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Abstract

Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabo-
lism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC.
Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages
and subtypes, as liver dominant metastasis has poor survival outcomes.

Objectives The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4
and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC
stages or who had progressed to stage-IV colorectal liver metastasis (CLM).

Methods High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of can-
didate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical
data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best
classify CRC stage and group.

Results Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC
(stages I-11I), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating
specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene
marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.

Conclusion Our findings demonstrate that correlating multiple disease related features with lipid changes could improve
CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify
stages, and monitor therapeutic intervention.

Keywords Metastatic colorectal cancer classification - Biomarker - Multi-omics - Machine learning - Cancer Subtypes -
Lipidomics
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1 Introduction

Colorectal cancer (CRC) is the third most common malig-
nancy and the second most deadly cancer, with approxi-
mately 2 million new CRC cases diagnosed and 1 million
deaths worldwide in 2020. The global number of new CRC
cases is predicted to reach 3.2 million cases by 2040 (Xi &
Xu, 2021). The overall survival (OS) rate at 5 years is 90%
for stage-I, 70% for stage-II, 58% for stage-III, and <25%
for stage-IV (Health & Welfare, 2018). CRC patients are
highly likely to develop secondary hepatic malignancies,
even after surgical removal of the primary tumour tissue
(Manfredi et al., 2006; Paschos & Bird, 2008). Almost 20%
of CRC patients present with liver metastases. These CRC
patients have a poor prognosis and response to treatment
outcomes due to inter-tumour heterogeneity.

In recent years, molecular biomarkers such as carcino-
embryonic antigen (CEA), microsatellite instability (MSI),
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and
B-Raf Proto-Oncogene Serine/Threonine Kinase (BRAF)
gene mutation have been employed to aid prognosis in
CRC. These allow better predictions of clinical outcomes
after surgical treatment (Febbo et al., 2011). For instance,
increased CEA levels are associated with progression of
CRC and usually fall after surgical treatment (Becerra et
al., 2016; Lalosevic et al., 2017). However, according to
Serensen et al. (Serensen et al., 2016), CEA does not effec-
tively identify curable CRC recurrence, and its diagnostic
sensitivity only ranges between 50% and 80%. For patients
with metastatic CRC, mutations in genes MSI, KRAS and
BRAF correlate with poor overall survival but are not pre-
dictive biomarkers of the effectiveness of chemotherapy; for
example by oxaliplatin (Gutierrez et al., 2019). The overall
sensitivity of KRAS and BRAF for CRC detection is 77%
and 92.2% respectively, in cell-free DNA samples (Formica
etal., 2022; Sun et al., 2021). The accuracy of CRC progno-
sis can be improved by integrating CEA, KRAS and BRAF
with other clinically relevant biomarkers.

Molecular signatures based on altered lipid metabolism
have also correlated with CRC occurrence. Lipids play a
key role in initiating phosphorylation and acetylation dur-
ing kinase signalling (Dobrzynska et al., 2005; Prochownik
et al., 2020; Tan et al., 2013) and in responses to apoptotic
stimuli. Dysregulated sphingolipids and phospholipids such
as phosphatidylserine (PS) tend to increases with tumour
development. Quantitative measures of blood lipid compo-
sition, specifically phospholipids in liver metastatic CRC,
is reflective of carcinoma expression in intestinal epithelial
cells (Dobrzynska et al., 2005; Li et al., 2013; Notarnicola
et al., 2005).

Several studies have suggested that factors such
as overexpression of serine catalysing enzymes (e.g.,
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phosphatidylserine synthase I and II) and lipid kinase sig-
nalling cascades (PI3K/AKT, EGFR, or Wnt pathways)
correlate with metastatic CRC progression (Koveitypour et
al., 2019). A study of CRC patient blood samples reported
that plasma PS levels increased in CRC stage-I to IV com-
pared with healthy subjects. The study also reported that
PS exposed on the platelets resulted in an increased level
of blood clotting responses during metastasis development
(Zhao et al., 2016a).

An immunohistochemical examination of CRC tis-
sue showed that the lipid signalling enzyme, phospholipid
scramblase 1 (PLSCRI1), was significantly upregulated in
the early stages of CRC. Overexpressed PLSCR1 is impli-
cated in inflammatory pathways that may increase the risk
of developing neoplastic polyps in the colon (Kuo et al.,
2011).

Considerable evidence points to the reprogramming of
lipid metabolism being associated with molecular heteroge-
neity that promotes CRC metastasis. Levels of up- or down-
regulated lipids, together with established CRC biomarkers,
may allow better discrimination of CRC stages and deter-
mine the risk of metastatic progression. Thus, integrating
lipid profiles with additional patient biochemical and clini-
cal information such as chemokine levels, gene mutation
status, patient’s age, number and location of tumour nodes,
and family history may improve CRC staging classification.
Suitable machine learning (ML) algorithms are well suited
to perform sparse feature identification and generate robust
CRC staging predictions from complex, high dimensional
CRC clinical datasets.

This study generated multivariate statistical models to
identify clinically useful prognostic plasma lipid biomarker
signatures that can stratify patients into cancer free indi-
viduals (CFI), CRC with stages I to IV (CRC), and patients
with stage-IV colorectal liver metastasis (CLM) groups.
We utilised high-performance liquid chromatography-mass
spectrometry to identify plasma lipids obtained from, (i)
CFI (those who had undergone non-cancer-related surgery),
(i) CRC cases with different stages including stage-1V dis-
tant metastasis (metastasised to any organs except the liver),
and (iii) individuals diagnosed with CLM.

Lipid signatures, patient clinical characteristics, gene
mutation status, and CRC-related chemokines levels, such
as interleukin-8 (IL-8) and platelet factor-4 (PF4) were used
to train the machine learning (ML) models. A multiple lin-
ear regression with expectation maximisation (MLR-EM)
algorithm was used to perform sparse feature selection and
to generate linear regression models. A nonlinear Bayesian
regularized neural network (BRANN) was used to model
and predict CRC stages.

The aim was to determine whether adding lipid profile
data to established CRC biomarkers could significantly
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improve discrimination of disease cohorts and staging pre-
diction accuracy. Notably, both models identified levels
of subtypes of triglyceride, phosphatidylserine, and phos-
phatidyl-ethanolamine as being significantly different in
the CFI, CRC and CLM groups. In total, we identified 16
lipid subtypes associated with different stages of CRC. The
MLR-EM models generated a 12 readout biomarker panel
that accurately classified the CFI and disease groups (CRC/
CLM).

2 Methods
2.1 Study participants and biomarker features

The study was conducted with the approval of the Monash
University and University of Adelaide Human Research
Ethics Committee. The study used 126 de-identified bio-
bank stored plasma samples from CFI and patients diag-
nosed with different stages of CRC. Table 1 summarises the
clinical characteristics of participants.

The following CRC stages were defined: stage-I, stage-
II, stage-III and stage-IV (metastasised to any organs except
liver). We assigned the CRC stage-IV metastasised to the
liver as a separate group, named “CLM”. This assignment
as a separate group may be helpful to identify differential
expression of lipid metabolism in CRC stages IV compared
to the patients specifically diagnosed with CLM.

The CRC (stage-I to IV) and CLM patient samples
recruited in this study had undergone primary tumour resec-
tion and continued treatment for at least five years after the

surgical intervention. The probability of patient survival in
this cohort was calculated using disease-free survival data
for each sample. Additionally, this study used established
prognostic biomarker levels for the ML-based integrative
modelling. The detection of protein and gene biomarkers
in clinical patients were conducted as previously reported
by the Department of Surgery in the University of Adelaide
(Kirana et al., 2020). The clinical data included blood circu-
lating cytokine proteins and gene mutation status (Supple-
mentary Table S1).

2.2 Plasma lipid extraction

Biobank plasma samples were stored at -80 °C and thawed
to 2 °C for 10 min before lipid extraction. The Folch method
was used to extract plasma lipids (Folch et al., 1957).
Briefly, in PYREX® culture tubes, 2 mL of chloroform:
methanol (2:1, vol/vol), 8 uL of deuterated internal standard
(SPLASH® LIPIDOMIX® mass spec standard, Avanti)
were added to 100 pL of plasma, vortexed and incubated
for 30 min. The internal standard contains deuterated lipids
including phosphatidylethanolamine (PE), phosphatidyl-
serine (PS), phosphatidylglycerol (PG), phosphatidylino-
sitol (PI), phosphatidic acid (PA), lysophosphatidylcholine
(LysoPC), lysophosphatidylethanolamine (LysoPE), cho-
lesteryl ester (CE), monoglycerides (MQG), diglycerides
(DG), triglycerides (TG), and sphingomyelin (SM). To each
sample, 400 pL of 0.9% NaCl was added, and the sample
was centrifuged at 1200 RPM for 15 min. After centrifu-
gation, the upper phase was removed, and the lower phase
was collected into glass auto-sampler vials and evaporated

Table 1 Demographic and char-  Characteristics CFI CRC CLM
acteristic features of CFI, CRC 3 -
. ample size, n 29 78 18
and CLM patient blood samples A 48 g 481
were used to identify lipids. CFI ge 34-82(57) 38-89 (67.5) —81(65.5)
- cancer free individuals; CRC - Gender
colorectal cancer; CLM - colorec- Female, n 19 32 9
tal cancer liver metastasis; TA Male, n 11 46 9
- tubular adenomas; VA —villous  wajst size (cm) 78-123 (108) 77-141 (111) 85-117 (94)
adenomas; TVA - tubu}ovﬂlous Cancer stage
adenomas; SSA — sessile serrated .
’ . Stage 0, n (No residual of adeno- - 16 -
adenomas; HP — hyperplastic . .
. matous, malignancy, carcinomatous or
polyps; LGD - low-grade dys-
. L tumour)
plasia. Measurement medians in
brackets Stage-1, n - 12 -
Stage-11, n - 14 -
Stage-111, n - 18 -
Stage-1V, n - 16 -
Pathology Polyp and adenomas Liver lesion
development. believed
Had positive ascending to be
colon tumour metastatic
Pathological type (polyps and - <6 x TALGD, 2xTA
adenomas) 1 x TVALGD LGD,
1 x VALGD 4 x HP
6 x SSA, 2 x HP
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under nitrogen flow. Finally, a 1:9 ratio of water and buta-
nol-methanol (50:50) was added to the dried samples to
resuspend the sample for analysis.

2.3 LC-MS analysis and data Processing

10 pL of the lipid extracts was analysed on a Q-Exactive
Orbitrap mass spectrometer (Thermo Scientific, Waltham,
Massachusetts, USA) coupled with high-performance lig-
uid chromatography (HPLC) system (Dionex Ultimate®
3000 RS, Thermo Scientific). Chromatographic separation
was performed on Ascentis Express® (Supelco, Merck)
100x2.1 mm, 2.7 pM C8 reversed-phase column with a
guard column (Phenomenex, C8, 2 mm x 2) maintained at
40 °C. Mobile phases were 40% isopropanol with 8 mM
ammonium formate and 2 mM formic acid (A), and 98% iso-
propanol with 8 mM ammonium formate and 2 mM formic
acid (B). The flow rate was 0.2 mL/min. Positive and nega-
tive ion mode MS data were collected using polarity switch-
ing in full scan mode at 70k resolution for the m/z range 140
to 1300 m/z. The electrospray voltage was set at 3.50 kV,
sheath gas to 35, auxiliary gas to 13, and sweep gas to 1
arbitrary unit. Pooled plasma quality control (PQC) samples
containing internal standards were acquired throughout the
run and were used to assess analytical run quality. MS/MS
data were collected on a PQC sample injected separately for
positive and negative ion modes. MS/MS data were used
to confirm lipid identity and match them with quantitative
data in full scan (MS1) runs. Routine data processing in an
untargeted fashion was performed using IDEOM software
(Creek et al., 2012). Extracted and aligned features were
annotated, searching accurate mass (within 3 ppm cut off)
against databases such as HMDB, Lipidmaps, KEGG, and
MetaCyc (Aurelio et al., 2016; Creek et al., 2012; Han et al.,
2018). Approximately 350 lipids were confidently identified
matching MS/MS data and retention time correlation within
each lipid class, > 350 putative metabolites were annotated
per sample.

2.4 Sample grouping

We categorised sample cohorts into three groups to under-
stand and predict key molecules involved in disease pro-
gression. CFI-CRC-CLM contained lipid features of CFI,
CRC and CLM. CFI-CRC group contained lipid features
of CFI and CRC (stage-1, stage-I1, stage-III, and stage-IV).
CFI-mCRC group contained lipid datasets integrated to
clinical characteristic and multi-omics features of CFI and
mCRC (both CRC and CLM datasets were combined, to dif-
ferentiate diseased cohorts from cancer free group).

@ Springer

2.5 Sample sizes and disease classes

The number of samples in each group was based on avail-
ability of clinical information such as the cancer stage and
pathological type of patients matching all disease subtypes.
We used a t-test to account for the smaller size of samples
and to quantify statistical significance. For CFI-CRC-CLM,
333 putative lipid features matching MS/MS and retention
time were identified in patient samples. For the ML model-
ling, each group were assigned to a different class — CFI
(class 0), CRC (class 1) and CLM (class 2). A total of 66
samples were used, comprising CFI (n=16), CRC (n=32)
and CLM (n=18). For CFI and CRC, 289 putative lipid
features from MS/MS and retention time were identified
in patient samples. For ML analysis, again each group was
assigned a different class, with a total of 59 samples — CFI
n=13), CRC stage-I (n=13), CRC stage-II (n=11), CRC
stage-1II (n=12) and CRC stage-IV (n=10). The class
occupancies were well balanced. For CFI and mCRC, 353
additional features such as lipids, proteins, gene mutation
status and patient clinical details (age, weight, and gender)
were used in the models. Of the total of 48 samples, 15 were
CFI and 33 were mCRC, showing some class imbalance.

2.6 Computational models

The lipid LCMS peak intensities were scaled by 100,000
for the computational models. Outliers were eliminated
using the mean and standard deviation of replicates. The
outcomes of the descriptive statistical analysis, correlation
coefficients, and regression models were plotted using R
version 1.3. Disease-free survival estimation was performed
in R version 1.3 using the Kaplan—Meier method. Bayes-
ian regularized neural network machine learning and sparse
multilinear regression were used for disease classification
(Burden & Winkler, 1999, 2008, 2009a, b). The MLR-EM
sparse feature selection method was used to identify rele-
vant predictor lipids and to interpret the multiple prognos-
tic features that could classify the disease and CFI cohorts.
Supplementary Figure S1 shows the study design used to
interpret potential biomarker features that classify the dis-
ecase status. For ML analysis, again each disease stage was
assigned large integers, the rationale being the biomarkers
will also increase (or decrease) with higher levels of disease
severity. CFI was coded as 0; CRC stage-1 was coded as 1;
CRC stage-II was coded as 2; CRC stage-III was coded as 3;
and CRC stage-IV was coded as 4. For CFI and mCRC dis-
criminatory models, CFI was assigned to class 0 and mCRC
to class 1 using a similar rationale.
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3 Result

Samples from three groups - CFI, CRC, and CLM were used
to identify candidate prognostic biomarkers. The median
age of male and female participants diagnosed with CRC
was 67.5 (range 32-89), whereas, for the CLM, the median
was 65.5 (range 42-81). Among the 126 samples, 43.6%
of men and 32.5% of women had undergone adjuvant ther-
apy or cancer-related treatments. The CRC patients were
diagnosed with adenomas, hyperplastic polyps, or graded
dysplasia.

Kaplan-Meier analysis described disease-free survival
(DFES) curves up to 5 years (Fig. 1A) and the OS (overall
survival) rate up to 8 years (Fig. 1B). The log-rank test was
carried out to measure the difference between the groups,
significant at the p=0.002 level for DFS and p=0.02 for
OS. The DFS shows that for stage-1V distant CRC patients
and those diagnosed with CLM, ~75% were likely to sur-
vive for less than 3 years. This indicates that the likelihood
of recurrence of the disease is higher than for stage I, stage
IT and stage III CRC patients, even after administration of
adjuvant therapies.

Disease Free Survival
A) 1004 [EBDee——eo o
75 1
50 1

254

Survival
Probability (%)

01 p=0.00012 _
0 1 2 3 4 5
Year

Number at risk

Stage=0 {12 10 3 1 0 0
Stage=l { 9 5 1 1 1 0
13 7 0 0 0 0
“li 116 8 6 4 2 0
Stage=IV { 15 11 9 7 1 0
CLM 9 5 2 0 0 0
0 1 2 3 4 5

-e- Stage=0 -e-Stage=IV

-o- Stage=| - CLM

Fig. 1 Disease-free survival (DFS) and Overall survival (OS) were
performed using the Kaplan-Meier (KM) method to estimate the sur-
vival probability of CRC and CLM individuals. The DFS refers to the
survival probability up to 5 years after the primary treatment, shown in
Fig. 1A. The OS refers to the survival probability of up to 8 years from

3.1 Modelling the CFI, CRC and CLM groups

We coded disease groups into different nominal classes of
disease severity — class 0 for CFI, class 1 for CRC, and
class 2 for CLM. The MLR-EM sparse feature selection
identified 9 lipid features that best classify these three
groups. Figure 2A and 2B show the sign and magnitude of
the influence of the lipid features on the model. The iden-
tified lipid features included the putative phosphatidylser-
ine subset PS (18:0/23:3) detected at m/z — 855.59 and RT
—14.08, that discriminate the CFI (n=16), CRC (n=32)
and CLM (n=18) cohorts. The MLR-EM model predicted
the class membership of the training set with an r* of 0.76
and a standard error of 0.40. The test set class membership
prediction had an r? of 0.61 and a standard error of 0.45
(Supplementary Figures S2A and S2B).

The model prediction errors were almost entirely pre-
dictions differing by +1 class. Outliers for the training set
model included patients diagnosed to be CRC (class 1) but
predicted to be CFI (class 0). Furthermore, a CLM sample
was diagnosed as class 2 but predicted as CRC (class 1).
The truth tables for the prediction of the training and test
set classes are shown in Supplementary Table S2A. Class

Over-all Survival

B) 100 - e e—e—O O
757
2
$ &0
]
A3
" 2 254
o
04
8
Number at risk
Stage=0 4 12 4 0 0 0
Stage=l { 9 2 1 0 0
13 1 0 0 0
16 11 5 0 0
Stage=IV{ 15 13 3 1 0
CLM 9 7 3 2 0
0 2 4 6 8
-o- Stage=0 -o Stage=IV
o Stage=| -+ CLM

the start of primary treatment, shown in Fig. 1B. The bottom table
indicates the number of patients at risk of survival. Stage 0 to stage
IV - colorectal cancer with different stages, CLM - colorectal cancer
liver metastasis
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A) 3+ B)
0.00 Features T - test P - value
24 PS(40:1) 24 0.027
;:5. Sphingosine 1.6 0.066
u —
g 1 LysoPE(18:1) 1.5 0.072
£ CE(22:6) 2.1 0.026
0-
CE(18:3) 4.9 0
3 PS (18:0/23:3) 1.8 0.047
. G(56:9) 2.9 0.005
Q@,\"‘ FA(16:1) 4.0 0
R PS(P-32:1) 1.6 0.063
C) 1.5- D)
Features T - test P - value
1.0 PS(40:1) 5.4 0.000
- TG(36:0) 2.8 0.008
& 0.5- PE(42:6) 2.5 0.014
(8]
> IL-8 6.2 0
£ 0.0-
= PF-4 1.0 0.148
0.5+ MLH-1 gene 0.7 0.235
PS(37:3) 1.4 0.082
1.0 —~———r—1r—T—T—T—T—T—7 DG(29:1) 1.1 0.145
N DA P D> N S S A MG(18:0) 1.9 0.036
vbe&"\QQ .@\%pr%‘\r
RN @9\ NN WX PA(24:0) 2.6 0.010
A \‘\\‘3‘ CFFve PC(18:2) 6.4 0

Fig. 2 Neural network-identified top lipid features classify CFI
(n=16), CRC (n=32) and CLM (n=18) groups. Histograms show
the sign and magnitude of the 9 most relevant features identified by
the MLR-EM model (A). Right side table show the MLR-EM regres-
sion coefficients with t-tests and p-values (B). Results for models
combining multi-omics, chemokines and gene status features with
lipid features for the CFI contained n= 15 and (CRC/CLM) contained
n=33 dataset (C). The sign and magnitude of contributions of the 11
most relevant features to the model are shown in the histogram. Right

prediction accuracy was 87% for the training set and 77%
for the test set.

We used the subset of 9 features identified by the MLR-
EM model to train a non-linear BRANN model and obtained
similar discrimination of the classes (Supplementary Fig-
ure S2C and S2D). The prediction of BRANN training set
classes had an 1 of 0.77 and a standard error of 0.34. The

@ Springer

side table show the MLR-EM regression coefficients with t-tests and
p-values (D). CE—cholesteryl ester; LysoPE - lyso phosphatidyletha-
nolamine, PS — phosphatidylserine; PE — phosphatidylethanolamine;
TG - triacylglyceride; FA — fatty acid; IL-8 — interleukin 8; PF-4 —
platelet factor IV; MLH1 gene — DNA mismatch repair protein Mlh1;
PA — phosphatidic acid; MG — monoglyceride; PC — phosphatidylcho-
line; CFI cancer free individuals; CRC — colorectal cancer; CLM —
colorectal cancer liver metastasis; mCRC — group contain both CRC
and CLM cohorts

prediction of the BRANN test set classes had an r? of 0.68
and a standard error of 0.42. Notably, the outliers in the
BRANN model were similar to those of the MLR model,
suggesting that a linear model is sufficient. In the training
set model, three CFI samples (class 0) were predicted to be
CRC class 1; two CLM samples were diagnosed as class 2
but predicted to be CRC (class 1). The outliers for the test
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set included two samples diagnosed to be CFI (class 0) but
predicted to be CRC (class 1). The truth table for predicting
class membership for the neural network model is shown in
Supplementary Table S2B. Class prediction accuracy was
identical to that for the MLR model, 87% for the training set
and 77% for the test set.

3.2 Modelling the CFl and CRC groups

In total, 59 plasma samples for the CFI and CRC classifica-
tion For CFI (n=13), CRC stage-I (n=13), CRC stage-II
(n=11), CRC stage-III (n=12) and CRC stage-IV (n=10)
cohorts were used to train regression models. Here, MLR-
EM identified the 16 most relevant lipid features (Supple-
mentary Figure S3). Of those, four lipids (PC (33:2), PE
(36:2), SM (d37:1) and TG (47:5)) have odd chain lengths.
When cross validating the lipid ions with retention time,
these odd chain lipids could also be annotated as lipids with
even chain lengths. For example, PC (33:2) observed at m/z
744.553 [M+H] could be PE (36:2), PC (37:2) observed
at m/z 800.615 [M+H] could be PE (40:2). Both groups
have similarities in their retention time ranges. Thus, mul-
tiple reaction monitoring methods should be developed
for future analyses to strengthen the confirmation of lipid
subtypes. Supplementary Figure S4 shows the training and
test set predictivity for linear MLR and non-linear BRANN
models.

The MLR classified the class membership with an r* of
0.88 for the training set and 0.64 for the test set. The MLR-
EM training set truth table showed that two of the CRC
stage-II samples were predicted to be CRC stage-I, one
CRC stage-III, and three were predicted to be CRC stage-
IV. The overall accuracy of the MLR training dataset was
75% (Supplementary Figure S4A and S4B). The accuracy
when allowing mismatches of + 1 stage was 100%. Addi-
tional regression models with various degrees of applied
sparsity B (B=0.5, 35 features to f=1.0, 16 features) were
used to generate models. The less sparse (B=0.5) model
recapitulates the clinical CRC stages in the training set but
was not predictive because the size of the data set was rela-
tively small. The test set was randomly selected and reduced
to 20% for all classes (CRC stages and CFI). Sparser MLR
models with B=1.0 (16 lipid features) were found to be the
best compromise between complexity and accuracy com-
pared to other levels of sparsity (3=0.9—-0.5) as shown in
Supplementary Figure S5.

The truth table for the MLR-EM test set showed that
two CRC stage-II samples were wrongly predicted as CRC
stage-1 and CRC stage-III. The MLR test accuracy was 42%
for overall classification performance and 89% accuracy if
allowing a classifying error of one CRC stage (Supplemen-
tary Table S3A). Although the number of samples in each

stage in the test set was low, the 16 lipid features identified
by MLR produced a statistically significant classification.

Subsequently, we trained the BRANN model to predict
the likelihood of CRC staging classification using the 16 rel-
evant lipid features (Supplementary Figure S4C and S4D).
The neural network model performed similarly to the linear
MLR with r* of 0.88 for the training set and 0.64 for the test
set. The BRANN truth table showed that some CRC stages
were incorrectly predicted. The BRANN classified CRC
stage-1 to CRC stage-IV with an overall accuracy of 73%
for the training dataset and 37% for the test set, increas-
ing to 89% accuracy if an error of one stage was allowed
(Supplementary Table S3B). Notably, our analysis identi-
fied a putative lipid ion observed at m/z 861.61, annotated
as lactosylceramide (LacCer (d18)), which was positively
correlated with CRC progression.

3.3 Modelling the CFl and mCRC with additional
patient features

Multi-omics datasets merged with lipid features may
improve the classification and biomarker identification for
metastatic cancer groups. We added patient physical and
clinical features, such as gender, age, waist size, standard
clinical biomarkers (e.g., chemokine proteins, and genetic
attributes (microsatellite instability, KRAS and BRAF muta-
tion status)) to the training dataset. The multidimensional
dataset consisted of 48 data points comprising 24 CRC, 15
CFI, and 9 CLM patients. Similar to the previously per-
formed analysis, we nominally coded CFI group as class 0,
and all CRC groups (CRC and CLM) as class 1. Features
positive for gene mutation (G>A or G>T for KRAS muta-
tion, and ¢.1799T > A for BRAF mutation) were coded as
+ 1, those negative for mutation as -1 and unknown as 0.
We were able to generate a predictive model for the CFI
and mCRC dataset using the merged features. We inves-
tigated the effect of sparsity on feature selection using a
range of f=0.2-0.6 in the MLR-EM algorithm. For lower
sparsity (more features selected, $=0.2), the MLR model
identified biomarkers such as phospholipids, MLH-1 gene,
interleukin 8 (IL-8), platelet factor 4 (PF-4) and midkine
as being important to discriminate the disease stages in
male patients. By optimising the sparsity of feature selec-
tion, the MLR models consistently selected MLH-1 (DNA
mismatch repair protein-encoding gene) and IL-8 as being
good discriminators (Supplementary Tables S5 to Table S9).
However, the small sample size is problematic for choosing
the best predictors. Based on the complexity of the data-
sets, at least 9 to 12 features are required to achieve sta-
tistically significant disease state discrimination. Thus, a
sparsity coefficient B of 0.4 identified 11 relevant features
that discriminated between groups (Fig. 2C and D). These
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11 features were used to generate an MLR-EM model pre-
dicting disease status. Importantly, PS (40:1), IL-8, PF-4,
PE (42:6), DG (29:1) (M +NH,]*), and MLH1 gene fea-
tures showed a positive correlation with CRC (p<0.05)
incidence. Using these augmented features, the MLR-EM
model (B=0.4) classified mCRC and CFI group with an
accuracy of 97% for the training set and 78% for the test set
(Supplementary Table S4). The truth table shows that the
model classified patients with CFI accurately, but one class
1 sample was predicted to be class 0 (CFI) in the training
dataset. Similarly, in the test set, two class 1 samples were
predicted to be class 0.

4 Discussion

Biomarkers such as CEA, DNA mismatch repair protein-
encoding genes, KRAS and BRAF mutation status are often
used to estimate the risk of CRC progression. However,
comprehensive analysis at the molecular level is urgently
needed to elucidate CRC heterogeneity and identify multi-
ple biomarkers classifying CRC subtypes. Based on Kaplan-
Meier analysis, <40% stage-IV CRC patients with liver
metastasis survived at two years. Some of the CLM patients
were diagnosed with low-grade dysplasia and hyperplastic
polyps.

This study analysed preoperative CRC patients’ plasma
samples using HR-LC-MS and ML approaches to iden-
tify lipids involved in CRC-liver metastatic progression.
The lipid, protein, and gene datasets were initially stan-
dardized for CFI-CRC-CLM, CFI-CRC and CFI-mCRC
disease subtype classifications. Datasets with missing ele-
ments (ion detected by LC-MS) and outliers likely affect
ML model prediction and require the dataset to be reduced.
Most often, features with missing values and outliers are
deleted, which leads to the loss of important information.
Classical approaches such as principal component analy-
sis (PCA) are typically used for data reduction (Shi et al.,
2021; Stanimirova et al., 2007). However, PCA has short-
comings such as failing to assess missing elements and is
strongly affected by outliers. The sparse, efficient ML meth-
ods used in this study are relatively tolerant of noisy and
missing data, allowing the calculation of model parameters.
A plasma fatty acid biomarker study conducted by Malan
et al. (Malan et al., 2020) reported that EM was a suitable
approach for a small sample size. Another study suggested
that the EM embedded PCA method was robust to missing
data and outliers (Stanimirova et al., 2007).

Here, we used both lincar MLR-EM and nonlinear
BRANN models to predict disease stage and progression.
Both models identified the most relevant lipid features sig-
nificant at the 95% confidence level by eliminating many
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markers with low or no relevance to disease stages. Subse-
quently, we performed data-driven integrative multi-omics
modelling by merging protein, genetic, and clinical bio-
markers with the lipid profiles. The models exhibited very
useful accuracy in classifying CFI and CRC cohorts. Inter-
estingly, the nonlinear BRANN ML models did not appear
to generate significantly better predictions than the linear
regression models, suggesting that the relationship between
biochemical features and CRC staging was essentially lin-
ear. Overall this study achieved good accuracy in CFI-CRC-
CLM classification and excellent accuracy in CFI-CRC. We
acknowledge that advanced imputation methods like miss-
ing not at random (Saito et al., 2020) are also worth con-
sidering although, ultimately, additional high quality data
will best improve the robustness and prediction reliability
of models. Ideally, a robust QQQ-MS method could be
developed around the lipid subtypes identified in this study,
which would improve annotation and give highly quantifi-
able data.

Most previous CRC studies reported a correlation between
increased low-density cholesterol and TG with the occur-
rence of polyps. Specifically, our sparse MLR-EM model
identified 9 key lipid features as being prognostic biomark-
ers. Notably, CE (22:6) p=0.026, CE (18:3) p=0.0001,
TG (56:9) p=0.005 and FA (16:1) p=0.0005 lipids were
significantly different in CRC and CLM patients. A previ-
ous study conducted by Byberg et al. reported that the pro-
portion of palmitoleic acid (FA (16:1) and CE in serum can
be used to estimate the stearoyl-CoA desaturase-1 enzyme
activity (involved in diabetes-induced CRC metastasis)
and cancer-related death (Byberg et al., 2014). The models
predicted that PS subclass such as PS (40:1) p=0.02 and
PS (18:0/23:3) p=0.04 can discriminate metastatic disease
groups. It was previously reported that PS was externalized
on the surface of platelets through all CRC stages. This was
associated with a hyper-coagulant state in cancer prolifera-
tion (Zhao et al., 2016b). PS exposure on platelets/circulat-
ing cells results in a pro-coagulation condition in the venous
vessels connecting intestinal tissues.

When analysing lipids in CRC stages I to IV, the MLR-
EM algorithm identified 16 putative lipid prognostic bio-
markers. Conspicuously, we posit that the peak at m/z
861.61 is a lactosylceramide (LacCer (d18) with p=0.01.
This LacCer feature is consistent with several studies on
human CRC tissue, suggesting that the upregulation of lac-
tosylceramide synthase occurred during the angiogenesis
process (new blood vessel formation). However, this will
need to be confirmed (Chatterjee et al., 2019; Kolmakova
et al., 2009). For instance, a study conducted by Kolma-
kova et al. reported that lactosylceramide synthase isomer
(B1,4GalT-V) mRNA expression was upregulated 4.5 fold in
human CRC endothelial cells when inhibiting sphingosine
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enzymes, suggesting increased synthesis of LacCer in blood
vessels (Kolmakova et al., 2009). Our model identified
variation in LacCer level as important, raising the question
whether disease progression is associated with the VEGF
pathway in different CRC stages. Similarly, Deng et al.
reported a related study identifying lipid biomarkers for
CRC using in-capillary extraction nanoelectrospray ion-
ization MS (Deng et al., 2021). This study reported lipid
biomarkers that were differentially expressed in CRC tissue
versus non-cancer, but no computational modelling of their
data was performed. Several of the biomarkers they identi-
fied also appeared in our list of the most relevant features
from the MLR-EM modelling; these include PC (36:3) and
PC (34:2). Overall, when compared to disease-free survival
results, patients with metastatic CRC stage have significant
dysregulation of 16 lipid prognostic biomarkers that could
potentially be biomarkers of disease progression.

Merging multi-omics features with the lipid profiles in
the final modelling study resulted in the sparse feature selec-
tion MLR-EM identifying lipids PS (40:1) p<0.05, TG
(36:0) p=0.008, PE (42:6) p=0.01, MG (18:0) p=0.003,
PA (24:0) p=0.01 and PC (18:2) p<0.05, as useful for clas-
sifying CFI versus mCRC. Conspicuously, throughout the
analysis, PS subsets appeared to be an excellent predictor
to classify mCRC group. In addition, although we assumed
the addition of prognostic gene biomarkers such as MSCI,
KRAS and BRAF might improve model predictions, our
study identified that compared to KRAS and BRAF, MLH-1
gene (p=0.2) also classified disease cohorts. However, the
MLH-1 gene was not statistically significant enough to
serve as a potential biomarker candidate in isolation. There-
fore, study of a large number of samples with MSI mutation
status may be useful to improve disease prediction and clas-
sification accuracy. In addition, the MLR-EM model identi-
fied chemokines such as IL-8 and PF-4 as relevant features
classifying CRC cases versus the CFI cohort. Based on a
previous study, we suggest that there might be a signifi-
cant link between PS and chemokines in the progression of
metastatic CRC (Meyer et al., 2017). Meyer et al. reported
that thrombin-stimulated PF-4 produced a-granules (a cel-
lular component of platelet containing coagulant proteins)
enriched with PS (Meyer et al., 2017). We observed that our
models (p=0.05) consistently predicted lipids such as PS
along with TG and PE, and chemokines including PL-4. We
suggest that in biomarker identification, addition of IL-8,
PL-4 and MLH-1 may improve the ability of ML models
to accurately classify CRC subtypes. Our biomarker fea-
tures can be used in large scale studies to validate clinical
outcome in CRC and compare cancer free CRC cohorts to
recurrent CRC individual.

In this work, we have identified a novel integrated bio-
marker panel including lipidomic, genetic, and proteomic

biomarkers which, upon further validation, could improve
the diagnostic accuracy of CRC staging. The limitations of
our study are primarily the relatively small cohort of patients
in the study (data set size and completeness). Clearly, data-
driven methods like machine learning improve substantially
when trained on larger data sets. Interestingly, key biomark-
ers such as KRAS, BRAF, and CEA were not identified as
competitive disease progression discriminators, but this
may change with larger cohorts.

5 Conclusion

Our ML models identified a range of disease-relevant lipid
subtypes, including phospholipids and sphingolipids in
patient plasma samples. The model identified more than 9
lipid subtypes that could be potential molecular biomark-
ers for classifying CRC and CLM compared to CFI. These
lipids could also be valuable in predicting the recurrence/
pathogenesis of CRC after adjuvant therapy. Our analysis
provides evidence that a combination of multi-omics fea-
tures such as IL-8, PF-4, MLH-1, and specific plasma PS and
PE lipids can help predict tumour progression in the early
stages of CRC. Analysis of a larger sample size from well-
characterised clinical cohorts is likely to further strengthen
our ML models, which show significant promise in guiding
biomarker selection for CRC disease management.
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