have a significant influence on the structure—function rela-
tionship where the flexibility is the key structural determinant for
binding partner interactions [11,12]. This type of analyses can shed new
light on how binding events evolve, what potentially new sites for
compound binding are formed and how introduced mutations can alter
the site and interactions. Normal mode analysis (NMA) is one of the
major simulation techniques that can be used to address the above
questions as it takes advantage of the small oscillations physics to
describe flexible states in a protein at an equilibrium [13-16]. The
central idea of this method is that when a macromolecule is in an energy
minimum confirmation, even if it is slightly perturbed, the restoring
forces return the system to its equilibrium. This biophysical concept
allows the integration of other methods to further enhance the pre-
dictiveness of NMA. Moreover, machine learning techniques applied to
probe structural characteristics can reveal additional features that could
be used to understand protein topology [17]. In other words, combi-
nation of biophysical, cheminformatics and machine learning ap-
proaches can greatly enhance our ability to analyse potential
therapeutic targets. As a result, we focused our efforts on NF-kB as an
excellent candidate for such a study because of a significant unmet need
for drugs that could effectively target this complex.

The transcription factor NF-kB plays a multitude of roles through the
regulation of key genes in pro-survival and pro-apoptotic pathways. As a
master regulator, NF-kB, consists of hetero- or homo-dimers formed by
the Rel transcription factor family members: p50, p52, Rel A (p65), Rel
B, and c-Rel - all of which share N-terminal homology with the v-Rel
oncogene [18-20]. The regulation of NF-kB is achieved through the
binding of kB inhibitor proteins which can be proteolytically degraded
after the engagement of IkB kinase complex (IKK). This results in the
release of NF-kB allowing Rel dimers to translocate to the nucleus [20].
NF-kB can be activated through two pathways, the canonical and the
non-canonical, where the former pathway is mainly involved in the
immune system activation and cellular survival, while the non-canonical
pathway is primarily functional in lymphoid organogenesis. The ca-
nonical pathway induction results in p50 and p65 or p50 and c-Rel
heterodimer formation. In contrast, the non-canonical pathway signal-
ling is achieved only though p52-RelB heterodimers [21,22]. The sig-
nalling has additional layers of complexity since NF-xB complexes
containing either p65 or c-Rel are known to be involved in distinct
biological roles; for example, NF-kB complexes formed with p65 play a
role in cellular metabolism and inflammatory response regulation, such
as glutamine homeostasis and cytokine production, respectively. How-
ever, NF-kB complexes containing c-Rel are involved in a more speci-
alised immune response and lymphoid development. This is supported
by deletion experiments where a germline deletion of p65 leads to em-
bryonic lethality but there are no effects on viability and only limited
immunological defects when c-Rel expression is eliminated [23,24].

Although NF-kB is at the nexus of multiple signals, so far no signif-
icant strides have been made in developing specific therapeutics that
would have minimal side effects [20,24,25]. This difficulty can mainly
be attributed to the wide expression of NF-kB in multiple tissues; yet,
one aspect of the NF-kB signalling pathway can be exploited to achieve
better therapeutic characteristics. That is, NF-kB is assembled from
different dimers that vary between tissues and pathologies and thus,
targeting a specific partner of the dimer pair could increase specificity
and reduce off-target effects. For example, it has been recently demon-
strated that the pharmacological inhibition of c-Rel function delayed
melanoma growth by impairing effector Treg-mediated immunosup-
pression. This immunotherapy approach was even further potentiated
when combined with anti-PD-1 treatment proving that the inhibition of
NF-kB c-Rel is a viable therapeutic target [21,26,27]. Furthermore,
targeting c-Rel to modulate Treg activity in cancer revealed that c-Rel,
but not p65, was susceptible to pentoxifylline, an FDA-approved drug.
Specifically, it was reported that pentoxifylline caused a selective
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degradation of c-Rel without affecting p65 [27]. All of these earlier
analyses provided an incentive to perform a first in-depth structural
modelling analysis as well as a focused preclinical in silico screening of
likely human c-Rel inhibitors and modulators as a way to control NF-kB
in cancer pathologies when p65 and c-Rel play the driving role.

Most small-molecule drugs currently on the market were developed
to target protein-ligand interactions [28]. These interaction sites are
usually concave with complex topological features which contrasts with
the sites normally found on protein surfaces [29-32]. Computational
analysis of likely and/or unusual binding sites, especially on protein
surfaces, helps to evaluate their physicochemical properties and deter-
mine if the protein of interest is druggable. We employed NMA [14-16],
GROMACS [33] molecular dynamics as well as Gaussian mixture models
[34] based algorithm [17] to characterise the target and address the
common issue with the crystal structures of not being able to assess how
a protein behaves in vitro and what natural conformational states these
macromolecules can poses [35,36]. In order to evaluate, alternate con-
formations and capture the range of motions, it was necessary to go
beyond a snapshot structure conformation. In addition to this, we used
SiteMap, developed by Schrodinger, to identify potential binding sites
since this tool makes use of linking together “site points” that are likely
to contribute to tight protein-ligand or protein—protein binding
[37-39]. However, it is necessary to note that there is not one universal
algorithm that could suit all drug discovery scenarios; therefore, this
study combined multiple levels of analysis, namely sequence, structure,
dihedral angle distribution machine learning assessment as well as
physicochemical characteristics, and incorporated those findings into
Schrodinger Maestro suite for the screening of the drug-like library of 34
M compounds. This library was prepared by filtering 659 M chemical
entities to generate a diverse compound set for the final rounds of
docking. As a result, the characterisation of binding sites and potential
drug-protein interaction mechanisms led to the discovery of 15 hit
compounds specific for the human c-Rel protein. These hit compounds
were additionally tested with a different docking program — Autodock
Vina [40] and yielded similar results.

While the experimental validation was beyond the scope of this study
and there are many other reports employing only the in silico strategy
[5,41-43], the authors would like to highlight that the identified hit
compounds should be further explored in an appropriate in vitro and
biophysical assay set-up. For example, over-expression or knock-down
phenotypic studies of c-Rel could potentially allow to better evaluate
any pharmacological intervention effects. Furthermore, the mode of
action, such as inhibition or promotion of degradation, should also be
investigated. We would also like to advise to combine both tran-
scriptome and proteome analysis to uncover the real kinetics of the
pathway in the context of an active drug-like molecule.

With this research we aimed to set the computational groundwork
for a focused analysis of complex targets. In silico techniques demon-
strated here could greatly enhance the discovery process and ensure that
only the most promising candidates reach the expensive wet-lab testing
pipelines. Finally, we hoped to address the growing need of clearly
defined bioinformatics and cheminformatics methods that could aid in
the immune therapeutics development.

2. Methods
2.1. Target identification and characterisation

Structures of chicken c-Rel (PDB:1GJL, 2.85 A, 281 amino acids) and
mouse p65 (PDB: 5U01, 2.50 f\, 291 amino acids) as well as additional
good quality PDB structures were downloaded directly from RCSB
Protein Data Bank (PDB) [44]detailed information on all structures used
for the analysis can be found in Sup. Table 1; bound DNA fragments were
removed. Multiple sequence alignment (MSA) (MUSCLE algorithm,
default parameters) [45] was used for structure superimposition studies
using Bio3D package [46]. Protein Blast [47], T-coffee [48] MSA
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Table 1

SiteMap analysis for the chicken c-Rel protein (PDB: 1GJI) when dividing the protein into 5 regions.
Name SiteScore Size, A2 Dscore Volume, A® Exposure Enclosure Phobic Philic
Site 1 0.877 881 0.991 460.649 0.822 0.359 0.095 0.504
Site 2 0.887 445 1.003 268.569 0.815 0.37 0.131 0.49
Site 3 0.887 430 0.99 261.709 0.727 0.393 0.154 0.57
Site 4 0.887 242 1.013 122.794 0.809 0.352 0.167 0.425
Site 5 0.881 216 0.981 122.108 0.749 0.392 0.07 0.594

analyses (default parameters) as well as Gaussian mixture models based
Fi-score [17] were employed to further assess sequence and corre-
sponding structure characteristics to determine potential binding sites
and sites of interest for in silico modelling. MSA analyses were perfomed
in JalView environment using corresponding amino acid sequences of
the selected PDB structures (Sup. Table 1) which approximate the first
300 amino acids capturing the RHD. Colombic electrostatic potential
and hydrophobicity based on Kyte-Doolittle scale [49] were visualized
using Chimera-X platform [50],the same platform was used for the
structure superimposition via Needleman-Wunsch global alignement
(matrix-Blosum 62) [51].

2.2. Homology modelling and structure validation

Selected human c-Rel sequence (capturing RHD, NCBI:NP_002899.1)
was subjected to homology-threading and ab initio structure modelling
using Phyre2 intensive mode [52]. Generated models were validated by
Phyre2 [52] and independently with Schrodinger Maestro protein
structure validation tool (Schrodinger Release 2019-2: Protein Prepa-
ration Wizard, Schrodinger [53]). Modelled and crystal structure simi-
larity was assessed with an independent t-test for phi (®) and psi (W)
torsion angles. After confirming consistency between templates, the
modelled structures were used for the protein docking preparation and
subsequent grid generation followed by HTVS.

2.3. Molecular dynamics and normal mode analysis

Molecular dynamics analysis was performed using GROMACS [33]
suite and the following parameters (using TIP3P water model,
Amber99sb-ildn force field, dodecahedron 1 A box, adding neutralizing
Na and Cl ions concentration at 0.1 mM, simulation time 1 ns; all
parameter files are provided with the supplementary materials). Normal
mode analysis was done using Bio3D R suite [46] with calpha forcefield
to employ a spring force constant allowing the differentiation between
the nearest-neighbour pairs along the protein backbone and all other
pairs [54]. The parametrization was achieved by fitting a local minimum
of a crambin model using AMBER94 force field.

2.4. Compound selection

Compound structures (659 M; 2 < logP<4; 300 < MW < 500) were
downloaded from ZINC5 database of commercially-available com-
pounds for virtual screening [55]. The downloaded set of compounds
(SDF format) was fingerprinted (type: FP2, a path-based fingerprint that
indexes fragments of a small molecule using linear segments of up to 7
atoms; ChemmineR package [56-58]), an add-on package fmcsR was
used to identify maximum common substructures (MCSs) for structure
similarity search and cluster based analysis. Based on this evaluation,
similar compounds were removed from the set to generate a diverse set
of molecules. This was followed by a structure and activity based search
against PubChem database [59] to select candidate compounds that
were the most drug-like; this selection resulted in 34 M compounds
(LogP<3; 300 < MW <375, standard reactivity, default pH = 7.4) that
were used for the HTS in silico screen.

2.5. Virtual screening and molecular docking

Both crystal and simulated structures of proteins were prepared
using Protein Preparation Wizard and every protein was divided into
five regions and their binding sites were predicted using SiteMap with
shallow site identification allowed (Schrodinger Release 2019-2: Site-
Map and Protein Preparation Wizard, Schrodinger [53]). These sites
were ranked using SiteScore and Dscore, three highest ranking regions
were selected for a further evaluation with Poisson-Boltzmann (APBS)
method for their electrostatic surface (solute diaelectric constant: 1.0,
solvent diaelectric constant: 80.0, solvent radius: 1.4 f\, temperature:
298.0K, radius: 5.0 A). Selected top scoring sites were used to generate a
grid with the grid size chosen sufficiently large to include all residues
potentially involved in ligand binding per site (Extra Precision (XP)
mode) (Schrodinger Release 2019-2: Glide, Schrodinger [53]). A com-
bination of site scores (SiteMap) as well as docking and glide scores
(Glide) were used as an empirical scoring functions to evaluate and
predict free energy for ligand binding to the selected site. In addition,
the predicted area of a protein that could mediate binding was also
evaluated in comparison to other respective sites on the same protein
and homologous proteins. LigPrep module (Schrodinger Release
2019-2: Maestro, Schrodinger [53] ) was used in preparation for virtual
screening to evaluate the ligand library (LogP<3; 300 < MW <375,
standard reactivity, default pH = 7.4, charges = default (all allowed),
total screened compounds 34 million) and confirm its suitability for
docking and screening. All ligand conformers were docked to each re-
ceptor grid using Glide (Schrodinger Release 2019-2: Glide, Schrodinger
[53]1). High-Throughput Virtual Screening (HTVS) mode with default
settings was initially used to filter out unlikely ligands (cut-off for
binding interactions AG < -2 kJ/mol); compounds that were hits in both
mouse p65 and chicken c-Rel were removed from the next stages to
increase the specificity of hits to c-Rel. This was followed by re-docking
of the highest-ranking compounds from HTVS using Glide SP (Standard-
Precision Glide with default settings, cut-off for binding interactions AG
< -2 kJ/mol). Finally, the top ranking fragments from Glide SP were
docked using Glide XP (Extra-Precision Glide, cut-off for binding in-
teractions AG < -3 kJ/mol) for extra precision. All of the screening steps
were of increasing stringency for binding interactions (Sup. Table 2). In
silico ADME (absorption, distribution, metabolism, and excretion) of top
hits was evaluated with QikProp (Schrodinger Release 2019-2: QikProp,
Schrodinger [28]). Additional validation of the top scoring compounds
per site were analysed with an alternative docking program AutoDock
Vina [40].

2.6. Statistical analysis
Graphs and statistical analysis (unpaired t-test, two-tailed) per-

formed with R studio (Version 1.1.463 [60]). Data filtering was per-
formed with BASH (Ubuntu 18.04.2 LTS [61]).
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Table 2

Top five compounds for each chicken c-Rel (PDB:1GJI) and modelled human c-Rel site. Each row provides the location of the compound followed by the interaction
descriptions.*

Site Structure Compound AG MW QPlogPw QPlogPo/w RuleOfFive
1GJI
1 OH ZINC000085569496 —4.679 370.358 15.792 1.335 0
1 ZINC000095909670 —4.527 372.374 14.63 1.757 0
1 ZINC000003785475 —4.411 355.436 12.062 2.604 0
OH
e N
N
% =
1 HO ZINC000098052562 -3.976 362.338 15.214 1.529 0
OH
o
i |
o e /\
\\\\‘ ] NH
OH
1 ZINC000064744186 -3.973 358.362 15.668 1.898 0
HO
2 ZINC000014824074 —7.582 350.373 12.659 3.424 0
HO
2 ZINC000064744186 —7.552 N/A N/A N/A 0

(continued on next page)
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Table 2 (continued)
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Site Structure Compound AG MW QPlogPw QPlogPo/w RuleOfFive
N
.
— &
NH NN\// N
N / ==
N\
HO
2 0 ZINC000095920801 —5.155 363.375 14.473 2.018 0
HO
N—=
\ / Q
\ N
H2N I
2 HO ZINC000012495519 —4.977 352.47 12.964 2.786 0
—l OH
Z S 4
—
oy
HO
o S—
OH
2 o ZINC000043772464 —4.97 366.453 13.283 2.514 0
OH
o
—_—
e
/\// OH S
— o
3 OH ZINC000029041971 —7.428 360.406 11.337 2.806 0
HO
_‘_,\\Y\/@ °
- I
OH o
3 ZINC000038794072 —6.571 360.406 12.388 2.512 0

(continued on next page)
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Table 2 (continued)
Site Structure Compound AG MW QPlogPw QPlogPo/w RuleOfFive
OH
H
HO
Qo
o \
)
o
3 ZINC000072320355 —6.432 354.486 13.236 2.198 0
3 ZINC000065748825 —6.333 360.725 15.148 0.384 0
3 ZINC000031163554 —6.269 372.374 13.045 2.671 0
~—OH o
ceont) oM
Human modelled c-Rel
1 ZINC000514288546 —5.651 357.452 12.569 0.769 0
N
5 2,
3 ) \
Q $
=
HO
ZINC000098052562 —4.083 362.338 15.043 1.418 0
(continued on next page)
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Table 2 (continued)

Site Structure Compound AG MW QPlogPw QPlogPo/w RuleOfFive

1 ZINC000001542905 -3.777 371.53 14.057 2.234 0
1 ZINC000095909670 —3.418 372.374 14.538 1.749 0
1 ZINC000003785475 —3.359 355.436 12.539 2.814 0
2 ZINC000072320354 —7.209 354.486 12.876 1.953 0
2 ZINC000043772464 —4.869 366.453 12.861 2.103 0
2 ZINC000027647260 —4.252 350.454 12.244 3.124 0
2 ZINC000012495519 —3.936 352.47 12.864 2.511 0

(continued on next page)
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Table 2 (continued)
Site Structure Compound AG MW QPlogPw QPlogPo/w RuleOfFive
HO \
—— OH
/ \\\." Y
= —
)
HO
o —
OH
2 e o ZINC000014824074 —3.898 350.373 12.652 3.447 0
(o)
N !I;!"'
NH
HO
3 o OH ZINC000029041971 —4.851 360.406
““\
HO I
3
HO

11
o
H o

2.619

<]
OH ZINC000038794072 —4.264 360.406 12.413 2.568 0
HO
o
o \
]
<]

3 cl ZINC000065748825 —4.201 360.725 15.198 0.398

HO OH

\

W4 o

/ o

3

H
~ 0
ZINC000100388550 -3.717
- OH
H
NH

351.404 15.954 0.477

~—OH

ZINC000031163554

—3.427 372.374 13.032 2.611
Q=
'"“"@OH

" QPlogPw- predicted water/gas partition coefficient; QPlogPo/w - predicted octanol/water partition coefficient; MW- molecular weight, AG- Gibbs free energy, kJ/
mol; RuleOfFive - number of violations of Lipinski’s rule of five; N/A - need to be determined experimentally.
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3. Results

3.1. Rel family protein sequence and structure analysis revealed that the
c-Rel protein is an excellent inmunotherapeutic target with a potential for
high specificity and selectivity

The main structural feature of c-Rel is the Rel homology domain
(RHD) (300 amino acids) which is reported to form a contact surface
with a single turn of the major groove of double-stranded DNA [62,63].
RHD consists of two immunoglobulin-like (Ig-like) domains, where the
N-terminal domain contains the first Ig-like structure (approximately
160-210 amino acids) followed by a short flexible linker of 10 amino
acids. C-terminal dimerisation domain of RHD spans about 100 amino
acids adopting the second Ig-like fold and this sequence also contains a
nuclear localisation signal element [62,64,65] (Fig. 1). Preliminary
analysis of the whole c-Rel protein identified that the C-terminal region
outside of the RHD is disordered and unstable; thus, from a drug
developing perspective, it is unreliable to model the full structure and it
may not be a good anchoring point for a small molecule. In contrast, the
RHD, as an ordered structure, offers an easier target for crystallisation
studies which could help to understand compound binding and could
also complement computational screens. Furthermore, the Rel homol-
ogy domain is the main domain mediating protein-protein as well as
protein-DNA interactions making it the most likely target for drug-like
compounds that are able to disrupt such interactions or affect c-Rel
promoting its degradation [62,63,66,67]. Considering all of the above, a
more defined region, such as the RHD (300 amino acids), with already
existing homologous crystal structures was selected for the in silico
analysis and subsequent HTVS.

In preparation for the modelling, an in-depth sequence and structure
analysis was performed (Sup. Table 1). That is, structure superimposi-
tion and sequence studies allowed to answer several questions: how
similar and/or dissimilar the RHD is among the selected species for the
same protein, how the RHD amino acids distribute in MSA when
aligning REL family proteins and how a structural analysis can help
evaluate closely related proteins for drug discovery. Specifically, it was
also necessary to explore how similar p65 would be to c-Rel since the
aim of the screening was to select compounds with the highest selec-
tivity for human c-Rel that would not otherwise affect p65. Previous
crystallography studies of p65 and other Rel proteins [66,68] prompted
us to pinpoint potential regions within RHD at around 30-75, 90-130
and 150-220 amino acids which we deemed to be likely involved in
mediating protein-protein as well as DNA-protein contacts. We reasoned
that such sites might be more susceptible to drug-like compound inter-
ference. This was an arbitrary selection in order to have some indexing
within the sequence around which we could compare binding events, if

o> ISR — %0

NLS
Rei8 [ 2 RO I TAD ]
NLS
cRel [ RHD )i TAD ]
NLS
p105/pS0 — RO
r10500 o
NLS Cleavage Ankyrin
sie
p100/pS2 — R : :]
(NF-xB2) E e —
NLS Ankyrin
Cleavage

site

Fig. 1. The NF-xB family members. NF-kB family members are represented
with their specific domains where TAD, transactivation domain; RHD, the Rel-
homolgy domain; NLS, nuclear localisation signal; LZ, leucine zipper; Ankyrin,
ankyrin repeats.
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such happened.

To establish a better structural understanding of the selected Rel
family sequences (Sup. Table 1), both sequence and structure based
multiple alignments were performed (Sup. Fig. 1 & Fig. 2). T-Coffee
sequence alignment using default settings revealed ordered regions of
higher identity and the most prominent consensus stretches around the
RHD (Sup. Fig. 1). Since full sequences were aligned, it was interesting
to observe that p50 and p52 show some alignment to cRel and p65 to-
ward the C-terminus as full length p50 (p105) and p52 (p100) undergo a
C-terminus directed proteolytic processing [69]. The seen motifs that
align when analysing full sequences might indicate that for p50 and p52
function analogous regions need to be removed when pairing occurs.
This would be an interesting structural analysis avenue to explore
further. Moreover, it was necessary to explore amino acid distributions
for the RHD to identify both highly and less conserved regions that
might hint toward unique function or binding activities. Selecting only
regions that form mature structures (Fig. 2), the RHD alignment
captured conserved motifs across different REL family members which
also originated from different species. REL family sequences are ho-
mologous and highly-conserved across different organisms [70]; thus,
while the majority of structures are non-human, they can still be used for
the analyses. Furthermore, it can be seen that specific gaps in the
alignment or lower identity/conservation sequences can be exploited for
pharmacological targeting. These observations were followed by a more
in-depth structural analysis.

3.2. c-Rel structural analysis and molecular dynamics offered new
insights into potential binding sites and interactions

Multiple sequence and structure alignment for specific regions
revealed how c-Rel regions showing the most variability or situated in
close proximity to mediate protein-DNA or protein-protein interactions
could be good targets to not only increase specificity but also disrupt the
dimer formation (Fig. 2 & Sup. Fig. 2). The most interesting sites for the
pharmaceutical intervention are around the regions that ensure the DNA
binding and contact points between the dimers (Fig. 3, A). This was
confirmed when we mapped MSA results on the structure (Fig. 3, B) by
highlighting some of the secondary structure elements. Moreover,
superimposing multiple structures via alignment (Fig. 3, C) allowed us to
show how REL family proteins have the most structural differences
around C-terminus helixes and N-terminus beta-strands with some
variation in the hinge region. The conventional structural superimpo-
sition relies on the root mean square difference superimposition for sets
of residues and while we performed such an analysis (Sup. Fig. 3, C), we
additionally used another method to get a fuller evaluation of the
rearrangements of c-Rel domains [12]. The method developed by
Romanowska et al. provides means to assess the true atomic displace-
ment by anchoring the most invariant region; in other words, it provides
a sub-structure superimposition to capture relevant domain rearrange-
ment. Analysing c-Rel domain rearrangements maintaining restrained
motion volume (<1 A%) for the anchored superimposition, we found that
across all superimposed structures the most invariant region was the one
mediating the dimer contact formation toward the C terminus (Fig. 3,
D). This early observation hinted toward likely differences in functional
dynamics for the protein sub-domains around the hinge region.

To supplement this analysis and better understand the topological
landscape, we performed a hydrophobicity and electrostatic charge
distribution evaluation for the c-Rel protein investigating these specific
sites. Exploring Colombic charge distributions as well as hydrophobic
regions on the c-Rel surface (Sup. Fig. 2) revealed that contact sites
responsible for the dimerisation have alternating positively and nega-
tively charged regions with a hydrophobic patch. As expected (Sup.
Fig. 2, A&B) the c-Rel site that clamps the negatively charged DNA also
has mostly positive residues that could be targeted to disrupt this
interaction.

While physicochemical and structure characterisation are incredibly
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Fig. 2. T-Coffee structure sequence alignment using default settings where the higher identity percentage is represented with a more intense blue colour; additional
parameters, such as the alignment quality score, conservation score, occupancy and consensus sequence are also provided with the alignment. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

GKVKIRTTLVT HPHDLVGKDCRDGYYEREF
KKDLKESISLRISKKINPFN

TLALPPLISNPIY

1a3q_p52_8
1gji_cRel B
1sve_pSO0_P
2i91_p50_B
2i9t_p65_A
5u01_p6S5_8
1a3q_p52_A

Fig. 3. c-Rel DNA-protein and protein-protein contact sites are highlighted in red (A). T-coffee multiple sequence alignment identified regions of interest are
provided in a colour coded manner (B). Additional features are shown for the secondary structure alignment based on Needleman-Wunsch algorithm (C) and the
invariant region based on anchored superimposition (<1 A® volume motion) (D). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

valuable tools when selecting potential binding sites or deciding on a and globally correlating and anti-correlated regions in the protein
therapeutic compound mode of action, molecular dynamics and normal (Fig. 4, A&B). Hints of domain organized movement can be seen at C and
mode analyses become widely employed to understand atomic and N termini as well as around the hinge region (Fig. 4, B). That is, a
corse-grained domain motions. NMA was used to capture the nature of c- globular-like domains connected through a hinge have an anti-
Rel motions prior to the screening with the aim to prioritize binding correlating motion when referenced against each other (Fig. 4 A).
sites. NMA predicted fluctuations per residue matched the earlier However, sub-domain groups of interacting secondary structures have a
identified sites around 30-75, 90-130 and 150-220 amino acids (Sup. closely coordinated positive and highly correlating movements. This
Fig. 3, A). These sites also showed the most variability in MSA (Fig. 2 & provides additional clues that targeting the hinge region can potentially
Sup. Fig. 1). Visualisation of motions at different frequencies revealed destabilize not only the dimers but also disrupt DNA binding as
how different movement modes undergo complex spatiotemporal harmonized movements are likely necessary to ensure a proper function.
movements within a protein as it forms contact sites with the DNA (Sup. Domain and protein region correlation assessment was followed by a
Fig. 3, B). This observation also offers a new perspective on how dimers deformation analysis which allowed to measure the local flexibility of
recognise DNA sequences (e.g., sweeping motions) and how binding the structure. This analysis relies on measuring atomic motion relative to
partners initiate and maintain their contact which might not be a clamp the surrounding atom groups. It is important to stress that this type of
but rather a dynamic gear-like rotation around DNA to maintain the analysis differs from root mean square fluctuations (RMSF) which only
thermodynamic binding equilibrium. Both movies (mode_7.pdb - high provide amplitudes of the absolute atomic motion. We can see that the
frequency (0.004 s) and mode_12.pdb-low frequency (0.0015 s)) for the hinge region accommodated the largest deformation shifts in the protein
structure movements are provided with the supplementary materials structure (Fig. 4, C) and atomic fluctuations were the most significant for
and can be visualized with PyMOL [71]. Such observations highlight the protein termini (Fig. 4, D). All of this points to the specific functions of
value of the molecular dynamics analyses as they provide new per- these regions where inherently different motions can accommodate
spectives for the pharmaceutical design. precise interactions to other co-binders when the transcription regula-
Cross-correlation analysis provided interesting insights into locally tory complex is formed.
10
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Fig. 4. c-Rel protein (PDB ID: 1GJI) normal mode analysis (NMA) was used to determine correlated and anti-correlated residues which are depicted with red and
blue lines, respectively (A). All cross-correlation graphic (B) provides full 2D view of the interactions. NMA mode deformation (C) and fluctuation (D) analyses
provided as colour and size spectrum based on the value size ranging fro low- blue to red-high. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Finally, domain analysis was used to identify regions of c-Rel moving
as rigid parts (Sup. Fig. 3, C). This method relies on generating a
conformational ensemble by using interpolation of the eigenvectors of
the first 5 normal modes from NMA. We were able to show that while
two clear domain sections stood out, especially around C-terminus
which already had been shown to have a tendency of lower fluctuations
(Fig. 3), they are dependent on the coherent movement of much smaller
sub-domains.

3.3. Fi-score distribution analysis and dihedral angle analysis for
modelled structures provided alternative means to assess the functional
domains

Dihedral angle as well as associated B-factor distribution can be used
to better understand both 3D conformation of the structure and local
Calpha atom mobility. Capturing these parameters allows to establish a
comparative measure of physicochemical characteristics of a protein of
interest and we used our earlier devised Fi-score to comprehensively
capture these parameters [17]. c-Rel (PDB ID: 1GJI, chain B) was
assessed using dihedral angle and Fi-score distributions to uncover
potentially interesting regions that show unique motion potential and
map that information onto the structure (Fig. 5). This analysis can
further supplement protein topology and molecular dynamics analysis
by clustering protein sub-domains or regions that show similar Fi-score
distributions. Moreover, the size of Fi-score change going from one re-
gion to another can indicate local mobility and dominating secondary
structures [17].

While a robust and precise method for protein-ligand complex
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investigation is usually based on existing crystal structures, lack of
available 3D structures for some targets has hindered efforts to design
drug-like compounds. Homology modelling is rapidly becoming the
method of choice for modelling protein structures [72] that can be
exploited in HTVS even when the experimental data is lacking. This
study aimed to build and investigate a model for human c-Rel using
Phyre2 algorithm [52].

To find an alternative way to investigate binding pocket dynamics
and quickly compare modelled and crystal structures, we looked into the
combinations of ¢/y angles in chicken c-Rel and compared that to the
modelled human structure. Unpaired t-test revealed that the observed
variation for ¢/y angles between two types of structures was not sig-
nificant (unpaired t-test for ¢: two-tailed p > 0.8642, t = 0.1711, N =
271; unpaired t-test for y: two-tailed p > 0.4792, t = 0.7081, N = 271).
As an additional control, no significant differences between 1GJI
homodimer chains A and B were found and the observed deviations are
similar to those of the crystal and modelled structures (unpaired t-test
for ¢: two-tailed p > 0.7467, t = 0.3232, N = 273; unpaired t-test for y:
two-tailed p > 0.7565, t = 0.3102, N = 273). It is also important to
highlight that even very similar structures might have dihedral angle
shifts in critical regions and it is necessary to capture all small changes to
understand the dynamics of the binding site. Thus, appropriate test
steps, as discussed above, should always be implemented.

3.4. 34 M drug library screening reveals potential therapeutic targets for
human c-Rel and hints toward possible interaction mechanisms

Molecular docking and the establishment of ligand and target
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Fig. 5. Phi/Psi angle value distribution for c-Rel (PDB ID: 1GJI, chain B) where red bars represent phi angles and the blue - psi angles (A); structure elements of
marked Fi-score shifts are colour code for amino acid clusters (B). Fi-Score (C) and Fi-score GMM distributions (D) are also provided revealing 17 distinct clusters
based on Fi-Score values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

interactions are at the centre of in silico drug discovery [73]. In this
screening, selected two available high resolution crystal structures,
namely chicken c-Rel (2.85 10\) and mouse p65 (2.50 10\), as well as a
respective model of human c-Rel were used to screen against a 34
million drug-like compound library from ZINC15 [74].

Each protein was analysed with SiteMap allowing the detection of
even shallow binding sites. Initially predicted five binding sites in each
protein were ranked and three highest scoring regions were selected for
drug screening. This selection was aided by previous structural and
normal mode analyses. Grid generation for docking of the selected sites
was achieved using Glide in XP mode. All binding sites for chicken c-Rel
were ranked by SiteScore and Dscore to evaluate which sites are the
most likely candidates for ligand-protein interactions (Table 1, Sup.
Fig. 4), as can be seen all predicted sites for chicken c-Rel have SiteScore
close to 0.9 and the druggability score (Dscore) of about 1 which suggest
a high potential for ligand-protein interactions. While similar values
were found for mouse p65 sites (Sup. Table 2, Sup. Fig. 5), this was not
surprising given protein homology and the structural similarity. How-
ever, more subtle differences were observed based on the site size and
amino acid composition in terms of hydrophobicity and hidrophylicity.
For the purpose of the current analysis, three selected sites were ana-
lysed again with Poisson-Boltzmann (APBS) method to compare
different binding pockets and their electrostatic surfaces (Sup. Fig. 6&7).
Clear shifts could be observed accentuating the more electrostatically
positive areas around the hinge regions for both c-Rel proteins; however,
the outer side of the hinge regions that is exposed to the cytosol and does
not interact with DNA was more electronegative. Interestingly, the N-
terminal part of the c-Rel proteins was also highly electropositive.
Mouse p65 showed a more dispersed profile with less distinct bound-
aries of electrostatically positive and negative regions (Sup. Fig. 7).
These findings were in agreement with earlier sequence and structural
analyses (Fig. 1-4) revealing that even small differences in the binding
pocket amino acid composition can be fundamental in establishing
target specificity and the mode of ligand-protein interaction.

Electrostatic distribution and site scoring allowed a rational selection
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of three top sites based on the SiteMap parameters (Table 1). In addition,
it was necessary to maintain diversity across the selected regions for
chicken c-Rel (Sup. Fig. 4, Table 1) and mouse p65 (sup. Fig. 5, Sup.
Table 2) so that it was possible to capture different binding modes and
perform an in-depth screening. Again, it can be observed that these sites
differed between the c-Rel and p65 proteins which was overall prom-
ising for the in silico drug screening as a way to increase compound
binding specificity and minimise off-target effects.

Overall HTVS strategy was first to screen the compound library using
HTVS mode for both chicken c-Rel and mouse p65 proteins, remove any
hits that were identified to bind both proteins or were below the set
threshold of —2 kJ/mol, AG. Resulting unique hits for each chicken c-Rel
site were resubmited for SP screening mode. SP screening top scoring
compounds were subsequently submitted for a final refinement with XP
screening mode to ensure a gradually increasing stringency in the
screening (Sup. Table 3). This strategy allowed to determine five most
promising compounds for each site of chicken c-Rel (Fig. 5, Table 2). As
predicted in the earlier analyses, three regions of c-Rel around 30-75,
90-130 and 150-220 amino acids appear to be important in the binding
of the majority of compounds; intriguingly these regions coincided with
shifts in protein mobility as well as showed distinct features for the
dihedral angle shifts (Fig. 4&5, Sup. Fig. 3).

One of the core aims of this study was to find a way to reduce a large
compound library to an effective size for a focused screen and extract
compound characteristics allowing to capture the most information.
That is, by performing initial filtering to remove similar compounds, we
reduced the set of the compounds to only the representative members
for that group. This enabled us to explore a wider set of chemical groups
and address any binding mechanisms without the need to screen a huge
number of similar or very similar compounds. As predicted, all of the
identified compounds had a diverse set of structural features; hetero-
cyclic and/or aromatic groups, hydrogen donors/acceptors in combi-
nation with aliphatic groups allowed anchoring of the ligand through
hydrophobic, dipole mediated or hydrogen bond interactions (Fig. 6,
Table 2). For example, compounds with aliphatic and aromatic groups
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Fig. 6. Top two compounds for each chicken c-Rel (PDB ID:1GJI) site. Each row of panels provides an overall location of the compound followed by the binding
region visualisation and schematic representation of the observed interactions.
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such as, ZINC000095909670 (Fig. 6, site 1) and ZINC000038794072
(Fig. 6, site 3) provide anchoring points to orient other functional groups
for better positively charged or hydrophobic interactions. This diverse
set of compounds allows to associate specific amino acids with varied
functional groups and establish privileged structures that could be used
to build lead compounds (Fig. 6, Table 2). In addition, based on the
described strategic sectioning of the c-Rel protein it is possible to pro-
pose potential mechanisms of action of these compounds. For example,
conformational instability could be achieved by compound binding to
Site 3 where compounds dock closely to the N-terminus of RHD, this
could destabilize the Ig-like fold and expose hydrophobic amino acids to
the overall highly electropositive environment which in turn could
promote the destabilisation of the protein. Site 2 that engulfs the outer
region of c-Rel (opposite to the hinge region) consists of a number of
hydrophobic residues and displacing these amino acids could promote
protein unfolding, aggregate formation and subsequent degradation.
Finally, a compound binding to Site 1 embedded around the hinge re-
gion can dislodge the protein from interacting with DNA and/or its
binding partner. As a result, the exposure of the electropositive core
could increase solvation surface leading to conformational instability.
The loss of structural stability is especially likely around Site 1 since the
hinge region is loop-based without any other stabilising interactions
within the protein and the majority of the stabilisation comes from
protein-protein as well as DNA-protein interactions (Fig. 4).

The docking exercise of the top scoring compounds per site was
subjected to a different docking approach using Autodock Vina [40];
however, the returned binding energies were very similar to the iden-
tified earlier (Sup. Fig. 8). To investigate if there were any exclusion
volumes due to the side chain movements, we performed a 1-ns-long
GROMACS dynamics analysis which did not reveal any restrictions
locally (Sup. Fig. 9).

All of this further underlines that complex targets do not receive
enough attention or dedicated computational solutions. c-Rel as well as
other similar targets could benefit from our described analytical
approach to establish varied sets of promising compounds that could be
screened in vitro.

All of the chicken c-Rel XP screening compounds were then docked
using Glide XP docking mode with the respective sites of human
modelled c-Rel which again identified a new set of compounds that
showed the highest specificity for human c-Rel (Fig. 7, Table 2). As
predicted due to amino acid variation, top hits changed from chicken to
human c-Rel; nevertheless, AG remained consistent with a high binding
capacity as observed for chicken cRel. Interestingly, there was a number
of compounds that were matched between the sites of the crystal
structure and modelled c-Rel protein. For example, three compounds
were found to dock Site 1 in both proteins, namely ZINC000095909670,
ZINC000003785475 and ZINC000098052562. The most shared com-
pounds for both sites had Site 3 where 4 drug-like hits
(ZINC000029041971,  ZINC000038794072, ZINC000065748825,
ZINC000031163554) were identified while Site 2 had only two shared
compounds (ZINC000012495519, ZINC000014824074) (Table 2).
These findings highlight the efficacy of this methodology where com-
pounds can be tested for homologous structures and good quality models
can be successfully used to uncover potential hit compounds.

Nearly 40% of drug candidates fail in clinical trials because of
unfavourable ADME properties; thus the detection of problematic can-
didates is essential in early screening stages [75-79]. Computer-based
methods are becoming more widely used as initial means to eliminate
compounds that would likely present poor pharmacokinetic and toxicity
profiles. This strategy accentuates how in silico approaches can reduce
the high costs of drug discovery by evaluating candidates before sub-
mitting them to expensive in vitro testing. For the final validation of c-Rel
screened compounds QikProp was used to predict the widest variety of
pharmaceutically relevant properties and determine favourable ADME
characteristics. At this stage the compounds were evaluated only using
computational models and should be further assessed with ADME assays
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to establish how hit compounds perform in vitro. For selected lead
compounds, the partition coefficient (QPlogPo/w) and water solubility
(QPlogS) was within the permissible range of —2.0 to 6.5 and — 6.5 to
0.5, respectively. Lipinski’s rule of five for the physicochemical prop-
erties of drug likeness had no violations (Table 2). Thus, the in silico
screened compounds showed not only a high binding capacity to the
target but also in silico ADME profiling confirmed the ‘drug-likeness’
properties of the hits. This demonstrates that before embarking into
costly wet-lab set-ups compounds should be filtered and analysed
employing already existing knowledge bases and models. This approach
could facilitate capturing any features linked to toxicity or poor phar-
macokinetics and could further refine the hit compound set to be tested
in vitro.

4. Discussion

Despite the potential of c-Rel, as a therapeutic target, no potent and
selective inhibitors for c-Rel have been developed at present
[21,65,66,80,81]. As a first step toward discovering both potent and
specific inhibitors and/or modulators of this transcription factor a
detailed analysis of the sequences, structural features and relevant do-
mains was initiated in preparation to an in silico high-throughput
screening. This was done to address the common issue of not having a
crystal structure of a target protein. By evaluating existing differences of
closely related target proteins, this study demonstrated that capturing
the biophysical properties of selected regions can translate into binding
pocket identification, site characterisation and the improved detection
of the most promising hits from the screen. With this study we showed
how machine learning can be applied to assess protein topology features
using dihedral angles and B-factors and we integrated this information
with a molecular dynamics and biophysical parameter assessment, such
as the electrostatic potential, hydrophobicity and predicted mobility.
Thus, the described method of an in silico target analysis using structural
controls as well as the biophysical characterisation of a protein of in-
terest could be a helpful addition in building compound screening
pipelines and prioritising compounds for the downstream analyses to
reduce a large chemical space. Such practices have been increasingly
employed where only in silico studies are the focal point of the analysis to
refine the screening libraries or identify new therapeutic compounds
[1,5,41-43].That is, the central idea of the screening is not to identify
binding affinities (as such might depend on other in vitro factors that are
difficult to simulate) but provide a ranking of compounds to offer a
directed approach for screening efforts that can help with the fast-
tracking therapeutics development [1,5,40,43,77,82-86].

A virtual library of 34 million drug-like compounds was docked
against the high-resolution chicken c-Rel protein and the highest scoring
compounds after two rounds of refinement were docked to the corre-
sponding sites of the high-resolution human modelled c-Rel. In total 15
hits with 6 overall being the highest scoring compounds were identified;
all of which showed favourable ADME characteristics when analysed
using in silico predictors for pharmacokinetics. Based on the analysis of
binding regions it was possible to further predict potential mode of ac-
tion of the identified hits. Moreover, this analysis provides a specifically
selected diverse set of compounds which allows to both capture different
molecules and use them as a guide to build hit-to-lead structures. That is,
these results of the first extensive in silico analysis for the c-Rel and p65
proteins illustrate the key interactions between potential therapeutic
compounds and c-Rel and can be used as a basis for a rational drug
design when performing a focused large scale in vitro screen.

We also demonstrated how NMA based approaches can be used to
explore the full scope of molecular movements [16] and connect this
information with both the sequence and binding site characteristics. For
example, the c-Rel protein was captured to have swinging motions and
these observations invite further studies to investigate how DNA-protein
and protein-protein interactions occur in this specific dimerisation
event. That is, the transcription regulating complex might function via
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alternating motions to expose DNA bases and alter torsional constraints
[87]. Molecular dynamics and other analyses will likely become an
inseparable part of the drug discovery and docking studies as they offer a
spatiotemporal evaluation for the sites of interest [13,88].

Finally, the current report reveals that modelled structures in com-
bination with NMA, machine learning and molecular dynamics can be
used as a useful emulation when crystallographic data is not available.
Our designed HTVS study identified promising compounds that may be
considered as good candidate leads for further development of highly
selective c-Rel inhibitors/modulators. We wanted to highlight the need
to rethink current paradigms in drug discovery and especially in im-
munotherapeutics development because a computer-aided target vali-
dation and screening can facilitate the designing of better in vitro screens
with minimal early investments. We would very much welcome the
scientific community partaking in this analysis and exploring our
discovered structures further.

5. Conclusion

Efficient development of therapeutic agents can be successfully
achieved through an early in silico analysis which can reduce both costs
and time needed to discover promising lead-like compounds. Our re-
ported method is an efficient drug screening approach when no crystal
structure exists for a target of interest. This variant of in silico screening
can become central in drug discovery and can be used to better under-
stand the molecular basis of target interactions prior to performing
costly in vitro screens. By using computational methods and the 3D
structural information of c-Rel, it was possible to investigate the dif-
ferences in ligand-c-Rel binding and validate that with HTVS. Compu-
tational analysis resulted in the identification of 15 promising
compounds that could be further tested in vitro for the c-Rel protein
inhibition or modulation. Finally, this work shows that immunother-
apies can be developed by relying more and more on discovering new
drug candidates in silico which could be more quickly and cost-
efficiently translated into in vitro screens.
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7. General discussion

7.1. Towards new R&D strategies: cardiomyopathies study revealed how to improve complex

disease analyses and find new therapeutic avenues

Mounting research and commercial pressures for novel therapeutics highlight why better
strategies are needed for R&D and drug discovery?.13.17.18.22 This need becomes especially evident
when considering how older target-centric or ‘one gene equals a disease’ approaches fail to explain
multifactorial aspects of many pathologies and do not offer effective treatment options2.10.13.25, As a
result, the first experimental chapter of the thesis (Chapter 2: Insights into therapeutic targets and
biomarkers using integrated multi-‘omics’ approaches for dilated and ischemic cardiomyopathies)
addressed the lack of integrative, omics-driven, and network-centric approaches in drug
discovery2:10.13:45.46,132 The chapter focused on developing a highly integrative multi-omics and ma-
chine learning analytical system to probe relevant gene expression patterns and associate the identi-
fied changes with pathways and cellular processes. The main rationale for selecting cardiomy-
opathies as a case study was the fact that this multifactorial cardiac syndrome accurately illustrates
complex diseases. This can be appreciated when considering the stochastic nature of this pathology
with many predisposing elements, including genetic, epigenetic, familial, and environmental fac-
tors207 (Fig. 3). Moreover, limited treatment options also provided a motivation to explore how bet-
ter we could help patients88.95.208.209 Thus, CVD (specifically, HF with left ventricular dysfunction)
served as a model to build a multi-omics analytical framework that could also be applied to other
complex diseases and provide new insights to improve therapeutic outcomes88.208,

The introduced approaches for dilated and ischemic cardiomyopathies underscored how het-
erogenous diseases can be explored to identify new targets or biomarkers by employing different
datasets, encompassing bulk RNA-seq, single cell RNA-seq, and proteomics. A new scoring system
was also developed that can be easily adapted based on individual researcher’s needs. Moreover,
this scoring system can be integrated with machine learning pipelines to unveil novel links within
the interactome. The introduced research revealed that dilated and ischemic cardiomyopathies are
driven by a nexus of shared and diverging pathways, namely oxidative stress, metabolic perturba-
tions, and immune system modulators. In addition, the cellulome of cardiac tissue was found to
maintain a complex heterogeneity of infiltrating immune and pro-fibrotic cells. This, in line with
the expressome data, suggested that these cell populations and their proportions depend on the car-

diac tissue state91-99.101-103.209 Another important aspect of this study was to address a common issue



in clinical studies when there are a limited number of samples that can be analysed?207. HF analysis
demonstrated that multi-omics based enrichment, multiple data points integration, and data mining
can aid in uncovering disease associated pathways even with smaller sample sets. In addition, ma-
chine learning can be applied to further deconvolute complex expression featuress!.89.91-99.101-103 To
complement this work, an R software package was created to make these analyses more readily
available to researchers so that it is possible to quickly explore and integrate lab generated expres-
sion and omics data. This software tool set offers an expanded range of functionalities and scoring
functions with a possibility to take advantage of machine learning.

Building this analytical architecture involved many different datasets and provided a wealth
of interesting findings. However, several key therapeutically relevant highlights demonstrate why a
holistic research approach is needed and why such strategies can lead to new clinical applications.
The first part of the multi-omics analysis explored the bulk RNA-seq data of the human left ventri-
cle tissue for two indications: DC and IC. The identified significantly changed genes allowed the
uncovering of subtle differences between hypertrophic and ischemic heart conditions. Specifically,
the studied DC samples revealed a number significantly upregulated genes (e.g., BMP2, MYOZ],
and ENO?) that have strong links to myocardial tissue remodelling and structural changes not seen
in the healthy samples (Fig. 6)81.91,145.210-217_QOther genes, such as RPS17, SLITRK4, and GLTS8D2,
represent a group of genes only recently implicated in DC, where these genes play a role in protein
synthesis, post-translational modifications, and growth control145.202.218-221_[ntriguingly, genes that
were significantly downregulated (e.g., CA11, ICAM3, and ELOVL?2) are responsible for a wide
spectrum of metabolic functions from cellular respiration to membrane integrity!45.217.222-225 By
contrast, ischemic heart conditions showed a marked upregulation of pro-inflammatory and pro-fi-
brotic genes where CX3CL] is an especially intriguing gene as it encodes an atypical chemokine.
This chemokine can exist as either a membrane-bound or soluble protein and the membrane-associ-
ated form is largely expressed on endothelial cells in myocardial ischemia and HF91.145.226-228,
Moreover, a number of identified chemokine ligands (e.g., CXCL1I, CXCL10, and CCL5), some
chemokine receptors (e.g., CXCR3 and CCR?7), as well as other markers, such as CD2, were also
found to be significantly changed under myocardial ischemia. Subsequently, these findings led to
hypothesise that the inflammatory gene upregulation might be precipitated by a significant infiltra-
tion of immune and immune system-linked cells81.83.85.91.145.210,229.230_ This was supported by the
finding that a significant proportion of fibroblasts and fibroblast-like cells populated a healthy hu-
man heart in addition to various immune cells (based on the single cell RNA-seq analysis). Under

myocardial stress conditions, these cell types can be repopulated to promote a pro-inflammatory



and pro-fibrotic environment?!,125.218.230-232 The presence of immune cell populations was also
found in an additional/control analysis of the mouse left ventricle non-myocardial cellulome (single
cell RNA-seq). As a result, normal subpopulations of immune cells identified in the heart, such as
monocytes, macrophages, mast cells, eosinophils, neutrophils, B and T cells, have the potential to
become activated and propagate the inflammatory state!07.125.218.230-234 This study highlighted that
analysing datasets without considering the full omics landscape can potentially lead to the misinter-
pretation of the results. Thus, bulk RNA-seq or proteomics data should always be weighed against
the possibility of mixed cell populations in the tissue. These findings also underscored the short-
comings of some previous studies that attempted to explore the pathological milieu of heart disease.
The limited statistical and technical exploration in the earlier studies resulted in missing the com-
plexity of the cellular makeup which subsequently restricted new therapeutic target discoverys$!.90.
Furthermore, the research discussed in this thesis also revealed that proteomics data juxtaposed with
bulk RNA-seq does not always share the same expression patterns. One such example of contrast-
ing expression patterns was the titin protein (encoded by the 77N gene) with the downregulated
gene expression and upregulated protein expression levels. While 77N mutations are well-docu-
mented for DC and mutated or truncated TTN proteins lead to the disease parthenogenesis, the role
of the higher protein expression is not clear?3s. In the case of IC, a similar expression profile could
be found for APOB where this protein was also overexpressed despite the reduced mRNA levels.
Thus, further investigation into the APOB expression variation across the transcriptome and expres-
some could provide a glimpse into the perturbed energy metabolism and compensatory
mechanisms?236-240, These observations of different biological readouts and their cross-referencing

could be exploited in building omics biomarker panels (Fig. 6 and 7).
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Figure 6. Summary of the key findings for the cardiopathologies study listing the main observations. The
circular graph captures the types of data used for the analyses and the network analysis provides an example
of how the introduced methodology can help build pathways and interactor networks. The cluster identified
by machine learning (SOX17, SMAD?7, and STX1B) was searched against known interactors. Various func-
tional connections were established (Networks - legend) demonstrating how specific clusters can be analysed
through data mining when building regulatory networks. The network map was generated using the Gene-
MANIA software tool; Warde-Farley et al., 2010241,

This study also aimed to explore how different data points can be integrated into a single
analytical framework to generate further pathology-related inferences. In order to address the main
challenge of biological data integration and current limitations in combining different omics
datasets45.131-136,138,140 3 scoring system was devised with a focus on bulk RNA-seq enriched with
the data mined from multiple resources that combined proteome, experimental, clinical, and predic-
tive readouts. Specifically, the derivation of LFCscore allowed the evaluation of how a gene partici-
pates in the expressome network and to what extent it can cause perturbations if the gene function is
disrupted. Such clustering is the first step to integrate LFC, differentially expressed genes, and pro-
tein-protein interaction-based networks when recreating a signalling interactome. Moreover, this
strategy could be especially useful if researchers enriched the scoring with additional weights de-
rived from their experimental work to add new information during clustering. To provide this spe-

cific option, a complimentary software package, Omiclnt, was developed (Chapter 3: Omiclnt pack-
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age: exploring omics data and regulatory networks using integrative analyses and machine
learning). Omiclnt facilitates further data integration and analysis so that researchers can take ad-
vantage of their experimental readouts, database mining, and machine learning in a single seamless
application. LFCscore and the introduced machine learning approach were further tested with two
additional cardiopathology datasets as well as cross-referenced with text or database mined re-
sources for cardiovascular pathologies, such as the GWAS dataset of human heart disease genetic
variants?42, clinical/experimental evidence from Open Targets platform!44.145, as well as complete
PubMed records!60 (>30 M). This analysis allowed to verify that the proposed method juxtaposes
rarer or newly discovered targets with more known genes linked to dilated and ischemic cardiomy-
opathies!44.145,160.241242 (Fig. 6).

The discussed research highlighted the importance of capturing different levels of omics
datasets and pursuing integrative analyses, such as data mining, in order to reconstruct complex
networks. Currently, omics studies are only just beginning to make inroads into R&D space and of-
ten such research is still very narrow without exploring robust statistical, enrichment, and classifica-
tion methods?#5:46.81.132,138,202 Moreover, ‘big picture’ strategies, for example, publication, experi-
mental, or clinical evidence mining, are not incorporated into building new models to consolidate
many different types of experimental readouts245:46.81.132 This is evident from the current pathway
and network analyses which are most commonly employed to assess cellular perturbation events
using high-level analytical approaches, involving over-representation, rank-based, and topology-
based methods!38-141.243 These strategies do not provide additional insights from other clinical and
experimental resources and do not include probabilistic models for feature prediction, such as
GMM 148,150, While useful, these compartmentalised analyses provided the motivation to develop a
more integrative approach that could evolve depending on the research needs (Fig. 7). Furthermore,
to anticipate potential shortcomings of the proposed analytical strategy, a software package was de-
veloped to provide more freedom with data integration and scoring. The versatility and adaptability
of the introduced methodology allow researchers to adjust the scoring system based on their in-
house data and known disease associations. Performing this scoring-based analysis prior to choos-
ing targets for downstream screens can help avoid selecting groups of genes that belong to the same
effector network. Of course, the success of this method and other less integrative approaches always
depends on the quality of the experimental data and available resources to perform data
enrichment!38-142,

The second chapter of the thesis not only provided an overview of the present challenges in

treating HF, but also demonstrated the urgent need to rethink current therapeutic paradigms for the
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treatment of left ventricle dysfunction. While systematic omics studies and in-depth analyses of het-
erogeneous disease mechanisms are lacking, this study, for the first time, demonstrated how bulk
and single cell RNA-seq, as well as the proteomics analysis of the human heart tissue can be inte-
grated to uncover heart failure specific networks and potential therapeutic targets or biomarkers for
dilated and ischemic cardiomyopathies207 (Fig. 7). Importantly, focusing on metabolic changes as
well as inflammatory signatures could open new avenues for a targeted pharmacological interven-

tion rather than the currently practised symptomatic management.
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Figure 7. Multi-omics analytical framework depicting integration, analysis, and modelling principles. Sever-
al key steps are shown: omics data collection (top level), data integration/quality control (QC) (left bottom
section), and the integrative analysis (right bottom section).
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7.2. Implementing a streamlined target evaluation and classification: new solutions for

discovery pipelines

The fourth chapter of the thesis (Fi-score: a novel approach to characterise protein topology
and aid in drug discovery studies) provided a new method for the exploration of a protein topologi-
cal and conformational organisation where an in-depth structural feature capture was achieved using
structural bioinformatics and machine learning methods. The paradigm shift from in vitro to
in silico in early pilot studies underscores the need to establish reliable approaches for target selec-
tion and the evaluation of pharmacological intervention options!3.20.43.244 In other words, the critical
steps in R&D are to assess the druggability of a protein of interest and to estimate the likelihood
that the target will be amenable to pharmacological modulation30:54.244.245 Thus, establishing robust
computational analysis principles is essential for the growth of this field and successful preclinical
studies?2:49.246.247 As demonstrated in the second chapter, the search for a therapeutic target or tar-
gets can generate a whole set of likely candidates which after filtering and classification still need to
be evaluated from a structural perspective in order to establish their druggability!53.154.169.246,247,
Consequently, it became necessary to devise an effective way to capture structural and physico-
chemical features of multiple targets so that it was possible to stratify these proteins prior to screen-
ing. Moreover, the introduced methodology allows not only the investigation of sites of interest but
also the classification of protein features which could be implemented through relational databases.

All these developments are integratable and scalable to support downstream analyses (Fig. 8).
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Figure 8. Fi-score equation and associated analyses. Fi-score equation includes: N - the total number of
atoms for which dihedral angle information is available, ¢ and y values - dihedral angles for the Ca atom, o,
and oy - corresponding standard deviations for the torsion angles and Bi.norm - @ normalised B - factor value
for the Ca atom. B-factor, 64, and 6, normalisation is based on the full-length protein. Plots provide informa-
tion on dihedral angle and Fi-score distributions as well as Fi-score clustering using Gaussian mixture
modelling. Provided structure represents the Nur77 protein (PDB ID: 6KZ5) highlighting some of the identi-
fied clusters (with matched colours, bottom right plot).

Protein conformation determination and capturing of physicochemical properties are some
of the most important research aspects in drug discovery?28.195.248.249_ Protein features that have both
structural and composition variability can present a significant challenge in identifying good bind-
ing pockets70.248, As a result, successful therapeutics development depends on the establishment of a
binding site profile that can be contrasted with other known binding pockets in a protein or other
targets!09250-252, This is especially relevant for homologous or highly similar targets where structural
classification approaches are still lacking?248.249.253.254 To address structural assessment and classifi-
cation challenges, one of the central aims of this thesis was to develop a method to capture amino
acid residue distributions providing a value that could be used to compare and characterise either
regions of interest or entire structural elements. This topological fingerprinting technique or
‘Fi-score’ offers an integrative approach to capture both local and distal information via dihedral
angle and B-factor distribution. Specifically, the Fi-score helps to evaluate residue physicochemical
properties and extract information on structural motifs!74 (Fig. 8). There have been extensive studies
showing that both dihedral angles and B-factors carry a lot of information that can be used to assess
protein backbone orientation. B-factors can, for example, help quantify protein region flexibility or
even hydrophobicity!77-183.255-257 However, despite these insights, there have been no previous at-
tempts to capture this information in a unified way so that a quantifiable parameter could be com-
pared across different structures!77-183.258,259 Furthermore, the Fi-score study demonstrated for the
first time that the combination of dihedral angle values and B-factors into a single equation enables
capturing structural and functional elements that might not be distinguished by analysing B-factors
or dihedral angles alone!74-183, Moreover, probabilistic density analysis, such as the implementation
of Gaussian mixture modelling, permits a probability-based classification of features (or amino
acids) to unveil conformational elements that depend on amino acid composition, flexibility, and
other physicochemical parameters!72-183.260_ Thus, the described method offers a new way to inspect
the differences in dihedral angle and B-factor distributions which can be, through scoring, linked to
structural motifs or used to classify multiple targets!74-176.189,256,261-266 (Fig. 8). It is important to
note, however, that the accuracy of the scoring is dependent on the quality of the available crystal-

lographic data.



To enable access for such an assessment, the R software package was developed where re-
searchers can explore their structures of interest in-depth (Chapter 5: Fiscore package: effective
protein structural data visualisation and exploration). Importantly, Fiscore can be integrated into
other analytical architectures and aid in studies where the expertise in machine learning is lacking
since this package provides a user-friendly GMM exploration of any appropriate target267. Addi-
tional features, namely hydrophobicity-secondary structure plots or Fi-score-secondary structure
plots as well as many other interactive graphs, build a highly integrative analytical framework that
could help to quickly evaluate proteins prior to downstream analyses.

Thus, the introduced scoring system and machine learning applications could help to reduce
not only costs but also the time needed to select targets and prioritise screening strategies. Specifi-
cally, developing more comprehensive R&D pipelines could improve drug discovery success rates
and allow to target complex proteins as well as disease-causing networks. In addition, topological
feature-based evaluation could advance drug repurposing efforts where known drug hotspots are
searched against newly discovered targets!33.170.175.,176,180,181,268,269 Qverall, the introduced research
sets the ground for future studies to analyse structural characteristics in-depth and integrate this in-
formation with drug discovery pipelines. Implementation of these new strategies could greatly re-

duce the multi-dimensional complexity of therapeutics screening and target selection.

7.3. Highly integrative in silico screening pipeline: a better method to explore targets and

capture potential hit compounds

The final part of the thesis integrates the previous chapters’ research by introducing a newly
developed and highly integrative drug discovery pipeline focusing on a complex
immunotherapeutic target (Chapter 6: In silico drug discovery for a complex immunotherapeutic
target - human c-Rel protein). As discussed earlier, the growing R&D costs and decreasing new
therapeutics outputs underline why it is imperative to rethink current discovery and development
strategies!7-24,51.52,151.174.270.271 Moreover, risk-averse approaches in the pharmaceutical industry lim-
it novel therapies development and lead to increasing patient care costs?0.105.170,270.271 This was also
exemplified in a cardiomyopathies case study (Chapter 2) where current therapeutic options are
only limited to symptomatic management with declining investments in the exploration of the alter-
natives!!.13.17.22,244.270.271 Thus, these discovery and clinical challenges motivated the development
of new HTVS strategies using holistic and integrative methods in computational biology and chem-

istry that could speed up the search of drug-like compounds and expand the screening space. Since



earlier omics analyses hinted at the potential involvement of the NF-kB pathway in cardiopatholo-
gies, a subunit of this transcription factor, the c-Rel protein, was selected as a complex im-
munotherapeutic target for the development of a HTVS pipeline?2.123.125-129.244.272 (Fig, 9).

Despite the potential of c-Rel, as a therapeutic target, there are no potent and selective in-
hibitors for this protein81.89.91.123.273 ¢-Rel has been implicated in many different diseases ranging
from immunopathologies to cardiomyopathies!15.116.121-129.274 Thus, studying this transcription fac-
tor subunit could help devise multi-modulatory strategies (e.g., homologous targets are engaged at a
varying degree) as well as discover new mode of action highly specific therapeutics86.106,114,123,
Therefore, the first step towards discovering both potent and specific inhibitors and/or modulators
of NF-«B or any similar complex target relies on a detailed analysis of target sequences and struc-
tural features as well as the identification of relevant domains for protein-drug interactions!21-129.274-
276, Considering the above, a novel strategy of hierarchical analysis was developed in preparation
for an in silico high-throughput screening that could serve as a blueprint for complex target HTVS
(Fig. 9). Moreover, in-depth structural analysis and molecular modelling demonstrated how to over-
come the common issue of not having a crystal structure for a target protein, as no X-Ray structures
are currently resolved for human c-Rel!15.116,121-130.273-278  The study focused on the evaluation of
existing differences between closely related target proteins (e.g., c-Rel and p65)61.121-130,154,250-
252,279-281 and in combination with structural bioinformatics, molecular modelling, and machine
learning it was possible to capture the biophysical properties of selected c-Rel regions. The identi-
fied sites were ranked based on the ligand binding probability and expected drug modes of action.
Various studies have stressed the need to focus on binding pockets but little methodology has been
developed to combine structural bioinformatics with computational chemistry168,195-197.278,282,283,
Specifically, commercial platforms, such as Schrédinger20!, or open-source tools, including
Autodock Vina203, primarily focus on the computational chemistry without considering the structur-
al bioinformatics component. Moreover, screening strategies still lack well-defined protocols and
the developed methodologies are not made easily accessible for further development and testing.
These limitations span library selection strategies, target selection and assessment, screening re-
finement, and result validation?28.68.69.80.279.284 The current study expanded on the missing pieces in
computational chemistry research by providing a detailed analysis strategy and showed how ma-
chine learning can be applied to assess protein topology and conformational features (Fig. 9). In ad-
dition, it was outlined how this information can be integrated with a molecular dynamics and bio-
physical parameter assessment, such as the electrostatic potential, hydrophobicity, and predicted

mobility, to prepare for HTVS. This study also demonstrated how NMA and similar coarse grained



molecular modelling approaches can be used to explore the relevant scope of molecular move-
ments53.131,170,197-199.285 and how the incorporation of this information together with sequence and
binding site characteristics can offer new insights into molecular dynamics. NMA revealed that
c-Rel can potentially have winging motions which suggests that DN A-protein and protein-protein
interactions are complex creating and opening new binding sites which go beyond a simple clamp-
ing seen via X-Ray crystallography studies!13.118.119.187.275_ The introduced strategies of an in silico
target analysis could assist in selecting relevant targets and building compound screening pipeli-
nes28,286-292

It is also important to highlight that the central idea of the in silico screening is not to
identify exact binding affinities (i.e., to match experimental readouts) or to replace in vitro screens
but to provide a ranking of potential hit compounds in order to fast-track therapeutics
development?28.68-70.278  [_imitations of HTVS depend on the quality of target structures, selected li-
braries, and platform design©8.69.255, The aim of the presented research was to create a framework
that is adaptable and can evolve as better algorithms become available. Importantly, the developed
pipeline combines both bioinformatics and cheminformatics tools to prepare for the screening
which is expected to improve the detection of therapeutically promising compounds.

The results of the first extensive in silico analysis for the c-Rel protein outlined key protein-
drug interactions and the developed analytical framework could be used as a basis for rational drug
design in preparation for large-scale in vitro screens of complex targets278. Furthermore, this
screening introduced a diverse set of compounds which can be used as a chemical guide to build
improved hit-to-lead structures for c-Rel. Thus, this analytical map could be incorporated into ther-
apeutic pipelines for the NF-kB pathway targets (Fig. 9). Considering the above, this study allowed
to appreciate that drug discovery and complex target analysis can rely more on discovering new
drug candidates through in silico methods. This type of search for new drugs could be more quickly

and cost-efficiently translated into in vifro and in vivo screens.
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Figure 9. Integrative in silico pipeline protocol for high-throughput virtual screening and drug discovery.
The analytical schema highlights the synergy of structure- and ligand-based methods. In addition, the itera-
tive screening provides many different opportunities to further optimise and adapt any compound library.
The process concludes with hit compound selection, optimisation, and early validation studies. ADMET -
absorption, distribution, metabolism, excretion, and toxicity.
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7.4. Programmatic approaches and data management: maintaining and designing robust

workflows

Workflow development can become a key component in a successful in silico discovery
pipeline enabling many different research aspects, including managing data flow and merging virtu-
al analyses with in vitro or in vivo assessments292. Establishing good workflow building, mainte-
nance, and use practices guarantees better research reproducibility and resource savings since data
curation and retrieval can be automated or semi-automated processes?93.294, Part of the research
aims of this thesis was to develop software packages, namely Omiclnt and Fiscore, and make the
introduced analytical approaches more available to other researchers (Fig. 10). Moreover, it was
necessary to create an interactive and user-friendly environment where machine learning analyses
could be easily implemented by non-experts. In the case of cheminformatics, Schrodinger suite20!
provides a fully customisable set of tools and the user can easily adapt the protocol introduced in
this thesis. To assist with early compound library preparation, a Chemexpy software package was
also introduced for the Python programming environment. Together, these pieces of software and
protocols create an adaptable set of research tools that can facilitate target evaluation and new drug
discovery.

Omiclnt is an R software package developed for an in-depth exploration of significantly
changed genes, gene expression patterns, and the associated methylome as well as the miRNA envi-
ronment. This piece of software accompanies the second chapter of the thesis focusing on omics
analyses. The package helps to assess gene clusters based on their known or predicted interactors
from several different resources, e.g., UniProt2%5 and STRINGdb!46.147, Moreover, Omiclnt provides
an easy Gaussian mixture modelling!48.150.29 pipeline for integrative analysis that can be used by a
non-expert to explore gene expression datasets. Specifically, the package expands the LFCiscore func-
tionality by allowing single-cell and proteome experimental data integration. In addition, many oth-
er package functionalities can aid in studying specific gene networks, understanding cellular pertur-
bation events, and exploring interactions that might not be easily detectable otherwise.

Lack of bioinformatics tools for a quick assessment of protein conformational and topologi-
cal features motivated to create an integrative and user-friendly R software package - Fiscore246.297-
300, This package complements the fourth chapter of the thesis. One of the key features of the Fis-
core package is Gaussian mixture modelling to allow a probabilistic evaluation of complex struc-
tural features. The package builds on the mathematical formulation of protein physicochemical

properties that can be easily visualised and explored with interactive plots.



All pieces of software are accompanied by vignettes and supporting documentation which
are provided to guide the user through detailed tutorials and use cases267:301-304_ [n addition,
Github305 provides an opportunity to actively make suggestions for additional features.

R software packages are distributed as a part of the CRAN network3%¢ and the python chem-
informatics package is on the PyPi platform307. All software tools promote open science practices
and make research more accessible. With community inputs and suggestions, it is possible to ex-

pand the analytical scope and ensure the quality of programmatic solutions.
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7.5. Thesis overview and conclusion

Drug discovery and development depends on our ability to identify therapeutically relevant
targets and match that information with a complex chemical space that can lead to potential drug
candidates!5:23.152, However, in the last few decades the continued decline in new drug discovery
and growing R&D expenditures prompted many companies to rethink their discovery strategies and
begin focusing on computational methods!7.18.22.244_ As a result, computational biology, bioinformat-
ics, and cheminformatics have made significant inroads into the pharmaceutical industry where in
silico approaches now not only accelerate the exploration of new therapeutic candidates but also
help to reduce R&D costs and the likelihood of missing relevant hits53.131.308, Despite many
advancements in computational biology, bioinformatics, system biology, and computational chem-
istry, there is still a significant lack of end-to-end solutions for the right target identification and se-
lection of the most promising compounds+3:59.60.281 Considering the above challenges and the need
for improved R&D strategies, this thesis aimed to introduce multi-omics and highly integrative ana-
lytical frameworks for a more streamlined target and therapeutics discovery approach.

The research began by developing an analytical strategy for studying complex diseases
through multi-omics approaches to identify new therapeutically relevant targets. A case study of
cardiomyopathies allowed to demonstrate how omics data integration, data enrichment, and ma-
chine learning can aid in better understanding multifaceted disease aetiologies. These insights pro-
vided an impetus to develop a protein structural and topological classification methodology so that
multiple targets can be evaluated, grouped, and analysed based on structural and functional features.
The final experimental chapter of the thesis combined the earlier analyses by introducing a novel
hierarchical HTVS pipeline and comprehensive target analysis to reveal potential drug candidates
for a challenging immunotherapeutic target. A case study target, the human c-Rel protein, was
selected to build this analytical environment comprising structural bioinformatics, molecular mod-
elling, cheminformatics, and machine learning. 15 new hit compounds were discovered after com-
bining structure- and ligand-based approaches to parse an unprecedented size chemical library
(659 M chemical entities)30.157.278, The devised screening blueprint can be applied to study complex
targets and accelerate compound selection.

In summary, the outlined studies create a holistic research strategy for drug discovery in the
computational space. Proposed solutions and novel insights in therapeutics development can signif-

icantly improve the current R&D strategies by reducing screening time, costs, and



turnaround13.17.18.28 Importantly, the introduced highly integrative and network-centric approaches
offer a better understanding of pathological perturbations and can help deliver so much needed clin-

ical solutions faster and with a safer profile.



8. Future work

New therapeutics development faces a number of challenges and, while some are the
commercial pressures to maintain market dominance, the bigger issue is the constantly shrinking
pool of easy-to-identify and viable targets2.4.15.140.169. The change in research strategy brought about
by the use of in silico, ML/AI, and data mining is likely to continue to grow in popularity for
preclinical research and development2.2849.244.281.286_ Thus, reducing associated R&D costs and the
time needed to produce new pharmaceuticals will depend on how well we can take advantage of
existing methodologies and continue evolving the in silico field.

The future work within the scope of drug discovery will continue to build on the findings
and newly developed methodologies described in this thesis. The planned research trajectories
could be divided into several themes. The first will focus on continuing to establish disease network
and perturbation event exploratory analyses where significantly changed genes can be explored in a
broader context of mined proteomics, single cell, and regulatory data. Specifically, creating
mathematical and systems biology methods to better classify and prioritise the expressome patterns
should enable a more sensitive and specific detection of causal gene networks. This work will tie in
with the second major research theme of protein structural analysis where the main focus will be to
improve conformational modelling and feature prediction to assist with drug discovery. For
example, multiple homologous and non-homologous proteins could be screened using different
scoring windows to predict which scoring approach is the best for various target site comparisons.
Similarly, known-binding pocket survey could help gain additional insights into druggable
proteome characteristics. The third theme will continue to be ligand- and structure-based drug
discovery as well as HTVS protocol improvement juxtaposing in silico readouts with in vitro
binding studies. Building such a screening library should be a valuable reference for both statistical
analyses and machine learning based modelling. The exploration of therapeutic intervention options
for the NF-kB pathway will remain an important future research aspect because understanding
NF-«B targeting principles could greatly enhance our ability to engage other challenging proteins or
complexes. Finally, any newly developed software packages or tools will be made freely available

to other researchers so that the methods can evolve and improve.
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Supplementary Figures and Data

LFCScore:LFC(1 +G)
Equation 1. Log2 Fold Changescore €quation defines a scaled LFC (log2 fold change) value for a given contrast where a
is a value showing the strength of disease association for a given gene (the a value is retrieved from Open Targets
disease association scoring).
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Supplementary Figure 1. Raw (A) and log2+1 normalised (B) sample count distributions for human left ventricle bulk RNA-seq (PRJNA477855).
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Supplementary Figure 6. Heatmap for significantly changed genes (ranking the top genes based on the p-adjusted value) that are
unique for the contrasts: DC vs healthy samples (A) and IC vs healthy samples (B) where values are shown for all conditions. Reported
counts are rlog transformed and mean standardised per gene.
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Supplementary Figure 7. Log10 scaled gene counts that changed significantly in a specific contrast groups: DC vs Healthy (top
panels), IC vs Healthy (bottom panels) and belonged to the largest log fold change group.
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patterns formed distinct expression clusters across different human heart tissue states when comparing for both genders.
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Supplementary Figure 10.
Enrichment analysis for all
significantly changed genes in the
IC vs Healthy contrast group where
enriched cellular processes (A) and
the visualisation of the top highest
ranking processes and
corresponding genes (B) are
provided in the distribution plots
and network maps, respectively.
Enrichment analysis for genes that
changed significantly in IC vs
Healthy but not in DC vs Healthy
are plotted as cellular processes
distribution (C) and the visualisation
of the top highest ranking
processes and corresponding
genes are shown in network maps
(D). Gene set size that was
enriched and p-adjusted value
provided with the plots.
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Supplementary Figure 11. Protein sample main
characteristics: normalised (log2+1 transformed) protein
abundance/count (LFQ) values for human left ventricle
proteome (PXD008934) (A), density plots of protein
samples distribution (B) and shared proteins by different
contrast groups are visualised via Venn diagram (C).
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Supplementary Fig. 12. Human left ventricle bulk proteome (PXD008934) abundance clustering and distribution analysis showing
Spearman correlation calculated distances (A) and euclidean distances (B) for rlog transformed abundance values (LFQ) using
complete-linkage hierarchical clustering method; sample distributions across top two principal components are shown in the PCA plot

grouping by condition (C) and gender (D).
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Supplementary Figure 15. Mouse non-cardiomyocyte single cell RNA-seq (E-MTAB-6173) cellulome composition. *Some longer
names were abbreviated; for full names, please refer to Supplementary Table 9.
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R

Supplementary Figure 16. Mouse non-
cardiomyocyte single cell RNA-seq (E-
MTAB-6173) cellulome marker gene
clusters for the uncovered cell types.
Please note: image needs to be zoomed
in for proper viewing.
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Supplementary Figure 18. Human heart left ventricle cellulome composition.
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Supplementary Figure 19. Human heart left ventricle cellulome UMAP decomposition showing relative distances and the uncovered clusters of different cells.
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Supplementary Figure 20. Human heart left ventricle cellulome marker gene clusters for the uncovered cell types.
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Supplementary Figure 21.
Human heart left ventricle
cellulome marker gene
heatmap for the uncovered
clusters of different cells.
Please note: image needs to
be zoomed in for proper
viewing.



entanglement = 0.84

Supplementary Figure 22. Human
heart left ventricle bulk RNA-seq shared
significantly changed gene (n=160) set
between dilated and ischemic
cardiomyopathy contrast groups
(disease vs healthy state)
agglomerative hierarchical clustering
based on Log2 Fold Change Score and
known interactors returned the shared
dendrogram. Coloured branches signify
similar clustering patterns. Please note:
image needs to be zoomed in for
proper viewing.
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Figure 23. GMM clustering showing specific
grouping based on Log2 Fold Change Score
against known or predicted number of
interactions for that gene where significantly
changed genes in biopsies of dilated heart
(GEO: GSE3585) (DC validation) as well as
diabetic heart failure samples (GEO:
GSE26887) (Diabetic IC validation) were used
for clustering. DC (dilated cardiomyopathy); IC
(iscemic cardiomyopathy; ischemic tissue
pathology).



Supplementary Table 1. Randomly selected samples of
PRJNA477855 RNA-seq for the heart failure in human left ventricles

Sample ID Sex Age Condition
SRR7426784 Male 43 Non-failing
SRR7426785 Male 54  Non-failing
SRR7426786 Female 41 Non-failing
SRR7426787 Female 56 Non-failing
SRR7426798 Male 38 Dilated
cardiomyopathy
SRR7426799 Male 66 Dilated
cardiomyopathy
SRR7426801 Female 66 Dilated
cardiomyopathy
SRR7426807 Female 51 Dilated
cardiomyopathy
SRR7426835 Male 63 | Ischemic
cardiomyopathy
SRR7426836 Male 56 | Ischemic
cardiomyopathy
SRR7426840 Female 57 | Ischemic
cardiomyopathy
SRR7426841 Female 60  Ischemic
cardiomyopathy




Supplementary Table 2. Randomly selected proteome samples
(PXD008934 ) of the heart failure in human left ventricles

Sample ID Sex Age Condition
1085 | Female 54 Non-failing
1356 | Female 51  Non-failing
1383 | Male 59 Non-failing
1325 | Male 53  Non-failing
1535 | Female 58 | Dilated
cardiomyopathy
1304 | Female 63 Dilated
cardiomyopathy
1467 | Male 67 | Dilated
cardiomyopathy
1290 | Male 65 | Dilated
cardiomyopathy
1311 | Female 56 | Ischemic

cardiomyopathy

1195 | Female 64 | Ischemic
cardiomyopathy
1427 | Male 62  Ischemic
cardiomyopathy
1004 | Male 58 | Ischemic

cardiomyopathy



Supplementary Table 3. DC vs Healthy significantly and uniquely expressed genes that cluster into functional processes

Gene Function baseMean log2FoldChange IfcSE stat pvalue padj
MYL1 myosin light chain 1 14.364641 3.5442291 0.6937477 5.108816 3.241839e-07 3.309117e-05
DNAH6 dynein axonemal heavy chain 6 8.166608 2.6515123 0.8483073 3.125651 1.774122e-03 2.042312e-02
MYOZ1 myozenin 1 67.628563 2.5242075 0.5377578 4.693949 2.679814e-06 1.651131e-04
ACKR2 atypical chemokine receptor 2 23.264701 2.1723989 0.6590295 3.296361 9.794617e-04 1.366374e-02
CPEB1 cytoplasmic polyadenylation eleme | 20.604908 1.6807667 0.4578147 3.671282 2.413373e-04 4.872401e-03
nt binding protein 1
SPOCK1 SPARC (osteonectin), cwcv and kaz | 2038.957418 1.4382561 0.4926295 2.919549 3.505379e-03 3.280854e-02
al like domains proteoglycan 1
CCDC181 coiled-coil domain containing 181 41.082447 1.0713172 0.3905919 2.742804 6.091696e-03 4.805408e-02
CLSTN2 calsyntenin 2 181.705133 1.0150829 0.3411624 2.975366 2.926394e-03 2.918652e-02
SCN3B sodium voltage- 121.951613 0.9871886 0.3396407 2.906567 3.654184e-03 3.382980e-02
gated channel beta subunit 3
MTCL1 microtubule crosslinking factor 1 399.153170 0.9570641 0.3243318 2.950879 3.168705e-03 3.080823e-02
SPACA9 sperm acrosome associated 9 92.324392 0.9510539 0.2954235 3.219290 1.285087e-03 1.653543e-02
STIM1 stromal interaction molecule 1 1423.623159 0.9285644 0.2951181 3.146416 1.652845e-03 1.943749e-02
DBN1 drebrin 1 1080.662131 0.7704495 0.2669485 2.886135 3.900043e-03 3.528259e-02
DPYSL2 dihydropyrimidinase like 2 3633.965755 0.7582409 0.2235979 3.391091 6.961502e-04 1.069271e-02
DPYSL3 dihydropyrimidinase like 3 2359.704732 0.7366823 0.2315744 3.181190 1.466713e-03 1.802526e-02
DYNC2H1 dynein cytoplasmic 2 heavy chain 1 | 180.805018 0.7031502 0.2276818 3.088302 2.013039e-03 2.232452e-02
DYNC2LI1 dynein cytoplasmic 2 light intermedi | 266.016147 0.6649107 0.1777337 3.741050 1.832531e-04 4.011862e-03
ate chain 1
STMN1 stathmin 1 1394.640523 0.6131505 0.1939413 3.161527 1.569443e-03 1.880988e-02
KIF13B kinesin family member 138 748.045214 0.5869961 0.1823980 3.218216 1.289905e-03 1.656006e-02
ARHGEF9 Cdc42 guanine nucleotide exchang | 2062.960977 0.4829104 0.1541420 3.132894 1.730918e-03 2.006620e-02
e factor 9
BEX4 brain expressed X-linked 4 1429.322911 0.4552700 0.1443430 3.154085 1.610021e-03 1.910182e-02
EMD emerin 1216.220897 0.4175931 0.1428686 2.922918 3.467680e-03 3.265488e-02
GRIN2A glutamate ionotropic receptor NMD | 573.703544 -2.7942514 0.7787652 -3.588054 3.331555e-04 6.236027e-03
A type subunit 2A
CKAP2L Eytoskelelon associated protein 2 i | 11.961873 -2.6685788 0.8531485 -3.127918 1.760491e-03 2.030932e-02
e
BIRC5 baculoviral IAP repeat containing 5 | 21.241373 -2.2754492 0.7494786 -3.036043 2.397053e-03 2.525290e-02
MYL7 myosin light chain 7 18087.277809 -2.2153761 0.7113916 -3.114144 1.844793e-03 2.089653e-02
GRIN3A glutamate ionotropic receptor NMD | 64.115114 -1.9192671 0.5051655 -3.799284 1.451149e-04 3.428558e-03
A type subunit 3A
WDR62 WD repeat domain 62 892.755862 -1.5955712 0.4224322 -3.777106 1.586614e-04 3.599424e-03
TPX2 TPX2 microtubule nucleation factor | 62.949467 -1.5698211 0.5693498 -2.757217 5.829562e-03 4.696565e-02
DAB1 DAB adaptor protein 1 150.512063 -1.4456068 0.5159792 -2.801677 5.083781e-03 4.238482e-02
SLCBA9 solute carrier family 6 member 9 46.797095 -1.3703820 0.4704159 -2.913128 3.578276e-03 3.331668e-02
XIRP2 ;in actin binding repeat containing | 24918.002954 -1.3193753 0.3904855 -3.378807 7.280109e-04 1.105679e-02
RAPGEF4 Rap guanine nucleotide exchange f | 431.263667 -1.1737832 0.2944133 -3.986856 6.695474e-05 1.962003e-03
actor 4
NAV3 neuron navigator 3 149.225690 -1.1374313 0.3527139 -3.224798 1.260614e-03 1.629980e-02
SY17 synaptotagmin 7 758.842852 -1.0877793 0.2804863 -3.878191 1.052361e-04 2.704219e-03
CAsQ1 calsequestrin 1 1625.708040 -0.9884939 0.3025740 -3.266950 1.087130e-03 1.470147e-02
CKAP2 cytoskeleton associated protein 2 263.132918 -0.9700421 0.2016049 -4.811599 1.497275e-06 1.049771e-04
CSRP2 cysteine and glycine rich protein 2 | 246.791278 -0.9263227 0.3090644 -2.997183 2.724870e-03 2.785318e-02
CAVIN4 caveolae associated protein 4 2065.005630 -0.9151393 0.2894771 -3.161353 1.570381e-03 1.880988e-02
RACGAP1 Rac GTPase activating protein 1 140.665811 -0.9059803 0.3151308 -2.874934 4.041121e-03 3.621779e-02
HAUS8 :AUS augmin like complex subunit | 76.137586 -0.8579109 0.2293639 -3.740391 1.837339e-04 4.016956e-03
ADGRL1 adhesion G protein- 598.092664 -0.8145279 0.2114153 -3.852739 1.168038e-04 2.936524e-03
coupled receptor L1
LMOD3 leiomodin 3 7566.814823 -0.7681449 0.2451851 -3.132918 1.730779e-03 2.006620e-02
HOMER1 homer scaffold protein 1 1455.505991 -0.7475483 0.2050636 -3.645447 2.669277e-04 5.269231e-03
TPM2 tropomyosin 2 17977.301514 -0.7375223 0.1857629 -3.970235 7.180183e-05 2.063478e-03
TUBG1 tubulin gamma 1 778.972242 -0.7280100 0.2135228 -3.409518 6.507779e-04 1.015888e-02
PLS1 plastin 1 62.528767 -0.7257692 0.2465286 -2.943955 3.240467e-03 3.122597e-02
TWF1 twinfilin actin binding protein 1 221.217600 -0.7146674 0.2287339 -3.124450 1.781379e-03 2.049216e-02
DVL1 dishevelled segment polarity protei | 2161.904668 -0.5868644 0.1575715 -3.724431 1.957560e-04 4.213721e-03
ni
PRKCZ protein kinase C zeta 354.010016 -0.5829840 0.1401274 -4.160386 3.177105e-05 1.122829¢-03
TBCE tubulin folding cofactor E 653.400540 -0.5807267 0.2080410 -2.791405 5.247982e-03 4.333182e-02
LZTS3 leucine zipper tumor suppressor fa | 634.659755 -0.5485539 0.1959767 -2.799077 5.124887e-03 4.260661e-02
mily member 3
ARHGEF25 Rho guanine nucleotide exchange f | 637.517291 -0.5294155 0.1675045 -3.160605 1.574418e-03 1.882395e-02
actor 25
PSEN2 presenilin 2 445.233639 -0.4988028 0.1707856 -2.920638 3.493160e-03 3.280585e-02
CALM3 calmodulin 3 8389.100991 -0.4961853 0.1478749 -3.355439 7.923901e-04 1.164319e-02



Gene Function baseMean log2FoldChange IfcSE stat pvalue padj
WDR1 WD repeat domain 1 6316.830591 -0.4824212 0.1769203 -2.726771 6.395744e-03 4.963415e-02
NEDD1 NEDD1 gamma- 493.649478 -0.4821382 0.1636056 -2.946953 3.209216e-03 3.101170e-02
tubulin ring complex targeting facto
r
HAUS6 HAUS augmin like complex subunit | 284.843278 -0.4344779 0.1511268 -2.874922 4.041270e-03 3.621779e-02
6
YWHAZ tyrosine 3-monooxygenase/ 3386.395776 -0.4324969 0.1315951 -3.286573 1.014145e-03 1.401537e-02
tryptophan 5-
monooxygenase activation protein
zeta
MYO9B myosin IXB 1680.830140 -0.4021050 0.1393136 -2.886329 3.897646e-03 3.528053e-02
NPTN neuroplastin 4830.323592 -0.3672508 0.1320114 -2.781962 5.403129e-03 4.434208e-02
WASL WASRP like actin nucleation promoti | 1388.656537 -0.3639156 0.1255122 -2.899444 3.738247e-03 3.435385e-02
ng factor
MYO1C myosin IC 6923.937386 -0.2748624 0.0937564 -2.931666 3.371490e-03 3.197706e-02



Supplementary Table 4. IC vs Healthy significantly and uniquely expressed genes that cluster into functional processes

Gene Function baseMean log2FoldChange IfcSE stat pvalue padj

IGHV4-34 immunoglobulin heavy variable4-34 46.175900 9.1273257 2.79946948 3.260377 1.112642e-03 1.028591e-02
IGHV3-9 immunoglobulin heavy variable3-9 33.303123 7.3619659 2.34733350 3.136310 1.710882e-03 1.406509e-02
IGKV2-30 immunoglobulinkappavariable2-30 12.548717 6.7281601 1.81938084 3.698049 2.172627e-04 2.978809e-03
HLA-C majorhistocompatibilitycomplex,class|,C 58.412783 6.4450762 2.46816217 2.611286 9.020254e-03 4.673391e-02
IGHM immunoglobulin heavy constantmu 1109.346750 6.3814377 1.56024785 4.090015 4.313446e-05 8.611875e-04
IGKV3-15 immunoglobulinkappavariable3-15 34.046892 5.8891336 2.26006724 2.605734 9.167768e-03 4.720071e-02
IGLV6-57 immunoglobulin lamda variable6-57 17.218947 5.7905202 1.59281575 3.635399 2.775511e-04 3.594990e-03
IGLV2-14 immunoglobulin lamda variable2-14 42.539114 5.7834533 1.76037108 3.285360 1.018520e-03 9.629910e-03
IGHV4-39 immunoglobulin heavy variable4-39 23.994505 5.3459247 1.80178927 2.967009 3.007123e-03 2.129960e-02
LAMP3 lysosomal associated membraneprotein3 16.302660 5.1466230 1.36461187 3.771492 1.622743e-04 2.392538e-03
IGHA1 immunoglobulin heavy constantalphal 2443.532712 5.1407396 1.32273578 3.886445 1.017230e-04 1.685016e-03
IGKV1-5 immunoglobulinkappavariable1-5 112.983246 4.6976531 1.61221023 2.913797 3.570622e-03 2.391583e-02
IGKV3-20 immunoglobulinkappavariable3-20 62.627803 4.6014836 1.48521977 3.008184 1.947107e-03 1.542016e-02
CXCL9 C-X-Cmotifchemokineligand9 913.960195 4.5990793 1.47405748 3.120014 1.808427e-03 1.461932e-02
IGHV3-49 immunoglobulin heavy variable3-49 5.965469 4.5368830 1.74620542 2.598138 9.373076e-03 4.796419e-02
IGKV4-1 immunoglobulinkappavariable4-1 110.768233 4.5232171 1.55603104 2.906894 3.650370e-03 2.425527e-02
IGHV1-18 immunoglobulin heavy variable1-18 20.877473 4.4452646 1.50479891 2.954059 3.136241e-03 2.190526e-02
CCL22 C-Cmotifchemokineligand22 7.957771 4.3738857 1.23279685 3.547937 3.882609e-04 4.655491e-03
IGLV2-8 immunoglobulin lamda variable2-8 41.688621 4.2705233 1.42892513 2.988626 2.802346e-03 2.018442e-02
CCR7 C-Cmotifchemokinereceptor7 16.270529 4.2070196 1.15634803 3.638195 2.745555e-04 3.575672e-03
IGLV1-40 immunoglobulin lamda variable1-40 23.419365 4.1822933 1.23504016 3.386362 7.082584e-04 7.257142e-03
IGLV2-11 immunoglobulin lamda variable2-11 19.128619 4.1416331 1.38691320 2.986224 2.824459e-03 2.029096e-02
CCL24 C-Cmotifchemokineligand24 8.324075 4.1391190 1.17488714 3.522993 4.267028e-04 4.969534e-03
SIRPG signalregulatoryproteingamma 9.277391 4.1372090 1.50304550 2.752551 5.913298e-03 3.457949e-02
TNFRSF18 TNFreceptorsuperfamilymember18 6.137487 4.1211102 1.49236900 2.761455 5.754440e-03 3.391286e-02
IGLV2-23 immunoglobulin lamda variable2-23 29.117633 3.9435233 1.21315995 3.250621 1.151532e-03 1.056906e-02
JCHAIN joiningchainofmultimericlgAandigM 777.145189 3.8890048 1.41118545 2.755842 5.854119e-03 3.436634e-02
CD1E CD1emolecule 13.516190 3.8875102 1.33380078 2.914611 3.561323e-03 2.390440e-02
IGLLS immunoglobulin lambda like polypeptide 5 78.973895 3.8517529 1.41422220 2.723584 6.457781e-03 3.681843e-02
CXCL11 C-X-Cmotifchemokineligand11 62.101707 3.7301417 1.40623421 2.652575 7.988037e-03 4.266187e-02
CXCL10 C-X-Cmotifchemokineligand10 215.444156 3.6992948 1.37792875 2.684678 7.259974e-03 4.008053e-02
CXCR3 C-X-Cmotifchemokinereceptord 17.585516 3.5336855 1.09658404 3.222448 1.271001e-03 1.137675e-02
IGHA2 ilin heavy cor ) | 169.686781 3.4444847 1.25399405 2.746811 6.017779e-03 3.504261e-02
SYTL1 synaptotagminlike1 37.139142 3.0402394 0.67412463 4.509907 6.485606e-06 1.879131e-04
cbic CD1cmolecule 36.442241 2.9629920 0.85679532 3.458226 5.437447e-04 6.004660e-03
CCL5 C-Cmotifchemokineligand5 120.600192 2.8050933 0.73455924 3.818744 1.341331e-04 2.082883e-03
CD2 CD2molecule 65.872598 2.7316791 0.89080190 3.066539 2.165523e-03 1.675108e-02
ABCC11 ATP binding cassette subfamily C member11 5.339165 2.7308018 0.92742095 2.944512 3.234647e-03 2.236549e-02
TRBC2 Teell receptor beta constant2 120.393934 2.7055916 0.78756045 3.435408 5.916620e-04 6.389565e-03
RHOH ras homolog family member H 18.654429 2.5931203 0.99399776 2.608779 9.086596e-03 4.697528e-02
SMPD3 sphingomyelinphosphodiesterase3 14.827849 2.5648910 0.99179402 2.586113 9.706521e-03 4.920451e-02
LCK LCKproto-oncogene,Srcfamilytyrosinekinase 53.963402 2.5544172 0.87630383 2.914990 3.556995e-03 2.390440e-02
CCL8 C-Cmotifchemokineligand8 35.291840 25517122 0.88916665 2.869779 4.107582e-03 2.650881e-02
TBC1D10C TBC1domainfamilymember10C 59.102377 2.5039043 0.69261306 3.615156 3.001668e-04 3.813655e-03
CD3E CD3emolecule 77.928499 2.4005368 0.88044373 2.726508 6.400841e-03 3.660674e-02
ZAP70 zeta chain of Tcell receptor associated 61.210586 2.3199826 0.72600368 3.195552 1.395636e-03 1.218416e-02

proteinkinase 70
CD48 CD48molecule 86.079633 2.3082654 0.78227812 2.950697 3.170582e-03 2.208122e-02
LAG3 lymphocyteactivating3 21.310969 2.2867201 0.80174834 2.852167 4.342230e-03 2.756322e-02
CD6 CDémolecule 35.444640 22724584 0.74097799 3.066837 2.163371e-03 1.674222e-02
CcCL3 C-Cmotifchemokineligand3 21.127129 2.1933377 0.81856241 2.679500 7.373228e-03 4.046710e-02
ABCC6 ATP binding cassette subfamily Cmember6 18.061060 2.1686285 0.61750385 3.511927 4.448701e-04 5.120162e-03
CARD11 caspase recruitment domain family member11 38.304206 2.0987357 0.73959088 2.837698 4.544012e-03 2.837832e-02
zP3 zona pellucida glycoprotein3 32.803384 2.0761913 0.76308278 2.720794 6.512527e-03 3.700370e-02
GZMA granzymeA 42.765519 1.9748701 0.70833314 2.788053 5.302593e-03 3.191727e-02
FPR2 formylpeptid ereceptor2 15.548507 1.8722902 0.63758011 2.936557 3.318780e-03 2.276508e-02
RARRES2 retinoic acid receptor responder2 212.750256 1.8125028 0.60737989 2.984134 2.843825e-03 2.041246e-02
ACAP1 ArfGAPwithcoiled- 108.506544 1.7419962 0.54888261 3.173714 1.505021e-03 1.288878e-02
coil,ankyrinrepeatandPHdomains1

ADAM8 ADAM metallopeptidase domain8 98.869433 1.7036468 0.57298825 2.973266 2.946485e-03 2.099528e-02
SELL selectin L 119.443633 1.6517917 0.51594712 3.201475 1.367260e-03 1.199942e-02
RTN4R reticulon 4 receptor 34.829720 1.5979149 0.47073653 3.394499 6.875419e-04 7.133194e-03
SPN sialophorin 114.624826 1.4235531 0.43250105 3.291444 9.967435e-04 9.461667e-03
THBS4 thrombospondin4 11145.458291 1.4034856 0.35709402 3.930297 8.484094e-05 1.459174e-03
SFRP1 secreted frizzled related protein1 2353.776080 1.3669175 0.47295760 2.890148 3.850605e-03 2.522230e-02
LAT linkerforactivationofTcells 89.104364 1.3538948 0.41915336 3.230070 1.237598e-03 1.115583e-02
KIT KlTproto-oncogene,receptortyrosinekinase 114.866777 1.2394858 0.39910218 3.105685 1.898385e-03 1.516429e-02
AGRN agrin 1199.474245 1.2294127 0.31404098 3.914816 9.047316e-05 1.536935e-03
PLCE1 phospholipaseCepsilon1 1338.872595 1.1128473 0.41459473 2.684181 7.270772e-03 4.009053e-02
PLEKHG4 pleckstrin homology and RhoGEF domain 44.592923 1.0963012 0.34716566 3.157862 1.589308e-03 1.336288e-02

containingG4



Gene Function g: \ang IfcSE stat pvalue padj
SLC30A2 solute carrier family30member2 374.964976 1.0776259 0.37753688 2.854359 4.312375e-03 2.746864e-02
DAPK3 death associated protein kinase3 2335.661715 1.0478415 0.25986152 4.032307 5.523191e-05 1.042312e-03
ARHGAP22 RhoGTPasea ctivating protein22 130.296969 1.0351433 0.39050095 2.650809 8.029931e-03 4.282979e-02
ICAM1 intercellular adhesion molecule1 713.444287 0.8942768 0.33776778 2.647608 8.106335e-03 4.308612e-02
TCIRG1 Teell immunere 815.555957 0.8889976 0.26126382 3.402682 6.672794e-04 7.010439e-03
gulator1, ATPaseH-+transportingVOsubunita3
CX3CL1 C-X3-Cmotifchemokineligand1 975.457095 0.8857654 0.17435314 5.080295 3.768491e-07 1.882095e-05
TNFRSF14 TNFreceptorsuperfamilymember14 558.697451 0.8715396 0.27090885 3.217095 1.294956e-03 1.154149e-02
ARHGAP33 RhoGTPaseactivatingprotein33 266.575908 0.8554598 0.28821651 2.968115 2.996322e-03 2.125025e-02
ATG16L2 autophagyrelated16like2 471.761412 0.7881138 0.28642815 2751523 5.931879e-03 3.463942e-02
SLC26A11 solute carrier family26member11 179.839122 0.7772683 0.24638687 3.154666 1.606820e-03 1.343684e-02
ATP1B2 ATPaseNa+/K+transportingsubunitbeta2 256.866844 0.7678534 0.28310518 2712255 6.682719e-03 3.776262e-02
EFNAS5 ephrinAS 627.289860 0.7426469 0.17187356 4.320891 1.554007e-05 3.837880e-04
C5AR1 complementC5areceptor1 191.001370 0.7159740 0.26896233 2.661986 7.768104e-03 4.192730e-02
MAP3K11 mitogen-activatedproteinkinasekinasekinase11 1200.883867 0.7011078 0.14632121 4.791566 1.654843e-06 6.297871e-05
OBSCN obscurin,cytoskeletalcalmodulinandtitin- 22219.858775 0.6689645 0.18069928 3.702087 2.138331e-04 2.946362e-03
interactingRhoGEF
SIPA1 signal-inducedproliferation-associated1 765.861455 0.6598632 0.16729570 3.944293 8.003585e-05 1.398352e-03
WDR24 WDrepeatdomain24 257.388518 0.6269852 0.16503574 3.799088 1.452298e-04 2.209805e-03
MAP1LC3A microtubule associated protein 1light chain 3alpha | 935.008140 0.6118128 0.19667237 3.110822 1.865673e-03 1.496047e-02
ARHGEF1 Rho guanine nucleotide exchange factor1 1157.662608 0.5977079 0.20110861 2.972065 2.958041e-03 2.104157e-02
SDC2 syndecan2 2026.476299 0.5915831 0.18514513 3.195240 1.397148e-03 1.218456e-02
IT™M2C integral membrane protein 2C 968.913915 0.5684845 0.18187985 3.125605 1.774399e-03 1.442688e-02
CDC42EP1 CDC42effectorproteint 692.111050 0.5682077 0.20925602 2715371 6.620157e-03 3.748717e-02
RIN3 RasandRabinteractor3 494.967490 0.5616817 0.19863837 2.827660 4.688961e-03 2.905583e-02
RHOG ras homolog family memberG 558.357588 0.5481124 0.20339103 2.694870 7.041612e-03 3.918001e-02
LAMTOR4 lateendosomal/ 779.714674 0.5446591 0.14505332 3.754889 1.734183e-04 2.514247e-03
lysosomaladaptor, MAPKandMTORactivator4
AP5B1 adapto rrelated protein complex 5 subunit betal 308.921609 0.5397804 0.15987982 3.376163 7.350424e-04 7.463059e-03
LLGL1 LLGL scribble cell polarity complex component1 463.398907 0.5385923 0.18048487 2.984141 2.843755e-03 2.041246e-02
TRAPPC4 trafficking protein particle complex4 594.237028 0.5364898 0.14186903 3.781585 1.558330e-04 2.332726e-03
SPHK2 sphingosinekinase2 206.692143 0.5251151 0.17332988 3.029571 2.449016e-03 1.831366e-02
INF2 invertedformin,FH2andWH2domaincontaining 1408.986050 0.5228602 0.17525174 2.983481 2.849901e-03 2.044647e-02
ESAM endothelial cell adhesion molecule 1854.382839 0.5061595 0.19303821 2.622069 8.739776e-03 4.575192e-02
TBC1D17 TBC1domainfamilymember17 1397.410589 0.5016635 0.14206912 3.531123 4.137994e-04 4.856221e-03
SGSM3 small Gprotein signaling modulator3 1217.047279 0.4972390 0.10830284 4.591191 4.407229e-06 1.372596e-04
CDIP1 cell death inducing p53target1 1557.631401 0.4904338 0.14176772 3.459418 5.413437e-04 5.983994e-03
TMEM175 transmembraneprotein175 483.882475 0.4902202 0.11872998 4.128866 3.645563e-05 7.684330e-04
SCRIB scribble planar cell polarityp rotein 1145.041278 0.4875877 0.16550830 2.946002 3.219107e-03 2.230423e-02
SLC15A4 solute carrier family15member4 530.775194 0.4867267 0.13938940 3.491849 4.796900e-04 5.419649e-03
CLCN7 chloridevoltage-gatedchannel7 1314.817865 0.4848339 0.10409008 4.657830 3.195600e-06 1.048245e-04
ATPBVIH ATPaseH+transportingV1subunitH 1142.814507 0.4637430 0.16298028 2.845393 4.435659e-03 2.797476e-02
HSD3B7 hyd delta-5; ydroger ,3beta- 229.861506 0.4631949 0.17078468 2712157 6.684694e-03 3.776262e-02
andsteroiddelta-isomerase7
ULK1 unc-51likeautophagyactivatingkinase1 2336.237042 0.4546957 0.15884349 2.862539 4.202612e-03 2.692359-02
BORCS7 BLOC-1relatedcomplexsubunit? 733.629837 0.4481911 0.14951078 2.997717 2.720097e-03 1.977290e-02
BORCS6 BLOC-1relatedcomplexsubunité 287.931465 0.4457790 0.17077191 2.610376 9.044263e-03 4.682912e-02
SLC2A8 solute carrier family2member8 294.535985 0.4370628 0.16434909 2.659356 7.829010e-03 4.205923e-02
LAPTM4B lysosomalproteintransmembrane4beta 7994.693640 0.4364742 0.13917967 3.136049 1.712407e-03 1.406761e-02
SYDE1 synapsedefectiveRhoGTPasehomolog1 602.363179 0.4247276 0.16037455 2.648348 8.088629e-03 4.301950e-02
BORCS8 BLOC-1relatedcomplexsubunit8 190.478550 0.4218507 0.14680246 2.873594 4.058302e-03 2.629280e-02
CD81 CD81molecule 11597.009572 0.4183444 0.15704346 2.663877 7.724590e-03 4.178533e-02
ABCA2 ATP binding cassette subfamily Amember2 1754.426524 0.4114990 0.14537293 2.830644 4.645442e-03 2.884821e-02
TBC1D13 TBC1domainfamilymember13 834.053744 0.4100646 0.09897961 4.142920 3.429115e-05 7.302126e-04
TRAPPC5 traffickingproteinparticlecomplex5 529.558791 0.4023173 0.15440179 2.605652 9.169953e-03 4.720071e-02
AP1M1 adaptor related protein complex1subunit mut 1130.811690 0.3965961 0.11650630 3.404074 6.638865e-04 6.988035e-03
ABCD4 ATP binding cassette subfamily Dmember4 687.530857 0.3815700 0.12593828 3.029817 2.447018e-03 1.830695e-02
PLEKHG3 pleckstrin homology and RhoGEF domain 540.113877 0.3768760 0.14063074 2.679898 7.364459e-03 4.043523e-02
containingG3
CD47 CD47molecule 1813.099249 0.3739061 0.09996234 3.740470 1.836766e-04 2.626592e-03
SGSM2 smallGproteinsignalingmodulator2 1437.659314 0.3610841 0.12970495 2.783889 5.371146e-03 3.220171e-02
TMEM138 transmembraneprotein138 247.067246 0.3400481 0.12808123 2.654941 7.932231e-03 4.239788e-02
ARFGAP1 ADFPril GTP: i gproteint 1012.452064 0.3344690 0.10713441 3.121957 1.796533e-03 1.456050e-02
GGA1 ining,ARFbi | 1005.115325 0.3159003 0.10951263 2.884602 3.919092e-03 2.560032e-02
ndingprotein1
VAPA VAMP associated proteinA 3670.660390 0.3090737 0.11386404 2.714410 6.639385e-03 3.757047e-02
LZTR1 leucine zipper like transcription regulator1 1142.755538 0.3014826 0.08607600 3.502517 4.608848e-04 5.264406e-03
GPS1 Gprotein pathway suppressor1 1800.451045 0.2705263 0.10171599 2.659624 7.822787e-03 4.205923e-02
MTOR mechanistic target of rapamycinkinase 2386.202543 -0.2403381 0.09182295 -2.617408 8.860047e-03 4.619168e-02
RANBP9 RANbindingprotein9 1389.777831 -0.2740819 0.08577810 -3.195243 1.397129e-03 1.218456e-02
EXOC1 exocyst complexc omponent1 1174.187133 -0.2826886 0.09862890 -2.866185 4.154519e-03 2.667096e-02
PDCD6IP programmed cell death 6 interacting protein 3471.602008 -0.3168946 0.10555600 -3.002147 2.680829e-03 1.956335e-02
SNX9 sortingnexin9 1985.538134 -0.3202141 0.10209180 -3.136531 1.709593e-03 1.406145e-02



Gene Function g: IfcSE stat pvalue padj

WDR44 WD repeat domain44 663.541154 -0.3318733 0.10515439 -3.156057 1.599175e-03 1.340909e-02
ZC3H15 zincfingerCCCH-typecontaining15 1244.736696 -0.3350394 0.10852343 -3.087254 2.020150e-03 1.584770e-02
CLEC16A C-typelectindomaincontaining16A 972.411399 -0.3376316 0.11838414 -2.852001 4.344502e-03 2.756712e-02
M6PR mannose-6: ,cationdependent 1959.760078 -0.3435663 0.12889634 -2.665446 7.688620e-03 4.167843e-02
ADAM10 ADAM metallopeptidase domain10 1288.069375 -0.3475807 0.13186984 -2.635786 8.394255e-03 4.430493e-02
SPAGY sperm associated antigen9 2750.499732 -0.3552854 0.10231630 -3.472422 5.157850e-04 5.757061e-03
GAPVD1 GTI i gprotei 1221.676997 -0.3627798 0.12122054 -2.992725 2.764986e-03 2.001854e-02
LARS1 leucyl-tRNAsynthetase1 3110.365778 -0.3650385 0.11414568 -3.198006 1.383815e-03 1.211275e-02
NF1 neurofibromin1 2316.006017 -0.3667890 0.13310729 -2.755589 5.858659e-03 3.438086e-02
ERC1 ELKS/RAB6-interacting/CASTfamilymember1 2207.649441 -0.3737131 0.11727010 -3.186772 1.438701e-03 1.246736e-02
SBF2 SETbindingfactor2 1164.923561 -0.3759591 0.10757202 -3.494952 4.741466e-04 5.371616e-03
RALGAPB RalGTPase activating protein non-catalytic 1947.492914 -0.3845592 0.10014837 -3.839895 1.230872e-04 1.947728e-03

betasubunit
RANBP2 RANbindingprotein2 2647.912204 -0.3854343 0.12328510 -3.126366 1.769814e-03 1.441419e-02
ARHGAP44 RhoGTPase activating protein44 297.393044 -0.3870483 0.11746065 -3.295132 9.837549e-04 9.365099e-03
CHM CHMR abescortprotein 562.143574 -0.3974689 0.13172382 -3.017441 2.549183e-03 1.888671e-02
NCKAP1 NCK associated protein1 6686.567394 -0.3987882 0.11668330 -3.417697 6.315339e-04 6.715499e-03
RAB3GAP2 RAB3 GTP aseactivatingnon-catalytic protein 1099.547705 -0.4053384 0.12436687 -3.259215 1.117210e-03 1.032240e-02
subunit2
MIOS meiosis regulator for oocyte development 708.243866 -0.4121173 0.14181654 -2.905989 3.660946e-03 2.429577e-02



Supplementary Table 5. Significantly changed genes DC vs Healthy that also matched significantly changed proteins in
the same comparison

Gene baseMean log2FoldChange IfcSE stat pvalue padj

NPPA 64750.650 5.9694452 1.2395293 4.815897 1.465403e-06 1.034987e-04
AEBP1 3010.071 1.6207095 0.4774258 3.394684 6.870794e-04 1.059340e-02
COL14A1 1428.224 1.4920775 0.4377406 3.408589 6.529987e-04 1.016981e-02
MFAP4 3545.324 1.1847313 0.3634084 3.260055 1.113907e-03 1.496186e-02
ARHGAP1 4615.860 1.1231660 0.2429495 4.623043 3.781511e-06 2.228625e-04
PFKL 1919.688 0.4922763 0.1252458 3.930481 8.477615e-05 2.329339¢-03
YWHAQ 4124.617 0.3505814 0.1240680 2.825720 4.717449e-03 4.013505e-02
MYH6 98127.708 -3.3541422 0.6566385 -5.108050 3.255003e-07 3.309117e-05
ART3 2301.617 -1.0665936 0.3073363 -3.470444 5.195979e-04 8.695246e-03
TTN 260372.843 -0.8533805 0.1489343 -5.729914 1.004818e-08 2.068908e-06
UQCRB 17654.412 -0.8025549 0.2124250 -3.778062 1.580537e-04 3.595666e-03
PDCD5 1259.482 -0.7584922 0.1943986 -3.901736 9.550525e-05 2.533361e-03
PGP 1117.789 -0.3333979 0.0871767 -3.824392 1.310951e-04 3.196992e-03




Supplementary Table 6. Significantly changed proteins in DC vs Healthy that had matching significantly changed genes
in the same comparison

Gene baseMean (LFQs) log2FoldChange IfcSE stat pvalue padj

NPPA 914.25858 4.9582743 1.4719756 3.368449 7.559246e-04 2.226691e-02
AEBP1 308.52135 2.7175458 0.7334202 3.705305 2.111365e-04 8.414409e-03
COL14A1 850.48807 2.5608028 0.7600312 3.369339 7.534869¢-04 2.226691e-02
TTN 6750.06204 2.0204337 0.4615007 4.377964 1.197929e-05 1.082129¢-03
MFAP4 600.37964 1.7467693 0.4873160 3.584470 3.377640e-04 1.207024e-02
PFKL 638.20791 1.3175970 0.4050131 3.253221 1.141047e-03 3.064628e-02
ARHGAP1 1621.36699 0.8639123 0.2052113 4.209867 2.555214e-05 1.753841e-03
YWHAQ 2490.18602 0.5970173 0.1543780 3.867243 1.100725e-04 5.326724e-03
ART3 17.04353 -8.3910270 25795193 -3.252942 1.142168e-03 3.064628e-02
MYH6 757.81447 -4.5902735 0.8151147 -5.631445 1.787061e-08 5.619916e-06
UQCRB 7093.72840 -0.6990583 0.1739609 -4.018480 5.857480e-05 3.239545e-03
PDCD5 386.59121 -0.6471055 0.1712485 -3.778750 1.576174e-04 7.002346e-03
PGP 542.65220 -0.4856027 0.1332880 -3.643260 2.692066e-04 1.027535e-02




Supplementary Table 7. Significantly changed genes IC vs Healthy that also matched significantly changed proteins in
the same comparison

Gene baseMean log2FoldChange IfcSE stat pvalue padj

NPPA 6.475065e+04 3.9810476 1.23953548 3.211725 1.319404e-03 1.171543e-02
HBB 1.783859e+03 3.8629190 0.69460549 5.561314 2.677515e-08 2.137861e-06
CD2 6.587260e+01 2.7316791 0.89080190 3.066539 2.165523e-03 1.675108e-02
APOA1 1.178621e+03 1.9361251 0.40586255 4.770396 1.838640e-06 6.918194e-05
COL14A1 1.428224e+03 1.2246810 0.43777999 2.797480 5.150288e-03 3.123794e-02
LUM 8.659295e+03 1.0829886 0.36984100 2.928255 3.408707e-03 2.320516e-02
ARHGAP1 4.615860e+03 1.0633638 0.24294435 4.376985 1.203321e-05 3.097899e-04
VTN 1.746666e+03 0.9346608 0.32306629 2.893093 3.814683e-03 2.506350e-02
CLU 4.735043e+03 0.8458807 0.23042274 3.670995 2.416081e-04 3.245706e-03
IVD 3.218196e+03 0.8084392 0.15739534 5.136360 2.801102e-07 1.469563e-05
MYH7 7.525063e+05 0.7733415 0.21174226 3.652278 2.599246e-04 3.425361e-03
HPRT1 5.044695e+02 0.6328641 0.15518421 4.078147 4.539599e-05 8.977178e-04
MAP4 3.104889e+04 0.6234824 0.16175430 3.854503 1.159651e-04 1.863396e-03
TOM1L2 1.069734e+04 0.6189644 0.16401201 3.773897 1.607173e-04 2.382254e-03
CYB5R1 4.584060e+03 0.6171857 0.19505292 3.164196 1.555120e-03 1.318878e-02
C11orf68 1.018369e+03 0.5994157 0.14194986 4.222729 2.413623e-05 5.516179e-04
BCAT2 1.219605e+03 0.5912492 0.12562024 4.706640 2.518330e-06 8.780368e-05
CIRBP 7.594636e+03 0.5801297 0.15453285 3.754087 1.739747e-04 2.515976e-03
COQ10B 1.087776e+03 0.5566569 0.11665225 4.771935 1.824648e-06 6.881115e-05
COX8A 6.443199e+03 0.5551769 0.16765060 3.311512 9.279342e-04 8.925665e-03
PPP1R12C 6.316688e+03 0.5216105 0.16114937 3.236813 1.208724e-03 1.099687e-02
PCCB 2.797731e+03 0.5040773 0.18752495 2.688055 7.186961e-03 3.982884e-02
ADH5 3.836706e+03 0.4782080 0.15132423 3.160155 1.576852e-03 1.330036e-02
PIN1 1.222749e+03 0.4749581 0.14016051 3.388673 7.023181e-04 7.218944e-03
COPA 4.892705e+03 0.4479092 0.11160183 4.013458 5.983574e-05 1.111875e-03
MDH1 3.480311e+04 0.3933002 0.15007853 2.620630 8.776757e-03 4.582928e-02
GANAB 5.108525e+03 0.2048065 0.07563721 2.707748 6.774143e-03 3.815129e-02
KNG1 8.708153e+00 -3.5015224 1.08620148 -8.223640 1.265725e-03 1.134650e-02
RBP4 5.150649e+01 -3.0112881 0.80596479 -3.736253 1.867829e-04 2.658098e-03
APOB 1.457905e+03 -1.5096292 0.47412967 -3.184001 1.452547e-03 1.254273e-02
ITGA1 1.115450e+03 -1.2382714 0.18964214 -6.529516 6.598244e-11 1.463139e-08
AZGP1 1.877860e+03 -1.2162029 0.39720311 -3.061917 2.199246e-03 1.694431e-02
AR 2.921452e+02 -0.8772186 0.21534517 -4.073547 4.630254e-05 9.102335e-04
ATP2A2 8.817315e+04 -0.8740325 0.25647264 -3.407897 6.546551e-04 6.903975e-03
EFEMP1 2.269356e+03 -0.8453065 0.29247421 -2.890191 3.850073e-03 2.522230e-02
GPD1L 1.258384e+04 -0.7786781 0.24681414 -3.154917 1.605438e-03 1.343684e-02
YBX1 1.054430e+04 -0.7242123 0.17099695 -4.235235 2.283125e-05 5.289279e-04
APOBEC2 3.872554e+03 -0.6568878 0.17472567 -3.759538 1.702276e-04 2.479032e-03
COoX17 1.173502e+03 -0.6481779 0.21244572 -3.051028 2.280591e-03 1.732604e-02
BCL2L13 2.965080e+03 -0.6436776 0.21650708 -2.973009 2.948953e-03 2.099776e-02
RYR2 6.533920e+04 -0.6349861 0.23220520 -2.734590 6.245794e-03 3.604226e-02
FUNDC2 4.125040e+03 -0.5920042 0.17621592 -8.359539 7.807266e-04 7.836007e-03
AGL 3.089582e+03 -0.5735931 0.20218325 -2.836996 4.554016e-03 2.841945e-02
IPO7 6.043559e+03 -0.5725417 0.08874020 -6.451887 1.104660e-10 2.161364e-08
PCCA 1.412112e+03 -0.4819731 0.14928290 -3.228589 1.244025e-03 1.119880e-02
KPNB1 4.499068e+03 -0.3279287 0.09265001 -3.539435 4.009848e-04 4.749842e-03
COPB2 2.886423e+03 -0.3072504 0.09912805 -3.099530 1.938276e-03 1.537186e-02




Supplementary Table 8. Significantly changed proteins in IC vs Healthy that had matching significantly changed genes in
the same comparison

Gene baseMean (LFQs) log2FoldChange IfcSE stat pvalue padj

NPPA 914.25858 9.1124837 1.47053427 6.196716 5.765328e-10 8.223178e-08
C11orf68 30.10522 8.0450829 2.31548897 3.474464 5.118752e-04 7.498280e-03
CIRBP 19.18828 4.8415669 1.71840704 2.817474 4.840306e-03 3.892353e-02
RBP4 642.66213 3.1977299 0.46911446 6.816524 9.326971e-12 1.944315e-09
COL14A1 850.48807 2.5239521 0.76005018 3.320770 8.976937e-04 1.131512e-02
APOB 294.86064 2.4233619 0.58952286 4110717 3.944316e-05 1.047951e-03
CLU 953.82664 1.9906723 0.31753242 6.269194 3.629220e-10 5.463992e-08
EFEMP1 232.92261 1.9321612 0.53140885 3.635922 2.769879e-04 4.633563e-03
LUM 3848.36226 1.7901360 0.23272311 7.692128 1.447073e-14 6.535946e-12
APOA1 23146.90214 1.5286333 0.40335221 3.789823 1.507549e-04 2.877083e-03
KNG1 1152.33142 1.4994651 0.34613139 4.332069 1.477145e-05 5.375421e-04
HBB 33276.88959 1.4745615 0.37755310 3.905574 9.400207e-05 2.071103e-03
VTN 1499.20573 1.2952025 0.28740491 4.506543 6.589243e-06 2.834420e-04
PPP1R12C 392.50775 1.2166470 0.41922320 2.902146 3.706155e-03 3.236944e-02
AZGP1 1692.67977 1.1895091 0.33963208 3.502346 4.611803e-04 6.904964e-03
PIN1 230.29457 1.0057528 0.31692409 3.173482 1.506224e-03 1.697622e-02
ARHGAP1 1621.36699 0.7214863 0.20529862 3.514326 4.408712e-04 6.712141e-03
TOM1L2 302.42573 0.6670240 0.15862253 4.205102 2.609640e-05 8.036504e-04
MAP4 3892.63803 0.6374412 0.08327922 7.654266 1.944198e-14 7.526824e-12
HPRT1 326.56634 0.5910349 0.18565923 3.183439 1.455366e-03 1.664153e-02
GANAB 3187.22455 0.4980595 0.13148731 3.787890 1.519318e-04 2.879268e-03
IVD 2814.55937 0.4809352 0.16882698 2.848687 4.390004e-03 3.629784e-02
ITGA1 37.93977 -7.4551057 1.62593307 -4.585125 4.587157e-06 2.049283e-04
coQioB 25.76960 -3.6614749 1.29380219 -2.830011 4.654635e-03 3.788006e-02
COX8A 64.50582 -2.6965948 0.90325909 -2.985406 2.832025e-03 2.631100e-02
APOBEC2 538.25566 -2.3421796 0.68625970 -3.412964 6.426044e-04 8.979876e-03
MYH7 88222.32260 -2.3050101 0.69301991 -3.326037 8.809010e-04 1.117543e-02
MDH1 407.38258 -2.2105751 0.54704881 -4.040910 5.324416e-05 1.299925e-03
COX17 1153.03912 -1.6439617 0.29010619 -5.666758 1.455244e-08 1.516812e-06
FUNDC2 513.78221 -1.2744822 0.44303215 -2.876726 4.018240e-03 3.413614e-02
AR 166.10200 -1.2114963 0.29385106 -4.122824 3.742555e-05 1.038568e-03
COPA 250.12756 -1.1591848 0.40092386 -2.891284 3.836712e-03 3.300791e-02
IPO7 218.44644 -1.1471134 0.30505643 -3.760332 1.696882e-04 3.107128e-03
BCL2L13 719.29730 -0.9852841 0.21774942 -4.524853 6.043751e-06 2.641704e-04
YBX1 322.24257 -0.8710506 0.31688830 -2.748762 5.982075e-03 4.605518e-02
ATP2A2 7610.93019 -0.7945678 0.20407720 -3.893467 9.882178e-05 2.108717e-03
CD2 350.17987 -0.7332133 0.20579326 -3.562864 3.668314e-04 5.813527e-03
AGL 4127.01725 -0.6915786 0.22552103 -3.066581 2.165218e-03 2.165218e-02
COPB2 255.90592 -0.6275670 0.21901525 -2.865403 4.164786e-03 3.494294e-02
RYR2 4712.06417 -0.6041580 0.16349346 -3.695304 2.196242e-04 3.839881e-03
PCCB 2030.25586 -0.5911669 0.17026574 -8.472025 5.165485e-04 7.526056e-03
PCCA 1974.73516 -0.5708371 0.14609801 -3.907220 9.336412e-05 2.071103e-03
CYB5R1 4097.81450 -0.5375065 0.18367777 -2.926356 3.429582e-03 3.067382e-02
ADH5 4526.81439 -0.5213994 0.10674114 -4.884709 1.035818e-06 7.017665e-05
GPD1L 4495.10495 -0.5011858 0.17553792 -2.855142 4.301752e-03 3.575997e-02
BCAT2 2208.84041 -0.4337632 0.12991373 -3.338856 8.412426e-04 1.090798e-02
KPNB1 1752.28069 -0.3584892 0.12872289 -2.784968 5.353294e-03 4.205051e-02




Supplementary table 9. Cell cluster full names

Full names

Abbreviations

Matrix like fibroblasts

Connective tissue like fibroblasts/ adipose tissue like cells
Thymic fibroblasts/Fibroblasts/adipose tissue like cells
Activated fibroblasts

Skin like fibroblasts/Axin2+ like cells

Mesenteric Lymph Node Fibroblastic Reticular cells/
Connective tissue like fibroblasts

Macrophages/Macrophages activated/Monocytes
Dendritic cells/steady state macrophages/fibroblast like cells
Vascular endothelial cells

Fibroblast like cells/adipocyte like cells
Pericytes/cardiomyocytes

Activated fibroblasts/progenitor like adipocytes

B cells/B cells memory/B cells naive
Myofibroblast/Smooth muscle cell

Lymphocytes

Oligodendrocytes/glia like cells

T cells/T memory cells/NK cells
Macrophages/Monocytes/ Activated fibroblast like cells
Lymphocytes/ Neutrophils

Activated macrophages/immature macrophages
Vascular endothelial cell/Heart endothelial cells

Plasma cells/ B cells

Matrix fibr

Con tissue fibr/adiposcytes
Thymic fibr/Fibr/adipocytes
Activated fibr

Skin like fibr/Axin2+ cells

Fibr Reticular cells/Con tissue fibr

Macr activated/Monocytes
Dendritic cells/steady state macr/fibr like cells
Vascular endo cells
Fibr/adipocyte like cells
Pericytes/cardiomyocytes
Activated fibr/progenitor adipocytes
B cells:memory,naive mature
Myofibroblast/Smooth muscle cell
Lymphocytes
Oligodendrocytes/glia like cells
T/NK cells
Macr/Monocytes/ Activated fibr cells
Lymphocytes/ Neutrophils
Activated and immature macr
Vascular and heart endothelial cells

Plasma cells/ B cells



Supplementary table 10. DC vs healthy cluster cross-referencing with disease and dat:
Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT  number standardised
association score
12 1.99478364466176 | 7.11894107272351 0 ANKRD34C ENSG00000235711 0 ankyrin repeat
domain 34C
45 | 1.53232136042079 | 5.90689059560852 0| COORF24 ENSG00000164972 1
49 | 1.58694124507355 | 6.06608919045777 0| CCDC168 ENSG00000175820 0 coiled-coil domain
containing 168
86 1.61142971071955 | 8.59245703726808 0| EDA2R ENSG00000131080 2 ectodysplasin A2
receptor
92| 1.65761213697529 | 8.37937836707126 0| F2RL2 ENSG00000164220 2 coagulation factor Il
thrombin receptor
like 2
116 | 1.73235007216511 | 7.56224242422107 0| GPR85 ENSGO00000164604 0 G protein-coupled
receptor 85
149 | 1.60576050583933 | 7.78135971352466 0 KLHDCY ENSG00000162755 0 kelch domain
containing 9
153 | 1. 6.37503943134692 0 LCN12 ENSG00000184925 0 lipocalin 12
156 | 1.68500224332899 | 7.49185309632967 0 LRRC24 ENSG00000254402 0 leucine rich repeat
containing 24
191 | 1.8481036595783 | 7.18982455888002 0| NUP62CL ENSG00000198088 0 nucleoporin 62 C-
terminal like
239 | 1.82647897553963 | 8.21431912080077 0 SLCBA12 ENSGO00000111181 4 solute carrier family
6 member 12
250 | 1.57879018657951 | 7.27612440527424 0| SPNS3 ENSG00000182557 1 sphingolipid
transporter 3
(putative)
267 | 1.78393398468577 | 6.4594316186373 0| TMEMS54 ENSG00000121900 0 transmembrane
protein 54
189 | 1.83609438551428 | 8.76155123244448 0 NTNG2 196358 | 0. 100 ity of the 2 netrin G2
288 cardiovascular
system
164 | 1.56451197201855 | 8.70390357344466 0| MDK ENSGO0000110492 | 0.33458109026254 | arterial disorder 69 midkine
6
58 | 1.97239361439505 | 7.8008998999203 0| CHAC1 ENSG00000128965 | 0.0165 cardiovascular 7 ChaC glutathione
disease specific gamma-
glutamylcyclotransf
erase 1
66| 1.80302147069627 | 9.85174904141606 0| CNR1 ENSGO0000118432 1 | cardiovascular 73 cannabinoid
disease receptor 1
71| 1.68076668444065 | 8.47167521439204 0 CPEB1 ENSG00000214575 | 0.20696477929323 | cardiovascular 5 cytoplasmic
5 disease polyadenylation
element binding
protein 1
88 1.50411782671912 | 10.3106127816595 0 ENO2 111674 | 0. 7 1 enolase 2
24 disease
138 | 1.93955070368889 | 7.62935662007961 0/ IL17D 172458 | 0.132 3 interleukin 17D
2 disease
183 | 1.50577624877796 | 9.2807707701306 0 NROB2 131910 | 0. 5 nuclear receptor
3 disease subfamily O group
B member 2
184 | 1.60739277448007 | 9.29691620687929 0 NR4A1 58 | 0.09 153 nuclear receptor
24 disease subfamily 4 group A
member 1
235 | 1.70256448962541 | 7.76818432477693 0/ SIK1 142178 | 0.9714 31 salt inducible
2 disease kinase 1
244 | 1.76305284200499 | 9.57364718749332 0 SMAD7 ENSG00000101665 1 | cardiovascular 290 SMAD family
disease member 7
263 | 1.69896226113721 | 7.03342300153745 0| TMBSF2 ENSG00000213996 | 0.35823114824711 | cardiovascular 73 transmembrane 6
3 disease superfamily
member 2
269 | 1.84680590375758 | 9.13442632022093 0| TNFRSF11B 164761 | 0.341 366 TNF receptor
8 disease superfamily
member 11b
278 | 1.58114171030336 | 8.04439411935845 0| UCN 163794 | 0. 192 urocortin
22 disease
283 | 1.83016521322178 | 8.84235034341381 0| WNT10B ENSG00000169884 | 0.0068 congenital heart 20 Wnt family member
disease 10B
105 | 1.87848706873852 | 8.98299357469431 0 FRZB ENSG00000162998 | 0.05697310994867 | dilated 15 frizzled related
9 cardiomyopathy protein
207 | 1.90562977070203 | 6.4594316186373 0| PPDPF ENSGO0000125534 | 0.01441970241767 | dilated 0 pancreatic
cardiomyopathy progenitor cell
differentiation and
proliferation factor
82| 1.55673898054257 | 6.84549005094437 0| DNAAF3 ENSG00000167646 | 0.40833333333333 | Familial isolated 4 dynein axonemal
3 assembly factor 3
cardiomyopathy
220 | 1.68793785794021 | 8.34429590791582 0 RUNDC3A ENSGO00000108309 | 0.19824 Familial progressive 0 RUN domain
cardiac conduction containing 3A
defect
15| 1.53327011453769 | 9.44294349584873 0 APLP1 ENSGO00000105290 | 0.02772 gastric cardia 4 amyloid beta
carcinoma precursor like
protein 1
260 | 1.77613185639517 | 8.2807707701306 0| TCEAL2 ENSGO0000184905 | 0.01256261040530 | gastric cardia 0 transcription
31 carcinoma elongation factor A
like 2
75| 1.77534852029847 | 7.05528243550119 0| CRISPLD1 ENSG00000121005 | 0.0252 heart failure 2 cysteine rich
secretory protein
LCCL domain
containing 1
107 | 1.70087992664471 | 8.0389189892923 0| GADD45G ENSG00000130222 | 0.0244 heart failure 10 growth arrest and
DNA damage
inducible gamma
55 | 1.56302025572538 | 9.32867492732795 0| CDKN1C ENSG00000129757 | 0.3 Heart murmur 74 cyclin dependent
kinase inhibitor 1C
119 | 1.86957990174048 | 9.24555270625568 0| GRIA3 ENSGO0000125675 | 0.7027 hypertension 3 glutamate
fonotropic receptor
AMPA type subunit
3
232 | 1.81225534180803 | 7.71424551766612 0| SEZ6L2 ENSGO00000174938 | 0.00073312683590 | hypertensive heart 1 seizure related 6
9663 homolog like 2
245 | 1.7841393650965 | 10.7846348455575 0 SNCA ENSG00000145335 1 | intrinsic 54 synuclein alpha
cardiomyopathy
115 | 1.60729060356563 | 8.01680828768655 0| GPR27 ENSG00000170837 | 0.00761771373267 | ischemic 1 G protein-coupled
391 cardiomyopathy receptor 27
222 | 1.82420947931998 | 7.99435343685886 0 SCAMPS ENSGO0000198794 | 0.09902884159237 | mean arterial 3 secretory cartier
15 pressure

membrane protein
5
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130 | 1.96294664806162 | 8.876516946565 0 HES5 ENSG00000197921 | 0.04065455555555 | pulmonary arterial 38 hes family bHLH
56 hypertension transcription factor
5
248 | 1.66032903700229 | 9.24555270625568 0 SOX17 ENSGO00000164736 1 | pulmonary arterial 125 SRY-box
hypertension transcription factor
17
159 | 1.50988565205825 | 7.52356195605701 0/ LTC4S ENSG00000213316 | 0.14194161072373 | resting heart rate 16 leukotriene C4
4 synthase
29 | 1.56273663451547 | 10.2419831496943 0| BMP2 ENSG00000125845 1 | short stature, facial 678 bone
dysmorphism, and morphogenetic
skeletal anomalies protein 2
with or without
cardiac anomalies
137 | 1.5027625796532 | 7.2667865406949 0/ IER2 ENSG00000160888 | 0.50753352046012 | venous 2 immediate early
9 thromboembolism response 2
185 | 1.75250441317526 | 8.40514146313634 0 NR4A3 ENSG00000119508 | 0.19224 Glycogen storage 77 0.049508 nuclear receptor
disease due to subfamily 4 group A
muscle and heart member 3
glycogen synthase
deficiency
199 | 1.57076151056769 | 9.35074956032233 0| PDIA2 185615 | 0. 1 80.049702 protein disulfide
disease isomerase family A
member 2
160 | 1.54629170035045 | 8.1548181090521 0| LY6E ENSG00000160932 | 0.33050296230430 | familial 40.056197 lymphocyte antigen
4 cardiomyopathy 6 family member E
256 | 1.93282627668144 | 8.52356195605701 0 sTC1 ENSG00000159167 | 0.0632 cardiotoxicity 35 0.057459 stanniocalcin 1
290 | 1.9631556962664 | 7.65821148275179 0| ZNF365 ENSG00000138311 | 0.09193088371375 | cardiovascular 40.058627 zinc finger protein
36 disease 365
53| 1.50645473634056 | 6.16992500144231 0 CD163L1 ENSG00000177675 10.062029 CD163 molecule
like 1
223 1.85608019769944 | 8.2240016741981 0 SCN11A ENSGO00000168356 1 | cardiovascular 12/ 0.068964 sodium voltage-
disease gated channel
alpha subunit 11
44 | 1.76968025471781 | 7.65105169117893 0 c6 2024 | 0.0699 complement C6
69 1.8171397161506 | 8.12928301694497 0 COL9A1 ENSG00000112280 | 0.0199 dilated 50.085871 collagen type IX
cardiomyopathy alpha 1 chain
146 | 1.56553436797438 | 7.73470962022584 0| KCNT2 ENSG00000162687 | 0.00013794721906 | hypertensive 15 0.102913 potassium sodium-
1734 retinopathy activated channel
subfamily T
member 2
163 | 1.60416423336695 | 7.60733031374961 0| MCF2L2 ENSG00000053524 00.158409 MCF2 cell line
derived
transforming
sequence-like 2
257 | 1.67407017460917 | 9.61654884377899 0| STX1B 0.064( 1857004 3/0.30863 syntaxin 1B
17
282 | 1.95101798871725 | 7.4594316186373 0| WDR66 ENSGO0000158023 | 0.00048441137951 | cardiac arrhythmia 00.49309 WD repeat domain
8669 66
24| 1.63653938521082 | 7.53915881110803 0| BCAS4 ENSG00000124243 0/0.575039 breast carcinoma
amplified sequence
4
251 1.8152214086476 | 8.38801728534514 0 SPOCK1 ENSG00000152377 | 0.02352 gastric non-cardia 51.24289 SPARC
carcinoma (osteonectin), cwev
and kazal like
domains
proteoglycan 1
31| 1.9266385270553 | 9.65999589242998 0 BRSK1 ENSG00000160469 | 0.00142081870334 | systolic heart failure 41.98052 BR serine/threonine
kinase 1
8| 1.62070948373321 | 7.82017896241519 0| AEBP1 ENSG00000106624 | 0.18258 Familial progressive 30 AE binding protein
cardiac conduction 1
defect
37 -15445275574212 | 7.32192809488736 1 c1au ENSGO00000131094 1 complement C1q
8 like 1
54 | -1.8574001880059 | 8.43462822763673 1/ CDCA3 ENSGO00000111665 1 cell division cycle
3 associated 3
117 | -1.5418882581767 | 9.03066713624694 1 GPSM2 ENSG00000121957 4 G protein signaling
1 modulator 2
125 | -1.7415211970995 | 8.67948009950545 1/ GsTT2 ENSG00000099984 9 glutathione S-
2 transferase theta 2
(gene/pseudogene)
179 | -1.5506652536575 | 9.55266900751427 1/ NCAPH ENSG00000121152 0 non-SMC
8 condensin |
complex subunit H
205 | -1.7840646287159 | 8.61470984411521 1) POLR2J2 ENSG00000267645 0 RNA polymerase I
4 subunit J2
213 | -1.7979100668267 | 7.6724253419715 1/ PYGO1 ENSG00000171016 3 pygopus family
PHD finger 1
242 | -1.5220892822109 | 7.94251450533024 1) sLcoCt ENSG00000172139 1 solute carrier family
5 9 member C1
264 | -1.6548081776658 | 7.467605550083 1 TMEM132B ENSG00000139364 0 transmembrane
1 protein 1328
133 | -1.6561356842739 | 7.08868468677217 1 HOOK1 ENSG00000134709 | 0.183 Alcardi-Goutiéres 4 hook microtubule
4 syndrome tethering protein 1
94 | -1.5384011866924 | 9.86108690599539 1| FAIM2 ENSGO00000135472 | 0.45302030444145 | arterial stiffness 16 Fas apoptotic
3 2 measurement inhibitory molecule
2
273 | -1.5698211048197 | 9.4093909361377 1/ TPX2 ENSGO00000088325 | 0.0244 Arteritis 13 TPX2 microtubule
5 nucleation factor
176 | -1.5668621018310 | 8.15987133677839 1| MYOT ENSG00000120729 1 | cardiomyopathy 32 myotilin
2
6 -1.8636156397350 | 9.19967234483636 1 ADRATB ENSG00000170214 1 | cardiovascular 104 adrenoceptor alpha
9 disease 1B
84 | -1.6625379707147 | 9.32418054661874 1/ DsP ENSGO00000096696 1 | cardiovascular 522 desmoplakin
6 disease
93| -15248099313577 | 9.35535109642481 1) FABP4 170323 | 0.3123 366 fatty acid binding
4 2 disease protein
113 | -1.8372791995641 | 9.4858293087019 1/GPD1 167588 | 0. 19 glycerol-3-
1 7 disease phosphate
dehydrogenase 1
204 | -1.5386854548307 | 7.67948009950545 1/ PLN ENSG00000198523 1 | cardiovascular 558 phospholamban
9 disease
187 | -1.6328402466491 | 7.43462822763672 1/ NSG1 ENSGO0000168824 | 0.05042785778641 | congenital heart 0 neuronal vesicle
9 7 disease trafficking
associated 1
131 | -1.5572025895760 | 8.5077946401987 1 HEY2 ENSGO0000135547 | 0.33640826518739 | Genetic cardiac 163 hes related family
7 6 anomaly bHLH transcription
factor with YRPW
motif 2
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281 -1.5055711845298 | 8.3037807481771 1| WDR62 ENSGO0000075702 | 0.29338235555555 | Genetic cardiac 5 WD repeat domain
9 6 anomaly 62
208 | -1.6438270827103 | 7.79441586635011 1| PPPIR1A ENSG00000135447 | 0.0266 heart failure 2 protein
4 phosphatase 1
regulatory inhibitor
subunit 1A
241 | -1.6183388708806 | 8.12928301694497 1| sLceAg ENSGO0000196517 | 0.0405 hypertension 9 solute carier family
4 6 member 9
165 | -1.5090800613611 | 7.05528243550119 1| MEGF ENSGO0000106780 | 0.00385124278181 | ischemic 1 multiple EGF like
4 082 cardiomyopathy domains,
147 | -1.6721299701192 | 9.09803208296053 1| KIAAO754 ENSGO0000127603 | 0.21645329892635 | peripheral arterial 1 KIAAO754
4 3 disease
215 -1.5322118890134 | 9.32192809488736 1| RAPGEF4 1428 | 0. 34.0.047135 Rap guanine
2 9 disease nucleotide
exchange factor 4
56 | -1.6542631778053 | 9.21916852046216 1| GENPF ENSGO0000117724 | 0.03948535130566 | heart disease 70.047372 centromere protein
4 5 F
99| -1.7742459974491 | 9.51569983828404 1| FGF7 ENSGO0000140285 | 0.04447222222222 | pulmonary arterial 54 0.048529 fibroblast growth
1 22 ypertension factor 7
287 | -1.7530206870971 | 7.69348695749933 1| XIRP2 163092 | 0.32604057977100 i 23 0.049661 xin actin binding
9 3 repeat containing 2
142 -1.5511467630484 | 10.270295326472 1| GBI 150093 | 0. 3 46 0.058312 integrin subunit
8 beta 1
200 | -1.8039602204495 | 8.19475685442225 1| PHACTR3 ENSGO0000087495 210087486 phosphatase and
6 actin regulator 3
61 -1.8730668069956 | 9.52552080909507 1/ GHL1 ENSGO0000134121 | 9.23637951231764 | congenital anomaly 130.191441 cell adhesion
7 of cardiovascular molecule L1 like
system
89 | -1.5965866279621 | 9.48179943166575 1| EPHB1 ENSGO0000154928 | 0.01455555555555 | heart disease 16| 0.505894 EPH receptor B1
2
20 | -1.8650575816900 | 8.13442632022093 1| ATPBVIC2 ENSGO0000143882 00520142 ATPase H+
5 transporting V1
subunit C2
5 -1.5365126493018 | 7.73470962022584 1| ADAMTS12 151388 | 0. 8 0.657565 ADAM
1 4 disease metallopeptidase
with
thrombospondin
type 1 motif 12
288 | -1.8745808736105 | 8.69348695749933 1| xRcc4 ENSG00000152422 | 0.0104 hypertension 16 | 0.696042 X-ray repair cross
1 complementing 4
210 | -1.7599819709811 | 9.64565843240871 1| PPP2R2C ENSG00000074211 30827715 protein
3 phosphatase 2
regulatory subunit
Bgamma
276 | -1.7067610214954 | 10.0042204663182 1/ TN ENSGO0000155657 1 | cardiovascular 612 | 1.33249 titin
5 a
219 | 6.94802064808872 | 9.53915881110803 2 RPS17 ENSG00000182774 6 ribosomal protein
$17
271 | 6.61799049327818 | 8.54303182025524 2 TNNI ENSG00000159173 29 troponin 11, slow
skeletal type
132 10.3077145444924 | 9.40087943628218 2 HLAA 0. 501 major
9 disease histocompatibilty
complex, class |, A
240 | 5.86144980575564 | 9.38370429247405 2| SLCEAd ENSGO00000108576 1| cardiovascular 232 solute carier family
disease 6 member 4
182 5.06890170624402 | 8.38801728534514 2 NPPB 120937 | 0. 301 natriuretic peptide
1 disease biomarker B
measurement
70 | 5.89925569841038 | 8.37068740680722 2| COMP ENSGO0000105664 | 0.31294441496913 | dilated 9109 cartilage oligomeric
6 cardiomyopathy matrix protein
25| 5.32107204422745 8 2| BEX1 ENSGO0000133169 | 0.03491944444444 | heart disease 5 brain expressed X-
44 linked 1
216 | 5.54937873653375 | 7.83289001416474 2| RHCG ENSGO0000140519 | 0.26201388888888 | Infantile 30 Rh family G
9 hypertrophic glycoprotein
cardiomyopathy
due to MRPL44
deficiency
180 | 7.29203557064031 | 9.05528243550119 2 NGEF ENSG00000066248 30150671 neuronal guanine
nucleotide
exchange factor
181 [ 8.04397728581946 | 8.78135971352466 2| NPPA ENSG00000175206 1| cardiovascular 4370170989 natriuretic peptide
disease A
93.65838110652292 | 8.85174904141606 3 ALAS2 158578 | 0.2556 22 5'-aminolevulinate
9 synthase
193.9904844305577 | 7.65821148275179 3 ATP1B4 ENSG00000101892 1 ATPase Na+/K+
transporting family
member beta 4
59 [ 3.05220716699847 | 9.8008998999203 3| CHDS ENSGO0000116254 9 chromodormain
helicase DNA
binding protein 5
96 | 4.47462568183603 | 9.64024493622235 3 FBXL16 ENSGO00000127585 2 F-box and leucine
rich repeat protein
16
136 | 4.27481065712663 | 7.34872815423108 3| HYAL4 ENSGO0000106302 1 hyaluronidase 4
174 | 3.54422913321816 | 9.4093909361377 3| MYL1 ENSG00000168530 13 myosin light chain 1
188 | 3.37289023262111 | 6.83289001416474 3/ NsG2 ENSG00000170091 0 neuronal vesicle
trafficking
associated 2
217 | 3.91409704429358 | 8.47167521439204 3| RIMS4 ENSG00000101098 0 regulating synaptic
membrane
exocytosis 4
259 | 3.82373483620928 | 7.90689059560852 3 SYTLS ENSGO0000147041 0 synaptotagmin like
5
270 | 3.13563868733179 | 7.49185309632967 3| TNMD ENSG00000000005 1 tenomodulin
279 | 4.85085048889719 | 8.0389189892923 3| UNG80 ENSGO00000144406 1 unc-80 homolog,
NALCN channel
complex subunit
286 | 3.6360341169916 | 6.5077946401987 3/ %G ENSG00000124343 105 Xg glycoprotein (Xg
blood group)
128 3.92488314747514 | 8.40087943628218 3| HBA2 ENSGO0000188536 | 0.2 Aicardi-Goutieres 33 hemoglobin subunit
syndrome alpha 2
48 | 3.60375108954229 | 9.61470984411521 3| CALCA ENSGO00000110680 1| cardiovascular 360 calcitonin related
disease polypeptide alpha
78 | 4.74954598736633 | 8.54303182025524 3| GYP3AS 106258 | 0.31 820 cytochrome P450
3 disease family 3 subfamily A
member 5
198 | 3.25962475538462 | 8.29462074889163 3| PDEGA ENSG00000132915 1 2

cardiovascular
disease

phosphodiesterase
6A
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284 | 4.23206856642375 | 9.13955135239879 3 WNToA ENSGO0000143816 | 0.76199177081137 | cardiovascular 9 Wnt family member
9 disease 9A
177 3.01403702527681 | 7.97727992349992 3/ MYOZ1 ENSGO0000177791 | 0.19295166666666 | dilated 13 myozenin 1
7 cardiomyopathy
129 | 4.81030163762285 | 9.53138146051631 3| HBB ENSGO0000244734 | 0.02701909139812 | gastric cardia 79 hemoglobin subunit
37 carcinoma beta
77| 3.0347905629289 | 8.96000193206808 3| GYP11AT ENSGO0000140459 | 0.20208821201814 | hypertension 103 cytochrome P450
1 family 11 subfamily
A member 1
63 3.56971747678817 | 8.08214904135387 3| CHRNE ENSG00000108556 1| intracranial 3 cholinergic receptor
hypertension nicotinic epsilon
subunit
4|5.19892875253399 | 6.3037807481771 3| ADAM18 168619 | 5. 1| Poly 0 ADAM
e-05 Nodosa metallopeptidase
domain 18
213.18051500085422 | 8.01122725542325 3| ATRNL1 ENSG00000107518 | 0.00231788439106 | Paroxysmal 20.063339 attractin like 1
supraventricular
tachycardia
237 | 3.66291878761574 | 8.00562454919388 3| SLC16A9 ENSG00000165449 | 0.00209062141407 | Arterial stenosis 80.067287 solute carrier family
026 16 member 9
17 | 3.87318554341421 | 7.14974711950468 3| AQP10 ENSG00000143595 410.097956 aquaporin 10
127 | 4.22203194733031 | 8.40514146313634 3| HBA1 ENSG00000206172 | 0.2 Aicardi-Goutiéres 9105 | 0.105576 hemoglobin subunit
syndrome alpha 1
209 | 3.31598118062034 | 9.8073549220576 3| PPP2R2B ENSGO0000156475 | 0.30358700156945 | heart disease 5012928 protein
6 phosphatase 2
regulatory subunit
Bbeta
186 | 3.49986748217821 | 9.43879185257826 3/ NRG1 157168 0. 202 | 0.302508 neureguiin 1
8 disease
201 | 2.98945841800273 | 8.92184093707449 3| PHF21B ENSGO0000056487 00536388 PHD finger protein
218
67| 2.97181911688648 | 8.11374216604919 3 COL22A1 ENSG00000169436 60.546152 collagen type XXII
alpha 1 chain
231 | 3.42460515913005 | 8.89784545600551 3| SEZ6L ENSGO0000100095 | 0.20494458079338 | arterial stiffness 30.858397 seizure related 6
1 measurement homolog like
18 | 3.74908488063969 | 6.71424551766612 3| ARMS2 ENSG00000254636 | 0.16117210891668 | cardiovascular 37095488 age-related
7 disease maculopathy
susceptibility 2
62| 3.34234394901801 | 8.97441458980553 3| CHRNA3 ENSG00000080644 1| cardiovascular 36 1.23034 cholinergic receptor
disease nicotinic alpha 3
subunit
22| -1.9229040243932 | 7.33091687811462 4| B3GALT2 ENSG00000162630 0 beta-1,3-
galactosyltransferas
e2
64| -2.6685787845017 | 8.25266543245025 4| CKAP2L ENSG00000169607 1 cytoskeleton
8 associated protein
2like
80 | -2.0319659017006 | 7.15987133677839 4| DIsP2 ENSGO00000140323 0 dispatched RND
2 transporter family
member 2
106 | -1.8636480003918 | 7.79441586635011 4] Gos2 ENSGO00000123689 2 GO/G1 switch 2
1
118 | -2.5465678927184 | 8.51569983828404 4| GRB7 ENSG00000141738 8 growth factor
6 receptor bound
protein 7
144 | -2.5999051763314 | 8.01680828768655 4| KANK4 ENSG00000132854 2 KN motif and
1 ankyrin repeat
domains 4
150 | -2.1237678709178 | 6.78135971352466 4| KLHL32 ENSGO0000186231 1 kelch like family
1 member 32
154 | -2.1748955218304 | 7.48381577726426 4| LINC00842 ENSG00000285294 0 long intergenic non-
4 protein coding RNA
842
157 | -2.3155866731757 | 8.3264294871223 4| LRRN3 ENSG00000173114 6 leucine rich repeat
5 neuronal 3
202 | -2.3214367225808 | 7.24792751344359 4|Pi1s ENSG00000137558 86 peptidase inhibitor
15
226 | -1.8976644202455 | 7.56985560833095 4| SEC14L5 ENSG00000103184 0 SEC14 like lipid
3 binding 5
230 | -2.0036643968696 | 6.8073549220576 4| SERTM1 ENSG00000180440 1 serine rich and
4 transmembrane
domain containing
1
258 | -2.2876023153023 | 8.6582114827518 4/ 8YT13 ENSG00000019505 0 ‘synaptotagmin 13
1
274 | -1.9525022480234 | 8.29462074889163 4 TROAP ENSGO0000135451 0 trophinin
associated protein
152 | -1.8997285285517 | 8.61102479730735 4| LAVB3 ENSGO0000196878 | 0.06964468210935 | arterial stiffness 6 laminin subunit
4 measurement beta 3
167 | -2.4400914124205 | 9.78953364497036 4| MKI67 ENSGO0000148773 | 0.84597325325012 | arterial stiffness 958 er of
3 2 measurement prolferation Ki-67
266 | -1.6770088230723 | 6.39231742277876 4| TMEM40 ENSGO0000088726 | 0.08144596964120 | cardiac edema 1 transmembrane
protein 40
151 | -2.7895159691201 | 7.79441586635011 4/ LAD1 ENSGO0000159166 | 0.28340542316436 | cardiac troponin T 8 ladinin 1
7 8 measurement
74| -2.6008205989016 | 8.49185309632967 4| CRHR2 106113 | 0. 27 corticotropin
1 disease releasing hormone
receptor 2
108 | -2.8082330698868 | 9.0389189892923 4 GATAS ENSG00000130700 1| cardiovascular 120 GATA binding
disease protein 5
218 | -2.5709896267765 | 8.74146698640115 4 RNASE2 ENSGO0000169385 | 0.03142421601450 | cardiovascular 2 ribonuclease A
5 5 disease family member 2
228 | -2.2376202032075 | 8.73470962022584 4| SERPINA3 196136 | 0.2 29 serpin family A
7 7 disease member 3
254 | -1.9332473523470 | 9.05528243550119 4 SSTR2 ENSG00000180616 1 | cardiovascular 52 somatostatin
5 disease receptor 2
114 -1.9831615009723 | 7.79441586635011 4| GPR22 ENSGO0000172209 | 0.26373237371444 | coronary artery 6 G protein-coupled
6 7 disease receptor 22
227 | -2.0407301088736 | 6.53915881110803 4| SERFIB ENSGO0000205572 | 0.1986 coronary artery 0 small EDRK-rich
8 disease, autosomal factor 1B
dominant 2
145 -2.1852568478239 | 8.60362634498619 4| KCNAT ENSG00000104848 | 0.0334 Familial progressive 6 potassium voltage-
5 cardiac conduction gated channel
defect subfamily A
member 7
272 | -2.2249645459212 | 10.7047682393626 4| TOP2A ENSG00000131747 | 0.03168 gastric cardia 153 NA
6 carcinoma topoisomerase II
alpha
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97 | -2.3801510256228 | 8.18487534290828 4| FCGBP ENSG00000275395 | 0.03037979364224 | gastric non-cardia 5 Fc fragment of IgG
4 62 carcinoma binding protein
175 -2.2935788301116 | 9.23840473932508 4/ MyL7 ENSGO0000106631 | 0.93872443695874 | heart failure 46 myosin light chain 7
4
148 | -2.2090510330379 | 9.72451385311995 4| KIF20A ENSGO0000112984 | 0.22041195072233 | heart rate 9 Kinesin family
7 7 member 20A
229 | -2.2419067558796 | 8.51569983828404 4| SERPINAS ENSG00000188488 | 0.032291 hypertension 7 serpin family A
5 member 5
195 | -1.9748134270663 | 7.20462074889163 4| PCDH20 ENSG00000280165 | 0.0136 portal hypertension 2 protocadherin 20
7
268 | -2.1293007433002 | 7.34872815423108 4 TMEM63C ENSG00000165548 20.046791 transmembrane
1 protein 63C
166 | -2.2739259549760 | 7.66533591718518 4| MFAP2 ENSGO0000117122 | 0.1864 Aicardi-Goutires 60.048463 microfibril
9 syndrome associated protein
2
211 | -1.9409102231534 6 4| PRELID2 ENSG00000186314 20.048756 PRELI domain
3 containing 2
32 -2.6442112007475 | 10.1774195379892 4/ BUBIB ENSG00000156970 | 0.18596 Aicardi syndrome 13 0.050256 BUB1 mitotic
3 checkpoint serine/
threonine kinase B
280 | -1.8875156914396 | 6.10852445677817 4| VASH2 ENSG00000143494 | 0.0308 pulmonary arterial 120052454 vasohibin 2
3 hypertension
275 | -2.7516865269040 | 8.40514146313634 4| TRPC4 ENSGO0000133107 | 0.07101274885991 | cardiovascular 155 | 0.053665 transient receptor
8 04 disease potential cation
channel subfamily
C member 4
13 | -2.0586199577696 | 9.27612440527424 4 ANLN ENSGO0000011426 | 0.0142 cardiovascular 6 0.056363 anillin actin binding
5 a protein
162 -2.0809201617371 | 7.59245703726808 4| MARVELD2 ENSGO0000152939 | 0.01737777777777 | heart disease 60.057293 MARVEL domain
6 containing 2
98 | -2.5989330770387 | 7.10852445677817 4| FERILG ENSG00000214814 1/ 0.060283 fer-1 like family
2 member 6
60 | -2.7007893437764 | 8.24317398347295 4| CHDH ENSG00000016391 1| cardiovascular 80.063677 choline
9 disease dehydrogenase
190 | -2.4976416985120 | 9.38154295118458 4| NUF2 ENSG00000143228 00.079543 NUF2 component
6 of NDC80
kinetochore
complex
238 | -2.4902182090596 | 8.09803208296053 4| SLC38Ad ENSG00000139209 90109267 solute carrier family
7 38 member 4
291 | -2.5755829600461 | 7.89481776330794 4| ZNF385B 144331 | 0. 20.179581 zinc finger protein
4 7 disease 3858
109 | -2.2748625242820 | 8.18487534200828 4 GDA ENSG00000119125 | 0.06372901360544 | myocardial 562 0501181 guanine deaminase
1 22 infarction
143 | -2.4529687655744 | 8.9915218460757 4/ 1TGBS ENSGO0000115221 | 0.77290636301040 | arterial stiffness 110.503822 integrin subunit
7 6 measurement
120 | -2.7942514273930 | 9.99859042974533 4| GRIN2A ENSG00000183454 1| heart disease 80.528284 glutamate
9 ionotropic receptor
NMDA type subunit
2A
197 | -2.4101798090259 | 8.1548181090521 4 PDET1A ENSGO0000128655 | 0.0104 pulmonary arterial 16| 0.556685 phosphodiesterase
2 hypertension
122 -2.9084532800197 | 8.85486838326024 4| GRIPY ENSG00000155974 | 0.2 Congenital 24 0621951 lutamate receptor
5 vertebral-cardiac- interacting protein 1
renal anomalies
syndrome
27| -2.3091258323439 | 10.1459321458205 4| BIRCS ENSGO0000089685 | 0.0139 hypertension 232 0634612 baculoviral IAP
3 repeat containing 5
285 | -2.1426687826019 | 8.65105169117893 4 wwet ENSGO0000113645 130.663947 WW and C2
3 domain containing
1
91 | -2.0047420773043 | 8.85798099512757 4| EYA4 ENSG00000112319 1| heart disease 20 0.677699 EYA transcriptional
8 coactivator and
phosphatase 4
121 -1.9192670887331 | 8.61838550225861 4| GRIN3A ENSGO0000198785 1 | Abnormality of 7)1.38272 glutamate
5 cardiovascular ionotropic receptor
system morphology NMDA type subunit
3A
168 | -2.1855670081464 | 8.81057163474115 4| MLXIPL X 66 1.74508 MLX interacting
8 4 disease protein like
34| 2.45333728185443 | 4.16992500144231 5| G190RF81 ENSG00000235034 0
43| 1.61832055802933 | 5.39231742277876 5| C20RF27A ENSG00000197927 0
249 | 1.51789304332459 | 5.08746284125034 5| SPATAGL ENSG00000106686 0 spermatogenesis
associated 6 like
289 | 1.52813344556675 | 5.12928301694497 5| ZMYND12 ENSG00000066185 0 zinc finger MYND-
type containing 12
292 | 2.12860078365148 | 5.08746284125034 5| ZNF385C ENSG00000187595 0 zinc finger protein
385C
161 | 1.91129556374842 5 5| MAPSK7CL ENSGO0000156265 | 0.0104 coronary artery 3 0.673055 MAPSK? C-terminal
disease like
100 | -2.6373548926517 | 6.61470984411521 6| FIBCD1 ENSG00000130720 0 fibrinogen G
9 domain containing
1
255 | -3.1159079765231 | 6.4757334309664 6 STAC2 ENSG00000141750 2 SH3 and cysteine
2 rich domain 2
261 | -2.7262271714906 | 5.28540221886225 6 TCF24 ENSGO0000261787 0 transcription factor
24
30 | -3.6304400616964 | 9.84862294042934 6 BMP7 101144 | 0.3274 188 bone
9 9 disease morphogenetic
protein 7
50| -3.2339108203811 | 9.04439411935845 6 CCL11 ENSG00000172156 | 0.09580471928353 | cardiovascular 186 -G motif
1 06 disease chemokine ligand
11
155 | -3.3933052613818 | 8.04984854945056 6 LPG 101670 | 0.31041 158 se G,
6 7 disease endothelial type
252 | -4.3644792036164 | 10.1910592145317 6 SPP1 118785 | 0. 603 secreted
3 5 disease phosphoprotein 1
134 | -3.4491436720522 | 8.20945336562895 6 HOPX ENSG00000171476 | 0.29528502222222 | familial 29 HOP homeobox
6 2 cardiomyopathy
36 | -2.9030307630022 | 6.84549005094437 6 G1ORF116 ENSG00000182795 | 0.02744 gastric non-cardia 0
5 carcinoma
39| -2.4277740056418 | 5.70043971814109 6 C1QTNF9 ENSG00000240654 | 0.2 Infantile 4 Clqand TNF
4 hypertrophic related 9
cardiomyopathy
due to MRPL44
deficiency
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40 | -2.4277740056418 | 5.70043971814109 6 C1QTNF9 ENSG00000240654 | 0.2 Infantile 4 Clqand TNF
4 hypertrophic related 9
cardiomyopathy
due to MRPL44
deficiency
41 -2.4277740056418 | 5.70043971814109 6 C1QTNF9 ENSG00000240654 | 0.2 Infantile 4 Clqand TNF
4 hypertrophic related 9
cardiomyopathy
due to MRPL44
deficiency
72| -3.0524926269486 | 8.31288295528435 6 CPLX3 ENSGO0000213578 | 0.28104930790141 | mean arterial 5 complexin 3
2 pressure
126 | -3.1957473616927 | 8.67948009950545 6 GSTT2B ENSG00000133433 | 0.0116 primary 2 glutathione S-

3 hypertension transferase theta
2B (gene/
pseudogene)

104 | -3.4898901104115 | 10.1510165388922 6| FOXM1 ENSGO0000111206 | 0.22402388888888 | pulmonary arterial 74 forkhead box M1

4 9 hypertension

139 | -2.8444165539460 | 7.55458885167764 6/ IL17RB 02976 i 710.09034 interleukin 17

4 disease receptor B

47| -3.7309109728357 | 9.3037807481771 6 CACNATE ENSG00000198216 1 | cardiovascular 18 | 0.096871 calcium voltage-
8 disease gated channel
subunit alphal E
7 |-3.2430258319898 | 9.24317398347295 6 ADRB1 ENSGO0000043591 1 | cardiovascular 3218 | 1.46277 adrenoceptor beta
9 a 1
32.17239888037922 | 8.66533591718518 7| ACKR2 ENSGO0000144648 3 atypical chemokine
receptor 2
11 | 2.33159459960859 | 7.73470962022584 7| ANKRD24 ENSGO0000089847 0 ankyrin repeat
domain 24
23| 2.8390579645635 | 7.85798099512757 7/ BAAT ENSGO00000136881 1 bile acid-
CoAamino acid N-
acyltransferase
26 | 2.83410764057654 | 7.82654848729092 7| BEX2 ENSGO0000133134 2 brain expressed X-
linked 2
28 2.25819152816438 | 8.13442632022093 7| BIRCT ENSG00000101197 2 baculoviral IAP
repeat containing 7
33| 2.7882117058021 | 5.28540221886225 7| C160RF89 ENSG00000153446 0
68 | 2.04370806561401 | 8.10328780841202 7| coLsaz ENSG00000171812 9 collagen type VIl
alpha 2 chain
85 | 2.45912920047215 | 8.15987133677839 7| bUsP1s ENSG00000149599 1 dual specificity
phosphatase 15
95 | 2.69672465800296 | 6.06608919045777 7| FAM133A ENSG00000179083 1 family with
sequence similarity
133 member A
112 2.06856921948313 | 9.35074956032233 7| GNG8 ENSGO0000167414 1 G protein subunit
gamma 8
123 2.18658728720147 | 9.08480838780436 7| GRM2 ENSG00000164082 3 glutamate
metabotropic
receptor 2
135 | 2.70496590387546 | 7.8008998999203 7 Hs6sT2 ENSGO00000171004 3 heparan sulfate 6-
O-sulfotransferase
2
140 | 2.04211140038593 | 8.36194377373524 7 IRX2 ENSGO0000170561 8 iroquois homeobox
2
141 2.32368206222266 | 8.61102479730735 7| IRX6 ENSG00000159387 3 iroquois homeobox
6
192 | 2.15994536225414 | 7.43462822763672 7| NXNL1 ENSG00000171773 0 nucleoredoxin like 1
196 | 2.07145169757637 | 6.85798099512757 7| PCDHAC2 ENSG00000243232 0 protocadherin alpha
subfamily G, 2
214 | 2.08843489809424 | 6.44294349584873 7| RADX ENSG00000147231 0 RPAT related single
stranded DNA
binding protein, X-
linked
225 | 2.64071738403249 | 8.49984588708321 7| spsL ENSG00000139410 8 serine dehydratase
like
234 | 2.45340214703444 | 7.11894107272351 7| sHisA2 ENSG00000180730 1 shisa family
member 2
243 | 2.77407803349657 | 7.14974711950468 7| SLITRK4 ENSGO0000179542 1 SLIT and NTRK like
family member 4
247 | 1.99842293442822 | 8.08746284125034 7| sox15 ENSG00000129194 3 SRY-box
transcription factor
15
65 | 2.74213431922183 | 8.85798099512757 7| CLEC12A ENSG00000172322 | 0.0172 Cardiofaciocutaneo 2 C-type lectin
us syndrome domain family 12
member A
158 | 2.14758188141638 | 7.49185309632967 7| LTBP4 o. 179 28 latent transforming
growth factor beta
binding protein 4
14 2.60318351020564 | 8.16992500144231 7| AOC1 o 186 1 amine oxidase
56 disease copper containing 1
38 | 2.23835982235031 | 7.5077946401987 7| c1QTNF4 ENSGO0000172247 | 0.09157050036191 | cardiovascular 0 Clgand TNF
9 disease related 4
51/2.61231268356798 | 9.91288933622096 7| cong 118523 | 0.911 512 cellular
8 disease communication
network factor 2
87| 2.32732201943461 | 10.4356702609366 7| EGR1 120738 | 0. 18 473 early growth
1 disease response 1
111 2.52619359939856 | 9.04984854945056 7| GDF15 130513 | . 744 357 growth
disease differentiation factor
15
233 | 2.78001529946862 | 8.63299519714296 7| SFRP4 106483 | 0. 40 secreted frizzled
44 disease related protein 4
262 | 2.07884254987272 | 10.4136279290242 7| TLR9 0. 262 tolllike receptor 9
5 disease
224 | 2.02490336151523 | 7.74819284958946 7| scuse2 ENSG00000175356 1| Cerebral 12 signal peptide, CUB
arteriovenous domain and EGF
malformation like domain
containing 2
46 | 2.26253496058751 | 8.4262647547021 7/ cA3 ENSGO0000164879 | 0.05379948309339 | dilated 555 carbonic anhydrase
32 cardiomyopathy 3
171 | 2.43136020592352 | 7.23840473932508 7| MsS51 ENSGO0000166343 | 0.24938641334292 | dilated 1 MSS51
7 cardiomyopathy mitochondrial
translational
activator
178 | 2.79780422637274 | 9.06608919045777 7| NAP1L3 ENSGO0000186310 | 0.00912202178593 | dilated 1 nucleosome
cardiomyopathy assembly protein 1
like 3
265 | 2.01088731554769 | 7.82017896241519 7| TMEM30B ENSG00000182107 | 0.02548 gastric non-cardia 1 transmembrane
carcinoma protein 308
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57| 2.33247302487416 | 8.54689445088764 7| CERs1 ENSG00000223802 1| Genetic cardiac 5 ceramide synthase
anomaly 1
103 | 2.26346939129182 | 9.17741953798924 7| FosB ENSGO0000125740 | 0.19224 Glycogen storage 87 FosB proto-
disease due to oncogene, AP-1
muscle and heart transcription factor
glycogen synthase subunit
deficiency
203 | 2.38933360816303 | 7.06608919045777 7| P ENSG00000164530 | 0.02357212951752 | heart disease 13 peptidase inhibitor
16
277 | 2.73795505232141 | 9.55458885167764 7| UCHL1 ENSGO0000154277 | 0.05413367277270 | heart disease 11 ubiquitin C-terminal
73 hydrolase L1
193 | 2.83256720412549 | 8.91587937883577 7| OGDHL ENSG00000197444 | 0.018 heart failure 6 oxoglutarate
dehydrogenase like
81| 2.68794201573077 | 9.19475685442225 7| DMCH ENSGO0000100206 | 0.07204315811395 | heart rate 8 DNA meiotic
65 recombinase 1
79 | 2.15056200073272 | 7.65105169117893 7| DACT2 ENSG00000164488 | 0.0152 heart valve disease 2 dishevelled binding
antagonist of beta
catenin 2
253 | 2.02242252664875 | 7.68650052718322 7| SRCINt 7363 0.1 7 3 SRC kinase
1 signaling inhibitor 1
110 | 2.26628746205277 | 8.48784003382305 7| GDF10 ENSGO0000266524 | 0.48624944686889 | mean arterial 6 growth
6 pressure differentiation factor
10
52| 2.14900226103209 | 9.94544383637791 7| GONA1 ENSG00000133101 | 0.0104 pulmonary arterial 8 cyclin A1
hypertension
10 | 2.63243060266142 | 8.37068740680722 7| AMHR2 ENSGO0000135409 | 0.227225 X-linked intellectual 8 anti-Mullerian
disability - hormone receptor
cardiomegaly - type 2
congestive heart
failure
169 | 2.0077751395693 | 7.8703647195834 7| MMP24 ENSGO0000125966 | 0.08568452632353 | venous 60.046945 matrix
22 thromboembolism metallopeptidase
24
101 | 2.2208162398181 | 8.99717948093762 7| FMoD ENSGO0000122176 | 0.048 heart failure 20 0.047068 fibromodulin
236 | 2.5068639956886 | 7.56224242422107 7| sLc16As ENSG00000108932 1] 0053712 solute carier family
16 member 6
246 | 2.43023639207744 | 7.12928301694497 7| SOHLH2 ENSG00000120669 0/0.056217 spermatogenesis
and oogenesis
specific basic helix-
loop-helix 2
76| 2.51277615136713 | 8.25266543245025 7| CRTACH ENSGO0000095713 | 5.52463753426618 | systolic heart failure 1] 0067116 cartilage acidic
protein 1
170 | 2.56701185551708 | 7.25738784269265 7| MRAP2 ENSG00000135324 | 0.2 Infantile 30.078202 melanocortin 2
hypertrophic receptor accessory
cardiomyopathy protein 2
due to MRPL44
deficiency
102 2.03193300733518 | 8.24317398347295 7| FNDG1 ENSG00000164694 | 0.00365269911261 | ischemic 50.078697 fibronectin type Il
cardiomyopathy domain containing
1
194 | 2.71824192123202 | 7.71424551766612 7| PaH2 ENSG00000090530 | 0.01015615307710 | pulmonary arterial 210.093045 prolyl 3-
77 hypertension hydroxylase 2
212 2.5504447978589 | 6.39231742277876 7| PRR7 ENSG00000131188 0/0.095411 proline rich 7,
synaptic
206 | 2.6684099830871 | 7.92481250360578 7| POUsF2 ENSG00000106536 0/0.147318 POU class 6
homeobox 2
73 2.4984340890349 | 9.04712391211403 7| cRB1 ENSG00000134376 1| Pigmented 150.152504 crumbs cell polarity
paravenous complex
retinochoroidal component 1
atrophy
2|2.49452675179688 | 9.68999797141945 7| ABCG2 ENSGO0000118777 | 0.31473139412114 | cardiovascular 501 | 0.33998 ATP binding
4 disease cassette subfamily
G member 2 (Junior
blood group)
83| 2.65151226952674 | 8.57364718749332 7| DNAHE ENSG00000115423 30.669849 dynein axonemal
heavy chain 6
1| 2.07462783317426 | 9.64745842645492 7| ABCCS ENSGO0000006071 1 | cardiovascular 170 | 0.820721 ATP binding
disease cassette subfamily
C member 8
221 | 1.98246051844236 | 9.01402047031493 7| RYR3 ENSGO0000198838 | 0.71729254722595 | arterial stiffness 3202 1.19919 ryanodine receptor
2 measurement 3
16 | 2.5112833068207 | 9.90989308377004 7| APOAT ENSG00000118137 1| cardiovascular 1162 1.67707 apolipoprotein A1
disease
42| -1.801558816913 | 1.58496250072116 8| C200RF202 ENSG00000215595 0
124 | -5.3467777273569 | 7.10852445677817 8| GRXCR2 ENSG00000204928 0 glutaredoxin and
2 cysteine rich
domain containing
2
172 -3.6159279370914 | 5.16992500144231 8| MTRNR2L1 ENSG00000256618 1 MT-RNR2 like 1
7
90 | -5.4301572754370 | 8.37068740680722 8 EREG ENSGO0000124882 | 0.61541724205017 | coronary artery 23 epiregulin
2 1 calcification
35 | -2.6950507990438 | 3.4594316186373 8| C10RF105 ENSGO00000180999 | 0.00491658424315 | dilated 1
7 cardiomyopathy
173 10.0953970227926 8| MYHs ENSG00000197616 1 heart disease 329 0386648

-6.7082843436473
4

myosin heavy chain
6
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Supplementary table 11. IC vs healthy cluster cross-referencing with disease and
Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
inthe contextof  association score
any for cardiovascular
cardiovascular indication
indication
8.58916673230264 | 9.40087943628218 0| HLA-A ENSG00000206503 | 0.57063135542674 | cardiovascular 501 major
9 disease histocompatibility
complex, class I, A
6.44507620464629 | 9.20945336562895 0 |HLA-C ENSG00000204525 162 0.047144 major
histocompatibility
complex, class |, G
6.02101846831308 | 9.05528243550119 0 | NGEF ENSG00000066248 3/0.150671 neuronal guanine
nucleotide
exchange factor
-3.4115257065987 | 7.79441586635011 1/ LAD1 ENSG00000159166 | 0.28340542316436 | cardiac troponin T 8 ladinin 1
8 measurement
-3.8353002641217 | 8.74146698640115 1 | RNASE2 ENSG00000169385 | 0.03142421601450 | cardiovascular 2 ribonuclease A
6 5 disease family member 2
-2.3958639183925 | 6.84549005094437 1/ C10RF116 ENSG00000182795 | 0.02744 gastric non-cardia 0 Chromosome 1
2 carcinoma Open Reading
Frame 116
-3.0629412379373 | 6.61470984411521 1 FIBCD1 ENSG00000130720 0 fibrinogen C
1 domain containing
1
-2.2976858372368 | 6.61470984411521 1/ GMNC ENSG00000205835 1 geminin coiled-coil
7 domain containing
-3.6517929608650 | 7.10852445677817 1 GRXCR2 ENSG00000204928 0 glutaredoxin and
2 cysteine rich
domain containing
2
-2.2435391340162 | 6.78135971352466 1 KLHL32 ENSG00000186231 1 kelch like family
5 member 32
-2.4416174494234 | 5.90689059560852 1/ PRR32 ENSG00000183631 0 proline rich 32
5
-3.0253840881229 | 6.4757334309664 1/ STAC2 ENSG00000141750 2 SH3 and cysteine
9 rich domain 2
-3.4046826448841 | 7.10852445677817 1 FERILE ENSG00000214814 10.060283 fer-1 like family
7 member 6
-4.0149598309641 | 7.55458885167764 1/IL17RB ENSGOC 6 | 0.2976 llar 7 /0.09034 interleukin 17
3 disease receptor B
1.77825191279389 | 7.2667865406949 2 | IER2 ENSG00000160888 | 0.50753352046012 | venous 2 immediate early
9 thromboembolism response 2
1.98073116652793 | 6.84549005094437 2 | DNAAF3 ENSG00000167646 | 0.40833333333333 | Familial isolated 4 dynein axonemal
3 dilated assembly factor 3
cardiomyopathy
1.78389349940921 | 7.03342300153745 2 | TMBSF2 ENSG00000213996 | 0.35823114824711 | cardiovascular 73 transmembrane 6
3 disease superfamily
member 2
1.87633203648745 | 9.13442632022093 2 | TNFRSF11B ENSG00000164761 | 0.34143860883608 | cardiovascular 366 TNF receptor
8 disease superfamily
member 11b
1.67178546711004 | 8.70390357344466 2 | MDK ENSG00000110492 | 0.33458109026254 | arterial disorder 69 midkine
6
1.84864059104871 | 7.68650052718322 2 | SRCIN1 ENSG00000277363 | 0.11589753627777 | hypertension 3 SRC kinase
1 signaling inhibitor 1
1.82447862050096 | 7.99435343685886 2 | SCAMP5 ENSG00000198794 | 0.09902884159237 | mean arterial 3 secretory carrier
pressure membrane protein
5
1.7580858151407 | 8.04439411935845 2 UCN ENSG00000163794 | 0.08609269753628 | cardiovascular 192 urocortin
disease
1.65649608205296 | 8.98299357469431 2 | FRZB ENSG00000162998 | 0.05697310994867 | dilated 15 frizzled related
9 cardiomyopathy protein
1.63540918814715 | 9.55458885167764 2 | UCHL1 ENSG00000154277 | 0.05413367277270 | heart disease m ubiquitin C-terminal
hydrolase L1
1.82954960414151 | 8.876516946565 2 | HESS ENSG00000197921 | 0.04065455555555 | pulmonary arterial 38 hes family bHLH
hypertension transcription factor
5
1.8775345761873 | 7.82017896241519 2 | TMEM30B ENSG00000182107 | 0.02548 gastric non-cardia 1 transmembrane
carcinoma protein 308
1.870710784994 7.05528243550119 2 | CRISPLD1 ENSG00000121005 | 0.0252 heart failure 2 cysteine rich
secretory protein
LCCL domain
containing 1
1.63701588887323 | 7.06608919045777 2| P16 ENSG00000164530 | 0.02357212951752 | heart disease 113 peptidase inhibitor
51 16
1.74734220905837 | 6.4594316186373 2 | PPDPF ENSG00000125534 | 0.01441970241767 | dilated 0 pancreatic
82 cardiomyopathy progenitor cell
differentiation and
proliferation factor
1.77564128003123 | 8.76155123244448 2 NTNG2 ENSG00000196358 | 0.00620275403100 | Abnormality of the 2 netrin G2
cardiovascular
system
1.83006456780087 | 7.71424551766612 2 | SEZ6L2 ENSG00000174938 | 0.00073312683590 | hypertensive heart 1 seizure related 6
9663 disease homolog like 2
1.7036467612626 | 8.74483383749955 2 | ADAM8 ENSG00000151651 19 ADAM
metallopeptidase
domain 8
1.51151884766014 | 8.85486838326024 2| CCR10 ENSG00000184451 16 C-C motif
chemokine receptor
10
1.70481177683683 | 7.17990909001493 2| C2CD4B ENSG00000205502 5 C2 calcium
dependent domain
containing 4B
1.57341687739654 | 8.08214904135387 2 | CTRL ENSG00000141086 507 chymotrypsin like
1.51445670155185 | 6.49185309632967 2 | CSKMT ENSG00000214756 0 citrate synthase
lysine
methyltransferase
1.60166024187191 | 8.67595703294175 2 | CLDNS ENSG00000184113 335 claudin 5
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in the context of association score
any for cardiovascular
cardiovascular indication
indication
1.61966432520463 | 9.64745842645492 2| CISH ENSG00000114737 20 cytokine inducible
SH2 containing
protein
1.88669814815387 | 8.15987133677839 2 | DUSP15 ENSG00000149599 1 dual specificity
phosphatase 15
1.83107874393234 | 8.57742882803575 2| DUsP2 ENSG00000158050 30 dual specificity
phosphatase 2
1.66283492831171 | 9.71596199025514 2| EGR2 ENSG00000122877 43 early growth
response 2
1.61180157396318 | 7.98299357469431 2 | ESM1 ENSG00000164283 134 endothelial cell
specific molecule 1
1.93987798162356 | 6.06608919045777 2 | FAM133A ENSG00000179083 1 family with
sequence similarity
133 member A
1.77496392805853 | 7.83289001416474 2| GJC2 ENSG00000198835 6 gap junction protein
gamma 2
1.90318060375825 | 7.20945336562895 2 | HSH2D ENSG00000196684 6 hematopoietic SH2
domain containing
1.65385281506948 | 7.27612440527424 2 | HAPLN3 ENSG00000140511 4 hyaluronan and
proteoglycan link
protein 3
1.75563330268562 | 8.49585502688717 2 | HAPLN4 ENSG00000187664 0 hyaluronan and
proteoglycan link
protein 4
1.57265175225769 | 7.78135971352466 2 | KLHDC9 ENSG00000162755 0 kelch domain
containing 9
1.85988995760642 | 6.61470984411521 2 LIME1 ENSG00000203896 1 Lck interacting
transmembrane
adaptor 1
1.957991175897 7.49185309632967 2 LRRC24 ENSG00000254402 0 leucine rich repeat
containing 24
1.6882853556259 | 7.3037807481771 2 | METRN ENSG00000103260 2 meteorin, glial cell
differentiation
regulator
1.59882727818822 | 7.34872815423108 2| NXPH4 ENSG00000182379 1 neurexophilin 4
1.56449154233014 | 8.6724253419715 2 | NME3 ENSG00000103024 1 NME/NM23
nucleoside
diphosphate kinase
3
1.57889743289431 | 7.10852445677817 2| NUAK2 ENSG00000163545 6 NUAK family kinase
2
1.56100690338488 | 7.18982455888002 2 NUP62CL ENSG00000198088 0 nucleoporin 62 C-
terminal like
1.94727223532423 | 7.14974711950468 2| ODF3B ENSG00000177989 0 outer dense fiber of
sperm tails 38
1.92195119273719 | 8.96289600533726 2 | PIM2 ENSG00000102096 16 Pim-2 proto-
oncogene, serine/
threonine kinase
1.7049732246303 | 9.07681559705083 2 PSD ENSG00000059915 736 pleckstrin and Sec7
domain containing
1.94091146411242 | 7.64385618977472 2 | PTPRCAP ENSG00000213402 1 protein tyrosine
phosphatase
receptor type C
associated protein
1.65752923832695 | 7.62935662007961 2 | RAB26 ENSG00000167964 2 RAB26, member
RAS oncogene
family
1.81668934398203 | 8.96866679319521 2 RAB39B ENSG00000155961 5 RAB39B, member
RAS oncogene
family
1.59791485332862 | 9.06069593168755 2 | RTN4R ENSG00000040608 25 reticulon 4 receptor
1.81250275355728 | 7.83289001416474 2 | RARRES2 ENSG00000106538 29 retinoic acid
receptor responder
2
1.64741023238842 | 7.94836723158468 2 | RIPOR2 ENSG00000111913 0 RHO family
interacting cell
polarization
regulator 2
1.66211684567822 | 8.67948009950545 2 | SEMA4A ENSG00000196189 " semaphorin 4A
1.53943855669945 | 6.04439411935845 2 | SAP25 ENSG00000205307 0 Sin3A associated
protein 25
1.9584767133935 | 6.85798099512757 2 | SLC44A5 ENSG00000137968 1 solute carrier family
44 member 5
1.56111051002513 | 8.21431912080077 2| SLCBA12 ENSG00000111181 4 solute carrier family
6 member 12
1.94405411985434 | 7.27612440527424 2 | SPNS3 ENSG00000182557 1 sphingolipid
transporter 3
(putative)
1.73929790537712 | 8.08746284125034 2| SOX15 ENSG00000129194 3 SRY-box
transcription factor
15
1.51780876824547 | 9.56605403817109 2| S0D3 ENSG00000109610 188 superoxide
dismutase 3
1.59158568931887 | 7.94251450533924 2 | SNAP47 ENSG00000143740 1 synaptosome
associated protein
47
1.59908215942757 | 8.8703647195834 2 | TAS1R3 ENSG00000169962 6 taste 1 receptor
member 3
1.75252826177825 | 8.96000193206808 2 | TNFRSF4 ENSG00000186827 55 TNF receptor
superfamily
member 4
1.60440909460327 | 7.56985560833095 2| TLL2 ENSG00000095587 3 tolloid like 2
1.50000332104457 | 7.62205181945638 2| TMC8 ENSG00000167895 0 transmembrane

channel like 8



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
1.69140609297117 | 7.70043971814109 2 | TMEM160 ENSG00000130748 0 transmembrane
protein 160
1.57543206088795 | 8.30833903013941 2 | TFF3 ENSG00000160180 38 trefoil factor 3
1.60057601039814 | 7.56985560833095 2 | YJEFN3 ENSG00000250067 1 YjeF N-terminal
domain containing
3
1.63967837037471 | 8.21916852046216 2| ZMYND15 ENSG00000141497 0 zinc finger MYND-
type containing 15
1.51580485440068 | 6.71424551766612 2 | ZNF467 ENSG00000181444 1 zinc finger protein
1.84132132816538 | 7.74819284958946 2 | SCUBE2 ENSG00000175356 1| Cerebral 12 signal peptide, CUB
arteriovenous domain and EGF
malformation like domain
containing 2
1.96129035869361 | 7.8703647195834 2 | MMP24 ENSG00000125966 | 0.08568452632353 | venous 6| 0.046945 matrix
thromboembolism metallopeptidase
24
1.90232738951891 | 7.56224242422107 2| SLC16A6 ENSG00000108932 1/0.053712 solute carrier family
16 member 6
1.68608250252302 | 7.74146698640115 2 | MED12L ENSG00000144893 1/0.057872 mediator complex
subunit 12L
1.59556390963892 | 6.16992500144231 2 | CD163L1 ENSG00000177675 10.062029 CD163 molecule
like 1
1.89986442667647 | 8.49984588708321 2 | FCHO1 ENSG00000130475 10.064527 FCH and mu
domain containing
endocytic adaptor 1
1.61323056601836 | 9.47370574961942 2 | ACAN ENSG00000157766 33 | 0.103645 aggrecan
1 686 | 8.5 2 | ST8SIA2 ENSG00000140557 70187574 ST8 alpha-N-
acetyl-neuraminide
alpha-2,8-
sialyltransferase 2
1.67865865957693 | 9.61654884377899 2| STX1B ENSG00000099365 | 0.06409791857004 | hypertension 3 0.30863 syntaxin 1B
1.59097015341644 | 7.53915881110803 2 | BCAS4 ENSG00000124243 00.575039 breast carcinoma
amplified sequence
4
1.828273505362 7.51569983828404 2 YIPF7 ENSG00000177752 0 1.41518 Yip1 domain family
member 7
1.64504223507478 | 7.24792751344359 2 BEGAIN ENSG00000183092 1 1.42467 brain enriched
guanylate kinase
associated
1.74199618941906 | 8.43879185257826 2 | ACAP1 ENSG00000072818 1/1.48732 ArfGAP with coiled-
coil, ankyrin repeat
and PH domains 1
4.66346172781133 | 6.3037807481771 3 | ADAM18 ENSG00000168619 | 5.95769433378641 | Polyarteritis 0 ADAM
e-05 Nodosa metallopeptidase
domain 18
4.41985828826816 | 9.13955135239879 3 WNT9A ENSG00000143816 | 0.76199177081137 | cardiovascular 9 ‘Wnt family member
9 disease 9A
3.36624549439879 | 7.83289001416474 3 |RHCG ENSG00000140519 | 0.26201388888888 | Infantile 30 Rh family C
9 hypertrophic glycoprotein
cardiomyopathy
due to MRPL44
deficiency
3.46797527489724 | 8.40087943628218 3 | HBA2 ENSG00000188536 | 0.2 Aicardi-Goutieres 33 hemoglobin subunit
syndrome alpha 2
3.38413790258724 8 3| BEX1 ENSG00000133169 | 0.03491944444444 | heart disease 5 brain expressed X-
linked 1
3.86291902068675 | 9.53138146051631 3 HBB ENSG00000244734 | 0.02701909139812 | gastric cardia 79 hemoglobin subunit
carcinoma beta
4.66893434553611 | 8.74146698640115 3 | ANKRD22 ENSG00000152766 1 ankyrin repeat
domain 22
3.29841457303366 | 8.04984854945056 3 | ALOX15 ENSG00000161905 290 arachidonate 15-
lipoxygenase
4.37388573441346 | 8.64024493622235 3| CCL22 ENSG00000102962 61 C-C motif
chemokine ligand
22
4.13911903907623 | 8.29462074889163 3/ CCL24 ENSG00000106178 39 C-C motif
chemokine ligand
24
2.83538834414389 | 10.3106127816595 3/ CCLs ENSG00000271503 849 C-C motif
chemokine ligand 5
4.20701962044626 | 10.0279059965699 3 | CCR7 ENSG00000126353 235 C-C motif
chemokine receptor
7
3.69929482744647 | 10.2033480029798 3 CxcL1o ENSG00000169245 604 C-X-C motif
chemokine ligand
10
3.73014173837633 | 9.3151495622563 3 | CXCL11 ENSG00000169248 138 C-X-C motif
chemokine ligand
"
3.53368547181941 | 9.78953364497036 3| CXCR3 ENSG00000186810 329 C-X-C motif
chemokine receptor
3
3.6143805573298 | 8.84549005094438 3 | CXCRé ENSG00000172215 50 C-X-C motif
chemokine receptor
6
2.96299198694532 | 9.2807707701306 3 /cbic ENSG00000158481 25 CD1c molecule
4.00758613260115 | 9.32418054661874 3| cD27 ENSG00000139193 159 CD27 molecule
3.3494223929254 | 9.5018371849023 3/CD5 ENSG00000110448 210 CD5 molecule
4.59545403131854 | 9.00281501560705 3 CD79A ENSG00000105369 86 CD79a molecule
2.82001066780688 | 10.0714623625566 3| CENPA ENSG00000115163 9 centromere protein
A
5.45850527668581 | 7.33985000288462 3/CLC ENSG00000105205 353 Charcot-Leyden

crystal galectin



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
2.96541301513508 | 9.8008998999203 3 CHD5 ENSG00000116254 9 chromodomain
helicase DNA
binding protein 5
4 9. 3| FBXL16 ENSG00000127585 2 F-box and leucine
rich repeat protein
16
4.49114925854412 | 10.4304525516655 3 FOXP3 ENSG00000049768 1157 forkhead box P3
3.38404700177082 | 8.43462822763673 3| GBP5 ENSG00000154451 4 guanylate binding
protein 5
3.54225315258536 | 7.34872815423108 3 | HYAL4 ENSG00000106302 1 hyaluronidase 4
3.8517528547932 | 9.13955135239879 3 |IGLLS ENSG00000254709 2 immunoglobulin
lambda like
polypeptide 5
3.88900475747716 | 8.16992500144231 3 | JCHAIN ENSG00000132465 0 joining chain of
multimeric IgA and
IgM
3.25929839493768 | 10.8462739113499 3| MMP9 ENSG00000100985 1863 matrix
metallopeptidase 9
3.16404681887002 | 8.71424551766612 3| P2RY10 ENSG00000078589 1 P2Y receptor family
member 10
4.34564662728636 | 8.21431912080077 3| PLD4 ENSG00000166428 0 phospholipase D
family member 4
3.11105059227519 | 8.47167521439204 3 |RIMS4 ENSG00000101098 0 regulating synaptic
membrane
exocytosis 4
3.3990947758927 | 7.11894107272351 3 | SHISA2 ENSG00000180730 1 shisa family
member 2
4.13720898139726 | 7.59245703726808 3 | SIRPG ENSG00000089012 1 signal regulatory
protein gamma
3.24858513810853 | 8.21431912080077 3 | SLAMF7 ENSG00000026751 5 SLAM family
member 7
3.56462654658549 | 7.62205181945638 3 | TIGIT ENSG00000181847 16 Tecell
immunoreceptor
with Ig and ITIM
domains
5.00031965421217 | 7.33985000288462 3 | TIFAB ENSG00000255833 15 TIFA inhibitor
4.1211102189943 | 8.4178525148859 3 | TNFRSF18 ENSG00000186891 14 TNF receptor
superfamily
member 18
4.09232165722855 | 8.54303182025524 3 TNNI ENSG00000159173 29 troponin I1, slow
skeletal type
3.89731476566711 | 8.0389189892923 3 | UNC80 ENSG00000144406 1 unc-80 homolog,
NALCN channel
complex subunit
3.68174924277724 | 8.51175265376738 3| MS4A1 ENSG00000156738 6| 0.049694 membrane
spanning 4-
domains A1
3.98882416759078 | 10.0265234425198 3 | KCNQ2 ENSG00000075043 77  0.050996 potassium voltage-
gated channel
subfamily Q
member 2
3.16428626125551 | 8.93663793900257 314 ENSG00000104951 20.062012 interleukin 4
induced 1
3.23391662011405 | 8.01122725542325 3 | ATRNL1 ENSG00000107518 | 0.00231788439106 | Paroxysmal 2 0.063339 attractin like 1
supraventricular
tachycardia
4.59907931228781 | 9.7279204545632 3| CXCL9 ENSG00000138755 232 | 0.064711 C-X-C motif
chemokine ligand 9
3.96379615514885 | 7.14974711950468 3 | AQP10 ENSG00000143595 4 0.097956 aquaporin 10
3.88751021323304 | 8.4178525148859 3 | CD1E ENSG00000158488 1/0.10505 CD1e molecule
3.45875021625014 | 8.40514146313634 3 | HBA1 ENSG00000206172 | 0.2 Aicardi-Goutieres 9105 | 0.105576 hemoglobin subunit
syndrome alpha 1
5.14662295313744 | 7.70043971814109 3 | LAMP3 ENSG00000078081 5/0.113373 lysosomal
associated
membrane protein
3
3.47028864029895 | 8.83920378809694 3| ATP1A4 ENSG00000132681 4 0.160226 ATPase Na+/K+
transporting
subunit alpha 4
4.031017177612 8.78135971352466 3 NPPA ENSG00000175206 1| cardiovascular 437 | 0.170989 natriuretic peptide
disease A
3.65426159155283 | 8.11374216604919 3 | COL22A1 ENSG00000169436 6 0.546152 collagen type XXII
alpha 1 chain
3.16400178024719 | 8.89784545600551 3 | SEZ6L ENSG00000100095 | 0.20494458079338 | arterial stiffness 30.858397 seizure related 6
1 measurement homolog like
4.44972762183788 | 6.71424551766612 3 | ARMS2 ENSG00000254636 | 0.16117210891668 | cardiovascular 37 0.95488 age-related
7 disease maculopathy
susceptibility 2
2.12859741368208 | 10.4136279290242 4| TLR9 ENSG00000239732 | 0.73292997986785 | cardiovascular 262 toll like receptor 9
5 disease
2.58952386769066 | 10.4356702609366 4 | EGR1 ENSG00000120738 | 0.32622864962218 | cardiovascular 473 early growth
1 disease response 1
2.27933629363019 | 8.96000193206808 4 | CYP11A1 ENSG00000140459 | 0.20298821201814 | hypertension 103 cytochrome P450
1 family 11 subfamily
A member 1
2.1243635558976 | 9.19475685442225 4 DMC1 ENSG00000100206 | 0.07204315811395 | heart rate 8 DNA meiotic
recombinase 1
2.42313166343161 | 9.06608919045777 4 | NAP1L3 ENSG00000186310 | 0.00912202178593 | dilated 1 nucleosome
987 cardiomyopathy assembly protein 1
like 3
1.99197993602313 | 8.84235034341381 4 | WNT10B ENSG00000169884 | 0.0068 congenital heart 20 Wnt family member

disease

10B



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
2.43252828749429 | 9.09539702279256 4 BCL11B ENSG00000127152 26 BAF chromatin
remodeling
complex subunit
BCL11B
2.19333767492198 | 9.71596199025514 4/ CCL3 ENSG00000277632 320 C-C motif
chemokine ligand 3
2.39797392158601 | 9.54882190845875 4 | EOMES ENSG00000163508 42 eomesodermin
1.8722902241498 | 9.52552080909507 4| FPR2 ENSG00000171049 97 formyl peptide
receptor 2
2.04596655162998 | 9.65642486327778 4 | GABRD ENSG00000187730 7 gamma-
aminobutyric acid
type A receptor
delta subunit
1.61472493343347 | 10.0098286173681 4| GLI1 ENSG00000111087 133 GLI family zinc
finger 1
2.16895096221027 | 9.08480838780436 4 | GRM2 ENSG00000164082 3 glutamate
metabotropic
receptor 2
1.97487007888453 | 9.15987133677839 4| GZMA ENSG00000145649 21 granzyme A
2.3632607166297 | 9.36194377373524 4 1ITK ENSG00000113263 55 IL2 inducible T cell
kinase
1.65680103277328 | 10.7481928495895 4| JAK2 ENSG00000096968 1308 Janus kinase 2
2.55441722403153 | 10.4008794362822 4/ LCK ENSG00000182866 92 LCK proto-
oncogene, Src
family tyrosine
kinase
2.07090406658569 | 9.93957921431469 4 MYCN ENSG00000134323 69 MYCN proto-
oncogene, bHLH
transcription factor
2.00205286950728 | 9.39016895620018 4| KCNJ4 ENSG00000168135 30 potassium inwardly
rectifying channel
subfamily J
member 4
2.01772710125384 | 9.51766938813381 4 | PENK ENSG00000181195 47 proenkephalin
2.18472670005788 | 8.876516946565 4| RAB33A ENSG00000134594 ) RAB33A, member
RAS oncogene
family
2.59312029528846 | 9.93663793900257 4 | RHOH ENSG00000168421 7 ras homolog family
member H
1.65179174325754 | 10.0927571409199 4 | SELL ENSG00000188404 372 selectin L
1.60675773129877 | 9.94104760634058 4 | SH3GL2 ENSG00000107295 5 SH3 domain
containing GRB2
like 2, endophilin
A1
1.52964785010498 | 10.4125698468052 4 | SNORD10 ENSG00000238917 0 small nucleolar
RNA, C/D box 10
1.79211481293725 | 10.4125698468052 4 | SNORA48 ENSG00000209582 0 small nucleolar
RNA, H/ACA box
48
2.31330510199597 | 9.18239435340453 4 | S1PR4 ENSG00000125910 " sphingosine-1-
phosphate receptor
4
2.35555813379308 | 9.96866679319521 4 sOCst ENSG00000185338 129 suppressor of
cytokine signaling 1
2.31998259919929 | 9.9901039638575 4 | ZAPTO ENSG00000115085 50 zeta chain of T cell
receptor associated
protein kinase 70
1.78324278068274 | 10.7846348455575 4 | SNCA ENSG00000145335 1| intrinsic 54 synuclein alpha
cardiomyopathy
1.84453344921156 | 9.35974956032233 4 | PDIA2 ENSG00000185615 | 0.29202651232481 | cardiovascular 8 0.049702 protein disulfide
disease isomerase family A
member 2
1.92449488199414 | 9.53138146051631 4| CD74 ENSG00000019582 73 0.053395 CD74 molecule
2.00928683354396 | 8.99435343685886 4 | FGF17 ENSG00000158815 30.055413 fibroblast growth
factor 17
2.30826538071208 | 9.23122118071119 4 CD48 ENSG00000117091 35 0.056212 CD48 molecule
2.09873574959031 | 9.44086916761087 4 | CARD11 ENSG00000198286 10 0.058737 caspase
recruitment domain
family member 11
2.39521253524188 | 9.8073549220576 4 | PPP2R2B ENSG00000156475 | 0.30358700156945 | heart disease 50.12928 protein
6 phosphatase 2
regulatory subunit
beta
2.50581286771842 | 9.82813648419411 4 | STAT4 ENSG00000138378 98 0.186037 signal transducer
and activator of
transcription 4
2.06110718380973 | 9.65284497300198 4 | NRXN2 ENSG00000110076 3 0.326205 neurexin 2
2.3966740284543 | 9.68999797141945 4 | ABCG2 ENSG00000118777 | 0.31473139412114 | cardiovascular 501 | 0.33998 ATP binding
4 disease cassette subfamily
G member 2 (Junior
blood group)
2.28231349841461 | 9.66533591718518 4 | PROM1 ENSG00000007062 375 | 0.532281 prominin 1
2.40053684125791 | 9.11113567023471 4 | CD3E ENSG00000198851 17 0.611353 CD3e molecule
2.21165821415797 | 9.56985560833095 4 | DLGAP1 ENSG00000170579 30.835216 DLG associated
protein 1
2.38680312197609 | 9.71596199025514 4 CD69 ENSG00000110848 252 1.08731 CD69 molecule
2.39229448702134 | 9.01402047031493 4 RYR3 ENSG00000198838 | 0.71729254722595 | arterial stiffness 3292 1 1.19919 ryanodine receptor
2 measurement 3
2.33129483975196 | 8.97441458980553 4 | CHRNA3 ENSG00000080644 1| cardiovascular 36 | 1.23034 cholinergic receptor
disease nicotinic alpha 3
subunit
1.93612514117864 | 9.90989308377004 4 | APOA1 ENSG00000118137 1 1162 | 1.67707 apolipoprotein A1

cardiovascular
disease



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
1.78769934778717 | 9.65999589242998 4 | BRSK1 ENSG00000160469 | 0.00142081870334 | systolic heart failure 4 1.98052 BR serine/threonine
kinase 1
-3.3407222345927 | 3.4594316186373 5| C10RF105 ENSG00000180999 | 0.00491658424315 | dilated 1 Chromosome 1
5 cardiomyopathy Open Reading
Frame 105
-2.1324779704172 | 4.16992500144231 5| C110RF91 ENSG00000205177 0 Chromosome 1
! Open Reading
Frame 91
-4.2828610417836 | 4.16992500144231 5 | FAM9C ENSG00000187268 0 family with
9 sequence similarity
9 member C
-5.2506541187330 | 5.55458885167764 5| IGSF23 ENSG00000216588 0 immunoglobulin
2 superfamily
member 23
-4.2269421470993 | 5.16992500144231 5| MTRNR2L1 ENSG00000256618 1 MT-RNR2 like 1
-6.8533789212804 | 7.68650052718322 6 | CALCB ENSG00000175868 6 calcitonin related
9 polypeptide beta
-3.4579419377000 | 9.78790255939143 6 | MRAP ENSG00000170262 86 melanocortin 2
6 receptor accessory
protein
-4.0857485097844 | 9.50977500432694 6 | PCK1 ENSG00000124253 32 phosphoenolpyruva
5 te carboxykinase 1
-4.9833551942381 | 9.3037807481771 6 | CACNATE ENSG00000198216 1/ cardiovascular 18 0.096871 calcium voltage-
disease gated channel
subunit alphat E
-4.9352681994321 | 9.49785183695112 6 | SAA1 ENSG00000173432 82 0.187328 serum amyloid A1
-4.3030152232787 | 10.0953970227926 6 | MYH8 ENSG00000197616 1| heart disease 329 | 0.386648 myosin heavy chain
6 6
-3.3772232927365 | 10.429406741514 6 | CFTR ENSG00000001626 649 | 0.944108 CF transmembrane
2 conductance
regulator
-5.2590141108931 | 8.58496250072116 6 CSMD1 ENSG00000183117 17 1.11779 CUB and Sushi
6 multiple domains 1
-3.5015223722018 | 10.140829770773 6 | KNG1 ENSG00000113889 25 1.48714 kininogen 1
6
3.07823523365618 | 8.38801728534514 7  NPPB ENSG00000120937 | 0.73362927273845 | cardiovascular 301 natriuretic peptide
1 disease biomarker B
measurement
2.44735451122472 | 8.48784003382305 7 | GDF10 ENSG00000266524 | 0.48624944686889 | mean arterial 6 growth
6 pressure differentiation factor
2.0432196840163 | 7.52356195605701 7 LTC4S ENSG00000213316 | 0.14194161072373 | resting heart rate 16 leukotriene C4
4 synthase
2.22785548237289 | 7.5077946401987 7 | C1QTNF4 ENSG00000172247 | 0.09157050036191 | cardiovascular 0 C1qgand TNF
disease related 4
2.59750111489656 | 8.63299519714296 7 | SFRP4 ENSG00000106483 | 0.06436420291233 | cardiovascular 40 secreted frizzled
disease related protein 4
2.31201995863113 | 8.16992500144231 7 | AOC1 ENSG00000002726 | 0.05694397358186 | cardiovascular 1 amine oxidase
disease copper containing 1
2.45908415282001 | 8.91587937883577 7 | OGDHL ENSG00000197444 | 0.018 heart failure 6 oxoglutarate
dehydrogenase like
2.19083910125356 | 7.8008998999203 7 |CHAC1 ENSG00000128965 | 0.0165 cardiovascular 7 ChaC glutathione
disease specific gamma-
glutamylcyclotransf
erase 1
2.08601590327918 | 8.01680828768655 7 GPR27 ENSG00000170837 | 0.00761771373267 | ischemic 1 G protein-coupled
cardiomyopathy receptor 27
1.99977230020041 | 8.20945336562895 7 |A1BG ENSG00000121410 9 alpha-1-B
glycoprotein
2.37825033900611 | 7.73470962022584 7 | ANKRD24 ENSG00000089847 ) ankyrin repeat
domain 24
2.64995001552377 | 7.11894107272351 7 | ANKRD34C ENSG00000235711 0 ankyrin repeat
domain 34C
2.73080184353521 | 7.49984588708321 7 ABCC11 ENSG00000121270 6 ATP binding
cassette subfamily
C member 11
2.16862846288355 | 8.36194377373524 7 | ABCC6 ENSG00000091262 241 ATP binding
cassette subfamily
C member 6
2.66537790842335 | 8.13442632022093 7 | BIRCT ENSG00000101197 2 baculoviral IAP
repeat containing 7
2.55171219020732 | 8.33539035469392 7 CCL8 ENSG00000108700 56 G-C motif
chemokine ligand 8
2.73167905780424 | 9.65999589242998 7 CD2 ENSG00000116824 617 CD2 molecule
2.68158107901429 | 9.38586240064146 7 CD3D ENSG00000167286 4 CD3d molecule
2.67965066853657 | 8.12928301694497 7 CcD8B ENSG00000172116 3 CD8b molecule
2.93130193432858 | 8.33985000288462 7 | CMA1 ENSG00000092009 31 chymase 1
2.25838495303674 | 6.8073549220576 7 | DNASE1L2 ENSG00000167968 1 deoxyribonuclease
1like 2
2.56560233530115 | 7.49984588708321 7 | DNAJC22 ENSG00000178401 0 DnaJ heat shock
protein family
(Hsp40) member
C22
2.93351746219208 | 8.63662462054365 7| GZMM ENSG00000197540 2 granzyme M
1.98033877931149 | 8.73131903102506 7 HCST ENSG00000126264 " hematopoietic cell
signal transducer
2.64995984668322 | 7.8008998999203 7 | HS6ST2 ENSG00000171004 3 heparan sulfate 6-
O-sulfotransferase
2
2.22312815576303 | 8.61102479730735 7 | IRX6 ENSG00000159387 3 iroquois homeobox
6
2.612273191131 8.76818432477693 7 | KLRB1 ENSG00000111796 15 killer cell lectin like

receptor



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
2.67003597903346 | 7.96578428466209 7 | LYPD1 ENSG00000150551 2 LY6/PLAUR domain
containing 1
2.28672005195914 | 8.40514146313634 7 | LAG3 ENSG00000089692 24 lymphocyte
activating 3
2.60042807443691 | 8.17990909001493 7 Ly9 ENSG00000122224 3 lymphocyte antigen
9
2.16200370996885 | 7.49185309632967 7 MT1G ENSG00000125144 5 metallothionein 1G
2.18907040029136 | 8.70043971814109 7 |NKG7 ENSG00000105374 5 natural killer cell
granule protein 7
2.21952311686212 | 6.83289001416474 7 NSG2 ENSG00000170091 0 neuronal vesicle
trafficking
associated 2
2.25824566322869 | 7.43462822763672 7 | NXNL1 ENSG00000171773 0 nucleoredoxin like 1
2.75548969313356 | 8.72451385311995 7 | PLCH2 ENSG00000149527 0 phospholipase C
eta2
2.56389951825518 | 8.49984588708321 7| SDsL ENSG00000139410 8 serine dehydratase
like
2.34968484331985 | 7.32192809488736 7 | SPTSSB ENSG00000196542 0 serine
palmitoyltransferas
e small subunit B
2.22310254848053 | 6.75488750216347 7 | SUSD3 ENSG00000157303 0 sushi domain
containing 3
3.04023939928333 | 7.876516946565 7 8YTLt ENSG00000142765 1 synaptotagmin like
1
2.82788546999612 | 7.90689059560852 7 8YTLS ENSG00000147041 0 synaptotagmin like
5
2.50390426134064 | 8.2045711442492 7 | TBC1D10C ENSG00000175463 6 TBC1 domain
family member 10C
3. 7.491 7 | TNMD ENSG00000000005 " tenomodulin
2.40916087210493 | 7.93663793900257 7 vsx1 ENSG00000100987 5 visual system
homeobox 1
2.2935954176009 | 6.85798099512757 7 | WFIKKN1 ENSG00000127578 0 WAP, follistatin/
immunoglobulin,
kunitz and netrin
domain containing
1
2.07619129212165 | 7.876516946565 72P3 ENSG00000188372 " zona pellucida
glycoprotein 3
2.14796638558075 | 8.54689445988764 7 CERS1 ENSG00000223802 1| Genetic cardiac 5 ceramide synthase
anomaly 1
2.04090525022728 | 8.08214904135387 7 | CHRNE ENSG00000108556 1| intracranial 3 cholinergic receptor
hypertension nicotinic epsilon
subunit
2.0240899183422 | 8.29462074889163 7 | PDEBA ENSG00000132915 1/ cardiovascular 2 phosphodiesterase
disease B6A
3.04263727921997 | 8.55842071326866 7 | NELL2 ENSG00000184613 2 0.049539 neural EGFL like 2
2.63756499283572 | 8.90388184573618 7 |LHCGR ENSG00000138039 16 0.049653 luteinizing
hormone/
choriogonadotropin
receptor
3.06950375830231 | 8.41362792902417 7 GZMK ENSG00000113088 4 0.053505 granzyme K
2.95156742360353 | 7.12928301694497 7 | SOHLH2 ENSG00000120669 0 0.056217 spermatogenesis
and oogenesis
specific basic helix-
loop-helix 2
2.75597082192817 | 8.88569637333939 7 IL21R ENSG00000103522 78  0.062337 interleukin 21
receptor
2.2724583876066 | 8.24317398347295 7 CD6 ENSG00000013725 23 0.063987 CD6 molecule
2.72197205469988 | 8.67595703294175 7 | SLC4A1 ENSG00000004939 26 0.067153 solute carrier family
4 member 1 (Diego
blood group)
3.01332661491172 | 8.00562454919388 7 | SLC16A9 ENSG00000165449 | 0.00209062141407 | Arterial stenosis 8 0.067287 solute carrier family
16 member 9
2.38660226019745 | 8.43462822763673 7| MMP25 ENSG00000008516 4 0.076349 matrix
metallopeptidase
25
2.63889469798875 | 8.24317398347295 7 |FNDC1 ENSG00000164694 | 0.00365269911261 | ischemic 50.078697 fibronectin type IIl
cardiomyopathy domain containing
1
2.359( 8. 26 7 | NEURL1 ENSG00000107954 7 0.085472 neuralized E3
ubiquitin protein
ligase 1
2.33253171672164 | 8.12928301694497 7 | COL9A1 ENSG00000112280 | 0.0199 dilated 50.085871 collagen type IX
cardiomyopathy alpha 1 chain
2.91112461231459 | 8.45121111183233 7 scGs ENSG00000166922 40.102619 secretogranin V
2.17387463883333 | 7.4594316186373 7 | WDR66 ENSG00000158023 | 0.00048441137951 | cardiac arrhythmia 0 0.49309 WD repeat domain
8669 66
2.3344924836178 | 8.92184093707449 7 | PHF21B ENSG00000056487 0 0.536388 PHD finger protein
2.56489104266801 | 7.467605550083 7 | SMPD3 ENSG00000103056 23 0.799531 sphingomyelin
phosphodiesterase
3
2.68506839447976 | 7.74819284958946 7| CD9% ENSG00000153283 3 1.06777 CD96 molecule
3.00103776412044 | 8.41362792902417 7 | UBASH3A ENSG00000160185 3 1.14885 ubiquitin associated
and SH3 domain
containing A
2.3408208648566 | 7.4178525148859 7 | MALRD1 ENSG00000204740 1/1.25609 MAM and LDL
receptor class A
domain containing
1
2.70990324049768 | 5.28540221886225 8 | C160RF89 ENSG00000153446 0 Chromosome 16

Open Reading
Frame 89



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
2.64138640019292 | 4.16992500144231 8 | C190RF81 ENSG00000235034 0 Chromosome 19
Open Reading
Frame 81
2.69394412190213 | 6.32192809488736 8 | ANO9 ENSG00000185101 0 anoctamin 9
1.8886180395277 | 4.4594316186373 8| CCDC154 ENSG00000197599 0 coiled-coil domain
containing 154
3.81217232635013 | 4.64385618977472 8 | DCANP1 ENSG00000251380 0 dendritic cell
associated nuclear
protein
2.29323689155923 | 5.55458885167764 8 | FAM180B ENSG00000196666 0 family with
sequence similarity
180 member B
1.84728904210943 0 8 | FAM229A ENSG00000225828 0 family with
sequence similarity
229 member A
2.43329398752359 | 11.0821490413539 8 | FOS ENSG00000170345 2928 Fos proto-
oncogene, AP-1
transcription factor
subunit
2.49471525478438 | 6.37503943134692 8 | LCN12 ENSG00000184925 0 lipocalin 12
2.9607658928758 | 6.10852445677817 8 | PVRIG ENSG00000213413 1 PVR related
immunoglobulin
domain containing
1.68452668286034 | 5.08746284125034 8 | SPATA6L ENSG00000106686 0 spermatogenesis
associated 6 like
2.10620412217147 | 6.5077946401987 8 XG ENSG00000124343 105 Xg glycoprotein (Xg
blood group)
2.02854724940606 | 5.08746284125034 8 | ZNF385C ENSG00000187595 0 zinc finger protein
385C
2.85382787755512 | 6.4757334309664 8 | ZNF683 ENSG00000176083 1 zinc finger protein
683
1.98277004045982 | 4.70043971814109 8 | ANKRD33B ENSG00000164236 0 0.061642 ankyrin repeat
domain 338
2.13192409303079 | 6.39231742277876 8 | PRR7 ENSG00000131188 00.095411 proline rich 7,
synaptic
2.62859428543533 | 6.5077946401987 8 | ADGRGS ENSG00000159618 0/ 0.10612 adhesion G protein-
coupled receptor
G5
1.55056935674004 5 8 | MAP3K7CL ENSG00000156265 | 0.0104 coronary artery 3 0.673055 MAP3K?7 C-terminal
disease like
-2.4516805469563 | 8.37068740680722 9  EREG ENSG00000124882 | 0.61541724205017 | coronary artery 23 epiregulin
1 calcification
-2.4702936282815 | 10.1910592145317 9| SPP1 ENSG00000118785 | 0.33332460548253 | cardiovascular 603 secreted
5 5 disease phosphoprotein 1
-2.7050326270616 | 9.84862294042934 9| BMP7 ENSG00000101144 | 0.32747561057554 | cardiovascular 188 bone
7 9 disease morphogenetic
protein 7
-3.0193218749733 | 8.20945336562895 9 | HOPX ENSG00000171476 | 0.29528502222222 | familial 29 HOP homeobox
3 2 cardiomyopathy
-2.123437544963 9.72451385311995 9 | KIF20A ENSG00000112984 | 0.22041195072233 | heart rate 9 kinesin family
’ member 20A
-3.0790581708199 | 8.84235034341381 9 | SERPINA3 ENSG00000196136 | 0.21430372023863 | cardiovascular 29 serpin family A
6 7 disease member 3
-2.6363895317574 | 8.60362634498619 9 | KCNA7 ENSG00000104848 | 0.0334 Familial progressive 6 potassium voltage-
1 cardiac conduction gated channel
defect subfamily A
member 7
2.2576832677687 | 8.51569983828404 9 | SERPINAS ENSG00000188488 | 0.032291 hypertension 7 serpin family A
3 member 5
-2.3984951474537 | 7.56985560833095 9 | PCDH20 ENSG00000280165 | 0.0136 portal hypertension 2 protocadherin 20
5
-2.4257177445985 | 8.2807707701306 9 CNGA1 ENSG00000198515 5 cyclic nucleotide
gated channel
subunit alpha 1
-2.0461218135242 | 8.68299458368168 9 | DNAH3 ENSG00000158486 1 dynein axonemal
7 heavy chain 3
-2.3149287217580 | 8.01122725542325 9 | ESRP2 ENSG00000103067 2 epithelial splicing
5 regulatory protein 2
-2.1183927265089 | 8.32192809488736 9| GNMT ENSG00000124713 8 glycine N-
methyltransferase
-2.6228652610473 | 8.3264294871223 9 | LRRN3 ENSG00000173114 6 leucine rich repeat
9 neuronal 3
-2.138342830372 7.48381577726426 9 | LINCO0842 ENSG00000285294 0 long intergenic non-
protein coding RNA
842
-2.9335371825788 | 7.6724253419715 9 PYGO1 ENSG00000171016 3 pygopus family
PHD finger 1
-3.0112881387502 | 8.19967234483636 9 RBP4 ENSG00000138207 258 retinol binding
7 protein 4
-2.2746953773596 | 7.467605550083 9 | TMEM132B ENSG00000139364 0 transmembrane
5 protein 1328
-2.7196488857335 | 9.03617361255349 9 | TMEM151B ENSG00000178233 0 transmembrane
4 protein 151B
-2.2539993198529 | 7. 9 | ZBED6 ENSG00000257315 5 zinc finger BED-
8 type containing 6
-2.1370022250427 | 9.0389189892923 9 | GATAS ENSG00000130700 1 cardiovascular 120 GATA binding
7 disease protein 5
-1.9919366366480 | 8.15987133677839 9 MYOT ENSG00000120729 1| cardiomyopathy 32 myotilin
8
9.51569983828404 9 | FGF7 ENSG00000140285 | 0.04447222222222 | pulmonary arterial 54 0.048529 fibroblast growth

-2.3484233497453
3

hypertension

factor 7



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication

-2.3395229798865 | 8.40514146313634 9 TRPC4 ENSG00000133107 | 0.07101274885991 | cardiovascular 155 | 0.053665 transient receptor

4 disease potential cation
channel subfamily
C member 4

-3.0833978539900 | 8.91587937883577 9| WSCD2 ENSG00000075035 0 0.055893 WSC domain

8 containing 2

-2.4530828452856 | 9.35535109642481 9 | PCSK1 ENSG00000175426 27 1 0.056497 proprotein

3 convertase
subtilisin/kexin type
1

-1.9597910425883 | 8.24317398347295 9 | CHDH ENSG00000016391 1| cardiovascular 8 0.063677 choline

7 disease dehydrogenase

-2.2704240038220 | 8.19475685442225 9 | PHACTR3 ENSG00000087495 2/0.087486 phosphatase and

5 actin regulator 3

-3.0425114971795 | 8.93369065495223 9 | LRRC7 ENSG00000033122 0 0.094918 leucine rich repeat
containing 7

-2.7797614745942 | 8.09803208296053 9 | SLC38A4 ENSG00000139209 9 0.109267 solute carrier family

6 38 member 4

2.5082879360299 | 8.09803208296053 9 | MARCO ENSG00000019169 2982 | 0.111059 macrophage

5 receptor with
collagenous
structure

-2.3372273764265 | 9.52552080909507 9| CHL1 ENSG00000134121 | 9.23637951231764 | congenital anomaly 13 0.191441 cell adhesion

6 e-05 of cardiovascular molecule L1 like

system

-2.4360248195933 | 8.68299458368168 9 | TAOK1 ENSG00000160551 50.259799 TAO kinase 1

1

2.8338117842314 | 8.18487534290828 9 GDA ENSG00000119125 | 0.06372901360544 K myocardial 562 | 0.501181 guanine deaminase

5 infarction

-2.4658598361509 | 8.9915218460757 9 | ITGB6 ENSG00000115221 | 0.77290636301040 | arterial stiffness 11 0.503822 integrin subunit

3 6 measurement beta 6

-3.1607445031284 | 8.85486838326024 9 | GRIP1 ENSG00000155974 | 0.2 Congenital 24 0.621951 glutamate receptor

vertebral-cardiac- interacting protein 1
renal anomalies
syndrome

-1.9755312172268 | 8.65105169117893 9 wwet ENSG00000113645 13 0.663947 WW and C2

1 domain containing
1

-1.9736926036901 | 8.69348695749933 9 | XRCC4 ENSG00000152422 | 0.0104 hypertension 16 0.696042 X-ray repair cross

3 complementing 4

-2.5470132784986 | 9.31288295528435 9 | ITGA2 ENSG00000164171 48 1 0.984909 integrin subunit

9 alpha 2

-2.7065649593002 | 8.98868468677217 9 | LRP1B ENSG00000168702 18 1.28906 LDL receptor

6 related protein 1B

-2.5462562518139 | 8.81057163474115 9 | MLXIPL ENSG00000009950 | 0.51904393899899 | cardiovascular 66 1.74508 MLX interacting

4 disease protein like

-1.7856639147395 | 9.4858293087019 10 GPD1 ENSG00000167588 | 0.25423022644842 | cardiovascular 19 glycerol-3-

9 7 disease phosphate
dehydrogenase 1

-1.8947520608397 | 9.09803208296053 10 KIAAD754 ENSG00000127603 | 0.21645329892635 | peripheral arterial 1 KIAAD754

7 3 disease

1.5684865258408 | 7.98868468677217 10 HOOK1 ENSG00000134709 | 0.183 Aicardi-Goutiéres. 4 hook microtubule

2 syndrome tethering protein 1

-1.7383282004538 | 7.08746284125034 10 ART4 ENSG00000111339 4 ADP-

9 ribosyltransferase 4
(Dombrock blood
group)

-1.7451821130384 | 8.48784003382305 10 ADH1A ENSG00000187758 2 alcohol

2 dehydrogenase 1A
(class I), alpha
polypeptide

-1.8092941323118 | 8.04984854945056 10 ANKRD36 ENSG00000135976 3 ankyrin repeat

9 domain

-1.7712908370051 | 7.33091687811462 10  B3GALT2 ENSG00000162630 0 beta-1,3-

9 galactosyltransferas
e2

-1.5347028314915 | 9.71252700043982 10 BLM ENSG00000197299 168 BLM RecQ like

8 helicase

-1.8008986616792 | 7.32192809488736 10 c1QLt ENSG00000131094 1 complement C1q

6 like 1

-1.6279995546234 | 6.62935662007961 10  CXXC4 ENSG00000168772 0 CXXC finger protein

4 4

-1.6053029879769 | 8.59245703726808 10  CDKL5 ENSG00000008086 " cyclin dependent
kinase like 5

-1.5506469842893 | 8.78463484555752 10 POLQ ENSG00000051341 0 DNA polymerase

8 theta

-1.6780975941214 | 8.29920801838728 10 ELK4 ENSG00000158711 9 ETS transcription

6 factor ELK4

-1.9268730479915 | 8.17990909001493 10 FAM83D ENSG00000101447 1 family with

6 sequence similarity
83 member D

-1.9055816512911 | 7.8073549220576 10 GYG2 ENSG00000056998 5 glycogenin 2

2

-1.8642855293338 | 8.97441458980553 10 KNL1 ENSG00000137812 0 kinetochore

9 scaffold 1

-1.6291822970867 | 8.37503943134693 10 MGST1 ENSG00000008394 8 microsomal

4 glutathione S-
transferase 1

-1.9249476206148 | 10.0014081943928 10 MYSM1 ENSG00000162601 0 Myb like, SWIRM

5 and MPN domains
1

-1.6707743942261 | 9.50977500432694 10  MYO9A ENSG00000066933 4 myosin IXA

8.2336196767597 10 | KCNK3 ENSG00000171303 95 potassium two pore

-1.7159425175967
5

domain channel
subfamily K
member 3



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
-1.5354282823892 | 9.11113567023471 10 PDCD1 ENSG00000188389 221 programmed cell
5 death 1
-1.7975869993435 | 7.82017896241519 10 | SNORA40 ENSG00000210825 0 small nucleolar
3 RNA, H/ACA box
40
-1.6761572856110 | 7.91288933622996 10 SMTNL2 ENSG00000188176 2 smoothelin like 2
3
-1.8505127324921 | 6.82017896241519 10 TMEM178B ENSG00000261115 1 transmembrane
3 protein 1788
1.9496179358509 | 8.29462074889163 10 | TROAP ENSG00000135451 0 trophinin
8 associated protein
-1.9033368315716 | 9.05528243550119 10 SSTR2 ENSG00000180616 1/ cardiovascular 52 somatostatin
5 disease receptor 2
-1.6092644920219 | 9.19967234483636 10 PROX1 ENSG00000117707 162 | 0.046901 prospero
¢ homeobox 1
-1.6981228636811 | 9.21916852046216 10 CENPF ENSG00000117724 | 0.03948535130566 | heart disease 70.047372 centromere protein
9 5 F
-1.8178291265678 | 7.66533591718518 10  MFAP2 ENSG00000117122 | 0.1864 Aicardi-Goutieres 6 0.048463 microfibril
5 syndrome associated protein
2
-1.8026674039869 | 10.4051414631363 10 TFRC ENSG00000072274 51 0.048463 transferrin receptor
1
-1.9343286442857 6 10  PRELID2 ENSG00000186314 2/0.048756 PRELI domain
containing 2
-1.6165689862665 | 10.1774195379892 10 BUB1B ENSG00000156970 | 0.18596 Aicardi syndrome 13 0.050256 BUB1 mitotic
1 checkpoint serine/
threonine kinase B
-1.6489840183584 | 6.10852445677817 10 VASH2 ENSG00000143494 | 0.0308 pulmonary arterial 12 0.052454 vasohibin 2
6 hypertension
-1.9085621522062 | 9.27612440527424 10 ANLN ENSG00000011426 | 0.0142 cardiovascular 6| 0.056363 anillin actin binding
5 disease protein
-1.7683135988466 | 7.59245703726808 10 MARVELD2 ENSG00000152939 | 0.01737777777777 | heart disease 6 0.057293 MARVEL domain
1 78 containing 2
-1.5619604203699 | 7.76818432477693 10 ANKRD36B ENSG00000196912 0 0.061468 ankyrin repeat
7 domain 368
-1.5870924910331 | 10.1811522568656 10 | CDKN3 ENSG00000100526 60.064123 cyclin dependent
6 kinase inhibitor 3
-1.7020965949574 | 8.44708322620965 10 | OLFM4 ENSG00000102837 22 0.072193 olfactomedin 4
2
-1.6328088116115 | 7.85798099512757 10 RNF157 ENSG00000141576 1/0.106906 ring finger protein
3 157
-1.6568187087991 | 7.84549005094437 10 RNF152 ENSG00000176641 0 0.10847 ring finger protein
1 152
-1.6853046709455 | 9.54303182025524 10 CAMK1D ENSG00000183049 6/0.516361 calcium/calmodulin
dependent protein
kinase ID
-1.9396630794701 | 8.13442632022093 10 ATP6V1C2 ENSG00000143882 0 0.520142 ATPase H+
6 transporting V1
subunit C2
-1.5130648836499 | 8.97727992349992 10  CACNB2 ENSG00000165995 76 0.543523 calcium voltage-
8 gated channel
auxiliary subunit
beta 2
-2.0149953965182 | 7.06608919045777 10 FAM81A ENSG00000157470 0 0.609717 family with
8 sequence similarity
81 member A
-1.5990890723534 | 7.73470962022584 10  ADAMTS12 ENSG00000151388 | 0.10959168753079 | cardiovascular 8 0.657565 ADAM
1 4 disease metallopeptidase
with
thrombospondin
type 1 motif 12
-1.7401284582139 | 7.49185309632967 10 CD5L ENSG00000073754 14 0.760137 CD5 molecule like
6
-1.7021962887373 | 8.37068740680722 10 ART3 ENSG00000156219 80.923572 ADP-
2 ribosyltransferase 3
-1.6648270605802 | 9.4655664048094 10 CACNA1D ENSG00000157388 136 | 0.979092 calcium voltage-
¢ gated channel
subunit alphal D
10.4019461239765 10 APOB ENSG00000084674 6214 | 2.72011 apolipoprotein B

-1.5096291862901
9

10



Supplementary table 12. Dilated vs failing heart cluster ing with disease and
Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
inthe contextof  association score
any for cardiovascular
cardiovascular indication
indication
-0.9224655988163 | 11.2461467746359 0 | STAT3 ENSG00000168610 1| cardiovascular 2576 | 0.057388 signal transducer
16 disease and activator of
transcription 3
-0.57928944 10.1811522568656 0 | CDKN3 ENSG00000100526 | 0.02948333333333 | hypertension 6 0.064123 cyclin dependent
kinase inhibitor 3
-0.6129675 9.40087943628218 0 PPL ENSG00000118898 | 0.21007086386695 | cardiovascular 217 1 0.064408 periplakin
5 disease
-0.5685973984364 | 10.4706588740606 0 | ICAM1 ENSG00000090339 | 0.22875 Aicardi-Goutiéres. 8986 | 2.73394 intercellular
09 syndrome adhesion molecule
1
-0.787274825148 9.70217268536555 0| IDH2 ENSG00000182054 1/ cardiovascular 50 isocitrate
disease dehydrogenase
(NADP(+)) 2
-0.60028744 10.6882503091332 0 | H2AFZ ENSG00000164032 | 0.004 cardiac hypertrophy 2
H2A.Z Variant
Histone 1
-0.61079216 9.67771964164101 0| H1FO ENSG00000189060 3 H1.0 Linker Histone
0.6517401 6.04439411935845 1| FAM216A ENSG00000204856 0 1.96048 family with
sequence similarity
216 member A
0.87767694095147 | 6.4594316186373 1 PPDPF ENSG00000125534 | 0.01441970241767 | dilated 0 pancreatic
8 cardiomyopathy progenitor cell
differentiation and
proliferation factor
0.4288969 7.15987133677839 1/ RSBN1 ENSG00000081019 | 0.2 coronary artery 1 round spermatid
disease, autosomal basic protein 1
dominant 2
0.336524 7.08746284125034 1| TMEM231 ENSG00000205084 4 transmembrane
protein 231
0.5514841 7 1/ HMGN2 ENSG00000198830 8 high mobility group
nucleosomal
binding domain 2
0.4214306 7.17990909001493 1/ ZSCAN18 ENSG00000121413 1 zinc finger and
SCAN domain
containing 18
1.2905462562525 | 8.93369065495223 2| KLHL3 ENSG00000146021 1| hypertension 77  0.067048 kelch like family
member 3
1.6075773 8.39231742277876 2| 1D4 ENSG00000172201 | 0.18308 Heart-hand 15 0.107028 inhibitor of DNA
syndrome type 3 binding 4, HLH
protein
1.81482103301306 | 9.15228484230658 2 | CFH ENSG00000000971 | 0.34164494161763 | cardiovascular 168  0.38501 complement factor
2 disease H
1.766592503139 8.38801728534514 2| SPOCK1 ENSG00000152377 | 0.02352 gastric non-cardia 5 1.24289 SPARC
carcinoma (osteonectin), cwev
and kazal like
domains
proteoglycan 1
1.24378905805 9.41996017784789 2 0DCt ENSG00000115758 | 0.05575769755483 | cardiovascular 7 ornithine
53 disease decarboxylase 1
1.2341019575186 | 10.0389189892923 2 | MYH10 ENSG00000133026 | 0.32816138639532 | dilated 28 myosin heavy chain
cardiomyopathy 10
1.9229517 7.62205181945638 2| PHLDA1 ENSG00000139289 | 0.55866403383537 | cardiovascular 9 pleckstrin
5 disease homology like
domain family A
member 1
0.48857117 7.88874324889826 3 | NCKIPSD ENSG00000213672 30.051454 NCK interacting
protein with SH3
domain
0.5544902656692 | 7.71424551766612 3 CHST3 ENSG00000122863 | 0.0304 pulmonary arterial 11 0.052944 carbohydrate
hypertension sulfotransferase 3
0.39712238 8.37068740680722 3 | TULP4 ENSG00000130338 | 0.0104 congenital heart 2/0.082924 TUB like protein 4
disease
0.61286736 8.29001884693262 3 | ROR1 ENSG00000185483 | 0.014 ischemic 19 0.082936 receptor tyrosine
cardiomyopathy kinase like orphan
receptor 1
0.81835365 8.61838550225861 3 | LTBP1 ENSG00000049323 | 0.31710620789300 | Genetic cardiac 35 0.179172 latent transforming
6 anomaly growth factor beta
binding protein 1
0.81306063504 8.44294349584873 3 EXT1 ENSG00000182197 26 0.636995 exostosin
glycosyltransferase
1
0.74196243 9.07681559705083 3 | LAMB1 ENSG00000091136 | 0.28659658804301 | cardiovascular 110.739348 laminin subunit
7 disease beta 1
0.87712765 7.99435343685886 3| NAv2 ENSG00000166833 | 0.64134904928936 | cardiovascular 9 0.942098 neuron navigator 2
6 disease
0.50399685 8.9915218460757 3 | SEC31A ENSG00000138674 | 0.10989486426115 | hypertension 4133 SEC31 homolog A,
COPII coat
complex
component
0.56628895 8.3264294871223 3 | SPRED2 ENSG00000198369 | 0.04434481863097 | cardiovascular 9 1.75078 sprouty related
disease EVH1 domain
containing 2
0.72861004 8.74819284958946 3 | ATP13A3 ENSG00000133657 1| pulmonary arterial 6 ATPase 13A3
hypertension
1.09076859307525 | 7.81378119121704 3 | SSPN ENSG00000123096 1 cardiovascular 17 sarcospan
disease
0.42609978 7.85798099512757 3 | CAMSAP2 ENSG00000118200 | 0.00036354689943 | Arteritis 1 calmodulin
2006 regulated spectrin
associated protein
family member 2
0.77229977 8.83605035505807 3 | KIDINS220 ENSG00000134313 | 0.00267462982497 | heart disease 8 kinase D interacting
156 substrate 220
0.7625923 8.54303182025524 3 ETVS ENSG00000244405 | 0.0308 hypertension 29 ETS variant

transcription factor
5



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
0.75123596 7.94251450533924 3| SLC30A1 ENSG00000170385 | 0.0518 congenital heart 16 solute carrier family
disease 30 member 1
0.52015495 8.62570884306447 3 | CBFB ENSG00000067955 | 0.1864 Aicardi-Goutiéres 10 core-binding factor
syndrome subunit beta
0. 1 8. 3 | CLK1 ENSG00000013441 | 0.19572 Autosomal 4 CDC like kinase 1
dominant
progressive
nephropathy with
hypertension
0.50695592608 8.7279204545632 3| 0GA ENSG00000198408 | 0.22168307596895 | cardiovascular 166 O-GlcNAcase
5 disease
0.7160044 8.0389189892923 3 SLK ENSG00000065613 | 0.61355344392359 | mean arterial 104 STE20 like kinase
3 pressure
0.6053648 8.66533591718518 3 | ASMTL ENSG00000169093 3 acetylserotonin O-
methyltransferase
like
0.8135338 8.2240016741981 3 | PRSS23 ENSG00000150687 4 serine protease 23
0.5490122 7.92481250360578 3 | RNF38 ENSG00000137075 4 ring finger protein
38
0.51859474 7.97154355395077 3 | TRMTS ENSG00000126814 2 tRNA
methyltransferase 5
0.42307377 8.40087943628218 3 | KMT5B ENSG00000110066 1 lysine
methyltransferase
5B
0.72925186 8.93957921431469 3 | HNRNPH3 ENSG00000096746 0 heterogeneous
nuclear
ribonucleoprotein
H3
0.5101156 8.07146236255662 3| AP3M2 ENSG00000070718 0 adaptor related
protein complex 3
subunit mu 2
3.09602461642729 | 8.78135971352466 4 | NPPA ENSG00000175206 1| cardiovascular 437 1 0.170989 natriuretic peptide
disease A
4.82623160625593 | 8.38801728534514 4 NPPB ENSG00000120937 | 0.73362927273845 | cardiovascular 302 natriuretic peptide
1 disease biomarker B
measurement
3.49044522241284 | 9.91288933622996 4| CCN2 ENSG00000118523 | 0.91116925758589 | cardiovascular 513 cellular
8 disease communication
network factor 2
-0.33780430272 8.65105169117893 5| RNF5 ENSG00000204308 | 0.01783688888888 | cerebral artery 1/0.071333 ring finger protein 5
occlusion
-0.52831745 8.16490692667569 5 | MAPKAPK3 ENSG00000114738 | 0.0104 myocardial 11 0.099883 MAPK activated
infarction protein kinase 3
-0.749969368 8.60362634498619 5 | IMPA2 ENSG00000141401 | 0.19651874380610 | heart disease 0 0.540609 inositol
9 monophosphatase
2
-0.9175482 8.18487534290828 5| FCGBP ENSG00000275395 | 0.03037979364224 | gastric non-cardia 5 Fc fragment of IgG
carcinoma binding protein
-0.82914543 7.43462822763672 5 | NSG1 ENSG00000168824 | 0.05042785778641 | congenital heart 0 neuronal vesicle
7 disease trafficking
associated 1
-0.7863024544326 | 7.3037807481771 5| APOBEC2 ENSG00000124701 | 0.2 Early-onset 9 apolipoprotein B
05 myopathy with fatal mMRNA editing
cardiomyopathy enzyme catalytic
subunit 2
-0.5532818 8.16490692667569 5| CES2 ENSG00000172831 | 0.2008 hypertension 10 carboxylesterase 2
-0.686458019125 7.81378119121704 5 | STEAP3 ENSG00000115107 | 0.240445 Dilated 2 STEAP3
cardiomyopathy metalloreductase
with ataxia
-0.5734087034931 | 8.32192809488736 5 | GNMT ENSG00000124713 | 0.28782815 cardiomyopathy 8 glycine N-
methyltransferase
-0.7077122 8.73470962022584 5 |HISTIH1C ENSG00000187837 1 H1.2 Linker
Histone, Cluster
Member
-2.2874527 7.23840473932508 6 RARRES1 ENSG00000118849 | 0.05284639820456 | hypertension 3/0.075029 retinoic acid
5 receptor responder
1
-0.7333927 6.79441586635011 6 | MTUS2 ENSG00000132938 1/0.136346 microtubule
associated scaffold
protein
-0.9536581 6.91886323727459 6 | MID1IP1 ENSG00000165175 0 MID1 interacting
protein 1
0.42668915 9.39446269461032 7 /8YT11 ENSG00000132718 30.070328 synaptotagmin 11
0.5339651 9.65642486327778 7  DLGS ENSG00000151208 | 0.0128 congenital heart 40.082071 discs large MAGUK
disease scaffold protein 5
0.76095386534305 | 10.3026389237876 7 | INSR ENSG00000171105 1/ cardiovascular 142 0.558493 insulin receptor
2 disease
0.89853739385821 | 9.64385618977473 7 | IGFBP3 ENSG00000146674 1| cardiovascular 562 insulin like growth
6 disease factor binding
protein 3
0.64386364825664 | 10.7739633684336 7 | XPO1 ENSG00000082898 1| cardiovascular 14 exportin 1
4 disease
0.476755493656 9.05799172275918 7 | ARHGAP1 ENSG00000175220 | 0.2 Familial avascular 5 Rho GTPase
necrosis of femoral activating protein 1
head
0.3976755 9.27844945822048 7 | YEATS2 ENSG00000163872 | 0.22185464203357 | mean arterial 1 YEATS domain
7 pressure containing 2
0.3478861 9.73978060977326 7 GTF2B ENSG00000137947 | 0.53277034461597 | cardiovascular 1 general
6 disease transcription factor
[11:3
0.31162643 9.36413465500805 7 |RPL17-C180RF32 | ENSG00000215472 0 RPL17-C180rf32
Readthrough
3.4594316186373 8 | C10RF105 ENSG00000180999 | 0.00491658424315 | dilated 1 Chromosome 1

-1.2389373377320
5

cardiomyopathy

Open Reading
Frame 105



Supplementary table 13. Diabetic post-ischemic heart failureda vs healthy dataset (GSE26887) cluster cr ing with disease and
Log2 Fold Change  Scaled interactor Gene symbol Ensembl Association Disease PubMed Report  GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
inthe contextof  association score
any for cardiovascular
cardiovascular indication
indication
0.9454193 7.82017896241519 0/ AOC3 ENSG00000131471 | 0.07508353762151 | cardiovascular 90 | 0.046885 amine oxidase
disease copper containing 3
0.944643 7.83920378809694 0 | DEPTOR ENSG00000155792 | 0.29255145788192 | heart rate response 13 0.047463 DEP domain
7 to exercise containing MTOR
interacting protein
0.73079014 8.33539035469392 0 CC2D2A ENSG00000048342 | 0.30713980463592 | Genetic cardiac 7/ 0.05095 coiled-coil and G2
8 anomaly domain containing
2A
0.9590473 8.41362792902417 0| GZMK ENSG00000113088 | 0.0324 Myocardial 40.053505 granzyme K
Ischemia
0.75933266 7.70043971814109 0 |HEG1 ENSGO00000173706 | 0.23475 Genetic cardiac 23 0.056119 heart development
anomaly protein with EGF
like domains 1
1.0282478 7.8073549220576 0 | CDHé ENSG00000113361 | 0.48390492796897 | resting heart rate 70.058737 cadherin 6
9
1.1346464 7.90689059560852 0 ECM2 ENSG00000106823 | 0.00895328337197 | dilated 30.059947 extracellular matrix
cardiomyopathy protein 2
0.7281332 8.00562454919388 0 SLC16A9 ENSG00000165449 | 0.00209062141407 | Arterial stenosis 80.067287 solute carrier family
16 member 9
0.7169552 8.38370429247405 0 DCLK2 ENSG00000170390 1/0.079181 doublecortin like
kinase 2
0.91115 8.07681559705083 0 RGS5 ENSG00000143248 | 0.10420172806711 | cardiovascular 122 0.101839 regulator of G
4 disease protein signaling 5
1.0446882 8.30833903013941 0| MEOX2 ENSGO00000106511 | 0.29664609444444 | cardiovascular 55 0.1062 mesenchyme
5 disease homeobox 2
0.84842205 7.84549005094437 0 RNF152 ENSG00000176641 0010847 ring finger protein
152
0.7298918 7.93663793900257 0| COLGALT2 ENSG00000198756 | 0.05601697787642 | arterial stiffness 0 0.137666 collagen beta(1-
measurement O)galactosyltransfer
ase 2
0.60214615 8.21431912080077 0| AFF3 ENSG00000144218 7/0.157888 AF4/FMR2 family
member 3
0.7879982 7.84549005094437 0| ITGA11 ENSG00000137809 | 0.1927 Cardiodysrhythmic 90165139 integrin subunit
potassium-sensitive alpha 11
periodic paralysis
0.83326626 7.97154355395077 0 | CABLEST ENSG00000134508 | 0.25027393747915 | cerebrovascular 20182713 Cdk5 and Abl
7 disorder enzyme substrate 1
0.6383791 8.4757334309664 0| ANKRD6 ENSG00000135299 | 0.00311155714688 | hypertensive renal 20229583 ankyrin repeat
393 disease domain 6
0.6755018 8.2336196767597 0 OSBPL10 ENSG00000144645 | 0.79018843173980 | arterial stiffness 3 0.501504 oxysterol binding
7 measurement protein like 10
0.86116314 7.4757334309664 0| PLA2R1 ENSG00000153246 | 0.02880555555555 | vasculitis 31/ 0.50389 phospholipase A2
receptor 1
0.86438084 8.00562454919388 0| FREM1 ENSG00000164946 | 0.58658787667272 | cardiovascular 40515734 FRAST related
disease extracellular matrix
0.7468443 8.03342300153745 0 | PLAGL1 ENSG00000118495 | 0.32088733871252 | Genetic cardiac 25| 0.594847 PLAGH like zinc
2 anomaly finger 1
0.7954359 8.39231742277876 0| PLXNA4 ENSG00000221866 | 0.23015 neurodevelopmenta 60.647016 plexin A4
I disorder with or
without anomalies
of the brain, eye, or
heart
0.6967001 7.90086680798075 0| APBB2 ENSG00000163697 1/0.713752 amyloid beta
precursor protein
binding family B
member 2
0.773921 8.37068740680722 0| PLCH1 ENSGO00000114805 1/0.810892 phospholipase C
eta1
0.91536427 8.4093909361377 0| FBLNS ENSG00000140092 1 | cardiovascular 73/ 1.12478 fibulin 5
disease
0.7004652 7.97154355395077 0 | SASH1 ENSG00000111961 | 0.00265413697168 | cardiac arrhythmia 9 SAM and SH3
domain containing
1
0.6522541 8.33091687811462 0| AMOT ENSG00000126016 | 0.0104 chronic venous 26 angiomotin
hypertension
0.95543957 7.8073549220576 0| suLT1c2 ENSG00000198203 | 0.05346 gastric non-cardia 0 sulfotransferase
carcinoma family 1C member
2
0.91058826 8.22881869049588 0 | PFKFB2 ENSG00000123836 | 0.183 Aicardi-Goutiéres 8 6-phosphofructo-2-
syndrome kinase/
fructose-2,6-
biphosphatase 2
1.007905 8.17492568250068 0| LPAR4 ENSG00000147145 | 0.27031527777777 | familial 9 lysophosphatidic
8 cardiomyopathy acid receptor 4
0.7229271 7.65105169117893 0 | RIMKLB ENSG00000166532 | 0.80779838562011 | hypertension 0 ribosomal
7 modification protein
rimK like family
member B
0.74335194 7.73470962022584 0| ABHD4 ENSG00000100439 0 abhydrolase
domain containing
4
0.97845936 8.07146236255662 0 | AP3M2 ENSG00000070718 0 adaptor related
protein complex 3
subunit mu 2
0.68469715 7.72109918870718 0| DNALIT ENSG00000163879 0 dynein axonemal
light intermediate
chain 1
0.8126869 8.00562454919388 0 EFHC1 ENSG00000096093 2 EF-hand domain
containing 1
1.1073303 7.91886323727459 0| MNS1 ENSG00000138587 1 meiosis specific
nuclear structural 1
1.0136509 7.78790255939143 0 MUC3A ENSG00000169894 1 mucin 3A, cell

surface associated



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
0.61905193 8.09275714091985 0| RBM43 ENSG00000184898 3 RNA binding motif
protein 43
0.8707514 8.05528243550119 0 | SLC16A4 ENSG00000168679 16 solute carrier family
16 member 4
0.665926 7.6724253419715 0 | SNX33 ENSG00000173548 0 sorting nexin 33
0.92883825 7.95419631038687 0| UGT2B10 ENSG00000109181 3 ubpP
glucuronosyltransfe
rase family 2
member B10
0.9945507 8.02236781302845 0 | XAF1 ENSG00000132530 6 XIAP associated
factor 1
-1.6356926 9.01122725542325 1 GFPT2 ENSG00000131459 | 0.0104 myocardial 4 0.046953 glutamine-
infarction fructose-6-
phosphate
transaminase 2
-1.0795231 9.51569983828404 1 FGF7 ENSG00000140285 | 0.06254523144815 | vascular disease 55 0.048529 fibroblast growth
factor 7
-1.3777046 8.70735913208088 1 DHCR24 ENSG00000116133 | 0.02156 gastric non-cardia 25 0.049039 24-
carcinoma dehydrocholesterol
reductase
-1.7015754952152 | 9.27379559921426 1/ CD163 ENSG00000177575 | 0.20731981001516 | cardiovascular 493 0.051225 CD163 molecule
9 8 disease
-1.15938 9.46964181723952 1/ CTsC ENSG00000109861 | 0.0487 hypertension 27  0.056076 cathepsin C
-0.7794523 9.04439411935845 1 PDE4D ENSG00000113448 1/ cardiovascular 164  0.175166 phosphodiesterase
disease 4D
-1.0942574 8.61470984411521 1/ STXBP6 ENSG00000168952 | 0.00259810056034 | Tachycardia 0 0.178052 syntaxin binding
protein 6
-0.78551674 9.47167521439204 1/ CD59 ENSG00000085063 | 0.32436241797324 | cardiovascular 322 | 0.622682 CD59 molecule
7 disease (CD59 blood group)
-1.3563299 8.49984588708321 1/ SSR3 ENSG00000114850 0 0.917442 signal sequence
receptor subunit 3
-1.523037 9.71938882094208 1| SELE ENSG00000007908 | 0.21369482902360 | cardiovascular 258 | 1.45274 selectin E
7 disease
-0.8557415 8.77478705960117 1| FADS1 ENSG00000149485 | 0.61045786220166 | heart rate 106 3.7884 fatty acid
4 desaturase 1
-1.0573473 9.13185696060879 1 ATP1A1 ENSG00000163399 1| cardiovascular 174 ATPase Na+/K+
disease transporting
subunit alpha 1
-1.0763518930157 | 9.0389189892923 1 TuBB6 ENSG00000176014 1| vascular disease 1 tubulin beta 6 class
6 \
-1.3581958 8.85174904141606 1 TUBASE ENSG00000152086 | 0.004 cardiomyopathy 0 tubulin alpha 3e
-0.936636 8.74146698640115 1 RNASE2 ENSG00000169385 | 0.03142421601450 | cardiovascular 2 ribonuclease A
5 disease family member 2
-1.1835241 9.3151495622563 1 FPR1 ENSG00000171051 | 0.04356627204585 | cardiovascular 45 formyl peptide
disease receptor 1
-1.2813988 9.13442632022093 1/ DUSP5 ENSG00000138166 | 0.06193354438478 | cardiovascular 22 dual specificity
disease phosphatase 5
-1.5813951 8.48784003382305 1/ CNN1 ENSG00000130176 | 0.0708 dilated 34 calponin 1
cardiomyopathy
-1.9903517 9.4178525148859 1/ S100A8 ENSG00000143546 | 0.08881689575793 | cardiovascular 202 $100 calcium
26 disease binding protein A8
-0.8386812 9.1548181090521 1/ POLD2 ENSG00000106628 | 0.1 vasculitis 0 DNA polymerase
delta 2, accessory
subunit
-1.0181141 9.60547951806167 1 TUBA4A ENSG00000127824 | 0.1864 Aicardi-Goutiéres. 4 tubulin alpha 4a
syndrome
-1.4041185 8.84549005094438 1 FGF18 ENSG00000156427 | 0.19036 Lethal 16 fibroblast growth
faciocardiomelic factor 18
dysplasia
-1.1663303 9.01959072835788 1/ HAS2 ENSG00000170961 | 0.2 Familial progressive 167 hyaluronan
cardiac conduction synthase 2
defect
-1.3903275 9.37937836707126 1 KRT8 ENSG00000170421 | 0.28314666666666 | cardiomyopathy 10 keratin 8
7
-1.1936855 9.04165915163721 1/ DLK1 ENSG00000185559 | 0.29413622943436 | heart disease 19 delta like non-
6 canonical Notch
ligand 1
-1.2158594 8.62205181945638 1/ PDPN ENSG00000162493 | 0.29550122380952 | Familial dilated 146 podoplanin
4 cardiomyopathy
-1.9087296 9.2667865406949 1/ KCNIP2 ENSG00000120049 | 0.50019161548454 | heart disease 106 potassium voltage-
8 gated channel
interacting protein 2
-1.0804825 9.32192809488736 1 C5AR1 ENSG00000197405 | 0.75 anti-neutrophil 66 complement C5a
antibody receptor 1
associated
vasculitis
-0.845314 8.72109918870719 1/ FOSL2 ENSG00000075426 | 0.81066093991792 | cardiovascular 29 FOS like 2, AP-1
4 disease transcription factor
subunit
-2.168395 8.72109918870719 1| ANKRD2 ENSG00000165887 31 ankyrin repeat
domain 2
-0.6821213 9.04439411935845 1 KLC2 ENSG00000174996 0 kinesin light chain 2
-0.72124004 9.10328780841202 1/ SRM ENSG00000116649 413 spermidine
synthase
0.7420349 10.5774288280357 2| BMP4 ENSG00000125378 | 0.34218392413094 | cardiovascular 626 | 0.050781 bone
disease morphogenetic
protein 4
1.3373194 10.5077946401987 2| ACTA2 ENSG00000107796 1| vascular disease 649 | 0.057922 actin alpha 2,
smooth muscle
0.7945099 10.2691266791494 2 | MAPK10 ENSG00000109339 | 0.05970552171293 | cardiovascular 13 0.063156 mitogen-activated
disease protein kinase 10
0.8908138 10.6741922681457 2 | NTRK2 ENSG00000148053 | 0.25227849092384 | cardiovascular 60 | 0.114019 neurotrophic
3 disease receptor tyrosine

kinase 2



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
0.99096696947985 | 10.1305705628054 2 | ACE ENSG00000159640 1/ cardiovascular 21262 | 0.497336 angiotensin |
1 disease converting enzyme
1.4016085 9.9901039638575 2 | SLC6A1 ENSG00000157103 | 0.03689049391798 | arterial disorder 10 1.02476 solute carrier family
6 member 1
0.75250566232200 | 10.5877775163282 2| CD34 ENSG00000174059 1/ heart rate 5335 CD34 molecule
8
1.7582741 9.85642552862553 2 | HSPA2 ENSG00000126803 | 0.0088 hypertrophic 12 heat shock protein
cardiomyopathy family A (Hsp70)
member 2
0.9782324 10.0389189892923 2 | MYH10 ENSG00000133026 | 0.32816138639532 | dilated 28 myosin heavy chain
cardiomyopathy 10
-1.4075699 8.21431912080077 3 | PCDH7 ENSG00000169851 | 0.00070484901650 | retinal vascular 8 0.049753 protocadherin 7
8335 disease
-1.1952381 7.61470984411521 3| SLCO4A1 ENSG00000101187 3 0.058586 solute carrier
organic anion
transporter family
member 4A1
-0.945035 7.49185309632967 3 | PHTF2 ENSG00000006576 0 0.061346 putative
homeodomain
transcription factor
2
-0.66311646 8.18487534290828 3 TNIK ENSG00000154310 | 0.88342785835266 | arterial stiffness 4 0.116986 TRAF2 and NCK
1 measurement interacting kinase
-0.62101555 7.93663793900257 3| COBL ENSG00000106078 4 0.166725 cordon-bleu WH2
repeat protein
-1.0635727 7.876516946565 3 RDH10 ENSG00000121039 | 0.26294097222222 | Conotruncal heart 3 0.522865 retinol
2 malformations dehydrogenase 10
-0.6300564 7.36632221424582 3| METTL22 ENSG00000067365 0 0.683452 methyltransferase
like 22
-1.5639668 8.17492568250068 3 ELL2 ENSG00000118985 | 0.006 Cognitive 1 1.42467 elongation factor
impairment-coarse for ANA
facies-heart polymerase Il 2
defects-obesity-
pulmonary
involvement-short
stature-skeletal
dysplasia syndrome
-1.4786786891813 | 7.82017896241519 3 | ABRA ENSG00000174429 | 0.00477660653187 | ischemic 40 actin binding Rho
5 586 cardiomyopathy activating protein
-1.5306215 8.37503943134693 3 | MGST1 ENSG00000008394 | 0.0136 congenital heart 8 microsomal
disease glutathione S-
transferase 1
-1.2137728 7.48381577726426 3 MT1A ENSG00000205362 | 0.0346 cardiovascular 15 metallothionein 1A
disease
-1.1985159 7.6724253419715 3| PXYLP1 ENSG00000155893 | 0.10342387855052 | heart rate 0 2-phosphoxylose
9 phosphatase 1
-0.9634384018017 | 8.29462074889163 3 | LYVE1 ENSG00000133800 | 0.19355751574039 | arterial stiffness 105 lymphatic vessel
2 5 measurement endothelial
hyaluronan receptor
1
-0.82270336 8.45532722030456 3/ cotLt ENSG00000103187 | 0.1948 Autosomal 2 coactosin like F-
dominant actin binding
progressive protein 1
nephropathy with
hypertension
-0.9445839 7.78790255939143 3 | JPH1 ENSG00000104369 | 0.47252985835075 | pericarditis 4 junctophilin 1
4
-1.0970469 7.94251450533924 3 | CENPV ENSG00000166582 1 centromere protein
v
-0.9231758 7.33091687811462 3| CSRNP1 ENSG00000144655 4 cysteine and serine
rich nuclear protein
1
-1.3482113 8.09275714091985 3| RAB15 ENSG00000139998 4 RAB15, member
RAS oncogene
family
-0.8705368 8.43462822763673 3 |SLA ENSG00000155926 164 Src like adaptor
-1.1591511 7.97154355395077 3 | SLC7A2 ENSG00000003989 20 solute carrier family
7 member 2
-0.7479849 7.89481776330794 3 | SRPX ENSG00000101955 5 sushi repeat
containing protein
X-linked
2.50118031365848 | 7.54689445988764 4| DSC1 ENSG00000134765 | 0.19942447524312 | dilated 9/0.051188 desmocollin 1
1 cardiomyopathy
3.59476301520953 | 8.78135971352466 4 | NPPA ENSG00000175206 1| cardiovascular 437 | 0.170989 natriuretic peptide
disease A
2.472353 8.67948009950545 4| NEB ENSG00000183091 | 0.30221543416152 | cardiomyopathy 219  0.681983 nebulin
5
2.497488 8.98299357469431 4| FRZB ENSG00000162998 | 0.05697310994867 | dilated 15 frizzled related
9 cardiomyopathy protein
2.759101 8.63299519714296 4 | SFRP4 ENSG00000106483 | 0.06436420291233 | cardiovascular 40 secreted frizzled
disease related protein 4
1.9342127 6.98868468677217 4 | KLHL38 ENSG00000175946 0 kelch like family
member 38
-1.3976002 10.4051414631363 5 TFRC ENSG00000072274 | 0.31493474827473 | cardiovascular 51 0.048463 transferrin receptor
8 disease
-0.67367744 10.7960396088298 5| TLR2 ENSG00000137462 | 0.33833897115914 | cardiovascular 961 | 0.065383 toll like receptor 2
8 disease
-0.6312599 9.66711154207503 5| PHB ENSG00000167085 | 0.0404 pulmonary arterial 122 0.067672 prohibitin
hypertension
-1.4020166 10.6211361132746 5| CDKN1A ENSG00000124762 1| cardiovascular 547 | 0.139652 cyclin dependent
disease kinase inhibitor 1A
-1.4020166 10.6211361132746 5 | CDKN1A ENSG00000124762 1/ cardiovascular 547 | 0.139652 cyclin dependent
disease kinase inhibitor 1A
-0.9807377 9.77313920671969 5 TUBB4B ENSG00000188229 1/ heart disease 3 2.58984 tubulin beta 4B

class IVb



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication

-1.2778980074388 | 11.5211096436513 5/ 1L6 ENSG00000136244 1/ cardiovascular 2787 interleukin 6

9 disease

-0.78205204 9.7176764230664 5 | FASN ENSG00000169710 | 0.05188481355282 | cardiovascular 430 fatty acid synthase

disease

-0.71807957 10.1623913287569 5| GLUL ENSG00000135821 | 0.05816622502855 | cardiovascular 20 glutamate-

disease ammonia ligase

-0.7444143 10.0647427647503 5 AIF1 ENSG00000204472 | 0. 1753 llar 270 allograft

5 disease inflammatory factor
1

-0.8504858 9.65999589242998 5 EIF3I ENSG00000084623 1 eukaryotic
translation initiation
factor 3 subunit |

-0.6790819 9.65642486327778 5 TUBG1 ENSG00000131462 1 tubulin gamma 1

0.71650280738393 | 7.13955135239879 6 MTURN ENSG00000180354 | 0.01680749072977 | dilated 0 0.048052 maturin, neural

9 cardiomyopathy progenitor
differentiation
regulator homolog

0.71768475 7.09803208296053 6| CPXM2 ENSG00000121898 | 0.0124 cardiotoxicity 20.048572 carboxypeptidase
X, M14 family
member 2

0.66207695 7.4093909361377 6 | SH3TC2 ENSG00000169247 | 0.88820654153823 | hypertension 3 0.069967 SH3 domain and

9 tetratricopeptide
repeats 2

1.2451935 7.4178525148859 6 PAMR1 ENSG00000149090 8 0.186925 peptidase domain
containing
associated with
muscle
regeneration 1

0.8537178 6.88264304936184 6 CCDC113 ENSG00000103021 00.497276 coiled-coil domain
containing 113

0.9098177 7.27612440527424 6| CCDC3 ENSG00000151468 2/0.528913 coiled-coil domain
containing 3

0.81960773 7.10852445677817 6 | THSD7A ENSG00000005108 | 0.03583888888888 | hypertension 17 0.531226 thrombospondin
type 1 domain
containing 7A

1.223135 7.07681559705083 6 | CFAP61 ENSG00000089101 1/0.637975 cilia and flagella
associated protein
61

0.9419317 6.76818432477693 6 | FAM13C ENSG00000148541 0 0.669442 family with
sequence similarity
13 member C

0.702137 7.4262647547021 6 | TANGO2 ENSG00000183597 1/ cardiovascular 10 0.670464 transport and golgi

disease organization 2
homolog

0.73056316 6.90689059560852 6| JCAD ENSG00000165757 1 cardiovascular 35 junctional cadherin

disease 5 associated

1.34472127978344 | 6.2667865406949 6 | TMEM140 ENSG00000146859 | 0.00534632110033 | ischemic 0 transmembrane

cardiomyopathy protein 140

0.8866329 6.5077946401987 6 | C1QTNF7 ENSG00000163145 | 0.0076 coronary artery 0 C1q and TNF

disease related 7
1.3952188 6.85798099512757 6 | SLC44A5 ENSG00000137968 | 0.00936438763471 | cardiovascular 1 solute carrier family
disease 44 member 5

1.0713959 7.05528243550119 6 | CRISPLD1 ENSG00000121005 | 0.0252 heart failure 2 cysteine rich
secretory protein
LCCL domain
containing 1

0.736742 6.55458885167764 6 | ZNF704 ENSG00000164684 | 0.12039463967084 | arterial stiffness 2 zinc finger protein

9 measurement 704

0.8174572 6.6724253419715 6 | APBB3 ENSG00000113108 1 amyloid beta
precursor protein
binding family B
member 3

1.1442862 7.08746284125034 6 ART4 ENSG00000111339 4 ADP-
ribosyltransferase 4
(Dombrock blood
group)

0.8407326 7.33091687811462 6 | BCL6B ENSG00000161940 4 BCL6B
transcription
repressor

0.6358671 6.61470984411521 6 BTN3A1 ENSG00000026950 0 butyrophilin
subfamily 3
member A1

0.66088676 6.22881869049588 6| CCDC171 ENSG00000164989 0 coiled-coil domain
containing 171

0.95116615 7.23840473932508 6 | CDR1 ENSG00000184258 15 cerebellar
degeneration
related protein 1

0.7051039 6.52356195605701 6 | CEP126 ENSG00000110318 0 centrosomal protein
126

1.0097842 7.09803208296053 6 | KRTAP21-1 ENSG00000187005 0 keratin associated
protein 21-1

1.0780964 6.18982455888002 6 NRK ENSG00000123572 114 Nik related kinase

0.79331493 7.06608919045777 6 | PCDH12 ENSG00000113555 5 protocadherin 12

1.0529556 6.79441586635011 6 | PIK3IP1 ENSG00000100100 4 phosphoinositide-3
-kinase interacting
protein 1

0.7104025 7.04439411935845 6 | RANBP3L ENSG00000164188 2 RAN binding
protein 3 like

1.1970367 7.33985000288462 6 | SESN3 ENSG00000149212 10 sestrin 3

1.2122259 7.04439411935845 6 | SULT1C4 ENSG00000198075 0 sulfotransferase
family 1C member
4

0.87745094 7.4594316186373 6 | YPEL1 ENSG00000100027 1 yippee like 1

1.6721287 8.99717948093762 7 FMOD ENSG00000122176 | 0.048 heart failure 20 0.047068 fibromodulin



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GW/ Description
Score number overall score - OT  association - OT number for a gene
in the context of
any for cardiovascular
cardiovascular indication
indication
1.15573458676483 | 8.24317398347295 7 | FNDC1 ENSG00000164694 | 0.00365269911261 | ischemic 50.078697 fibronectin type Il
cardiomyopathy domain containing
1
1.3211765 8.29920801838728 7 DPT ENSG00000143196 | 0.35748687386512 | arterial stiffness 345 0.0808 dermatopontin
8 measurement
1.7052364 8.14974711950468 7| COL14A1 ENSG00000187955 | 0.41214135289192 | heart rate response 12 0.083512 collagen type XIV
2 to exercise alpha 1 chain
1.8713417 8.10852445677817 7 NPR 3,00 ENSG00000113389 1| cardiovascular 58 0.101712 natriuretic peptide
disease receptor 3
1.5688696 7.92481250360578 7 | SVEP1 ENSG00000165124 1| cardiovascular 13 0.112483 sushi, von
disease Willebrand factor
type A, EGF and
pentraxin domain
containing 1
1.30003064704471 | 8.15987133677839 7 | SMOC2 ENSG00000112562 | 0.01822979749962 | vascular disease 13 0.147347 SPARC related
83 modular calcium
binding 2
1.33498466496198 | 8.34429590791582 7 |LTBP2 ENSG00000119681 | 0.19906355555555 | heart disease 26 0.184024 latent transforming
6 growth factor beta
binding protein 2
1.5091677 8.45532722030456 7 | KCNJ3 ENSG00000162989 | 0.2723875 cardiac arrhythmia 36 0.57039 potassium inwardly
rectifying channel
subfamily J
member 3
1.4191274692 8.62935662007961 7 | PDE5A ENSG00000138735 1/ cardiovascular 380 | 0.917442 phosphodiesterase
disease 5A
1.3353043 7.99435343685886 7 HTR4 ENSG00000164270 1| acute myocardial 11 1.09022 5-
infarction hydroxytryptamine
receptor 4
1.98462521436403 | 8.3037807481771 7 | PRELP ENSG00000188783 | 0.0256 heart failure 7 proline and arginine
rich end leucine
rich repeat protein
1.5719681 7.76818432477693 7 | FAXDC2 ENSG00000170271 | 0.11292352341115 | electrocardiography 0 fatty acid
5 hydroxylase domain
containing 2
1.22277252337422 | 8.4757334309664 7 | SLC40A1 ENSG00000138449 | 0.2 coronary artery 18 solute carrier family
disease, autosomal 40 member 1
dominant 2
1.6482477 8.56985560833095 7 |P2RY14 ENSG00000174944 | 0.29213693333333 | heart disease 4 purinergic receptor
3 P2Y14
2.0397625 8.59991284218713 7 | ENPP2 ENSG00000136960 | 0.32104693638164 | cardiovascular 18 ectonucleotide
disease pyrophosphatase/
phosphodiesterase
2
1.7696838 8.10852445677817 7 |IGSF10 ENSG00000152580 1 immunoglobulin
superfamily
member 10
-0.8760967 5.58496250072116 8 LBH ENSG00000213626 | 0.01834575426283 | cerebrovascular 72 LBH regulator of
disorder WNT signaling
pathway
-1.5134276201999 | 6.89481776330794 8 | FCN3 ENSG00000142748 | 0.0623 heart failure " ficolin 3
5
-0.6520672 6.49185309632967 8 | C19orf47 ENSG00000160392 | 0.10749028623104 | resting heart rate 0 chromosome 19
1 open reading frame
47
-1.0985508 4.8073549220576 8 | CDRT15 ENSG00000223510 0 CMT1A duplicated
region transcript 15
-0.79782104 6.89481776330794 8 | JAGN1 ENSG00000171135 2 jagunal homolog 1
-1.3613062 7.12928301694497 8 | MEDAG ENSG00000102802 0 mesenteric
estrogen
dependent
adipogenesis
-1.238616 6.84549005094437 8 RTL9 ENSG00000243978 0 retrotransposon
Gag like 9
0.8970251 8.62570884306447 9 TIE1 ENSG00000066056 | 0.26124611111111 | hypertrophic 120  0.049117 tyrosine kinase with
1 cardiomyopathy immunoglobulin like
and EGF like
domains 1
1.0541258 8.48784003382305 9 | ANO1 ENSG00000131620 | 0.44306275248527 | aortic root size 91 0.053002 anoctamin 1
5
1.178196 8.76818432477693 9| CPE ENSG00000109472 | 0.2 coronary artery 280 | 0.056875 carboxypeptidase E
disease, autosomal
dominant 2
0.8587904 8.74483383749955 9 | SEMABA ENSG00000092421 | 0.11948752698898 | Anti-neutrophil 14 0.059624 semaphorin 6A
3 cytoplasmic
antibody-
associated
vasculitis
1.0189104 9.39660478118186 9 | PRDM1 ENSG00000057657 | 0.2 Genetic cardiac 32 0.061484 PR/SET domain 1
anomaly
0.96929158248 9.47167521439204 9| MME ENSG00000196549 1/ cardiovascular 84 0.100575 membrane
disease metalloendopeptida
se
0.8499718 8.88874324889826 9 | SMAD9 ENSG00000120693 1| vascular disease 34 0.108775 SMAD family
member 9
0.77372265 8.74483383749955 9| CENPC ENSG00000145241 | 0.02327953671565 | cardiomyopathy 0 0.112658 centromere protein
7 [
1.0676622 8.59991284218713 9| HMCN1 ENSG00000143341 | 0.201 dilated 40.153732 hemicentin 1
cardiomyopathy
0.81258965 8.61838550225861 9| LTBP1 ENSG00000049323 | 0.31710620789300 | Genetic cardiac 35 0.179172 latent transforming
6 anomaly growth factor beta
binding protein 1
0.79587173 8.90989308377004 9 | ARHGEF28 ENSG00000214944 | 0.03598713995968 | vascular disease 00.230931 Rho guanine
76 nucleotide
exchange factor 28
0.74583626 9.05528243550119 9| LDB2 ENSG00000169744 14 0.235095

LIM domain binding
2



Log2 Fold Change Scaled interactor  Cluster labels Gene symbol Ensembl Association Disease PubMed Report GWAS Description
Score number overall score - OT  association - OT number for a gene standardised
in the context of association score
any for cardiovascular
cardiovascular indication
indication
1.1536655 8.75822321472672 9 | PLCE1 ENSG00000138193 1/ cardiovascular 17 0.242876 phospholipase C
disease epsilon 1
0.71289444 9.04712391211403 9 PCSK5 ENSG00000099139 | 0.33408480711221 | cardiovascular 15 0.279217 proprotein
5 disease convertase
subtilisin/kexin type
5
0.9334259 9.43879185257826 9 | NRG1 ENSG00000157168 | 0.83886823701539 | cardiovascular 202 | 0.302508 neuregulin 1
8 disease
0.9914799 8.59991284218713 9 | KCNN3 ENSG00000143603 1| cardiovascular 95 0.324822 potassium calcium-
disease activated channel
subfamily N
member 3
0.61952114 9.38801728534514 9 |HLA-B ENSG00000234745 | 0.93699167773614 | cardiovascular 567 | 0.336932 major
8 disease histocompatibility
complex, class I, B
0.85855675 8.94251450533924 9 | BMP6 ENSG00000153162 | 0.018 congenital heart 72 0.510348 bone
disease morphogenetic
protein 6
0.8962126 8.58871463558226 9 | PREX2 ENSG00000046889 1| Cerebral 20.580283 phosphatidylinositol
arteriovenous -3,4,5-
malformation trisphosphate
dependent Rac
exchange factor 2
1.1325579 8.58871463558226 9 | ITGA8 ENSG00000077943 | 0.2 Congenital 11 0.660239 integrin subunit
vertebral-cardiac- alpha 8
renal anomalies
syndrome
0.69878006 9.24792751344359 9 MYO10 ENSG00000145555 | 0.1948 Autosomal 7 0.670943 myosin X
dominant
progressive
nephropathy with
hypertension
0.67784977 8.91288933622996 9 | MECOM ENSG00000085276 1/ cardiovascular 23 0.77375 MDS1 and EVI1
disease complex locus
1.0650034 8.88569637333939 9 SGIP1 ENSG00000118473 | 0.99123363196849 | heart rate 2 1.04846 SH3GL interacting
8 endocytic adaptor 1
0.90437603 9.55074678538324 9 | SLIT3 ENSG00000184347 | 0.29800086099773 | Familial dilated 28 1.18762 slit guidance ligand
2 cardiomyopathy 3
1.0028601 8.38801728534514 9 | SPOCK1 ENSG00000152377 | 0.02352 gastric non-cardia 51.24289 SPARC
carcinoma (osteonectin), cwev
and kazal like
domains
proteoglycan 1
0.7893839 9.14974711950468 9 ENTPD1 ENSG00000138185 | 0.33920916817299 | cardiovascular 32 1.61717 ectonucleoside
7 disease triphosphate
diphosphohydrolas
el
0.83325577 9.14974711950468 9| TIMP2 ENSG00000035862 | 0.10286148848058 | cardiovascular 294 1.87707 TIMP
8 disease metallopeptidase
inhibitor 2
0.6729946 9.00281501560705 9 |FzD4 ENSG00000174804 1| retinal vascular 57 frizzled class
disease receptor 4
0.8965254 9.20945336562895 9 | KCNA5 ENSG00000130037 1| cardiac arrhythmia 235 potassium voltage-
gated channel
subfamily A
member 5
0.7015095 9.40087943628218 9 | VEGFC ENSG00000150630 1| cardiovascular 490 vascular endothelial
disease growth factor C
0.7166195 9.52552080909507 9 | CCNG2 ENSG00000138764 | 0.00753244040668 | dilated 3 cyclin G2
435 cardiomyopathy
0.85201322664913 | 9.06608919045777 9 NAP1L3 ENSG00000186310 | 0.00912202178593 | dilated 1 nucleosome
2 987 cardiomyopathy assembly protein 1
like 3
1.14453691610264 | 8.53915881110803 9 LMO3 ENSG00000048540 | 0.0104 hypertension 4 LIM domain only 3
1.00368299364409 | 8.70390357344466 9| FZD7 ENSG00000155760 | 0.01280774321349 | ischemic 14 frizzled class
cardiomyopathy receptor 7
1.03604149258193 | 8.60362634498619 9 | TM7SF2 ENSG00000149809 | 0.04442673809523 | cardiovascular 3 transmembrane 7
81 disease superfamily
member 2
1.0330381 9.09539702279256 9 | IGFBPS ENSG00000115461 | 0.04847570372736 | vascular disease 29 insulin like growth
factor binding
protein 5
1.1550779 8.90989308377004 9 | P2RY13 ENSG00000181631 | 0.06144633333333 | cardiovascular 12 purinergic receptor
33 disease P2Y13
0.6970482 9.05799172275918 9 | ARHGAP1 ENSG00000175220 | 0.2 Familial avascular 5 Rho GTPase
necrosis of femoral activating protein 1
head
0.76843166 9.41362792902417 9 | EFNB2 ENSG00000125266 | 0.34091348206392 | cardiovascular 63 ephrin B2
7 disease
0.8135996 9.55074678538324 9 | TCF4 ENSG00000196628 | 0.49844723939895 | heart rate response 131 transcription factor
6 to exercise 4
0.7375641 8.58496250072116 9 | TPS3INP1 ENSG00000164938 | 0.55979144946163 | cardiovascular 10 tumor protein p53
2 disease inducible nuclear
protein
0.6842003 8.9915218460757 9 HEY1 ENSG00000164683 15 hes related family

bHLH transcription
factor with YRPW
motif 1
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Fi-score Size
Min. : -8.34531 Min. : 7.00
1st Qu.: -0.13197 1st Qu.: 9.00
Median : 0.08122 Median : 13.00
Mean :-0.06514 Mean : 15.11
3rd Qu.: 0.21607 3rd Qu.: 19.00
Max. : 7.71151 Max. : 1497.00

Secondary structure
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Supplementary Figure 1. 3352 protein test set (total 50,043 secondary structure elements, Suppl.
Table 1) was scored based on the Fi-score capturing a-helices and [B-sheets as well as rarer
structural elements. Summary table for the dot plot shows the main distribution parameters for the
investigated Fi-scores and structure sizes. Graph and summary table were created with with R/
RStudio.
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Supplementary Figure 2. Representative examples of Ramachandran plots for representative
proteins PDB ID: 6D6U(A chain), SCFZ (A chain), 4G5Z (L chain), 2QF6 (chain B). Graphs
created with with R/RStudio.

Supplementary Figure 3. Representative examples of normalised B-factor value distribution (from
0 to 1) for proteins PDB ID: ITWM (chain A), 4G5Z (H chain),6D6U (A chain), SCFZ (A chain),
where shaded blue region represents analysed regions (Table 1). Graphs created with with R/
RStudio.
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Supplementary Figure 4. Representative examples of torsion angle and B-factor value distribution
for human GABA-A receptor, subunit beta-2 (PDB ID: 6D6U, chain A) and human glycine receptor
alpha-3 (PDB ID: 5CFB, chain A) where a colour scale represents B-factor value without
normalisation. Graphs created with with R/RStudio.
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6RZ3_A 278-290 aa

6RZ3_A 278-290 aa

Supplementary Figure 5. Region of a single outer a-helix of cellular tumour antigen p53 (PDB
ID: 6RZ3, chain A) (top panel) and a contact site between the outer a-helix of cellular tumour
antigen pS3 (PDB ID: 6RZ3, chain A) and the carboxyl-terminal conserved region of inhibitor of
apoptosis-stimulating protein of p53 (iIASPP) (PDB ID: 6RZ3, chain B) where yellow dotted lines
represent interchain polar contacts (bottom panel). 3D molecule images rendered with PyMol.
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Supplementary Figure 6. Catalytic antibody 21H3 with hapten (PDB ID: 1UM4, chain H and L)
where N-terminal heavy and light chain contact site are shown in a close-up with polar contacts
depicted in a dashed yellow line. 3D molecule images rendered with PyMol.
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Supplementary Table 1. PSI-BLAST alignment results.

2GPU, estrogen-related Homo sapiens 83.2 83.2 85% 2E-18 30.73% 458 NP_001429.2
6KNR receptor gamma

isoform 1 [Homo

sapiens]
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Supplementary Table 2. Student T-test (two-sided, unpaired) results.

Nur77 Estrogen-related receptor .0 49413 0.6279

gamma
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Supplementary Figure 1. Nur77 ligand binding domain PSI-BLAST alignment with the retinoic acid receptor alpha.

retinoic acid receptor alpha isoform 1 [Homo sapiens]
Sequence ID: NP_000955.1 Length: 462 Number of Matches: 1

Range 1: 227 to 417 GenPept Graphics

Score Expect Method Identities Positives Gaps
96.7 bits(239) 4e-23 Compositional matrix adjust. 63/193(33%) 105/193(54%) 4/193(2%)

Query 46 OFYDLLSGSLEVIRKWAEKIPGFAELSPADODLLLESAFLELFILRLAYRSKPGEGKLIF 105
) +F +L + + ++A+++PGF L+ ADQ LL++A L++ ILR+
Sbjct 227 KFSELSTKCIIKTVEFAKQLPGFTTLTIADQITLLKAACLDILILRICTRYTPEQDTMTF 286

Query 106 CSGLVLHRLQCAR-GFGDWIDSILAFSRSLHSLLVDVPAFACLSALVLIT-DRHGLQEPR 163
) GL L+R Q GFG D+ AF+ L L +D LSA+ LI DR L++P
Sbjct 287 SDGLTLNRTQMHNAGFGPLTDLVFAFANQLLPLEMDDAETGLLSAICLICGDRQDLEQPD 346
Query 164 RVEELQNRIASCLKEHVAAVAGEPQPASCLSRLLGKLPELRTLCTQGLQRIFYLKLEDLV 223
RV+ LQ + LK +V P ++L K+ +LR++ +G +R+ LK+E
Sbjct 347 RVDMLQEPLLEALKVYVR--KRRPSRPHMFPKMLMKITDLRSISAKGAERVITLKMEIPG 404
Query 224 PPPPIIDKIFMDT 236

) PP+I ++ ++
Sbjct 465 SMPPLIQEMLENS 417



Supplementary Figure 2. Nur77 ligand binding domain PSI-BLAST alignment with the estrogen-related receptor gamma.

estrogen-related receptor gamma isoform 1 [Homo sapiens]
Sequence ID: NP_001429.2 Length: 458 Number of Matches: 1

Range 1: 255 to 452 GenPept Graphics

Score Expect Method Identities Positives Gaps
83.2 hits(204) 2e-18 Compositional matrix adjust. 63/205(31%) 105/205(51%) 10/205(4%)

Query 34 PHFGKEDAGDVOQFYDLLSGSLEVIRKWAEKIPGFAELSPADODLLLESAFLELFILRLA 93
P D DL L VI WA+ IPGF+ LS ADQ LL+SA++E+ IL +
Shjct 255 PTVPDSDIKALTTLCDLADRELVVIIGWAKHIPGFSTLSLADOMSLLQSAWMEILILGVV 314

Query 94  YRSKPGEGKLIFCSGLVLHRLQCA-RGFGDWIDSILAFSRSLHSLLVDVPAFACLSALVL 152
YRS E +L++ ++ Q G D ++IL + S+ ++ L A+ L
Sbjct 315 YRSLSFEDELVYADDYIMDEDQSKLAGLLDLNNAILQLVKKYKSMKLEKEEFVTLKAIAL 374

Query 153 I-TDRHGLQEPRRVEELQNRIASCLKEHVAAVAGE-PQPASCLSRLLGKLPELRTLCTQG 210
+D  4+++  V++LQ+ + L+++ A E P+ A ++L LP LR T+
Sbjct 375 ANSDSMHIEDVEAVQKLQDVLHEALQDYEAGQHMEDPRRA- - -GKMLMTLPLLRQTSTKA 431

Query 211 LQRIFYLKLEDLVPPPPIIDKIFMD 235
+Q + +KLE VP + K+F++
Sbjct 432 VQHFYNIKLEGKVP----MHKLFLE 452



Supplementary Figure 3. Hydrophobicity plots.

1FBY - retinoic acid receptor alpha 6KNR - estrogen-related receptor gamma
Kyte-Doolittle hydrophobicity plot Kyte-Doolittle hydrophobicity plot
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Supplementary Figure 1. T-Coffee sequence alignment for REL proteins using default settings where
the higher identity percentage is represented with a more intense blue colour; additional parameters,
such as the alignment quality score, conservation score, occupancy and consensus sequence are also
provided with the alignment.
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Supplementary Figure 2. c-Rel protein (PDB ID: 1GJI) dimer and monomer visualization (A&B)
where red-blue spectrum represents Coulombic electrostatic potential ranging from negative to
positive, respectively. The monomer coloring ranges from dark cyan for the most hydrophilic
region through white to dark golden for the most hydrophobic site (C). Protein sequence panel (D)
shows helix regions in yellow, beta-strands in blue and selected dimer lock region in green which
is also contoured around contact sites (B&C).

7PYIEIFEQPRQRGMRFRYKCEGRSAGSIPG
37 EHSTDNNKTFPSIQILNYFGKVKIRTTLVT
67 KNEPYKPHPHDLVGKDCRDGYYEAEFGPER
97 RVLSFQNLGIQCVKKKDLKESISLRISKKI
127 NPFNVPEEQLHNIDEYDLNVVRLCFQAFLP
157 DEHGNYTLALPPLISNPIYDNRAPNTAELR

187 TCRVNKNCGSVKGGDIEIFILCDKVQKDDIE

217 VRFVLDNWEAKIGSFSQADVHRQVAIVFRTP
247 PFLRDITEPITVKMQLRRPSDQEVSEPMDF

277 RYLPD
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Supplementary Figure 3. c-Rel protein (PDB ID: 1GJI) atomic movement
fluctuations per residue (A) and snapshots of the highest frequency (0.004)
movements (B) based on the normal mode analysis (NMA); atomic
movement similarity matrix (AMSM) provides a specific domain assignment
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Site 1 Site 2 Site 3

Supplementary Figure 4. Surface distribution for chicken c-Rel (PDB ID: 1GJI) of
selected three sites. Top panels represent contact surface of hydrogen-bond donor

(blue), hydrogen-bond acceptor (red), hydrophobic sites are coloured in yellow.
Bottom panels represent filled surface.
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Site 1 Site 2 Site 3

Supplementary Figure 5. Three binding sites for mouse p65 (PDB
ID: 5U01). Top panels represent the contact surface for hydrogen-
bond donor (blue), hydrogen-bond acceptor (red) and hydrophobic
sites are coloured in yellow. Bottom panels represent filled
surface.
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Human cRel

1GJI

Supplementary Figure 6. Poisson-Boltzmann (APBS) electrostatic surface
distribution for the chicken c-Rel (PDB ID: 1GJI) and human modelled c-Rel
protein. Scale for each distribution provided individually, arrows indicate
rotation direction; blue colour represents more electropositive, while red
more electronegative regions.
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Supplementary Figure 7. Poisson-Boltzmann (APBS) electrostatic surface distribution
for mouse p65 (PDB ID: 5U01). Scale for each distribution provided individually, with

blue colour representing more electropositive, while red more electronegative regions.



Supplementary Figure 8. AutoDock Vina
docked and scored compounds for each
binding site matching earlier screening sites
and compounds per each site.
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Supplementary Figure 9. GROMACS 1 ns length
simulation snapshots revealing the local
movement of residues around the binding site
(highlighted). Sequence elements are shown for
the specific regions.



Supplementary Table 1. REL family structures and sequence information

Protein name

p65/RelA

p50

p52

p50

c-Rel

p65/RelA

PDB ID

219T chain A

219T chain B
1A3Q chain A and
B

1SVC chain P

1GJI chain B

5U01, chain B

Resolution, A

2.80

2.80

2.10

2.60

2.85

2.50

Resolution, R

0.288

0.288

0.320

0.286

0.279

0.274

Species

Mus musculus

Mus musculus

Homo sapiens

Homo sapiens

Gallus gallus

Mus musculus

Sequence Ref,
UniProt

Q04207-1
(canonical)

P25799-1
(canonical)

Q00653-1
(canonical)

P19838-1
(canonical)

P16236-1
(canonical)

Q04207-1
(canonical)

Supplementary Table 2. SiteMap analysis for the mouse p65 (PDB:5U01) protein dividing the
protein into 5 regions.

Name | SiteScore size, A2 | Dscore X(;lume, exposure enclosure phobic philic

Site 1 0.886 674 1 360.493 0.783 0.373 0.119 0.504
Site 2 0.877 570 0.999 277.487 0.838 0.347 0.119 0.458
Site 3 0.895 304 1.023 178.017 0.832 0.359 0.164 0.406
Site 4 0.879 293 0.991 184.534 0.774 0.367 0.062 0.519
Site 5 0.882 289 0.999 161.896 0.797 0.362 0.107 0.484




Supplementary Table 3. Chicken c-Rel (PDB ID:1GlJI) site screening results showing the number of

compounds entering each round of the screening.

HTYVS screening mode SP screening mode XP screening mode
AG<-2 kJ/mol AG<-2 kJ/mol AG<-3 kJ/mol

Site 1

34M 338 11
Site 2

34 M 163 33
Site 3

34 M 1007 206
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10.5. Chemexpy documentation

The supplementary chapter is based on the published software package

Kanapeckaité A. Chemexpy: Cheminformatics package for compound feature evaluation. PyPi.
2021 Oct. 07. Version 1.0.10; https://pypi.org/project/chemexpy/

Conclusion of this chapter

My developed Chemexpy package provides a user-friendly and organised approach to explore
chemical libraries and identify key features. The information generated by the package functions
can be easily integrated into other pipelines or downstream processing. The package provides
exploratory plots as well as compound similarity assessment allowing to search for similar
compounds. Moreover, there are several additional functions helping to easily extract chemical
descriptors and evaluate chemical libraries.

Contribution to this chapter (100%)

* Developed new programmatic features to accompany the related publication and make
cheminformatics analyses more streamlined.

 Performed software package development and testing.
* Conceptualised and wrote the documentation files and vignettes, including the figure preparation.

* Corresponding author and maintainer.


https://pypi.org/project/chemexpy/

Documentation for the Chemexpy package

. data_prep

. molecule_check

. scatter_plot

. correlation_plot

. feature_plot

. hormality_check

. feature_check

. feature_violinplots

. similarity_search
10. similarity_dendogram
11. similarity_heatmap

O©Qoo~NOOOURWwWN =

rdkit, pandas, numpy, scipy, seaborn, matplotlib, collections

Chemexpy package provides a user-friendly and organised approach to explore chemical libraries
and identify key features. The information generated by the package functions can be easily
integrated into other pipelines or downstream processing. The package provides exploratory
plots as well as compound similarity assessment allowing to search for similar compounds.
Moreover, there are several additional functions helping to easily extract chemical descriptors and
evaluate chemical libraries.

Function call example: data_prep(data,*args)

#Function provides a snapshot of the input data as well as returns a processed data file
to include information on chemical descriptors, atomic composition, chemical structure
features.



#Input values: path to a csv file that contains compound ID 'CID' and smiles 'SMILES'
columns. These columns have to be named as described above.
Additional columns can be passed as arguments if, for example, the data file contains
other columns of interest.

#Output values: data frame with added chemical descriptors. The output could be
integrated into downstream analyses and databases or used to visualise the structures.

Function call example: molecule_check(data,*args)

#Function allows to visualise molecules of interest as well as returns a data frame that
contains information on the selected list of molecules. It is recommended not to select
more than 20 molecules at a time to draw the structures.

#Input values: data frame with "CID" (compound ID) and "SMILES" (smiles column).
Please note, the IDs for columns need to match the examples.

#Additional input: arguments for "CID", e.g., "2821293". If none is selected first 10
structures will be drawn. Names for compounds have to be in a string format.

#Output values: structure visualisation and a data frame that can be used for further
visualisations.

Function call example: scatter_plot(data,vari=None,var2=None)
#Function takes the data file provided by the data_prep function and plots analytical
scatter plots for selected variables.

#Input values: data frame generated by the data_prep function, as well as variables to
plot, e.g. "MW" and "TSPA".

#Output values: scatter plot.

—

TSPA
1]
8

300 350 400 450 500
Mw



Chemexpy documentation

4. Function correlation_plot

Function call example: correlation_plot(data,*args)

#Function takes the data file provided by the data_prep function and plots a correlation
heatmap.

#Input values: data frame generated by the data_prep function, as well as variables to
calculate correlation and plot selected values, e.g., "MW" and "TSPA".

If the user does not select args, the default values will be used:
"Atom_number","MW","TSPA","HBD_count","HBA_count","Rotatable_bond_count","MolL
ogP","Ring_number","AP".

#Output values: plot for correlation visualisation and a data frame with correlation

values.
100
0.29 034 XY
0.75

AP 0.065/ 046 0063 038 - 050
TSPA - 029 -0.065 ! -0.25
-0.00
046 045
Atom_number H a5
HBD _count - 034 0063 BN m - -0.50

-0.75
HBA_count m 038 | ikl LE 0.44
| --1.00

5. Function feature_plot

Function call example: feature_plot(data,*args)

#Function takes the data file provided by the data_prep function and plots analytical
scatter plots for multiple features.

#Input: data frame generated by the data_prep function, as well as variables for feature
ploting, e.g. "MW" and "TSPA".

#If the user does not select args, the default values will be used:
"Atom_number","MW","TSPA","HBD_count","HBA_count",
"Rotatable_bond_count","MolLogP","Ring_number","AP".
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#Output: scatter plot of multiple feature visualisation.
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Function call example: normality_check(data,var=None)

#Function takes the data file provided by the data_prep function and plots a histogram
with an estimated probability density function.

#Input: data frame generated by the data_prep function, as well as a single variable to
check the normality for, e.g., "MW" and "TSPA".

#Output: bar plot with an estimated normal distribution line plot based on distribution
probability.

Function call example: feature_check(data,vari=None, var2=None, type=None)

#Function takes the data file provided by the data_prep function and plots analytical
contour plots to assess chemical feature distribution when considering a specific chemical
entity category. That is, a categorical type data needs to be provided, such as active or
inactive, etc.

#Input: data frame generated by the data_prep function, two variables for distribution
check, e.g., "MW" and "TSPA", and a column name to select categorical data from.

#Output: contour plot with feature distribution.

Function call example: feature_violinplots(data,var1i=None,type=None)

#Function takes the data file provided by data_prep function and plots analytical violin
plots to assess the type distribution for selected fetaures.

#Note categorical type data needs to be provided, such as active or inactive, etc.

#Input: data frame generated by the data_prep function as well as a variable name for
the distribution check, e.g., "MW" and “TSPA"; also a column name is required to select
categorical data specified through the "type" designation.

#Output: contour plot with feature distribution.
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Function call example: similarity_search(data, target=None)

#Function takes the data file provided by the data_prep function and searches for similar
structures based on the target molecule.

#Fingerprinting is based on Morgan fingerprints and the similarity search is based on
Tanimoto similarity.

#Input: data frame generated by the data_prep function as well as a SMILE string (e.g.,
the "target" variable) for a molecule to search in the database.

#Output: data frame of similar structures.

Function call example: similarity_dendogram(data)

#Function takes the data file provided by the data_prep function and plots a dendogram
based on compound similarity.

#Fingerprinting is based on Morgan fingerprints and the similarity search is based on
Tanimoto similarity.

#Input: data frame generated by the data_prep function.

#Output: dendogram and a data frame with similarity values.

Function call example: similarity_heatmap(data)

#Function takes the data file provided by the data_prep function and plots a heatmap
based on compound similarity.

#Fingerprinting is based on Morgan fingerprints and the similarity search is based on
Tanimoto similarity.

#Input: data frame generated by the data_prep function.

#Output: heatmap and a data frame with similarity values.
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Running tests and example use cases.

The working directory should contain example data sets (provided with packages PATH="./
tests"). There are several datasets to choose from, namely data_1.csv and data_2.csv.

#initiative variables to data
data="./test/data_1.csv"

#prepare the data for subsequent use
#we are selecting an additional column to assess the activity based on a categorical value
data=data_prep(data, "Type")



#assess a selected set of molecules and retrieve a data frame that contains information about
these molecules

data_eval=molecule_check(data,"2821293")

#evaluate exploratory plots

scatter_plot(data,"MW","TSPA")
corr=correlation_plot(data,"MW","TSPA","AP","HBD_count","HBA_count")

#perform multiple feature assessment

feature_plot(data,"MW","TSPA","AP","HBD_count","HBA_count")

#check the normality of the data distribution
normality_check(data,"MW")

#since we have one categorical value we can perform a feature check
feature_check(data,var1="MW", var2="AP", type="Type")

#similarity assessment
target="COC(=0)c1c[nH]c2cc(OC(C)C)c(OC(C)C)cc2c1=0"
target_matches=similarity_search(data, target)

#similarity value generation for all pairwise comparisons

#dendogram ploting and a data frame preparation with similarity values
#both functions produce the same data frame

similarity_data=similarity_dendogram(data)

similarity_datasimilarity_heatmap(data)
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