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Highlights:

e Evidence of pre-Columbian Indigenous human activity is more robust
using a multi-disciplinary approach.

e Pre-Columbian Indigenous human activity in Amazonia is primarily
reconstructed through analysis of soils, lake sediments, ethnographic
studies, biological collections, and remote sensing data, and each brings a
unique perspective.

e Each line of evidence used to analyse pre-Columbian Indigenous human
activity has its own potential spatial and temporal resolution and spatial

and temporal limit.

Abstract

Humans have been modifying ecosystems since before the Holocene began ca.
12,000 years ago, even in Neotropical regions. The Amazon was once thought to
be ‘pristine’ and only lightly impacted by Indigenous people before European

colonisation in the Americas (e.g., pre-Columbian ); however, multiple lines of
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evidence have shown that Indigenous human activities over the past millennia
have left ecological legacies on modern ecosystems. We review the various lines
of evidence used to reconstruct pre-Columbian Indigenous human activity in
Amazonia, and assess the spatial and temporal resolution and limits of each one
of them. We suggest that a multi-proxy approach is always preferred, and that
lines of evidence that cover overlapping yet discrete spatial and temporal scales
can provide a robust and comprehensive assessment of the nuances of pre-
Columbian Indigenous human activities in Amazonia, and how they affect

modern ecosystems.

Keywords:
Archaeology, paleoecology, ethnography, human impacts, plant genetics,

biological collections, past human activity
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Main Text
1. Introduction

Humans are now considered the major driving force in many abiotic and
biotic processes on Earth, and it has been suggested that this has created a
distinct geological era called the Anthropocene (e.g., Crutzen, 2002; Di Marco and
Santini, 2015; Gallardo et al., 2015; Halpern et al., 2008; Lewis and Maslin, 2015;
Pachauri et al,, 2015; Vitousek et al., 1997). Humans contributed to the extinction
of Pleistocene megafauna across the Neotropics (Barnosky and Lindsey, 2010;
Rozas-Davila et al., 2021; Rozas-Davila et al.,, 2016), and have been modifying
landscapes in Neotropical ecosystems for at least the last 12,000 years (Ellis et
al,, 2021; Roosevelt, 2013). Forms of human activities, including plant cultivation
and domestication, have also occurred in Neotropical regions for at least 10,000
years (Lombardo et al., 2020; Piperno, 2011; Roberts et al., 2017). Many of these
activities, particularly those that have occurred over the last 2,000 years, likely
left persistent effects, or ecological legacies, on Neotropical ecosystems that are
still visible today (Furquim et al., 2023; Levis et al.,, 2017; McMichael, 2021;
McMichael et al., 2023; Ross, 2011).

Reconstructing human-environment interactions through time is
particularly important in the ca. 6 million km? of Amazonian rainforests, which
hold a large proportion of Earth’s biodiversity (Olson et al.,, 2001). The
suggestion that pre-Columbian Indigenous human influence played a large role
in shaping the biodiversity observed in today’s ecosystems has generated an
important debate (e.g. Balée, 2010; Clement et al., 2015; Levis et al., 2017;
Piperno et al., 2021; Piperno et al., 2019; Roosevelt, 2013). Most scholars from

various disciplines agree that the pre-Columbian Indigenous Peoples of
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Amazonia influenced its ecosystems to some degree, but the intensity, cultural
variability, spatial extensiveness, spatial variability, temporal duration and
continuity remain debated (Barlow et al., 2012; Bush et al,, 2015; Clement et al.,
2015; Heckenberger et al., 2008; Heckenberger et al., 2003; Levis et al., 2017;
Levis et al,, 2012; McMichael et al., 2012a; Piperno et al., 2015). Much of the
controversy results from the overall paucity of data in the region, differences in
the interpretation of the same datasets, and on the ecological heterogeneity of
this vast area. Even the largest ecological datasets within Amazonia reflect
mostly relatively easily accessible areas (McMichael et al., 2017). Addressing
aspects of this debate has important implications for how we conserve and
manage modern ecosystems, as well as for Indigenous sovereignity.

Ecologists, paleoecologists, archaeologists, anthropologists,
ethnographers, Indigenous peoples, and local communities can all provide
valuable information about the activities of pre-Columbian Indigenous people
and their influence on Amazonian vegetation and landscapes. These lines of
information, however, come from a variety of sources, are measured at different
spatial and temporal scales, and the capabilities of reconstructing pre-Columbian
human activities vary between them. Integrating different data and knowledge
sources, however, is vital for understanding multifaceted and complex problems,
and to achieve a more reliable and robust assessment of the influence of pre-
Columbian activities on Amazonian ecosystems (Mayle and Iriarte, 2014;
McClenachan et al., 2015; Tengo et al., 2014).

Alarge part of data interpretation is recognizing the advantages and
limitations of the various proxies, methods, and settings used to reconstruct pre-

Columbian Indigenous human activities and their effect on tropical systems.
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Here we review proxies (i.e., lines of evidence) and settings (i.e., depositional
environments or archival material) commonly used to assess pre-Columbian
human activities and influences on Amazonian ecosystems, with a specific focus
on the spatial and temporal resolution (the potential sampling frequency of the
archival material) and spatial and temporal limits (the total amount of space or
time potentially captured within the record). We also discuss the detectability
and variability of proxies used to assess pre-Columbian Indigenous human
activities and their influences on Amazonian ecosystems (Fig. 1). Our goal is to
provide a spatio-temporal framework for the various proxies used to assess
long-term Indigenous human activity in Amazonian ecosystems so that future
work can recognize the advantages and limitations of all of the proxies and

integrate them more comprehensively.

2. Soils as local-scale archives of pre-Columbian Indigenous human
activities and vegetation change

Soils contain a wealth of valuable information and proxies that can be
used to reconstruct pre-Columbian human activities and the influence of
Indigenous Peoples on the vegetation. Archaeological sites, artifacts,
macrofossils, and microfossils that directly document pre-Columbian human
activities are all found on, or in, tropical terrestrial soils (Figs. 1-2). Information
from archaeological surveys is beginning to be compiled into online databases,
including the AmazonArch (Amazonian Archaeological Sites Network), which
contains the geographical location and basic archaeological information for over
10,000 sites (Clement et al., 2015; Riris and Arroyo-Kalin, 2019; WinklerPrins

and Aldrich, 2010; https://sites.google.com/view/amazonarch). The variability
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and diversity of archaeological evidence includes sites containing artifacts such
as lithics, ceramics, rock paintings, or petroglyphs, earthworks, and
anthropogenic soils (called Amazonian Dark Earths, or ADE) (e.g., Neves et al,,
2021) (examples of ceramics and earthworks shown in Fig. 2). At some of these
sites, pre-Columbian people have modified soil texture, nutrient content, and
stable isotopes, leaving persistent legacies of soil properties for thousands of

years (Glaser and Birk, 2012; Glaser and Woods, 2004; Lehman et al.,, 2003).

Indicators of Past Change

human activity + environmental change human activity
plant distributions  pollen Indigenous ADE artefacts

plant genetics  phytoliths  knowledge earthworks starch grains
stable isotopes  charcoal

biomarkers spores
diatoms , _
elements Data —archaeological sites o
sources ~ Soils historical records
—lake sediments — biological collections

ethnographic records - satellite imagery

Fig. 1: The array of proxies that can be used to detect pre-Columbian Indigenous
human activity in Amazonia, and the source, or archival material from which
they are derived. The proxies are shown on a gradient from those which are used
specifically to assess human activities (far right) to those which are used to
assess both human and non-human processes (far left). ADE = Amazonian Dark

Earths.
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Fig. 2: Examples of directly documented evidence of human activity found in
Amazonian soils. The top panel shows an archaeological excavation, and the
middle panel shows ceramic artifacts that were uncovered during the excavation
(Photos: Bernardo Oliveira/Instituto Mamiraud). The bottom panel shows a
Google Earth image of earthworks that were uncovered in southwestern

Amazonia following deforestation of the landscape.
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Phytoliths are microscopic bodies of silica that are produced in the cells of
many plant species and often preserved in high quantities in soil archives where
pollen and macrofossils have largely decayed (Piperno, 2006) (example shown in
Fig. 3). Phytolith analysis is commonly performed on samples obtained at
archaeological sites, but also in soils that are not associated with archaeological
settings such as lake sediments and terrestrial soils (Fig. 1). Phytoliths often
reflect localized plant decay, particularly in terrestrial soils, as they do not have
intrinsic dispersal mechanisms that would carry them considerable distances
from the depositional environment as can be the case with pollen. Studies of
phytoliths in surface soils from tropical forests in Panama showed that phytolith
movement, via fire, or surface water transport, can be as little as 25-30 m from
their source area (Piperno, 1988) or up to 100-120 m from their source plant
(Piperno, pers. Comm.; Piperno and McMichael, manuscript in
preparation). Further, lakes with in-flowing streams may contain phytoliths from
considerable distances, and in fluvial forest soils from Brazil, phytolith
movement from areas a substantial distance upstream is indicated (Watling et
al,, 2016). Seasonally flooded savannas might be expected to be similar.

Phytoliths directly document different types of vegetation, such as
savanna, open forests with bamboo, evergreen, semi-evergreen, and deciduous
forest, and early successional growth typical of human disturbance. Phytoliths
also directly detect some major and now-minor crops and other economic plants,
(e.g., maize [Zea mays L], Cucurbita spp. [squashes and gourds], manioc [Manihot
esculenta Cranz], arrowroot [Maranta arundinacea L.], and various palm species)
(Carson et al.,, 2014; Dickau et al., 2013; Lombardo et al., 2020; McMichael et al.,

2012a; McMichael et al., 2012b; Piperno, 2006; Watling et al., 2016; Whitney et
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al,, 2013; Whitney et al.,, 2014). All palms, grasses, and sedges, and many
arboreal basal angiosperms and eudicotyledons, produce high phytolith
numbers diagnostic to at least the family, and not uncommonly, genus levels
(Huisman et al., 2018; Morcote-Rios et al., 2016; Morcote-Rios et al.,, 2015;
Piperno, 2006; Piperno and McMichael, 2023; Piperno et al., 2019; Witteveen et
al,, 2022). The high phytolith production of palms and grasses also means that
their absence in the record actually represents the absence of these taxa in the
vegetation (Piperno et al.,, 2015). Not all plants produce phytoliths, however, and
some taxa will remain undetectable in reconstructions (Piperno, 2006). This is
the case with some major economically important trees, e.g., Bertholletia excelsa

(Brazil nut), Annona spp. (soursop, cherimoya), guava (Psidium guajava L.).
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Fig. 3: Microfossils found in soils in Amazonia that can document human activity
and environmental changes. The top panel shows phytoliths from the tree
Licania micrantha Miq. (Chrysobalanceae), which are diagnostic to at least the
genus level (Piperno and McMichael, 2023) (Photo: Dolores Piperno). The
middle panel shows starch grains of Phaseolus vulgaris L. (beans) (Photo:
Dolores Piperno). The bottom panel shows charcoal isolated from Amazonian

soils (Photo: Crystal McMichael).
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Starch grains (example shown in Fig. 3) can identify certain cultivars,
such as maize (Zea mays L.), squashes (Cucurbita spp.), manioc (Manihot
esculenta Cranz), and other tuber crops (e.g., Pearsall et al., 2004; Piperno, 2006;
Piperno, 2011). Some crops that do not produce phytoliths, such as peanuts
(Arachis hypogaea L.) and chili peppers (Capsicum spp.), have diagnostic starch
grains (e.g., Dickau et al., 2007; Ezell et al., 2006; Piperno, 2006). Beans,
including Phaseolus species, and some palm trees that were used by pre-
Columbian Indigenous Peoples also produce identifiable starch grains (Watling
et al.,, 2018). The starch grains are usually isolated from ceramics or stone tools
found at archaeological sites (Fig. 1) (Iriarte et al., 2004; Pearsall et al., 2004;
Watling et al., 2018; Young et al., 2023). Macrobotanical remains, often
carbonized, are typically recovered from site sediments and along with the
starch grains and phytoliths, provide empirical evidence for the diets and
lifestyles of pre-contact Indigenous Peoples (e.g., Furquim et al,, 2021; Watling et
al,, 2018).

Macroscopic charcoal fragments (e.g., > 500um) found in soils, including
at archaeological sites, represent localized past fire events (e.g., Rhodes, 1998;
Whitlock and Larsen, 2002) (example shown in Fig. 3). In the aseasonal forests
with a limited dry season (for instance, those found in northwestern Amazonia),
forest fire almost always starts with human intervention (Fig. 1) (Bush et al,,
2008; Malhi et al., 2008). The presence of charcoal in these aseasonal forests
indicates human activity (Bush et al., 2008), but escaped wildfires in these areas
can also occur during extreme droughts (Flores et al., 2017). In drier areas, i.e.,
the seasonal forests that border savannas in eastern Amazonia, fires are less

dependent on human ignition, but are still more frequent when humans are
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present (Alencar et al., 2004; Maezumi et al., 2015; Maezumi et al., 2018b;
Nepstad et al., 2004; Power et al., 2016; Ramos-Neto and Pivello, 2000).
Paleoecological and archaeological data show that fire frequency across
Amazonia was more frequent in the late Holocene, when climate was wetter than
the early- to mid-Holocene (Arroyo-Kalin and Riris, 2021; McMichael and Bush,
2019; Nascimento et al., 2022), highlighting that the primary source of ignition
was human activity.

Charcoal retains diagnostic morphological features of the plant from
which it is derived, and can be used to identify types of plants, e.g., woody versus
non-woody taxa (Bodin et al., 2020; Di Pasquale et al., 2008; Orvis et al., 2005).
Charcoal morphology can sometimes provide taxonomic identification to the
family-level and sometimes genus or species level in tropical ecosystems, and
has been used to characterize land use and successional forests at archaeological
sites (Bachelet and Scheel-Ybert, 2017; Bodin et al., 2019; Cartwright, 2015;
Fernandes Caromano et al., 2013; Goulart et al., 2017; Iriarte et al., 2020; Scheel-
Ybert et al.,, 2014). The chemical properties (i.e., FTIR spectroscopy) of charcoal
fragments can also be used to infer burn temperature of the fire events, and can
also distinguish plant types (e.g. woody vs grassy material) that were burned
(Gosling et al,, 2019; Maezumi et al.,, 2021).

With soil surveys to reconstruct past fire events, replicate soil cores are
typically collected from a given site (100m - 200 m radius) (Hammond et al.,
2006; McMichael et al,, 2012a; McMichael et al,, 2012c) to account for the uneven
deposition of charcoal that occurs on localized scales after burning of vegetation
(e.g. Lynch et al., 2004). Thus, the repeated absence of charcoal from soil cores

located in close proximity can be confidently interpreted that the sampled area
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truly lacked fire rather than the sampling was unable to detect the fire
(McMichael et al., 2015; McMichael et al., 2012a). Replicate soil cores can also
indicate whether large tracts of vegetation were burned or repeatedly burned,
especially if some of the particles are 1#C AMS dated (Feldpausch et al., 2022;
Heijink et al., 2022; McMichael et al., 2012a; Sanford and Horn, 2000; Whitlock
and Larsen, 2002). Replicate cores are often also analysed to look at how
vegetation change has occurred over relatively small geographic scales or along
environmental gradients (e.g., Heijink et al., 2022; McMichael et al., 2012a;
McMichael et al,, 2012b; Watling et al., 2017).

Stable carbon and nitrogen isotopes are commonly used to infer
vegetation dynamics (Fig. 1) (de Freitas et al.,, 2001; Pessenda et al., 1998).
Stable carbon isotopes from soils have also been used to infer landscape
transformations by pre-Columbian Indigenous Peoples. These are particularly
useful for documenting changes or shifts between C3 and C4 grass assemblages
and vegetation changes on pre-Columbian raised fields (Iriarte et al., 2010;
McKey et al., 2010; Watling et al., 2017). The analysis of stable carbon and
nitrogen isotopes from bone collagen has also been used to reconstruct dietary
changes in pre-Columbian Indigenous Peoples (e.g., Colonese et al., 2020;
Roosevelt, 1989).

Soils have a very high spatial resolution as multiple samples can be
collected within meters of each other (i.e., high potential sampling frequency)
and a very high spatial limit because they are found almost everywhere in
terrestrial systems (Fig. 4). The temporal limit of soils is also very high; soils
capture evidence from modern times to thousands of years ago (Fig. 4). The

uppermost 1m of Amazonian soils typically represent the last several thousand
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years (Piperno, 2016; Piperno et al., 2021). Soils, however, have a low temporal
resolution due to processes such as soil formation, erosion, and bioturbation,
and establishing age-depth relationships is not always possible (e.g., Mayle and
[riarte, 2014; Sanford and Horn, 2000)(Fig. 4a). Radiocarbon (14C AMS) dates
from archaeological sites or soil microfossils usually have a 2-sigma precision of
ca. 100 years (Neves et al., 2004; Piperno, 2016; Schaan et al., 2012; Taylor and
Bar-Yosef, 2016). When multiple dates are obtained from the same core,
however, general trends in fire or vegetation of older to younger within soil
cores can often be established (e.g., Hill et al.,, 2023; McMichael et al., 2012a;

McMichael et al., 2012c; Piperno et al., 2021).
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Fig. 4: The spatial and temporal characteristics of data sources used to assess
past human activities and vegetation change. (a) Each type of archival material
color-coded and plotted in relation to its spatial resolution (the highest possible
sampling frequency of archival material across space) and temporal resolution
(the highest possible sampling frequency of archival material through time). (b)
The types of archival materials are plotted in relation to their spatial and
temporal limits (the total amount of space or time captured within an archive).
Dotted lines indicate the potential range of resolution/limit achieved from each
data source. Crosses are centered on the most common resolution/limit achieved

by sampling efforts on the data sources in Amazonia.
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3. Lake sediments as local- to regional-scale archives of pre-Columbian
Indigenous human activity and vegetation change

Like soils, lake sediments also contain microfossils that can be used to
document pre-Columbian human activities and the resulting legacies on
ecosystems. Lakes sufficiently old for palaeoecological studies are rare across
much of Amazonia, limiting the spatial resolution of palaeo-vegetation
reconstructions (Bush and Silman, 2007), although the temporal resolution can
sometimes be high (Fig. 4). Unlike soils, lake sediments typically have continuous
deposition and thus robust stratigraphic integrity, and age-depth relationships
can be derived that place temporal frameworks on human activities and
environmental change. Most lake sediment records from Amazonia contain
samples analyzed at centennial scale temporal resolution (e.g., every century to
several hundred years)(Nascimento et al,, 2022). In rare deep lakes with anoxic
conditions, however, the sediments may retain sub-decadal stratigraphy,
allowing an almost continuous insight into the local dynamics of human activity
and forest recovery (Fig. 4) (Akesson etal, 2021; Bush etal,, 2016; Bush et al.,
2021a). The temporal limit of lake sediment records varies depending on lake
type, local depositional environment and preservation conditions (Fig. 4). Few
sites in Amazonia extend back to the Pleistocene (Mayle et al., 2000; Whitney et
al,, 2011), as most non-riverine lakes were formed (and sedimentation began) in
the mid- to late-Holocene periods (ca. 8000-4000 years ago) (e.g. Bush and
McMichael, 2016; Bush et al,, 2007; Carson et al., 2014; Nascimento et al., 2022;

Urrego et al,, 2013).
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Charcoal abundances and their changes within a sedimentary sequence
are typically used to infer changes in the amount of biomass burning in the
surrounding landscape (e.g. Marlon et al., 2013; Marlon et al., 2016); equated to
fire severity (Keeley, 2009). Charcoal particles are deposited into lake sediments
from airborne or terrestrial sources, and assessing size classes of charcoal
particles is commonly used to distinguish local from regional input (Clark and
Royall, 1996; Sanford and Horn, 2000). The relationships between charcoal
abundance and biomass burned, and the source area of charcoal particles for
Amazonian lakes remain poorly documented and need further exploration.

Organic macrofossils and microfossils (e.g., pollen and spores) that decay
in soils typically preserve in lake sediments. Fungal spores can be associated
with fire and thus human activity (Fig. 1) (Brugger et al., 2016; Loughlin et al.,
2018). Tree and shrub pollen can generally be identified to a more specific
taxonomic level than phytoliths, although the inverse is true for herbaceous taxa
(especially grasses and sedges) and palm taxa (Piperno, 2006). Over 1000 pollen
morphotypes from Amazonia have been identified and catalogued (Bush and
Weng, 2007), with up to over 100 pollen types being identified within a single
pollen sample (Akesson et al., 2021). Pollen from domesticated maize (Zea mays)
(see example in Fig. 5) can be reliably identified because wild Zea does not occur
in South America, but major crop plants such as manioc (Manihot esculenta) and
sweet potato (Ipomoea batatas) cannot be differentiated from their wild
varieties using pollen because the latter are native to South America, and
taxonomic distinctions cannot reliably be made (Mayle and Iriarte, 2014;

Whitney et al., 2012).
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Fig. 5: Microfossils found in Amazonian lakes that can indicate human activity or
environmental change. The top panel shows a pollen grain of Zea mays (corn),
and the bottom panel shows a diatom, Discostella steligera (Cleve & Grun.) Houk
& Klee, which can indicate water turbidity or lake level. (Photos: Majoi de Novaes

Nascimento).

The spatial representation of pollen and phytolith data depends on site-
specific characteristics of the lake. Phytoliths from lake sediment cores have
varying source areas that depend on lake size and the presence of in-flowing
streams; the assemblages are often mixtures of these source areas (Carson et al.,
2014; Mayle and Iriarte, 2014; Piperno, 2006; Plumpton et al., 2020; Whitney et

al,, 2013; Whitney et al.,, 2014). Pollen assemblages also reflect a combination of
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local and regional inputs, and this varies, not only depending upon lake size and
the presence or absence of inflowing streams, but also on the relative proportion
of wind-pollinated taxa in the parent vegetation (Bush et al., 2021b; Jacobson
and Bradshaw, 1981). In the forest-savanna ecotone regions of Bolivia, where
the dominant forest taxa (e.g. Moraceae) have wind-dispersed pollen, large lakes
may have a pollen source area of up to 40 km (Whitney et al., 2019). However, in
many areas of Amazonia, closed-canopy forests are dominated by insect-
pollinated taxa, where very small lakes register much smaller pollen source
areas of potentially only 1-2 km? (Blaus et al., 2023). Differentiating between
local- and regional-scale human land-use and deforestation is possible, however,
with pollen analyses from tight clusters of small lakes (Bush et al., 2007) or pairs
of small and large lakes (Carson et al., 2014). It is also important, where
possible, to pair lake sediments from small lakes with nearby archaeological
sites to provide matching spatial resolution and a continuous temporal
framework of past land use (Carson et al., 2014; Mayle and Iriarte, 2014;
Whitney et al., 2014).

Diatoms are siliceous microalgae that are found in water bodies that
provide information about environmental or hydrological conditions (e.g.,
Battarbee, 1986; Benito et al., 2018) (Fig. 1, for example see Fig. 5). Diatoms are
commonly assessed in lake sediment reconstructions, and can indicate changes
in hydrology (e.g., lake level recorded by changing proportions of deep versus
shallow water taxa) or water quality that are related to climate dynamics (Castro
et al.,, 2013; Nascimento et al,, 2021) (Fig. 1). Diatoms, however, can also provide
information about pre-Columbian human activity in Amazonia (Fig. 1). They

have been used to document changes in wetland management (Duncan et al.,



395  2021), and nutrient status and productivity (Bush et al., 2016). Diatom

396 assemblages can also be used to parse apart climatic and human-induced

397  vegetation changes in lake sediment records (e.g., Bush et al,, 2000) (Fig. 1).

398 Lake sediments also contain stable isotopes and chemical elements that
399  can shed light on pre-Columbian human activity (Fig. 1) (Hodell et al., 2005;

400 Hodell etal., 1995). For example, Ca++ and K+ concentrations were used to

401 provide information on lake level changes related to climatic fluctuations

402  alongside human activity (Bush et al., 2000; Sahoo et al,, 2019). More recently,
403  micro- X-ray fluorescence (XRF) has become a standard tool in paleolimnology,
404  including multivariate analysis of XRF data (Parsons et al., 2018) or ratios of
405 cation concentrations, such as Ca/Ti (proxy for drought), Fe/Mn (proxy for lake
406  depth) or Rb/Sr (proxy for grain size) (Davies et al., 2015). XRF data have been
407  used to reconstruct human-induced soil runoff and erosion (Akesson etal.,

408  2019), and to place human activities in a context of environmental change

409  (Aniceto et al., 2014; Maezumi et al., 2018b; Rodriguez-Zorro et al., 2015).

410  Sediment color, which reflects abundances of organic material and clays, can also
411  provide information on environmental rhythms or human-induced change (Bush
412 etal, 2017; Bush etal., 2000; Rodbell et al., 1999).

413

414 4. Ethnographic, ethnohistorical and ethnoecological data provide insights
415 into pre-Columbian Indigenous human activity and vegetation change

416 Ethnographic, ethnohistorical and ethnoecological studies can be used to
417  assess, document, interpret and obtain insights from Indigenous and local

418 knowledge systems (for example see Fig. 6). Indigenous and local knowledge

419  systems provide valuable information that can be used to interpret pre-



420  Columbian human activities (Fig. 1) (Cassino et al., 2019), such as: (i) resource
421  use and management, including past and modern distributions of plant resources
422  (Cassino etal., 2019; Levis et al., 2018; Levis et al., 2020); (ii) how lifestyles and
423  resource management systems influence, and are influenced by landscapes

424  (Balée, 2006); (iii) the technological and labour constraints on resource use

425  (Junqueira etal.,, 2016); and (iv) the population densities that can be sustained in
426  different ecosystems and by different production systems (Heckenberger et al.,
427  2008).

428

429

430  Fig. 6: Examples of ethnographic studies and working with Indigenous and local

431 people in Amazonia. Top panel shows researcher Carolina Levis conducting an
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ethnoecological study with a local resident of the Tapajos National Forest of
Brazil (Photo taken in 2014 by Bernardo Flores). Bottom panel shows
researchers Paul Colinvaux (right), Paulo de Oliveira (second from right) and
Melanie Reidinger (left) exchanging knowledge of microfossils and Amazonian
plants with members of the Siona ethinic group (Photo taken in 1988 by Mark

Bush).

Ethnography refers to the in-depth description of everyday life and
practice of a given culture or society [Oxford (2016); see also Hammersley and
Atkinson (2007) for a broader definition], and ethnohistory combines
ethnography with the scrutiny of historical records and other sources of
information (Axtell, 1979). Ethnoecology is the study of people’s interactions
with their environment, often with special attention to current knowledge and
practices concerning resource use and management, including the subdisciplines
of ethnobotany and ethnozoology (Martin, 2004). The subdiscipline of
ethnoarchaeology involves ethnographic studies performed by archaeologists
with an explicit focus on material culture (Politis, 2014). Much of the culture and
resource management practices of the current inhabitants of Amazonia have
been inherited from pre-Columbian populations, but transformed to different
extents because of the heterogeneous and discontinuous history of human
occupation in the region (Cleary, 2001; Denevan, 2001). For example, European
arrival caused a massive die-off of Indigenous populations (Denevan 1992), and
many of the remaining groups were fragmented, displaced, or enslaved during
European colonization (Dobyns, 1966). Thus, the projection of ethnographic data

to past lifestyles and production systems requires caution (McClenachan et al.,
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2015). Ethnographic data cannot always be tied to human activity at specific
times in the past, but local Indigenous knowledge is crucial to locating ancestral
forests, anthropogenic soils and other signs of human activity, especially in
remote regions (Franco-Moraes et al,, 2019; Kopenawa and Albert, 2023).
Indigenous Peoples are the descendants of native ethnic groups that
retain historical and cultural connections with pre-Columbian Indigenous
societies, though major social disruptions and upheavals occurred with
European colonizations (Cook, 1998; Livi-Bacci, 2016). Most ethnographic and
ethnoecological studies were done by non-Indigenous scientists. Recent
collaborative studies with contemporary Indigenous people have posited that
Amazonian ecosystems have been transformed by an extensive and long-term
network of social relations and interconnections between humans (e.g.,
Heckenberger et al,, 2008; Ribeiro et al., 2023). Future research should promote
participatory and collaborative approaches, as Indigenous people and their
knowledge systems can inspire new ideas to enhance understanding of
human activities and vegetation changes (for example see Fig. 6).
Archaeological evidence combined with observation of Indigenous
production systems suggests, for example, that pre-Columbian production
systems in some regions seem to have been much more based on agroforestry
and on the management of forest and aquatic resources compared with colonial
systems (Maezumi et al.,, 2018a; Moraes, 2015; Neves, 2013; Shepard Jr et al,,
2020). Ethnographic work on current soil and waste management systems has
also been essential to our understanding of the processes that led to the
formation of Amazonian Dark Earth (ADE) (Hecht, 2003; Schmidt et al., 2014;

Winklerprins, 2009).



482 The variance and scarcity of ethnographic data limits extrapolations of
483  locally derived information to other regions within Amazonia. For example,
484  while major crops like maize and manioc were grown in most regions of the
485  basin, some minor crops, or useful native species, that are culturally or

486  economically important in a certain region may not be so in others. Instead of a
487  direct projection of the present into the past, ethnographical research provides
488  insights to further understand ancient Indigenous livelihoods, resource

489 management strategies and their potential impacts in past and current

490 landscapes (McClenachan et al,, 2015). Ethnographic studies also provide

491  valuable information on Indigenous resource use and societal practice since
492  European colonization, and facilitate disentangling the effects of pre- and post-
493  Colonial human activities in current landscapes (Forline, 2008). Ethnographic
494  data can be paired with linguistics, as it is known that groups within the same
495  language families are more likely to share similar resource management

496  systems, e.g.,, the Arawak (Eriksen and Danielsen., 2014). Historic distributions of
497  Indigenous languages (e.g., Eriksen, 2011), may thus facilitate ethnographic
498 projections across space since European colonization.

499 Historical documents originating during the early colonization of

500 Amazonia may also provide insight into pre-Columbian Indigenous land use
501 systems. Francisco Orellana led the first expedition down the Amazon River in
502 AD 1540, which was recorded by Gaspar de Carvajal (Medina, 1934). Early

503 colonists moved in and established Jesuit missions later in the AD 1600s in

504  several regions (Reeve, 1994), and the Amazonian Rubber Boom occurred from

505 ca.AD 1850-1920 (Hecht and Cockburn, 2010; Weinstein, 1983). All these events
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had corresponding historical documents that recorded aspects of Indigenous
Peoples and their interactions with the colonists.

The spatial resolution of ethnographic records and historical data has the
potential to be very high (Fig. 4). There is also a high potential temporal
resolution of both historical and ethnographic records, though available data
through time are relatively sparse. The temporal limit of historical documents
encompasses only the last several hundred years since European arrival, and the
temporal limit of ethnographic records is bound by the memories of local
residents, although it can extend much further back in time through knowledge
transmission across generations (Fig. 4b). Because of the fragmentation and
upheaval of Indigenous populations after European colonization, it remains
contentious as to how far back in time ethnography can be extrapolated back. In
some cases there is a strong cultural and historical continuity between ancient
and contemporary Indigenous Peoples, but in other cases contemporary
Indigenous Peoples have inhabited their current lands for only several decades
(e.g., the Kichwa People of Andean descent that now inhabit areas of lowland

Ecuador).

5. Modern datasets provide insight to pre-Columbian Indigenous human
activities and vegetation change: Biological collections and remote sensing

data

Biological collection records include plant and animal surveys

(inventories), biological or ecological monitoring networks (e.g., Anderson -

Teixeira et al,, 2015; Malhi et al., 2002; ter Steege et al., 2013), and herbarium or
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museum specimens (e.g., Feeley and Silman, 2011) (for example see Fig. 7).
These biological collection records are used to assess the presence, absence, and
abundances of plants and animals in modern ecosystems (or those during the
historic period). Although biological records provide valuable information about
past (pre- and post-colonial) activities, they do not directly measure pre-
Columbian Indigenous influences on ecosystems (Fig. 1). Biological records need
linkages with archaeological, paleoecological, genetic, or ethnographic data on
the degree and form of past human activities to infer cause and effect

relationships (e.g., Heijink et al., 2022; Heijink et al., 2020; Levis et al., 2017;

Piperno et al., 2021).

Fig. 7: Researcher Carolina Levis measures and identifies a piquia tree (Caryocar
villosum) with a local resident of the Tapajos National Forest of Brazil (Photo:

Bernardo Flores).
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Past and current human activities are increasingly recognized as factors
influencing species’ distributions (Boivin et al., 2016; Di Marco and Santini, 2015;
Gallardo et al,, 2015; Guisan and Thuiller, 2005; Halpern et al., 2008). Humans
have modified the distribution range and abundance of several plant species,
expanding the distribution of useful and domesticated plants more often than
plants without a documented use to humans (Balée 1989, Levis et al. 2017,
Coelho et al. 2021). For instance, manioc (Manihot esculenta) was cultivated by
Indigenous people throughout the Holocene (Piperno, 2011). Currently,
domesticated manioc populations are cultivated throughout the tropics, while
the direct ancestor of domesticated manioc (M. flabellifolia) is limited to South
America (Olsen and Schaal, 1999). Differences between the natural distribution
and the human-modified distribution of cultivated species, and especially those
with domesticated populations can indicate past human activities. Several palms
and trees that are used for food are abundant in plant assemblages of
archaeological sites (Balée, 1989; Junqueira et al., 2010). Modern plant
inventories that are closer to archaeological sites also tend to have a higher
abundance and diversity of useful and domesticated plants (Levis et al.,, 2017;
Levis et al,, 2012; Thomas et al., 2015).

Plant genetic material (DNA) is typically derived from plants but can also
be found in soils and sediments. Genetic material from plant remains can be
linked with past events in human history, such as plant domestication and
migrations (Fig. 1) (e.g. Clement, 1988a; Clement, 1988b; Gutaker and Burbano,
2017; Moreira et al,, 2017; Roullier et al., 2013). Genetic studies can also provide

information about species with populations that were domesticated by humans,
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because selection and cultivation of desirable phenotypes results in changes in
morphology, physiology, and genotype of descendent populations (Emshwiller,
2006; Harlan, 1992; Olsen and Schaal, 2001). The whole set of selected
phenotypic changes in a species is termed its domestication syndrome, which
can be studied with morphological, chemical, archaeobotanical, and molecular
genetic methods (e.g. Emshwiller, 2006; Meyer et al.,, 2012; Smith, 2006).

Species with populations with some degree of domestication show
patterns of morphological variation and genetic diversity and structure across
geographical space that result from domestication events, dispersal and
subsequent diversification (Meyer and Purugganan, 2013). Economically
important domesticates are more likely to show dramatic morphological
changes, such as a 2000% increase in fruit size from wild source populations of
peach palm (Bactris gasipaes) compared with some domesticated populations
(Clement, 1988b). Dispersal events are often accompanied by other natural and
human selection pressures, resulting in diversification of uses, variation in
morphology, chemical composition and physiology (Meyer and Purugganan,
2013), and adaptation to domesticated landscapes (Clement, 1999).

Until very recently, plant geneticists worked exclusively with living plants
or samples collected over the last 200-300 years (e.g., Roullier et al., 2013). Over
the last decade, new molecular genetic methods have allowed the extraction and
analysis of DNA from archaeobotanical remains (Wales et al., 2014). Ancient
DNA (aDNA) is increasing the ability to document the genetic history of plants,
can differentiate crops from their wild ancestors, or estimate genetic change and
migration of domesticated plants or cultivars over time (Freitas et al., 2003;

McLachlan and Clark, 2005; Piperno, 2011). It is now even possible to extract
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and date aDNA recovered from pollen grains found in lake sediments and
historical samples (Gutaker and Burbano, 2017; Parducci et al., 2017). aDNA is
denatured very rapidly in tropical lake sediments (due to the hot, wet
conditions), though extraction has been successful in the African tropics
(Bremond et al., 2017). Geographic representation of aDNA samples is patchy,
although many crop plants have been databased.

Biological collection records can be collected from anywhere on Earth, so
their potential spatial limit is endless (Fig. 4). To date, however, sampling covers
only a small portion of the 6 million km? of Amazonia (Carvalho et al., 2023; ter
Steege et al,, 2013). Ground based surveys of plant and animal distributions and
abundances can also have high spatial resolution, with hierarchies of transects or
1-ha plots commonly clustered within a region (e.g., ter Steege et al., 2013).
Biological inventories can also be measured at yearly frequencies, and have high
temporal resolution, but most repeated censuses only span a few decades (Malhi
et al,, 2002; Phillips et al., 1994)(Fig. 4).

Ground-based biological collections and satellite imagery are often paired
in modern ecological and global change studies. Satellite imagery has also been
used to infer soil and vegetation legacies of pre-Columbian land use (Iriarte,
2016; Palace et al,, 2017; Thayn et al., 2011). Satellite data from Landsat,
Sentinel, and MODIS, typically capture landscape features at 30-m to 1-km
spatial resolution (Fig. 4). Landsat has been used to detect legacies of pre-
Columbian land use (Heckenberger et al., 2003; Soderstrom et al., 2016), and
MODIS has been used to detect or predict Amazonian Dark Earth (ADE) (Palace
et al.,, 2017; Thayn et al.,, 2011). This detection is possible because pre-Columbian

Indigenous Peoples permanently changed the soil characteristics, which affects



621 the types of vegetation that can grow on those soils (Junqueira et al,, 2011). The
622  differences in modern biomass between ADE and forested non-ADE sites within
623  the same region is also detectable using MODIS satellite imagery (Palace et al.,
624  2017).

625 Remotely sensed data has low temporal limits (Fig. 4). Satellite images
626  are only available for the last few decades, although aerial images may extend
627  further back in time. However, they have higher spatial limits than biological
628  collections, and usually have Amazonian-wide spatial coverage (Fig. 4).

629

630 6. Dating data sources and proxies used in assessing pre-Columbian

631 Indigenous human activity and vegetation change

632

633 Different scientific disciplines assessing pre-Columbian Indigenous

634  human activities place differing emphases on dating or age control of their data
635  sources or proxies. In soils, archaeologists and paleoecologists typically use 14C
636  AMS dating (radiocarbon dating) to obtain ages on specific material(s) of

637 interest. In archaeological surveys, multiple ages are usually derived from

638  specific horizons of interest where artifacts are recovered (e.g., Roosevelt et al,,
639 1996). Sometimes, however, ages of specific horizons are inferred from a known
640  type of pottery or artifact that has been recovered and dated from another

641 location (e.g., McEwan, 2001). Paleoecologists will typically obtain dates from
642  individual charcoal fragments or conglomerations of phytoliths recovered from
643  soil cores or profiles (e.g., Heijink et al., 2022; McMichael et al.,, 2012a; Piperno et
644  al., 2021; Watling et al., 2017). In both archaeological and paleoecological

645  surveys in soils, repeated dating across sites can help determine the
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synchronicity of events across space. Because of soil bioturbation, age-depth
models are not applied to soil profiles. General stratigraphic trends, however, are
often intact (Piperno et al., 2021; Watling et al., 2017).

Lake sediments typically retain stratigraphic integrity, and age-depth
models (e.g., Blaauw and Christen, 2011) are often used to reconstruct a
temporally continuous sedimentary sequence. The age-depth models typically
require fewer 14C dates than may be obtained with soil surveys, but the more
dates obtained on a sequence, the more confidence can be placed in the model.
With lake sediments, specific layers of change or markers of human activity can
be directly dated to provide additional confidence for the timing of those events.
Additional temporal control can also be placed on the younger sections of lake
sediment cores using 210Pb dating, which can be used on sediments less than 150
years old (e.g., Sanchez-Cabeza and Ruiz-Fernandez, 2012). Age-depth models
can incorporate mixtures of 219Pb and 14C dates (Aquino-Lépez et al., 2018),
which can be particularly useful for increasing confidence in the ages of
sediments around the period of European Contact.

The other data sources included in this review are not based on
laboratory dating of materials or sediments. Historical records have specific ages
corresponding to the dates they were produced. It is not possible to place
specific dates or ages on Indigenous knowledge, or its interpretation through the
studies of ethnography, ethnohistory, or ethnoecology. It is possible, however, to
correlate some historical events or personal events, such as the arrival of
missionaries in an Indigenous community or abandonment of a village with

changes in resource use and management. This information is crucial to
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understanding how pre-Columbian people lived, even though specific ages are
difficult to obtain.

Modern datasets, including living plants and museum specimens, may
have specific dates recorded. Inferring an age when pre-Columbian Indigenous
people shaped plant abundances or plant growth patterns (for instance) is
possible with the direct dating of living materials using a combination of
dendrochronology, radiocarbon analysis, stable isotope analysis and DNA
analysis (Caetano-Andrade et al., 2020). Recent advances in genetic methods
have ages inferred also from molecular clocks and DNA-based dating method for

ancient genomes (Kistler et al., 2020).

7. Discussion: Moving forward

Understanding the interactions of pre-Columbian people and their
environments in Amazonia is important for sustainability science, conservation
biology and cultural anthropology (Levis et al., 2017; Mayle and Iriarte, 2014;
McMichael et al., 2017; Roberts et al., 2017; Szab6 and Hédl, 2011; Watling et al.,
2017; WinklerPrins and Levis, 2020). Here we have provided a review of the
most commonly used sources and proxies for reconstructing pre-Columbian
human activity in Amazonia (Fig. 1) and have described the associated
advantages and limitations of each by assessing their potential spatial and
temporal resolution and limits (Fig. 4). We acknowledge that a comprehensive
assessment of all proxies of Indigenous human activity is beyond the scope of
this manuscript. For example, proxies such as lipid biomarkers have been used
to assess the components of anthropogenic soils (Glaser, 2007). Fecal

biomarkers are a newly emerging proxy that is being used to detect past human
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activity (Argiriadis et al., 2018; Zocatelli et al., 2017). These proxies have not yet
been used in Amazonian systems, though show great promise in other
geographic regions. The preservation of biomarkers and sterols in the humid
tropics, however, is likely poorer than in other areas.

Assessments of the long-term Indigenous history in Amazonia would be
stronger if ‘absence data’ from all lines of evidence were reported or archived in
data repositories. Ecological datasets, including plant inventory records, include
the presence, absence, and abundance of species within a given study area (e.g.
Hubbell, 1979; ter Steege et al., 2013), allowing for more robust statistical
analyses than presence-only analysis often applied to archaeological datasets
(e.g., McMichael et al., 2014a; McMichael et al., 2017). To fully understand the
impact of pre-Columbian people in Amazonian landscapes, the reporting of
‘absence data’ (i.e., when there is no evidence of past human activity) is crucial.
For example, when identifying earthworks using remotely sensed data, the total
area surveyed and total number of earthworks found should be reported so that
site densities can be calculated and compared across regions. The entire area
sampled and information on the absence of ADEs using field-based surveys is
also rarely reported, and the varying densities of ADEs across the landscape
cannot yet be calculated. The same approach should apply for archaeological
surveys, in which generally a wide area is initially surveyed before determining
excavation locations. We suggest that efforts to compile and build repositories of
archaeological information should develop guidelines and protocols for
reporting and documenting absence data.

The ‘absence’ of evidence of human activities from paleoecological

proxies, including charcoal, pollen, and phytoliths is reported. However, because
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these lines of evidence come from a limited amount of sample material, it is
possible that they are present but not detected. Thus, the absence of evidence is
not necessarily evidence of absence. This issue is partially overcome with
repeated sampling in the case of soil cores (i.e., multiple cores collected and
analysed per locality) (e.g., Heijink et al., 2022; McMichael et al., 2015; McMichael
et al, 2012a; Piperno et al.,, 2021), and with continuous sampling and the
analyses of multiple cores in a region in the case of lake sediments (e.g., Bush et
al,, 2007; Carson et al., 2014).

Several predictive models have been developed for various types of
archaeological features in Amazonia and for the overall likely distribution of pre-
Columbian Indigenous Peoples in the region, which provide targets for future
archaeological surveys in the ca. 6 million km? of Amazonian forests (McMichael
etal.,, 2014a; McMichael et al., 2014b; McMichael et al., 2017; Souza et al., 2018;
Walker et al.,, 2023). Due to the lack of ‘absence data’, the only approaches
available for these predictions are models that require presence-only data (i.e.,
that do not require absence data). Absence data of all types would help to
validate and refine these models on both regional and continental-wide scales,
and open doors to an array of additional modelling approaches that could be
employed (McMichael et al., 2017). All types of models and other macro-
paleoecological and macro-archaeological syntheses would also further benefit
by including more precision in the geographic coordinates of localities being
studied (i.e., to ca. +/- 200 m spatial resolution), and more precision in the time
bins of analysis.

Perhaps the best way to strengthen assessments of past human activity is

via an interdisciplinary approach, pairing multiple proxies and multiple types of
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data sources (Carson et al., 2014; Mayle and Iriarte, 2014; Watling et al., 2017;
Whitney et al., 2014). Without this pairing, it can be difficult to determine
whether the observed pattern is related to human activity or other forcing
mechanisms. Ideally, though not necessarily, those pairings should be spatially
overlapped. For example, Levis et al. (2012) paired plant distribution
information with charcoal recovered from soils beneath them, and found a
higher percentage of useful species in plots that contained higher amounts of
charcoal in the vicinity of archaeological sites. It is also well documented how
phytolith and pollen data complement one another in paleoecological and
archaeological reconstructions (Akesson et al,, 2021; Mayle and Iriarte, 2014;
Piperno, 2006). Phytoliths tend to be more sensitive to detecting cultivation,
forest openings, and some basal angiosperm and eudicotyledon tree taxa,
particularly in wet closed canopy forests (as opposed to the savanna ecotone
regions), whereas pollen can detect changes in tree taxon abundances that
remain undetectable in phytolith analyses (Akesson et al., 2021; Piperno and
McMichael, 2023). Phytoliths identify basal angiosperm and eudicotyledon taxa
that pollen does not, and the two are highly complementary when they can be
studied together (Piperno and McMichael, 2023). Phytolith analysis has also
been paired with starch grain and stable carbon isotope analysis in
archaeological settings for a more comprehensive view of the diet and lifestyle of
pre-Columbian Indigenous people in Amazonia (Iriarte et al., 2010; McKey et al.,
2010). The pairing of proxies, or using multi-proxy approaches, can also aid in
detectability of past human influences whereas single proxies may lack

detectability of specific lines of evidence.
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To move forward, the integration of data needs to occur across proxies,
data sources, and consider both spatial and temporal scales (Fig. 4). Either
within or between archives, a multi-proxy approach is more sensitive to
detecting past human activity than a single-proxy approach, providing more
confidence in conclusions on the presence or absence of pre-Columbian
Indigenous human activity and the impact that they caused on the landscape
(Fig. 1) (Clement et al., 2015; Iriarte, 2016; Mayle and Iriarte, 2014; Piperno,
2006). Recent research has already begun to integrate: (i) lake sediment data
with soil survey data from areas within the watershed (McMichael et al., 2012b),
(ii) terrestrial soil archives with archaeological sites containing earthworks
(Watling et al.,, 2017), (iii) lake sediment records, even with lakes of different
sizes reflecting different source areas, with archaeological sites (Carson et al.,
2014; Maezumi et al., 2018b; Whitney et al., 2013), (iv) geospatial patterns of
plant distributions with archaeological sites across Amazonia (Levis et al., 2017).
As trees in Amazonia can also be directly dated (Brienen and Zuidema, 2006;
Chambers et al.,, 1998; Schongart et al., 2015), pairing the age of the modern
forest with archaeological, paleoecological and historical data could also prove
invaluable. In a recent example, Caetano Andrade et al. (2019) integrated
dendrochronology and historical data to evaluate Indigenous and traditional
management of a Brazil nut (Bertholletia excelsa) stand near an archaeological
site south of Manaus.

If the advantages and limitations of data used to infer pre-Columbian
Indigenous human activity are recognized and acknowledged, particularly
regarding spatial and temporal scale (Fig. 4), then disagreement among existing

and future datasets may be minimized. We also highlight the potential and
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importance of bridging ethnography and ethnoecology with historical records,
archaeological data, and paleoecological data. Importantly, but often not
considered, the voices and knowledge of Indigenous Peoples should also be
integrated into scientific research designs (Trisos et al., 2021). Together, these
recommendations can advance the understanding of the complexity and
variation of pre-Columbian Indigenous human influences in tropical ecosystems,

such as Amazonia.
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