

Spatial and temporal abilities of proxies used to detect pre-Columbian Indigenous human activity in Amazonian ecosystems

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

McMichael, C. N. H., Levis, C., Gosling, W. D., Junqueira, A. B., Piperno, D. R., Neves, E. G., Mayle, F. ORCID: <https://orcid.org/0000-0001-9208-0519>, Pena-Claros, M. and Bongers, F. (2023) Spatial and temporal abilities of proxies used to detect pre-Columbian Indigenous human activity in Amazonian ecosystems. *Quaternary Science Reviews*, 321. 108354. ISSN 0277-3791 doi: 10.1016/j.quascirev.2023.108354 Available at <https://centaur.reading.ac.uk/113612/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.quascirev.2023.108354>

Publisher: Elsevier

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 Title: Spatial and temporal abilities of proxies used to detect pre-Columbian
2 Indigenous human activity in Amazonian ecosystems
3
4 Authors:
5 **McMichael, C. N. H.**, Department of Ecosystem and Landscape Dynamics,
6 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,
7 Amsterdam, Netherlands
8 **Levis, C.**, Forest Ecology and Forest Management Group, Wageningen University
9 & Research, Wageningen, the Netherlands
10 Post-graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia,
11 Manaus, Brazil
12 Post-graduate Program in Ecology, Universidade Federal de Santa Catarina,
13 Florianópolis, Brazil
14 **Gosling, W.D.**, Department of Ecosystem and Landscape Dynamics, Institute for
15 Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam,
16 Netherlands
17 **Junqueira, A. B.**, Institut de Ciència i Tecnologia Ambientals, Universitat
18 Autònoma de Barcelona, Barcelona, Spain
19 **Piperno, D.R.**, Department of Anthropology, Smithsonian National Museum of
20 Natural History, Washington, D.C., and Smithsonian Tropical Research Institute,
21 Balboa, Republic of Panama
22 **Neves, E. G.**, Laboratory of Tropical Archaeology, Museum of Archaeology and
23 Ethnology, University of São Paulo, São Paulo, Brazil
24 **Mayle, F.**, Department of Geography and Environmental Science, University of
25 Reading, Reading, U.K.

26 **Peña-Claros, M.** Forest Ecology and Forest Management Group, Wageningen
27 University & Research, Wageningen, the Netherlands

28 **Bongers, F.** Forest Ecology and Forest Management Group, Wageningen
29 University & Research, Wageningen, the Netherlands

30

31 **Corresponding author:** Crystal N. H. McMichael, Institute for Biodiversity and
32 Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098 XH,
33 Amsterdam, Netherlands (c.n.h.mcmichael@uva.nl)

34

35 **Highlights:**

- 36 • Evidence of pre-Columbian Indigenous human activity is more robust
37 using a multi-disciplinary approach.
- 38 • Pre-Columbian Indigenous human activity in Amazonia is primarily
39 reconstructed through analysis of soils, lake sediments, ethnographic
40 studies, biological collections, and remote sensing data, and each brings a
41 unique perspective.
- 42 • Each line of evidence used to analyse pre-Columbian Indigenous human
43 activity has its own potential spatial and temporal resolution and spatial
44 and temporal limit.

45

46 **Abstract**

47 Humans have been modifying ecosystems since before the Holocene began ca.
48 12,000 years ago, even in Neotropical regions. The Amazon was once thought to
49 be 'pristine' and only lightly impacted by Indigenous people before European
50 colonisation in the Americas (e.g., pre-Columbian); however, multiple lines of

51 evidence have shown that Indigenous human activities over the past millennia
52 have left ecological legacies on modern ecosystems. We review the various lines
53 of evidence used to reconstruct pre-Columbian Indigenous human activity in
54 Amazonia, and assess the spatial and temporal resolution and limits of each one
55 of them. We suggest that a multi-proxy approach is always preferred, and that
56 lines of evidence that cover overlapping yet discrete spatial and temporal scales
57 can provide a robust and comprehensive assessment of the nuances of pre-
58 Columbian Indigenous human activities in Amazonia, and how they affect
59 modern ecosystems.

60

61 **Keywords:**

62 Archaeology, paleoecology, ethnography, human impacts, plant genetics,
63 biological collections, past human activity

64

65 **Main Text**

66 **1. Introduction**

67 Humans are now considered the major driving force in many abiotic and
68 biotic processes on Earth, and it has been suggested that this has created a
69 distinct geological era called the Anthropocene (e.g., Crutzen, 2002; Di Marco and
70 Santini, 2015; Gallardo et al., 2015; Halpern et al., 2008; Lewis and Maslin, 2015;
71 Pachauri et al., 2015; Vitousek et al., 1997). Humans contributed to the extinction
72 of Pleistocene megafauna across the Neotropics (Barnosky and Lindsey, 2010;
73 Rozas-Davila et al., 2021; Rozas-Davila et al., 2016), and have been modifying
74 landscapes in Neotropical ecosystems for at least the last 12,000 years (Ellis et
75 al., 2021; Roosevelt, 2013). Forms of human activities, including plant cultivation
76 and domestication, have also occurred in Neotropical regions for at least 10,000
77 years (Lombardo et al., 2020; Piperno, 2011; Roberts et al., 2017). Many of these
78 activities, particularly those that have occurred over the last 2,000 years, likely
79 left persistent effects, or ecological legacies, on Neotropical ecosystems that are
80 still visible today (Furquim et al., 2023; Levis et al., 2017; McMichael, 2021;
81 McMichael et al., 2023; Ross, 2011).

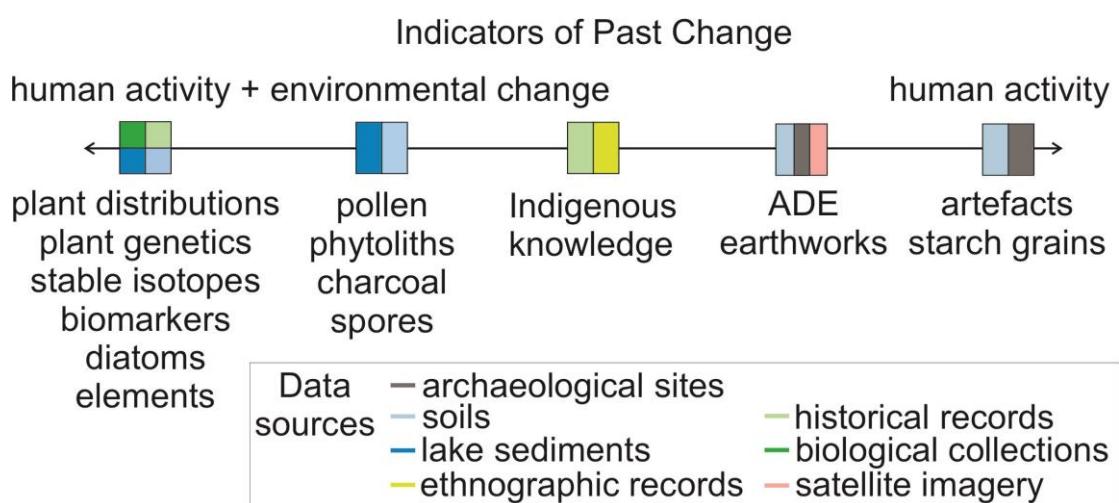
82 Reconstructing human-environment interactions through time is
83 particularly important in the ca. 6 million km² of Amazonian rainforests, which
84 hold a large proportion of Earth's biodiversity (Olson et al., 2001). The
85 suggestion that pre-Columbian Indigenous human influence played a large role
86 in shaping the biodiversity observed in today's ecosystems has generated an
87 important debate (e.g. Balée, 2010; Clement et al., 2015; Levis et al., 2017;
88 Piperno et al., 2021; Piperno et al., 2019; Roosevelt, 2013). Most scholars from
89 various disciplines agree that the pre-Columbian Indigenous Peoples of

90 Amazonia influenced its ecosystems to some degree, but the intensity, cultural
91 variability, spatial extensiveness, spatial variability, temporal duration and
92 continuity remain debated (Barlow et al., 2012; Bush et al., 2015; Clement et al.,
93 2015; Heckenberger et al., 2008; Heckenberger et al., 2003; Levis et al., 2017;
94 Levis et al., 2012; McMichael et al., 2012a; Piperno et al., 2015). Much of the
95 controversy results from the overall paucity of data in the region, differences in
96 the interpretation of the same datasets, and on the ecological heterogeneity of
97 this vast area. Even the largest ecological datasets within Amazonia reflect
98 mostly relatively easily accessible areas (McMichael et al., 2017). Addressing
99 aspects of this debate has important implications for how we conserve and
100 manage modern ecosystems, as well as for Indigenous sovereignty.

101 Ecologists, paleoecologists, archaeologists, anthropologists,
102 ethnographers, Indigenous peoples, and local communities can all provide
103 valuable information about the activities of pre-Columbian Indigenous people
104 and their influence on Amazonian vegetation and landscapes. These lines of
105 information, however, come from a variety of sources, are measured at different
106 spatial and temporal scales, and the capabilities of reconstructing pre-Columbian
107 human activities vary between them. Integrating different data and knowledge
108 sources, however, is vital for understanding multifaceted and complex problems,
109 and to achieve a more reliable and robust assessment of the influence of pre-
110 Columbian activities on Amazonian ecosystems (Mayle and Iriarte, 2014;
111 McClenachan et al., 2015; Tengö et al., 2014).

112 A large part of data interpretation is recognizing the advantages and
113 limitations of the various proxies, methods, and settings used to reconstruct pre-
114 Columbian Indigenous human activities and their effect on tropical systems.

115 Here we review proxies (i.e., lines of evidence) and settings (i.e., depositional
116 environments or archival material) commonly used to assess pre-Columbian
117 human activities and influences on Amazonian ecosystems, with a specific focus
118 on the spatial and temporal resolution (the potential sampling frequency of the
119 archival material) and spatial and temporal limits (the total amount of space or
120 time potentially captured within the record). We also discuss the detectability
121 and variability of proxies used to assess pre-Columbian Indigenous human
122 activities and their influences on Amazonian ecosystems (Fig. 1). Our goal is to
123 provide a spatio-temporal framework for the various proxies used to assess
124 long-term Indigenous human activity in Amazonian ecosystems so that future
125 work can recognize the advantages and limitations of all of the proxies and
126 integrate them more comprehensively.


127

128 **2. Soils as local-scale archives of pre-Columbian Indigenous human
129 activities and vegetation change**

130 Soils contain a wealth of valuable information and proxies that can be
131 used to reconstruct pre-Columbian human activities and the influence of
132 Indigenous Peoples on the vegetation. Archaeological sites, artifacts,
133 macrofossils, and microfossils that directly document pre-Columbian human
134 activities are all found on, or in, tropical terrestrial soils (Figs. 1-2). Information
135 from archaeological surveys is beginning to be compiled into online databases,
136 including the AmazonArch (Amazonian Archaeological Sites Network), which
137 contains the geographical location and basic archaeological information for over
138 10,000 sites (Clement et al., 2015; Riris and Arroyo-Kalin, 2019; WinklerPrins
139 and Aldrich, 2010; <https://sites.google.com/view/amazonarch>). The variability

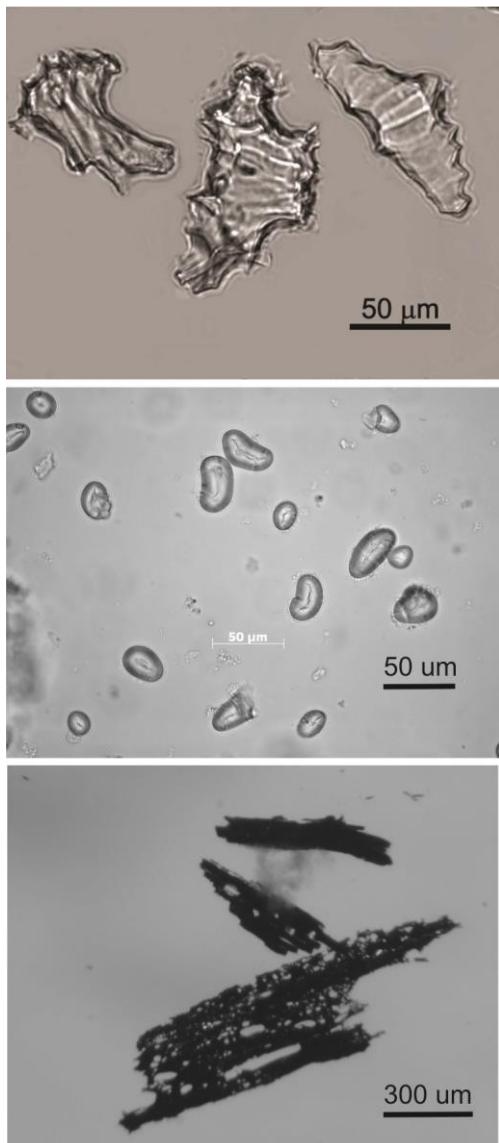
140 and diversity of archaeological evidence includes sites containing artifacts such
141 as lithics, ceramics, rock paintings, or petroglyphs, earthworks, and
142 anthropogenic soils (called Amazonian Dark Earths, or ADE) (e.g., Neves et al.,
143 2021) (examples of ceramics and earthworks shown in Fig. 2). At some of these
144 sites, pre-Columbian people have modified soil texture, nutrient content, and
145 stable isotopes, leaving persistent legacies of soil properties for thousands of
146 years (Glaser and Birk, 2012; Glaser and Woods, 2004; Lehman et al., 2003).

147

149 **Fig. 1:** The array of proxies that can be used to detect pre-Columbian Indigenous
150 human activity in Amazonia, and the source, or archival material from which
151 they are derived. The proxies are shown on a gradient from those which are used
152 specifically to assess human activities (far right) to those which are used to
153 assess both human and non-human processes (far left). ADE = Amazonian Dark
154 Earths.

155

156


157 **Fig. 2:** Examples of directly documented evidence of human activity found in
158 Amazonian soils. The top panel shows an archaeological excavation, and the
159 middle panel shows ceramic artifacts that were uncovered during the excavation
160 (Photos: Bernardo Oliveira/Instituto Mamirauá). The bottom panel shows a
161 Google Earth image of earthworks that were uncovered in southwestern
162 Amazonia following deforestation of the landscape.

163

164 Phytoliths are microscopic bodies of silica that are produced in the cells of
165 many plant species and often preserved in high quantities in soil archives where
166 pollen and macrofossils have largely decayed (Piperno, 2006) (example shown in
167 Fig. 3). Phytolith analysis is commonly performed on samples obtained at
168 archaeological sites, but also in soils that are not associated with archaeological
169 settings such as lake sediments and terrestrial soils (Fig. 1). Phytoliths often
170 reflect localized plant decay, particularly in terrestrial soils, as they do not have
171 intrinsic dispersal mechanisms that would carry them considerable distances
172 from the depositional environment as can be the case with pollen. Studies of
173 phytoliths in surface soils from tropical forests in Panama showed that phytolith
174 movement, via fire, or surface water transport, can be as little as 25-30 m from
175 their source area (Piperno, 1988) or up to 100-120 m from their source plant
176 (Piperno, pers. Comm.; Piperno and McMichael, manuscript in
177 preparation). Further, lakes with in-flowing streams may contain phytoliths from
178 considerable distances, and in fluvial forest soils from Brazil, phytolith
179 movement from areas a substantial distance upstream is indicated (Watling et
180 al., 2016). Seasonally flooded savannas might be expected to be similar.

181 Phytoliths directly document different types of vegetation, such as
182 savanna, open forests with bamboo, evergreen, semi-evergreen, and deciduous
183 forest, and early successional growth typical of human disturbance. Phytoliths
184 also directly detect some major and now-minor crops and other economic plants,
185 (e.g., maize [*Zea mays* L], *Cucurbita* spp. [squashes and gourds], manioc [*Manihot*
186 *esculenta* Crantz], arrowroot [*Maranta arundinacea* L.], and various palm species)
187 (Carson et al., 2014; Dickau et al., 2013; Lombardo et al., 2020; McMichael et al.,
188 2012a; McMichael et al., 2012b; Piperno, 2006; Watling et al., 2016; Whitney et

189 al., 2013; Whitney et al., 2014). All palms, grasses, and sedges, and many
190 arboreal basal angiosperms and eudicotyledons, produce high phytolith
191 numbers diagnostic to at least the family, and not uncommonly, genus levels
192 (Huisman et al., 2018; Morcote-Ríos et al., 2016; Morcote-Ríos et al., 2015;
193 Piperno, 2006; Piperno and McMichael, 2023; Piperno et al., 2019; Witteveen et
194 al., 2022). The high phytolith production of palms and grasses also means that
195 their absence in the record actually represents the absence of these taxa in the
196 vegetation (Piperno et al., 2015). Not all plants produce phytoliths, however, and
197 some taxa will remain undetectable in reconstructions (Piperno, 2006). This is
198 the case with some major economically important trees, e.g., *Bertholletia excelsa*
199 (Brazil nut), *Annona* spp. (soursop, cherimoya), guava (*Psidium guajava* L.).
200

201

202 **Fig. 3:** Microfossils found in soils in Amazonia that can document human activity
203 and environmental changes. The top panel shows phytoliths from the tree
204 *Licania micrantha* Miq. (Chrysobalaneae), which are diagnostic to at least the
205 genus level (Piperno and McMichael, 2023) (Photo: Dolores Piperno). The
206 middle panel shows starch grains of *Phaseolus vulgaris* L. (beans) (Photo:
207 Dolores Piperno). The bottom panel shows charcoal isolated from Amazonian
208 soils (Photo: Crystal McMichael).

209

210

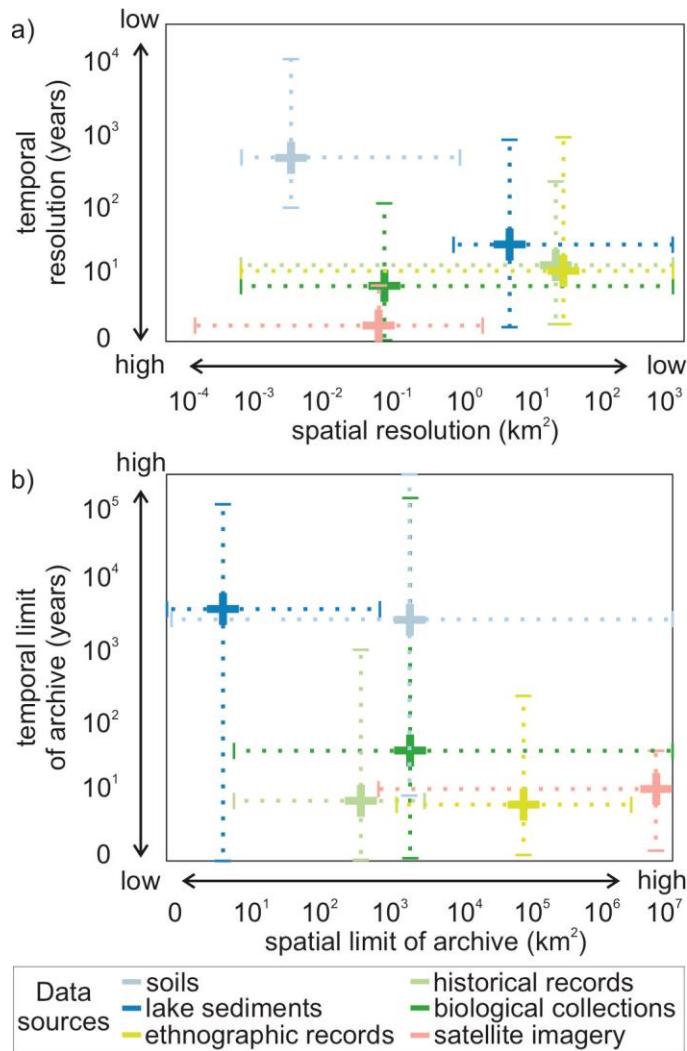
211 Starch grains (example shown in Fig. 3) can identify certain cultivars,
212 such as maize (*Zea mays* L.), squashes (*Cucurbita* spp.), manioc (*Manihot*
213 *esculenta* Cranz), and other tuber crops (e.g., Pearsall et al., 2004; Piperno, 2006;
214 Piperno, 2011). Some crops that do not produce phytoliths, such as peanuts
215 (*Arachis hypogaea* L.) and chili peppers (*Capsicum* spp.), have diagnostic starch
216 grains (e.g., Dickau et al., 2007; Ezell et al., 2006; Piperno, 2006). Beans,
217 including *Phaseolus* species, and some palm trees that were used by pre-
218 Columbian Indigenous Peoples also produce identifiable starch grains (Watling
219 et al., 2018). The starch grains are usually isolated from ceramics or stone tools
220 found at archaeological sites (Fig. 1) (Iriarte et al., 2004; Pearsall et al., 2004;
221 Watling et al., 2018; Young et al., 2023). Macrobotanical remains, often
222 carbonized, are typically recovered from site sediments and along with the
223 starch grains and phytoliths, provide empirical evidence for the diets and
224 lifestyles of pre-contact Indigenous Peoples (e.g., Furquim et al., 2021; Watling et
225 al., 2018).

226 Macroscopic charcoal fragments (e.g., > 500 μ m) found in soils, including
227 at archaeological sites, represent localized past fire events (e.g., Rhodes, 1998;
228 Whitlock and Larsen, 2002) (example shown in Fig. 3). In the aseasonal forests
229 with a limited dry season (for instance, those found in northwestern Amazonia),
230 forest fire almost always starts with human intervention (Fig. 1) (Bush et al.,
231 2008; Malhi et al., 2008). The presence of charcoal in these aseasonal forests
232 indicates human activity (Bush et al., 2008), but escaped wildfires in these areas
233 can also occur during extreme droughts (Flores et al., 2017). In drier areas, i.e.,
234 the seasonal forests that border savannas in eastern Amazonia, fires are less
235 dependent on human ignition, but are still more frequent when humans are

236 present (Alencar et al., 2004; Maezumi et al., 2015; Maezumi et al., 2018b;
237 Nepstad et al., 2004; Power et al., 2016; Ramos-Neto and Pivello, 2000).
238 Paleoecological and archaeological data show that fire frequency across
239 Amazonia was more frequent in the late Holocene, when climate was wetter than
240 the early- to mid-Holocene (Arroyo-Kalin and Riris, 2021; McMichael and Bush,
241 2019; Nascimento et al., 2022), highlighting that the primary source of ignition
242 was human activity.

243 Charcoal retains diagnostic morphological features of the plant from
244 which it is derived, and can be used to identify types of plants, e.g., woody versus
245 non-woody taxa (Bodin et al., 2020; Di Pasquale et al., 2008; Orvis et al., 2005).
246 Charcoal morphology can sometimes provide taxonomic identification to the
247 family-level and sometimes genus or species level in tropical ecosystems, and
248 has been used to characterize land use and successional forests at archaeological
249 sites (Bachelet and Scheel-Ybert, 2017; Bodin et al., 2019; Cartwright, 2015;
250 Fernandes Caromano et al., 2013; Goulart et al., 2017; Iriarte et al., 2020; Scheel-
251 Ybert et al., 2014). The chemical properties (i.e., FTIR spectroscopy) of charcoal
252 fragments can also be used to infer burn temperature of the fire events, and can
253 also distinguish plant types (e.g. woody vs grassy material) that were burned
254 (Gosling et al., 2019; Maezumi et al., 2021).

255 With soil surveys to reconstruct past fire events, replicate soil cores are
256 typically collected from a given site (100m – 200 m radius) (Hammond et al.,
257 2006; McMichael et al., 2012a; McMichael et al., 2012c) to account for the uneven
258 deposition of charcoal that occurs on localized scales after burning of vegetation
259 (e.g. Lynch et al., 2004). Thus, the repeated absence of charcoal from soil cores
260 located in close proximity can be confidently interpreted that the sampled area


261 truly lacked fire rather than the sampling was unable to detect the fire
262 (McMichael et al., 2015; McMichael et al., 2012a). Replicate soil cores can also
263 indicate whether large tracts of vegetation were burned or repeatedly burned,
264 especially if some of the particles are ^{14}C AMS dated (Feldpausch et al., 2022;
265 Heijink et al., 2022; McMichael et al., 2012a; Sanford and Horn, 2000; Whitlock
266 and Larsen, 2002). Replicate cores are often also analysed to look at how
267 vegetation change has occurred over relatively small geographic scales or along
268 environmental gradients (e.g., Heijink et al., 2022; McMichael et al., 2012a;
269 McMichael et al., 2012b; Watling et al., 2017).

270 Stable carbon and nitrogen isotopes are commonly used to infer
271 vegetation dynamics (Fig. 1) (de Freitas et al., 2001; Pessenda et al., 1998).
272 Stable carbon isotopes from soils have also been used to infer landscape
273 transformations by pre-Columbian Indigenous Peoples. These are particularly
274 useful for documenting changes or shifts between C3 and C4 grass assemblages
275 and vegetation changes on pre-Columbian raised fields (Iriarte et al., 2010;
276 McKey et al., 2010; Watling et al., 2017). The analysis of stable carbon and
277 nitrogen isotopes from bone collagen has also been used to reconstruct dietary
278 changes in pre-Columbian Indigenous Peoples (e.g., Colonese et al., 2020;
279 Roosevelt, 1989).

280 Soils have a very high spatial resolution as multiple samples can be
281 collected within meters of each other (i.e., high potential sampling frequency)
282 and a very high spatial limit because they are found almost everywhere in
283 terrestrial systems (Fig. 4). The temporal limit of soils is also very high; soils
284 capture evidence from modern times to thousands of years ago (Fig. 4). The
285 uppermost 1m of Amazonian soils typically represent the last several thousand

286 years (Piperno, 2016; Piperno et al., 2021). Soils, however, have a low temporal
287 resolution due to processes such as soil formation, erosion, and bioturbation,
288 and establishing age-depth relationships is not always possible (e.g., Mayle and
289 Iriarte, 2014; Sanford and Horn, 2000)(Fig. 4a). Radiocarbon (^{14}C AMS) dates
290 from archaeological sites or soil microfossils usually have a 2-sigma precision of
291 ca. 100 years (Neves et al., 2004; Piperno, 2016; Schaan et al., 2012; Taylor and
292 Bar-Yosef, 2016). When multiple dates are obtained from the same core,
293 however, general trends in fire or vegetation of older to younger within soil
294 cores can often be established (e.g., Hill et al., 2023; McMichael et al., 2012a;
295 McMichael et al., 2012c; Piperno et al., 2021).

296

297

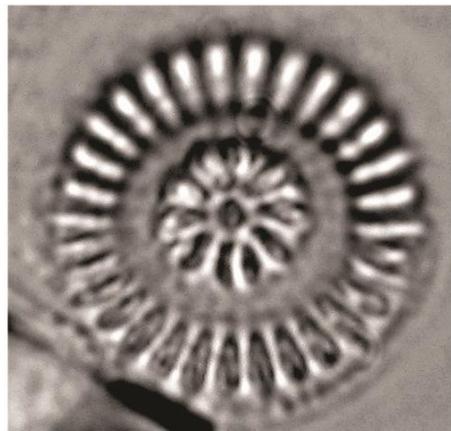
298 **Fig. 4:** The spatial and temporal characteristics of data sources used to assess
 299 past human activities and vegetation change. (a) Each type of archival material
 300 color-coded and plotted in relation to its spatial resolution (the highest possible
 301 sampling frequency of archival material across space) and temporal resolution
 302 (the highest possible sampling frequency of archival material through time). (b)
 303 The types of archival materials are plotted in relation to their spatial and
 304 temporal limits (the total amount of space or time captured within an archive).
 305 Dotted lines indicate the potential range of resolution/limit achieved from each
 306 data source. Crosses are centered on the most common resolution/limit achieved
 307 by sampling efforts on the data sources in Amazonia.

308

309 **3. Lake sediments as local- to regional-scale archives of pre-Columbian**

310 **Indigenous human activity and vegetation change**

311 Like soils, lake sediments also contain microfossils that can be used to
312 document pre-Columbian human activities and the resulting legacies on
313 ecosystems. Lakes sufficiently old for palaeoecological studies are rare across
314 much of Amazonia, limiting the spatial resolution of palaeo-vegetation
315 reconstructions (Bush and Silman, 2007), although the temporal resolution can
316 sometimes be high (Fig. 4). Unlike soils, lake sediments typically have continuous
317 deposition and thus robust stratigraphic integrity, and age-depth relationships
318 can be derived that place temporal frameworks on human activities and
319 environmental change. Most lake sediment records from Amazonia contain
320 samples analyzed at centennial scale temporal resolution (e.g., every century to
321 several hundred years)(Nascimento et al., 2022). In rare deep lakes with anoxic
322 conditions, however, the sediments may retain sub-decadal stratigraphy,
323 allowing an almost continuous insight into the local dynamics of human activity
324 and forest recovery (Fig. 4) (Åkesson et al., 2021; Bush et al., 2016; Bush et al.,
325 2021a). The temporal limit of lake sediment records varies depending on lake
326 type, local depositional environment and preservation conditions (Fig. 4). Few
327 sites in Amazonia extend back to the Pleistocene (Mayle et al., 2000; Whitney et
328 al., 2011), as most non-riverine lakes were formed (and sedimentation began) in
329 the mid- to late-Holocene periods (ca. 8000-4000 years ago) (e.g. Bush and
330 McMichael, 2016; Bush et al., 2007; Carson et al., 2014; Nascimento et al., 2022;
331 Urrego et al., 2013).


332 Charcoal abundances and their changes within a sedimentary sequence
333 are typically used to infer changes in the amount of biomass burning in the
334 surrounding landscape (e.g. Marlon et al., 2013; Marlon et al., 2016); equated to
335 fire severity (Keeley, 2009). Charcoal particles are deposited into lake sediments
336 from airborne or terrestrial sources, and assessing size classes of charcoal
337 particles is commonly used to distinguish local from regional input (Clark and
338 Royall, 1996; Sanford and Horn, 2000). The relationships between charcoal
339 abundance and biomass burned, and the source area of charcoal particles for
340 Amazonian lakes remain poorly documented and need further exploration.

341 Organic macrofossils and microfossils (e.g., pollen and spores) that decay
342 in soils typically preserve in lake sediments. Fungal spores can be associated
343 with fire and thus human activity (Fig. 1) (Brugger et al., 2016; Loughlin et al.,
344 2018). Tree and shrub pollen can generally be identified to a more specific
345 taxonomic level than phytoliths, although the inverse is true for herbaceous taxa
346 (especially grasses and sedges) and palm taxa (Piperno, 2006). Over 1000 pollen
347 morphotypes from Amazonia have been identified and catalogued (Bush and
348 Weng, 2007), with up to over 100 pollen types being identified within a single
349 pollen sample (Åkesson et al., 2021). Pollen from domesticated maize (*Zea mays*)
350 (see example in Fig. 5) can be reliably identified because wild *Zea* does not occur
351 in South America, but major crop plants such as manioc (*Manihot esculenta*) and
352 sweet potato (*Ipomoea batatas*) cannot be differentiated from their wild
353 varieties using pollen because the latter are native to South America, and
354 taxonomic distinctions cannot reliably be made (Mayle and Iriarte, 2014;
355 Whitney et al., 2012).

356

50 μm

5 μm

357 **Fig. 5:** Microfossils found in Amazonian lakes that can indicate human activity or
358 environmental change. The top panel shows a pollen grain of *Zea mays* (corn),
359 and the bottom panel shows a diatom, *Discostella stelligera* (Cleve & Grun.) Houk
360 & Klee, which can indicate water turbidity or lake level. (Photos: Majoi de Novaes
361 & Nascimento).

363

364 The spatial representation of pollen and phytolith data depends on site-
365 specific characteristics of the lake. Phytoliths from lake sediment cores have
366 varying source areas that depend on lake size and the presence of in-flowing
367 streams; the assemblages are often mixtures of these source areas (Carson et al.,
368 2014; Mayle and Iriarte, 2014; Piperno, 2006; Plumpton et al., 2020; Whitney et
369 al., 2013; Whitney et al., 2014). Pollen assemblages also reflect a combination of

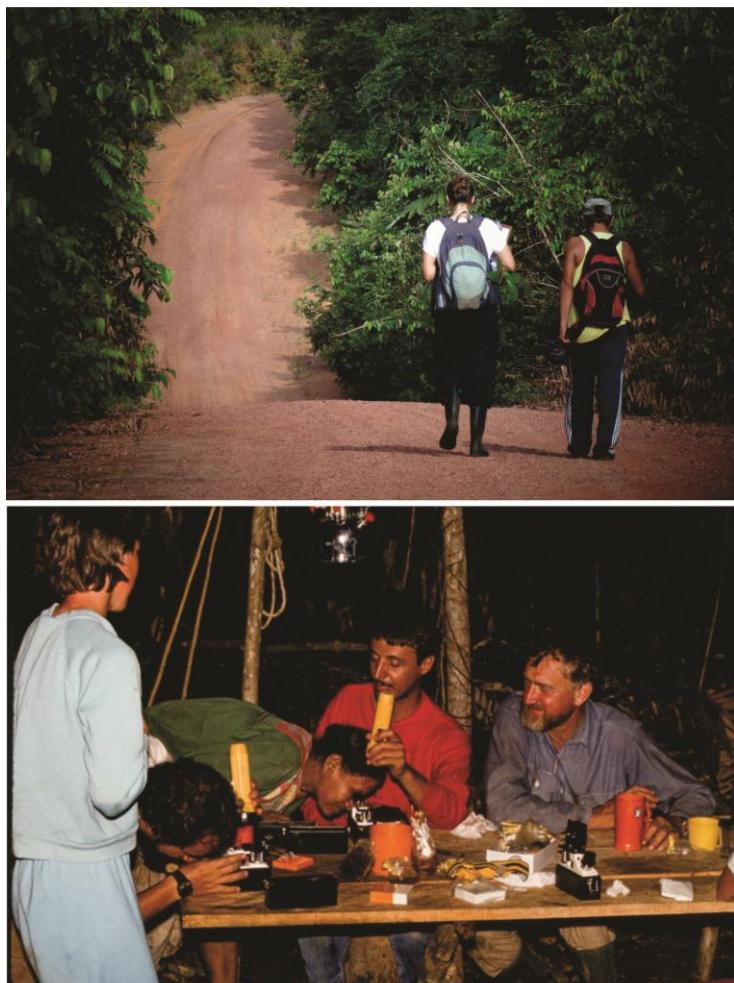
370 local and regional inputs, and this varies, not only depending upon lake size and
371 the presence or absence of inflowing streams, but also on the relative proportion
372 of wind-pollinated taxa in the parent vegetation (Bush et al., 2021b; Jacobson
373 and Bradshaw, 1981). In the forest-savanna ecotone regions of Bolivia, where
374 the dominant forest taxa (e.g. Moraceae) have wind-dispersed pollen, large lakes
375 may have a pollen source area of up to 40 km (Whitney et al., 2019). However, in
376 many areas of Amazonia, closed-canopy forests are dominated by insect-
377 pollinated taxa, where very small lakes register much smaller pollen source
378 areas of potentially only 1-2 km² (Blaus et al., 2023). Differentiating between
379 local- and regional-scale human land-use and deforestation is possible, however,
380 with pollen analyses from tight clusters of small lakes (Bush et al., 2007) or pairs
381 of small and large lakes (Carson et al., 2014). It is also important, where
382 possible, to pair lake sediments from small lakes with nearby archaeological
383 sites to provide matching spatial resolution and a continuous temporal
384 framework of past land use (Carson et al., 2014; Mayle and Iriarte, 2014;
385 Whitney et al., 2014).

386 Diatoms are siliceous microalgae that are found in water bodies that
387 provide information about environmental or hydrological conditions (e.g.,
388 Battarbee, 1986; Benito et al., 2018) (Fig. 1, for example see Fig. 5). Diatoms are
389 commonly assessed in lake sediment reconstructions, and can indicate changes
390 in hydrology (e.g., lake level recorded by changing proportions of deep *versus*
391 shallow water taxa) or water quality that are related to climate dynamics (Castro
392 et al., 2013; Nascimento et al., 2021) (Fig. 1). Diatoms, however, can also provide
393 information about pre-Columbian human activity in Amazonia (Fig. 1). They
394 have been used to document changes in wetland management (Duncan et al.,

395 2021), and nutrient status and productivity (Bush et al., 2016). Diatom
396 assemblages can also be used to parse apart climatic and human-induced
397 vegetation changes in lake sediment records (e.g., Bush et al., 2000) (Fig. 1).

398 Lake sediments also contain stable isotopes and chemical elements that
399 can shed light on pre-Columbian human activity (Fig. 1) (Hodell et al., 2005;
400 Hodell et al., 1995). For example, Ca++ and K+ concentrations were used to
401 provide information on lake level changes related to climatic fluctuations
402 alongside human activity (Bush et al., 2000; Sahoo et al., 2019). More recently,
403 micro- X-ray fluorescence (XRF) has become a standard tool in paleolimnology,
404 including multivariate analysis of XRF data (Parsons et al., 2018) or ratios of
405 cation concentrations, such as Ca/Ti (proxy for drought), Fe/Mn (proxy for lake
406 depth) or Rb/Sr (proxy for grain size) (Davies et al., 2015). XRF data have been
407 used to reconstruct human-induced soil runoff and erosion (Åkesson et al.,
408 2019), and to place human activities in a context of environmental change
409 (Aniceto et al., 2014; Maezumi et al., 2018b; Rodríguez-Zorro et al., 2015).

410 Sediment color, which reflects abundances of organic material and clays, can also
411 provide information on environmental rhythms or human-induced change (Bush
412 et al., 2017; Bush et al., 2000; Rodbell et al., 1999).


413

414 **4. Ethnographic, ethnohistorical and ethnoecological data provide insights
415 into pre-Columbian Indigenous human activity and vegetation change**

416 Ethnographic, ethnohistorical and ethnoecological studies can be used to
417 assess, document, interpret and obtain insights from Indigenous and local
418 knowledge systems (for example see Fig. 6). Indigenous and local knowledge
419 systems provide valuable information that can be used to interpret pre-

420 Columbian human activities (Fig. 1) (Cassino et al., 2019), such as: (i) resource
421 use and management, including past and modern distributions of plant resources
422 (Cassino et al., 2019; Levis et al., 2018; Levis et al., 2020); (ii) how lifestyles and
423 resource management systems influence, and are influenced by landscapes
424 (Balée, 2006); (iii) the technological and labour constraints on resource use
425 (Junqueira et al., 2016); and (iv) the population densities that can be sustained in
426 different ecosystems and by different production systems (Heckenberger et al.,
427 2008).

428

429

430 **Fig. 6:** Examples of ethnographic studies and working with Indigenous and local
431 people in Amazonia. Top panel shows researcher Carolina Levis conducting an

432 ethnoecological study with a local resident of the Tapajós National Forest of
433 Brazil (Photo taken in 2014 by Bernardo Flores). Bottom panel shows
434 researchers Paul Colinvaux (right), Paulo de Oliveira (second from right) and
435 Melanie Reidinger (left) exchanging knowledge of microfossils and Amazonian
436 plants with members of the Siona ethnic group (Photo taken in 1988 by Mark
437 Bush).

438

439 Ethnography refers to the in-depth description of everyday life and
440 practice of a given culture or society [Oxford (2016); see also Hammersley and
441 Atkinson (2007) for a broader definition], and ethnohistory combines
442 ethnography with the scrutiny of historical records and other sources of
443 information (Axtell, 1979). Ethnoecology is the study of people's interactions
444 with their environment, often with special attention to current knowledge and
445 practices concerning resource use and management, including the subdisciplines
446 of ethnobotany and ethnozoology (Martin, 2004). The subdiscipline of
447 ethnoarchaeology involves ethnographic studies performed by archaeologists
448 with an explicit focus on material culture (Politis, 2014). Much of the culture and
449 resource management practices of the current inhabitants of Amazonia have
450 been inherited from pre-Columbian populations, but transformed to different
451 extents because of the heterogeneous and discontinuous history of human
452 occupation in the region (Cleary, 2001; Denevan, 2001). For example, European
453 arrival caused a massive die-off of Indigenous populations (Denevan 1992), and
454 many of the remaining groups were fragmented, displaced, or enslaved during
455 European colonization (Dobyns, 1966). Thus, the projection of ethnographic data
456 to past lifestyles and production systems requires caution (McClanahan et al.,

457 2015). Ethnographic data cannot always be tied to human activity at specific
458 times in the past, but local Indigenous knowledge is crucial to locating ancestral
459 forests, anthropogenic soils and other signs of human activity, especially in
460 remote regions (Franco-Moraes et al., 2019; Kopenawa and Albert, 2023).

461 Indigenous Peoples are the descendants of native ethnic groups that
462 retain historical and cultural connections with pre-Columbian Indigenous
463 societies, though major social disruptions and upheavals occurred with
464 European colonizations (Cook, 1998; Livi-Bacci, 2016). Most ethnographic and
465 ethnoecological studies were done by non-Indigenous scientists. Recent
466 collaborative studies with contemporary Indigenous people have posited that
467 Amazonian ecosystems have been transformed by an extensive and long-term
468 network of social relations and interconnections between humans (e.g.,
469 Heckenberger et al., 2008; Ribeiro et al., 2023). Future research should promote
470 participatory and collaborative approaches, as Indigenous people and their
471 knowledge systems can inspire new ideas to enhance understanding of
472 human activities and vegetation changes (for example see Fig. 6).

473 Archaeological evidence combined with observation of Indigenous
474 production systems suggests, for example, that pre-Columbian production
475 systems in some regions seem to have been much more based on agroforestry
476 and on the management of forest and aquatic resources compared with colonial
477 systems (Maezumi et al., 2018a; Moraes, 2015; Neves, 2013; Shepard Jr et al.,
478 2020). Ethnographic work on current soil and waste management systems has
479 also been essential to our understanding of the processes that led to the
480 formation of Amazonian Dark Earth (ADE) (Hecht, 2003; Schmidt et al., 2014;
481 Winklerprins, 2009).

482 The variance and scarcity of ethnographic data limits extrapolations of
483 locally derived information to other regions within Amazonia. For example,
484 while major crops like maize and manioc were grown in most regions of the
485 basin, some minor crops, or useful native species, that are culturally or
486 economically important in a certain region may not be so in others. Instead of a
487 direct projection of the present into the past, ethnographical research provides
488 *insights* to further understand ancient Indigenous livelihoods, resource
489 management strategies and their potential impacts in past and current
490 landscapes (McClenachan et al., 2015). Ethnographic studies also provide
491 valuable information on Indigenous resource use and societal practice since
492 European colonization, and facilitate disentangling the effects of pre- and post-
493 Colonial human activities in current landscapes (Forline, 2008). Ethnographic
494 data can be paired with linguistics, as it is known that groups within the same
495 language families are more likely to share similar resource management
496 systems, e.g., the Arawak (Eriksen and Danielsen., 2014). Historic distributions of
497 Indigenous languages (e.g., Eriksen, 2011), may thus facilitate ethnographic
498 projections across space since European colonization.

499 Historical documents originating during the early colonization of
500 Amazonia may also provide insight into pre-Columbian Indigenous land use
501 systems. Francisco Orellana led the first expedition down the Amazon River in
502 AD 1540, which was recorded by Gaspar de Carvajal (Medina, 1934). Early
503 colonists moved in and established Jesuit missions later in the AD 1600s in
504 several regions (Reeve, 1994), and the Amazonian Rubber Boom occurred from
505 ca. AD 1850-1920 (Hecht and Cockburn, 2010; Weinstein, 1983). All these events

506 had corresponding historical documents that recorded aspects of Indigenous
507 Peoples and their interactions with the colonists.

508 The spatial resolution of ethnographic records and historical data has the
509 potential to be very high (Fig. 4). There is also a high potential temporal
510 resolution of both historical and ethnographic records, though available data
511 through time are relatively sparse. The temporal limit of historical documents
512 encompasses only the last several hundred years since European arrival, and the
513 temporal limit of ethnographic records is bound by the memories of local
514 residents, although it can extend much further back in time through knowledge
515 transmission across generations (Fig. 4b). Because of the fragmentation and
516 upheaval of Indigenous populations after European colonization, it remains
517 contentious as to how far back in time ethnography can be extrapolated back. In
518 some cases there is a strong cultural and historical continuity between ancient
519 and contemporary Indigenous Peoples, but in other cases contemporary
520 Indigenous Peoples have inhabited their current lands for only several decades
521 (e.g., the Kichwa People of Andean descent that now inhabit areas of lowland
522 Ecuador).

523

524 **5. Modern datasets provide insight to pre-Columbian Indigenous human**
525 **activities and vegetation change: Biological collections and remote sensing**
526 **data**

527

528 Biological collection records include plant and animal surveys
529 (inventories), biological or ecological monitoring networks (e.g., Anderson -
530 Teixeira et al., 2015; Malhi et al., 2002; ter Steege et al., 2013), and herbarium or

531 museum specimens (e.g., Feeley and Silman, 2011) (for example see Fig. 7).
532 These biological collection records are used to assess the presence, absence, and
533 abundances of plants and animals in modern ecosystems (or those during the
534 historic period). Although biological records provide valuable information about
535 past (pre- and post-colonial) activities, they do not directly measure pre-
536 Columbian Indigenous influences on ecosystems (Fig. 1). Biological records need
537 linkages with archaeological, paleoecological, genetic, or ethnographic data on
538 the degree and form of past human activities to infer cause and effect
539 relationships (e.g., Heijink et al., 2022; Heijink et al., 2020; Levis et al., 2017;
540 Piperno et al., 2021).

541

542

543 Fig. 7: Researcher Carolina Levis measures and identifies a piquá tree (*Caryocar*
544 *villosum*) with a local resident of the Tapajós National Forest of Brazil (Photo:
545 Bernardo Flores).

546

547 Past and current human activities are increasingly recognized as factors
548 influencing species' distributions (Boivin et al., 2016; Di Marco and Santini, 2015;
549 Gallardo et al., 2015; Guisan and Thuiller, 2005; Halpern et al., 2008). Humans
550 have modified the distribution range and abundance of several plant species,
551 expanding the distribution of useful and domesticated plants more often than
552 plants without a documented use to humans (Balée 1989, Levis et al. 2017,
553 Coelho et al. 2021). For instance, manioc (*Manihot esculenta*) was cultivated by
554 Indigenous people throughout the Holocene (Piperno, 2011). Currently,
555 domesticated manioc populations are cultivated throughout the tropics, while
556 the direct ancestor of domesticated manioc (*M. flabellifolia*) is limited to South
557 America (Olsen and Schaal, 1999). Differences between the natural distribution
558 and the human-modified distribution of cultivated species, and especially those
559 with domesticated populations can indicate past human activities. Several palms
560 and trees that are used for food are abundant in plant assemblages of
561 archaeological sites (Balée, 1989; Junqueira et al., 2010). Modern plant
562 inventories that are closer to archaeological sites also tend to have a higher
563 abundance and diversity of useful and domesticated plants (Levis et al., 2017;
564 Levis et al., 2012; Thomas et al., 2015).

565 Plant genetic material (DNA) is typically derived from plants but can also
566 be found in soils and sediments. Genetic material from plant remains can be
567 linked with past events in human history, such as plant domestication and
568 migrations (Fig. 1) (e.g. Clement, 1988a; Clement, 1988b; Gutaker and Burbano,
569 2017; Moreira et al., 2017; Roullier et al., 2013). Genetic studies can also provide
570 information about species with populations that were domesticated by humans,

571 because selection and cultivation of desirable phenotypes results in changes in
572 morphology, physiology, and genotype of descendent populations (Emshwiller,
573 2006; Harlan, 1992; Olsen and Schaal, 2001). The whole set of selected
574 phenotypic changes in a species is termed its domestication syndrome, which
575 can be studied with morphological, chemical, archaeobotanical, and molecular
576 genetic methods (e.g. Emshwiller, 2006; Meyer et al., 2012; Smith, 2006).

577 Species with populations with some degree of domestication show
578 patterns of morphological variation and genetic diversity and structure across
579 geographical space that result from domestication events, dispersal and
580 subsequent diversification (Meyer and Purugganan, 2013). Economically
581 important domesticates are more likely to show dramatic morphological
582 changes, such as a 2000% increase in fruit size from wild source populations of
583 peach palm (*Bactris gasipaes*) compared with some domesticated populations
584 (Clement, 1988b). Dispersal events are often accompanied by other natural and
585 human selection pressures, resulting in diversification of uses, variation in
586 morphology, chemical composition and physiology (Meyer and Purugganan,
587 2013), and adaptation to domesticated landscapes (Clement, 1999).

588 Until very recently, plant geneticists worked exclusively with living plants
589 or samples collected over the last 200-300 years (e.g., Roullier et al., 2013). Over
590 the last decade, new molecular genetic methods have allowed the extraction and
591 analysis of DNA from archaeobotanical remains (Wales et al., 2014). Ancient
592 DNA (aDNA) is increasing the ability to document the genetic history of plants,
593 can differentiate crops from their wild ancestors, or estimate genetic change and
594 migration of domesticated plants or cultivars over time (Freitas et al., 2003;
595 McLachlan and Clark, 2005; Piperno, 2011). It is now even possible to extract

596 and date aDNA recovered from pollen grains found in lake sediments and
597 historical samples (Gutaker and Burbano, 2017; Parducci et al., 2017). aDNA is
598 denatured very rapidly in tropical lake sediments (due to the hot, wet
599 conditions), though extraction has been successful in the African tropics
600 (Bremond et al., 2017). Geographic representation of aDNA samples is patchy,
601 although many crop plants have been databased.

602 Biological collection records can be collected from anywhere on Earth, so
603 their potential spatial limit is endless (Fig. 4). To date, however, sampling covers
604 only a small portion of the 6 million km² of Amazonia (Carvalho et al., 2023; ter
605 Steege et al., 2013). Ground based surveys of plant and animal distributions and
606 abundances can also have high spatial resolution, with hierarchies of transects or
607 1-ha plots commonly clustered within a region (e.g., ter Steege et al., 2013).
608 Biological inventories can also be measured at yearly frequencies, and have high
609 temporal resolution, but most repeated censuses only span a few decades (Malhi
610 et al., 2002; Phillips et al., 1994)(Fig. 4).

611 Ground-based biological collections and satellite imagery are often paired
612 in modern ecological and global change studies. Satellite imagery has also been
613 used to infer soil and vegetation legacies of pre-Columbian land use (Iriarte,
614 2016; Palace et al., 2017; Thayn et al., 2011). Satellite data from Landsat,
615 Sentinel, and MODIS, typically capture landscape features at 30-m to 1-km
616 spatial resolution (Fig. 4). Landsat has been used to detect legacies of pre-
617 Columbian land use (Heckenberger et al., 2003; Söderström et al., 2016), and
618 MODIS has been used to detect or predict Amazonian Dark Earth (ADE) (Palace
619 et al., 2017; Thayn et al., 2011). This detection is possible because pre-Columbian
620 Indigenous Peoples permanently changed the soil characteristics, which affects

621 the types of vegetation that can grow on those soils (Junqueira et al., 2011). The
622 differences in modern biomass between ADE and forested non-ADE sites within
623 the same region is also detectable using MODIS satellite imagery (Palace et al.,
624 2017).

625 Remotely sensed data has low temporal limits (Fig. 4). Satellite images
626 are only available for the last few decades, although aerial images may extend
627 further back in time. However, they have higher spatial limits than biological
628 collections, and usually have Amazonian-wide spatial coverage (Fig. 4).

629

630 **6. Dating data sources and proxies used in assessing pre-Columbian**
631 **Indigenous human activity and vegetation change**

632

633 Different scientific disciplines assessing pre-Columbian Indigenous
634 human activities place differing emphases on dating or age control of their data
635 sources or proxies. In soils, archaeologists and paleoecologists typically use ¹⁴C
636 AMS dating (radiocarbon dating) to obtain ages on specific material(s) of
637 interest. In archaeological surveys, multiple ages are usually derived from
638 specific horizons of interest where artifacts are recovered (e.g., Roosevelt et al.,
639 1996). Sometimes, however, ages of specific horizons are inferred from a known
640 type of pottery or artifact that has been recovered and dated from another
641 location (e.g., McEwan, 2001). Paleoecologists will typically obtain dates from
642 individual charcoal fragments or conglomerations of phytoliths recovered from
643 soil cores or profiles (e.g., Heijink et al., 2022; McMichael et al., 2012a; Piperno et
644 al., 2021; Watling et al., 2017). In both archaeological and paleoecological
645 surveys in soils, repeated dating across sites can help determine the

646 synchronicity of events across space. Because of soil bioturbation, age-depth
647 models are not applied to soil profiles. General stratigraphic trends, however, are
648 often intact (Piperno et al., 2021; Watling et al., 2017).

649 Lake sediments typically retain stratigraphic integrity, and age-depth
650 models (e.g., Blaauw and Christen, 2011) are often used to reconstruct a
651 temporally continuous sedimentary sequence. The age-depth models typically
652 require fewer ^{14}C dates than may be obtained with soil surveys, but the more
653 dates obtained on a sequence, the more confidence can be placed in the model.

654 With lake sediments, specific layers of change or markers of human activity can
655 be directly dated to provide additional confidence for the timing of those events.

656 Additional temporal control can also be placed on the younger sections of lake
657 sediment cores using ^{210}Pb dating, which can be used on sediments less than 150
658 years old (e.g., Sanchez-Cabeza and Ruiz-Fernández, 2012). Age-depth models
659 can incorporate mixtures of ^{210}Pb and ^{14}C dates (Aquino-López et al., 2018),
660 which can be particularly useful for increasing confidence in the ages of
661 sediments around the period of European Contact.

662 The other data sources included in this review are not based on
663 laboratory dating of materials or sediments. Historical records have specific ages
664 corresponding to the dates they were produced. It is not possible to place
665 specific dates or ages on Indigenous knowledge, or its interpretation through the
666 studies of ethnography, ethnohistory, or ethnoecology. It is possible, however, to
667 correlate some historical events or personal events, such as the arrival of
668 missionaries in an Indigenous community or abandonment of a village with
669 changes in resource use and management. This information is crucial to

670 understanding how pre-Columbian people lived, even though specific ages are
671 difficult to obtain.

672 Modern datasets, including living plants and museum specimens, may
673 have specific dates recorded. Inferring an age when pre-Columbian Indigenous
674 people shaped plant abundances or plant growth patterns (for instance) is
675 possible with the direct dating of living materials using a combination of
676 dendrochronology, radiocarbon analysis, stable isotope analysis and DNA
677 analysis (Caetano-Andrade et al., 2020). Recent advances in genetic methods
678 have ages inferred also from molecular clocks and DNA-based dating method for
679 ancient genomes (Kistler et al., 2020).

680

681 **7. Discussion: Moving forward**

682 Understanding the interactions of pre-Columbian people and their
683 environments in Amazonia is important for sustainability science, conservation
684 biology and cultural anthropology (Levis et al., 2017; Mayle and Iriarte, 2014;
685 McMichael et al., 2017; Roberts et al., 2017; Szabó and Hédl, 2011; Watling et al.,
686 2017; WinklerPrins and Levis, 2020). Here we have provided a review of the
687 most commonly used sources and proxies for reconstructing pre-Columbian
688 human activity in Amazonia (Fig. 1) and have described the associated
689 advantages and limitations of each by assessing their potential spatial and
690 temporal resolution and limits (Fig. 4). We acknowledge that a comprehensive
691 assessment of all proxies of Indigenous human activity is beyond the scope of
692 this manuscript. For example, proxies such as lipid biomarkers have been used
693 to assess the components of anthropogenic soils (Glaser, 2007). Fecal
694 biomarkers are a newly emerging proxy that is being used to detect past human

695 activity (Argiriadis et al., 2018; Zocatelli et al., 2017). These proxies have not yet
696 been used in Amazonian systems, though show great promise in other
697 geographic regions. The preservation of biomarkers and sterols in the humid
698 tropics, however, is likely poorer than in other areas.

699 Assessments of the long-term Indigenous history in Amazonia would be
700 stronger if ‘absence data’ from all lines of evidence were reported or archived in
701 data repositories. Ecological datasets, including plant inventory records, include
702 the presence, *absence*, and abundance of species within a given study area (e.g.
703 Hubbell, 1979; ter Steege et al., 2013), allowing for more robust statistical
704 analyses than presence-only analysis often applied to archaeological datasets
705 (e.g., McMichael et al., 2014a; McMichael et al., 2017). To fully understand the
706 impact of pre-Columbian people in Amazonian landscapes, the reporting of
707 ‘absence data’ (i.e., when there is no evidence of past human activity) is crucial.
708 For example, when identifying earthworks using remotely sensed data, the total
709 area surveyed and total number of earthworks found should be reported so that
710 site densities can be calculated and compared across regions. The entire area
711 sampled and information on the *absence* of ADEs using field-based surveys is
712 also rarely reported, and the varying densities of ADEs across the landscape
713 cannot yet be calculated. The same approach should apply for archaeological
714 surveys, in which generally a wide area is initially surveyed before determining
715 excavation locations. We suggest that efforts to compile and build repositories of
716 archaeological information should develop guidelines and protocols for
717 reporting and documenting absence data.

718 The ‘absence’ of evidence of human activities from paleoecological
719 proxies, including charcoal, pollen, and phytoliths is reported. However, because

720 these lines of evidence come from a limited amount of sample material, it is
721 possible that they are present but not detected. Thus, the absence of evidence is
722 not necessarily evidence of absence. This issue is partially overcome with
723 repeated sampling in the case of soil cores (i.e., multiple cores collected and
724 analysed per locality) (e.g., Heijink et al., 2022; McMichael et al., 2015; McMichael
725 et al., 2012a; Piperno et al., 2021), and with continuous sampling and the
726 analyses of multiple cores in a region in the case of lake sediments (e.g., Bush et
727 al., 2007; Carson et al., 2014).

728 Several predictive models have been developed for various types of
729 archaeological features in Amazonia and for the overall likely distribution of pre-
730 Columbian Indigenous Peoples in the region, which provide targets for future
731 archaeological surveys in the ca. 6 million km² of Amazonian forests (McMichael
732 et al., 2014a; McMichael et al., 2014b; McMichael et al., 2017; Souza et al., 2018;
733 Walker et al., 2023). Due to the lack of 'absence data', the only approaches
734 available for these predictions are models that require presence-only data (i.e.,
735 that do not require absence data). Absence data of all types would help to
736 validate and refine these models on both regional and continental-wide scales,
737 and open doors to an array of additional modelling approaches that could be
738 employed (McMichael et al., 2017). All types of models and other macro-
739 paleoecological and macro-archaeological syntheses would also further benefit
740 by including more precision in the geographic coordinates of localities being
741 studied (i.e., to ca. +/- 200 m spatial resolution), and more precision in the time
742 bins of analysis.

743 Perhaps the best way to strengthen assessments of past human activity is
744 via an interdisciplinary approach, pairing multiple proxies and multiple types of

745 data sources (Carson et al., 2014; Mayle and Iriarte, 2014; Watling et al., 2017;
746 Whitney et al., 2014). Without this pairing, it can be difficult to determine
747 whether the observed pattern is related to human activity or other forcing
748 mechanisms. Ideally, though not necessarily, those pairings should be spatially
749 overlapped. For example, Levis et al. (2012) paired plant distribution
750 information with charcoal recovered from soils beneath them, and found a
751 higher percentage of useful species in plots that contained higher amounts of
752 charcoal in the vicinity of archaeological sites. It is also well documented how
753 phytolith and pollen data complement one another in paleoecological and
754 archaeological reconstructions (Åkesson et al., 2021; Mayle and Iriarte, 2014;
755 Piperno, 2006). Phytoliths tend to be more sensitive to detecting cultivation,
756 forest openings, and some basal angiosperm and eudicotyledon tree taxa,
757 particularly in wet closed canopy forests (as opposed to the savanna ecotone
758 regions), whereas pollen can detect changes in tree taxon abundances that
759 remain undetectable in phytolith analyses (Åkesson et al., 2021; Piperno and
760 McMichael, 2023). Phytoliths identify basal angiosperm and eudicotyledon taxa
761 that pollen does not, and the two are highly complementary when they can be
762 studied together (Piperno and McMichael, 2023). Phytolith analysis has also
763 been paired with starch grain and stable carbon isotope analysis in
764 archaeological settings for a more comprehensive view of the diet and lifestyle of
765 pre-Columbian Indigenous people in Amazonia (Iriarte et al., 2010; McKey et al.,
766 2010). The pairing of proxies, or using multi-proxy approaches, can also aid in
767 detectability of past human influences whereas single proxies may lack
768 detectability of specific lines of evidence.

769 To move forward, the integration of data needs to occur across proxies,
770 data sources, and consider both spatial and temporal scales (Fig. 4). Either
771 within or between archives, a multi-proxy approach is more sensitive to
772 detecting past human activity than a single-proxy approach, providing more
773 confidence in conclusions on the presence or absence of pre-Columbian
774 Indigenous human activity and the impact that they caused on the landscape
775 (Fig. 1) (Clement et al., 2015; Iriarte, 2016; Mayle and Iriarte, 2014; Piperno,
776 2006). Recent research has already begun to integrate: (i) lake sediment data
777 with soil survey data from areas within the watershed (McMichael et al., 2012b),
778 (ii) terrestrial soil archives with archaeological sites containing earthworks
779 (Watling et al., 2017), (iii) lake sediment records, even with lakes of different
780 sizes reflecting different source areas, with archaeological sites (Carson et al.,
781 2014; Maezumi et al., 2018b; Whitney et al., 2013), (iv) geospatial patterns of
782 plant distributions with archaeological sites across Amazonia (Levis et al., 2017).
783 As trees in Amazonia can also be directly dated (Brienen and Zuidema, 2006;
784 Chambers et al., 1998; Schöngart et al., 2015), pairing the age of the modern
785 forest with archaeological, paleoecological and historical data could also prove
786 invaluable. In a recent example, Caetano Andrade et al. (2019) integrated
787 dendrochronology and historical data to evaluate Indigenous and traditional
788 management of a Brazil nut (*Bertholletia excelsa*) stand near an archaeological
789 site south of Manaus.

790 If the advantages and limitations of data used to infer pre-Columbian
791 Indigenous human activity are recognized and acknowledged, particularly
792 regarding spatial and temporal scale (Fig. 4), then disagreement among existing
793 and future datasets may be minimized. We also highlight the potential and

794 importance of bridging ethnography and ethnoecology with historical records,
795 archaeological data, and paleoecological data. Importantly, but often not
796 considered, the voices and knowledge of Indigenous Peoples should also be
797 integrated into scientific research designs (Trisos et al., 2021). Together, these
798 recommendations can advance the understanding of the complexity and
799 variation of pre-Columbian Indigenous human influences in tropical ecosystems,
800 such as Amazonia.

801

802

803 **Acknowledgements**

804 CNHM is funded by a European Research Council Starting Grant (ERC-StG
805 853394) and the Netherlands Organisation for Scientific Research (NWO) award
806 ALWOP.322. CL thanks the Brazilian National Research Council (CNPq) for a
807 doctoral research scholarships (proc. no. 141652/2014-4 and 201573/2014-8)
808 and CNPq and Capes for a postdoctoral fellowships (proc. no. 159440/2018-1,
809 88887.474568/2020 and 400369/2021-4). ABJ received funding from *Terra*
810 *Preta Program* funded by the Interdisciplinary Research and Education Fund
811 (INREF) of Wageningen University, from the Netherlands Organisation for
812 International Cooperation in Higher Education (NUFFIC), and from the European
813 Research Council under an ERC Consolidator Grant (FP7-771056-LICCI). DRP
814 thanks the Smithsonian Institution. We would all like to thank Bernardo Oliveira,
815 Bernardo Flores, Majoi de Novaes Nascimento, and Mark Bush for photo
816 contributions.

817

818 Bibliography

819
820 Åkesson, C.M., Matthews-Bird, F., Bitting, M., Fennell, C.-J., Church, W.B., Peterson,
821 L.C., Valencia, B.G., Bush, M.B., 2019. 2,100 years of human adaptation to climate
822 change in the High Andes. *Nature Ecology & Evolution*, 1-9.
823 Åkesson, C.M., McMichael, C.N., Raczka, M.F., Huisman, S.N., Palmeira, M., Vogel, J.,
824 Neill, D., Veizaj, J., Bush, M.B., 2021. Long - term ecological legacies in western
825 Amazonia. *Journal of Ecology* 109, 432-446.

826 Alencar, A.A.C., Solorzano, L.A., Nepstad, D.C., 2004. Modeling forest understory
827 fires in an eastern Amazonian landscape. *Ecological Applications* 14, 139–149.
828 Anderson - Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez - Akre, E.B.,
829 Muller - Landau, H.C., Joseph Wright, S., Abu Salim, K., Almeyda Zambrano, A.M.,
830 Alonso, A., Baltzer, J.L., 2015. CTFS - Forest GEO: a worldwide network
831 monitoring forests in an era of global change. *Global change biology* 21, 528-549.
832 Aquino-López, M.A., Blaauw, M., Christen, J.A., Sanderson, N.K., 2018. Bayesian
833 Analysis of 210 Pb Dating. *Journal of Agricultural, Biological and Environmental
834 Statistics* 23, 317-333.
835 Argiriadis, E., Battistel, D., McWethy, D.B., Vecchiato, M., Kirchgeorg, T., Kehrwald,
836 N.M., Whitlock, C., Wilmhurst, J.M., Barbante, C., 2018. Lake sediment fecal and
837 biomass burning biomarkers provide direct evidence for prehistoric human-lit
838 fires in New Zealand. *Scientific Reports* 8, 12113.
839 Arroyo-Kalin, M., Riris, P., 2021. Did pre-Columbian populations of the
840 Amazonian biome reach carrying capacity during the Late Holocene?
841 *Philosophical Transactions of the Royal Society B* 376, 20190715.
842 Axtell, J., 1979. Ethnohistory: An Historian's Viewpoint. *Ethnohistory* 26, 1-13.
843 Bachelet, C., Scheel-Ybert, R., 2017. Landscape and firewood selection in the
844 Santa Elina rock shelter (Mato Grosso, Brazil) during the Holocene. *Quaternary
845 International* 431, 52-60.
846 Balée, W., 1989. The culture of Amazonian forests, in: Posey, D.A., Balée, W.
847 (Eds.), *Resource management in Amazonia: Indigenous and folk strategies*. New
848 York Botanical Garden, New York, pp. 1-21.
849 Balée, W., 2006. The Research Program of Historical Ecology. *Annual Review of
850 Anthropology* 35, 75-98.
851 Balée, W., 2010. Contingent Diversity on Anthropic Landscapes. *Diversity* 2, 163-
852 181.
853 Barlow, J., Gardner, T.A., Lees, A.C., Parry, L., Peres, C.A., 2012. How pristine are
854 tropical forests? An ecological perspective on the pre-Columbian human
855 footprint in Amazonia and implications for contemporary conservation.
856 *Biological Conservation* 151, 45-49.
857 Barnosky, A.D., Lindsey, E.L., 2010. Timing of Quaternary megafaunal extinction
858 in South America in relation to human arrival and climate change. *Quaternary
859 International* 217, 10-29.
860 Battarbee, R.W., 1986. *Handbook of Holocene Palaeoecology and
861 Palaeohydrology*. John Wiley and Sons, New York.
862 Benito, X., Fritz, S.C., Steinitz - Kannan, M., Tapia, P.M., Kelly, M.A., Lowell, T.V.,
863 2018. Geo - climatic factors drive diatom community distribution in tropical
864 South American freshwaters. *Journal of Ecology* 106, 1660-1672.
865 Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an
866 autoregressive gamma process. *Bayesian Analysis* 6, 457-474.
867 Blaus, A., McMichael, C., Raczka, M., Herrick, C., Palace, M., Witteveen, N.,
868 Nascimento, M., Bush, M., 2023. Amazonian pollen assemblages reflect
869 biogeographic gradients and forest cover. *Journal of Biogeography*.
870 Bodin, S.C., Molino, J.-F., Odonne, G., Bremond, L., 2020. Unraveling pre-
871 Columbian occupation patterns in the tropical forests of French Guiana using an
872 anthracological approach. *Vegetation History and Archaeobotany* 29, 567-580.

873 Bodin, S.C., Scheel-Ybert, R., Beauchêne, J., Molino, J.-F., Bremond, L., 2019.
874 CharKey: An electronic identification key for wood charcoals of French Guiana.
875 IAWA journal 40, 75-S20.

876 Boivin, N.L., Zeder, M.A., Fuller, D.Q., Crowther, A., Larson, G., Erlandson, J.M.,
877 Denham, T., Petraglia, M.D., 2016. Ecological consequences of human niche
878 construction: Examining long-term anthropogenic shaping of global species
879 distributions. *Proceedings of the National Academy of Sciences* 113, 6388-6396.

880 Bremond, L., Favier, C., Ficetola, G.F., Tossou, M.G., Akouégninou, A., Gielly, L.,
881 Giguet-Covex, C., Oslisly, R., Salzmann, U., 2017. Five thousand years of tropical
882 lake sediment DNA records from Benin. *Quaternary Science Reviews* 170, 203-
883 211.

884 Brienen, R.J.W., Zuidema, P.A., 2006. The use of tree rings in tropical forest
885 management: Projecting timber yields of four Bolivian tree species. *Forest
886 Ecology and Management* 226, 256-267.

887 Brugger, S.O., Gobet, E., van Leeuwen, J.F., Ledru, M.-P., Colombaroli, D., van der
888 Knaap, W., Lombardo, U., Escobar-Torrez, K., Finsinger, W., Rodrigues, L., 2016.
889 Long-term man-environment interactions in the Bolivian Amazon: 8000 years of
890 vegetation dynamics. *Quaternary Science Reviews* 132, 114-128.

891 Bush, M., Correa-Metrio, A., McMichael, C., Sully, S., Shadik, C., Valencia, B.,
892 Guilderson, T., Steinitz-Kannan, M., Overpeck, J., 2016. A 6900-year history of
893 landscape modification by humans in lowland Amazonia. *Quaternary Science
894 Reviews* 141, 52-64.

895 Bush, M., Nascimento, M., Åkesson, C., Cárdenes-Sandí, G., Maezumi, S., Behling,
896 H., Correa-Metrio, A., Church, W., Huisman, S., Kelly, T., Mayle, F., McMichael,
897 C.N.H., 2021a. Widespread reforestation before European influence on
898 Amazonia. *Science* 372, 484-487.

899 Bush, M.B., Correa - Metrio, A., van Woesik, R., Collins, A., Hanselman, J.,
900 Martinez, P., McMichael, C.N., 2021b. Modern pollen assemblages of the
901 Neotropics. *Journal of Biogeography* 48, 231-241.

902 Bush, M.B., Correa - Metrio, A., Woesik, R., Shadik, C.R., McMichael, C.N., 2017.
903 Human disturbance amplifies Amazonian El Niño-Southern Oscillation signal.
904 *Global Change Biology* 23, 3181-3192.

905 Bush, M.B., McMichael, C.H., Piperno, D.R., Silman, M.R., Barlow, J.B., Peres, C.A.,
906 Power, M.J., Palace, M.W., 2015. Anthropogenic influence on Amazonian forests
907 in prehistory: An ecological perspective. *Journal of Biogeography* 42, 2277-2288.

908 Bush, M.B., McMichael, C.N., 2016. Holocene variability of an Amazonian
909 hyperdominant. *Journal of Ecology* 104, 1370-1378.

910 Bush, M.B., Miller, M.C., De Oliveira, P.E., Colinvaux, P.A., 2000. Two histories of
911 environmental change and human disturbance in eastern lowland Amazonia. *The
912 Holocene* 10, 543-554.

913 Bush, M.B., Silman, M.R., 2007. Amazonian exploitation revisited: Ecological
914 asymmetry and the policy pendulum. *Frontiers in Ecology and the Environment*
915 5, 457-465.

916 Bush, M.B., Silman, M.R., de Toledo, M.B., Listopad, C.R.S., Gosling, W.D., Williams,
917 C., de Oliveira, P.E., Krisel, C., 2007. Holocene fire and occupation in Amazonia:
918 Records from two lake districts. *Philosophical Transactions of the Royal Society
919 of London. Ser. B.* 362, 209-218.

920 Bush, M.B., Silman, M.R., McMichael, C., Saatchi, S., 2008. Fire, climate change and
921 biodiversity in Amazonia: a Late-Holocene perspective. *Philosophical*
922 *Transactions of the Royal Society B: Biological Sciences* 363, 1795-1802.
923 Bush, M.B., Weng, C., 2007. Introducing a new (freeware) tool for palynology.
924 *Journal of Biogeography* 34, 377-380.
925 Caetano Andrade, V.L., Flores, B.M., Levis, C., Clement, C.R., Roberts, P., Schöngart,
926 J., 2019. Growth rings of Brazil nut trees (*Bertholletia excelsa*) as a living record
927 of historical human disturbance in Central Amazonia. *PloS one* 14, e0214128.
928 Caetano-Andrade, V.L., Clement, C.R., Weigel, D., Trumbore, S., Boivin, N.,
929 Schöngart, J., Roberts, P., 2020. Tropical trees as time capsules of anthropogenic
930 activity. *Trends in Plant Science* 25, 369-380.
931 Carson, J.F., Whitney, B.S., Mayle, F.E., Iriarte, J., Prümers, H., Soto, J.D., Watling, J.,
932 2014. Environmental impact of geometric earthwork construction in pre-
933 Columbian Amazonia. *Proceedings of the National Academy of Sciences* 111,
934 10497-10502.
935 Cartwright, C.R., 2015. The principles, procedures and pitfalls in identifying
936 archaeological and historical wood samples. *Annals of Botany* 116, 1-13.
937 Carvalho, R.L., Resende, A.F., Barlow, J., França, F.M., Moura, M.R., Maciel, R.,
938 Alves-Martins, F., Shutt, J., Nunes, C.A., Elias, F., 2023. Pervasive gaps in
939 Amazonian ecological research. *Current Biology*.
940 Cassino, M.F., Alves, R.P., Levis, C., Watling, J., Junqueira, A.B., Shock, M.P.,
941 Ferreira, M.J., Caetano Andrade, V.L., Furquim, L.P., Coelho, S.D., 2019.
942 Ethnobotany and ethnoecology applied to historical ecology, *Methods and*
943 *techniques in ethnobiology and ethnoecology*. Springer, pp. 187-208.
944 Castro, D.F., OLIVEIRA, P.E., Rossetti, D.F., Pessenda, L.C., 2013. Late Quaternary
945 landscape evolution of northeastern Amazonia from pollen and diatom records.
946 *Anais da Academia Brasileira de Ciências* 85, 35-55.
947 Chambers, J.Q., Higuchi, N., Schimel, J.P., 1998. Ancient trees in Amazonia. *Nature*
948 391, 135-136.
949 Clark, J.S., Royall, P.D., 1996. Local and regional sediment charcoal evidence for
950 fire regimes in presettlement north-eastern America. *Journal of Ecology* 84, 365-
951 382.
952 Cleary, D., 2001. Towards an environmental history of the Amazon: from
953 prehistory to the nineteenth century. *Latin American Research Review*, 65-96.
954 Clement, C.R., 1988a. Domestication of the pejibaye palm (*Bactris gasipaes*): past
955 and present. *Advances in Economic Botany* 6, 155-174.
956 Clement, C.R., 1988b. Domestication of the pejibaye palm (*Bactris gasipaes*): past
957 and present, in: Balick, M.J. (Ed.), *The Palm - Tree of Life. Biology, Utilization and*
958 *Conservation*. The New York Botanical Garden, New York, pp. 155-174.
959 Clement, C.R., 1999. 1492 and the loss of Amazonian crop genetic resources. I.
960 The relation between domestication and human population decline. *Economic*
961 *Botany* 53, 188-202.
962 Clement, C.R., Denevan, W.M., Heckenberger, M.J., Junqueira, A.B., Neves, E.G.,
963 Teixeira, W.G., Woods, W.I., 2015. The domestication of Amazonia before
964 European conquest. *Proceedings of the Royal Society B* 282, 20150813.
965 Colonese, A.C., Winter, R., Brandi, R., Fossile, T., Fernandes, R., Soncin, S.,
966 McGrath, K., Von Tersch, M., Bandeira, A.M., 2020. Stable isotope evidence for
967 dietary diversification in the pre-Columbian Amazon. *Scientific reports* 10,
968 16560.

969 Cook, N.D., 1998. Born to die: disease and New World conquest, 1492-1650.
970 Cambridge University Press.

971 Crutzen, P.J., 2002. The “anthropocene”, *Journal de Physique IV (Proceedings)*.
972 EDP sciences, pp. 1-5.

973 Davies, S.J., Lamb, H.F., Roberts, S.J., 2015. Micro-XRF core scanning in
974 palaeolimnology: recent developments. *Micro-XRF studies of sediment cores: Applications of a non-destructive tool for the environmental sciences*, 189-226.

975 de Freitas, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., Ribeiro, A.S., Boulet,
976 R., 2001. Late Quaternary Vegetation Dynamics in the Southern Amazon Basin
977 Inferred from Carbon Isotopes in Soil Organic Matter. *Quaternary Research* 55,
978 39-46.

979 Denevan, W.M., 2001. *Cultivated Landscapes of Native Amazonia and the Andes*.
980 Oxford University Press, Oxford.

981 Di Marco, M., Santini, L., 2015. Human pressures predict species' geographic
982 range size better than biological traits. *Global change biology* 21, 2169-2178.

983 Di Pasquale, G., Marziano, M., Impagliazzo, S., Lubritto, C., De Natale, A., Bader,
984 M.Y., 2008. The Holocene treeline in the northern Andes (Ecuador): First
985 evidence from soil charcoal. *Palaeogeography, Palaeoclimatology, Palaeoecology*
986 259, 17-34.

987 Dickau, R., Ranere, A.J., Cooke, R.G., 2007. Starch grain evidence for the
988 preceramic dispersals of maize and root crops into tropical dry and humid
989 forests of Panama. *Proceedings of the National Academy of Sciences* 104, 3651-
990 3656.

991 Dickau, R., Whitney, B.S., Iriarte, J., Mayle, F.E., Soto, J.D., Metcalfe, P., Street-
992 Perrott, F.A., Loader, N.J., Ficken, K.J., Killeen, T.J., 2013. Differentiation of
993 neotropical ecosystems by modern soil phytolith assemblages and its
994 implications for palaeoenvironmental and archaeological reconstructions.
995 *Review of Palaeobotany and Palynology* 193, 15-37.

996 Dobyns, H.F., 1966. Estimating Aboriginal American Population I: An Appraisal of
997 Techniques with a New Hemispheric Estimate. *Current Anthropology* 7, 395-416.

998 Duncan, N.A., Loughlin, N.J., Walker, J.H., Hocking, E.P., Whitney, B.S., 2021. Pre-
1000 Columbian fire management and control of climate-driven floodwaters over
1001 3,500 years in southwestern Amazonia. *Proceedings of the National Academy of
1002 Sciences* 118, e2022206118.

1003 Ellis, E.C., Gauthier, N., Goldewijk, K.K., Bird, R.B., Boivin, N., Díaz, S., Fuller, D.Q.,
1004 Gill, J.L., Kaplan, J.O., Kingston, N., 2021. People have shaped most of terrestrial
1005 nature for at least 12,000 years. *Proceedings of the National Academy of Sciences*
1006 118.

1007 Emshwiller, E., 2006. Genetic data and plant domestication, in: Zeder, M.A.,
1008 Bradley, D.G., Emshwiller, E., Smith, B.D. (Eds.), *Documenting domestication: New genetic and archaeological paradigms*. University of California Press,
1009 Berkeley, California, USA, pp. 99-122.

1010 Eriksen, L., 2011. Nature and culture in prehistoric Amazonia: using GIS to
1011 reconstruct ancient ethnogenetic processes from archaeology, linguistics,
1012 geography, and ethnohistory. Lund University.

1013 Eriksen, L., Danielsen, S., 2014. The Arawakan matrix, in: O'Connor, L., Muysken,
1014 P. (Eds.), *The Native Languages of South America: origins, developments,
1015 typology*. Cambridge University Press, Cambridge, UK, pp. 152-176.

1016

1017 Ezell, K.C., Pearsall, D.M., Zeidler, J.A., 2006. Root and tuber phytoliths and starch
1018 grains document manioc (*Manihot esculenta*) arrowroot (*Maranta arundinacea*)
1019 and llerén (*Calathea* sp.) at the real alto site Ecuador. *Economic Botany* 60, 103-
1020 120.

1021 Feeley, K.J., Silman, M.R., 2011. Keep collecting: accurate species distribution
1022 modelling requires more collections than previously thought. *Diversity and*
1023 *Distributions* 17, 1132-1140.

1024 Feldpausch, T.R., Carvalho, L., Macario, K.D., Ascough, P.L., Flores, C.F., Coronado,
1025 E.N.H., Kalamandeen, M., Phillips, O.L., Staff, R.A., 2022. Forest fire history in
1026 Amazonia inferred from intensive soil charcoal sampling and radiocarbon dating.
1027 *Frontiers in Forests and Global Change* 5, 815438.

1028 Fernandes Caromano, C., Matthews Cascon, L., Góes Neves, E., Scheel-Ybert, R.,
1029 2013. Revealing fires and rich diets: macro-and micro-archaeobotanical analysis
1030 at the Hatahara Site, Central Amazonia. *Tipití: Journal of the Society for the*
1031 *Anthropology of Lowland South America* 11, 40-51.

1032 Flores, B.M., Holmgren, M., Xu, C., Van Nes, E.H., Jakovac, C.C., Mesquita, R.C.,
1033 Scheffer, M., 2017. Floodplains as an Achilles' heel of Amazonian forest
1034 resilience. *Proceedings of the National Academy of Sciences* 114, 4442-4446.

1035 Forline, L.C., 2008. Putting history back into historical ecology: some
1036 perspectives on the recent human ecology of the Amazon Basin. *Journal of*
1037 *Ecological Anthropology* 12, 69-74.

1038 Franco-Moraes, J., Baniwa, A.F.M.B., Costa, F.R.C., Lima, H.P., Clement, C.R.,
1039 Shepard, G.H., 2019. Historical landscape domestication in ancestral forests with
1040 nutrient-poor soils in northwestern Amazonia. *Forest Ecology and Management*
1041 446, 317-330.

1042 Freitas, F.O., Bendel, G., Allaby, R.G., Brown, T.A., 2003. DNA from primitive maize
1043 landraces and archaeological remains: implications for the domestication of
1044 maize and its expansion into South America. *Journal of Archaeological Science*
1045 30, 901-908.

1046 Furquim, L.P., Neves, E.G., Shock, M.P., Watling, J., 2023. *The Constructed*
1047 *Biodiversity, Forest Management and Use of Fire in Ancient Amazon: An*
1048 *Archaeological Testimony on the Last 14,000 Years of Indigenous History, Global*
1049 *Ecology in Historical Perspective: Monsoon Asia and Beyond*. Springer, pp. 259-
1050 281.

1051 Furquim, L.P., Watling, J., Hilbert, L.M., Shock, M.P., Prestes-Carneiro, G., Calo,
1052 C.M., Py-Daniel, A.R., Brandão, K., Pugliese, F., Zimpel, C.A., 2021. Facing change
1053 through diversity: Resilience and diversification of plant management strategies
1054 during the mid to late holocene transition at the Monte Castelo Shellmound, SW
1055 Amazonia. *Quaternary* 4, 8.

1056 Gallardo, B., Zieritz, A., Aldridge, D.C., 2015. The importance of the human
1057 footprint in shaping the global distribution of terrestrial, freshwater and marine
1058 invaders. *PloS one* 10, e0125801.

1059 Glaser, B., 2007. Prehistorically modified soils of central Amazonia: a model for
1060 sustainable agriculture in the twenty-first century. *Philosophical Transactions of*
1061 *the Royal Society: B* 362, 187-196.

1062 Glaser, B., Birk, J.J., 2012. State of the scientific knowledge on properties and
1063 genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio).
1064 *Geochimica Et Cosmochimica Acta* 82, 39-51.

1065 Glaser, B., Woods, W.I., 2004. Amazonian Dark Earths: Explorations in Space and
1066 Time. Springer-Verlag, Berlin.

1067 Gosling, W.D., Cornelissen, H.L., McMichael, C.N.H., 2019. Reconstructing past fire
1068 temperatures from ancient charcoal material. *Palaeogeography, Palaeoclimatology, Palaeoecology* 520, 128-137.

1069 Goulart, A.C., Macario, K.D., Scheel-Ybert, R., Alves, E.Q., Bachelet, C., Pereira, B.B.,
1070 Levis, C., Junior, B.H.M., Marimon, B.S., Quesada, C.A., 2017. Charcoal chronology
1071 of the Amazon forest: A record of biodiversity preserved by ancient fires.
1072 *Quaternary Geochronology*.

1073 Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than
1074 simple habitat models. *Ecology Letters* 8, 993-1009.

1075 Gutaker, R.M., Burbano, H.A., 2017. Reinforcing plant evolutionary genomics
1076 using ancient DNA. *Current Opinion in Plant Biology* 36, 38-45.

1077 Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'agrosa, C.,
1078 Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., 2008. A global map of human impact
1079 on marine ecosystems. *Science* 319, 948-952.

1080 Hammersley, M., Atkinson, P., 2007. *Ethnography: principles in practice*.
1081 Routledge, Oxford, UK.

1082 Hammond, D.S., ter Steege, H., van der Borg, K., 2006. Upland soil charcoal in the
1083 wet tropical forests of Central Guyana. *Biotropica* 39, 153-160.

1084 Harlan, J.R., 1992. *Crops & man*, 2 ed. American Society of Agronomy & Crop
1085 Science Society of America, Madison, WI.

1086 Hecht, S.B., 2003. Indigenous Soil Management and the Creation of Amazonian
1087 Dark Earths: Implications of Kayapó Practice, in: Lehmann, J., Kern, D.C., Glaser,
1088 B., Wodos, W.I. (Eds.), *Amazonian Dark Earths: Origin Properties Management*.
1089 Springer Netherlands, Dordrecht, pp. 355-372.

1090 Hecht, S.B., Cockburn, A., 2010. The fate of the forest: developers, destroyers, and
1091 defenders of the Amazon. University of Chicago Press.

1092 Heckenberger, M., Russell, J., Fausto, C., Toney, J., Schmidt, M., Pereira, E.,
1093 Franchetto, B., Kuikuro, A., 2008. Pre-Columbian urbanism, anthropogenic
1094 landscapes, and the future of the Amazon. *Science* 321, 1214-1217.

1095 Heckenberger, M.J., Kuikuro, A., Kuikuro, U.T., Russell, J.C., Schmidt, M., Fausto, C.,
1096 Franchetto, B., 2003. Amazonia 1492: Pristine forest or cultural parkland?
1097 *Science* 301, 1710-1714.

1098 Heijink, B.M., Mattijs, Q.A., Valencia, R., Philip, A.L., Piperno, D.R., McMichael, C.N.,
1099 2022. Long - term fire and vegetation change in northwestern Amazonia.
1100 *Biotropica* 55, 197-209.

1101 Heijink, B.M., McMichael, C.N., Piperno, D.R., Duivenvoorden, J.F., Cárdenas, D.,
1102 Duque, Á., 2020. Holocene increases in palm abundances in north - western
1103 Amazonia. *Journal of Biogeography* 47, 698-711.

1104 Hill, J., Black, S., Soto, D., Chavez, E., Vos, V., Mayle, F., 2023. Differing local - scale
1105 responses of Bolivian Amazon forest ecotones to middle Holocene drought based
1106 upon multiproxy soil data. *Journal of Quaternary Science*.

1107 Hodell, D.A., Brenner, M., Curtis, J.H., 2005. Terminal Classic drought in the
1108 northern Maya lowlands inferred from multiple sediment cores in Lake
1109 Chichancanab (Mexico). *Quaternary Science Reviews* 24, 1413-1427.

1110 Hodell, D.A., Curtis, J.H., Brenner, M., 1995. Possible role of climate in the
1111 collapse of ancient Maya civilization. *Nature* 357, 391-394.

1112

1113 Hubbell, S.P., 1979. Tree dispersion, abundance, and diversity in a tropical dry
1114 forest. *Science* 203, 1299-1309.

1115 Huisman, S.N., Raczka, M.F., McMichael, C.N.H., 2018. Palm Phytoliths of Mid-
1116 Elevation Andean Forests. *Frontiers in Ecology and Evolution* 6, 193.

1117 Iriarte, J., 2016. Investigating Amazonian Dark Earths as Agro-Ecosystems and
1118 their Impact on the Regional Landscapes of the Lower Amazon, in: Stenborg, P.
1119 (Ed.), *Beyond Waters: Archaeology and Environmental History of the Amazonian*
1120 *Inland*. University of Gothenburg, Gothenburg, pp. 71-86.

1121 Iriarte, J., Elliott, S., Maezumi, S.Y., Alves, D., Gonda, R., Robinson, M., de Souza,
1122 J.G., Watling, J., Handley, J., 2020. The origins of Amazonian landscapes: Plant
1123 cultivation, domestication and the spread of food production in tropical South
1124 America. *Quaternary Science Reviews* 248, 106582.

1125 Iriarte, J., Glaser, B., Watling, J., Wainwright, A., Birk, J.J., Renard, D., Rostain, S.,
1126 McKey, D., 2010. Late Holocene Neotropical agricultural landscapes: phytolith
1127 and stable carbon isotope analysis of raised fields from French Guianan coastal
1128 savannahs. *Journal of Archaeological Science* 37, 2984-2994.

1129 Iriarte, J., Holst, I., Marozzi, O., Listopad, C., Alonso, E., Rinderknecht, A., Montaña,
1130 J., 2004. Evidence for cultivar adoption and emerging complexity during the mid-
1131 Holocene in the La Plata basin. *Nature* 432, 614-617.

1132 Jacobson, G.L., Bradshaw, R.H.W., 1981. The selection of sites for
1133 paleovegetational studies. *Quaternary Research* 16, 80-96.

1134 Junqueira, A., Almekinders, C., Stomph, T.-J., Clement, C., Struik, P., 2016. The role
1135 of Amazonian anthropogenic soils in shifting cultivation: learning from farmers'
1136 rationales. *Ecology and Society* 21.

1137 Junqueira, A.B., Shepard, G.H., Clement, C.R., 2010. Secondary forests on
1138 anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity.
1139 *Biodiversity and Conservation* 19, 1933-1961.

1140 Junqueira, A.B., Shepard, G.H., Clement, C.R., 2011. Secondary Forests on
1141 Anthropogenic Soils of the Middle Madeira River: Valuation, Local Knowledge,
1142 and Landscape Domestication in Brazilian Amazonia. *Economic Botany*, 1-15.

1143 Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review
1144 and suggested usage. *International Journal of Wildland Fire* 18, 116-126.

1145 Kistler, L., Bieker, V.C., Martin, M.D., Pedersen, M.W., Ramos Madrigal, J., Wales,
1146 N., 2020. Ancient plant genomics in archaeology, herbaria, and the environment.
1147 *Annual review of plant biology* 71, 605-629.

1148 Kopenawa, D., Albert, B., 2023. The falling sky, *The Falling Sky*. Harvard
1149 University Press.

1150 Lehman, J., Kern, D.C., Glaser, B., Woods, W.I., 2003. Amazonian Dark Earths:
1151 Origin, Properties, Management. Kluwer Academic Publisher, Dordrecht, The
1152 Netherlands.

1153 Levis, C., Costa, F.R.C., Bongers, F., Peña-Claros, M., Clement, C.R., Junqueira, A.B.,
1154 Neves, E.G., Tamanaha, E.K., Figueiredo, F.O.G., Salomão, R.P., Castilho, C.V.,
1155 Magnusson, W.E., Phillips, O.L., Guevara, J.E., Sabatier, D., Molino, J.-F., López, D.C.,
1156 Mendoza, A.M., Pitman, N.C.A., Duque, A., Vargas, P.N., Zartman, C.E., Vasquez, R.,
1157 Andrade, A., Camargo, J.L., Feldpausch, T.R., Laurance, S.G.W., Laurance, W.F.,
1158 Killeen, T.J., Nascimento, H.E.M., Montero, J.C., Mostacedo, B., Amaral, I.L.,
1159 Guimarães Vieira, I.C., Brien, R., Castellanos, H., Terborgh, J., Carim, M.d.J.V.,
1160 Guimarães, J.R.d.S., Coelho, L.d.S., Matos, F.D.d.A., Wittmann, F., Mogollón, H.F.,
1161 Damasco, G., Dávila, N., García-Villacorta, R., Coronado, E.N.H., Emilio, T., Filho,

1162 D.d.A.L., Schietti, J., Souza, P., Targhetta, N., Comiskey, J.A., Marimon, B.S.,
1163 Marimon, B.-H., Neill, D., Alonso, A., Arroyo, L., Carvalho, F.A., de Souza, F.C.,
1164 Dallmeier, F., Pansonato, M.P., Duivenvoorden, J.F., Fine, P.V.A., Stevenson, P.R.,
1165 Araujo-Murakami, A., Aymard C., G.A., Baraloto, C., do Amaral, D.D., Engel, J.,
1166 Henkel, T.W., Maas, P., Petronelli, P., Revilla, J.D.C., Stropp, J., Daly, D., Gribel, R.,
1167 Paredes, M.R., Silveira, M., Thomas-Cesar, R., Baker, T.R., da Silva, N.F., Ferreira,
1168 L.V., Peres, C.A., Silman, M.R., Cerón, C., Valverde, F.C., Di Fiore, A., Jimenez, E.M.,
1169 Mora, M.C.P., Toledo, M., Barbosa, E.M., Bonates, L.C.d.M., Arboleda, N.C., Farias,
1170 E.d.S., Fuentes, A., Guillaumet, J.-L., Jørgensen, P.M., Malhi, Y., de Andrade
1171 Miranda, I.P., Phillips, J.F., Prieto, A., Rudas, A., Ruschel, A.R., Silva, N., von
1172 Hildebrand, P., Vos, V.A., Zent, E.L., Zent, S., Cintra, B.B.L., Nascimento, M.T.,
1173 Oliveira, A.A., Ramirez-Angulo, H., Ramos, J.F., Rivas, G., Schöngart, J., Sierra, R.,
1174 Tirado, M., van der Heijden, G., Torre, E.V., Wang, O., Young, K.R., Baider, C., Cano,
1175 A., Farfan-Rios, W., Ferreira, C., Hoffman, B., Mendoza, C., Mesones, I., Torres-
1176 Lezama, A., Medina, M.N.U., van Andel, T.R., Villarroel, D., Zagt, R., Alexiades, M.N.,
1177 Balslev, H., Garcia-Cabrera, K., Gonzales, T., Hernandez, L., Huamantupa-
1178 Chuquimaco, I., Manzatto, A.G., Milliken, W., Cuenca, W.P., Pansini, S., Paulette, D.,
1179 Arevalo, F.R., Reis, N.F.C., Sampaio, A.F., Giraldo, L.E.U., Sandoval, E.H.V., Gamarra,
1180 L.V., Vela, C.I.A., ter Steege, H., 2017. Persistent effects of pre-Columbian plant
1181 domestication on Amazonian forest composition. *Science* 355, 925-931.
1182 Levis, C., de Souza, P.F., Schietti, J., Emilio, T., da Veiga Pinto, J.L.P., Clement, C.R.,
1183 Costa, F.R., 2012. Historical Human Footprint on Modern Tree Species
1184 Composition in the Purus-Madeira Interflue, Central Amazonia. *PloS one* 7,
1185 e48559.
1186 Levis, C., Flores, B.M., Moreira, P.A., Luize, B.G., Alves, R.P., Franco-Moraes, J., Lins,
1187 J., Konings, E., Peña-Claros, M., Bongers, F., 2018. How people domesticated
1188 Amazonian forests. *Frontiers in Ecology and Evolution* 5, 171.
1189 Levis, C., Peña-Claros, M., Clement, C.R., Costa, F.R.C., Alves, R.P., Ferreira, M.J.,
1190 Figueiredo, C.G., Bongers, F., 2020. Pre-Columbian soil fertilization and current
1191 management maintain food resource availability in old-growth Amazonian
1192 forests. *Plant and Soil* 450, 29-48.
1193 Lewis, S.L., Maslin, M.A., 2015. Defining the anthropocene. *Nature* 519, 171-180.
1194 Livi-Bacci, M., 2016. The depopulation of upper Amazonia in colonial times.
1195 *Revista de Indias* 76, 419-448.
1196 Lombardo, U., Iriarte, J., Hilbert, L., Ruiz-Pérez, J., Capriles, J.M., Veit, H., 2020.
1197 Early Holocene crop cultivation and landscape modification in Amazonia. *Nature*,
1198 190-193.
1199 Loughlin, N.J., Gosling, W.D., Mothes, P., Montoya, E., 2018. Ecological
1200 consequences of post-Columbian indigenous depopulation in the Andean-
1201 Amazonian corridor. *Nature ecology & evolution* 2, 1233-1236.
1202 Lynch, J.A., Clark, J.S., Stocks, B.J., 2004. Charcoal production, dispersal, and
1203 deposition from the Fort Providence experimental fire: interpreting fire regimes
1204 from charcoal records in boreal forests. *Canadian Journal of Forest Research* 34,
1205 1642-1656.
1206 Maezumi, S., Power, M., Mayle, F., McLauchlan, K., Iriarte, J., 2015. The effects of
1207 past climate variability on fire and vegetation in the cerrado savanna ecosystem
1208 of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia.

1209 Maezumi, S.Y., Alves, D., Robinson, M., de Souza, J.G., Levis, C., Barnett, R.L., de
1210 Oliveira, E.A., Urrego, D., Schaan, D., Iriarte, J., 2018a. The legacy of 4,500 years of
1211 polyculture agroforestry in the eastern Amazon. *Nature plants* 4, 540-547.

1212 Maezumi, S.Y., Gosling, W.D., Kirschner, J., Chevalier, M., Cornelissen, H.L.,
1213 Heinecke, T., McMichael, C.N., 2021. A modern analogue matching approach to
1214 characterize fire temperatures and plant species from charcoal.
1215 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 110580.

1216 Maezumi, S.Y., Whitney, B.S., Mayle, F.E., de Souza, J.G., Iriarte, J., 2018b.
1217 Reassessing climate and pre-Columbian drivers of paleofire activity in the
1218 Bolivian Amazon. *Quaternary International* 488, 81-94.

1219 Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L.,
1220 Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W.F., Leano, C., Lewis,
1221 S., Meir, P., Menteagudo, A., Neill, D., Nunez Vargas, P., Panfil, S.N., Patino, S.,
1222 Pitman, N., Quesada, C.A., Rudas-Ll., A., Solomao, R., Saleska, S., Silva, N., Silveira,
1223 M., Sombroek, W.G., Valencia, R., Vasquez Martinez, R., Vieira, I.C.G., Vinceti, B.,
1224 2002. An international network to monitor the structure, composition and
1225 dynamics of Amazonian forests (RAINFOR). *Journal of Vegetation Science* 13,
1226 439-450.

1227 Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate
1228 Change, Deforestation, and the Fate of the Amazon. *Science* 319, 169-172.

1229 Marlon, J.R., Bartlein, P.J., Daniau, A.-L., Harrison, S.P., Maezumi, S.Y., Power, M.J.,
1230 Tinner, W., Vannière, B., 2013. Global biomass burning: A synthesis and review of
1231 Holocene paleofire records and their controls. *Quaternary Science Reviews* 65, 5-
1232 25.

1233 Marlon, J.R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M.J., Bartlein, P., Higuera,
1234 P., Blarquez, O., Brewer, S., Brücher, T., 2016. Reconstructions of biomass
1235 burning from sediment charcoal records to improve data-model comparisons.
1236 *Biogeosciences (BG)* 13, 3225-3244.

1237 Martin, G.J., 2004. Ethnobotany: a methods manual. Routledge, London.

1238 Mayle, F.E., Burbridge, R., Killeen, T.J., 2000. Millennial-scale dynamics of
1239 southern Amazonian rain forests. *Science* 290, 2291-2294.

1240 Mayle, F.E., Iriarte, J., 2014. Integrated palaeoecology and archaeology—A
1241 powerful approach for understanding pre-Columbian Amazonia. *Journal of
1242 Archaeological Science* 51, 54-64.

1243 McClenachan, L., Cooper, A.B., McKenzie, M.G., Drew, J.A., 2015. The importance
1244 of surprising results and best practices in Historical Ecology. *BioScience* 65, 932-
1245 939.

1246 McEwan, C., 2001. Unknown Amazon: culture in nature in ancient Brazil. British
1247 Museum, London.

1248 McKey, D., Rostain, S., Iriarte, J., Glaser, B., Birk, J., Holst, I., Renard, D., 2010. Pre-
1249 Columbian agricultural landscapes, ecosystem engineers, and self-organized
1250 patchiness in Amazonia. *Proceedings of the National Academy of Sciences* 107,
1251 7823-7828.

1252 McLachlan, J.S., Clark, J.S., 2005. Molecular indicators of tree migration capacity
1253 under rapid climate change. *Ecology* 86, 2088-2098.

1254 McMichael, C., Palace, M., Bush, M., Braswell, B., Hagen, S., Neves, E., Silman, M.,
1255 Tamanaha, E., Czarnecki, C., 2014a. Predicting pre-Columbian anthropogenic
1256 soils in Amazonia. *Proceedings of the Royal Society B: Biological Sciences* 281,
1257 20132475.

1258 McMichael, C., Piperno, D., Neves, E., Bush, M., Almeida, F., Mongeló, G.,
1259 Eyjolfsdottir, M.B., 2015. Phytolith assemblages along a gradient of ancient
1260 human disturbance in western Amazonia. *Frontiers in Ecology and Evolution* 3,
1261 141.

1262 McMichael, C., Piperno, D.R., Bush, M.B., Silman, M.R., Zimmerman, A.R., Racza, M.F.,
1263 Lobato, L.C., 2012a. Sparse pre-Columbian human habitation in western
1264 Amazonia. *Science* 336, 1429-1431.

1265 McMichael, C.H., Bush, M.B., Piperno, D.R., Silman, M.R., Zimmerman, A.R.,
1266 Anderson, C., 2012b. Spatial and temporal scales of pre-Columbian disturbance
1267 associated with western Amazonian lakes. *Holocene* 22, 131-141.

1268 McMichael, C.H., Correa Metrio, A., Bush, M.B., 2012c. Pre-Columbian fire regimes
1269 in lowland tropical rainforests of southeastern Peru. *Palaeogeography,
1270 Palaeoclimatology, Palaeoecology* 342-343, 73-83.

1271 McMichael, C.H., Palace, M.W., Golightly, M., 2014b. Bamboo-dominated forests
1272 and pre-Columbian earthwork formations in south-western Amazonia. *Journal of
1273 Biogeography* 41, 1733-1745.

1274 McMichael, C.N., 2021. Ecological legacies of past human activities in Amazonian
1275 forests. *New Phytologist* 229, 2492-2496.

1276 McMichael, C.N., Bush, M.B., 2019. Spatiotemporal patterns of pre-Columbian
1277 people in Amazonia. *Quaternary Research* 92, 53-69.

1278 McMichael, C.N., Vink, V., Heijink, B.M., Witteveen, N.H., Piperno, D.R., Gosling,
1279 W.D., Bush, M.B., 2023. Ecological legacies of past fire and human activity in a
1280 Panamanian forest. *Plants, People, Planet* 5, 281-291.

1281 McMichael, C.N.H., Matthews-Bird, F., Farfan-Rios, W., Feeley, K.J., 2017. Ancient
1282 human disturbances may be skewing our understanding of Amazonian forests.
1283 *Proceedings of the National Academy of Sciences* 114, 522-527.

1284 Medina, J., 1934. The discovery of the Amazon according to the account of Friar
1285 Caspar de Carvajal and other documents. *American Geographical Society, New
1286 York*.

1287 Meyer, R.S., DuVal, A.E., Jensen, H.R., 2012. Patterns and processes in crop
1288 domestication: an historical review and quantitative analysis of 203 global food
1289 crops. *The New phytologist* 196, 29-48.

1290 Meyer, R.S., Purugganan, M.D., 2013. Evolution of crop species: genetics of
1291 domestication and diversification. *Nature Reviews Genetics* 14, 840-852.

1292 Moraes, C.d.P., 2015. O determinismo agrícola na arqueologia amazônica.
1293 *Estudos Avançados* 29, 25-43.

1294 Morcote-Ríos, G., Bernal, R., Raz, L., 2016. Phytoliths as a tool for
1295 archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian
1296 palms. *Botanical Journal of the Linnean Society* 182, 348-360.

1297 Morcote-Ríos, G., Giraldo-Cañas, D., Raz, L., 2015. Catálogo ilustrado de fitolitos
1298 contemporáneos con énfasis arqueológico y paleoecológico I. Gramíneas
1299 amazónicas de Colombia. *Universidad Nacional de Colombia, Bogotá, Colombia*.

1300 Moreira, P.A., Mariac, C., Zekraoui, L., Couderc, M., Rodrigues, D.P., Clement, C.R.,
1301 Vigouroux, Y., 2017. Human management and hybridization shape treegourd
1302 fruits in the Brazilian Amazon Basin. *Evolutionary applications*.

1303 Nascimento, M.N., Heijink, B.M., Bush, M.B., Gosling, W.D., McMichael, C.N.H.,
1304 2022. Early to mid-Holocene human activity exerted gradual influences on
1305 Amazonian forest vegetation. *Philosophical Transactions of the Royal Society B:
1306 Biological Sciences* 377, 20200498.

1307 Nascimento, M.N., Peters-Schulze, G., Martins, G.S., Cordeiro, R.C., Turcq, B.,
1308 Moreira, L.S., Bush, M.B., 2021. Limnological response to climatic changes in
1309 western Amazonia over the last millennium. *Frontiers of Biogeography* 13.
1310 Nepstad, D., Lefebver, P., Silva, U.L.D., Tomasella, J., Schlesinger, P., Solorzano, L.,
1311 Moutinho, P., Ray, D., Benito, J.G., 2004. Amazon drought and its implications for
1312 forest flammability and tree growth: a basin-wide analysis. *Global Change
1313 Biology* 10, 704-717.
1314 Neves, E.G., 2013. Was Agriculture a Key Productive Activity in Pre-Colonial
1315 Amazonia? The Stable Productive Basis for Social Equality in the Central
1316 Amazon, in: Brondizio, E.S., Moran, E.F. (Eds.), *Human-Environment Interactions*.
1317 Springer, Dordrecht, pp. 371-388.
1318 Neves, E.G., Furquim, L.P., Levis, C., Rocha, B.C., Watling, J.G., Almeida, F.O.,
1319 Betancourt, C.J., Junqueira, A.B., Moraes, C.P., Morcote-Rios, G., 2021. Peoples of
1320 the Amazon before European colonization. *Science Panel for the Amazon
1321 Amazon Assessment Report*.
1322 Neves, E.G., Petersen, J.B., Bartone, R.N., Heckenberger, M.J., 2004. The timing of
1323 *terra preta* formation in the central Amazon: Archaeological data from three
1324 sites., in: Glaser, B., Woods, W.I. (Eds.), *Amazonian dark earths: explorations in
1325 space and time*. Springer, Berlin, pp. 125-133.
1326 Olsen, K.M., Schaal, B.A., 1999. Evidence on the origin of cassava: phylogeography
1327 of *Manihot esculenta*. *Proceedings of the National Academy of Sciences* 96, 5586-
1328 5591.
1329 Olsen, K.M., Schaal, B.A., 2001. Microsatellite variation in cassava (*Manihot
1330 esculenta*, Euphorbiaceae) and its wild relatives: further evidence for a southern
1331 Amazonian origin of domestication. *American Journal of Botany* 88, 131-142.
1332 Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N.,
1333 Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., 2001.
1334 Terrestrial ecoregions of the world: a new map of life on earth. *BioScience* 51,
1335 933-938.
1336 Orvis, K.H., Lane, C.S., Horn, S.P., 2005. Laboratory production of vouchered
1337 reference charcoal from small wood samples and non-woody plant tissues.
1338 *Palynology* 29, 1-11.
1339 Oxford, 2016. *Oxford Dictionaries*. Oxford University Press.
1340 Pachauri, R.K., Meyer, L., Plattner, G.-K., Stocker, T., 2015. *IPCC, 2014: Climate
1341 Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to
1342 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.*
1343 IPCC.
1344 Palace, M.W., McMichael, C.N.H., Braswell, B.H., Hagen, S.C., Bush, M.B., Neves, E.,
1345 Tamanaha, E., Herrick, C., Frolking, S., 2017. Ancient Amazonian populations left
1346 lasting impacts on forest structure. *Ecosphere* 8, e02035-n/a.
1347 Parducci, L., Bennett, K.D., Ficetola, G.F., Alsos, I.G., Suyama, Y., Wood, J.R.,
1348 Pedersen, M.W., 2017. Ancient plant DNA in lake sediments. *New Phytologist*
1349 214, 924-942.
1350 Parsons, L., LeRoy, S., Overpeck, J., Bush, M., Cárdenes - Sandí, G., Saleska, S.,
1351 2018. The threat of multi - year drought in western Amazonia. *Water Resources
1352 Research* 54, 5890-5904.
1353 Pearsall, D.M., Chandler-Ezell, K., Zeidler, J.A., 2004. Maize in ancient Ecuador:
1354 results of residue analysis of stone tools from the Real Alto site. *Journal of
1355 Archaeological Science* 31, 423-442.

1356 Pessenda, L.C.R., Gomes, B.M., Aravena, R., Ribeiro, A.S., Boulet, R., Gouveia,
1357 S.E.M., 1998. The carbon isotope record in soils along a forest-cerrado ecosystem
1358 transect: implications for vegetation changes in the Rondonia state,
1359 southwestern Brazilian Amazon region. *The Holocene* 8, 599-603.

1360 Phillips, O., Hall, P., Gentry, A.H., Sawyer, S., Vasquez, R., 1994. Dynamics and
1361 species richness of tropical rain forests. *Proceedings of the National Academy of
1362 Sciences* 91, 2805-2809.

1363 Piperno, D.R., 2006. *Phytoliths: A comprehensive guide for archaeologists and
1364 paleoecologists*. Alta Mira Press, Lanham, MD.

1365 Piperno, D.R., 2011. The origins of plant cultivation and domestication in the
1366 New World tropics. *Current Anthropology* 52, S453-S470.

1367 Piperno, D.R., 2016. Phytolith radiocarbon dating in archaeological and
1368 paleoecological research: a case study of phytoliths from modern Neotropical
1369 plants and a review of the previous dating evidence. *Journal of Archaeological
1370 Science* 68, 54-61.

1371 Piperno, D.R., McMichael, C., 2023. Phytoliths in modern plants from Amazonia
1372 and the Neotropics at large: II. Enhancement of eudicotyledon reference
1373 collections. *Quaternary International* 655, 1-17.

1374 Piperno, D.R., McMichael, C., Bush, M.B., 2015. Amazonia and the Anthropocene:
1375 What was the spatial extent and intensity of human landscape modification in
1376 the Amazon Basin at the end of prehistory? *The Holocene* 25, 1588-1597.

1377 Piperno, D.R., McMichael, C.H., Pitman, N.C., Andino, J.E.G., Paredes, M.R., Heijink,
1378 B.M., Torres-Montenegro, L.A., 2021. A 5,000-year vegetation and fire history for
1379 tierra firme forests in the Medio Putumayo-Algodón watersheds, northeastern
1380 Peru. *Proceedings of the National Academy of Sciences*.

1381 Piperno, D.R., McMichael, C.N., Bush, M.B., 2019. Finding Forest Management in
1382 Prehistoric Amazonia. *Anthropocene* 26, 100211.

1383 Plumpton, H.J., Mayle, F.M., Whitney, B.S., 2020. Paleoecological potential of
1384 phytoliths from lake sediment records from the tropical lowlands of Bolivia.
1385 *Review of Palaeobotany and Palynology* 275, 104113.

1386 Politis, G.G., 2014. *Ethnoarchaeology: Approaches to Fieldwork, Field
1387 Archaeology from Around the World: Ideas and Approaches*. Springer, pp. 83-88.

1388 Power, M., Whitney, B., Mayle, F., Neves, D., de Boer, E., Maclean, K., 2016. Fire,
1389 climate and vegetation linkages in the Bolivian Chiquitano seasonally dry
1390 tropical forest. *Phil. Trans. R. Soc. B* 371, 20150165.

1391 Ramos-Neto, M.B., Pivello, V.R., 2000. Lightning fires in a Brazilian savanna
1392 National Park: rethinking management strategies. *Environmental management*
1393 26, 675-684.

1394 Reeve, M.-E., 1994. Regional interaction in the Western Amazon: The early
1395 colonial encounter and the Jesuit years: 1538-1767. *Ethnohistory* 41, 106-138.

1396 Rhodes, A.N., 1998. A method for the preparation and quantification of
1397 microscopic charcoal from terrestrial and lacustrine sediment cores. *The
1398 Holocene* 8, 113-117.

1399 Ribeiro, F.A.N., Moraes, C.d.P., Valle, R.B.M., 2023. *Through Zo'é Paths and
1400 Capoeiras: Networks of Relations in the Guianas and the "Sparse Population"
1401 Question, Historical Ecology and Landscape Archaeology in Lowland South
1402 America*. Springer, pp. 51-85.

1403 Riris, P., Arroyo-Kalin, M., 2019. Widespread population decline in South
1404 America correlates with mid-Holocene climate change. *Scientific reports* 9, 1-10.

1405 Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D., Boivin, N., 2017. The deep
1406 human prehistory of global tropical forests and its relevance for modern
1407 conservation. *Nature Plants* 3, 17093.

1408 Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman,
1409 J.H., 1999. An ~15,000-year record of El Niño-driven alluviation in southwestern
1410 Ecuador. *Science* 283, 516-520.

1411 Roosevelt, A., 1989. Resource management in Amazonia before the conquest:
1412 Beyond ethnographic projection. *Advances in Economic Botany*, 30-62.

1413 Roosevelt, A.C., 2013. The Amazon and the Anthropocene: 13,000 Years of
1414 Human Influence in a Tropical Rainforest. *Anthropocene* 4, 69-87.

1415 Roosevelt, A.C., Lima da Costa, M., Lopes Machado, C., Michab, M., Mercier, N.,
1416 Valladas, H., Feathers, J., Barnett, W., Imazio da Silveira, M., Henderson, A., Sliva,
1417 J., Chernoff, B., Reese, D.S., Holman, J.A., Toth, N., Schick, K., 1996. Paleoindian
1418 cave dwellers in the Amazon: the peopling of the Americas. *Science* 272, 373 -
1419 384.

1420 Ross, N.J., 2011. Modern tree species composition reflects ancient Maya "forest
1421 gardens" in northwest Belize. *Ecological Applications* 21, 75-84.

1422 Roullier, C., Benoit, L., McKey, D.B., Lebot, V., 2013. Historical collections reveal
1423 patterns of diffusion of sweet potato in Oceania obscured by modern plant
1424 movements and recombination. *Proceedings of the National Academy of Sciences*
1425 of the United States of America

1426 110, 2205-2210.

1427 Rozas-Davila, A., Correa-Metrio, A., McMichael, C.N., Bush, M.B., 2021. When the
1428 grass wasn't greener: Megafaunal ecology and paleodroughts. *Quaternary*
1429 *Science Reviews* 266, 107073.

1430 Rozas-Davila, A., Valencia, B.G., Bush, M.B., 2016. The functional extinction of
1431 Andean megafauna. *Ecology* 97, 2533-2539.

1432 Sahoo, P.K., Guimarães, J.T.F., Souza-Filho, P.W.M., Powell, M.A., da Silva, M.S.,
1433 Moraes, A.M., Alves, R., Leite, A.S., Júnior, W.N., Rodrigues, T.M., 2019. Statistical
1434 analysis of lake sediment geochemical data for understanding surface geological
1435 factors and processes: An example from Amazonian upland lakes, Brazil. *Catena*
175, 47-62.

1436 Sanchez-Cabeza, J., Ruiz-Fernández, A., 2012. ^{210}Pb sediment radiochronology:
1437 an integrated formulation and classification of dating models. *Geochimica et*
1438 *Cosmochimica Acta* 82, 183-200.

1439 Sanford, R.L., Horn, S.P., 2000. Holocene rain-forest wilderness: a Neotropical
1440 perspective on humans as an exotic, invasive species, in: Cole, D., McCool, S.F.
1441 (Eds.), *Wilderness science in a time of change*. US Dept. of Agriculture, Forest
1442 Service. Proc. RMRS-P-000., Rocky Mountain Research Station, Ogden, UT.

1443 Schaan, D., Pärssinen, M., Saunaluoma, S., Ranzi, A., Bueno, M., Barbosa, A., 2012.
1444 New radiometric dates for pre-Columbian (2000 - 700 BP) earthworks in
1445 western Amazonia, Brazil. *Journal of Field Archaeology* 37, 132-142.

1446 Scheel-Ybert, R., Beauclair, M., Buarque, A., 2014. The forest people: landscape
1447 and firewood use in the Araruama region, southeastern Brazil, during the late
1448 Holocene. *Vegetation history and archaeobotany* 23, 97-111.

1449 Schmidt, M.J., Rapp Py-Daniel, A., de Paula Moraes, C., Valle, R.B.M., Caromano,
1450 C.F., Texeira, W.G., Barbosa, C.A., Fonseca, J.A., Magalhães, M.P., Silva do Carmo
1451 Santos, D., da Silva e Silva, R., Guapindaia, V.L., Moraes, B., Lima, H.P., Neves, E.G.,
1452 Heckenberger, M.J., 2014. Dark earths and the human built landscape in

1453 Amazonia: a widespread pattern of anthrosol formation. *Journal of*
1454 *Archaeological Science* 42, 152-165.

1455 Schöngart, J., Gribel, R., Ferreira da Fonseca - Junior, S., Haugaasen, T., 2015. Age
1456 and growth patterns of Brazil Nut trees (*Bertholletia excelsa* Bonpl.) in
1457 Amazonia, Brazil. *Biotropica* 47, 550-558.

1458 Shepard Jr, G.H., Clement, C.R., Lima, H.P., dos Santos, G.M., de Paula Moraes, C.,
1459 Neves, E.G., 2020. Ancient and traditional agriculture in South America: Tropical
1460 lowlands, *Oxford Research Encyclopedia of Environmental Science*.

1461 Smith, B.D., 2006. Documenting domesticated plants in the archaeological record,
1462 in: Zeder, M.A., Bradley, D.G., Emshwiller, E., Smith, B.D. (Eds.), *Documenting*
1463 *domestication. New genetic and archaeological paradigms*. University of
1464 California Press, Berkeley, pp. 15-24.

1465 Söderström, M., Eriksson, J., Isendahl, C., Schaan, D.P., Stenborg, P., Rebellato, L.,
1466 Piikki, K., 2016. Sensor mapping of Amazonian Dark Earths in deforested
1467 croplands. *Geoderma* 281, 58-68.

1468 Souza, J.G., Schaan, D.P., Robinson, M., Barbosa, A.D., Aragão, L.E., Marimon Jr,
1469 B.H., Marimon, B.S., Silva, I.B., Khan, S.S., Nakahara, F.R., 2018. Pre-Columbian
1470 earth-builders settled along the entire southern rim of the Amazon. *Nature*
1471 communications 9, 1125.

1472 Szabó, P., Hédl, R., 2011. Advancing the integration of history and ecology for
1473 conservation. *Conservation Biology* 25, 680-687.

1474 Taylor, R.E., Bar-Yosef, O., 2016. Radiocarbon dating: an archaeological
1475 perspective. Routledge.

1476 Tengö, M., Brondizio, E.S., Elmquist, T., Malmer, P., Spierenburg, M., 2014.
1477 Connecting diverse knowledge systems for enhanced ecosystem governance: the
1478 multiple evidence base approach. *Ambio* 43, 579-591.

1479 ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E.,
1480 Phillips, O.L., Castilho, C.V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez
1481 Vargas, P., Montero, J.C., Feldpausch, T.R., Coronado, E.N.H., Killeen, T.J.,
1482 Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A.,
1483 Laurance, W.F., Laurance, S.G.W., Marimon, B.S., Marimon, B.-H., Guimarães
1484 Vieira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas López, D.,
1485 Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D.d.A., Dávila, N., García-Villacorta,
1486 R., Stevenson Diaz, P.R., Costa, F., Emilio, T., Levis, C., Schiatti, J., Souza, P., Alonso,
1487 A., Dallmeier, F., Montoya, A.J.D., Fernandez Piedade, M.T., Araujo-Murakami, A.,
1488 Arroyo, L., Gribel, R., Fine, P.V.A., Peres, C.A., Toledo, M., Aymard C., G.A., Baker,
1489 T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman,
1490 C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Lima Filho, D.d.A.,
1491 Jørgensen, P.M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A.,
1492 Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von
1493 Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto, A., Rudas, A., Ruschell,
1494 A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Trindade
1495 Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M.N.,
1496 van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O.,
1497 Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A.,
1498 Urrego Giraldo, L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-
1499 Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama
1500 Sandoval, E., Valenzuela Gamarra, L., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G.,

1501 Silman, M.R., 2013. Hyperdominance in the Amazonian Tree Flora. *Science* 342,
1502 1243092.

1503 Thayn, J.B., Price, K.P., Woods, W.I., 2011. Locating Amazonian Dark Earths (ADE)
1504 using vegetation vigour as a surrogate for soil type. *International Journal of*
1505 *Remote Sensing* 32, 6713-6729.

1506 Thomas, E., Alcázar Caicedo, C., McMichael, C.H., Corvera, R., Loo, J., 2015.
1507 Uncovering spatial patterns in the natural and human history of Brazil nut
1508 (*Bertholletia excelsa*) across the Amazon Basin. *Journal of Biogeography* 42,
1509 1367-1382.

1510 Trisos, C.H., Auerbach, J., Katti, M., 2021. Decoloniality and anti-oppressive
1511 practices for a more ethical ecology. *Nature Ecology & Evolution* 5, 1205-1212.

1512 Urrego, D.H., Bush, M.B., Silman, M.R., Niccum, B.A., De La Rosa, P., McMichael,
1513 C.H., Hagen, S., Palace, M., 2013. Holocene fires, forest stability and human
1514 occupation in south-western Amazonia. *Journal of Biogeography* 40, 521-533.

1515 Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human
1516 Domination of Earth's Ecosystems. *Science* 277, 494-498.

1517 Wales, N., Andersen, K., Cappellini, E., Avila-Arcos, M.C., Gilbert, M.T.P., 2014.
1518 Optimization of DNA recovery and amplification from non-carbonized
1519 archaeobotanical remains. *PLoS One* 9, e86827.

1520 Walker, R.S., Ferguson, J.R., Olmeda, A., Hamilton, M.J., Elghammer, J., Buchanan,
1521 B., 2023. Predicting the geographic distribution of ancient Amazonian
1522 archaeological sites with machine learning. *PeerJ* 11, e15137.

1523 Watling, J., Iriarte, J., Mayle, F.E., Schaan, D., Pessenda, L.C.R., Loader, N.J., Street-
1524 Perrott, F.A., Dickau, R.E., Damasceno, A., Ranzi, A., 2017. Impact of pre-
1525 Columbian "geoglyph" builders on Amazonian forests. *Proceedings of the*
1526 *National Academy of Sciences* 114, 1868-1873.

1527 Watling, J., Iriarte, J., Whitney, B., Consuelo, E., Mayle, F., Castro, W., Schaan, D.,
1528 Feldpausch, T.R., 2016. Differentiation of neotropical ecosystems by modern soil
1529 phytolith assemblages and its implications for palaeoenvironmental and
1530 archaeological reconstructions II: Southwestern Amazonian forests. *Review of*
1531 *Palaeobotany and Palynology* 226, 30-43.

1532 Watling, J., Shock, M.P., Mongeló, G.Z., Almeida, F.O., Kater, T., De Oliveira, P.E.,
1533 Neves, E.G., 2018. Direct archaeological evidence for Southwestern Amazonia as
1534 an early plant domestication and food production centre. *PloS one* 13, e0199868.

1535 Weinstein, B., 1983. *The Amazon rubber boom, 1850-1920*. Stanford University
1536 Press.

1537 Whitlock, C., Larsen, C., 2002. Charcoal as a fire proxy. Tracking environmental
1538 change using lake sediments, 75-97.

1539 Whitney, B.S., Dickau, R., Mayle, F.E., Soto, J.D., Iriarte, J., 2013. Pre-Columbian
1540 landscape impact and agriculture in the Monumental Mound region of the Llanos
1541 de Moxos, lowland Bolivia. *Quaternary Research* 80, 207-217.

1542 Whitney, B.S., Dickau, R., Mayle, F.E., Walker, J.H., Soto, J.D., Iriarte, J., 2014. Pre-
1543 Columbian raised-field agriculture and land use in the Bolivian Amazon. *The*
1544 *Holocene*, 0959683613517401.

1545 Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R.,
1546 Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45 kyr
1547 palaeoclimate record from the lowland interior of tropical South America.
1548 *Palaeogeography, Palaeoclimatology, Palaeoecology* 307, 177-192.

1549 Whitney, B.S., Rushton, E.A., Carson, J.F., Iriarte, J., Mayle, F.E., 2012. An improved
1550 methodology for the recovery of *Zea mays* and other large crop pollen, with
1551 implications for environmental archaeology in the Neotropics. *The Holocene* 22,
1552 1087-1096.

1553 Whitney, B.S., Smallman, T.L., Mitchard, E.T., Carson, J.F., Mayle, F.E., Bunting, M.J.,
1554 2019. Constraining pollen-based estimates of forest cover in the Amazon: A
1555 simulation approach. *The Holocene* 29, 262-270.

1556 Winklerprins, A., 2009. Sweep and Char and the Creation of Amazonian Dark
1557 Earths in Homegardens, in: Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C.,
1558 WinklerPrins, A., Rebellato, L. (Eds.), *Amazonian Dark Earths: Wim Sombroek's*
1559 Vision. Springer Netherlands, Dordrecht, pp. 205-211.

1560 WinklerPrins, A.M.A., Levis, C., 2020. Reframing Pre-European Amazonia through
1561 an Anthropocene Lens. *Annals of the American Association of Geographers* 111,
1562 858-868.

1563 WinklerPrins, A.M.G.A., Aldrich, S.P., 2010. Locating Amazonian Dark Earths:
1564 Creating an interactive GIS of known locations. *Journal of Latin American
1565 Geography* 9, 33-50.

1566 Witteveen, N., Hobus, C., Philip, A., Piperno, D., McMichael, C., 2022. The
1567 variability of Amazonian palm phytoliths. *Review of Palaeobotany and
1568 Palynology* 300, 104613.

1569 Young, D.N., Duncan, N.A., Walker, J.H., 2023. Starch grain analysis of ceramic
1570 residue from forest islands associated with raised fields in west central Mojos,
1571 Bolivia. *Journal of Archaeological Science: Reports* 47, 103761.

1572 Zocatelli, R., Lavrieux, M., Guillemot, T., Chassiot, L., Le Milbeau, C., Jacob, J., 2017.
1573 Fecal biomarker imprints as indicators of past human land uses: Source
1574 distinction and preservation potential in archaeological and natural archives.
1575 *Journal of Archaeological Science* 81, 79-89.

1576