
Approximating sparse Hessian matrices
using large-scale linear least squares
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Fawkes, J. M., Gould, N. I. M. and Scott, J. A. ORCID:
https://orcid.org/0000-0003-2130-1091 (2024) Approximating
sparse Hessian matrices using large-scale linear least
squares. Numerical Algorithms, 96. pp. 1675-1698. ISSN
1572-9265 doi: 10.1007/s11075-023-01681-z Available at
https://centaur.reading.ac.uk/113557/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1007/s11075-023-01681-z

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Numerical Algorithms
https://doi.org/10.1007/s11075-023-01681-z

ORIG INAL PAPER

Approximating sparse Hessian matrices using large-scale
linear least squares

Jaroslav M. Fowkes1 · Nicholas I. M. Gould1 · Jennifer A. Scott1,2

Received: 3 August 2023 / Accepted: 6 October 2023
© The Author(s) 2023

Abstract
Large-scale optimization algorithms frequently require sparse Hessian matrices that
are not readily available. Existing methods for approximating large sparse Hessian
matrices have limitations. To try and overcome these, we propose a novel approach
that reformulates the problem as the solution of a large linear least squares problem.
The least squares problem is sparse but can include a number of rows that contain sig-
nificantly more entries than other rows and are regarded as dense. We exploit recent
work on solving such problems using either the normal equations or an augmented sys-
tem to derive a robust approach for computing approximate sparse Hessian matrices.
Example sparse Hessians from the CUTEst test problem collection for optimization
illustrate the effectiveness and robustness of the new method.

Keywords Sparse nonlinear systems · Sparse hessian matrices · Sparse linear least
squares · Sparse direct solvers

1 Introduction

Consider the large sparse optimization problem

min
x

f (x),

where f (x) is a sufficiently smooth function of n variables. The solution x may be
required to satisfy additional conditions (for instance, the components of x must be non
negative), in which case the optimization problem is said to be constrained; otherwise,
it is unconstrained. Whilst the gradient g(x) := ∇ f (x) is often readily available,

B Jennifer A. Scott
jennifer.scott@stfc.ac.uk

1 STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX110QX, UK

2 School of Mathematical, Physical and Computational Sciences, University of Reading, Reading
RG66AQ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01681-z&domain=pdf

Numerical Algorithms

the Hessian matrix H(x) := ∇2 f (x) is frequently difficult to provide. For example,
the backward mode of automatic differentiation enables the gradient of a nonlinear
function to be computed at a cost that is a small multiple of the that of evaluating f (x),
but the cost of evaluating H(x) using differencing techniques is O(n) times that of
f (x). This is unfortunate because there are important theoretical and practical benefits
in having access to the Hessian matrix. The explosion of interest in machine learning
and data science algorithms that involve optimizing a function has further emphasised
the need for good approximations to Hessian matrices.

Interest in methods for building approximations to H(x) dates back to the 1960s.
The focus at that time was on problems involving a small number of variables and
consequently on small dense Hessian matrices. Extensions to the sparse case were
not successful because either the formulae used generated dense matrices that were
impractical for large problems, or imposing sparsity led to potential numerical insta-
bility in the approximation algorithms [7, 28–30]. Attention subsequently turned to
limited-memory strategies [20, Chapter 7]. These did not seek to reproduce the Hes-
sian matrix but to incorporate the curvature observed at a number of previous iterates.
No attempt was made to impose sparsity.

Our interest is in large-scale problems for which it is essential that sparsity is
exploited. The proposed new method formulates the problem as a large-scale linear
least squares (LS) problem. In general, this LS problem is sparse but, if the Hessian
matrix contains one or more rows with a large number of entries, then the LS matrix
has some rows that are regarded as dense. These dense rows make the problem more
challenging. Methods for tackling sparse-dense LS problems have been considered,
for example, in [3, 5, 9, 23, 24, 26, 27]. Exploiting the work of Scott and Tůma [23,
26], we propose using sparse direct linear equation solvers combined with an iterative
method. Recent software from the HSL Mathematical Software Library [16] is used
to perform numerical experiments.

The paper is organised as follows. In Section 2, we introduce our proposed new
LS formulation. Sparse direct methods for solving this LS problem are considered
in Section 3, with an emphasis on the sparse-dense case. In Section 4, we report the
results of numerical experiments that illustrate the potential of the new method to be
used for approximating large sparse Hessian matrices in practice. Finally, concluding
comments are given in Section 5.

2 Least squares formulation

Consider the twice differentiable function f (x) of n variables x , whose gradient g(x)
is known. The challenge is to build approximations B(k) = {b(k)

i j } of theHessianmatrix

H(x) at a sequence of given iterates x (k). H(x (k)) is an n × n symmetric matrix and
we assume that its sparsity pattern (the locations of the nonzero entries) is known. The
approach we propose is based on using the data from a sequence of m ≥ 1 previous
steps to estimate B(k). The idea of using recent difference pairs

s(l) := x (l)−x (l−1) and y(l) := g(x (l))−g(x (l−1)), l = k−m+1, . . . , k, (2.1)

123

Numerical Algorithms

was initially proposed by Fletcher, Grothey and Leyffer [8]. Their aimwas to construct
B(k) that best satisfies the multiple secant conditions given by

B(k)s(l) = y(l), l = k − m + 1, . . . , k. (2.2)

They did this by solving, for each k, the convex quadratic programming problem

min
B(k)

k∑

l=k−m+1

‖B(k)s(l) − y(l)‖2F such that B(k) = (B(k))T andS(B(k)) = S(H(x (k))).

(2.3)
Here, if W is a matrix with entries = {wi j } then ‖W‖2F denotes its squared Frobenius
norm and S(W) := {(i, j) : wi j �= 0} is its sparsity pattern. Solving the so-called
Constrained Procrustes Problem (2.3) results in an estimate of the Hessian matrix that
is symmetric and whose sparsity is preserved, although positive-definiteness is not
guaranteed. Consequently, this technique is useful inside a trust region method where
positive-definiteness of the Hessian matrix is not a requirement. Problem (2.3) can be
solved using existing well-developed optimization techniques, but for large problems
they are computationally prohibitively expensive. Instead, we propose stacking the
(unknown) nonzero entries in the upper triangular part of B(k) row-by-row above each
other in a vector z(k) of size equal to the number of nonzero entries in the upper
triangular part of B(k) (equivalently, the entries in the lower triangular part are stacked
column-by-column). In this way, if nz(B(k)) denotes the number of nonzero entries
in the upper triangular part of B(k), we redefine the problem as a large sparse linear
system of equations of size mn × nz(B(k)) given by

A(k)z(k) = c(k). (2.4)

Here thematrix A(k) and the vector c(k) are known and depend on the secant conditions
(2.2). To illustrate this formulation, consider the following two simple examples.

Example 1 Let n = 3 and consider the approximate Hessianmatrix with nz(B(k)) = 4

B(k) =
⎛

⎜⎝
b(k)
11 b(k)

12 0
b(k)
21 0 b(k)

23

0 b(k)
32 b(k)

33

⎞

⎟⎠ , with b(k)
12 = b(k)

21 and b(k)
23 = b(k)

32 .

For m = 2, the 6 × 4 linear system (2.4) is

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

s(k)
1 s(k)

2 0 0
s(k−1)
1 s(k−1)

2 0 0
0 s(k)

1 s(k)
3 0

0 s(k−1)
1 s(k−1)

3 0
0 0 s(k)

2 s(k)
3

0 0 s(k−1)
2 s(k−1)

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A(k)

⎛

⎜⎜⎜⎝

b(k)
11

b(k)
12

b(k)
23

b(k)
33

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
z(k)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

y(k)
1

y(k−1)
1

y(k)
2

y(k−1)
2

y(k)
3

y(k−1)
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c(k)

.

123

Numerical Algorithms

Example 2 Let n = 4 and consider the approximate Hessianmatrix with nz(B(k)) = 6

B(k)=

⎛

⎜⎜⎜⎝

b(k)
11 0 0 b(k)

14

0 0 b(k)
23 b(k)

24

0 b(k)
32 0 b(k)

34

b(k)
41 b(k)

42 b(k)
43 b(k)

44

⎞

⎟⎟⎟⎠ ,withb(k)
14 = b(k)

41 ,b(k)
23 = b(k)

32 ,b(k)
24 = b(k)

42 and b(k)
34 = b(k)

43 .

For m = 2, the 8 × 6 linear system (2.4) is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(k)
1 s(k)

4 0 0 0 0
s(k−1)
1 s(k−1)

4 0 0 0 0
0 0 s(k)

3 s(k)
4 0 0

0 0 s(k−1)
3 s(k−1)

4 0 0
0 0 s(k)

2 0 s(k)
4 0

0 0 s(k−1)
2 0 s(k−1)

4 0
0 s(k)

1 0 s(k)
2 s(k)

3 s(k)
4

0 s(k−1)
1 0 s(k−1)

2 s(k−1)
3 s(k−1)

4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A(k)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(k)
11

b(k)
14

b(k)
23

b(k)
24

b(k)
34

b(k)
44

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
z(k)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(k)
1

y(k−1)
1

y(k)
2

y(k−1)
2

y(k)
3

y(k−1)
3

y(k)
4

y(k−1)
4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c(k)

.

The matrix A(k) is rectangular with its row dimension dependent onm (the number
of secant directions) while the column dimension and the number of entries in each
row depend on S(H(x (k)). An important and attractive feature of this formulation is
that it naturally imposes symmetry on B(k).

There may be null rows present in the system (2.4); these result from linear terms
in the objective and/or constraints of the optimization problem. All null rows are
removed prior to solving the system. Whether the resulting LS system is over- or
under-determined depends onm and the density of S(H(x (k)). If it is over-determined
then the equations will be inconsistent in general. In this case, we compute the least
squares solution, that is, z(k) that minimizes

‖A(k)z(k) − c(k)‖22. (2.5)

If the system is under-determined then there are infinitely many solutions or no solu-
tions because the equations are inconsistent. In this case, the z(k) that minimizes the
regularized problem

‖A(k)z(k) − c(k)‖22 + σ‖z(k)‖22 for some parameter σ > 0, (2.6)

is computed. In this study, we focus on choosing m so that the system is over-
determined (strictly speaking it is sufficient for the system to be well-determined).

Although most rows of A(k) are sparse, some can be significantly denser than the
others. This occurs if the Hessian matrix has one or more rows with many entries,
which can be the case in some nonlinear optimization problems where the objective
and/or constraints involve all (or many) of the variables. In particular, if B(k) has a

123

Numerical Algorithms

row with n1 ≤ n entries then A(k) has m rows with n1 entries (see Example 2 with
n1 = n = 4). If n1 is large (compared to the number of entries in the other rows of
A(k)), we refer to the problem as a sparse-dense LS problem.

For simplicity of exposition, in the remainder of this paper, we omit the superscript
(k). When we wish to emphasise the dependence on the secant parameter, we use the
notation A(m). We also denote the number of entries in the upper triangular part of
B(k) by N and set mn = M .

3 Solving large-scale least squares problems

Solving large-scale linear least squares problems is well-known to be significantly
harder than solving large square linear systems of equations; sparse-denseLSproblems
are particularly challenging. In 2017, a review by Gould and Scott [12] reported on the
performance of different software packages when employed to solve an extensive set
of large LS problems arising from a range of practical applications. Direct methods
for solving such systems are characterized by computing a matrix factorization in
such a way that the problem is transformed into one that involves solving systems of
equations with factor matrices that are easy and inexpensive. Direct methods obtain
the solution in a finite and fixed number of steps that is independent of A and c. Due
to rounding errors the computed solution is generally not equal to the exact one, but
if a direct method is well implemented, the resulting software is extremely robust and
can be used as a “black box solver”, with the user not needing any detailed knowledge
or understanding of what is going on within the box. By contrast, an iterative method
generally involves an unknown number of steps and its performance is highly problem
dependent. A major advantage of iterative methods is that they require much less
memory than direct methods, for which the memory requirements generally increase
rapidly with problem size. Thus for very large problems, iterative methods are needed.
For these to be effective, preconditioning is required.Gould andScott highlighted some
of the weaknesses of existing preconditioners for LS problems and demonstrated the
specific need for new approaches together with software designed for solving sparse-
dense LS problems. This led us to look at developing new ideas for preconditioners
[2] and to work on algorithms that can handle sparse-dense problems [23–27]. These
include direct solvers and LS preconditioners and, importantly, combining direct and
iterative techniques.

In this paper, the sizes of the systemswe are interested in allows us to focus on sparse
directmethods and, for sparse-dense problems,weuse themwithin an iterativemethod.
We consider using both the normal equations and the larger but sparser augmented
system formulation.

3.1 Direct methods for sparse LS problems

Solving (2.5) is mathematically equivalent to solving the N × N normal equations

Cz = AT c, C = AT A, (3.1)

123

Numerical Algorithms

where, if A has full column rank, the normal matrix C is symmetric and positive defi-
nite. Thus, standard methods for solving such systems can be employed. In particular,
a Cholesky factorization C = LLT , where the factor L is a lower triangular matrix,
can be computed. The 2-norm condition number of the normal matrix is

κ(C) = λ1(C)

λN (C)
,

where λ1(C) and λN (C) are its largest and smallest eigenvalues, respectively. As the
condition number of C is the square of that of A, an accurate solution may be difficult
to compute if A is poorly conditioned. If A is not full rank, the Cholesky factorization
of C breaks down; near rank degeneracy can cause similar numerical problems in
finite precision arithmetic.

Observe that if P is any permutation matrix, then

C = AT A = (PA)T P A,

so that the normalmatrix is independent of the ordering of the rows of A. Hence for our
Hessian approximations, C does not depend on the ordering of the secant conditions.
However, the ordering of the rows and columns of C influences the sparsity of its
factors. Many direct solvers offer an initial ordering phase that chooses an appropriate
permutation to limit fill-in of the factors; otherwise, an ordering package such as
METIS [17] (nested dissection ordering) or the HSL routineHSL_MC69 (which offers
minimum degree and approximate minimum degree orderings) can be employed to
preorder C [16].

An alternative approach is to use the much larger but sparser (M + N) × (M + N)

augmented system (
I A
AT 0

) (
r
z

)
=

(
c
0

)
, (3.2)

where r = c − Az is the residual vector. This is a symmetric indefinite system
(commonly called a saddle point system) and therefore, if there is sufficient mem-
ory available, a sparse direct solver that incorporates numerical pivoting for stability
can be used. Well-known and widely-available codes that compute an LDLT factor-
ization in which L is unit lower triangular and D is block diagonal with blocks of size
1 and 2 include MA57 [6] and HSL_MA97 [14, 15], MUMPS [18] and WSMP [32].
Again, preordering of the rows of the augmented system is key to limiting the density
of the L factor and hence the memory requirements and the operation counts. Numer-
ical results for direct solvers applied to both the normal equations and augmented
system approaches are given in [22]. The reported experiments indicated that neither
approach is consistently the best in terms of speed and/or the size of the computed
factors.

Prescaling A can also be important for the success of the solver. In general, in place
of (3.1) we solve

C(S)ẑ = (AS)T c, C(S) = (AS)T (AS), z = Sẑ,

123

Numerical Algorithms

where S is a diagonal scaling matrix. For example, S could be chosen so that the
2-norm of each column of the scaled matrix AS is equal to unity. Similarly, in place
of (3.2), we solve (

I AS
(AS)T 0

)(
r
ẑ

)
=

(
c
0

)
, z = Sẑ.

To simplify notation, we omit S from the following discussion (but it is used in all
numerical experiments).

Methods based on the QR factorization of A are also possible. These can be more
stable for ill-conditioned problems but they can also be prohibitively expensive for
large-scale problems. A recent computational study of QR methods for solving sparse
least squares problems is given in [27].

3.2 Influence ofm on the normal matrix

Assume that A(m) is sparse with full column rank. The rows of A(m) can be permuted
so that

PA(m) =

⎛

⎜⎜⎜⎝

A1
A2
...

Am

⎞

⎟⎟⎟⎠ ,

where each A j is of order n × N and S(A j) = S(A j+1), 1 ≤ j < m. In Example
1, A1 comprises rows 1, 3 and 5 and A2 rows 2, 4 and 6. It follows that the N × N
normal matrix is

C(m) = A(m)T A(m) =
m∑

j=1

AT
j A j =

m∑

j=1

C j ,

where the C j are independent and each has the same sparsity pattern. The C j can
be computed in parallel and then summed to obtain C(m). Thus increasing m has a
limited effect on the work required to form C(m).

Writing C(m + 1) = C(m) + AT
m+1Am+1, it follows from the Courant-Fisher

theorem that if the eigenvalues {λi (C(m))} and {λi (C(m + 1))} (1 ≤ i ≤ N) are in
decreasing order then the extreme eigenvalues satisfy

λ1(C(m)) ≤ λ1(C(m + 1)), λN (C(m)) ≤ λN (C(m + 1)).

That is, asm increases the eigenvalues of the corresponding normal matrix move away
from zero. There is, however, no guarantee that the conditioning of the normal matrix
improves.

3.3 Solving sparse-dense LS problems

Observe that if one or more rows of A contain a significant number of entries, then the
normalmatrixC is effectively dense and factorizing it is impractical for large problems.

123

Numerical Algorithms

Indeed, a direct solver will fail because of insufficient memory and if an incomplete
factorization of C is employed as a preconditioner for an iterative method, the error
in the factorization can be so large as to prohibit its effectiveness as a preconditioner.
Dense rows do not prevent the use of a general-purpose sparse indefinite direct solver
to solve the augmented system (3.2), but this fails to take advantage of the block
structure and the need for pivoting for numerical stability inhibits the exploitation of
parallelism. Obtaining robust preconditioners for such systems has been the subject
of substantial research (see, for instance, [4, 21, 31] and the references therein), but
this remains a challenge.

Assume the M rows of the (permuted) LS system matrix A are split into two parts
with a conformal splitting of the right-hand side vector c as follows

A =
(
As

Ad

)
, As ∈ Rms×N , Ad ∈ Rmd×N , c =

(
cs
cd

)
, cs ∈ Rms , cd ∈ Rmd , (3.3)

with M = ms + md , ms ≥ N and ms � md . Problem (2.5) becomes

min
z

∥∥∥∥

(
As

Ad

)
z −

(
cs
cd

)∥∥∥∥
2

2
. (3.4)

Splitting can be used to tackle sparse-dense problems inwhich A containsmd ≥ 1 rows
that havemanymore entries than the other rows (in ourHessianmatrix approximations,
md is a multiple of m). These “dense” rows comprise Ad . In Example 2, the last
md = m = 2 rows of A(k) arise from the last row of B(k), which is dense and so these
rows are dense (with n entries). Another possible motivation for splitting the rows is
to accommodate appending a set of additional rows, which are not necessarily dense,
to A. For example, if the number of secant conditions is increased to m +m1 then Ad

corresponds to the extra md = m1n rows and we are then interested in approaches
that avoid recomputing everything from scratch.

Using (3.3), the normal equations are given by

Cz = (Cs + AT
d Ad)z = d, Cs = AT

s As, d = AT
s cs + AT

d cd .

These can be solved using the equivalent (n +md) × (n +md) blocked linear system

(
Cs AT

d
Ad −I

)(
z

Ad z

)
=

(
d
0

)
. (3.5)

If As has full column rank and all its rows are sparse, then the reduced normal matrix
Cs is symmetric positive definite and sparse. Let Cs = (Ps Ls)(Ps Ls)

T be its sparse
Cholesky factorization, where the sparse factor Ls is lower triangular and Ps is a
permutation matrix that is chosen to limit the number of entries in Ls . We then have
the signed Cholesky factorization

(
Cs AT

d
Ad −I

)
=

(
Ps Ls 0
Bd Ld

)(
I 0
0 −I

) (
(Ps Ls)

T BT
d

0 LT
d

)
, (3.6)

123

Numerical Algorithms

where Bd is the solution of the triangular system

Ls B
T
d = PT

s AT
d

and Ld is the Cholesky factor of the md × md (negative) Schur complement

I + Bd B
T
d = Ld L

T
d .

Assuming md is small, Ld can be computed using dense linear algebra and most
of the work is in computing the sparse factorization of Cs . Thus, if the rows in Ad

change (whether or not they are dense), this approach provides an inexpensive updating
strategy.

In practice, As can contain null columns. This is illustrated by Example 2, in
which As comprises the first 6 rows; column 6 of As is null. In this case, As is
rank-deficient and Cs is positive semidefinite and a Cholesky factorization breaks
down. Even if Cs has no null columns, it can be singular or highly ill conditioned.
There are a number of ways to overcome this, including removing the null columns
explicitly [24] or employing matrix stretching [26]. A more straightforward approach
is to use regularization in which the Cholesky factorization of the globally shifted
matrix Cs(α) = AT

s As + α I is computed. For any α > 0, Cs(α) is positive definite
and increasing α improves its conditioning. However, the value of the least-squares
objective computed using Cs(α) may differ from the optimum for the original LS
problem (with the difference increasing with α). We can seek to recover the required
LS solution by employing an iterative LS solver such as CGLS, LSQR or LSMR with

(Cs(α) + AT
d Ad)

−1 (3.7)

used as the preconditioner (see, for example, [26]). From the identity

Cs(α) + AT
d Ad = (

I 0
) (

Cs(α) AT
d

Ad −I

) (
I
Ad

)
.

we obtain

(Cs(α) + AT
d Ad)

−1 = (
I 0

) (
Cs(α) AT

d
Ad −I

)−1 (
I
0

)
.

It follows that y = (Cs(α) + AT
d Ad)

−1z can be computed from the solution of the
system (

Cs(α) AT
d

Ad −I

) (
y
ŷ

)
=

(
z
0

)
. (3.8)

Using (3.6) with Cs(α) in place of Cs , the steps needed to solve (3.8) (that is, to apply
the preconditioner) are given in Algorithm 1.

An alternative to shifting Cs is to use the splitting (3.3) with the augmented system
(3.2) to obtain

K

⎛

⎝
rs
rd
z

⎞

⎠ =
⎛

⎝
I 0 As

0 I Ad

AT
s AT

d 0

⎞

⎠

⎛

⎝
rs
rd
z

⎞

⎠ =
⎛

⎝
cs
cd
0

⎞

⎠ , (3.9)

123

Numerical Algorithms

Algorithm 1 Application of the preconditioner (3.7).
Input: Ls , Ld , Ad , and the vector z.
Output: y = (Cs (α) + ATd Ad)−1z.
1: Solve Ps Lsus = z.
2: Compute wd = Ad (Ps Ls)−T us .
3: Solve Ldud = wd and then LTd ŷ = ud .

4: Form ws = us − (Ps Ls)
−1ATd ŷ.

5: Solve (Ps Ls)T y = ws .

where

r =
(
rs
rd

)
=

(
cs
cd

)
−

(
As

Ad

)
z.

Eliminating rs reduces the problem to a 2-block system of order (N +md)×(N +md)

of the form

Kr

(
z
rd

)
=

(−AT
s cs
cd

)
, Kr =

(−Cs AT
d

Ad I

)
. (3.10)

Either K or Kr can be factorized using a sparse symmetric indefinite solver. The
former has the advantage of not requiring the explicit computation of the reduced
normal matrix Cs while the latter is a smaller system that corresponds to choosing the
first ms pivots in the factorization of K in the natural order.

4 Numerical experiments

The problems used in our experiments all come from the CUTEst test collection1

[11]; they are listed in Table 1. Algorithm 1 of [26] with the density parameter set
to 0.05 is used to identify rows of the least squares matrix that we treat as dense;
nd is the number of such rows. The table includes the minimum number mmin of
secant equations for the corresponding least squares matrix A(k) in equation (2.4) to be
overdetermined (excluding null rows). In practice, theremay be situations, particularly
during the earlier iterations of an optimization algorithm, where there are insufficient
past iterations to enable m to be as large as in our experiments. In the current study,
we do not consider this initialisation phase but assume throughout that we can use any
m ≥ mmin.

The characteristics of the machine used to perform the experiments are given in
Table 2. Eight processor cores are used for our reported results and timings are elapsed
times in seconds.

All experiments (with the exception of the conditioning results given in Table 3)
are performed in double precision arithmetic using the Fortran linear least squares
solver HSL_MA85 from the HSL Mathematical Software Library [16]. This package
is designed for large-scale problems that may contain some dense rows. It solves the
system (3.5) or (3.9) (or (3.10) if there are some dense rows) using the sparse direct lin-
ear equation solverHSL_MA87 orHSL_MA97 respectively [13–15]. BothHSL_MA87
and HSL_MA97 employ OpenMP for parallelism and exploit high level BLAS rou-

1 https://github.com/ralna/CUTEst

123

https://github.com/ralna/CUTEst

Numerical Algorithms

Table 1 CUTEst test problems

Identifier n nnz(H) nnull nnz(row) nd mmin

BQPGAUSS 2,003 9,298 0 552 1 5

CURLY30 10,000 309,535 0 61 0 31

DRCAV1LQ 4,489 87,635 12 41 0 20

JIMACK 3,549 118,824 0 81 0 34

NCVXBQP1 50,000 199,984 0 9 0 4

SINQUAD 5,000 9,999 0 5,000 1 2

SPARSINE 5,000 79,554 0 56 0 16

SPARSQUR 10,000 159,494 0 56 0 16

WALL100 149,624 1,446,475 0 42 0 10

CAR2 5,999 50,964 0 5,999 1 9

GASOIL 10,403 8,606 6,998 1,602 3 3

LUKVLE12 9,997 22,492 0 2,502 1 3

MSQRTA 1,024 33,264 0 64 0 33

ORTHREGE 7,506 17,509 2 2,504 4 3

TWIRIMD1 1,247 42,197 0 660 0 34

YATP1SQ 123,200 368,550 0 352 0 3

The problems in the top (respectively, bottom) part of the table are constrained (respectively, unconstrained).
The columns report the CUTEst identifier, the dimension n of H , the number nnz(H) of nonzeros in the
lower triangular part of H , the number nnull of null rows in H , the largest number nnz(row) of entries in
a row of H , and the number nd of dense rows in H . mmin is the minimum number of secant equations for
the corresponding least squares matrix A(k) in equation (2.4) to be overdetermined

tines. HSL_MA87 uses a DAG-based algorithm to compute the Cholesky factorization
of sparse symmetric positive definite matrices. For problems with dense rows, if As

contains null columns then the shift α is set to 10−12 and HSL_MA85 uses the fac-
tors of Cs(α) computed by HSL_MA87 to precondition the iterative solver CGLS (as
discussed in Section 3.3). For problems with no dense rows, HSL_MA85 may use
iterative refinement to improve the LS solution. For the augmented system approach,
HSL_MA85 uses themultifrontal codeHSL_MA97. It incorporates numerical pivoting
within an LDLT factorization. GMRES may be used within HSL_MA85 to improve
the solution, with the factors computed by HSL_MA97 used as a preconditioner.
HSL_MA85 includes options for scaling the least squares problem and for order-
ing the linear systems to limit the number of entries in the factors and the operations

Table 2 Test machine characteristics

CPU Two Intel Xeon E5-2687W octa-core processors

Memory 64 GB

Compiler gfortran version 9.4.0 with options -O3 -fopenmp

BLAS MKL BLAS

123

Numerical Algorithms

needed to perform the factorizations. In our experiments, we use equilibration scaling
and nested dissection ordering and the convergence tolerances used by HSL_MA85
are set to delta1 = 1.0−10, delta2 = 1.0−8 and delta_gmres = 1.0−10.
Further details of the package HSL_MA85 and the options it offers are given in the
user documentation available at https://www.hsl.rl.ac.uk/catalogue/hsl_ma85.html.

For the purposes of verifying the results obtained using our least squares approach,
we assume the Hessian matrix H = {hi j } is known and report the relative componen-
twise error

rel_err = max
(i, j)∈S(H)

|bi j − hi j |/max(1, |hi j |), (4.1)

where B = {bi j } is the computed approximation of H . We also report the norm of the
least squares residual ‖r‖2 = ‖Az − c‖2.

4.1 Fixed Hessianmatrix, general steps

While our ultimate goal is to provide useful, evolving Hessian matrix approximations
for nonlinear functions, we start by testing whether the proposed new LS methods can
compute good approximations in the simple case in which the Hessian matrix is fixed.
That is, H(x (k)) = H for all k. To do this, we consider the (unconstrained) quadratic
programming problem

min
x

f (x) = 1

2
xT Hx + gT x + c, (4.2)

involving a scalar c, vector g and symmetric matrix H (note that here H = ∇2 f (x)
for all x). This problem underlies much of unconstrained optimization, with f and
g often representing function and gradient values of a Taylor approximation to a
nonlinear function f (x) evaluated at suitable x , and H being an approximation to its
Hessian matrix. This H is the matrix we seek to approximate.

We also want to test problems with constraints; these can involve dense rows. Thus,
we consider the more general problem

min
x

f (x) = 1

2
xT Hx + gT x + c

such that
1

2
xT Hqx + gTq x + cq ≤ 0, q = 1, . . . , nc.

(4.3)

Here cq , gq and Hq are the values, gradients and approximations to Hessian matrices
of a given set of nc nonlinear constraints. In this case, if μq are Lagrange multipliers,
the quadratic Lagrangian function

L(x, μ) = 1

2
xT Hx + gT x +

nc∑

q=1

μq

(
1

2
xT Hqx + gTq x

)
,

123

https://www.hsl.rl.ac.uk/catalogue/hsl_ma85.html

Numerical Algorithms

for which the Hessian matrix

HL = ∇2
xL(x, μ) = H +

nc∑

q=1

μq Hq , for all x and fixed μq ,

is fundamental to many constrained optimization algorithms. We want to approximate
the matrix HL .

Table 3 The conditioning of the normal matrix C(m) for problems from the CUTEst collection

Identifier N nnz(C(m)) m λ1(C(m)) λN (C(m)) κ(C(m))

BQPGAUSS 9,298 1,093,014 5 2.10E+02 2.84E-23 7.41E+24

10 2.36E+02 3.88E-17 6.07E+18

15 2.42E+02 1.60E-02 1.52E+04

20 2.53E+02 1.08E-01 2.36E+03

25 2.78E+02 2.10E-01 1.32E+03

NCVXBQP1 199,984 2,499,562 4 1.58E+01 1.27E-19 1.24E+20

9 2.36E+01 2.27E-02 1.04E+03

14 2.91E+01 1.96E-01 1.48E+02

19 3.42E+01 4.36E-01 7.85E+01

WALL100 1,446,475 58,554,691 10 4.55E+01 1.34E-15 3.38E+16

15 5.40E+01 4.41E-04 1.22E+05

20 6.13E+01 4.27E-02 1.43E+03

25 6.61E+01 2.02E-01 3.27E+02

CAR2 50,964 37,339,450 9 2.12E+03 1.44E-32 1.47E+35

14 2.16E+03 1.48E-03 1.45E+06

19 2.17E+03 8.13E-03 2.67E+05

24 2.21E+03 1.78E-02 1.24E+05

29 2.27E+03 2.93E-02 7.72E+04

ORTHREGE 17,509 25,127,545 3 8.73E+02 -8.50E-20 1.03E+22

8 9.01E+02 1.86E-04 4.86E+06

15 9.32E+02 4.39E-03 2.12E+05

25 1.02E+03 2.62E-02 3.89E+04

35 1.05E+03 4.13E-02 2.55E+04

TWIRIMD1 42,197 18,403,497 34 3.63E+02 -5.54E-20 6.56E+21

60 4.23E+02 -1.33E-17 3.18E+19

70 4.46E+02 1.58E-02 2.83E+04

80 4.68E+02 1.82E-01 2.57E+03

90 4.77E+02 4.47E-01 1.07E+03

The columns report the dimension N and number of nonzeros nnz(C(m)) in C(m), the secant parameter
m, estimates of the largest and smallest eigenvalues of C(m) and its condition number. The smallest m is
the minimum for (2.4) to be overdetermined (excluding null rows)

123

Numerical Algorithms

Our interest is in investigating how the proposed new LS approximation methods
perform in practice. To do so, we consider idealised instances of problems (4.2) and
(4.3) in which the Hessian matrices H and HL are fixed (they are independent of the
iteration k). The method we use to generate our test Hessian matrices is described in
Appendix A. For unconstrained (respectively, constrained) CUTEst problems, having
generated a fixed Hessian matrix H (respectively, HL), we randomly generate s(l) ∈
(−1, 1) and then compute y(l) = Hs(l) (respectively, y(l) = HLs(l)) for l = 1, . . . ,m.

4.1.1 Varying the secant parameter

Table 3 presents estimates of the extremal eigenvalues for a subset of the test problems.
These values were computed using the Matlab function eigs. They illustrate how
the conditioning of the normal matrix improves as the secant parameter m increases.
Choosing the minimum value mmin for (2.4) to be overdetermined (excluding null
rows) can result in the system being close to singular (or even singular) in machine
precision. Based on our experiments, we advocate choosingm to be at leastmmin +5.
However, for some problems a larger value is needed. In particular, we use m =
mmin + 10 for our experiments involving BQPGAUSS, and for TWIRIMD1 we use
m = 70. Note that it is possible to construct artificial examples for which increasing
m leads to growth in the condition number, but we did not encounter this behaviour
in practice.

For the subset of problems in Table 3, Table 4 shows the effects of varying the
secant parameter m on the performance of the LS solver. Both the normal equa-
tion and the augmented system approaches are reported on (with the modifications of
Section3.3used for the sparse-denseproblemsBQPGAUSS,CAR2andORTHREGE).
For the normal equation formulation, the work involved in computing the Cholesky
factors is independent of m but the computed solution, residual and rel_err depend
on m. The size of the augmented system increases with m, but this may not mean an
increase in the number and entries in the factor or the operation count. This can occur
if for smaller m the problem is ill-conditioned because then the indefinite factoriza-
tion involves more work to retain numerical stability. The number of delayed pivots
(reported as ndelay) is an indication of this (for larger m, ndelay is zero, or close to
zero). We note that the quality of the results measured using the residual and relative
error is similar for both the normal equations and augmented system approaches.

4.1.2 The importance of exploiting dense rows

For problems with one or more dense rows, Tables 5 and 6 illustrate the importance
of exploiting these rows when solving the least squares problem (2.5). md = 0 means
that all the rows (including those that are dense) are treated by the solver HSL_MA85
as sparse. As expected, this leads to much denser factors that are more expensive to
compute. For the normal equation formulation the increases are particularly large. For
example, for problem ORTHREGE, if dense rows are exploited the normal matrix
formulation requires 1.42E+05 flops and the solution time is 0.122 seconds but if all
the rows are treated as sparse, the flops needed are 1.73E+11 and the time increases
to 4.587 seconds.

123

Numerical Algorithms

Ta
bl
e
4

T
he

ef
fe
ct
s
of

va
ry
in
g
th
e
se
ca
nt

pa
ra
m
et
er

m
on

th
e
no

rm
al
eq
ua
tio

n
an
d
au
gm

en
te
d
sy
st
em

fo
rm

ul
at
io
ns

Id
en
tifi

er
N
or
m
al
eq
ua
tio

n
A
ug
m
en
te
d
sy
st
em

m
nn

z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

nn
z(
L
)

n
fl
op

s
nd

el
a
y

‖r
‖ 2

re
l_
er
r

B
Q
PG

A
U
SS

5
3.
55

E
+
06

2.
20

E
+
09

1.
88

E
-0
7

2.
74

E
+
01

3.
32

E
+
06

2.
37

E
+
09

2.
93

E
+
02

2.
74

E
-0
9

3.
78

E
+
02

10
3.
55

E
+
06

2.
20

E
+
09

5.
63

E
-0
9

2.
15

E
+
02

3.
09

E
+
06

1.
93

E
+
09

1.
00

E
+
01

2.
93

E
-0
9

8.
94

E
+
01

15
3.
55

E
+
06

2.
20

E
+
09

2.
65

E
-0
9

8.
26

E
-1
1

3.
25

E
+
06

2.
24

E
+
09

1.
00

E
+
00

3.
80

E
-1
0

2.
74

E
-1
0

20
3.
55

E
+
06

2.
20

E
+
09

8.
50

E
-1
0

4.
26

E
-1
1

3.
41

E
+
06

2.
27

E
+
09

0.
00

E
+
00

2.
35

E
-1
0

2.
18

E
-1
1

25
3.
55

E
+
06

2.
20

E
+
09

1.
93

E
-0
8

7.
91

E
-1
0

3.
40

E
+
06

2.
29

E
+
09

0.
00

E
+
00

2.
77

E
-1
0

1.
49

E
-1
1

N
C
V
X
B
Q
P1

4
2.
06

E
+
07

7.
34

E
+
09

1.
80

E
-0
2

1.
69

E
+
02

2.
34

E
+
07

1.
56

E
+
10

2.
77

E
+
04

1.
78

E
-0
1

1.
42

E
+
03

9
2.
06

E
+
07

7.
34

E
+
09

6.
34

E
-0
9

1.
28

E
-1
2

1.
97

E
+
07

6.
29

E
+
09

9.
57

E
+
02

1.
47

E
-0
8

7.
98

E
-1
2

14
2.
06

E
+
07

7.
34

E
+
09

7.
92

E
-0
9

3.
58

E
-1
2

2.
08

E
+
07

5.
97

E
+
09

0.
00

E
+
00

1.
12

E
-0
7

9.
26

E
-1
2

19
2.
06

E
+
07

7.
34

E
+
09

9.
16

E
-0
9

1.
22

E
-1
2

2.
26

E
+
07

5.
84

E
+
09

0.
00

E
+
00

9.
80

E
-0
7

3.
31

E
-1
2

W
A
L
L
10

0

10
6.
32

E
+
08

1.
09

E
+
12

1.
20

E
-0
8

1.
67

E
-0
2

5.
98

E
+
08

9.
44

E
+
11

2.
88

E
+
05

2.
69

E
-0
4

3.
88

E
+
00

15
6.
32

E
+
08

1.
09

E
+
12

1.
43

E
-0
8

5.
08

E
-1
1

6.
39

E
+
08

9.
46

E
+
11

6.
57

E
+
03

9.
06

E
-0
7

2.
36

E
-0
9

20
6.
32

E
+
08

1.
09

E
+
12

1.
49

E
-0
8

1.
77

E
-1
1

6.
52

E
+
08

9.
89

E
+
11

2.
48

E
+
02

3.
85

E
-0
6

3.
49

E
-1
0

25
6.
32

E
+
08

1.
09

E
+
12

1.
64

E
-0
8

1.
02

E
-1
1

6.
59

E
+
08

9.
95

E
+
11

0.
00

E
+
00

1.
01

E
-0
6

9.
01

E
-1
1

C
A
R
2

9
3.
65

E
+
06

2.
73

E
+
08

3.
03

E
-1
0

1.
82

E
-0
1

8.
22

E
+
06

1.
01

E
+
10

1.
99

E
+
04

5.
80

E
-1
2

1.
36

E
+
00

14
3.
65

E
+
06

2.
73

E
+
08

2.
05

E
-1
0

7.
25

E
-1
1

3.
51

E
+
06

2.
48

E
+
08

1.
00

E
+
00

5.
32

E
-1
4

2.
23

E
-1
4

19
3.
65

E
+
06

2.
73

E
+
08

1.
71

E
-1
0

3.
15

E
-1
1

3.
76

E
+
06

2.
83

E
+
08

0.
00

E
+
00

4.
64

E
-1
4

5.
35

E
-1
5

24
3.
65

E
+
06

2.
73

E
+
08

1.
75

E
-1
0

1.
89

E
-1
1

4.
02

E
+
06

3.
23

E
+
08

1.
00

E
+
00

4.
76

E
-1
4

1.
61

E
-1
5

29
3.
65

E
+
06

2.
73

E
+
08

1.
83

E
-1
0

8.
71

E
-1
2

4.
27

E
+
06

3.
63

E
+
08

0.
00

E
+
00

5.
21

E
-1
4

1.
57

E
-1
5

123

Numerical Algorithms

Ta
bl
e
4

co
nt
in
ue
d

Id
en
tifi

er
N
or
m
al
eq
ua
tio

n
A
ug
m
en
te
d
sy
st
em

m
nn

z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

nn
z(
L
)

n
fl
op

s
nd

el
a
y

‖r
‖ 2

re
l_
er
r

O
R
T
H
R
E
G
E

3
4.
25

E
+
04

1.
43

E
+
05

1.
13

E
-0
1

6.
32

E
+
00

1.
28

E
+
07

4.
24

E
+
10

5.
00

E
+
03

1.
00

E
-0
8

1.
37

E
+
05

8
4.
25

E
+
04

1.
43

E
+
05

1.
80

E
-0
6

2.
08

E
-0
7

4.
43

E
+
05

1.
54

E
+
07

9.
00

E
+
00

2.
90

E
-1
1

6.
11

E
-1
2

15
4.
25

E
+
04

1.
43

E
+
05

1.
72

E
-0
6

6.
14

E
-0
8

7.
95

E
+
05

4.
98

E
+
07

9.
00

E
+
00

2.
84

E
-1
1

3.
25

E
-1
3

25
4.
25

E
+
04

1.
43

E
+
05

1.
09

E
-0
6

1.
56

E
-0
8

1.
30

E
+
06

1.
33

E
+
08

9.
00

E
+
00

4.
90

E
-1
1

1.
33

E
-1
3

35
4.
25

E
+
04

1.
43

E
+
05

5.
45

E
-0
9

2.
17

E
-1
0

1.
80

E
+
06

2.
57

E
+
08

9.
00

E
+
00

3.
80

E
-1
1

6.
22

E
-1
3

T
W
IR
IM

D
1

34
3.
11

E
+
08

3.
66

E
+
12

7.
01

E
-0
9

1.
05

E
+
00

1.
58

E
+
08

9.
81

E
+
11

5.
10

E
+
04

5.
51

E
-0
9

1.
04

E
+
02

50
3.
11

E
+
08

3.
66

E
+
12

3.
06

E
-0
9

3.
80

E
-0
1

9.
41

E
+
07

2.
36

E
+
11

8.
94

E
+
03

1.
73

E
-0
9

1.
81

E
+
02

60
3.
11

E
+
08

3.
66

E
+
12

1.
41

E
-0
8

3.
82

E
-0
2

1.
01

E
+
08

2.
43

E
+
11

1.
49

E
+
03

7.
02

E
-1
1

1.
58

E
+
01

70
3.
11

E
+
08

3.
66

E
+
12

2.
79

E
-1
2

3.
71

E
-1
3

1.
01

E
+
08

2.
52

E
+
11

3.
10

E
+
01

1.
81

E
-1
2

1.
61

E
-1
3

80
3.
11

E
+
08

3.
66

E
+
12

2.
12

E
-1
2

8.
27

E
-1
4

1.
13

E
+
08

3.
11

E
+
11

3.
10

E
+
01

1.
55

E
-1
2

4.
69

E
-1
4

90
3.
11

E
+
08

3.
66

E
+
12

1.
99

E
-1
2

5.
07

E
-1
4

1.
26

E
+
08

3.
75

E
+
11

2.
90

E
+
01

1.
43

E
-1
2

1.
92

E
-1
4

T
he

co
lu
m
ns

re
po

rt
th
e
se
ca
nt
pa
ra
m
et
er
m
,n
n
z(
L
)
an
d
n
fl
op

s
ar
e
th
e
nu

m
be
ro

fe
nt
ri
es

in
th
e
co
m
pu

te
d
m
at
ri
x
fa
ct
or

an
d
th
e
flo

ps
re
qu

ir
ed

to
co
m
pu

te
it.
Fo

rt
he

au
gm

en
te
d

sy
st
em

ap
pr
oa
ch
,n

d
el
a
y
is
th
e
nu
m
be
r
of

de
la
ye
d
pi
vo
ts
.‖
r‖

2
is
th
e
le
as
ts
qu
ar
es

re
si
du
al
an
d
re
l_
er
r
is
gi
ve
n
by

(4
.1
)

123

Numerical Algorithms

Table 5 Results for the normal system formulation with and without exploiting the dense rows in the least
squares matrix A

Identifier m md nnz(L) n f lops ‖r‖2 rel_err T (f actor) T (solve)

BQPGAUSS 15 15 3.55E+06 2.20E+09 3.39E-09 6.38E-11 0.004 0.033

0 4.39E+06 2.95E+09 3.99E-10 1.70E-10 0.366 0.009

SINQUAD 7 7 1.50E+04 2.50E+04 2.45E-09 4.25E-11 0.001 0.058

0 1.26E+07 4.21E+10 2.40E-10 4.22E-11 3.279 0.035

CAR2 14 14 3.65E+06 2.73E+08 2.05E-10 7.25E-11 0.016 0.017

0 2.61E+07 9.19E+10 5.85E-14 3.36E-14 6.115 0.034

GASOIL 8 24 1.92E+04 8.00E+04 3.96E-09 1.40E-09 0.001 0.038

0 7.59E+06 1.09E+10 9.60E-13 4.63E-12 0.983 0.014

LUKVLE12 8 8 5.80E+05 2.01E+07 8.73E-08 1.80E-09 0.007 0.106

0 1.09E+07 2.17E+10 2.53E-12 1.33E-13 1.368 0.033

ORTHREGE 8 32 4.25E+04 1.42E+05 4.06E-09 3.33E-10 0.002 0.120

0 4.26E+07 1.73E+11 1.90E-10 3.54E-09 4.539 0.048

m is the number of secant equations andmd the number of rows in A classified as dense. nnz(L) and n f lops
are the number of entries in the normal matrix Cholesky factor and the flops required to compute it. ‖r‖2
is the least squares residual and rel_err is given by (4.1). The elapsed times (in seconds) for the factor and
solve phases of the least squares solver HSL_MA85 are given by T(factor) and T(solve)

Table 6 Results for the augmented system formulation with and without exploiting the dense rows in the
least squares matrix A

Identifier m md nnz(L) n f lops ‖r‖2 rel_err T (f actor) T (solve)

BQPGAUSS 15 15 3.28E+06 2.24E+09 3.80E-10 2.74E-10 0.327 0.009

0 2.29E+06 9.94E+08 1.19E-10 9.14E-12 0.329 0.010

SINQUAD 7 7 8.54E+04 7.25E+05 2.11E-10 4.23E-11 0.045 0.002

0 5.40E+05 6.78E+06 2.11E-10 4.21E-11 0.185 0.005

CAR2 14 14 3.51E+06 2.48E+08 5.32E-14 2.23E-14 0.476 0.022

0 5.30E+06 2.86E+08 4.84E-14 2.06E-14 1.270 0.037

GASOIL 8 24 1.21E+05 1.89E+06 1.53E-13 2.22E-14 0.028 0.002

0 2.53E+05 2.36E+06 1.51E-13 6.89E-14 0.124 0.004

LUKVLE12 8 8 3.22E+05 5.27E+06 2.40E-12 1.12E-13 0.051 0.015

0 9.03E+05 1.02E+07 2.09E-12 8.23E-14 0.474 0.016

ORTHREGE 8 32 4.43E+05 1.54E+07 2.90E-11 6.11E-12 0.089 0.006

0 7.21E+05 1.46E+07 1.54E-11 7.56E-13 0.372 0.006

m is the number of secant equations andmd the number of rows in A classified as dense. nnz(L) and n f lops
are the number of entries in the augmented system factor and the flops required to compute it. ‖r‖2 is the
least squares residual and rel_err is given by (4.1). The elapsed times (in seconds) for the factor and solve
phases of the least squares solver HSL_MA85 are given by T(factor) and T(solve)

123

Numerical Algorithms

When dense rows are exploited, the normal equations can be significantly faster
than using the augmented system (for example, for problemsBQPGAUSS andCAR2).
This is because the Cholesky factorization is faster than an LDLT factorization that
has the overhead of pivoting for numerical stability.

In the remainder of the paper, all experiments on problems containing dense rows
exploit those rows.

4.1.3 Results for problems with no dense rows

Table 7 reports results for the problems that have no dense rows. Again, both the
normal equation and augmented system formulations are successful and generally of
comparable quality.

4.2 Fixed Hessianmatrix, nearly-dependent steps

Having confirmed that under idealized circumstances we can recover good approx-
imations to Hessian matrices using our least squares approaches, we now consider
two more realistic scenarios. In the first, we recognise that algorithms may produce
steps that lie close to low-dimensional subspaces rather than uniformly in Rn . For
example, it is well known that the iterates generated by the steepest-descent method
tend to lie predominantly in a subspace spanned by the eigenvectors corresponding to
the two largest eigenvalues of the Hessian [1, 19]. Our aim is thus to assess the ability
to approximate a Hessian matrix when the step directions s(l) are not well distributed.

To this end, we repeat our experiments for the fixed H and HL except we now
generate the s(l), l = 1, . . . ,m as follows. For a chosen d < m, we compute s(l) ∈
(−1, 1) randomly as before for l = 1, . . . , d. Then for some small 0 < ε 	 1 and
l = d + 1, . . . ,m, we set s(l) = s(l−d) + ερ, where ρ ∈ (−1, 1) is a pseudo random
number. This is intended to simulate optimization steps s(l) that lie in subspaces of
effective (but not exact) dimension d. In our experiments, ε = 10−5 and d = 0.8m.
The results are given in Table 8. As the conditioning gets worse with nearly-dependent
steps, for some of the problems we found that to obtain a rel_err of O(10−9) or less
a larger secant parameter was required; the values used are reported in column 2
of the table. For example, for problem BQPGAUSS, we used m = 20, compared
to the previous value of 15. With appropriate m, we again see that both the normal
equation and augmented system formulations are successful in obtaining high quality
approximate Hessian matrices.

4.3 Varying the Hessianmatrix

In practice it is unlikely that the Hessian matrix is fixed, and thus exact reproduction
from gradient differences is unlikely. In particular, from Taylor’s theorem

H(x)s = y + e, where y = g(x + s) − g(x) and ‖e‖ = O(‖s‖2), (4.4)

123

Numerical Algorithms

Ta
bl
e
7

R
es
ul
ts
fo
r
th
e
no

rm
al
eq
ua
tio

n
an
d
au
gm

en
te
d
sy
st
em

fo
rm

ul
at
io
ns

fo
r
pr
ob

le
m
s
w
ith

no
de
ns
e
ro
w
s

N
or
m
al
eq
ua
tio

n
A
ug
m
en
te
d
sy
st
em

Id
en
tifi

er
m

nn
z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

nn
z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

C
U
R
LY

30
36

3.
12

E
+
08

3.
32

E
+
11

5.
27

E
-0
8

2.
87

E
-1
3

3.
18

E
+
08

3.
15

E
+
11

4.
85

E
-0
6

1.
06

E
-1
0

D
R
C
A
V
1L

Q
25

8.
08

E
+
07

1.
16

E
+
11

1.
53

E
-0
8

9.
75

E
-1
1

8.
46

E
+
07

1.
18

E
+
11

1.
84

E
-0
7

1.
46

E
-0
9

JI
M
A
C
K

39
4.
20

E
+
08

2.
45

E
+
12

4.
73

E
-0
9

1.
26

E
-0
9

4.
26

E
+
08

2.
39

E
+
12

5.
55

E
-0
9

1.
50

E
-0
9

N
C
V
X
B
Q
P1

9
2.
06

E
+
07

7.
34

E
+
09

6.
35

E
-0
9

2.
90

E
-1
2

1.
97

E
+
07

6.
29

E
+
09

1.
47

E
-0
8

7.
98

E
-1
2

SP
A
R
SI
N
E

21
4.
16

E
+
08

4.
09

E
+
12

3.
73

E
-0
9

2.
06

E
-1
1

4.
72

E
+
08

5.
15

E
+
12

5.
12

E
-0
8

1.
79

E
-0
9

SP
A
R
SQ

U
R

21
1.
39

E
+
09

2.
59

E
+
13

1.
30

E
-0
8

1.
87

E
-1
1

1.
31

E
+
09

2.
14

E
+
13

1.
74

E
-0
7

5.
70

E
-1
0

W
A
L
L
10

0
15

6.
32

E
+
08

1.
09

E
+
12

1.
43

E
-0
8

4.
51

E
-1
1

6.
39

E
+
08

9.
46

E
+
11

9.
29

E
-0
7

1.
43

E
-0
8

M
SQ

R
TA

38
1.
64

E
+
08

1.
28

E
+
12

1.
20

E
-1
2

8.
77

E
-1
4

1.
89

E
+
08

1.
66

E
+
12

2.
52

E
-1
2

3.
29

E
-1
3

T
W
IR

IM
D
1

70
3.
11

E
+
08

3.
66

E
+
12

2.
76

E
-1
2

3.
37

E
-1
3

1.
01

E
+
08

2.
52

E
+
11

1.
81

E
-1
2

1.
61

E
-1
3

Y
A
T
P1

SQ
8

1.
08

E
+
08

3.
72

E
+
10

1.
12

E
-1
1

4.
47

E
-1
1

1.
81

E
+
07

2.
62

E
+
08

4.
51

E
-1
2

4.
57

E
-1
3

T
he

co
lu
m
ns

re
po

rt
th
e
se
ca
nt

pa
ra
m
et
er

m
,n

n
z(
L
)
an
d
n
fl
op

s
ar
e
th
e
nu

m
be
ro

fe
nt
ri
es

in
th
e
co
m
pu

te
d
m
at
ri
x
fa
ct
or

an
d
th
e
flo

ps
re
qu

ir
ed

to
co
m
pu

te
it.

‖r
‖ 2

is
th
e
le
as
t

sq
ua
re
s
re
si
du
al
an
d
re
l_
er
r
is
gi
ve
n
by

(4
.1
)

123

Numerical Algorithms

Ta
bl
e
8

R
es
ul
ts
fo
r
th
e
no

rm
al
eq
ua
tio

n
an
d
au
gm

en
te
d
sy
st
em

fo
rm

ul
at
io
ns

fo
r
pr
ob

le
m
s
w
ith

ne
ar
ly
-d
ep
en
de
nt

st
ep
s

N
or
m
al
eq
ua
tio

n
A
ug
m
en
te
d
sy
st
em

Id
en
tifi

er
m

nn
z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

nn
z(
L
)

n
fl
op

s
‖r

‖ 2
re
l_
er
r

B
Q
PG

A
U
SS

20
3.
55

E
+
06

2.
20

E
+
09

1.
23

E
-0
8

7.
69

E
-1
0

3.
41

E
+
06

2.
27

E
+
09

3.
49

E
-1
0

6.
05

E
-1
1

C
U
R
LY

30
50

3.
12

E
+
08

3.
32

E
+
11

5.
95

E
-0
8

1.
11

E
-1
3

3.
32

E
+
08

3.
24

E
+
11

4.
94

E
-0
6

7.
13

E
-1
2

D
R
C
A
V
1L

Q
30

8.
08

E
+
07

1.
16

E
+
11

1.
78

E
-0
8

1.
10

E
-1
0

8.
55

E
+
07

1.
19

E
+
11

1.
31

E
-0
7

3.
02

E
-0
9

JI
M
A
C
K

49
4.
20

E
+
08

2.
45

E
+
12

6.
66

E
-0
9

2.
12

E
-0
9

4.
23

E
+
08

2.
36

E
+
12

1.
07

E
-0
8

4.
32

E
-0
9

N
C
V
X
B
Q
P1

9
2.
06

E
+
07

7.
34

E
+
09

6.
46

E
-0
9

3.
71

E
-1
2

1.
97

E
+
07

6.
29

E
+
09

3.
95

E
-0
7

2.
80

E
-1
1

SI
N
Q
U
A
D

7
1.
50

E
+
04

2.
50

E
+
04

1.
52

E
-0
9

4.
88

E
-1
1

8.
50

E
+
04

7.
25

E
+
05

1.
96

E
-1
0

4.
87

E
-1
1

SP
A
R
SI
N
E

30
4.
16

E
+
08

4.
09

E
+
12

4.
19

E
-0
9

2.
36

E
-1
1

4.
40

E
+
08

4.
43

E
+
12

1.
34

E
-0
8

5.
46

E
-1
0

SP
A
R
SQ

U
R

25
1.
39

E
+
09

2.
59

E
+
13

1.
38

E
-0
8

2.
83

E
-1
1

1.
33

E
+
09

2.
17

E
+
13

2.
62

E
-0
7

1.
74

E
-0
9

W
A
L
L
10

0
20

6.
32

E
+
08

1.
09

E
+
12

1.
50

E
-0
8

4.
38

E
-1
1

6.
52

E
+
08

9.
89

E
+
11

1.
59

E
-0
6

9.
99

E
-1
0

C
A
R
2

19
3.
65

E
+
06

2.
73

E
+
08

2.
22

E
-1
0

6.
95

E
-1
1

3.
76

E
+
06

2.
83

E
+
08

5.
84

E
-1
4

1.
23

E
-1
4

G
A
SO

IL
8

1.
92

E
+
04

8.
00

E
+
04

1.
51

E
-0
8

4.
09

E
-0
9

1.
22

E
+
05

1.
90

E
+
06

1.
80

E
-1
3

1.
87

E
-1
4

L
U
K
V
L
E
12

8
5.
80

E
+
05

2.
01

E
+
07

4.
33

E
-0
8

1.
20

E
-0
9

3.
22

E
+
05

5.
27

E
+
06

2.
92

E
-1
2

2.
99

E
-1
3

M
SQ

R
TA

50
1.
64

E
+
08

1.
28

E
+
12

1.
30

E
-1
2

6.
48

E
-1
4

1.
77

E
+
08

1.
39

E
+
12

2.
55

E
-1
2

1.
26

E
-1
3

O
R
T
H
R
E
G
E

8
4.
25

E
+
04

1.
43

E
+
05

3.
56

E
-0
9

1.
66

E
-1
0

4.
43

E
+
05

1.
54

E
+
07

1.
51

E
-1
1

8.
39

E
-1
1

T
W
IR

IM
D
1

80
3.
11

E
+
08

3.
66

E
+
12

5.
29

E
-1
2

3.
01

E
-1
2

1.
13

E
+
08

3.
11

E
+
11

2.
99

E
-1
2

1.
48

E
-1
2

Y
A
T
P1

SQ
8

1.
08

E
+
08

3.
72

E
+
10

2.
68

E
-1
1

6.
76

E
-1
0

1.
81

E
+
07

2.
62

E
+
08

6.
30

E
-1
2

1.
61

E
-1
1

T
he

co
lu
m
ns

re
po

rt
th
e
se
ca
nt

pa
ra
m
et
er

m
,n

n
z(
L
)
an
d
n
fl
op

s
ar
e
th
e
nu

m
be
ro

fe
nt
ri
es

in
th
e
co
m
pu

te
d
m
at
ri
x
fa
ct
or

an
d
th
e
flo

ps
re
qu

ir
ed

to
co
m
pu

te
it.

‖r
‖ 2

is
th
e
le
as
t

sq
ua
re
s
re
si
du
al
an
d
re
l_
er
r
is
gi
ve
n
by

(4
.1
)

123

Numerical Algorithms

for objective functions with gradients g(x) and locally Lipschitz Hessian matrices
H(x). If there are m steps s(l), then

H(x)S = Y + E,

where S = (s(1), . . . , s(m)), Y = (y(1), . . . , y(m)), y(l) = g(x + s(l)) − g(x) and
‖E‖ = O(‖S‖2). Thus if B = Y S−1 then

‖H(x) − B‖ ≤ ‖ES−1‖,

and B is a good approximation to H(x) provided ‖S‖ and ‖S−1‖ are modest.
We simulate this for l = 1, . . . ,m by generating s(l) as in Section 4.2 and then

generating a perturbed y(l) = Hs(l) +ερ (or y(l) = HLs(l) +ερ) for small 0 < ε 	 1
and pseudo random ρ ∈ (−1, 1). We no longer expect to reproduce H exactly (as
the LS problem no longer has a zero residual), but our hope is to observe errors in
‖H−B‖ of order approximately ε. In our experiments we set ε = 10−5. Because only
y(l) is perturbed, the least-squares matrix and the factorizations of the normal matrix
and the augmented system matrix are unchanged. Thus, in Table 9 we only report
the least-squares residual ‖r‖2 and the relative error rel_err given by (4.1). With
the prescribed convergence tolerances for the solvers, for each problem the normal
equation and augmented system formulations return the same residuals and relative
errors. We see that rel_err is now consistently O(10−4) or less.

Table 9 Results for problems that simulate varying the Hessian matrix

Identifier m ‖r‖2 rel_err

BQPGAUSS 15 8.29E-04 2.38E-05

CURLY30 36 1.30E-03 2.14E-08

DRCAV1LQ 25 8.97E-04 1.18E-05

JIMACK S 44 1.12E-03 1.61E-05

SINQUAD 7 9.10E-04 2.27E-05

SPARSINE 30 1.53E-03 4.14E-06

SPARSQUR 21 1.30E-03 7.99E-06

WALL100 15 5.16E-03 5.53E-05

CAR2 14 1.04E-03 7.06E-05

GASOIL 8 7.86E-04 1.27E-04

LUKVLE12 3 4.96E-04 8.55E-04

MSQRTA 38 4.33E-04 2.01E-05

NCVXBQP1 9 2.89E-03 2.84E-06

ORTHREGE 8 1.18E-03 1.29E-04

TWIRIMD1 70 1.22E-03 2.52E-05

YATP1SQ 8 4.54E-03 2.55E-04

The columns report the secant parameter m, the least squares residual
‖r‖2 and the relative error rel_err given by (4.1)

123

Numerical Algorithms

5 Concluding remarks and future directions

In this paper, we have considered the problem of approximating sparse Hessian matri-
ces. We have proposed a novel approach that uses the secant conditions and then
solves a large sparse linear LS problem. Solving this is challenging because the LS
system matrix can contain dense rows (for example, when the underlying optimiza-
tion problem involves constraints that involve many variables) and it can be poorly
conditioned. In our experiments, we found that increasing the number m of secant
equations improves the conditioning of the LS problem. For many of our tests, a suf-
ficient value of m was generally not much larger than the minimum value mmin that
ensures the LS problem is overdetermined (typically mmin + 5) but when we gener-
ated test problems in which we made the conditioning worse, larger m were needed
to retain approximately the same level of accuracy in the computed Hessian matrix.

Existing methods for solving sparse-dense LS problems can be used and if these
employ sparse direct solvers, then our numerical tests found them to be robust. Nor-
mal equation and augmented system approacheswere tested. Both benefit significantly
from special handling of the dense rows. In this case, we found there was no consistent
winner between the two approaches but we observe that the former has a faster factor-
ization time because it avoids pivoting. However, the incorporation of pivoting by the
latter potentially makes it more reliable and refinement of the computed solution using
an iterative solver is often not needed, resulting in a fast solve phase and competitive
overall solution time.

The main weakness of our new approach for approximating Hessians is the size
of the LS system matrix, which has a row dimension of mn and a column dimension
equal to the number of entries in the Hessian matrix. Thus, although we were able
to solve all our CUTEst test examples with a direct solver, the LS approach can be
expensive in terms of time and memory requirements for large problems and for even
larger LS problems, a preconditioned iterative solver will be needed. There is currently
a lack of efficient, robust preconditioners for sparse-dense LS, although recent work
of Al Daas, Jolivet and Scott [2] is promising, This lack of preconditioners hinders
the development of “black box" software for computing Hessian matrices using our
new approach. Consequently, our future plan is to design and implement alternative
strategies that again use the secant equations but seek to employmore efficientmethods
of solution.

Appendix A: Generation of Hessianmatrices using CUTEst

Here we describe how the unconstrained and constrained fixed Hessians H and HL

used in the numerical experiments in Section 4 are generated.
For each unconstrained CUTEst test example we evaluate its Hessian matrix

Hcutest (x) at a point x pert that is a random perturbation of the CUTEst starting point
xstart and set H = Hcutest (x pert). Specifically, if xstarti (1 ≤ i ≤ n) is the initial

123

Numerical Algorithms

value for component i of xstart , with lower and upper bounds xli and xui , then

x pert
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xli if xli = xui ,

xli + ρ min(xui − xli , 1) if xstarti ≤ xli ,

xui − ρ min(xui − xli , 1) if xstarti ≥ xui ,

xstarti + ρ min(xui − xstarti , 1) otherwise.

Here ρ ∈ (0, 1) is the pseudo random number returned by the call rand(seed,.
true.,rho), where rand is from the optimization package GALAHAD [10] and
the default seed is used.

For the constrained examples, we evaluate the Hessian of the Lagrangian matrix
Hcutest
L (x, μ) at a random perturbation x pert of xstart (as above) and randomly gener-

ated Lagrange multipliers μrand
q ∈ (−1, 1) (1 ≤ q ≤ nc), with component i of μrand

returned byrand(seed, .false.,mu(i)).We then set HL = Hcutest
L (x pert , μrand).

Acknowledgements We are grateful to the reviewer for his/her constructive feedback.

Author Contributions All authors contributed equally to this study

Funding All authors were supported by EPSRC grant number EP/X032485/1.

Data Availability The CUTEst test collection is available from https://github.com/ralna/CUTEst

Declarations

Competing Interests The authors declare no competing interests.

Ethical Approval Not applicable.

Software Availability The HSL software is available from https://www.hsl.rl.ac.uk/ and the GALAHAD
software is available from https://www.galahad.rl.ac.uk/

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akaike, H.: On a successive transformation of probability distribution and its application to the analysis
of the optimum gradient method. Ann. Inst. Stat. Math. 11(1), 1–16 (1959)

2. Daas, H. Al., Jolivet, P., Scott, J. A.: A robust algebraic domain decomposition preconditioner for
sparse normal equations. SIAM J. Sci. Comput. 44(3). (2022). https://doi.org/10.1137/21M1434891

3. Avron, H., Ng, E., Toledo, S.: To solve linear least-squares problems. SIAM J. Matrix Anal. Appl.
31(2), 674–693 (2009)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer 14,
1–137 (2005)

123

https://github.com/ralna/CUTEst
https://www.hsl.rl.ac.uk/
https://www.galahad.rl.ac.uk/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/21M1434891

Numerical Algorithms

5. Björck, Å.: A general updating algorithm for constrained linear least squares problems. SIAM J. Sci.
Stat. Comput. 5(2), 394–402 (1984)

6. Duff, I.S.: MA57-a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Soft. 30, 118–154 (2004)

7. Fletcher, R.: An optimal positive definite update for sparse Hessian matrices. SIAM J. Optimization.
5(1), 192–217 (1995)

8. Fletcher, R., Grothey, A., Leyffer, S.: Computing sparse Hessian and Jacobian approximations with
optimal hereditary properties. In A.R. Conn L.T. Biegler, T.F. Coleman and F.N. Santosa, editors,
Large-scale optimization with applications, Part II: Optimal Design and Control, volume 93 of IMA
Volumes in Mathematics and its Applications, pages 37–52, Berlin, 1997. Springer

9. George, A., Heath, M. T.: Solution of sparse linear least squares problems using Givens rotations.
Linear Algebra Appl. 34:69–83 (1980)

10. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD-a library of thread-safe Fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Soft. 29(4), 353–372 (2003)

11. Gould, N. I.M., Orban, D., Toint, Ph. L.: CUTEst: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Optim. Meth. Soft. (2014)

12. Gould, N. I. M., Scott, J. A.: The state–of–the–art of preconditioners for sparse linear least–squares
problems. ACM Trans. Math. Soft. 43(4),36:1–36:35 (2017)

13. Hogg, J.D., Reid, J.K., Scott, J.A.: Design of a multicore sparse Cholesky factorization using DAGs.
SIAM J. Sci. Comput. 32(6), 3627–3649 (2010)

14. Hogg, J. D., Scott, J. A.: HSLMA97: a bit–compatible multifrontal code for sparse symmetric systems.
Technical Report RAL-TR-2011-024, STFC-Rutherford Appleton Lab. (2011)

15. Hogg, J.D., Scott, J.A.: New parallel sparse direct solvers for multicore architectures. Algorithms. 6,
702–725 (2013)

16. HSL. A collection of Fortran codes for large-scale scientific computation, http://www.hsl.rl.ac.uk
Accessed 2023

17. METIS. A family of multilevel partitioning algorithms, https://github.com/KarypisLab Accessed 2022
18. MUMPS. A parallel sparse direct solver. Version 5.5.0, http://mumps.enseeiht.fr/ Accessed 2022
19. Nocedal, J., Sartenaer, A., Zhu, C.: On the behavior of the gradient norm in the steepest descentmethod.

Comput. Optim. Appl. 22, 5–35 (2002)
20. Nocedal, J., Wright, S.: Numerical optimization. Springer (2006)
21. Rozložník, M.: Saddle-point problems and their iterative solution. Nečas Center Series.

Birkhäuser/Springer, Cham (2018)
22. Scott, J.A.: On using Cholesky-based factorizations and regularization for solving rank-deficient linear

least-squares problems. SIAM J. Sci. Comput. 9, C319-339 (2017)
23. Scott, J.A., Tůma, M.: Solving mixed sparse-dense linear least-squares problems by preconditioned

iterative methods. SIAM J. Sci. Comput. 39(6), A2422–A2437 (2017)
24. Scott, J.A., Tůma,M.: A Schur complement approach to preconditioning sparse least-squares problems

with some dense rows. Numerical Algorithms. 79(4), 1147–1168 (2018)
25. Scott, J.A., Tůma, M.: Sparse stretching for solving sparse-dense linear least-squares problems. SIAM

J. Sci. Comput. 41, A1604–A1625 (2019)
26. Scott, J. A., Tůma, M.: Strengths and limitations of stretching for least-squares problems with some

dense rows. ACM Trans. Math. Soft. 47(1),1:1–25 (2021)
27. Scott, J. A., Tůma, M.: A computational study of using black-box QR solvers for large-scale sparse-

dense linear least squares problems. ACM Trans. Math. Soft., 48(1):5,1–24 (2022)
28. Sorensen, D.C.: An example concerning quasi-Newton estimates of a sparse Hessian. SIGNUM

Newsletter. 16(2), 8–10 (1981)
29. Toint, Ph.L.: On sparse and symmetric matrix updating subject to a linear equation. Math. Comp.

31(140), 954–961 (1977)
30. Toint, Ph.L.: Some numerical results using a sparse matrix updating formula in unconstrained opti-

mization. Math. Comp. 32(1403), 839–851 (1978)
31. Wathen, A.J.: Preconditioning. Acta Numer 24, 329–376 (2015)
32. WSMP. Watson Sparse Matrix Package (Version 20.12) (2020). http://researcher.watson.ibm.com/

researcher/view_group.php?id=1426

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.hsl.rl.ac.uk
https://github.com/KarypisLab
http://mumps.enseeiht.fr/
http://researcher.watson.ibm.com/researcher/view_group.php?id=1426
http://researcher.watson.ibm.com/researcher/view_group.php?id=1426

	Approximating sparse Hessian matrices using large-scale linear least squares
	Abstract
	1 Introduction
	2 Least squares formulation
	3 Solving large-scale least squares problems
	3.1 Direct methods for sparse LS problems
	3.2 Influence of m on the normal matrix
	3.3 Solving sparse-dense LS problems

	4 Numerical experiments
	4.1 Fixed Hessian matrix, general steps
	4.1.1 Varying the secant parameter
	4.1.2 The importance of exploiting dense rows
	4.1.3 Results for problems with no dense rows

	4.2 Fixed Hessian matrix, nearly-dependent steps
	4.3 Varying the Hessian matrix

	5 Concluding remarks and future directions
	Appendix A: Generation of Hessian matrices using CUTEst
	Acknowledgements
	References

