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Partial and Full Detection of Source Terms 

Liang Zhang, Qing-Guo Wang and Shuang-Hua Yang 
 

  Abstract—In modern industrial networks, important source 

terms are monitored during operations. Due to the shortage of 

sensors or changes of components and connections, all the source 

terms may not be uniquely detected. This paper is dealt with the 

problem of partial and full detection of source terms in linear 

systems. The existence of a partially unique solution for a linear 

system is analyzed and an algorithm is proposed to identify the 

maximum set of unique partial solutions. Furthermore, an 

algorithm is developed to achieve the minimum realization of a 

unique full solution with additional measurements. The proposed 

methods are demonstrated through numerical examples and 

applied to a circuit analysis problem and a source term estimation 

problem in chemical industrial parks. 

 
Index Terms— source terms detection, system monitoring, linear 

circuit systems, networks, unique partial solution 

I. INTRODUCTION 

N a modern power grid, there could be many energy 

sources and devices. The grid controller will monitor all its 

components with real-time measurements and assess their 

conditions. The electrical model of the system can be built 

with the circuit analysis [1], [2], and the source terms are 

monitored. In large and complex networks, identifying all the 

source terms is required but might be impossible in some 

situations such as the presence of load uncertainty [3]-[5] and 

limited availability of measurements [6], [7]. It is noted that it 

is still possible and meaningful to find some source terms in the 

network with the current information, and further to determine 

all the source terms with additional information.  

The same detection problem appears in air pollution source 

term estimation (STE) in chemical industrial parks (CIPs) [8]. 

STE is to estimate the source parameters, such as source 

emission rates and source locations, using the real-time 

concentration measurements, meteorological conditions and 

other information. However, the number of ambient 

concentration sensors is insufficient compared with the air 

pollution sources in CIPs [8]-[11]. Because of this sensor 

deficiency, the unknown source parameters do not have a 

unique solution.  

It can be seen from the above examples and many others that 

a common technical problem encountered in scientific or 

industrial applications involves solving a linear system at some 

stage and in practice, the system may not have a unique solution 

[3]-[11]. In general, consider a linear system of m equations in 
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n unknowns,  

 Ax b= , (1) 

where m nA  , 
1nx   and 

1mb  . In this paper, we 

assume that the system is consistent [14], that is, it always has 

at least one solution and thus meets the following condition, 

 ( )  ( )rank rankA A b= , (2) 

where   Ab  is the augmented matrix of the linear system. It is 

well known that (1) has a unique solution if and only if  

 ( )  ( )rank rankA A b n= = .  (3) 

In practice, it is possible that a system fails (3) and does not 

have a unique solution, that is, one cannot determine all 

variables uniquely. The methods for source term detection 

under deficient measurements in [8] and [11] reduce the number 

of variables by clustering the variables into a smaller number of 

equivalent variables for the unique solution. They have altered 

the underlying structure of the original system and the solution 

is not for the original variables. The compressed sensing [12] 

searches for the sparsest solution to the underdetermined 

system (m<n), and the iteratively re-weighted least squares 

method [13] can solve this problem. The methods in [9] and [10] 

augment the number of measurements (equations) at various 

times and locations to determine all the variables of the system. 
In engineering practice, it is interesting and useful to consider a 

general system with no constraint on m, n or x, and uniquely 

determine the maximal number of the variables with no change 

on the current system when it has no unique solution for all its 

variables. In this paper, we term these uniquely determined 

variables as “unique partial solution”, develop the complete 

theory and algorithm for finding the unique partial solution, and 

also provide a method to obtain all the system variables with 

the minimum number of additional measurements. The 

contributions of this paper are the notion of the unique partial 

solution of a general linear system, a necessary and sufficient 

condition for the existence of the unique partial solution, an 

algorithm for finding the unique partial solution, and a 

minimum realization of a unique full solution of the system 

with additional measurements.  

The rest of this paper is organized as follows. Section II 

defines the unique partial solution of a linear system and 

analyses the unique partial solution for the system. Section III 

develops a method to determine the full unique solution with 

minimum additional equations. Section IV applies the new 
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theory to the detection of sources in a circuit and an STE 

problem. Section V concludes this paper. 

Notation: je  donates the j-th column of the identity matrix 

nI . For any positive integers n  and q ,  q n , let 

 1, 2, , n= N ,  1 2, , ,q qK k k k=   N  and define   

 1 2, , ,q q q q nK K k k k+ += − = N  as the complementary set of 

qK  in N . Note that 1i ik k +  and i jk k  if i j . For any 

vector nx  , let 

 ( )
1

2

q

k

k
q

k

x
x

x K

x

 
 

=  
 
 

, ( )
1

2

q

q

n

k

k
q

k

x

x
x K

x

+

+

 
 

=  
 
 

, ( )
1

2
q q

n

x
x

x K K x

x

 
 

= = 
 
 

.  

Partition an  m n  matrix A  as 

    
T

1 2 1 2n mA a a a a a a     = = ,       

where ia  is the i-th column of A  and ja   is the j-th row of A . 

Let ( ) 1 2
[ ]

qq k k kA K a a a  = , ( ) 1 2
[ ]

q q nq k k kA K a a a
+ +  =  

and it follows that ( ) ( ) ( ) ( )q q q qAx A K x K A K x K= + .   

II. UNIQUE PARTIAL SOLUTION 

The definition of the unique partial solution is given as 

follows. 

Definition 2.1: System (1) under (2) is said to have the 

unique partial solution if there exists q1K  and q2K  such that 

( )q1 q1Ax K K b=  and ( )2q2 qAx K K b=  imply 

( ) ( )q1 q2x K x K= . 

To determine whether or not the unique partial solution exists, 

we employ the reduced row echelon form (RREF). A matrix is 

said to be in the row echelon form [15] if  

1) all its nonzero rows are above any rows of all zeros; 

2) each leading entry of a row is in a column to the right of 

the leading entry of the row above it and 

3) all its entries in a column below a leading entry are zeros.                                                                         

A matrix RA , is said to be in the RREF [15] of A  if  

1) it is in row echelon form; 

2) its leading entry in each nonzero row is 1 and  

3) each leading 1 is the only nonzero entry in its column. 

Lemma 2.1 [14]: A matrix A  can be transferred to its 

reduced row echelon form RA , by left-multiplying a unique 

nonsingular matrix T : RTA A= , where 1 1k kT E E E−=  and 

1E , 2E , …, kE  is a finite sequence of row elementary matrices. 

Theorem 2.1: System (1) admits the unique partial solution 

for a single variable jx , {1, ..., }j n , if and only if there exists 

a row R
ia   in R ,A {1, ..., }i m ,  such that R T

i ja e = .  

Proof: It follows from Lemma 2.1 that system (1) is row-

equivalent to  

 R RA x b= ,  (4) 

which preserves the solution of the system. Consider one row 

of (4): R R i ia x b = , which is 

 R R R R
1 21 2      R

j nij in ii ia x a x a x a x b+ + + + + = .  (5) 

Let { }qK j= . If ( )R R 1qi ija K a = =  and ( )R 0qia K = ,  that is,  

 R T

th entryzero entry zero entry

[0 0 1 0 0]i j

j

a e

−

= = ,  (6) 

then R
j ix b=  is obtained from (5). Thus, jx  is uniquely 

determined if (6) holds. On the other hand, if (6) fails, that is 
R T
i ja e   for all {1, ..., }i m , then we claim that jx  cannot be 

solved from (4). It breaks to the following two cases.  

• Case 1: R T
i ja e   for all {1, ..., }i j . There are further two 

situations.  

i) R 0ija  and there exists at least one element R
ika  in R

ia   

such that R 0ika  , {1, ..., }k n  and .k j  Then (5) 

becomes R R RR ( ) ( )j k q qij iika x a x A K x K b+ + = , where 

{ , }qK j k= . The above single equation has two unknowns 

with nonzero R
ija  and R

ika , and it cannot uniquely 

determine jx .  

ii)  R 0ija = . Then (5) contains no term with jx  and it 

cannot determine jx .  

• Case 2: R T
i ja e   for all { 1,..., }i j m + . The specific format 

of RREF indicates R 0ija =  for all { 1,..., }i j m + . Then (5) 

contains no term with jx  and it cannot determine jx . 

The proof is completed.                  □    

Theorem 2.2: System (1) admits the unique partial solution 

for a single variable jx , {1, ..., }j n , that is, { }qK j= , if and 

only if  

 ( )( ) ( )rank rank 1qA K A= − .  (7) 

Proof: By Theorem 2.1, jx  for { }qK j= is uniquely 

determined in the system if and only if there exists a row in RA  

such that  R T
i ja e = . This condition is equivalent to  

 ( )( ) ( )R Rrank rank 1qA K A= − , (8) 

since ( )R  qA K is formed by deleting the j-th column of RA  and 

its independent columns are exactly one less than those of RA . 

Note that ( )R R
qA K A M=  and 1 2 1 1,[ , , , , , ]j j nM e e e e e− +=   . 

By Lemma 2.1, there exists a unique nonsingular matrix T such 

that RTA A= . Then it follows that RTAM MA= or

( ) ( )R  q qTA K A K= . Since the elementary row operations do 

not change the rank of the matrix, we have 

 ( ) ( )Rrank rankA A= , (9) 

and  

 ( )( ) ( )( )Rrank rankq qA K A K= . (10) 

Equations (8)-(10) yield (7). The proof is completed.  □  

By Theorem 2.2, we can check the existence of the unique 

partial solution and find which variables can be identified in the 

system. Algorithm 1 shows how this is done.   

 

 

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3311814

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



3 

TCAS-II-17750-2023.R1 

 

Algorithm 1 Find Unique Maximum Partial Solution 

1:  Input A and b ; let   qK =   ; 

2:  for j = 1 to n, { }jK j=  

3:       if  ( )( ) ( )rank rank 1jA K A= −  then }{q qK K j=  

4:  Output  qK  

We use an example to illustrate Algorithm 1.  

Example 2.1: Consider a 4 5  linear system with 

 

1 2 5 2 3
2 4 3 3 6
3 6 4 5 9
3 6 8 5 9

A

− − − 
− − − 

=
 − −
 − − − 

, 

5
3

.
6
2

b

 
− 

=
 
  

   (11) 

Note that 5n =  and ( )rank 3A = . The iterative process of 

Algorithm 1 is shown in Table I.  

TABLE I. EXAMPLE 2.1 WITH ALGORITHM 1 

j  jK  ( )( )rank jA K  ( )( ) ( )rank rank 1jA K A= −  qK  

1 {1}  3 False   

2 {2}  
3 False   

3 {3}  2 True {3}  
4 {4}  

2 True {3,4}  
5 {5}  3 False {3,4}  

Finally, output {3,4}qK = , and T
3 4[ ]x x  can be uniquely 

determined in the system. The algorithm ends. 

Theorem 2.2 can be extended to the multivariable case as 

follows.  

Theorem 2.3: System (1) admits the unique partial solution 

for  1 2, ,...,q qK k k k=  if and only if 

 ( )( ) ( )rank rankqA K A q= − .  (12) 

 Proof: System (1) admits the unique partial solution for 

1 2{ , ,... , }q qK k k k= , that is, for 1, 2,...,l q= , 
lkx  is uniquely 

determined in the system. By Theorem 2.1, this is equivalent to 

there exists some row R
ia   in R ,A such that R T

li ka e = , or   

 ( )( ) ( )R Rrank rankqA K A q= − . (13) 

This is because ( )R  qA K is formed by deleting the columns 

1

R
ka

, 
2

R
ka

, …, R
qka  of RA  and these q  columns are mutually 

independent. Thus, the independent columns of ( )R
qA K  are 

exactly q  less than those of RA . Note that ( )R R
qA K A M= , 

where ( )n qM I K= . Likewise, (9) and (10) still hold in this 

multivariable case. Then equations (9), (10) and (13) yield (12). 

The proof is completed.  □                                                            

To illustrate Theorem 2.3, consider again the system in (11). 

Let {3,4}qK =  with 2q = . Then one sees 

( )  1 2 5

3

1 2 3
2 4 6
3

6
6 9

9

qA K a a a  

− − 
− − 

= =
 −
  − −

, 

which has three columns proportional to each other, indicating 

 ( )( ) ( )rank 1 rankqA K A q= = − .    

This is the same solution as the one obtained from Theorem 2.2. 

III. MINIMUM REALIZATION OF THE UNIQUE FULL SOLUTION 

If the system (1) admits the unique partial solution but no 

unique full solution, some variables cannot be determined. 

Additional measurements should be made to find other 

variables. But the new measurement equations should create 

new information in the sense that they can be used to find all 

the variables uniquely, and the cost for doing so should be 

minimized. This leads to the problem of the minimum 

realization of the unique full solution of a given system.  

We consider adding a row to (1) at a time to find more 

variables. Suppose that a new measurement on x  is made, 

which gives a new equation  1 1m ma x b+  +=  . Stack it with (1) as 

1 1A x B= , where 

1
1m

A
A

a + 

 =
  

, 1
1m

b
B

b +

 =
  

. 

We give an algorithm to construct additional equations for the 

unique full solution of a system. Specifically, we search from 

1j = . If jx  is uniquely determined in the current system, 

Ax b= , according to Theorem 2.2, proceed to 1j + ; otherwise 

augment A  with T
je  as the last row and get a new measurement 

1mb + , so that the last equation of the newly formed system has 

the unique solution for jx , and there holds 

( )Trank rank 1
j

A
A

e
 

= +
  

. 

In the end of the search, with ( )rankn A−  additional equations, 

the final system will have full rank and a unique full solution. 

Algorithm 2 shows the steps of getting the unique full solution. 

Algorithm 2 Find Unique Full Solution 

1:  Input A and b  

2:  Set 0l = , 0A A= , 0B b=  

3:  for j = 1 to n, { }jK j=   

4:        if rank( ( )) rank( )l l
jA K A=  then 

                1l l= + , 1
T
l

l
j

A
A e

− =
  

, 1

m
l

l

lBB
b

−

+

 =
  

 

5:              if  ( )rank lA n=  then  

6:                    break  

7:  Solve l lA x B=                              

8:  Output  x  

To illustrate Algorithm 2, consider again the system in (11). 

Let 0l = , 0A A= and 0B b= . Note that 4m = , 5n =  and 

( )rank 3A = . The procedure of iterations is shown in Table II. 

TABLE II. EXAMPLE 2.1 WITH ALGORITHM 2 

j  jK  
( )( )

( )

rank

rank

l

l

jA

A

K

=
 l  lA  lB  ( )rank lA n=  

1 {1}  True 1 
T

T
0 1A e 

   
T

0 5B b    False 

2 {2}  True 2 
T

1
T
2A e 

 
 

T
1 6B b    

True 
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Because 2rank( ) 5A n= = , then one comes out of the loop. 

Based on the above analysis, two additional measurements b5 

and b6 are required to determine the other sources. For example, 

let 5 6 1b b= = . Finally, by solving the full-rank system 

2 2A x B= , the unique full solution x  is obtained as 
T[1 1 2 1 0]x = . 

IV. APPLICATIONS 

 In this section, two reduced-scale cases of real-life industrial 

networks are presented due to limited space. 

Example 4.1: Consider the circuit in Fig. 1. There are 10 

current sources 1 10~i i  to be determined in this circuit. Let 
T

1 2 10[ ... ]i i ix = . R1~ R5 are the resistors with resistance values 

4Ω, 3Ω, 1Ω, 2Ω and 4Ω.  The measurements are the voltage 

across the resistors: 2 51[ ] [24 27 15 12 16]V V ... V = −  (V). 

The parameter settings of the circuit are taken within actual 

ranges of the components (resistors and sources) with possibly 

simple values solely for illustration of the proposed theory and 

algorithm. 

 
Fig. 1.  Circuit with 10 current sources 1 10~i i . 

Apply the Kirchhoff's Current Law (KCL) to each node, a 

system in (1) is obtained with  

 

4 4
3 3

3
1 1 1

, .4 4 4 24
4 4

2 2 8
1 1

24
27
18
0

8
1

1 0
4 4 16

A b

−   
   
   
   − − −
   = =− −
   − −
   −
   − −
   −  − 

−



 

where the blank parts of the above matrix are zero. Note that 

9m = , 10n =  and ( )rank 8A = . We first use Algorithm 1 to 

find which current source can be uniquely determined. The 

iterative steps of the algorithm are shown in Table III. Finally, 

output  4,9,10qK =  which means 4i , 9i  and 10i  are uniquely 

determined. Then we use Algorithm 2 to determine all the 

sources. Let 0l = , 0A A=  and 0B b= . The iterative process 

is illustrated in Table IV. 

TABLE III. EXAMPLE 4.1 WITH ALGORITHM 1  

j  jK  ( )( )rank jA K  ( )( ) ( )rank rank 1jA K A= −  qK  

1 {1}  8 False   

2 {2}  8 False   

3 {3}  8 False   

4 {4}  7 True {4}  
5 {5}  8 False {4}  

  8 False {4}  
8 {8}  8 False {4}  
9 {9}  7 True {4,9}  

10 {10}  7 True {4,9,10}  

TABLE IV. EXAMPLE 4.1 WITH ALGORITHM 2 

j  jK  
( )( )

( )

rank

rank

l

l

jA

A

K

=
 l  lA  lB  ( )rank lA n=  

1 {1}  True 1 
T

T
0 1A e 

   
T

0 10B b    False 

2 {2}  False 1 
T

T
0 1A e 

 
 

T
0 10B b    

False 

  False 1 
T

T
0 1A e 

 
 

T
0 10B b    

False 

5 {5}  True 2 
T

1
T
5A e 

   
T

1 11B b    
True 

Because 2rank( ) 10A n= = , then one comes out of the loop. 

Based on the above analysis, two additional measurements b10 

and b11 are required to determine the other current sources. For 

example, let the new measurements 10 11[ ] 8 ]5[b b = − . By 

solving the full-rank system 2 2A x B= , we identify all the 

current sources in the circuit: 
T T

1 2 10[ ... ] [8 2 7 6 5 3 7 35 4 ]x i i i= = −−−− . 

Example 4.2: Consider an STE problem in a CIP. There are 

10 sources (S1~S10) with emission rate
T

1 2 10[ ... ]x x x x=  

(mg/s) monitored by 6 receptors (M1~M6) (shown in Fig. 2). 

The wind speed is 1m/s and the direction is parallel to the 

positive X-axis. 

 
Fig. 2. Locations of 10 sources and 6 receptors. 

The model in the form of (1) is obtained [9] with   

3

86 96 45 222 343 6659
72 186 539 284 0 0

596 15 0 0 0 0 0 0 0 0 1963
1 0 0

,
0 0 0 0 0 0 2260

0 832 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3292 11 83 799 7
144 36 5 182 4899

, 10
698

1951
854 2003

A b

   
   
   

= =    
   
   
   
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where b  is the measurements (ng/m3). Note that 6m = , 

10n =  and ( )rank 4A = . We first use Algorithm 1 to check 

which source can be identified and the execution process is 

illustrated in Table V. Finally, output  1,2qK = , and the 

emission sources 1x  and 2x  are uniquely determined. Next we 

use Algorithm 2 to determine all the source terms. Let 0l = , 

0A A=  and 0B b= . The iterative steps are shown in Table VI. 

TABLE V. EXAMPLE 4.2 WITH ALGORITHM 1 

j  jK  ( )( )rank jA K  ( )( ) ( )rank rank 1jA K A= −  qK  

1 {1}  3 True {1}  
2 {2}  3 True {1, 2}  

3 {3}  4 False {1, 2}  

  4 False {1, 2}  

10 {10}  4 False {1, 2}  

TABLE VI. EXAMPLE 4.2 WITH ALGORITHM 2 

j  jK  
( )( )

( )

rank

rank

l

l

jA

A

K

=
 l  lA  lB  ( )rank lA n=  

1 {1}  False 0 0A  0B  False 

2 {2}  False 0 0A
 

0B
 

False 

3 {3}  True 1 
T

T
0 3A e 

 
 

T
0 7B b    

False 

4 {4}  True 2 
T

1
T
4A e 

 
 

T
1 8B b    

False 

5 {5}  True 3 
T

2
T
5A e 

   
T

2 9B b    
False 

6 {6}  True 4 
T

3
T
6A e 

   
T

3 10B b    
False 

7 {7}  True 5 
T

4
T
7A e 

   
T

4 11B b    
False 

8 {8}  False 5 
T

4
T
7A e 

   
T

4 11B b    
False 

9 {9}  True 6 
T

5
T
9A e 

   
T

5 12B b    
True 

Because 6rank( ) 10A n= = , then one exits the loop. Based on 

the above analysis, six additional measurements b7~b12 are 

required to determine the other sources. For example, let 

   17 8 2 4132 3901 2323 2761 2578 3374b b b = . 

By solving the full-rank system 6 6A x B= , all the source terms 

are obtained as  

 
T

3234 2345 4132 3901 2323 .2761 2578 3415 3374 2004x =  

V. CONCLUSION 

In this paper, we have addressed partial and full detection of 

the source terms in linear systems. We have analyzed the 

existence of the partially unique solution for a linear system and 

proposed an algorithm to identify the maximum set of the 

unique partial solution. Furthermore, we have developed an 

algorithm to achieve the minimum realization of a unique full 

solution with additional measurements. The proposed methods 

have been demonstrated through examples and applied to a 

circuit analysis problem and an STE problem. 
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