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Partial and Full Detection of Source Terms
Liang Zhang, Qing-Guo Wang and Shuang-Hua Yang

Abstract—In modern industrial networks, important source
terms are monitored during operations. Due to the shortage of
sensors or changes of components and connections, all the source
terms may not be uniquely detected. This paper is dealt with the
problem of partial and full detection of source terms in linear
systems. The existence of a partially unique solution for a linear
system is analyzed and an algorithm is proposed to identify the
maximum set of unique partial solutions. Furthermore, an
algorithm is developed to achieve the minimum realization of a
unique full solution with additional measurements. The proposed
methods are demonstrated through numerical examples and
applied to a circuit analysis problem and a source term estimation
problem in chemical industrial parks.

Index Terms— source terms detection, system monitoring, linear
circuit systems, networks, unique partial solution

I. INTRODUCTION

N a modern power grid, there could be many energy
sources and devices. The grid controller will monitor all its
components with real-time measurements and assess their
conditions. The electrical model of the system can be built

with the circuit analysis [1], [2], and the source terms are
monitored. In large and complex networks, identifying all the
source terms is required but might be impossible in some
situations such as the presence of load uncertainty [3]-[5] and
limited availability of measurements [6], [7]. It is noted that it
is still possible and meaningful to find some source terms in the
network with the current information, and further to determine
all the source terms with additional information.

The same detection problem appears in air pollution source
term estimation (STE) in chemical industrial parks (CIPs) [8].
STE is to estimate the source parameters, such as source
emission rates and source locations, using the real-time
concentration measurements, meteorological conditions and
other information. However, the number of ambient
concentration sensors is insufficient compared with the air
pollution sources in CIPs [8]-[11]. Because of this sensor
deficiency, the unknown source parameters do not have a
unique solution.

It can be seen from the above examples and many others that
a common technical problem encountered in scientific or
industrial applications involves solving a linear system at some
stage and in practice, the system may not have a unique solution
[3]-[11]. In general, consider a linear system of m equations in
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n unknowns,
Ax=b, 1)

where Ac R™" | xeR™ and be R™ . In this paper, we
assume that the system is consistent [14], that is, it always has
at least one solution and thus meets the following condition,

rank (A) = rank [Ab]), @)

where [Ab] is the augmented matrix of the linear system. It is
well known that (1) has a unique solution if and only if

rank (A) = rank ([Ab]) =n. ®3)

In practice, it is possible that a system fails (3) and does not
have a unique solution, that is, one cannot determine all
variables uniquely. The methods for source term detection
under deficient measurements in [8] and [11] reduce the number
of variables by clustering the variables into a smaller number of
equivalent variables for the unique solution. They have altered
the underlying structure of the original system and the solution
is not for the original variables. The compressed sensing [12]
searches for the sparsest solution to the underdetermined
system (m<n), and the iteratively re-weighted least squares
method [13] can solve this problem. The methods in [9] and [10]
augment the number of measurements (equations) at various
times and locations to determine all the variables of the system.
In engineering practice, it is interesting and useful to consider a
general system with no constraint on m, n or x, and uniquely
determine the maximal number of the variables with no change
on the current system when it has no unique solution for all its
variables. In this paper, we term these uniquely determined
variables as “unique partial solution”, develop the complete
theory and algorithm for finding the unique partial solution, and
also provide a method to obtain all the system variables with
the minimum number of additional measurements. The
contributions of this paper are the notion of the unique partial
solution of a general linear system, a necessary and sufficient
condition for the existence of the unique partial solution, an
algorithm for finding the unique partial solution, and a
minimum realization of a unique full solution of the system
with additional measurements.

The rest of this paper is organized as follows. Section Il
defines the unique partial solution of a linear system and
analyses the unique partial solution for the system. Section IlI
develops a method to determine the full unique solution with
minimum additional equations. Section IV applies the new
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theory to the detection of sources in a circuit and an STE
problem. Section V concludes this paper.
Notation: e; donates the j-th column of the identity matrix

I, . For any positive integers n and q ,
N={L2..n} , Kg={kike,....kg}<=N

g<n , let
and define
K_q =N-K, ={kq+l,kq+2, kn} as the complementary set of
Kq in N . Note that k; <k, and k; #k; if i j. For any
vector xe R", let

Xig Xiger X

Xk w )| X W \_| X |_
x(Kq)= t ,x(Kq)_ 2 ,x(KqUKq)_ Cl=x

qu an Xn

Partition an mxn matrix A as
.
A=[a; a; -+ az|=[a @ - an] ,
where a; is the i-th column of A and a;. is the j-th row of A.
Let A(Kq)z[ak1 ady, akq], A(K_q)=[akq+1 Qg " akn]

and it follows that Ax = A(Kq )x(Kq )+ A(K_q)x(K_q) :

I1. UNIQUE PARTIAL SOLUTION

The definition of the unique partial solution is given as
follows.

Definition 2.1: System (1) under (2) is said to have the
unique partial solution if there exists Ky and Kg, such that

AX(Kp UKg ) =b AX(Kp UKgo)=b  imply

X(Kg)=x(Kg) -

To determine whether or not the unique partial solution exists,
we employ the reduced row echelon form (RREF). A matrix is
said to be in the row echelon form [15] if

1) all its nonzero rows are above any rows of all zeros;

2) each leading entry of a row is in a column to the right of

the leading entry of the row above it and

3) all its entries in a column below a leading entry are zeros.
A matrix AR, is said to be in the RREF [15] of A if

1) itisin row echelon form;

2) its leading entry in each nonzero row is 1 and

3) each leading 1 is the only nonzero entry in its column.

Lemma 2.1 [14]: A matrix A can be transferred to its
reduced row echelon form AR, by left-multiplying a unique
nonsingular matrix T : TA= AR, where T = E,E,,---E; and
E,, E,, ..., E isafinite sequence of row elementary matrices.

Theorem 2.1: System (1) admits the unique partial solution
for a single variable x;, je{L .., n}, if and only if there exists

arow af in AR, iefl, .., m}, suchthat a¥ =ef.

and

Proof: It follows from Lemma 2.1 that system (1) is row-
equivalent to
ARX =DbR | 4)
which preserves the solution of the system. Consider one row
of (4): aR x=bR, which is
af X, +af X, +---+af x; +---+afx, =bf. ®)

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Let Ky ={j}. If af (K;)=af =1 and a} (K_q)=0, that is,
ak=[0--0 1 0--0]=el, (6)

m j—thentry zero entry
then x; =bR is obtained from (5). Thus, x; is uniquely
determined if (6) holds. On the other hand, if (6) fails, that is
al =e] forall iedl, .., m}, then we claim that x; cannot be

solved from (4). It breaks to the following two cases.
e Case 1. af =e] forall ie{l, .., j}. There are further two

situations.
i) af =0and there exists at least one element af in aff

such that af #0, ke{l,..,n} and k= j. Then (5)
8 x; +afi X+ AR (Kx(Kq) =bR
Kq ={]J.k}. The above single equation has two unknowns
with nonzero af and af , and it cannot uniquely

becomes where

determine x; .
i) af =0. Then (5) contains no term with x; and it
cannot determine x; .

e Case2: al =¢] forall i e{j+1,...,m}. The specific format
of RREF indicates af =0 for all i e{j+1,...,m}. Then (5)
contains no term with x; and it cannot determine x; .

The proof is completed. ]

Theorem 2.2: System (1) admits the unique partial solution
for asingle variable x;, je{l .., n}, thatis, K, ={j}, if and
only if

rank(A(K_q)) =rank(A)-1. @)
Proof: By Theorem 2.1, x; for Kq={j} is uniquely

determined in the system if and only if there exists arow in AR
such that aft =e] . This condition is equivalent to

rank(AR (K_q)) =rank(AR)-1, (8)
since AR (K_q) is formed by deleting the j-th column of AR and
its independent columns are exactly one less than those of AR
Note that AR (K_q) —ARM and M =[e;,&,,...,€ 1,81 ....€] .

By Lemma 2.1, there exists a unique nonsingular matrix T such
that TA=AR . Then it follows that TAM = ARM or

TA(K_q) = AR (K_q) . Since the elementary row operations do
not change the rank of the matrix, we have

rank (AR ) = rank (A), 9
and
rank(AR (K_q)) = rank(A(K_q)) : (10)
Equations (8)-(10) yield (7). The proof is completed. a

By Theorem 2.2, we can check the existence of the unique
partial solution and find which variables can be identified in the
system. Algorithm 1 shows how this is done.
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Algorithm 1 Find Unigque Maximum Partial Solution

1: InputAand b;let K, =& ;

2: forj=1ton, Ki ={j}

3 if rank(A(W)) =rank(A)-1 then K, = K, U{j}
4: Output K,

We use an example to illustrate Algorithm 1.
Example 2.1: Consider a 4x5 linear system with

12 5-2 3 5
|24 33 86| ., |-3

A=l'3 g4 5-9|'P=| g 11
3.6 8-5 9 2

Note that n=5 and rank(A):B. The iterative process of
Algorithm 1 is shown in Table I.

TABLE |. EXAMPLE 2.1 WITH ALGORITHM 1

i| Ki rank(A(W)) rank(A(W)) =rank(A)-1| K,
1 | {8 3 False &
2 | {Z 3 False )
3 | {3 2 True {3}
4 | {4} 2 True {3.4}
5 | {5} 3 False {3,4}

Finally, output K, ={3,4}, and [X X]" can be uniquely

determined in the system. The algorithm ends.

Theorem 2.2 can be extended to the multivariable case as
follows.

Theorem 2.3: System (1) admits the unique partial solution

for Ky ={ki,kz,....kq} if and only if

rank(A(K_q)) =rank(A)-q.

Proof: System (1) admits the unique partial solution for

Kq ={ke, Ko,.... Ko}, that is, for 1=1,2,...,q, %, is uniquely

determined in the system. By Theorem 2.1, this is equivalent to
there exists some row aft in AR, such that a® =e] , or

(12)

rank(AR (K_q)) =rank(AR)-q. (13)

This is because AR (K_q) is formed by deleting the columns
af ., af, , ....,af of AR and these q columns are mutually

independent. Thus, the independent columns of AR (K_q) are
exactly g less than those of AR. Note that AR (K_q): ARM

where M = In(K_q). Likewise, (9) and (10) still hold in this

multivariable case. Then equations (9), (10) and (13) yield (12).
The proof is completed. o
To illustrate Theorem 2.3, consider again the system in (11).
Let Kq ={3,4} with gq=2. Then one sees
-1-2 3
-2 -4 6
3 69
-3-6 9
which has three columns proportional to each other, indicating

A(Kq)=[as a as]=

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

rank(A(K_q)) =1=rank(A)-q.

This is the same solution as the one obtained from Theorem 2.2.

I11. MINIMUM REALIZATION OF THE UNIQUE FULL SOLUTION

If the system (1) admits the unique partial solution but no
unique full solution, some variables cannot be determined.
Additional measurements should be made to find other
variables. But the new measurement equations should create
new information in the sense that they can be used to find all
the variables uniquely, and the cost for doing so should be
minimized. This leads to the problem of the minimum
realization of the unique full solution of a given system.

We consider adding a row to (1) at a time to find more
variables. Suppose that a new measurement on X is made,

which gives a new equation a,... X =hy,,; . Stack it with (1) as

AXx=B,, where
A b
Al - |:am+l~:| ' Bl - [bm+1:| '

We give an algorithm to construct additional equations for the
unique full solution of a system. Specifically, we search from
j=1. If x; is uniquely determined in the current system,

Ax =D, according to Theorem 2.2, proceed to j +1; otherwise
augment A with e] asthe last row and get a new measurement

b1, SO that the last equation of the newly formed system has
the unique solution for x;, and there holds

rank[e'ﬂzrank(A)+1.

In the end of the search, with n—rank(A) additional equations,
the final system will have full rank and a unique full solution.
Algorithm 2 shows the steps of getting the unique full solution.

Algorithm 2 Find Unique Full Solution
1: InputAand b

2: Setl=0,A0:A, B, =h

3: forj=1ton, Iﬂz{j}

4: if rank(A (K 1)) =rank(A) then
I=1+1, A :[’:;Jfl] B :[an:ﬂ

5: if rank(A):n then

6: break

7: Solve Ax =B,

8: Output x

To illustrate Algorithm 2, consider again the system in (11).
Let =0, A,=Aand By=b. Note that m=4, n=5 and
rank (A) = 3. The procedure of iterations is shown in Table II.

TABLE Il. EXAMPLE 2.1 WITH ALGORITHM 2

i | Ki rank(A(KJ)) I A B rank(A)=n
=rank(A)

1| & True 1 |[mer]]| [Bobs] False

2 | {2 True 2 |[A ezT]T [Bibs ] True
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Because rank(A;)=5=n, then one comes out of the loop.

Based on the above analysis, two additional measurements bs
and be are required to determine the other sources. For example,
let by=hbs=1. Finally, by solving the full-rank system
A,x=B, , the unique full solution X is obtained as

x=[11210].

IV. APPLICATIONS

In this section, two reduced-scale cases of real-life industrial
networks are presented due to limited space.

Example 4.1: Consider the circuit in Fig. 1. There are 10
current sources i, ~ ;o to be determined in this circuit. Let
x=[i, i, ... i,]" . Ri~ Rs are the resistors with resistance values
40, 3Q, 10, 2Q and 4Q. The measurements are the voltage
across the resistors: [y V, ... V5]=[24 27 15 -12 16] (V).
The parameter settings of the circuit are taken within actual
ranges of the components (resistors and sources) with possibly
simple values solely for illustration of the proposed theory and
algorithm.

I iZ Rz
) . ) —
o @ T
+ L& +
R, CT I3 (T iy [] R;
iS - ig :R4 B
15

D @[

1‘3 ig - 1‘10
) o) )
7 Z )
Fig. 1. Circuit with 10 current sources i, ~ iy .

-

Apply the Kirchhoff's Current Law (KCL) to each node, a
system in (1) is obtained with
4 4 24
3 3 27
3 18
-1 -1 -1 0
—24 1.
-4 4 -8
-18
-1 1-1 0
4 -4 -16

where the blank parts of the above matrix are zero. Note that
m=9, n=10 and rank(A)=8. We first use Algorithm 1 to
find which current source can be uniquely determined. The
iterative steps of the algorithm are shown in Table I1l. Finally,
output Ky ={4,9,10} which means i,, iy and i, are uniquely
determined. Then we use Algorithm 2 to determine all the
sources. Let =0, Ay = A and B, =b. The iterative process
is illustrated in Table 1V.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4
TABLE 1. EXAMPLE 4.1 WITH ALGORITHM 1

i| K rank(A(ﬁ)) rank(A(m)) =rank(A)-1| K,

1 | {3 8 False %)

2 | {2} 8 False %)

3 | {3 8 False %]

4 | {4} 7 True {4}

5 | {5} 8 False {4}

: : 8 False {4}

8 | {8} 8 False {4}

9 | {9 7 True {4,9}
10 | {10} 7 True {4,9,10}

TABLE IV. EXAMPLE 4.1 WITH ALGORITHM 2
Ki
i| ki ra”k(A(K )) | A B | rank(A)=n
=rank(A)
1| 4 True 1| e;]T [Bobo]|  False
2 | {& False 1 [pbe;]T [Bobo]'|  False
False 1| elTJT [Bobyo]'|  False
5 | {5 True 2 |[mer JT [Bibu] True

Because rank(A,) =10=n, then one comes out of the loop.
Based on the above analysis, two additional measurements bio
and by, are required to determine the other current sources. For
example, let the new measurements [b, bi;]=[8 -5] . By
solving the full-rank system A,x=B,, we identify all the
current sources in the circuit:
X=[i, i, ... 1,]' =[8276 -554-3-7-3].

Example 4.2: Consider an STE problem in a CIP. There are
10 sources (Si~Si) Wwith emission rate X=[X X, ... Xo]'
(mg/s) monitored by 6 receptors (M1~Msg) (shown in Fig. 2).
The wind speed is 1m/s and the direction is parallel to the
positive X-axis.

200

S, %X Source
180 1 x A Receptor | ]
S,
160 -
2 M S M
1 M3 4 Ae
140 | AN = s
— s *
£ 120} = M,
> 100 A
r M
2
S, VNN Sy
80| % &
S S
6 10
60 s, 2
X
40
50 100 150 200 250 300
X(m)

Fig. 2. Locations of 10 sources and 6 receptors.
The model in the form of (1) is obtained [9] with

86 96 45222 29211383799 3437 6659

144 72186539284 36 5182 00 4899
A—|296 15 0 0 0 00 0 00,_11963/ ;4
/698 1 0 0 0O 00O O 0072260 '

0832 0 0 0 00 O 00O 1951

084 0 0 0 00 O 0O 2003
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where b is the measurements (ng/m®). Note that m=6,
n=10 and rank(A)=4 . We first use Algorithm 1 to check

which source can be identified and the execution process is
illustrated in Table V. Finally, output K, ={1,2} , and the

emission sources x, and x, are uniquely determined. Next we

use Algorithm 2 to determine all the source terms. Let 1 =0,
A, = A and B, =b. The iterative steps are shown in Table VI.

TABLE V. EXAMPLE 4.2 WITH ALGORITHM 1

i | K rank(A(ﬁ)) rank(A(W)) =rank(A)-1| K,
1|4 3 True {3
2 | {2} 3 True {L 2}
3 | {3} 4 False {12}
: : 4 False {4 2}
10 | {10} 4 False {12
TABLE VI. EXAMPLE 4.2 WITH ALGORITHM 2
Ki
j K rank(A(K )) | A B rank(A)=n
=rank(A)
1| False 0 Ay Bo False
2 | {2 False 0 A Bo False
3 [ {3 True 1 |[mel]|[Bobr]'| False
4 | {4 True 2 |[A eHT [BL bg]T False
5 | 5 True 3 |[mel]|[Bbo]| False
6 | {6} True 4 | [n eg]T [Bsbo]'|  False
7 | {1} True 5 |[Ace] JT [Bybu]'|  False
8 | {8 False 5 |[Ace] ]T [Byby]'|  False
9 | {9 True 6 |[Ael]|[Bsbo]|  True

Because rank(As) =10 =n, then one exits the loop. Based on
the above analysis, six additional measurements bs~bi, are
required to determine the other sources. For example, let

[b; by - by, |=[4132 3901 2323 2761 2578 3374].

By solving the full-rank system Agx = Bg, all the source terms
are obtained as

X= [3234 2345 4132 3901 2323 2761 2578 3415 3374 2004]T .

V. CONCLUSION

In this paper, we have addressed partial and full detection of
the source terms in linear systems. We have analyzed the
existence of the partially unique solution for a linear system and
proposed an algorithm to identify the maximum set of the
unique partial solution. Furthermore, we have developed an
algorithm to achieve the minimum realization of a unique full
solution with additional measurements. The proposed methods
have been demonstrated through examples and applied to a
circuit analysis problem and an STE problem.
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