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ANALYSIS OF A TWO-LAYER ENERGY BALANCE MODEL:
LONG TIME BEHAVIOUR AND GREENHOUSE EFFECT

P. CANNARSA, V. LUCARINI, P. MARTINEZ, C. URBANI, AND J. VANCOSTENOBLE

ABSTRACT. We study a two-layer energy balance model, that allows for ver-
tical exchanges between a surface layer and the atmosphere. The evolution
equations of the surface temperature and the atmospheric temperature are
coupled by the emission of infrared radiation by one level, that emission being
partly captured by the other layer, and the effect of all non-radiative vertical
exchanges of energy. Therefore, an essential parameter is the absorptivity of
the atmosphere, denoted £,. The value of €, depends critically on greenhouse
gases: increasing concentrations of COg and CHy4 lead to a more opaque at-
mosphere with higher values of €¢,. First we prove that global existence of
solutions of the system holds if and only if e € (0,2), and blow up in finite
time occurs if £, > 2. (Note that the physical range of values for €, is (0, 1]).
Next, we explain the long time dynamics for e, € (0,2), and we prove that all
solutions converge to some equilibrium point. Finally, motivated by the physi-
cal context, we study the dependence of the equilibrium points with respect to
the involved parameters, and we prove in particular that the surface tempera-
ture increases monotonically with respect to €4. This is the key mathematical
manifestation of the greenhouse effect.

1. INTRODUCTION

1.1. Energy Balance Models.

The climate is a multiphase system featuring variability over many temporal and
spatial scales. Its evolution can be written in terms of extremely complicated con-
servation laws for energy, momentum, and chemical species for three-dimensional
(3D) fields [53, 44]. Given such a level of complexity, it is far from trivial to relate
data, theories, and numerical models [65]. Indeed, the theoretical and numerical
investigation of the climate system relies on the use of models that differ wildly in
terms of scope, details, and overall complexity, ranging from extremely low dimen-
sional models to Earth system models, which are some of the heaviest users of high
performance computing facilities [20].

A simple yet extremely valuable approach to the study of the climate system
comes from the use of Energy Balance Models (EBMs), which had originally been
introduced in the sixties independently by Budyko [4] and Sellers [57]. Such models
describe in a very simplified yet effective way the evolution of the zonally averaged
temperature on the Earth’s surface, thus reducing the problem to a single 1D field.
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The planet receives radiation from the Sun (mostly in the form of visible and
ultraviolet radiation); part of this radiation is scattered back to space through
an elastic process where no energy is exchanged, and part is absorbed, mostly at
surface. Then, radiation is emitted by the planet, mostly in the form of infrared
radiation. The incoming solar radiation is unequally distributed over the surface of
the planet, hence the balance between absorbed and emitted radiation will depend
on latitude. A variety of physical processes, mostly associated with the large-scale
motion of the geophysical fluids (the atmosphere and the ocean) are responsible for
transporting heat from warm to cold regions, thus acting effectively as agents of
diffusion. An EBM evolution equation reads as

oT 0] 5 0T

(1.1) V[at N o ((1 . )833)] =Rs —Re,
where T'(t, z) is the surface temperature, measured in Kelvin degrees, at colatitude
0 = sin~'x, € (—1,1) is the space variable, t > 0 is the time variable, R, and
R. are the average amount of solar energy flowing into and out a unit area of the
Earth surface per unit time. The constant - represents the effective heat capacity
(which is the energy needed to raise the temperature by one kelvin), while the
quantity kv = D is the effective thermal conductivity, which controls the efficacy
of the latitudinal diffusion of energy. As hinted above, this is a very simplified way
to represent the effect of the action of the geophysical fluids in the climate system.

The fundamental laws of thermodynamics impose that the amount of energy
radiated from Earth to space depends on the temperature. As a first approximation,
we can assume that the Earth emits as a black body with a surface temperature 7.
Therefore, we assume that function R, follows the Stefan-Boltzmann law

Re(T) = opT*

where o = 5.67- 1078 Wm 2K ~* is the Stefan-Boltzmann constant.
The energy absorbed by the Earth is a fraction of the incoming solar radiation

Q
R = Q(t,2)B(T),

where [ is the effective coalbedo. The effective coalbedo depends on many local
factors as cloud cover, composition of the Earth’s atmosphere, presence of ice on
the Earth’s surface, etc., and, by and large, has to do with the color of the planet
as seen from space: darker hues absorb more solar radiation than light ones. It is
possible to provide a reasonable parametrization of the coalbedo as a function of
the temperature via piecewice linear function of the form

p- T<T_
B(T) = B-+ %(M - B.) TellT_,T]
B+ T>T,.

Indeed, the polar regions, where the temperature is lower, can be covered by snow
and ice and have a higher cloud cover, leading to a smaller coalbedo with respect
to equatorial region, which are free of snow and ice and covered with land and open
water. Typical reference values for the parameters of the equation above are

B =03, B,=07 T =250K, T,=280K,

see, for instance, [31, Chapter 2].
The solar radiation ) can be taken of the form

(1.2) Q(t,x) =r(t)q(x)



where r(t) is a positive, possibly periodic, function allowing for seasonal cycle and
q(x) is the latitudinal-dependent insolation function, which depends on the geom-
etry of the Sun-Earth system [53].

1.2. Multistability and Critical Transitions.

Many authors studied the well-posedness, uniqueness of solutions, asymptotic
behaviour, existence of periodic solutions, free boundary problem and numerical
approximations of these models. We recall the results of North and co-workers
[49, 50, 51], Ghil [19], Held and Suarez [24], Diaz and co-authors [14, 15, 16],
Hetzer [27, 28, 29], and many others. Chen and Ghil [8] studied in detail a more
sophisticated version of the problem above, comprising of an atmosphere described
by an EBM coupled to a ocean described through (approximate) fluid dynamical
equations, finding low-frequency variability associated with the occurrence of a Hopf
bifurcation.

We remark that the EBM described above, despite its simplicity, has been in-
strumental for discovering the multistability of the Earth’s climate. Indeed, as
anticipated by Budyko [4] and Sellers [57] and analysed in detail by Ghil [19], the
model allows for the presence of two competing asymptotic states for the same
values of the parameters. Such states correspond to the current warm climate and
the so-called snowball state, characterised by global glaciation and surface tem-
peratures of the order of 220 K. Paleoclimatic evidences collected in the ’90s [30]
have shown that, indeed, our planet has spent in the distant past many million
years in snowball conditions, the departure from which has allowed the evolution of
multicellular life [54, 20]. Between the two competing climates, one can find a sad-
dle solution which lives on an invariant set that belongs to the boundary between
the two competing basins of attraction; see discussion in Lucarini and Bodai and
references therein [45, 46, 47].

We remark that one of the key manifestations of the multistability of the climate
is the existence - in models and observations - of critical transitions, which lead the
system to qualitative (and de facto irreversible) changeovers from one regime of
operation to a qualitatively different one [34]. A paradigmatic example of such
critical transition is the saddle-node bifurcation whereby the warm state and the
snowball states becomes the only viable attractor [19].

In Earth system sciences such critical behaviour is associated with the so-called
tipping points (TPs) [43]. Indeed, the history of the Earth’s climate features peri-
ods of relatively smooth response to perturbations alternating with rapid changes
due to TPs [20, 39, 42]. We are now at risk of experiencing within our lifetime
the collapse of the Amazon Forest [40] (forest to savannah transition) or of the
Atlantic meridional overturning circulation [41] (transition from vigorous to very
weak circulation). The nearing of a tipping points is flagged by the increased sen-
sitivity of a system to perturbations and by the increase in the correlation time
of generic signals [35]; see a more complete theory in [38, 37] and extension to a
time-dependent framework in [36].

1.3. From one to two Layers.

The EBM described in the equations above can be improved by increasing the
vertical resolution. Indeed, considering various vertical layers it is possible to rep-
resent, at least approximately, the very important vertical exchanges processes
occurring between surface and the atmosphere, and, possibly, between different
atmospheric levels (e.g. troposphere and stratosphere) [25]. Hence, instead of con-
sidering just one vertically homogeneous layer, a more accurate description of the
climate system can be obtained via the following two-layer energy balance model
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(2LEBM), that allows for vertical exchanges between a surface layer and the atmo-
sphere:

7] — ke ((1-2%) 9]
= NT, —T,) + ca0B|T|PTs — 26005|Ta|? Ty 4+ Ra,
%[5 - ko (-2 %)]

ot ox
(1.3) = —\T, —T,) — 0B|TsPTs 4 caop|Tu T, + R,
2\ 0T, _ _ 2\ 0T,
(1= 2%) 55 oy = 0= (L= 2%) G s

T.(0,2) = (50) (2),
T,(0,2) = T ().

T, represents the temperature of the atmospheric layer while T stands for the sur-
face temperature. The energy coupling between the two layers occurs through two
different terms. One involves the emission of infrared radiation by one level, that
emission being captured by the other layer. The other one is linear with the differ-
ence between the temperature of the two layers and describes succinctly the effect
of all non-radiative vertical exchanges of energy due to the action of the geophys-
ical fluids (see [52, Chapter 10]). Notice that when the atmospheric temperature
is lower than the surface one, this term tends to warm up the atmosphere and
cool down the surface. Note that the atmosphere is assumed to have, in general,
non-unitary absorptivity €., because it is treated as a grey rather than black body.
One needs to keep in mind that out of fundamental physical principles 0 < ¢, < 1.
The value of €, depends critically on greenhouse gases: increasing concentrations
of CO; and CHy4 lead to a more opaque atmosphere with higher values of €,; see
an instructive discussion in [25]. Indeed, £, measures the greenhouse effect: an
estimate of ¢, for a basic Energy Balance Model for present-day conditions gives
£q &~ 0.62 [31, Chapter 2]).

Similarly to the one-layer model, Rs is the solar radiation absorbed at the sur-
face. It is a fraction of the incoming solar flux @

(1'4) Rs(t) = Q(t,l‘) /Bs(Ts)v

where [, is the coalbedo function. In general, 5 is modelled as a nondecreasing
positive and bounded function (as, for instance, the piecewise linear function showed
for the one-layer case). We also introduce the term R,, which represents the solar
radiation absorbed by the atmospheric layer

(1'5) Ra(t) = Q(t,l‘) Ba(Ta)a

and is much smaller than R, because the atmosphere is almost transparent in the
visible range. Note that most of such absorption occurs in the stratosphere, whereas
the troposphere, the atmospheric layer that is closest to surface and that contains
most of the mass, plays a lesser role, unless pollutants like black carbon are present.
Indeed, as well known, the atmosphere is a system warmed from below, because the
external forcing coming from the absorption of the solar radiation acts prevalently
at surface [53]. We choose for the incoming flux Q(t,x) the representation (1.2).
Finally, the generalized Neumann boundary condition arises naturally when one
performs the change of variable § = sin™! = between the colatitude # and the new
space variable x.

Note that related two slabs or two boxes models have been studied before in
[23, 26, 60]. However, in these works the authors considered coupled linear evolution
equations with no diffusion, or diffusion only on one layer.



We also remark that atmospheres can be very opaque to infrared radiation (much
more than the Earth’s) as a result of their composition and/or sheer mass thereof.
The most obvious example is Venus, where the surface pressure is 90 times larger
than the Earth’s and the atmosphere is overwhelmingly composed of COy. The
planet Venus is conjectured, in fact, to have undergone a runaway greenhouse tran-
sition in a now distant past [68, 32, 67].

The runaway greenhouse effect emerges when the surface warming leads to ex-
cessive evaporation of surface water, with the resulting water vapour contributing
to further increasing the opacity of the atmosphere, up to full evaporation of the
available water, eventual loss of water vapour to space, and transition to a funda-
mentally different climate (a divergent behaviour, at all practical levels). In a much
weaker form, the water vapour feedback contributes to a great amplification of the
greenhouse effect on the Earth with respect to what would be realised in absence
of water [53].

1.4. Outline of the main findings.

In this paper we study a simplified version of the two-layer system given in (1.3)
where we neglect the effect of latitudinal variation of the fields, so that the system
of partial differential equations can be reduced to the following autonomous ODE
problem:

YaT! = —ANTa = Ty) + €005 |Ts|3Ts — 22005 |TaPTy + Ra(Th),
(1.6) 'YST; = */\(Ts - Ta) - UB|TS|3Ts + 5aUB|Ta|3Ta + RS(T‘?)v

7,(0) = T,

T,(0) = 7.

It appears that the parameter ¢, plays a major role in the qualitative behaviour of
the solution of (1.6).

e If ¢, € (0,2), we prove that the solution is global in time, remains posi-
tive and bounded, and converges to some equilibrium point (with positive
components), see Proposition 2.1 in section 2.1.

e on the other hand, if £, > 2, we prove that there is blow up in finite time,
at least for some solutions, see Proposition 2.6 in section 2.4.

Next, when g, € (0,2), in order to analyze the influence of the different pa-
rameters, we focus on the problem where R, = 0 and R, is piecewise linear: we
assume that there exist ¢ > 0, Ts + > T, — > 0 and B, 4+ > S, > 0 such that
RS(TQ) = qﬂe(T‘;) where

/BS,— T S T‘?,—7
(1.7) Bo(T) = Boo + Booy = B ) T € [To -, T 4],
/Bs,—i- T 2 Ts,+~

Then we prove the following results:

e For all A > 0, all solutions converge to some equilibrium point, see Propo-
sition 2.2. All the equilibrium points (7}, Ts) remain in a compact subset
independent of A, and satisfy T, < Ts. Moreover, there is at most one
warm equilibrium (T > Ty 1, where T 4 appears in (1.7)), and at most
one cold equilibrium (T < T _, where T _ appears in (1.7)), and these
equilibrium points are asymptotically exponentially stable, see Proposition
2.3. Furthermore, there exists at most a finite number of equilibria (Propo-
sition 2.3) and we are able to describe the asymptotic behaviour of the
solutions of our problem.
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This

Moreover, we have the following monotonicity properties: assume that

(Tée“’)‘), TS(E‘“A)) is a warm or a cold equilibrium (hence assume that S ¢
[Ts,—,Ts +]), then, as a function of £, and A, we prove that the surface tem-

perature TS(E‘“)‘)

— increases as g, grows (see Proposition 2.4),

— and decreases as A grows (see Proposition 2.5);
and the atmosphere temperature TCSE""A)

— increases as g, grows, at least if ¢, € [1,2) (see Proposition 2.4),

— increases as A grows if g, € [0,1) and decreases as A grows if ¢, € (1, 2)

(see Proposition 2.5).

As a consequence, an increment of €, causes a rise of T (see Corollary 2.1).
When A = 0 (or A > 0 and &, € (0,1]) we can describe more precisely
the stability of the system: there are exactly one, two or three equilibrium
points, and we are able to detail the asymptotic behaviour of all solutions.
Indeed, in this case, the number of equilibrium points is perfectly deter-
mined by the values of €,, 0p, g, and the parameters T, _, T 4, Bs,—, Bs,+
appearing in the structure of function S, see section 5. Moreover, if there
are three equilibrium points (one warm, one cold and one intermediate),
then we have proved that the intermediate equilibrium is unstable, i.e. we
clarify the multistable nature of the climate system.

paper is structured as follows:

In Section 2, we state the main results:

— global existence when ¢, € (0,2) (see Proposition 2.1),

— blow up in finite time if e, > 2 (see Proposition 2.6),

— asymptotic behaviour if ¢, € (0,2) (see Propositions 2.2 and 2.3),

— monotonicity of the equilibrium points with respect to parameters ¢,
and A (see Propositions 2.4 and 2.5) and application to the asymptotic
behaviour (Corollary 2.1).

In Section 3, we mention some open problems.

In Section 4, we study the well-posedness of the problem (existence, unique-
ness, positivity of solutions).

In Section 5, we analyze the behaviour of all solutions when A = 0 and
R, =0.

In Section 6, we consider the case of A > 0 and R, = 0.

In Section 7, we derive several results showing the sensitivity of the equi-
libria with respect to parameters A and &,.

In Appendix B we derive upper bounds for the number of equilibria which,
in the physical case ¢, € (0, 1], is equal to three.

In Appendix A, we show that solutions may blow up in finite time.

2. STATEMENT OF THE MAIN RESULTS

2.1. Global existence, positivity and boundedness for ¢, € (0,2).
We make the following assumptions:

(2.1)

(2.2)

let the coefficients A, ¢ and o be such that
A>0, ¢g>0, op>0.

let B,,8s : R — R be globally Lipschitz continuous and such that 5, > 0
and s > 0, and define

Ra = qﬁa(Ta); Rs = qﬂs(Ts)



e let the initial conditions satisfy

(2.3) T >0, 7O >0.
e let €, be in the following range
(2.4) £a €(0,2).

Proposition 2.1. Under the assumptions (2.1)-(2.4), problem (1.6) admits a unique
solution, which is defined and bounded for any t € [0,+00). Moreover

(2.5) Vit e (0,400), T,(t)>0 and Ts(t)>0.
The proof of Proposition 2.1 is given in Section 4.

2.2. Asymptotic behaviour of the solutions when ¢, € (0,2) and A > 0.
When ¢, € (0,2), the solution of (1.6) is global in time.

Proposition 2.2. Consider ¢, € (0,2) , A >0, 70 >0 and 70 > 0. Then, the
solution of (1.6) converges to an equilibrium point.

Proposition 2.2 follows from a general result concerning cooperative systems (see
Smith [58]). We complete this general convergence result in two directions:
o first, explaining how the convergence occurs when A = 0 and R, = 0 (see
Section 5, where we give a complete description of the basins of attraction
of the different equilibrium points for A = 0, and Section 6 forA > 0),
e finally, proving some properties of the equilibrium points in the general case
A>0:

Proposition 2.3. Assume that g, € (0,2), A >0, ¢ >0, 85 > 0 is given by (1.7),
and Rqy =0. Then
e problem (1.6) has at least one equilibrium point (T,,Ts) and at most a finite
number of equilibria. In particular, there are at most three equilibrium
points for X =0 and any e, € (0,2), and for any A > 0 and ¢, € (0,1],
o all equilibrium points (Ty,Ts) of problem (1.6) belong to a compact subset
of (0,+00)? which is independent of \,
o problem (1.6) has at most one cold equilibrium (T,,Ts) (that is, Ts < T, _),
and at most one warm equilibrium (T,,Ts) (namely, Ts > T 1),
a cold equilibrium point (T, Ts) is asymptotically exponentially stable,
o o warm equilibrium point (T,,Ts) is asymptotically exponentially stable.

The asymptotic behaviour of the solution of our system, for the case A = 0, is
summarized in the phase space shown in Figure 1 below (see the proof in Section
5.3 for A = 0 and in Section 6.5 for A > 0).

2.3. The influence of the parameters ¢, and )\ on the equilibrium points.

Since all solutions converge to equilibrium points, it is interesting to study the
behaviour of such points with respect to the parameters £, and A. We consider the
case where R, = 0, and [, is given by (1.7). Our results are the following:

Proposition 2.4. Fiz A > 0. Assume that (T;q’E;,T:q’EZ) is a warm [respectively
cold] equilibrium point of problem (1.6) with e, = €. More precisely, assume that
T:%Ea ¢ [TsﬁaTSnL]-

Then, there exists a unique warm [respectively cold] equilibrium point (T %, TE%Ea)
of problem (1.6) for e, close to 5. This equilibrium is also asymptotically expo-
nentially stable. Moreover, the functions e, — TS and €, — T59% are locally
analytic, and the following monotonicity properties hold:

o locally, function e, — TET% is increasing. Hence, the surface temperature
equilibrium increases as €, increases;
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FIGURE 1. In the phase space we sketch by black and green arrows
the convergence of initial conditions according to their belonging
to the basins of attraction of the three equilibria (271477, T} ),

(2—1/4TS*)2’ =) and (2_1/47?,3, o3), solutions of (6.1).

e locally, function €, — TS%% is increasing if € € (1,2). Therefore, for
such range of €k, the atmosphere temperature equilibrium increases as €,
mereases.

Note that we were not able to determine the variations of T¢%¢« when ¢’ € (0, 1).
However, we have established not only the sign of the derivative of T%¢* with
respect to €4, but also its value, which is interesting to predict the evolution of
T¢%%e with respect to ,. From the previous proposition we deduce the following

Corollary 2.1. Fiz A > 0. Let (T;q’EZ,qu’E:) be a warm equilibrium of problem
(1.6) associated to the parameter €%. Assume that Ts""* > Ty . Then

o foralle, € [e£,2), there exists a unique warm equilibrium of problem (1.6)
with parameter €,. Furthermore, function e, — T<%% is analytic and
increasing on [eX,2) and function €, — TSP is analytic on [}, 2);

e given e > ek, the solution of problem (1.6) with parameter €} and initial

« - + +
. €eq,g €eq,g “q. . €q.,c eq.,c
conditions (T, "%, Ts ") converge to the warm equilibrium (T, Ts 7% ).

We can interpret the second item of Corollary 2.1 as follows: if the absorptivity
parameter increases, jumping from € to ¢, then the former warm equilibrium

€q,en  neq,En . . pel e .
(T5%%  Ts*%*), which is no more an equilibrium, converges to the new warm equi-

o eq,el eq,et . . eq,et eq,e
librium, (75", T5"*), associated to e}. Furthermore, since Ts% > T5"*, the
surface temperature rises as the pollution parameter increases.

Let us now analyse the dependence of the equilibria on the coupling parameter
A

Proposition 2.5. Fiz e, € (0,2). Assume that (T, TS is a warm [respec-
tively cold] equilibrium point of problem (1.6) with A = A\* > 0. More precisely,
assume that TS9N ¢ [Ty _, Ts +].
Then, there exists a unique equilibrium point (T¢%*,T¢%*) of problem (1.6) for
A close to X*. Such equilibrium is also asymptotically exponentially stable. Further-
more, the functions X\ — TN and X — T are locally analytic, and the following
monotonicity properties hold:
e locally, function \ +— T% is decreasing. Thus, the surface temperature
equilibrium decreases as \ increases;



e locally, function X — TS is
— increasing if 4 € (0,1),
— decreasing if €, € (1,2).
Hence, the atmosphere temperature equilibrium behaves monotonically with
respect to A, and the monotonicity depends on €.

Observe that we have determined not only the sign of the derivative of T¢%* and
TeA with respect to A, but also their values. This information can be useful to
predict the evolution of T¢%* and T%* with respect to \.

2.4. Blow up in finite time when ¢, > 2.

We complete the results of Proposition 2.2 on the global existence and bound-
edness of solutions of (1.6) for e, € (0,2) by studying the case of g, > 2, which, as
discussed above, has a mathematical motivation but a less solid physical interpre-
tation.

We prove the following result about the ODE system (1.6). When ¢, > 2, we
give

e a precise result on a simplified model (assuming that A = 0 and R, = 0):
all solutions blow up in finite time.

e a general result directly on (1.6) (assuming only that A > 0): there exist
some solutions that blow up in finite time.

Let us consider the following assumptions:
e let A\, ¢ and op satisfy

(2.6) A=0, ¢>0, op>0,
e let B, =0 and B; > 0 be defined by (1.7), so that
(2.7) Ra=qBa(Ta) =0, R, =qB(Ts),
e let £, be such that
(2.8) Ea > 2.

Proposition 2.6.

a) Under assumptions (2.3),(2.6)-(2.8), problem (1.6) admits a unique mazimal
solution that blows up in finite time.

b) Under the following weaker assumptions

e letA>0,g>0,0 >0,
e let B, >0 and Bs > 0 be globally Lipschitz continuous,
e lete, > 2,

and (2.3), there exist solutions of problem (1.6) that blow up in finite time.
The proof of Proposition 2.6 is postponed in Appendix A.

3. EXTENSIONS AND OPEN QUESTIONS

3.1. Some open questions directly related to our results.
There are some properties that we were not able to prove which are of interest:

e the monotonicity of ¢, — T5%%+, where T5%* is a warm equilibrium, in
the case ¢ € [0,1) (see Proposition 2.4). From numerical computations
(see right columns of Figures 2, 3, 4), we expect that g, — T%% is also
increasing in these cases.

e we obtained in Proposition 2.4 local results concerning the behaviour of
warm (or cold) equilibria, and global ones in Corollary 2.1 concerning the
behaviour of the solution (T}, Ts) when &, jumps to a higher value (that is,
if suddenly there is an increase of concentration of CO5). However, it would
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be interesting to go further and, for instance, to understand the behaviour
of (T,,Ts) starting from a warm equilibrium point in the case of a lowering
of the value of €,. Our numerical tests suggest that there is some hysteresis
phenomenon, with the existence of a tipping point for which the solution of
our system could jump from a warm equilibrium to a cold one. An analytic
proof of such phenomenon would be of great concern.
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with respect to £, in the case A = 2

3.2. A periodic extension.
It would be natural to investigate problem (1.6) in presence of a seasonal effect:

Ra = r(t)qBa(Ta

R = r(t)ahs(Ts

);

where the function r is positive and periodic in time. We expect the equilibrium
points to be replaced by cycles, but a careful analysis of this model should be carried

out.
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3.3. Inverse problem question.

It would also be interesting to investigate the problem of determining the values
of ¢, and A, as well as the insolation parameter ¢ (appearing in the expression
of Rs), from (the fewest possible) measurements of the solution. We refer to [10]
for the determination of two coeflicients in a reaction-diffusion equation (invasion
model), and to [56, 48, 5] concerning Budyko-Sellers parabolic equation (possibly
involving memory effects).

4. WELL-POSEDNESS

In the following we prove Propositions 2.1 and 2.2.

4.1. Local existence.
Let us introduce the function F : R? — R? defined by

Ta> 1 [f)\(Ta 1) + caoB|ToPTy — 2e005|TuPTa + Ra}

(41) F ( Te
T, L [—A(Ts ) — op|TuPTs + cqop|Tul* Ty + R}
So, problem (1.6) can be recast into the form

/

T, (T
T, (0) = 7o |-
Then, the Cauchy-Lipschitz theorem implies that there exists a unique maximal

solution (T,,Ts) defined on the maximal time interval (7, ,,7,",), where —oo <
Tos <0< 7 < +oo.

4.2. Positivity of the solution.
Now, since we are investigating positive initial conditions, let us prove the fol-
lowing result.

Lemma 4.1. Assume that Téo) >0 and TS(O) > 0. Then, as long as the solution
(Tu, Ts) exists, we have To(t) > 0 and Ty(t) > 0 for positive times.

Proof of Lemma 4.1. Let us first consider initial conditions (T(SO)7 TS(O)) lying on the

boundary of the set
T,
0= {(T) T, > 0,T, > 0},

and let us study the behaviour of F.
In the case Téo) >0 and TS(O) = 0, we have

B (Ta - 0) (A [T = 20008TE + R
L [ATa e R}

T, =0

Observe that the second component is positive, and so F' points inward the set Q.
Therefore, the associated solution stays in Q for at least a certain period of time
(small enough).

If Téo) =0 and TS(O) > 0, we get

p (Ta _ 0) WL ATy + eq08T + R,
T,>0 +| AT — 0BT+ R,
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In this case the first component is positive and this implies that F' points inward
the set Q. Once again, we find that the associated solution lives in Q for a certain
amount of time.

Finally, if Téo) =0 and TS(O) = 0, one has that

T,=0 1R,
a — Ya
(7 20)=( 2 )

We recall that Rs(0) > 0. If also R,(0) > 0, then once again we deduce that F'
points inward the set Q. If instead R, (0) = 0, then 7, (0) = 0 = T,,(0), that implies
T.(t) = o(t). On the other hand, T.(0) = %RS(O)7 hence close to t = 0 we have

that T,(t) = 229t 4 o(t). We note that

1 1
T(t) = - [-ATu = T0) + 0Bl TP T, — 2200nl TP T + Ry
1 .
Z - |:*)\(Ta - Te) + 5aO'B|T9‘3T's - 25aUB|Ta|3Tai| 3
Ya

where we have used that R, is nonnegative. Le us now treat separately the cases
A>0and A =0.
If A > 0, we have
1
— [f)\(Ta —T) + eaop|T|?Ts — 2saaB\Ta|‘°’Ta}
Ya

1 1
-2 [ATS} ;= {f/\Ta + oo | T|PT, — 25aaB|Ta|3Ta}
Va Y

171, R(0) 1 171, R(0)
= % [ATt + O(t):| + % |:0(t):| = 'yia [ATt + 0(t):| s
which implies that
, 1 1. R4(0) .
> ()W
Ti(0) > [A A o(t)} it A > 0.

By integration, we get that T, (¢) > 0 for ¢ > 0 small. Since also Ts > 0 for A small
enough, we conclude that the solution stays in Q for a certain amount of time.

The same property is true if A = 0: indeed, in this case, we have that for ¢t > 0
small enough

1
- [—A(Ta T + caos|THPTs — 25aaB\Ta\3Ta]
Ya

1 -

- a0 T PTy — 25aoB\Ta|3Ta}
17 Rs(0 4

= o saaB(&t + o(t)) - QeaaBo(t)4]
1y R,(0)*

= —|e,on 3(4) t4+0(t4):|.
'Ya - ’YS

Therefore 4
1 Rs(0
TI(1) > - [eaaBiy(j# +o(t)],

and by integrating in time, we obtain that T, (t) > 0 for ¢ > 0 small. Recalling that
T,(t) > 0 for t > 0 small, then the solution remains in Q for an interval of time
small enough.

2
T
in Q for all positive times (as long as it exists). We have already proved that the

Let us now consider € Q. We claim that the associated solution stays
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solution belongs to Q for small positive times. Now we proceed by contradiction:
assume that the solution leaves Q and let ty be the first exit time. Then, either
(To(to) > 0,Ts(to) = 0), or (Ty(to) = 0,Ts(te) > 0), or (Tu(to) = 0,Ts(to) = 0).
However, in the first two cases, F' would point inward, a contradiction with the
minimality of #o. In the latter case we would have that T%.(ty) = %RS(O) > 0.

However, since Tx(tg) = 0, we would get that

1) = 2O 1) 4ot — 1),

S

which implies that T would be negative before tg. This fact contradicts the mini-
mality of tyg. Therefore, as long as the solution exists, it remains inside Q. O

4.3. Bounds on the solution for ¢, € (0,2).
We will prove the following

Lemma 4.2. Assume that ¢, € (0,2). Let p € (6}1/4, 21/%) and M, be large enough
such that

(T3, T5%) € [0, Ma] x [0, pMa).
Then, the solution (T,,Ts) of (1.6) does not leave the rectangle [0, My] x [0, uM,]
for positive times.

From the above Lemma it is easy to deduce the following

Corollary 4.1. Assume that e, € (0,2). Then, if Téo) and T§°) are nonnegative,
the mazimal solution of (1.6) exists on [0,+00).

Proof of Lemma 4.2. Let the initial condition be on the rectangle [0, M,] x [0, Mj].
On the right hand side of the rectangle, we have

. (Ma> B (1 {—)\(Ma T + eqop|THPT, — 2c005 MY + RG(MQ)D

Ya
T
while on the top side, we have

T\
F (MS> = (71 {—)\(Ms ~T,) — oM + o0 | TuP T —s—RS(MS)}) :

We are interested in the sign of first component of F < T“ ) and in the sign of
S

T,

the second component of F'
M;

) to check if F' points inward the rectangle on
these two sides. We note that
—AMy = Ty) + €005 |Ts|* Ty — 26005 M + Ra(M,)
< MM, — M) + eqopM* — 2e,0 M2 + Ro(M,)
= ca0p [ M2 = 20| = A(M, = M) + Ra(Ma),
and
— MM, —T,) — oM+ e405|T,|*Ty + Rs(M,)
< —AMM; — My) — oM + eao M, + Ry(M,)
= op [5an - M;%} (M, — M,) + Ry(M,).
To simplify the analysis, we set

M, = /JMan
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with u to be chosen later. Then
[M;L - 2M;*] = (u* — 2)M* and [sanj - M;*] = (eq — pY M2,

Therefore, if ¢, € (0,2), by choosing p € (5}1/4, 21/4) we have

pt—2<0 and e,—pt<0.
Then, since R, and R, are globally Lipschitz, F' points inward the rectangle
[0, M,] x [0, uM,] on all the sides if M, is chosen sufficiently large. We finally

obtain that this rectangle is invariant: if y € (5,11/ 4, 21/ 1) and M, sufficiently large,
then

(0)
(;‘Em) € [0, M,] x [0,uM,] = G“%) € (0,M,) x (0, uM,)

as soon as t > 0 and as long as the solution exists. Thus, we further deduce that

£, €(0,2), T >0,7 >0 = the solution (g:“) is bounded,
S

which yields global existence (for positive times). This concludes the proof of
Proposition 2.1. O

4.4. Proof of Proposition 2.2: general asymptotic behaviour.
We first recall some definitions from [58]. A set D C R™ is p-convex (see [58,
page 33]) if for all z,y € D such that x; < y; foralli=1,...,n

[z,y] C D.
Given a p-convex set D, a C'-system of differential equations on D
2i(t) = Fi(z1(t), ..., zn(t)) = Fi(z(t)) i=1,...,n

is called cooperative if
OF;
Ox;
and competitive if the reverse inequalities hold (see [58, page 34]).
Furthermore, we recall the following result (see [58, Theorem 2.2, page 3]).

()20 i#j, zeD,

Theorem 4.1. Consider a cooperative or competitive system on a p-conver set
D C R?.

If t — x(t) is a solution defined on [0,+00), then there exists T > 0 such that
z(t) is monotone fort > T.

Moreover, if the solution x(t) is bounded, then it converges to some equilibrium
point.

Let us consider the 2-convex set Q = [0, +00) x [0,+o0). Let g, € (0,2) and
A > 0 and observe that

1
Ty = — [NTs + a0 p|Ts [’ Ty — AT, — 26005 |Tol*To + Ra(T0)]
Ya

and
1
T, — o NT, — op|Ts|>Ts — AT + €40 5|Ta* Ty + Ry (T5)]
S

are nondecreasing on [0, +00) (indeed it is easy to check that the derivatives of these
maps are nonnegative). Thus, system (1.6) is cooperative if the vector field F is C*.
However, F' = (f1, f2) is globally Lipschitz continuous because of functions §, and
Bs. Thus, since we cannot apply Theorem 4.1 to our system, we need to verify if
the monotonicity property of the solution still holds under our weaker assumptions.
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Let us consider the following subset of Q

P, ={(T,,Ts) € Q : fi(T,,Ts) >0 and fo(T,,Ts) > 0},

P ={(T,,T,) € Q : fi(T,,Ts) <0 and fo(T,,Ts) <0}.

We are going to prove the following

Lemma 4.3. If (TCEO)7 TS(O)) € P, then each component t — T,(t), t — Fs(t) of the
solution of (1.6) is nondecreasing, that is, the solution of (1.6) nondecreasing.

Similarly, if (Téo),TS(O)) € P_ then the solution of (1.6) is nonincreasing.
Thanks to the above result we can prove the following Theorem.

Theorem 4.2. Given (Téo),TS(O)) € Q, the solution (T,(t),Ts(t)) of (1.6) converges
to some equilibrium point. Moreover, there exists T > 0 such that t — T,(t) and
t — T4(t) are monotone fort > T.

Proof of Lemma 4.3. We prove the result using a regularization argument. Given
n > 1, there exist Bqn,Bsn : R — R of class C', globally Lipschitz continuous,
such that B4, >0, Bs.n > 0 and

1 1
sup ‘Ba,n - Ba| S ) and sup |/68,n - Bs‘ S -
R n R n

Given an initial condition (Téo), TS(O)) € Q, consider the associated solution (T;, ,,, Ts.»)
of the regularized problem

T, 70
()= (5 )

where F), is defined by replacing 5, and s by B4, and [ ,, respectively, in (4.1).
The regularized vector field F,, is C' and cooperative (indeed, its first component,
denoted by fy 1, is nondecreasing with respect to T, and the second component,
denoted by f, 2, is nondecreasing with respect to T.)

We now consider (Téo), TS(O)) € P, and we assume that
ATO, 1) >0,
Fo(TO, 7O > 0.

Since it holds that
fn,l(T(£0)7 TG(O)) — fl (TéO)v T§0))a

Fa2 (T, TO) — f(TO, T(),

as n — oo, then for n large enough

fn,l(Ta(,O)7 TS(O)) > 07

Fr2(T©, T > 0.
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Recalling that the regularized system is cooperative, we get that

(o Tan 0, e 0)) Sra(Tan0), Ton () =
— (T (L0 T () + T2 (Lo (1), T (1))
: (fn,l(Ta,n(t)yTs,n(t)) fn,Q(Ta,n(t)»Ts,n(t)))

(Tan (1) Tsn(t)) fr 2(Tan(t), T (1))

afn,l
0T,

afn,2
a7,

+ (Tan(t); Tsn () fro 1 (Tan (1), T (1))

T, n(t
> (7 (0 D (5T 0. o) o2 T (0. T8
By integrating the above first order differential inequality, we deduce that the quan-
tity
fn,l(Ta,n(t)’ TS,n(t)) fn,2(Ta,n(t)v Ts,n(t))
remains positive. Therefore, for every ¢ > 0

fn,l (Ta,n (t), Tsm(t)) > 0,

fn,2(Ta,n<t)a Ts,n(t)) > 0.
This implies that the solution (T, ,,Ts,n) of the regularized problem is increasing
in time and since for every ¢ > 0 it holds that
Ta,n(t) —n—oo Ta(t)7
TS,TL(t) 4>n—>oo Ts(t)a

we deduce that the solution (T,,Ts) of the original problem is nondecreasing in
time.
We now prove that the same property is true if
S (TéO)v Ts(o)) =0,
F(T, 1) > 0.
Consider an initial condition (Ta(o), TS(O)) such that the above relations hold. Then,
since fy is strictly increasing with respect to the second variable, we have that for
allp >0
AT T + ) > 0.
Moreover,
FATO T 4 ) = f(TOT) asn— 0F,
and therefore we have that for n > 0 small enough
AT, T + 1) > 0,
Fo(TO, T ) > 0.
Then, the solution (Tén), Ts(n)) corresponding to the initial condition (Téo), 70 +7)
is nondecreasing in time thanks to the previous step. Furthermore, since for every
t > 0 it holds that
Té")(t) Hn%OJr Ta(t)a
Ts(n)(t) _>77—>O+ Ts(t)v
we conclude that the solution (7, Ts) of the original problem is nondecreasing in
time, that is, what we wanted to prove.
If we now consider the case

AT, TO) >0,
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F(TO,TV) =0,
we can proceed similarly to the previous case by introducing the approximated
initial condition (Téo) +n, TS(O)) and deduce that the solution of the original problem
is again nondecreasing. This concludes the case (Téo)7 TS(O)) € P;.

One can adapt the strategy proposed for ( 50)7 3(0)) € Py to the case of an
initial condition in P_ and conclude the proof of Lemma 4.3. O

Proof of Theorem 4.2. If (Téo), TS(O)) € P,, then the solution is nondecreasing, and
bounded thanks to Lemma 4.2. Therefore, it converges to some limit, that has to
be an equilibrium point. Similarly, if (Téo)7 TS’)) € P_ then the solution converges
to some limit, that again has to be an equilibrium point. This solves the case of an
initial condition that verifies the property

AT TO) o1V, TO) > 0.
We now assume that
AT, TO) TV, TO) < 0.
Then, either it holds that
vt Z 07 fl(Ta(t)st(t)) f2(Ta(t)7Ts(t)) < 07

or there exists 7 > 0 such that

Si(Ta(7), Ts(7)) f2(Ta(7), Ts(7)) = 0.
In the second case, the solution has entered the set P, U P_ and from the previous
analysis we deduce that it converges monotonically to some equilibrium point. In
the first case, each function ¢ — f1(T,(t), Ts(t)) and t — fo(T,(t),Ts(t)) has a
precise sign for every ¢ > 0. Therefore T, and T, are monotone. Because of the
boundedness the solution (Ty,Ts) converges with some monotonicity to a limit
which is an equilibrium point. This concludes the proof of Theorem 4.2. U

5. ANALYSIS OF THE ASYMPTOTIC BEHAVIOUR FOR A =0 AND R, =0

We assume here that A = 0, ¢ > 0, o > 0, 8, = 0 (considering that R,
is negligible with respect to Ry), 8 is given by (1.7), and &, € (0,2) (since the
solutions are unbounded when e, > 2).

We already know that any solution converges to some equilibrium point. The
goal here is to be more precise about the monotonicity of the solution.

5.1. There are one, two or three equilibrium points.
Equilibrium points of (1.6) when A =0 and R, = 0 are (T}, Ts) solutions of

(5 1) 5aUB|T€|3T9 - 25aaB|Ta‘3Ta = 07
' —0B|Ts|>Ts + cqoB|To|>T, + Rs(Ts) = 0.

Since we are interested in the behaviour of positive initial conditions, we look for
nonnegative equilibrium points. From the first equation of (5.1), we have

T =2T,,
which gives
(5.2) T, = 2V/4T,.
Substituting this last identity in the second equation of (5.1), we obtain
on(—1+ %“)T;* +R(Ts) = 0,
that is equivalent to

(5.3) op(l— %“)T;‘ = qBs(Ts).
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Observe that this last equation is of the same type than the one satisfied by equi-
librium points of a one-layer model. By considering 8; : R — R as in (1.7),
that is, continuous, positive, nondecreasing, constant on the intervals [0, T, _] and
[Ts,+,+00) and linear on [T 4, Ts |, we deduce that there can be exactly one, two,
or three equilibrium points, depending on the values of the parameters op, €4, ¢,
and those that appear in 85. No other situations are possible. Indeed it is easy to
see that function

(5.4) g:[0.400) > R, g(T,) = 01— ST} — gB,(T2)

is continuous, negative at Ty = 0 and goes to 400 as Ty — +oo. Thus, the mean
value theorem ensures that there exists at least a point T € (0, +00) such that (5.3)
is satisfied. Moreover, g is strictly increasing on [0,T; _], hence g can be equal to
0 on [0,Ts,_] at most once. One can use the same argument to prove that also in
[Ts,+,+00) g can have at most one zero. Finally, g is strictly convex on [T, _, T 4],
an so it can assume the value 0 at most twice on this set. Such argument implies
that g can be equal to 0 at most four times on R,. However, if it takes twice
the value 0 on [T _, T, 4], this would mean that the curve of Ty — op(1 — )T
intersects twice the segment {(Ts, ¢8s(Ts)), Ts € [Ts,—,Ts,+]}. In this case it cannot
intersect anymore the half-line {(7%, ¢8s,+ ), Ts € [Ts,+,+00)} because, by convexity,
it will remain above the half line on which the previous segment lies. Thus, this
observation reduces the number of possible zeros of g on R to three. We describe
such values in the following pictures:

e the intersection between the graph of T+ op(1 — £¢)T* and the graph of
T +— qB(T) is exactly one point (see Figure 5)

Q/Bs,-‘r

qBs,—

ABs+ p=--f---- as

(©)

FIGURE 5. In this figure we show the possible cases of one inter-
section between the curves T — op(1 — 5)T* and T — ¢B,(T).
In (a) there is a unique “warm” equilibrium, in (c) a unique “cold”
equilibrium and in (b) an equilibrium at an intermediate surface
temperature between T _ and T ;.

or the “degenerate” cases where the intersection is either Tg _ or T 4,
e the graph of T'+— op(1 — )T intersects the graph of T+ ¢8,(T) three
times (see Figure 6)
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q53,+ ”””” qps qgs,-ﬁ- ””””” q8s

Qﬁs,— |
T T3 oT5 5 T, TS, TS5

(a) (B)

FIGURE 6. In (a) and (b) we show possible cases of three inter-
section between the curves T — op(1 — 5)T* and T — ¢B,(T).
In particular, in (a) there are one “cold”, one intermediate and
one “warm” equilibrium, while in (b) there are one “cold” and two
intermediate equilibrium.

e the “degenerate” cases where the intersections between the graph of T' —
op(1 — )Ty and the graph of T — ¢3,(T) are exactly two (see Figure 7)

qgs,—&-

qBs,—

FIGURE 7. In these pictures we represents three possible cases
of two intersections between the curves T +— op(1 — 5)T* and
T — ¢Bs(T). In (a) and in (c) there are one “cold” and one
intermediate equilibrium and in (b) one “cold” and one “warm”
equilibrium.

In the case where we have only one equilibrium point, all solutions converge to
such equilibrium. When there are more than one equilibrium points, every solution
converges to one of them. In the following we precise the nature of such equilibria.

We will also show that the equilibrium points have some monotonicity property
with respect to the parameter €,. More precisely, we will prove that

e in situations as those described in Figure 5, (A) the equilibrium point has
the same monotony of ¢,, that is, if ¢, increases the equilibrium point
increases;
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e in situations as those of Figure 6, (A): the equilibrium points enjoy the
following property: if ¢, increases, the “cold” and the “warm” equilibrium
points increase, while the intermediate decrease.

We will extend later on these properties to the case A > 0.

For the sake of shortness, in what follows we analyse the most common cases
of one a three equilibria. With similar techniques one can study the case of two
intersection between the curves ¢f3,(T) and op(1 — )T

5.2. Monotonicity and convergence when there is only one equilibrium.
Here we study the case where (5.3) has one and only one solution that we denote
by T;;. This case corresponds to a unique equilibrium point of (1.6), which is

(2_1/4T;17 T7,). Note that we have

op(1— %) < qBs(Ts) if Ty < T3y,
op(1 = )T = qu(Ty) i Ty =17,
op(l— )T > qBs(Ts)  if Ty > T
In the phase plane, let us consider once again the line
Ci: Ty = 2Y/4T,
and the set
Cy:={(Ty, Ty) € R?, —0p|T.|>Ts + a0 p|Tal|*Tu + qBs(Ts) = 0}.
Let us analyse the set Co. We claim that, given T, there exists one and only one
value T,, denoted T¢§2)(TS)7 such that
a0 B|Tal*Ta = 0B|Ts* Ty — qBs(Ts).
Indeed, the function
(5.5) ViR =R, P(Ty) = —0p|Ts’Ts + caop| Tl Ta + 4B (Ts)
is strictly increasing and has infinite limits as T, — d+o00. Moreover, if Ts > 0, we
have
BT = —opTd + SopT! + (L) = qBu(T) — on(l - ST,
Therefore
YERTVT) >0 i T, <T7y,
YERTVAT) =0 i T, =T7,
P27VAT) <0 i T > T

Since 0 = ¢(T,§2) (Ts)), the monotonicity of 1 gives

T(EQ) (Ts) < 2_1/4T8 lf Ts < Ts*,17
T0€2) (Tg) _ 2*1/4’175 if T, = T;,l’
TENT) > 27T T > T

Moreover, T, (Ts) = 0 if op|Ts|>Ts = qBs(Ts). The latter equality has at least
once solution and at most three, as we have seen in Section 5.1. More precisely, in
Section 5.1, we studied the intersections between the graph of T — ¢B84(Ts) and
the graph of T, — op(1 — )T, while here we are interested in the intersections
between the graph of Ty + ¢Bs(Ts) with the graph of T, + ogT#. However,
the argument of convexity still applies and thus we can have one, two or three
intersections (depending on the values of o, ¢, and the parameters appearing in

Bs). Therefore, we shall analyse these different cases. Finally, for T large, we have

Téz)(Ts) ~ 5;1/4TS as Ty — oo.
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Let us introduce the following subdomains of Q:
Q= {(T.,T;) € Q, T, >2"*T, and —opT} +e,08T, +qbs(Ts) > 0},
Q= {(To,T;) € Q, T >2Y*T, and —opT} +e,08T; +qBs(Ts) < 0},
Q3 :={(T,,Ts) € Q, Ty <2Y*T, and — 0T+ e,05TE+ qB:(Ts) < 0},
Q= {(T,,Ts) € Q, Ty <2Y*T, and — 0T+ c,05Tt + qBs(Ts) > 0}.
Observe that Q1, Qz, Q3 and Q4 are open subdomains of Q, and they are separated
by C1 and CQ.
Figure 8 below represents in phase space the case of one solution, T 1, of the
equation op|Ts|>Ts = qBs(Ts). Whereas, in Figure 9 we sketch the sets Qp, Qa,

Q3 and Q4 when o|T|*Ts = qBs(Ts) admits three solutions, denoted by T 1, T 2
and T 3.

T, ¢
Q2 QS CQ
T b
Ts1 {0, Q4
T,

FIGURE 8. In the phase space we represent the case of one equilib-
rium point (2*1/4T;71TS*’1), which is solution of (6.1), and therefore
intersection of the curves C; : T, = 2Y/4T, and the one defined
by the set Co = {(Ty,Ts) € R? : —op|TL|*Ts + caop|T.|?T, +
qBs(Ts) = 0}. In particular, here we consider the case of one
solution of the equation opT* = ¢B,(T;). We subdivide the set
Q= {(T,,Ts) : T, > 0, T, > 0} in the subsets Q;, Q2, Q3 and
Q4. We describe with arrows the behaviour of the vector field on
the boundaries of Qq, Qs, O3 and Q4.

We are now going to study the behaviour of the solutions of (1.6) when the initial
condition varies on Q. We consider the case of one solution of og|Ts|3Ts = qB4(T5).
The remain case can be treated analogously.

We have that:

° (Téo),TS(O)) € Q;: the solution (7,,Ts) cannot leave Q; since the vector
field points inward the boundary. Therefore the solution cannot leave Q;.
Furthermore, since T, > 0 and 77 > 0 in Qy, then T, and Ty are increasing.
However, T,, and T are also bounded, which means that (T,,7Ts) converges
to the unique equilibrium point.

° (Téo), TS(O)) € Qg3: also in this case the vector field points inward Q3. Thus,
(Ty, Ts) remains in Qs. Moreover, T, < 0 and T, < 0 in Qs and so the
solution converges to the equilibrium point;

° (Téo),TS(O)) € Qs: in this region T, is increasing and Ty is decreasing.
Therefore, we can have three possible scenarios:

— the solution never leaves Qs: it converges to the unique equilibrium
point;
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Ts Cl
Q2 Q3 C2
Ty b-mmmmm e
Tas Q1

1,

FIGURE 9. In the phase space we represent the case of one equilib-
rium point (271477, T7,), which is solution of (6.1), and therefore
intersection of the curves C; : T, = 2Y/4T, and the one defined
by the set Co = {(T,,Ts) € R? : —op|Ts|3Ts + cqop|Tal3Ty +
qBs(Ts) = 0}. In particular, here we consider the case of three
solutions of the equation opT2 = ¢Bs(Ts). We subdivide the set
Q = {(T,,Ts) : T, > 0, Ts > 0} in the subsets Q;, Qq, Q3 and
Q4. We describe with arrows the behaviour of the vector field on
the boundaries of @1, Qs, Q3 and Qy.

— there exists a minimal value 7 > 0 such that
(To(7),Ts(7)) € Q2N Qp. In this case the vector field F' drives the
solution inside Q;, and the solution converges monotonically (increas-
ingly) to the equilibrium point;
— there exists a minimal value 7 > 0 such that such that
(T.(7),Ts(7)) € Q2 N Q3. Thus the vector field F drives the solution
inside Q3 from which the solution converges monotonically (decreas-
ingly) to the equilibrium point.
. (Téo), TS(O)) € Qy: the situation is similar to the previous case.
Therefore, the solution converges to the unique equilibrium point with some mono-
tonicity: if the initial condition lies in Qo or Q4, then the solution first enters in
Q; or Qz and then it converges monotonically to the equilibrium (see Figure 10).

5.3. Monotonicity when there are three equilibrium points.

This is the most interesting case from a physical point of view. We assume that
equation (5.3) has three solutions 77, € (0,75 ), 15y € (Ts,—,Ts 1), and Ty 3 >
T+, see Figure 6, case (A). Hence, problem (1.6) has three equilibrium points:

Pleq = (Tz;klaT;,I)a P2eq = (Ta*,szs*,z) and P:;q (T;,3,T;3), with T;,i = 2_1/4Ts*,i
(i1=1,2,3).

Since the system is cooperative and the solutions are bounded, every solution
will converge to an equilibrium point (see [58]). We shall study in details the nature
of such equilibria.

5.3.a. Local stability of the equilibrium points.
First we look at the stability of the equilibrium points: since 3;(Ty ;) = 0, we

have
DF Tyq _ 4&;:5( 1)3 745»253 (T;,l)g .
1 )T\ ) ey

Vs S
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T, T, = 2Y47T,

AN E(IO’BT(? = UBT:»1 - qﬂs(Ts)

T9‘7 I A N

FI1GURE 10. In the phase space we sketch by black arrows the con-
vergence of initial conditions lying in each subset Q1, @5, Q3 and
Qy, determined by the the curves C; : Ty = 2'/4T,, and the one de-
fined by the set Co = {(T,,Ts) € R? : —op|Ts|*Ts +eaop|Tul? Ty +
qBs(Ts) = 0}, to the unique equilibrium point (2’1/4T;1, Ty4), so-
lution of (6.1). In particular, here we consider the case of one
solution of the equation o7 = ¢B,(T%).

The trace of this matrix is negative, while the determinant is equal to

32 N " 16 . .
€GU2B(Ta,1)3 (Ts,1)3 - 75(210-23(,115,1)3 (Ta,l)g
(l’yS a /s
16 2 * \3 * \3
= (2— 5a)€aUB(Ta,1) (Ts,l)
YaVs
and it is positive. Then, we conclude that the two eigenvalues have a negative real
part which implies that the equilibrium point P;? is asymptotically exponentially
stable.
The same can be proved for the equilibrium point P;?. Concerning the equilib-
rium point Py?, we compute the Jacobian matrix at (T} 5, T4 5):

DF ( T;,Z ) _ 786:/5-5 (T;,2)3 46;:13 (T;,2)3
T5s BB (Th0)*  [—40s(T55)" + aBUTL )]

The determinant of DF (T, 5, T 5) is given by

*

T, * * * *
7a7s det DF ( ) = 16(2 — ca)eaody (T2 ) (T22)° — 8eaon(T75) aB(T7,)

5,2
dde (1= 50Tt - 8.(1)] )

The function Ty = (1 —5#)opTy —B(T%) is equal to 0 at T7,, and its derivative at
Ty, is negative when there are 3 equilibrium points (otherwise, by convexity, there
would not be a third intersection relative to T 3). Therefore det DF(P5?) < 0, and
this implies that the equilibrium point P,y ? is unstable.

€a

= 8e,0p(T},)° ( I
s=1g 2

5.3.b. The decomposition in subdomains.
Let us consider again the line

Cy : T, =2'/4T,
and the curve
Cy = {(TayTs)a _UB‘TS|3T5 + EaO'BITa‘STa + qBS(TS) = O}
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We recall that equation

JB|TS‘3TS = qﬁs(Ts)a
can have at most 3 solutions, denoted by T ;. Let us assume that there is only one
solution, T 1, as in Figure 11.

QBost [ == ~f === abs

qBs,—

FIGURE 11. In the picture we show the case of a unique intersec-
tion between the curves T+ ogT* and T + qB(T). In particular,
the solution of the equation opT? = ¢Bs(Ts), denoted by Ty 1, is
attained for T < T _.

Let 1) be the function defined in (5.5), and T (T) be the unique value for which
W(TP(T,)) =0, that is, (T,, Ts) € Co. Note that
T, < Tsy <= T3(T,) <0,
To=Ta < TP(T) =0,
Ty >Toy < T2(T,) >0.
Moreover, as we observed in section 5.2, it holds that

1/}(2_1/4TS) = Qﬁs(Ts) - 03(1 -

Earmd
?)TS .
Therefore
o if T, € (0,T7,) then 9 (27/4T,) > 0 (see Figure 6 (A)). Hence T<” (T,) <
2-1/4T and we deduce that Cs is on the left of the line Cy;
o if T € (17,15 ) we obtain that T (Ts) > 27T, and thus C, is on the
right of the line Cy;
o if Ty € (T7y, T73) then TSV(T,) < 27Y/*T,. Therefore Cy is on the left of
the line Cy;
o if T > T§ 5 we get that TéQ)(TS) > 2747 which means that Cy is on the
right of the line C;.

Let us now consider the following subdomains of Q:
Q1 :={(Tu,T.) € Q : T, € (0,T7,), Ts > 2Y/*T,,, —0pT ! +eao T, +qB(Ts) > 0},
/1 = {(Tast) € Q : Ts S (Tsila ;,2)7 Ts < 21/4Ta7 _UBT§+€GUBT§+qBS(TS> < 0}’
Qy = {(Ty,Ts) € Q : Ty > 24T, —0pT* + cao5T* + qB(Ty) < 0},

QS = {(TmTS) €Q: Ts > Ts*,Bv T, < 21/4Ta7_UBTs4 +5aUBT;1 + QBS(TS) < 0}7

Q= {(Tn,T) € Q : Ty € (T35, T73), Ts > 2Y4T,, —o 5Tl +ea0 5T, +4Bs(Ts) > 0},
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Qy:={(To,Ts) € Q : Ty < 2Y47,, —0pT* + c,o5T2 + ¢B:(Ts) > 0}
which are sketched in Figure 12 below.

Ts Cl

T .
%= 2 = R;q
Ts+ t

T:,2 *************** P;q
Q4

1,

FIGURE 12. In the phase space we consider the case of three inter-
sections between the curves C; : T = 24T, and the one defined
by the set Co = {(T,,Ts) € R? : —0p|Ts|?Ts + coo|Tul?Ty +
qBs(T) = 0}. We denote by (27V/4T%,,T7,), (271477 ,, T ,) and
(27474, T; ) the three equilibria and by Q1, Qf, Qa, Qs, Q%,
Q, the subsets of Q = {(T,,Ts) : T, > 0, Ts > 0} bordered by
Cy and Cy. We describe with arrows the behaviour of the vector
field on the boundaries of the aforementioned subsets. Notice that
we are considering the case in which the equation ogT% = ¢B3(T})
has a unique solution.

As before, we look at the vector field F' on the boundary of each subdomain. On
the line Cy, we have

7 T, =27\ _ 0
( Ts >‘ 3|0 —op(L = H)LPT )

_o9—1/4
Therefore, F (Ta ; T

S
and only if Ts € (0,77 ,) U (T34, T 3), and negative on (751, Ty 5) U (T4 3, +00).
On the curve Cy; we have

- (Ta> B (;ﬂ [5GUB|TS|3TS - 25aaB|Ta3Ta]>

0

is vertical and its second component is positive if

Hence in this case F' (;‘l) is horizontal. It heads right if and only if the point

(T,,Ts) is above the line C; whereas it heads left if and only if (T}, Ts) is below C.
This completes the explanation of Figure 12.
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5.3.c. Monotonicity and convergence.
The easiest cases to analyse are the following

° (Téo),TS(O)) € Q;: the solution does not leave )1, the functions T, and T
are increasing and the solution (7,,Ts) converges to the equilibrium point
PIEIJ.
. (Téo),TS(O)) € Q): the solution does not leave Q}, the functions T, and Ty
are decreasing and the solution (7,,Ts) converges to the equilibrium point
PlelL
. (Téo),TS(O)) € Qf: the solution does not leave Qj, the functions T, and T
are increasing and the solution (T,,Ts) converges to the equilibrium point
Py
° (Téo),Ts(O)) € Qg: the solution does not leave Qgz, the functions T, and T
are decreasing and the solution (7T,,Ts) converges to the equilibrium point
Py
It remains to study the behaviour of the solution when the initial condition belongs
either to Q9 or Q4. Let us define

(56) Cleft = aQQ N Q7 and Cright = 6Q4 N Q

Consider an initial condition in the region Q4. As long as the solution is in Qu,
T, decreases and Ty increases. Therefore, either the solution does not leave (4,
and it converges monotonically to some equilibrium point, or it reaches Cyign¢. The
latter case, however, cannot happen at an equilibrium point. Hence, either the
solution attains 0Qp, enters Q; and converges increasingly to Py?, or it gets to
909}, enters Q] and it converges decreasingly to Py, or it move to 9Qf% enters Qf
and it converges increasingly to P35?, or it reaches 0Qs3, enters Q3 and it converges
decreasingly to Ps?.

Analogously, if the initial condition is of the form (Téo), 0) with UPSUBS 0, then
the solution immediately enters Q4 and it behaves as explained above.

A similar argument can be adopted for initial conditions lying on Qs, or of
the form (O,TS(O)) with TS(O) > 0. Hence, we have a complete description of the
behaviour of the solution with initial condition in O.

Now, we study what happens backward in time. We are going to prove the
following

Lemma 5.1. Given an initial condition in Crign: that is not an equilibrium point,
there exists T > 0 such that Ts(—7) = 0 and To(—7) > 0. Therefore, the solution
at time —7 is on the horizontal axis.

Proof of Lemma 5.1. Consider an initial condition lying in Ciigne that is not an
equilibrium point, and let the time go backward. Then, the vector field F' drives the
solution towards Q4 so that the solution cannot reach again Cyign. Moreover, when
time goes backward, T, increases and T decreases, hence the solution moves to the
south-east direction. Therefore, either there exists 7 > 0 such that T,(—7) = 0, or
T remains positive. We shall prove that the latter possibility cannot happen.

By contradiction, assume that Ts remains positive. If T, is bounded, then the
solution has to converge to some equilibrium point. However, such behaviour is
not compatible with the monotonicity of the solution that moves in the ”south-east
direction”. Therefore T, must be unbounded and diverge to +o00. In this case (1.6)
implies that also 77 diverges to infinity. Moreover,

Vs Ts, _UB|TS|3T9 + 5aUB|Ta|3Ta + Rs 1

— = — —= as T, = +ooq,
Yo T1 eaoB|Ts|3Ts — 2e,08|T, 3T, 2 “
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therefore

4 4 s
for T, large enough. By integration, we deduce that Ts — —oo, which contradicts
the assumption. Therefore, we conclude that there exists 7 > 0 such that Ts(—7) =
0, and Lemma 5.1 is proved. O
We use the above result to prove the following

Lemma 5.2. There ezists a unique value Ty threshold > 0 such that

o if Téo) € (0, Ty, threshold)s the solution starting from (Téo),()) converges to

o if 7O — T thresholds the solution starting from (Téo), 0) converges to Py,

o if 70 T, thresholds the solution starting from (Téo), 0) converges to P5?.
Proof of Lemma 5.2. Consider the subsets of initial conditions:

T, :={TY >0 : the solution starting from (T?),0) converges to P{?},

T3 :={TY >0 : the solution starting from (7%, 0) converges to P5?}.

Since two solutions with different initial conditions on the horizontal axis cannot
cross each other because of the uniqueness, Z; and Z3 are intervals. Moreover, we
claim that Z; and Z; are open because P;? and P5? are asymptotically exponentially
stable. Let us prove the latter property for Z;. There exists 11 > 0 such that any
solution starting from an initial condition in the ball B(P;?,7;), with center P;?

and radius 7;, converges to P;?. If 7" € T,, there exists 7o > 0 such that the

solution (Ty, Ts) with initial condition (Téo), 0) is, at time 79, in the ball B(P{?, %-).

By continuity with respect to the initial condition (Gronwall’s lemma), there exists
1o > 0 such that, if |T,§0) — Téo)| < 1o, then the solution (TQ,TS) starting from
(Téo), 0) satisfies

| (T(70), Tu(0)) = (o), Tu(mo) | < s
This implies that (7, (7o), Ts(10)) € B(P;?, 211), and the solution (7, T5) converges
to P;?. This proves that Z; is open.

We observe that since Z; and Z3 are open intervals contained in (0, +00), we
cannot have Z; UZ3 = (0,+00). This implies that there exists Ty threshold such
that the solution starting from (T} threshold, 0) converges neither to Py nor to Pg?.
The only possibility that remains is that this solutions does not leave )4, and
therefore goes monotonically to P5?. Since P;? is unstable then we have that
Zy = (0,T4 threshold)s and Tz = (T threshold, +00). This concludes the proof of
Lemma 5.2. U

We observe that a similar argument applies for solutions starting from the ver-
tical axis. Hence, also in this case there exists a threshold value T threshold such

that the solution with initial condition of the form (0,7, with T{”) < T tnreshola

converges to Pelq, whereas if Té@ > T threshold the solution converges to Pe3q. And
finally, the solution starting in (0, Ts threshold) converges to the unstable equilibrium
P2,

Therefore, the trajectories of the solutions starting from (7§ threshold,0) and
(0, T’s threshold) merge in Pzeq and separate the quadrant Q into two subdomains

that are the attraction basins of P/? and of P5?, see Figure 1.
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5.4. Weaker assumptions on the coalbedo ;.

In this section we discuss the results obtained till now in presence of a more
general function Ss. Propositions 2.1 and 2.2 are stated and proved just requiring
global lipschitz continuity and positivity on 8s. The piecewise linear assumption
(1.7) has been used in Proposition 2.3 mainly to determine the number of equilibria
of system (1.6), see section 5.1.

5.4.a. Influence of the assumptions on Bs on the number of equilibrium points.

Under weaker assumptions on S, equation (5.3) can have more than three so-
lutions. For instance, if we assume (s to be positive and to have to some limit for
T, — +00, then (5.3) can have several solutions on [T 4+, +00). There can be even
a continuum of solutions if g3, and T, — op(1 — )T} coincide on some compact
interval. However, there are some quite general assumptions for 85 that lead to a
finite number of equilibrium points for problem (1.6).

If we assume that 3 is positive and converges to some finite limit as Ty — 400
and additionally that 3, is analytic on [Ts 4, ~+00), then equation (5.3) cannot have
an infinite number of solutions on [T 1, +00). Indeed, if we consider the difference

(5.7) T o5(1 = ST — gBa(T2).

which is an analytic function as well, it would have an infinite number of zeros
contained in a compact set. This would imply that the above function equals 0 on
[Ts,+,+00), that is a contradiction with the behaviour at +oc.

If we assume ;s to be concave on [T 4, +00) in place of the analyticity on the
same interval, then (5.7) is strictly convex on [Ts 4+, +00) and can have at most two
zeros on [T 4, +00).

If instead we assume that 8, is analytic and positive on [0,T, _] and concave
on [Ts _,+00), then (5.7) has a finite number of zeros. This fact can be proved
combining the two previous arguments: the function has a finite number of zeros
on [0,T _] by analyticity (otherwise it would be equal to zero, which is not true
for Ty = 0) and has a finite number of zeros on [T _, +00) by convexity.

Finally, let 85 be analytic and positive on [0, T, _], concave on [Ts _, T, 1], an-
alytic on [Ts 4+, +00) and converge to some limit as Ts — 400. Then (5.7) has at
most a finite number of zeros on [0, T _] and [Ts 4+, +00), and at most 2 zeros on
[Ts,—,Ts +], hence a finite number of zeros on [0, +00). These assumptions cover
the case of a piece-wise linear function 8 that we mainly use in the paper.

5.4.b. The influence on the asymptotic analysis.

Once the number of equilibrium points have being determined, the asymptotic
analysis remains essentially the same. Assume that we are in one of the situations
described in the previous section: there is a finite number N of solutions 77, of
(5.3), Bs is C* at any T, and

d
dTS ‘TS:TS*,Z'

Vie{l-- N}, (om(1 = STE) # aBUTL),

that is, curves Ty — op(1 — )T and T, — ¢B,(T) are not tangent on T, for
all i = 1,...,N. Then, under such assumptions, the sign of (5.7) is alternatively
negative and positive: negative on [0, 77 ], positive on [T, T5,], - - -, positive on
[ SN +00). This first implies that N has to be odd. Furthermore, it forces C5 to be
first on the left of Cy, then, after the first equilibrium point, on the right, then, after
the second equilibrium point, again on the left and so on till the last equilibrium
point where it is on the right of C;. Finally, the assumptions on 3; determine also
the direction of the vector field F on C; and Cy. F' is horizontal on Co because on
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this curve its vertical component is equal to 0. Moreover, if Ty € (15,75 ,) the
sign of the first component of F' is the same as the one of

et T 20008 T, = caopTd=2(0uTi~4B(1)) = ~2(08(1- )T gB.(T)))

which is negative on (731, 7y 5). F is vertical on Cy and if T € (T

<1, 1% ,) the sign
of the second component of F' is the same of

13
_O'BTf + 5aO'BT; + qgs(Ts) = _UB(l - Ea)Tj + QBS(TS)

which is negative on (77,7 ,). Hence, if one consider, for instance, a coalbedo
functions as the black curve in left picture of Figure 13, a similar argument leads
to the phase space description (for N = 5) on the right of Figure 13.

THJB(lf%’)T‘l

Ta

FIGURE 13. On the top a non-piecewise coalbedo which intersects
five times the curve T +— op ( — %“) T*, and on the bottom the
associated phase space.

6. ASYMPTOTIC BEHAVIOUR FOR A >0 AND R, =0
Equilibria of problem (1.6) are solutions (7,,Ts) of the following system:

61) {—)\(Ta —T) + 00| Ts[* Ty — 2e005|Ta|?T, = 0,

*)\(Ts - Ta) - JB|T€|3TS + 6(/LCTB|T’a|3T‘a + QBS(TS) =0.

Let us prove several properties of such points.
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6.1. Equilibrium points: uniform bounds.
Assume that (Ty, T) is an equilibrium point of problem (1.6), that is, a solution
of (6.1). Therefore (Ty,Ts) solves

(6 2) {ATS + gao-B|Ts|3Ts = A71(1 + 25aUB|Ta|3Ta7

AT + UB|T9|3TS = NI + EaUB|Ta|3Ta + qgs(Ts)

Observe that, from the first equation in (6.2), T, = 0 if and only if Ts = 0.
However, the pair (T,,Ts) = (0,0) does not satisfy the second equation. Thus, the
equilibrium points have positive components.

Since T, > 0, we have

AT, + a0 T < AT, + 2e,0T < XN2Y/*T, 4 2e,05T2.
Therefore, from the first equation in (6.2) we deduce that
AT, 4 €40 5TH < NTy + eq0pT < MN2Y4T,) + eqop(2V/4T,)*.
The map T + AT + e,05T* is increasing on (0, +-00), and this implies that
(6.3) T, < T, < 2Y/*T,.

We want to prove that the equilibrium points belong to a compact set independent
of A. To this purpose, we compute the difference of the two equations in (6.2),
which gives

(64) 0B (5a - 1)Ts4 = 6aO'BT;1 - qﬂs(Ts)'
If e, € (0,1], then e,05T* — qBs(Ts) < 0, and therefore
1/4
(6.5) T, < (‘Iﬁ—*) .
a0 B

Since T, < T, we also have
4Bs(Ts) = €aopTt + 0p(1 — )T < c0opT + 05(1 — )T = o5T2,
from which we get
qBs,—\ /4
)
Thus, from (6.3), (6.5) and (6.6) we obtain

(qﬁs,f>1/4<T <(qﬁs,+>1/4 and (qﬁs,7)1/4<T <<2qﬂs,+)1/4

203 a0 B oRB Ea0B

(6.6) T, > (

that is, uniform bounds of the equilibria independent of A > 0.
If e, € (1,2), from (6.4) and the left hand side of (6.3) we deduce that

caoBTE = 0p(eq — V)T + qBs(Ts) > op(ea — )T + qBs(Ts).
Hence it holds that
O'BT;L > qBS(TS)v
which gives

1/4
(6.7) T, > (%) "
Using again (6.4) and (6.3), we get
ca0pTt = 0p(eq — V)T + qBs(Ts) < op(ea — 1)2T5 + qBs(Ts).
Thus we have
(2~ €a)oTy < 4Bs(Ty)
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which implies that
QBs+ V4

s T< (e )
( ) - (2 — Ea)O'B
From (6.3), (6.7) and (6.8) we obtain

L\ 1/4 ; 1/4 L\ /4 243, 1/4
(qﬁ,) <Ta§( qPs,+ ) . and (qﬁ,) <Ts§< aBs,+ ) .

opB (2—8,1)0'3 opB (Q—EG)O'B

Therefore, also in the case €, € (1,2) we have found uniform bounds, independent

of A > 0, for the equilibrium points. This will be useful later (see in particular the
proof of Corollary 2.1). O

6.2. Equilibrium points: existence.

As proved in Proposition 2.2, problem (1.6) has at least one equilibrium point
which follows from the convergence of the solutions. We can also directly prove
their existence as follows.

Lemma 6.1. Given A > 0 and ¢, € (0,2), problem (1.6) has at least one equilib-
rium point.

We are going to give two short proofs of this result, each one having its own
interest.
6.2.a. Geometrical proof of Lemma 6.1.

Consider

Cr:={(To,Ts) € Q : —N(Ty — T) + eq0p|Ts|*Ts — 2e,05|T,|*T, = 0}

and

Co = {(Ta,TS) €0: —)\(Ts - Ta) - UBlTs‘sTs + EaUB|Ta|3Ta + q68<TS) = 0}
We first analyse C;. Given Ty > 0, there exists a unique value T, that we denote
Tél)(Ts), such that

T, + 26,0B|T. 2Ty = NT,s + cqop|Ts|* T,

that is, such that (T,,Ts) € C;. By the implicit function theorem we deduce that
Cy is a curve. Moreover, it contains (0,0) and

TNT,) ~ 27Y4T,  as Ty — +oc.
Let us now study Cs. It contains points of the form (0,T). Let Tsmax be the
largest value T such that (0,7%) € Co, that is, the largest value such that

AT, + opT} = gB(Ty).
Then
Ts > Ts,max - A715 + O-ijL - qﬁs(Ts) > Oa
and therefore, for all T > T max, there exists a unique value of Ty, denoted by
Téz) (Ts), such that
N, + e,08TE = ATy + 05T — qB.(Ts).

Note that
T (Ts) ~ 5;1/4TS as Ty — +o0.

a

Consider now the function

Ty € [Ty max, +00) = R, Ty s T (Ty) — TO(Ty).

a

This map is continuous, positive for Ty = Ty max (since Tf)(Ts,max) = 0) and
negative for Ty large. This implies that the sets

Cl,max = {(Tél) (Ts)aTs)aTs > Ts,max}
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and

C2,max = {(T(Ez) (Ts),Ts),Ts > Te,max}
have to intersect at least once. This implies that problem (1.6) has at least an
equilibrium point. O

6.2.b. Analytical proof of Lemma 6.1.
Equilibrium points (7, Ts) of problem (1.6) satisfy (6.2). Therefore, for such
points it holds

4B5(T,) = (VT + 05 T2) — (VL + 200 Ty

A1

- ()\Ts + aBT;*) - (5Ta +5 [ATa + QEaJBT;*D
A1

- ()\Ts + aBT;*) - (5Ta +3 {ATS + eaaBT;*])

A
2

Thus, for nonnegative Ty, and T, (T,,Ts) solves (6.2) if and only if it verifies the
equivalent system

Ty +eq,0pT2 = \T, + 2e,05T4,
STy —T,) +op(l— )T = qB,(Ty).

Now we prove that (6.9) has at least one solution. Indeed, given Ty > 0, the first

(Ty — T,) + op(1 — %")T;*.

(6.9)

equation in (6.9) has a unique solution T, = T, él)(Ts). Furthermore, it holds that
TM0)=0 and  T(TL) ~r,—0 T,
TIO(TY) =7, 5 qoe +00  and  TI(TY) ~p, 400 27 V4T
Moreover, as already observed in (6.3), we have
(6.10) VT, >0, TW(T,) <T, <2Y*TI(T).

Finally, since Ty Ta(l)(T ) is a smooth function, we obtain that

arV (T.) = A+ 4e,05T3
dTs " A+ 8e,0[T(TL)P
Therefore
- TV Ty =1 At deqopT
dI, A+ 8eaop[T8) (T3

 8e,0p[TEY(T,)]® — 4e,0T3
A + 8,05 [TV (T)]3
o1V (1)) — T3
A + 8,05 [TV (TL)]3

= 45a‘7B

Thanks to (6.10), we get that
AT (L)) — T > 22T - T2 = VAT (TP - T2 > 0,

and so W
dTy
1-— T, .
ar, () >0
This implies that the function
A
(6.11) (I)l : Ts — (Ts - Tcgl)(TS))

2
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is strictly increasing on [0, +00). Therefore the following function
A a
(6.12) 1Ty ST~ TN(T) + op(1 - %)Tj
is also strictly increasing on [0,400). Moreover, ®(0) = 0, and ®(7Ts) ~ op(1 —
%‘I)Tgl as Ts — oo. Hence, there exists at least one positive value of T, denoted
by T, such that ®(Ts ) = ¢Bs(Ts,«). Therefore (Tél)(Ts’*),Ts,*) solves (6.9) or,
equivalently, it satisfies (6.2). We have therefore analytically proved Lemma 6.1.

6.3. Number of equilibria.

6.3.a. Existence of at most one warm equilibrium.

By using the argument Section 6.2.b, we deduce that there exists at most one
value Ts € (0,T,_] and at most one value Ty > T 4 such that ®(Ts) = ¢B:(Ts),
that is, at most one ”cold” and one ”warm” equilibrium.

Indeed, the existence two different warm equilibria would imply the existence of
two different values T, TS > T 4+ such that

O(Ts) = qBs(Ts), and @(Ts) = qBs(Ts).
However, since T, T, > Ts 4 then ¢B(Ts) = ¢fBs (TS) Therefore, it would hold that
®(T,) = ®(T,), which implies that T, = T, (because we recall that ® is strictly
increasing). This proves the third point of Proposition 2.3. O

6.3.b. FExistence of at most a finite number of equilibria.
Now, let us prove that the number of equilibrium is finite (for the case of a
piecewise linear function such as f;).

Lemma 6.2. Given A > 0 and ¢, € (0,2), problem (1.6) has at most a finite
number of equilibrium points.

Proof of Lemma 6.2. We have already proved that there are at most one cold and
one warm equilibrium point. If the number of equilibria is infinite, there exists a
sequence (T ,,)p of distinct values belonging to [T, —,Ts 4] satisfying

(I)(Ts,n) = QBS(Ts,n)~
Such sequence admits a converging subsequence. Moreover, it is possible to ex-
tract a strictly monotone subsequence. Indeed, consider a convergent subsequence
(Ts,p(n))n and let T o be the limit value. Define the set
A= {n eN: Ts’w(n) < TS,OO}.

It is clear that AU (N\ A) = N, therefore either A, N\ A, or both sets have a infi-
nite number of elements. We can then construct a strictly monotone subsequence,
(T, (n))n, converging to T . Since it holds that

((I) - Qﬁs)(Ts,w(n)) = (I)(Ts,w(n)) - Qﬁs(Ts,w(n)) = 07

by applying Rolle’s Theorem to the function ® — ¢, we obtain that if (T y(n))n
is increasing there exists Tsm € (Ts,p(n) Ts,ip(n+1)) (or Tsm € (Tspnt1) Ts,p(m)) if
(Ts,44(n))n is decreasing), such that

q)/(Ts,n) - q/B;(Ts,n) =0,
or, equivalently,
- -~ Bs,+ — Bs,—
' (Tsn) = qBs(Tsn) = qﬁ'
Since @ is analytic on (0,+00) [9, Proposition 2.20 p. 39] also @’ is analytic.
However, if ® is equal to the same value an infinite number of times on a compact
set, then it must be constant. This means that & must grow at most linearly at
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infinity, which turns out to be false. Therefore, we conclude that problem (1.6) has
at most a finite number of equilibrium points. O

6.3.c. Convezity of function ® and number of equilibrium points.
Once we have established that the number of equilibrium points is finite, it is
natural to try to have an estimate of such number. We recall that equilibrium

points are of the form (T, = Tél)(Ts), Ts) where T satisfies
(6'13) (D(Ts) = Qﬁs(Ts);

and @ is defined in (6.12). In the case A = 0, function ® is convex, which implies
that there exist at most 3 equilibrium points. When A > 0 we have obtained the
following result concerning the physically relevant case €, < 1.

Lemma 6.3. Assume that ¢, < 1 and let A\ > 0. Then ®, defined in (6.12), is
strictly increasing and strictly convex on [0, +00). Therefore, problem (1.6) has at
most three equilibrium points.

For what concerns the case €, € (1,2), we have obtained some information by
using numerical tests. We describe such results in the remark that follows.

Remark 6.1. Let A > 0. Then, we observe thanks to some numerical tests that
there exists a unique universal constant €40 € (1.99,1.991), independent of A > 0,
such that

o ifeq €(0,eq,0), D is strictly convex on [0,400);

o if ey € (€40,2), D is successively convex, concave and convez on [0, +00).
From the above numerical results we deduce that

o ife, €(0,e4,0), problem (1.6) has at most three equilibrium points;
o if ey € (€4,0,2), problem (1.6) has at most five equilibrium points.

The proof of Lemma 6.3can be found in Appendix B. It is based on a care-
ful analysis of ®”. We also explain in Appendix B the results stated in Remark
6.1, which take advantage of some computations from Lemma 6.3 and from some
numerical tests.

6.4. Local stability of the equilibrium points.

6.4.a. Local stability of a warm (resp. cold) equilibrium point.
Assume that there exists a warm equilibrium: (7, Ts) satisfying (6.9) with T, >
T, +. Then, we have

T\ (LA —8e.05T5] L[A+42,05T7
(6.14) DF (Ts) = ( %[A+4EGUBT‘§] ,Yis[*/\*‘lUBTsB] 7

where F' is defined in (4.1). It is easy to check that the trace of the above matrix
is negative. Moreover, from the characteristic polynomial associated to the matrix,
we deduce that it has two different real eigenvalues. Moreover, a direct computation

of the determinant of DF (?,‘Z) matrix gives

Ya7s det DF (?ﬁ) = AN+ 8,0 BT\ + 40pT3] — [\ + 4eqo T3]\ + 4,072

= Lhop [(1 —ea)T3 + 5aT§’} +1664(2 — £4)0 L T3TS,
The bound in (6.3) yields

{(1 —e4)T3 + san} > [(1 —ed)T3 + 5a2*3/4T3} = (1 — &g+ 2*3/4561)7”3.
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Since ¢, € (0,2) and 273/% — 1 < 0, we obtain
(1 + (273 - 1)aa)T3 > (1 (2% 1))TS3 = (Y4 —1)T3 > 0,

which implies that

Ya7s det DF (g) > ddop (24 = 1)T2 4+ 1624(2 — £,)0 3 T3T3 > 0.

Therefore, the two eigenvalues of DF are negative and the warm equilibrium

a
T
is asymptotically exponentially stable. The same holds true for a cold equilibrium
(Ts < Ts,—).

6.4.b. Local stability of an intermediate equilibrium point. o
Assume that there exists an intermediate equilibrium point (T,,Ts) satisfying
(6.9) with T € (T, —, T, +). We compute the Jacobian matrix of F at t (T,,Ts):

3 L[\ —8e,0pT? L\ +4eqopT?
(6.15) pr (L) = val[ ¢ ”B~3a] ) At ca0b S} -,
Tg I[)\ + 4€aO'BTa] '775[_A — 4O'BTS + qBS(TS)]
where F is defined in (4.1). Thus, we get

~e

!

(6.16) 7475 det DF ( “) = [\ + 80T | A+ 40pT3 — qB.(T%)

S
A+ 4e,0pT3 .
,LUBNSO\+4€QUBT3)]
)\—FSEQO'BTE

Let us compute the derivative of the function ® defined in 6.12 at T:
A, dry?

repy - 2 2 _ il 3
'(T) = 2 (1 T (Ts)) +4op(1 5 )T
de,opT? .
:é(l— A+ 5aU(Bl) s,, )+40-B(1_€7G)T537
2 A+ 8e,05[Ta ' (Ts)]3 2
from which we obtain that
2 = A+ 4€aO'BT3 ~
6.17 O'(T,) = A + 40 T3—7f()\+450 T3).
( ) ( S) Bts N+ 8EaO'BTg' aVBlgq
Indeed, explicit computations show that
) R i
¥(T,) — [\ + 40573 - At 2951, (A + 42005T2)
A+ 8e,05T3
A A+ 4e,0pT3 - A +4e,0pT3 .
= [50- At 2575y 200573 - [ - At 2051, (A + 4200575 |
2 A+ 8,013 A+ 8e,0pT3

A+ 4de,0pT3 ( A

A . .
= -2 —2,05T3 + S (-2 + 4saaBT§’)
2 A+ 8EQO'BT§

2
A =3 1 73
= —2 —2e,05T3 + 5 [A v 4eaaBTs} —0.
By using (6.17) in (6.16) we obtain

S

(6.18) as det DF @) = [\ + 8c,05T7 [qw(fs) — 48 (Ts)]

Observe that the above formula is the generalization of that obtained in section
5.3.a (for the case A = 0).
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Now if ¢, < 1, then there exist at most three equilibrium points (see Lemma 6.3).
Assume that there are exactly three equilibrium points: one cold, one intermediate
(T,,Ts) and one warm. Function ® is strictly convex, and we have

(I)/(TS) - Qﬁ;(TS) <0
(see Section 5.3.a), otherwise the convexity of ® would prevent the existence of the

warm equilibrium. Therefore, we deduce that the intermediate equilibrium point is
unstable, as in the case A = 0.

6.5. Phase space analysis for \ > 0.

In this section we extend to the case A > 0 the study of the phase space we
have already done for the case A = 0. Consider again C; and Cy defined in section
6.2.a. We observe that Co has at most three intersection points with the vertical
axis (0,7s). Indeed, the solutions of equation ATy + opT* = ¢B,(T) are at most
three because Ty, — N1 + o BT;L is strictly convex and increasing. We have already
observed in Section 6.3 that equilibrium points are related to the solutions of the
equation ®(T) = qfBs(Ts), where ® is defined in (6.12). Assume that ® is strictly
convex ( which indeed happens at least for ¢, < 1, see Lemma 6.3), and that
there exist three equilibrium points Ts1 < Ts2 < Ts 3 (that is, we are in the
same situation of Figure 6, case (A)). Then ¢f8,(T5) — ®(T%) is positive on (0,75 1),
negative on (Ts 1,75 2), positive on (T 2, T 3) and negative on (T 3, +00). We use
the following identity

MNTN(T) + 28,0 s TV (T)* = ATy + eq05T2,

inside the expression of ®(T) and we get

A €a
O(T) = g(Ts —T(Ty)) + op(1 — E)Tf

EQJB T — AT( ()

T — éT<1>(T )

A
T, +opTt -

Z':aO—B

AT + aBT;‘) - %TS

A
—=(x, + saaBT;*) - fTLEl)(TS)

1(
5

-
()\TS + aBT;*)
(

ATS+UBT;*) ATD(T,) + 22,05 TO(T) )

A
— 27T,
5 Lo (T5)

_ ()\TS n aBTf) - (ATgU(TS) + gaaBT;U(TS)‘*).
We note that the function
YN R SR, T, = AT, + a0p|T, [>T,

is strictly increasing. Therefore, given T there exists one and only one value
T (Ts) such that

Y (TPNTL)) = AT, + op|Ts|*Ts — qB(Ts).
Thus, we obtain that
(1) = (v (TP (T) +aBu(T) ) = (ATD(T) + eaosTO (L)1),
which implies

©<Ts) - Qﬁs(Ts) = dj(}\) (Tc$2) (Ts)) - '(/}(A) (Té”(TS)).
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Therefore, Tél)(Ts) — T(§2)(TS) and ¢fBs(Ts) — ®(Ts) have the same sign, that is,
Tél)(Ts) - Téz)(TS) is positive on (0,Ts,1), negative on (Ts1,7Ts,2), positive on
(Ts,2,Ts,3) and negative on (T 3,+00). This describes the relative position of Cy
with respect to Co which is similar to that represented in Figure 12 (the only dif-
ference is that, for the current case A > 0, C; is no more a line, but the curve of the
strictly increasing function Ty, — Ts(l)(Ta)). The direction of vector field F' on the
curves C; and Cs is similar to the described by arrows in Figure 12, therefore we will
have same phase plane analysis as in the case A = 0. Note that the existence of the
separatrix between the basins of attraction of the stable equilibrium points follows
exactly in the same way from the property that the intermediate equilibrium point
is unstable (which is proved in section 6.4.b), as in the case A = 0. This concludes
the proof of Proposition 2.3. O

7. SENSITIVITY OF THE EQUILIBRIA TO PARAMETERS

7.1. Proof of Proposition 2.5: monotonicity of the equilibrium points
with respect to \.
Consider the function G : R x R? — R? defined by

Ta)) L [*)\(Ta - TS) + 5aUB|Ts‘3Ts‘ - 2€aUB|Ta|3Ta:|

(7.1)  G(\, ( e
T. L[-NT, = T) = 08I TP Ty + 00| TuP Tu + R, |

If (T,,Ts) is an equilibrium point of (1.6) with parameter A, that is, (T,,Ts) solves
(6.2), then G(), (E;)) 0.

Fixed A > 0 and a point (T,,Ts) € Q of differentiability for By, we differentiate
with respect to the second variable of G:

Ta)) _ (A/la[—/\ — 84,0512 A+ deopTy] >

T, LA +4e,05T8]  L[-X=40pT3 + qBL(T))

(7.2)  DyG(A, (

The stability of an equilibrium point (7T,,7Ts) of (1.6) is related to the sign of

determinant and of the trace of the matrix DaG(A, (g:a) ).
Now, assume that (792", T¢%") is an equilibrium for problem (1.6) with pa-
rameter A = A* for which it holds that

Teq,)\*

det DyG (M, (Tf;qx ) >0,
T:q,)\*

Tr DQG(A*, (T}‘LA*>) <0,

Teo ¢ [T - Toq)-

Then, by applying the implicit function theorem to G, we deduce that there exists
a neighborhood V* of A* in R, a neighborhood V4" of (T¢4A" T¢4A") in R?, and
a C! function

YE)  px o pear s gl ()

7.\, (0
A ()
= T,

T, .
(2 come

such that
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This fact ensures the existence and uniqueness of an equilibrium of problem (1.6) for
A close to A*. Such equilibrium, that we will denote by (T:¢4*, T¢%*), will be close
to (TN, T¢92"). Furthermore, for A close to A\*, we still have T ¢ [T, _, Ty 1]
and thus (79>, T¢9) is asymptotically stable (by continuity of det and Tr). The
analyticity of the functions A\ +— T¢%* and A — T* can be deduced by the
analytic version of the implicit function theorem, see e.g. [6, Proposition 6.1, p.
138].

It is interesting to determine the monotonicity of A = 7°%* and A ~— T¢%*. We
differentiate with respect to A the equation

: 70
0= GO = GO (fEn )

Tea Tea BTg’:’A
0 = D]_G(A, Teq)\ ) + DQG(}\, T6q7>‘ ) . BT:’q’A .
S S 8k

we get

Therefore, we deduce that

orge* eq,\ eq,\
9, " TeoN | _ Tee
(67%)‘\1"\> = _DQG()‘v (Teq,)\>) ! DlG()‘7 (Teq,)\> )

O

Since we are interested in warm and cold equilibria, we have that, for such points,

eq,\
BL(Te4*) = 0. We compute the inverse of DyG (), (;‘;q’)))
Tea, 1
D2G()\7 (TZ@q,A>) t= Teq,)\ ’
det DyG(A, (Tae%)‘))
S [=A—dop| TP S+ 4eqop|TETA ]
;—j[)\ + de,oB| T4 P 7%[—)\ — 8e,05|TT 3] )

Since

T;q,)\ ;1(T;q,>\ _ Tsequ) cun cu ) N
DGO, (Teq,/\)) N <1‘11(T6q7>\ —TeaNy ) T (T3 = T5"7) (ﬁ - I) )
S Vs S a

we obtain that

<8T3‘§7A> = Terr — TeaA (403(1 — &q)|TET*

3
ox Ya Vs det DoG (A, (T%Q»)\ a0 B|T5"7
S

We observe that we have already proved that T¢9* — T¢%* > ( and therefore we
conclude that T¢%* is decreasing with respect to A because the second component
of the above vector is negative. Moreover, from the first component we deduce

aTe
that 5

S
“: has the same sign as 1 — ¢,. In particular, in the physical case, that
is, for ¢, < 1, T¢%* is increasing with respect to A. This concludes the proof of
Proposition 2.5. U

7.2. Proof of Proposition 2.4: monotonicity of the equilibrium points
with respect to ¢,.
Given A > 0, consider the function H : R x R? — R? defined by

Ta)) L [-MT = T,) + 200B T PT, — 26005 |Tu T,

(73) H(g—jm (T 1’Ya
) ’Yt{*A(TS —T.) = o|TsP°T; + ea0p|Tal*Ty +RJ
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T,
T
equilibrium point of problem (1.6) with parameter A.

We note that H(e,, ( >) = 0 if (T,,Ts) solves (6.2), that is, if (T,,Ts) is an

Assume that (T2, T£%%*) is an equilibrium point for problem (1.6) with pa-
rameter €, = € such that

T;q,sﬁ

det Do H (e, e ) >0,
T;wi

Tr Dy H (e, <T€q’€*>) <0,

TS ¢ [Ty, Ty 4.

Then, the implicit function theorem applied to H implies that there exists a neigh-
borhood V* of €% in R, a neighborhood V°%%a of (T4 T¢%") in R?, and a C*
function

TNy yerca o TV (g,)

T, 0
H(e., <T3>) B (0) ’ <T“> = TN (e,),
— T.

T, . ?

Thus, there exists a unique equilibrium for problem (1.6) close to (T;q’s‘:,T 5 q,sg)
with €, close to €:. We denote such equilibrium by (7% T¢%%=). Moreover,
Tevea ¢ [Ty _,Ts 4] for g, close to e} and (Tg?%e, T¢%%e) is asymptotically stable
(by continuity of det and Tr). The analyticity of the functions e, — T¢%%* and
€q — T%%= can be deduced by the analytic version of the implicit function theorem,
see for instance [6, Proposition 6.1, p. 138].

To study the monotonicity of g, — T<9°* we compute the derivative of H with
respect to g4:

such that

d . d Teaca
0= (e, ¥ (en)) = o G, (020 )]

dEa dga
and we obtain that

oTEe=a
ag T¢49:Ea _ T¢4q:€a
(a%qeaa> = —DoH(cq, <Taq)) ' D1 H (e, (Taq>)
€a

For what concerns the second component, we get that

Te9Ea 0T 45
[’ya’ys det Dy H (e, (T;q’5a> } 5o

= (A + deaoplTeree ) (o5 Te05 = 20| T 1)
+ (At 8eqop 1515 ) (o T5050 1)
= Ao (ITetee[* = [Tgee 1) 4 degoy [ Tetee [ TE0ee |,

which is positive. Therefore, T29 %+ is increasing with respect to &,.
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With easy computations on the first component, we obtain that

Vs €q,€q aTeq,Ea
[7 75 det Dy H (20, <Ta ))] o _

Te4ea Oz,
= (At aop|zgos ) (Tevee )t — 2T ) ) + (A + deaop|T55 P ) 1505
Aea = Vop|TE0e P05 1) 4 (A + dop|Tenee ) (|Tenee [ = 7o),

and this quantity is positive if £, > 1. This concludes the proof of Proposition
2.4. . O
Remark. We were not able to determine the sign of 8%:% if €q € (0,1) which is
not straightforward from the previous expression. It is pogsible to rewrite the above

expression as follows

A(ITgneet = [Tgnse ) + dap| Tt [P (JTE05 | — (2 = 20) | TE25 ),

that however does not give a hint of the sign for €, € (0,1) (observe that this
quantity is positive when A = 0). The knowledge of the sign would be interesting,
since €4 € (0,1) is the relevant physical case.

7.3. Proof of Corollary 2.1.

Let (T;q’ez, qu’az) be a warm equilibrium, therefore qu’ez > T, 4. Then, thanks
to Proposition 2.4, there exists 6* > 0 such that for any ¢, € (¢} — 0%, &} + )
there exists a unique warm equilibrium (7¢%%«, T¢%%=). Moreover, g, — T<9% is
increasing and T5%%+ > T | for all g, € [e, ek + §%).

One can iterate the procedure by applying Proposition 2.4 for any (7.¢%:%, T¢%:5)
with €, € [ef,ef 4+ 0%). Our aim is to prove that there exists a unique warm
equilibrium for any ¢, € [¢},2)

Define

€a.maz ‘= SUP{&, € [€},2) : I a warm equilibrium for all ¢, € [}, &,]}.

Then, there exists a unique warm equilibrium for all €, € [€}, €4 maz) and function
€a € [€f,€aman) — TP is increasing. Thus, either €4.mqe = 2 and the proof
is completed or €4 mar < 2. Assume that €4 mqzr < 2. Observe that, as we have
proved in Section 6.1, function €, € [€}, €4, maz) — Te?%* is bounded and therefore
Te% — T mag 8S ¢ — €q,maz- Moreover, function ¢, € [e}, €4 maz) — To?%* is
also bounded and so there exists a subsequence €4 5, — €4,maz sSuch that TyPeor —
Ta,maz~ Taklng the limit Ea,n - €a,mazx in (61), we deduce that (Ta7max7Ts,maz)
is an equilibrium point associated to €4 maqz. Therefore, we have just proved that
there exists a warm equilibrium associated to the parameter €, 4. We can then
apply Proposition 2.4 and deduce that there exists § > 0 such that, for every
€a € (€a,maz—9, €a,maz+9), there exists a unique warm equilibrium point. However,
this contradicts the definition of €4 mq.. Therefore €4 maz = 2.

Finally, the analyticity of the functions ¢, € [e},2) > T?%« and ¢, € [¢£,2) —
T¢%%« can be deduced by the analytic version of the implicit function theorem, see,
e.g., [6, Proposition 6.1, p. 138]. This proves the first item of Corollary 2.1.

To prove the second item, let the former warm equilibrium point (77 @<a s q’s‘:)

be the initial condition of our system with parameter e > ¢*. Since (T, T5 %)
is an equilibrium of problem (1.6) with parameter €, we have

CN(TETEe — TEV%e) = 267 o p| TEV|* — ek o p|TEV% |2,

(7.4) . . . . .
AT = T5"%) = op|Ts | — ehop|Ta" ™ |* — qBs(T5"%).
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Thanks to the first identity of (7.4), we obtain

(7.5)
AT (0) = —(TET5E — TE9%) 4 et g | TEVSH 4 _ 2| TE750 |
- 25:UB|T:%EG|4 €a08|Ts (e ot 4 ef UB|Tqu |4 — 25IUB|qu’EZ|4
= (5: — EZ)UB|Tseq’ “| — 2(53‘ — EZ)UB|Taq’ a|4

— op(ef — ) (ITE54 [ = 2TE"4 ) < 0,
And from the second identity of (7.4), we deduce that
(7.6)
YTL0) = —A(TE"5 = TE00) — op| TS ' 4 ef op| TE"5 | + B, (TE5)
= op|TET5 b — top|TET 5 |4 — qB,.s — op|TEV5* + e op|TE"5 |4 + qB, 4
= (eF — eN)op|TE|* > 0.
Let us define the subsets of Q
QM) = ((T,,T,) € Q. T, € (0,75 )

ATy —Ty) + X T — 24T > 0,
*)\(Ts - Ta) - UBT:l + 5;0—BT§ + qﬂs(Ts) >0

’ + € ©
QM) = (T, 1) € Q.T. € (TS  TE4™)

“NT, —T,) + T — 2T <0,
“MNTs —T,) —opT* + ctopT? + qB:(Ts) <0,

(/\6)

={(Ta,T5) € Q :
“NT, —Ts) + T — 21T > 0, !
—)\(Ts — Ta) — (TBT;l + «‘32_0']5’1:;1 + (JBS(TS) <0, ’
(Nea ) eq, 5
Qs ={(T4,Ts) € QT > T, 3
NI, —Ts)+efT -2 T2 <0, !
~MNTs —T,) — 0Tt +efopTt+ qB:(T,) <0,

E € € +
Moo (T, Ty) € Q. Ty € (TS4%  TEY™) -

—NT, —Ts) +efTd — 27T > 0,
~MTs —Ty) —opTd +efopTt + qBs(T,) > 0,

;™

oM = (T, T) € Q -
—\NT, —Ts) + T — 27T <0,
*/\(Ts — Ta) — (J'BT;l + 5:0'BT;1 + qﬂs(Ts) > O,

1.

Observe that from (7.5)-(7.6) we deduce that (75" a ,TsT < ) belongs to the subset
et . eq,er
QY" @) (that generalizes Q4 in Figure 12). Since T5(0) = T5¥ > T, ., then as
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+
long as (T,,Ts) remains in QY"E“ ), T, increases and therefore it will remain bigger
than T ;. Then, several possibilities can happen

. . . el . .. .
e cither (T,,Ts) remains forever in Qi Ca ). In this case T is increasing and

(T,,Ts) converges to the new warm equilibrium,

Loy ot
e or it enters into Q3(>"€“ ). In this case the solution increasingly attains the
new warm equilibrium,
. . A\eh)
e or it enters into Q5 ¢
new warm equilibrium.

. Hence, the solution decreasingly converges to the

This concludes the proof of Corollary 2.1. (|

8. CONCLUDING REMARKS

First, we observe that the mathematical analysis of the problem we present in this
paper can be completed with some physics-informed comments. Indeed, showing
that having larger values of ¢, leads to a warmer temperature at surfaces amounts
to mathematically proving the greenhouse effect for this simple model. In the case
of a very opaque atmosphere, if one wants to proceed along the lines of Eq. 1.3, in
order to respect the basic laws of thermodynamics, one needs to consider multiple
layers that behave radiatively as black bodies stacked on top of each other.

Let us nonetheless assume that if one considers a model with a single atmo-
spheric layer having (an unphysical) €, > 1, amounts to representing by and large
a very opaque atmosphere. Then the fact that the sensitivity of the atmospheric
temperature with respect to €, is positive for 1 < &, < 2, meaning that larger
values of €, lead to higher atmospheric temperature, can be roughly interpreted as
a signature of the runaway greenhouse effect, which indeed manifests itself when
€, > 2 leading to a blow-up in finite time of the solution.

Moreover, larger values of A\ correspond to having a stronger coupling between
the surface layer and the atmosphere (the two temperatures being identical, ceteris
paribus, in the A — oo limit). Since the incoming solar radiation is primarily
absorbed at surface, larger values of \ allow for a more efficient upward transfer of
energy to the atmosphere, thus decreasing the surface temperature, as a result of
enhanced vertical sensible or latent heat transport.

Finally, we would like to point out that the results of this paper will be used in
the study of the 1D two-layer energy balance model (1.3), which we will develop
in future works. The key mathematical questions are the same: global existence,
long time behaviour, influence of the different parameters. However, problem (1.3)
is composed of two nonlinear and degenerate parabolic equations, which brings
many mathematical challenges. For such partial differential equations, comparison
results will probably derive bounds from the ODE system studied in the present
work. Furthermore, problem (1.3) is particularly interesting when the function ¢ is
not constant, and depends on z (the insolation being not the same at the poles or at
the equator), and then the study of the equilibrium points is one of the interesting
challenges.

APPENDIX A. PROOF OF PROPOSITION 2.6

Let us prove that blow up in finite time occurs for problem (1.6) when &, > 2,
first under quite restrictive hypothesis (part a) of Proposition 2.6), then under
weaker assumptions (part b) of Proposition 2.6).

A.1. Proposition 2.6, part a).
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Consider the following problem

VoI = €40 B|Ts|?Ts — 2e405|T.|?T.,

VsTy = 7UB|TS|3TS + 5aUB|Ta|3Ta + Rs(Ts),
T.(0) = 72",

7,(0) = 17,

(A1)

when f; is given by (1.7). Observe that, under assumptions (2.3),(2.6)-(2.8) one
can still carry out the same proof of Proposition 2.1 to show that a unique maximal
solution of problem (1.6) exists for t € [0,7*). Moreover, thanks to Lemma 4.1,
such solution is positive on (0,7%).

On the other hand, the boundedness of solutions established in Section 4.3 was
based on the fact that €, < 2. Thus, this property cannot be deduced when g, > 2.

A.l.a. Lack of equilibrium points.
Equilibrium points are stationary solutions of (A.1): they solve the system

(A 2) EQO'B|TS‘3TS - 2€aJB|Ta|3Ta = 0,
' —0p|Ts|PTs + euop|T.)>T, + Rs = 0.

Since T > 0 and Ty, > 0, from the first equation of (A.2) we get
T, = 2Y/4T1,,
and, plugging such identity into the second equation of (A.2), we obtain
(ea — 2)oBT, + qBs(Ts) = 0,

which has no solutions because €, > 2 and ¢S5 > 0.
Remark. Observe that, by replacing T, by 2~Y*T, in the ODE (A.1) satisfied
by T, we get

T = (%“ —opT* + Ry(T)),

where blow up in finite time occurs when 5 —1 > 0. Of course, this procedure is
not rigorous, but anyhow it gives an insight of blow up in finite time for e, > 2.

A.1.b. Monotonicity of the solution.
Now let us consider the sets

Cl = {(TaaTs) S @7 E‘:aO—B|iZ—‘s|3/I’s - 25aUB|Ta|3Ta == 0},

and
Cy = {(Ta7TS) € @7 _UB|T3|3TS + saO'B|Ta|3Ta + RS(TS) = 0}

Observe that (T,,Ts) € C; if and only if T, = 2'/4T, with T, > 0. Given T, > 0,
we will denote Tél)(Ts) the value for which (Tél)(Ts),Ts) € C;. Hence, we have
TM(T,) = 27 1/4T,,

Now, let us analyse C3. Since there are no equilibrium points in Q, C2 does not
intersect C; in Q.

Moreover, Co contains points of the form (0,7T%). Indeed, such points satisfy

(A3) 7O—B‘TS|3TS + RG(TS) = Oa

which has at least one solution (function Ty — —og|Ts|3Ts + R (Ts) is positive for
T close to 0 and negative for T large). More precisely, we have proved in Section
5 that, when Sy is given by (1.7), (A.3) can have one, two or three solutions T}
depending on the values of the parameters appearing in 5,, on ¢ and op.

We further observe that if —og|Ts[3Ts + R4(Ts) > 0, there is no T, > 0 such
that (T,,Ts) € Co. On the other hand, if —op|T,|>Ts + Rs(Ts) < 0, there exists
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a unique value T, > 0 such that (T,,Ts) € Co. We denote such value 72 (Ty).
Therefore

Co = {(Tf) (TS)7Ts)vUB|TS|3Ts > Rs(Ts)}-
Note that the set
j = {Ts; O—B‘TS|3TS > RS(TS)}
is a union of intervals where the extremal points of such intervals are zeros of the
map Ts — JB|T9|3T9 - RS(TS)
Finally, we note that
(To,Ts) €Co = Ty~ el/*T, as T, — .

This gives the asymptotic shape of Cs.
We claim that

(A4) VT, e T, TP(Ty) < TM(TY),
Indeed, first we observe that on a compact connected component of 7 it holds that
VT, €07, TONT) < TE(TL)

because T, (Ts) = 0 on 0J. Moreover, there is no T, such that Tf)(TS) =

Tél)(Ts). Therefore, by continuity, (A.4) holds true on all the compact connected
components of 7.
Furthermore, on the unbounded connected component, since €, > 2, the asymp-

totics of Tf)(Ts) and Tél)(Ts) give that
T, large enough = T 2(T,) < T\V(Ty).

Since there is no T such that T(52)(Ts) = Tél)(Ts), the sign of TéQ) (Ts) — Tél)(TS)
cannot change in the unbounded connected component (by continuity), and there-
fore (A.4) holds true. This implies that C; remains strictly above C;. In the
following we will consider the set

_ 1
E:={(T,,T,) € Q,05T — Ry(Ts) < eqopT? < —c,05T2},

2
see Figure 14.
T,, © 2 T,, © ¢
& &
T« %:3,*
D
T, T,

(4) (B)

FIGURE 14. In the phase space we represent the sets C; =
{(T,T2) € Q : e,0B|Ts|PTs—2e,08|T.|>T, = 0}, Co = {(T,,Ts) €
Q : —0B|Ts|PTs +eaop|Tul>T, +Rs(Ts) = 0} and € = {(T,, Ts) €
Q : opT* —R(T,) < eq05T2 < %EGUBTf}. In (a) we show the
case in which —og|Ts|2Ts + R4(Ts) = 0 has a unique solution and
in (b) the case of three solutions.
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Now, let us rewrite the vector field F' defined in (4.1) under the current assump-
tions

1 3 3
(AS) F (Ta) — . |: "/7& |:€aUB|T€| Ts - 26(LUB|T(J,‘ Ta]
Vs

0| T PT, + caop|TLPTy + Ry (Ts)}

Assume that T'” < 21/4T(? . Then, as long as the solution (T}, T}) remains below
Ci, we have T, < 0 and T, > 0, hence, in the phase plane, the solution goes
monotonically in the “north-west” direction, and attains C; in finite time (otherwise,

it would have to converge to some equilibrium point which, however, does not exist).

Hence, under assumption T§°) < 2t/ 4T(§0), the solution enters £.

Analogously, if the initial condition is above C; and not in &, then it enters £ in
finite time. And if the initial condition belongs to &, then the solution cannot leave
&, since the vector field goes inward &.

Therefore, no matter where the initial condition is located in @, the solution
enters £ (in a monotonical way). When it is in &, then T, > 0 and 7} > 0, that
is, T, and Ty are increasing. Therefore, since the temperatures cannot converge to
some equilibrium point, they both go to +o00 as t — 7';: ¢; which is the maximum
existence time (see Section 4.1) that, at this stage of the proof, can be finite or
infinite.

A.l.c. Asymptotic behaviour in the phase plane.
As already noted, the solution, once entered in £, remains in such set for all time
of existence. Hence, there exists 79 such that

Vi€ [ro, 7). TO(TL(t) < Tu(t) < TO(Tu(1).

Since TV (T4 (£)) = 27474 (¢), and TS (Ty(t)) ~ ea /*Ty(t) as t — 7,7, then the

T4(t)

Ta(t)
Assume for the moment that the behaviour is perfectly linear, that is, there

exists . > 0 such that

(A.6) vVt e [To,T;CS), Ts(t) = Ty ().

quotient remains bounded between two positive constants.

Then, since (T, Ts) € &, this linear behaviour would imply that p., € [21/475(11/4],
and moreover

From (A.1) we would have
Vs Ts/(t) - _JB|TS|3TS + EaJB|Ta|3Ta +Rs
Yo Ty(t)  caoB|ToPTs — 2e00B|Tu* T,
—UB,ujfT(f + <€achT;1 + Ry
Z‘?a(TB/.L:%TZL — 2511(7']31—2l

4 R
fa = [+ 557 Ea — 1}
= (A —2) _>5(/~L4—2)7 as T, — +oo.
a ES a *
Thus, p. would solve the equation
_ 4
s . = _fa T M with . € [21/476(11/4].

—H )
Ya Ea(,U/;% - 2)
We observe that the map y € [2,&,] — %yl/ 4 is strictly increasing, whereas the

€a—Y
€a(y—2)

map y € (2,e4) — is decreasing, it goes to +oo as y — 2%, and to 0 as
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Yy — £4. Therefore, there exists a unique value y, € (2,&,) such that

Vs 1/4 Ea — Yx
Lyt =

Ya €a(ys —2)’
and so a unique value p, € (21/4,¢%/*) such that

4

Vs €a — [y
AT Joy, = o B
(A7) Ya €a(pi —2)

Such value is u, = yi/4. To sum up, if (A.6) would hold, . would have to be the
unique value in (21/4,5111/4) solving (A.7).
Of course, the linear behavior (A.6) can not be ensured. However, from the

above argument we are able to prove — in the general case — the following bound
Ts(t)

from below of the ratio OR

Lemma A.1. Let 1 be any value for which (T, (10),Ts(70)) € €. Then, there exists
p e (2Y% 1) such that

(A.8) V>, Tu(t) > uTa(t).

What is important in Lemma A.1 is the fact that (A.8) holds for some p > 21/4.
This fact is crucial to prove that blow up in finite time occurs.
Proof of Lemma A.1. Let us consider system (A.1) as a first order non-autonomous
ODE in Ty, with T, the new variable. Indeed, since the map

¢ [10,7.0) = [Talro), +00),  t+ o(t) = Tu(t)
is increasing, we can consider its inverse

o1 [Ta(m0), +00) = [0, 7). 2= 97 (2),
and then consider

u: [Tu(mo), +00) = [Tis(70), +00), u(z) = Ts(9™'(2)).

We have
/ o1 1y Ty(p '(2) _ Ti(¢~'(2)
W) =TT ) (06 = 2 = e
_Ja —UBTS(<P_1(2))4 + EaUBTa(‘P_l(Z>)4 + RS(TS(‘P_l(Z)))
Vs €a0BTs(p71(2))* = 2e,05Ta(p71(2))*
_ Ya —opu(2)* + eqo52* + Ry(u(2))
v eqopu(z)? — 2e,0p2%

4 4 | Rs(u(z)
Ya €a? —u(2)* + =

s ea(u(z)* —224)

Note that
u(x) _ L ') _ D ')
2 eei(z)  Tale'(2)
since (T,,Ts) is above C;. Therefore the quantity u(z)* — 22 is positive. Let us
now consider the set

U:={(z,2),2 € [Ty(r0), +00), z > 2'/42},

> 21/4

and the function

Rs(x)

5a24 —zt 4
f:U—=R, f(z,x)::ﬁ Z

Y¥s  €alzt —22%)
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Thus, u satisfies the following differential equation

) V() = Fzu), = € [Tulr). +00).
w(Ty(70)) = Ts(70).
Now, since Ty(79) > 24T, (70), we can choose p € (2'/4, 1,.) — where pu, is the value
for which (A.7) holds — such that Ty(79) > uTy (7). Graphically, we are choosing
w € (214 1, so that the point (T,(79), Ts(70)) is above the line T = uT,. Then,
the function
v [Ta(r0), +00) = R, v(z) := pz

is a subsolution of the first order non-autonomous equation (A.9). Indeed,

Yo €azt —v(2)* + L’E,’f”

f(z,0(2) = i ca(v(2)t — 22%)

o (6 = pt)z* + Rl

oB
Vs 511(.[‘4 - 2)24
Ya (Ea — ,u4)z4
Vs €alpt —2)2*
Ya €a — /1'4
Vs Ea(:u4 —-2)

4
(C“ —
>y e H=vE)
S a *

Moreover,
v(Ta(70)) = pTa(10) < Ts(70) = u(Ta(70))-
To sum up, we have

{u/(z) = fEu), {v’(z) < f(z0(2)),
u(Tu(10)) = Ts(70) v(Ta(70)) < u(Tu(70))
We claim that

Vz > To(0), v(z) < u(z).

Indeed, if there exists z1 such that v(z1) = u(z1), we would have

v'(21) < f(21,0(21)) = f(21,u(21)) = u'(21).

Such inequality implies that v — u is strictly decreasing near z; and equal to 0 at
z1. Therefore, v — u would have to be positive before z;, which contradicts the
minimality of z;. Thus, we have that

V> To(r)  Tole™'(2) = u(z) > pz = pple ™ (2)) = uTule ™' (2)),
which implies that
Vi€ [ro,7s.), To(t) > pTu(t).

The proof of Lemma A.1 is therefore complete. U

A.1.d. Blow up in finite time.
In this section we prove that 7,5, < co. From the first equation in (A.1) we get
that

Ti(t)  eaop|Ts|PTs — 2e405|T.|?T, . T, (t)* 9
a = = €40 —2640p.
T, T.(t) Tt T
Using Lemma A.1, we deduce that there exists p € (2'/4, i) such that
T (¢
Vi€ 0,7, ), () > eqop(pt —2).

Ya Ta(t)4 Z
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Then, for all 7 € [79,7,,), we have

T T/(t) T 4
o < dt > a —2)dt.
), T2 [, et =

0 0

By computing the integrals we get
—1 T
Ya [W} . >eqop(pt —2)(t—7), Vre [7’0,7';8)
which gives
Ya Ya Ya
< — <
= 3Tu(m0)%  3Tu(7)® ~ 3Tu(70)3’

Since p > 2'/%, we obtain that

cqaop(u* —2)(1 — 70) V7e [7'0,7';:5).

Ya +
T—T9 < V1 €lmn,T
0= Be,05(ut — 2)To(10)?’ 7o, 7.5)
which implies that 7,f, is finite:
F <7 a

as ST e (W — 2) Ta(ro)?
This concludes the proof of Proposition 2.6, part a).

A.2. Proposition 2.6, part b).
In order to deal with the case A > 0 and R, > 0 we consider the set of points

O = {(To, 1), ~MTu = 1) + 05| TL*Ty — 22005| T[T, + Ra(T2) = 0},
and
C) = {(Tu, Ty), ~MTs — Tu) — 05| ToP T + c00p|Tu*To + Ru(Ts) = 0}
Observe that for T, large, there exists a unique value T such that
My + a0 p|Ts|*Ts = AT, + 2640 5| Tu|*Ta — Ra(T0),
that is, (T,,Ts) € ng)’ Such value, denoted by Th9) (Ty,), satisfies
T&I(T,) ~ 2Y4T,  as T, — .
Analogously, given T large enough, there is one and only value of T, such that
AT, + eq0p|Tal* Ty = My + op|Ts [P Ty — Ro(Ts),

namely, such that (T,,Ts) € Cég ). We denote this value T*% (Ts), and we claim
that it satisfies
TEI(T) ~ e V4T, as Ty — oo

Therefore, we have

9\ 1/4
TEOTT,) e ITONT) ~ (Z) T as Ty = o0,

€q

Hence, there exists T, , such that

Ta > Ta,* — Té2,g) (Ts(l’g) (Ta)) < Ta'
We now consider the set
D= | (TEOTNT),To) x {T(T)),
TaZTa.*

or, in other words, the set of (T,,Ts) € Q such that T, > T, . and such that

~MNT, —T,) + cq0B|Ts|>Ts — 2e408|Ta|>Ta + Ra(Ty) > 0,
~MNTs —T,) — oB|Ts|>Ts + €00 8|Tu|>Ty + Rs(Ts) > 0.
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Then, we deduce that if the initial condition (Ta(o), TS(O)) belongs to £9), the solution
never leaves £(9). Furthermore, the components T, and T are increasing and blow
up in finite time. O

APPENDIX B. PROOF OF LEMMA 6.3 AND REMARK 6.1

B.1. Preliminary computations.

When studying the convexity of @, a useful tool is a suitable expression of ®”.
This is the goal of this section.

Let us first consider function @4, defined in (6.11). By computing the second
derivative, we get

by d2T(1)
OV(T,) = — = —=—(T%).
(L) = -5 G ()
We introduce the following function
(T,
(B.1) o) = 20

Thanks to (6.10), we know that p(T,) € (27/4,1). We replace Tél)(TS) by p(Ts)Ts
in the first equation of (6.9) and we obtain the identity
AL = p(Ts))Ts = 5aUB(2p(TS)4 - 1)Ts4a
that can be rewritten as follows
2P(T9)4 -1 _ A
1—p(T,)  eq0BT3

(B.2)

Let us introduce the map

21t — 1 p
(B.3) Lize2V41) > Liz) = ———, and Ky, =

1—=z €a0B

Observe that L is strictly increasing on [271/4,1) and it holds that

p(Ts) =L+ ([;%h)

from which we deduce the following identity

— K h
Tél)(TS) =T p(TS) =T L 1( TI;, )

We compute the second derivative of T,gl) with respect to Ty and we get

- () om0 (52),

dT T3 *dT, T?
and "
2Ty d Kpn d? Kp
) =2 (17 (F5)) + T g (7 ()
arz 1) =2 \F ) g\
The derivation rule of an inverse function gives
d (L_l(Kph)) _ —3Kopn 1
dT, T} T (Lfl(%)) 7
and therefore we obtain
d —1( Kpn
£ e 20 (5)
i (7 () = + L

T (®) ¢ [p((5)
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Using the latter expression inside the second derivative of T, 0 we get

2TV (1) — ~SKom 1

T )
12K, 1 | 3, 1 (e ()]
F ) )]
_ 6 Kpn 1 T dt%s {L/ (Lil(ﬁiish))}
K

()

We observe that

On the other hand we have that

TR - Ve S W S RN
In(L'(p)) =In ( =2 > =1In(8p® —6p* — 1) —2In(1 — p),
hence
d;l; {ln (L/(p(Ts)))} = (8p(T5)3 - 6p(T5)4 - 1) —2In (1 - p(Ts))}
24p(T. ) ( (Ts)) 2 ’
[8p< =G 1+ T
[ 24p(T)? g p@)) 2 ] 3K, 1
8p(To)* —6p(T)* =1 1-p(Ty)] T¢ L'(p(Ty))
Using the latter expression, we have that
ReCEC
/ Kph
()]
_ 1 _ 3K { 24p(T)* (1 - p(Ts) 2 } 1
279 [8p(T5)* — 6p(Ts)* — —p(T5) | L' (p(T5)
-1— § |: 24P(TS) (1 B p(TS)) + 2 :| TS))
2 STy~ 1 T | D)
B { UpT) (1= p(T) | 2 )} (2p(1)" = 1)(1 = p(12))

2 [8p(T5)° = 6p(Ts)* =1 1 —p(T

Let us introduce the following function on [271/4 1)

8p(T5)? = 6p(T5)* =1

31 24p2(1—p 2 20t — 1)1 =p
Vo3[ 220 |t -na-p
218p° —6p*—1 1—pl 8p>—06p*—1
(B4) 2 (94 2 4
:1_§[24p 20" —-1)(1—p) 2(2p* — 1) }
2 (8p3 — 6p* — 1)2 8p3 —6p* — 1
This gives the following expressions of @Y
K
(B.5) IS E—L

T (p(T2)) (p(Ts))-



We use the above identity for ®”: thanks to (B.3) we have that L(p(T,)) = =z
and therefore we get

o)
w1 = -2 1) 20,0 - 12
_ 3\ L(p(Ty)M? €ay(_ Kpn \?/3
= —qap Ty V) 12050 = ()
(1= p(T$))*? (2p(T5)* — 1)**
=3 e
, [_ N(p(T5)) 4@ N 1) 1 ]
8p(Ts)* — 6p(T5)* — 1 ga 20 (2p(T5)* —1)2)

Let us define

_1( EKpn
Ps = p(Ts) =L 1( = )7
and the following function on (27/4 1)
N(p) 11 1

B.6 N*: ——— t 44— — ) — |-
(B-6) 'OH[ s —epi =1 TG 2)(2,04—1)2}
Thus, we rewrite ®” as follows
3\

1/3
K,

(B.7) (T = (55 (1= p) 202 = 1)) N*(p).

B.2. Proof of Lemma 6.3.
Our aim is to prove that

N* >0
(B.8) fa<l = 2 s
Vpe (27V41).
We note that
11 1 1
N*(p) =4(— — = -
() =4 —3) 20" —1)2 8% —6p* — 1
3724p° (20" —1)(1—p)*  2(2p" - 1)
(=51 /)
2 (8p3 — 6p* —1)2 8p3 —6pt —1
11 1 1 3/2

—4(— — = _
(5,1 2) (2p*—1)2 8p3 —6pt—1 Jr8p3—6p4—1

_ [24/)2 2t -1(A-p? 202"~ 1) }
(8p3 — 6p* — 1)2 8p3 —6p* — 11

The function p — 8p® — 6p* — 1 is increasing and positive on (2-1/4,1). Therefore,
for all p € (27/4,1), we have

11 1 1

N*(p) > 4(— — = -

) =4 =3 G s o1
1 ((i_l) 1 2pt-1 )
C2pt—1\ e, 272p0 -1 8p3—6pt—1/

1

We observe that the function p — AT is decreasing on (271/4,1) and is equal to

1 for p = 1. Whereas the function

- - 20t —1
N:ipe@ Y4 1)~ N(p)=—F
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is strictly increasing on (271/4,1). Indeed,
_ 8p%(8p% = 6p* —1) — (2p" — 1)(24p* — 24p°)

N’(p) (8/73—6/)4—1)2
2
B (8p3—86+1)2 ((8P4 —6p° —p) = (20" = 1)(3 ~ 3;;))
8p?

— 4 —1/4

Therefore N is increasing on (271/4,1). Hence,

1 1 4—3¢
20" —1)N*(p) > 4(— — ) — 1= 2.
(20" = DN (p) 24—~ = 3) -
Therefore, if e, < 1 (actually the same holds for e, < 3), N* is positive on (27141)

and so ®” is positive on (0, +00), thanks to (B.7). This was the main part of Lemma
6.3.

Now, if g, < 1, @ is strictly convex and strictly increasing on [0, +00) (see
the proof of Lemma 6.1). Thus, equation ®(7Ts) = ¢B8,(Ts) can have at most one
solution on [0,T5 _], one on [T 4,+0o0) and two on [Ts —, T, ;]. If there are two
solutions on [T _, T, 4], the strict convexity of ® implies that there cannot be other
solutions on [T 1, +00). Therefore, in this case, there are at most three solutions.
This concludes the proof of Lemma 6.3. O

B.3. On Remark 6.1.

For ¢, € [1,2), we used numerical tools have an idea the convexity of ®. First
we note that N is equal to 1 for p = 2=/4, converges to —2 for p — 1, hence
has at least one zero. By plotting such function we observe that it is decreasing
on [271/%,1) and it has a unique zero, py, whose value is approximately 0,89 (see
Figure 15).

1

0.5 b

ok 4

-051 b

= 4

-151 b

2 1 1 1 1 1 1 1
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

FIGURE 15. Graph of function N, defined in (B.4).

This gives information on the convexity of Tél) and of ®.
Concerning N*, we observe that that there exists a unique value g, € (1.99,1.991)
such that:
e N* is positive on (271/4,1) as long as &, < €40,
e N* has exactly two zeros in (271/4,1) for all &, € (£4,0,2), it is negative
between these two zeros and positive elsewhere,
see see Figure 16 . Therefore, following the numerical results, the convexity of
® is described in Remark 6.1. Concerning the number of equilibrium points, it
remains to study the case &, € (£4,0,2), where the function ® (from numerical
tests) is respectively convex, concave and convex over the interval [0,400). Let
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—€, = 1.9048
e =1.9139
a
—ec_=1.9231
a
—e¢_=1.9324
a
e =1.9417
a
—e¢_=1.9512
a
—e¢_=1.9608
a
—e¢_=1.9704|
a L
e =1.9802
a
—e_ =1.99
a
—e_=1.994
a
=1.999
a

-0.51-

0.85 0.9 0.95 1

(a)

FI1GURE 16. The graph N* for ¢, close to 2.

us assume that such behaviour is satisfied. Then, since ® is strictly increasing,
equation ®(Ts) = ¢fs(Ts) has at most one solution in [0,7s _] and at most one
solution in [Ty 1, +00). If we have four solutions of the equation

q)(Ts) = q/BS(TS)
in the interval [T, _,Ts 4] then, by Rolle’s Theorem,

qﬁs;‘r — Bs,—

' (T,) =
(T:) Toy — Ty _

admits three solutions. Applying again Rolle’s Theorem we deduce that ®” vanishes
at least twice. And since ®” has at most two zeros, we conclude that there cannot
be five solutions of

(I)(Ts) = qﬁs(Ts)
in the interval [Ty _, Ts ]

Therefore, the equation of the equilibrium points can have at most six solutions
over all [0, +00). In this case there would be one equilibrium point in [0, T, _], one in
[Ts,+,+00), and four in (T —,Ts 4+ ). Let us denote them by T, ,;, with i =1,...,6.
As explained above, there exist three values T& ;€ Ts,—,Ts +], 7 =1,2,3, such that

o'(Ts ;) = q8'(Ts )
and T o < Ts’l <Ts3 < TSQ <Ts4 < T573 < T, 5. However, ® is strictly convex

on [Ty 3,+00) and @ (T, 5) > qB'(Ts5) thus the existence of Ty . Therefore, we
conclude that there exist at most five equilibrium points. O
In the picture that follows we have plot the graph of ®, for ¢, = 1.997 and ten
values of A from 0.005 to 0.05, and the graph of 8. Even for such a big value of
€q > €q,0 the drawing suggests that for physical relevant parameters of 35 there are

at most three equilibrium points of our system (see Figure 17).
d
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