



**University of  
Reading**

**Department of Food and Nutritional  
Sciences**

**An investigation of saltiness perception of  
lysine and calcium lactate and their  
application in developing reduced salt meat  
products**

**Name:**

**Sijia Wang**

**Supervisor**

**Dr Qiaofen Cheng**

**Prof. Lisa Methven**

**Date**

**13/Feb/2023**

## Contents

|                                                                                                                      |           |
|----------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Abstract .....</b>                                                                                                | <b>7</b>  |
| <b>Chapter 1. Research update of sodium reduction in meat products with special focus on taste and flavour .....</b> | <b>9</b>  |
| <b>Abstract.....</b>                                                                                                 | <b>9</b>  |
| <b>1.1 Introduction.....</b>                                                                                         | <b>9</b>  |
| <b>1.2 Salty taste perception.....</b>                                                                               | <b>12</b> |
| <b>1.2.1 Salt perception and transduction .....</b>                                                                  | <b>14</b> |
| <b>1.2.1.1 The epithelial sodium channels (ENaCs) .....</b>                                                          | <b>15</b> |
| <b>1.2.1.2 Paracellular pathway .....</b>                                                                            | <b>16</b> |
| <b>1.2.2 The interaction between salt and other tastes .....</b>                                                     | <b>16</b> |
| <b>1.2.2.1 Interaction between saltiness and sourness .....</b>                                                      | <b>17</b> |
| <b>1.2.2.2 Interaction between saltiness and sweetness .....</b>                                                     | <b>18</b> |
| <b>1.2.2.3 Interaction between saltiness and bitterness .....</b>                                                    | <b>18</b> |
| <b>1.2.2.4 Interaction between saltiness and umami.....</b>                                                          | <b>19</b> |
| <b>1.3 Interaction between salt and flavour perception .....</b>                                                     | <b>20</b> |
| <b>1.3.1 Maillard Reaction .....</b>                                                                                 | <b>21</b> |
| <b>1.3.2 Lipid oxidation .....</b>                                                                                   | <b>23</b> |
| <b>1.4 Salt as key ingredient in meat processing .....</b>                                                           | <b>26</b> |
| <b>1.4.1 Formation of Meat Texture.....</b>                                                                          | <b>27</b> |
| <b>1.4.2 Salt as Preservative .....</b>                                                                              | <b>28</b> |
| <b>1.5 Strategies of sodium reduction in meat products.....</b>                                                      | <b>29</b> |
| <b>1.5.1 Reduction of salt content by stealth .....</b>                                                              | <b>30</b> |
| <b>1.5.2 Changing the physical form or distribution of salt.....</b>                                                 | <b>31</b> |
| <b>1.5.2.1 Changing the size/shape of salt crystal.....</b>                                                          | <b>31</b> |
| <b>1.5.2.2 Inhomogeneous salt distribution .....</b>                                                                 | <b>32</b> |
| <b>1.5.3 Alternative processing techniques .....</b>                                                                 | <b>33</b> |
| <b>1.5.3.1 High pressure treatment.....</b>                                                                          | <b>33</b> |
| <b>1.5.3.2 Ultrasound .....</b>                                                                                      | <b>35</b> |
| <b>1.5.3.3 Pulsed Electric Field Processing .....</b>                                                                | <b>37</b> |
| <b>1.5.4 Use of flavour enhancer and salt substitutes .....</b>                                                      | <b>39</b> |
| <b>1.5.4.1 Flavour enhancers.....</b>                                                                                | <b>39</b> |
| <b>1.5.4.1.1 Monosodium glutamate .....</b>                                                                          | <b>39</b> |
| <b>1.5.4.1.2 Yeast extract.....</b>                                                                                  | <b>40</b> |
| <b>1.5.4.2 Salt substitutes.....</b>                                                                                 | <b>41</b> |
| <b>1.5.4.2.1 Potassium chloride .....</b>                                                                            | <b>42</b> |
| <b>1.5.4.2.2 Lysine .....</b>                                                                                        | <b>43</b> |
| <b>1.5.4.2.3 Calcium lactate.....</b>                                                                                | <b>45</b> |
| <b>1.5.5 Challenges in reducing salt .....</b>                                                                       | <b>47</b> |
| <b>1.6 Conclusions.....</b>                                                                                          | <b>47</b> |

|                                                                                                                  |            |
|------------------------------------------------------------------------------------------------------------------|------------|
| <b>Reference .....</b>                                                                                           | <b>48</b>  |
| <b>Chapter 2. Interactions of umami with the four other basic tastes in equi-intense aqueous solutions .....</b> | <b>72</b>  |
| <b>Abstract.....</b>                                                                                             | <b>72</b>  |
| <b>2.1 Introduction.....</b>                                                                                     | <b>73</b>  |
| <b>2.2 Materials and Methods .....</b>                                                                           | <b>80</b>  |
| <b>2.2.1 Panelists .....</b>                                                                                     | <b>80</b>  |
| <b>2.2.2 Stimulus .....</b>                                                                                      | <b>81</b>  |
| <b>2.2.3 Training .....</b>                                                                                      | <b>81</b>  |
| <b>2.2.4 Tastants preparation .....</b>                                                                          | <b>82</b>  |
| <b>2.2.4.1 Experiment 1:MSG as the source of umami with sodium unbalanced (UB) .....</b>                         | <b>82</b>  |
| <b>2.2.4.2 Experiment 2: MSG as the source for umami with sodium balanced (B) .....</b>                          | <b>83</b>  |
| <b>2.2.4.3 Experiment 3: MPG as the source for umami.....</b>                                                    | <b>83</b>  |
| <b>2.2.5 Sensory evaluation .....</b>                                                                            | <b>85</b>  |
| <b>2.2.6 Data analysis.....</b>                                                                                  | <b>85</b>  |
| <b>2.3 Results .....</b>                                                                                         | <b>86</b>  |
| <b>2.3.1 Intensity of umami .....</b>                                                                            | <b>86</b>  |
| <b>2.3.2 Intensity of other tastes .....</b>                                                                     | <b>87</b>  |
| <b>2.3.3 Overall taste intensity .....</b>                                                                       | <b>88</b>  |
| <b>2.3.4 Taste interaction.....</b>                                                                              | <b>91</b>  |
| <b>2.4 Discussion .....</b>                                                                                      | <b>92</b>  |
| <b>2.5 Conclusions.....</b>                                                                                      | <b>99</b>  |
| <b>Acknowledgement .....</b>                                                                                     | <b>100</b> |
| <b>References.....</b>                                                                                           | <b>100</b> |
| <b>Chapter 3. Effect of lysine and calcium lactate on saltiness perception in an aqueous solution.....</b>       | <b>107</b> |
| <b>Abstract.....</b>                                                                                             | <b>107</b> |
| <b>3.1 Introduction.....</b>                                                                                     | <b>108</b> |
| <b>3.2 Materials and methods .....</b>                                                                           | <b>111</b> |
| <b>3.2.1 Panelists .....</b>                                                                                     | <b>111</b> |
| <b>3.2.2 Stimulus .....</b>                                                                                      | <b>112</b> |
| <b>3.2.3 Training .....</b>                                                                                      | <b>112</b> |
| <b>3.2.4 Tastants preparation .....</b>                                                                          | <b>113</b> |
| <b>3.2.4.1 Effect of lysine and calcium lactate on the perceived intensity of tastes.....</b>                    | <b>113</b> |
| <b>3.2.4.2 Relationship between concentration of composite solution and perceived taste intensity .....</b>      | <b>114</b> |
| <b>3.2.4.2.1 Varying concentration of composite solution with a fixed ratio between components.....</b>          | <b>114</b> |

|                                                                                                                                                               |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 3.2.4.2.2 Composite solution with varied lysine levels .....                                                                                                  | 115        |
| 3.2.3 Sensory evaluation .....                                                                                                                                | 116        |
| 3.2.4 Data analysis.....                                                                                                                                      | 117        |
| 3.3 Results .....                                                                                                                                             | 117        |
| 3.3.1 Saltiness perception of tastants.....                                                                                                                   | 117        |
| 3.3.2 Relationship between concentration of composite solution and perceived taste intensity .....                                                            | 120        |
| 3.3.2.1 Composite solution with fixed ratio of NaCl, lysine and calcium lactate.....                                                                          | 120        |
| 3.3.2.2 Composite solution with fixed ratio of NaCl and calcium lactate but varied level of lysine.....                                                       | 122        |
| 3.4 Discussion .....                                                                                                                                          | 124        |
| 3.4.1 Salty taste of lysine solution .....                                                                                                                    | 124        |
| 3.4.2 Bitter taste of calcium lactate and benefit/risk as salt substitute .....                                                                               | 125        |
| 3.4.3 Psychophysical function between the lysine-calcium composite solutions and taste.....                                                                   | 126        |
| 3.5 Conclusion .....                                                                                                                                          | 127        |
| Acknowledgement .....                                                                                                                                         | 128        |
| Reference .....                                                                                                                                               | 128        |
| <b>Chapter 4. Effect of lysine and calcium lactate in physicochemical characteristics, sensory properties and shelf-life in salt-reduced pork patty .....</b> | <b>134</b> |
| <b>Abstract.....</b>                                                                                                                                          | <b>134</b> |
| 4.1 Introduction.....                                                                                                                                         | 134        |
| 4.2 Material and methods.....                                                                                                                                 | 137        |
| 4.2.1 Pork raw meat.....                                                                                                                                      | 137        |
| 4.2.2 Experiment design .....                                                                                                                                 | 138        |
| 4.2.3 Preparation of pork patties .....                                                                                                                       | 139        |
| 4.2.4 Microbial analysis .....                                                                                                                                | 140        |
| 4.2.4.1 Water activity.....                                                                                                                                   | 140        |
| 4.2.4.2 pH .....                                                                                                                                              | 140        |
| 4.2.4.3 Total viable count (TVC) .....                                                                                                                        | 141        |
| 4.2.5 Physical-chemical characteristics of pork patties .....                                                                                                 | 141        |
| 4.2.5.1 Moisture content .....                                                                                                                                | 141        |
| 4.2.5.2 Yield .....                                                                                                                                           | 141        |
| 4.2.5.3 Water holding capacity.....                                                                                                                           | 141        |
| 4.2.5.4 Texture profile analysis .....                                                                                                                        | 142        |
| 4.2.5.6 Colour .....                                                                                                                                          | 143        |
| 4.2.6 Sensory evaluation .....                                                                                                                                | 143        |
| 4.2.7 Statistical analysis .....                                                                                                                              | 144        |
| 4.3 Results and discussion .....                                                                                                                              | 145        |

|         |                                                                                                                                                                    |            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.3.1   | Shelf Life .....                                                                                                                                                   | 145        |
| 4.3.1.1 | Water activity .....                                                                                                                                               | 148        |
| 4.3.1.2 | pH before cooking .....                                                                                                                                            | 151        |
| 4.3.1.3 | Total viable count.....                                                                                                                                            | 153        |
| 4.3.2   | Physical-chemical analysis .....                                                                                                                                   | 155        |
| 4.3.2.1 | pH after cooking.....                                                                                                                                              | 158        |
| 4.3.2.2 | Moisture content .....                                                                                                                                             | 159        |
| 4.3.2.3 | Yield .....                                                                                                                                                        | 159        |
| 4.3.2.4 | Water holding capacity.....                                                                                                                                        | 160        |
| 4.3.2.5 | Texture.....                                                                                                                                                       | 161        |
| 4.3.2.6 | Colour.....                                                                                                                                                        | 162        |
| 4.3.3   | Sensory evaluation .....                                                                                                                                           | 164        |
| 4.4     | Conclusion .....                                                                                                                                                   | 171        |
|         | Acknowledgement.....                                                                                                                                               | 172        |
|         | Reference .....                                                                                                                                                    | 173        |
|         | <b>Chapter 5. Effect of pH on physio-chemical characteristics and volatile flavour compounds in a salt-reduced pork patty with lysine and calcium lactate.....</b> | <b>182</b> |
|         | Abstract.....                                                                                                                                                      | 182        |
| 5.1     | Introduction.....                                                                                                                                                  | 183        |
| 5.2     | Methods and materials .....                                                                                                                                        | 186        |
| 5.2.1   | Raw pork meat .....                                                                                                                                                | 186        |
| 5.2.2   | Experiment design .....                                                                                                                                            | 186        |
| 5.2.3   | Preparation of pork patties .....                                                                                                                                  | 187        |
| 5.2.4   | Physical-chemical characteristics of pork patties .....                                                                                                            | 189        |
| 5.2.4.1 | pH .....                                                                                                                                                           | 189        |
| 5.2.4.2 | Moisture content .....                                                                                                                                             | 189        |
| 5.2.4.3 | Cooking loss.....                                                                                                                                                  | 189        |
| 5.2.4.4 | Colour.....                                                                                                                                                        | 189        |
| 5.2.5   | Analysis of volatile compounds.....                                                                                                                                | 189        |
| 5.2.6   | Statistical analysis .....                                                                                                                                         | 190        |
| 5.3     | Results and discussion .....                                                                                                                                       | 191        |
| 5.3.1   | Physical-chemical characteristics .....                                                                                                                            | 191        |
| 5.3.1.1 | pH .....                                                                                                                                                           | 193        |
| 5.3.1.2 | Moisture content .....                                                                                                                                             | 193        |
| 5.3.1.3 | Cooking loss.....                                                                                                                                                  | 194        |
| 5.3.1.4 | Colour.....                                                                                                                                                        | 195        |
| 5.3.2   | Volatile composition.....                                                                                                                                          | 197        |
| 5.4     | Conclusion .....                                                                                                                                                   | 206        |
|         | Acknowledgement.....                                                                                                                                               | 206        |
|         | Reference .....                                                                                                                                                    | 206        |
|         | <b>Chapter 6. General discussion and conclusion.....</b>                                                                                                           | <b>213</b> |
|         | Reference .....                                                                                                                                                    | 218        |

|                              |            |
|------------------------------|------------|
| <b>Acknowledgement .....</b> | <b>222</b> |
| <b>Statement .....</b>       | <b>223</b> |
| <b>Appendix .....</b>        | <b>224</b> |

1    **Abstract**

2    Excessive salt intake is associated with a growing risk of cardiovascular disease. In  
3    order to reduce salt levels in food, one of the popular strategies is to use other metallic  
4    salts to partially replace salt. However, this often causes a significant loss in saltiness,  
5    leads to additional tastes (i.e., bitter) and reduces shelf-life. According to previous  
6    research, lysine and calcium lactate may hold the key to solve this problem, and hence,  
7    enable successful salt substitution. This experiment aimed to explore whether lysine  
8    and calcium lactate can be used as salt substitutes and their effect on the quality of low-  
9    sodium meat products.

10   Since umami taste has been used widely in sodium reduction by enhancing flavour  
11   perception, therefore, this thesis first aimed to gain a better understanding of the  
12   interaction of the five basic taste sensations (sweetness, sourness, saltiness, bitterness,  
13   umami), and especially the role of umami in complex taste systems. A trained sensory  
14   panel was used to rate the taste intensity of equi-intense aqueous solutions. The results  
15   concluded that umami did not enhance or suppress the perception of any other taste,  
16   whereas sweetness, saltiness, sourness and bitterness significantly suppressed the  
17   perception of umami. Therefore, the study changed focus to consider whether lysine  
18   and calcium lactate could contribute to salty taste. In aqueous solution, calcium lactate  
19   did not offer saltiness, but 1% lysine produced weak saltiness. Overall, 1% lysine with  
20   or without 0.75% calcium lactate would replace 50% salt (NaCl) in solution system  
21   without compromising saltiness perception. The effects of lysine and calcium lactate as  
22   substitutes were further tested in a real food matrix (low-salt meat products).

23 Physicochemical characteristics, sensory properties and microbiological analysis were  
24 used to evaluate their effectiveness in salt-reduced pork patties. The results concluded  
25 that lysine increased the yield and calcium lactate improved shelf-life of a salt-reduced  
26 pork patty. Calcium lactate and lysine could offer effective way to reduce salt by 50%  
27 without compromising shelf life and eating quality. Because lysine, as a basic reactive  
28 amino acid, may be involved in Maillard reaction and modify the flavour profile of  
29 meat products during heating processing, thereby affecting the salty taste. So, gas  
30 chromatography-mass spectrometry (GC-MS) was used to study the volatile flavour  
31 compounds in salt-reduced pork patties in a range of meat pH (5.5 to 6.5). Results  
32 showed that Maillard reaction-related volatile flavour compounds were very low in the  
33 low salt patties prepared with lysine and calcium lactate under normal meat pH  
34 conditions, and the modification to flavour profile of cooked pork patty was minimum.  
35 To sum up, the combination of lysine and calcium lactate could be used as a new salt  
36 substitute in meat products offering comparable eating quality and shelf life to full salt  
37 products.

38 **Chapter 1 Research update of sodium reduction in meat products with special**  
39 **focus on taste and flavour**

40 **Abstract**

41 NaCl is one of the most important ingredients in meat products, and it has multi-  
42 functions including developing texture, improving taste/flavour and extending the shelf  
43 life amongst others. However, there is an increasing demand for salt reduction in meat  
44 products due to the health concern. In this literature review, the taste and flavour aspects  
45 of salt reduced meat products were critically reviewed according to the available salt  
46 reduction strategies for meat products. Saltiness is mainly perceived through epithelial  
47 sodium channels (ENaCs) and paracellular pathways, while other basic tastes including  
48 sourness, sweetness, bitterness and umami significantly affect the perception of  
49 saltiness in salt reduced food products at different extents, which may shed some light  
50 on developing new ingredients used in meat products for salt reduction, such as lysine,  
51 calcium lactate, MSG etc. Salt is also associated with flavor development in meat  
52 products via interference with lipid oxidation and Maillard reactions, which implies the  
53 changed flavor profile may risk the consumers' acceptance for salt reduced products.  
54 Current salt reduction strategies include reduction by stealth, changing physical  
55 form/distribution of the salt crystals, employing processing technologies and using  
56 flavour enhancers. In conclusion, successful salt reduction in meat products should take  
57 a collaborative approach by combining processing technologies, ingredients with  
58 manipulation of taste perception to achieve a desirable product for consumers.

59 **1.1 Introduction**

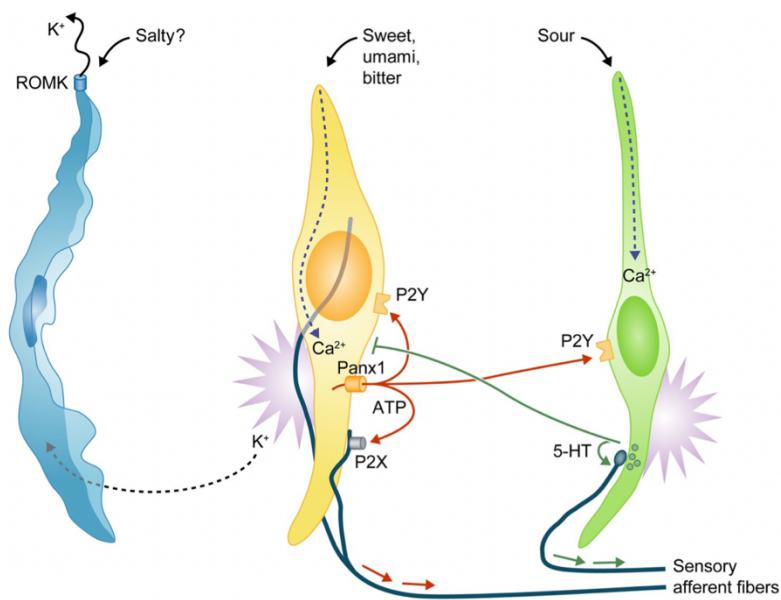
60 Saltiness is one of five taste qualities in taste perception, and the prototypical stimulus  
61 is sodium chloride (NaCl) (Dötsch *et al.*, 2009). It is one of the most frequently used  
62 food preservatives for extending the shelf-life of meat products and has been used for  
63 thousands of years. Salt also affects the flavour and texture of meat products. In addition  
64 to the perceived saltiness, salt brings out the characteristic taste of meat products,  
65 enhances the flavour, and improves the water and fat binding properties of the meat  
66 product, resulting in a desirable gelatinous texture after cooking (Liem Miremadi and  
67 Keast, 2011).

68 Sodium, the cation within table salt, is responsible of many physiological functions of  
69 the human body like acid-base balance, functioning of cells, transmission of nerve  
70 impulses and maintenance of plasma volume, because it is the main determinant of the  
71 volume of extracellular fluid and the major cation in extracellular fluid (Logan, 2006).

72 According to the recommendation of the World Health Organization (2020), the  
73 average sodium consumption should be approximately 2 g sodium per day (equivalent  
74 to about 5 g salt per day) for adults to maintain physiological functions. However,

75 Ashford, Jones and Collins (2020) reported that the average salt intake for age 19 to 64  
76 is estimated to be 9.2 g salt per day in men and 7.6 g salt per day in women in UK. A  
77 high sodium diet has been identified by the Global Burden of Disease as one of the two  
78 major dietary risk factors for disease along with high potassium diet. Epidemiology  
79 research showed that excessive intake of sodium led to a high risk of hypertension due  
80 to increase in blood pressure (Aaron and Sanders, 2013), while 49% of coronary heart  
81 disease and 62% of stroke are reported with association with high blood pressure (He

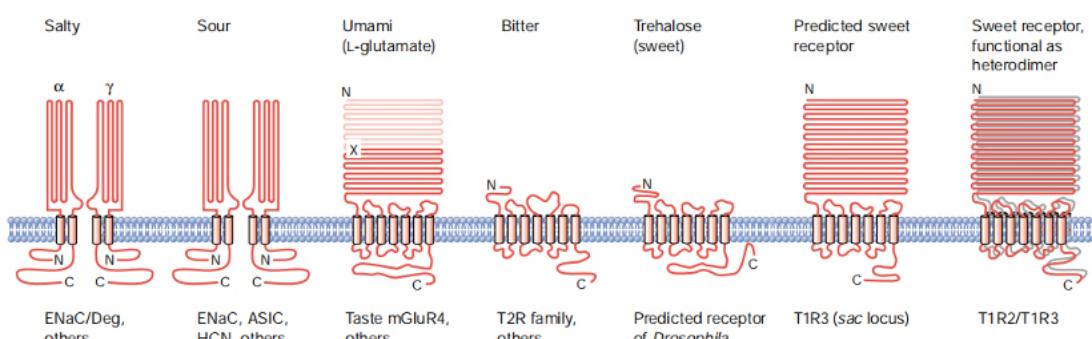
82 and MacGregor, 2010). If global salt consumption could fall to the recommended level,  
83 it was estimated that 2.5 million deaths could be avoided each year (WHO, 2020). In a  
84 typical western diet, natural foods only contribute to 10% to 12% of dietary sodium,  
85 while the main sources of dietary sodium intake are processed foods and foods eaten  
86 outside the home (Partearroyo *et al.*, 2019), among which 20% comes from meat  
87 products (Inguglia *et al.*, 2017). Naturally, salt is present in small quantities in fresh  
88 foods like meat, vegetables, and fruit, but salt levels would increase exponentially when  
89 foods are processed. For example, the fresh pork typically contains only about 0.18 g  
90 of salt per 100 g, but the salt content spikes to about 2.2 g per 100 g when it is processed  
91 into sausages, and even up to 2.7 g per 100g in cooked ham (Inguglia *et al.*, 2017).  
92 Therefore, reducing salt content in processed food products has attracted extensive  
93 attention in the past decades. To address the issues of high salt intake, Public Health  
94 England (2020) has set ideal salt content for various processed foods, for example, 2.59  
95 g of salt per 100 g should be targeted for bacon by the end of 2024, a reduction of 0.29  
96 g of salt per 100 g compared to 2019.


97 In past years, many literature reviews associated with salt reduction have been  
98 published with focus on the roles of salt in meat products, and/or the perception and  
99 sensory effects of salty taste along with evaluating the salt reduction strategies in food  
100 products. However, food is a complex system, and how tastants within the food matrix  
101 interact with each other and affect the efficiency in salt reduction was rarely addressed.  
102 Therefore, this work approached from this angle and summarized the theory  
103 understanding about taste/flavour perception of salt and its interaction with meat protein

104 and other tastes in order to provide theory exploration about the sodium reduction in  
105 meat products. The latest technologies for reducing the sodium content in processed  
106 meat products were also summarized and discussed to explore the novel salt substitutes  
107 for meat industry. The overall aim of this research project is to investigate the feasibility  
108 of lysine and calcium lactate as salt substitutes in developing salt reduced meat products.  
109 The effects of lysine and calcium lactate on saltiness perception within aqueous  
110 solutions were investigated first in order to elucidate their contribution to taste and taste  
111 interaction. Furthermore, lysine and calcium lactate were applied to a food matrix (pork  
112 patties) to assess their impacts on a broader range of properties; including processing  
113 properties, texture, colour, shelf life and flavour profile of final meat products. Finally,  
114 a recommendation was made to the food industry concerning the use of lysine and  
115 calcium lactate as novel salt substitutes in food products.

## 116 **1.2 Salty Taste perception**

117 The taste system is subserved by five taste qualities: sourness, sweetness, bitterness,  
118 umami and saltiness. Sourness is elicited by protons indicating acidic foods; sweetness  
119 is elicited by sugars indicating carbohydrates in foods; bitterness is often elicited by  
120 multiple bitter chemicals (such as propylthiouracil (PROP), quinine-hydrochloric acid  
121 (QHCl)) indicating the toxic compounds in foods; umami is elicited by glutamic acid  
122 and other amino acids indicating protein in foods; and saltiness is elicited by sodium  
123 content of foods (Keast and Breslin, 2003). Compounds taken into the oral cavity are  
124 detected through taste receptor cells (TRCs) that are aggregated into taste buds  
125 (Ishimaru, 2009). Taste bud has onion-like shape and is typically composed of 50–100


126 TRCs (Delay, Roper and Kinnamon, 1986). Observations from electron microscopy  
127 have revealed that the TRCs in each taste bud can be classified into four morphological  
128 types: type I (dark), type II (light) and type III (intermediate) cells with elongated and  
129 spindle shape (Figure 1.1), and basal, a nonpolarized, presumably undifferentiated cell,  
130 sometimes termed type IV (Chaudhari and Roper, 2010). Type II cells sense taste  
131 stimuli and type III cells transmit taste signals to sensory afferent nerve fibers, type IV  
132 cells are located at the bottom of the taste buds and are considered as progenitor cells  
133 of other types of TRCs (Suzuki, 2007). In general, bitter, sweet and umami stimuli are  
134 detected by type II cells, sour stimuli are detected by type III cells, where salty stimuli  
135 are undefined yet (Roper and Chaudhari, 2017).



136 **Type I glial-like cell** **Type II receptor cell** **Type III presynaptic cell**  
137 Figure 1.1 The three major classes of taste cells (Chaudhari and Roper, 2010). As it is unclear whether all Type IV  
138 in taste buds represent a common class of undifferentiated cells, no specific images are shown in this figure.

139 When food or drink enters the mouth, the chemicals in these foods will activate the taste  
140 receptors to produce chemical signals which are converted into electrical signals and  
141 then sent to the taste processing areas of the brain via the seventh, ninth and tenth cranial

142 afferent nerve fibres (Chandrashekhar *et al.*, 2006). Three of the five basic taste qualities,  
143 sweet, bitter and umami, are detected by two families of G protein-coupled receptors  
144 (GPCRs), i.e., T1Rs and T2Rs, which contain seven transmembrane domains. Sweet  
145 and umami compounds are detected through different combinations of T1R family  
146 members, and the sweet and umami taste receptors are T1R1 + T1R2 and T1R1 + T1R3  
147 heteromers respectively. Bitter compounds are detected by T2Rs, which contain 25  
148 members in humans. In contrast, sour and salty compounds are detected through ion  
149 channels (Lindemann, 2001). Figure 1.2 shows the detail of a plethora of proteins,  
150 including ion channels, ligand-gated channels, enzymes and GPCRs, serve as receptors  
151 for sensory qualities such as salty, sour, sweet, umami and bitter taste.



152  
153 Figure 1.2 The known primary structure of taste receptors (Lindemann, 2001).

### 154 1.2.1 Salt perception and transduction

155 Saltiness perception guides the incorporation of NaCl into the human diet, alongside  
156 other required minerals, and enable NaCl to provide essential functions in ion and water  
157 homeostasis (Lindemann, 1996). Although salt taste can be elicited by many ionic  
158 species, sodium ion ( $\text{Na}^+$ ) is predominantly responsible for the salt taste of most foods  
159 (Lindemann, 1997). Saltiness is a distinctive sensory quality primarily linked to sodium  
160 or lithium containing compounds, and other cations like potassium and calcium may

161 also exhibit salty taste, but it is not their dominant taste quality (Vanderklaauw and  
162 Smith, 1995). Salty taste transduction is complicated, and epithelial sodium channel  
163 (ENaCs) and paracellular pathway are considered as the most known sodium pathways  
164 for the perception of salty taste.

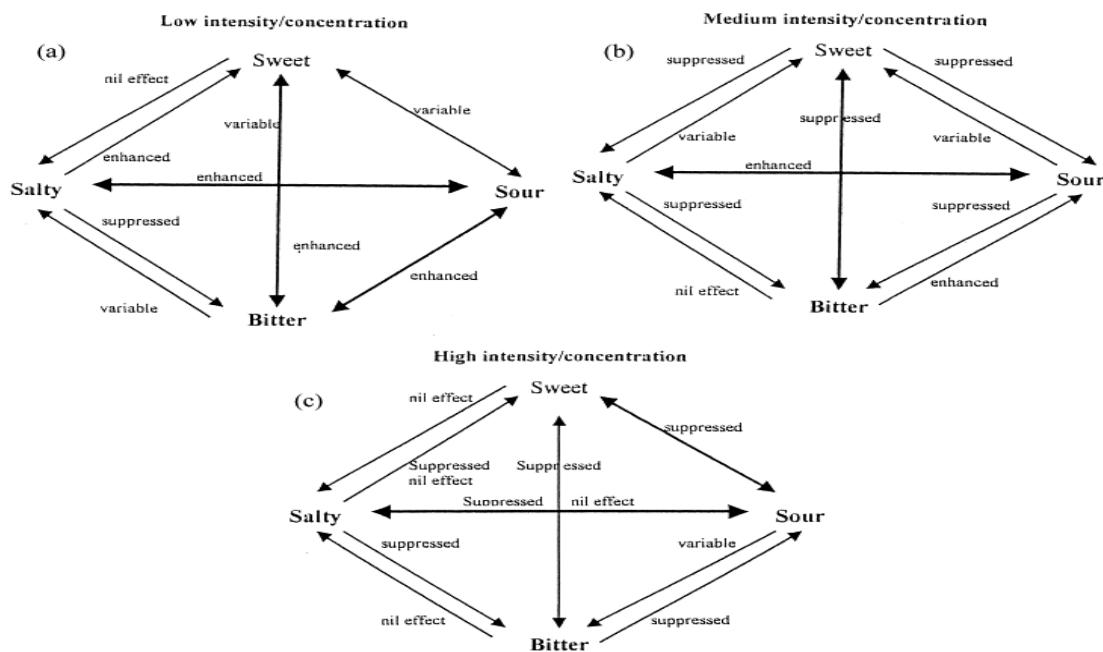
165 **1.2.1.1 The epithelial sodium channels (ENaCs)**

166 The amiloride-sensitive  $\text{Na}^+$  specific epithelial sodium channels (ENaCs) is considered  
167 as one of the most important receptors for saltiness perception. ENaCs allow primarily  
168 sodium (and lithium) dissolved in saliva to move in the taste receptor cell. In principle,  
169  $\text{Na}^+$  activates the ENaCs to produce electrical pulses which are then transmitted via the  
170 sensory neurons to the brain to form salty taste (Yamamoto and Ishimaru, 2013). At  
171 low sodium concentrations (detection threshold), the afferent signal may be too weak  
172 to produce a noticeable difference compared to a solution without sodium. As the  
173 sodium concentration increases, the intensity of the afferent signal will increase. When  
174 the sodium concentration is high enough (recognition threshold), it not only activates  
175 the taste receptors, but also produces electrical impulses which can be transmitted via  
176 sensory neurons to the brain where they are decoded and the quality of the taste can  
177 then be recognized (Keast and Roper, 2007). The ENaCs is a hetero-oligomer  
178 complexes containing four homologous subunits ( $\alpha$ -,  $\beta$ -,  $\gamma$ - and  $\delta$ - respectively) that act  
179 as salty receptors by providing a specific pathway for sodium currents to enter the taste  
180 cells in human (rodents do not contain  $\delta$ -) (Stähler, 2008). The sodium current triggers  
181 action potential of the basolateral membrane of the taste cell, followed by synaptic  
182 events (Avenet and Lindemann, 1991). The location of the subunits in the human taste

183 system is important because it determines the transduction pathway of sodium ions. If  
184 the  $\delta$ -subunit is located at the apical membrane, sodium ions will be transduced through  
185 ENaCs, whereas paracellular pathway will be mode of transduction if subunits are  
186 located at the tight junctions of the taste buds (Bigiani, 2020).

187 **1.2.1.2 Paracellular pathway**

188 Tight junctions were observed by electron micrographs at the apical end of the  
189 connecting cells in taste buds from several species (Chaudhari and Roper, 2010). Taste  
190 buds, like most epithelial cells, impede the penetration of water and many solutes  
191 through their cellular interstices. However,  $\text{Na}^+$  had been proved to penetrate the  
192 paracellular pathway of taste buds to produce salty tastes (Chaudhari and Roper, 2010).


193 Neurons responsive to salts are not simultaneously both anion and amiloride sensitive.  
194 Rehnberg *et al.* (1993) studied N-fibres and H-fibres in the hamster chorda tympani  
195 nerve which are responsive to sodium salts and found that amiloride-insensitive H  
196 fibres were found to be sensitive to anions, whereas responses of N fibres could be  
197 blocked by amiloride but were relatively anion insensitive). Anion-specific  
198 permeability of tight junctions surrounding taste cells may play a role in determining  
199 the overall stimulatory effectiveness of a sodium salt. Large or multivalent anions  
200 would not traverse this paracellular pathway as easily as small monovalent anions, and  
201 their salts would be less stimulatory (Elliott and Simon, 1990). Thus, sodium chloride  
202 is the saltiest compound compared to any other sodium salt.

203 **1.2.2 The interaction between salt and other tastes**

204 For individual taste stimuli, as the physical concentration increases the perceived  
205 intensity elicited by that compound also increases, but the rate of increase is not always  
206 directly proportional. For the concentration at relatively low levels (just above  
207 threshold), an accelerating relationship would exist; moderate concentration, linear  
208 relationship for tastant at moderate concentrations or decelerating relationship for  
209 tastant at high concentrations (Bartoshuk, 1975). When two compounds with different  
210 taste qualities are mixed, a number of interactions may occur, like enhancement or  
211 suppression. Saltiness may also influence other taste qualities independent of intensity  
212 or concentration in food matrices (Keast and Breslin, 2003). Interactions between tastes  
213 get more complex when three or more taste qualities interact within the food matrices.  
214 In general, the degree of suppression depended on the individual's unscripted function;  
215 perception of a sharp increase in taste with increasing concentration tended to lead to  
216 greater suppression (Bartoshuk, 1975).

#### 217 **1.2.2.1 Interaction between saltiness and sourness**

218 Keast and Breslin (2003) summarized the interaction between four tastes (sourness,  
219 saltiness, bitterness, sweetness) in different taste intensity concentrations as shown in  
220 Figure 1.3. Saltiness and sourness affect each other symmetrically in the mixture,  
221 enhancing at low/medium intensity concentration range and inhibiting or having no  
222 effect at higher concentration range. Breslin (1996) indicated that NaCl suppressed the  
223 sourness of lactic and citric at strong suprathreshold, while a little enhancement at weak  
224 suprathreshold.



225

226 **Figure 1.3** Schematic review of binary taste interactions (Keast and Breslin, 2003).

227 **1.2.2.2 Interaction between saltiness and sweetness**

228 Saltiness enhances sweetness at low intensity concentration range, but the effect can  
 229 vary at the medium intensity concentration range, while salt can inhibit or has no effect  
 230 on sweetness at high intensity concentration range. Whereas sweetness inhibits  
 231 saltiness at medium concentration range and has no effect on saltiness at low/high  
 232 intensity concentration range. Pangborn (1962) verified the taste interaction of sucrose  
 233 and NaCl by highly trained subjects using single and paired sample presentation. The  
 234 data indicated that sucrose reduced the apparent saltiness of NaCl samples at 0.12 -  
 235 3.24%. However, there was no obvious change in the sweetness of sucrose solution.  
 236 The sweetness of 0.75, 2.25 and 6.75% sucrose solutions were enhanced with NaCl at  
 237 low concentration but depressed by NaCl at higher concentration. At the same time, all  
 238 levels of salt reduced the sweetness of 20.25% sucrose.

239 **1.2.2.3 Interaction between saltiness and bitterness**

240 Saltiness inhibited bitterness at all intensities or concentrations, while salt taste was less  
241 affected by bitterness in medium/high intensity concentration range, but different  
242 effects were observed in the low intensity concentration range. According to Breslin  
243 and Beauchamp (1995), NaCl could significantly suppress the bitterness of quinine  
244 hydrochloride (QHCl), about  $41 \pm 11\%$  of the maximum bitterness sensation was  
245 suppressed. At the same time, the inhibitory effect of NaCl on bitterness was related to  
246 the concentration of bitter substances. The bitterness of low-concentration QHCl ( $10^{-4}$   
247 M) would be inhibited by all concentrations of NaCl (0.1, 0.3, 0.5M), while the  
248 bitterness of high-concentration QHCl ( $10^{-3}$  M) inhibited only by 0.3 and 0.5 M NaCl.  
249 However, saltiness was less affected by bitterness, only the highest concentration of  
250 QHCl ( $10^{-3}$  M) could inhibit the saltiness of 0.1 M NaCl solution.

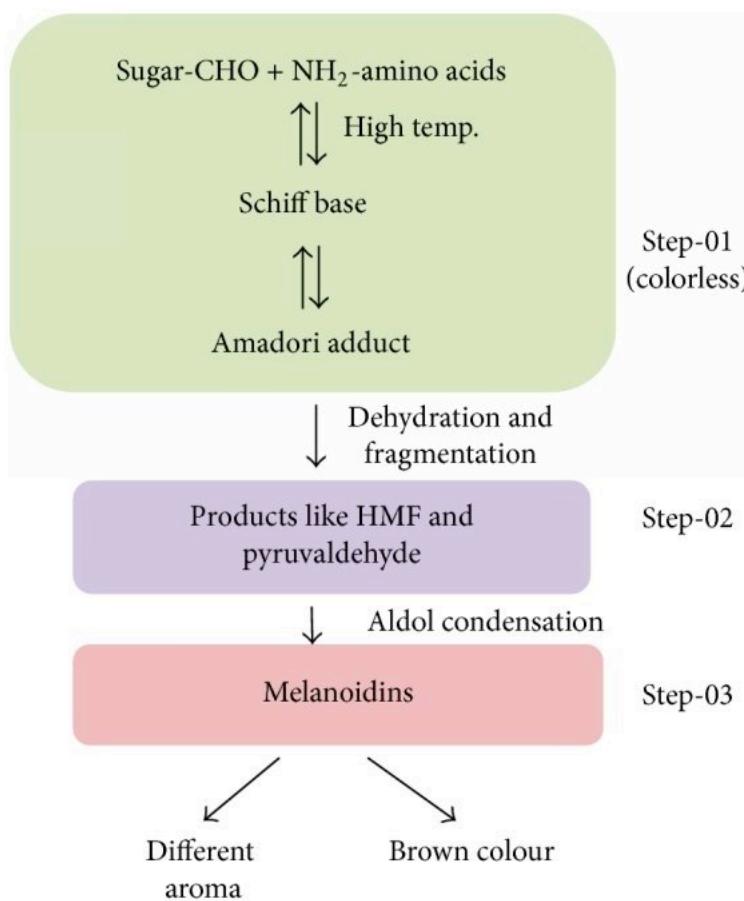
251 **1.2.2.4 Interaction between saltiness and umami**

252 Umami, as the last taste to be discovered, is the least studied among all tastes, while the  
253 understanding on the interaction between umami and other tastes in a mixture tastant is  
254 scarce. Woskow (1969) concluded that sodium salts of 5'-ribonucleotides  
255 (umami/savory quality) enhanced saltiness only at moderate concentrations, but Kemp  
256 and Beauchamp (1994) reported monosodium glutamate (MSG) could enhance  
257 saltiness only at or above supra-detection threshold concentration. Some of the  
258 contradictory findings in the literature may be due to differences in the levels,  
259 compounds and testing strategies applied in sensory testing. Although the controversy  
260 was reported about the enhancing effect of umami in saltiness, umami tastants are  
261 widely used as flavour enhancers in developing salt reduced food products, for example,

262 MSG was used to reduce NaCl in a Japanese soup (Sumash-Jiru) with a much stronger  
263 umami taste (Yamaguchi and Takahashi, 1984). More examples can be given here to  
264 support the point.

265 Generally speaking, reducing sodium in food would result in a loss of saltiness.  
266 Consequently, bitterness could increase due to the loss of sodium in bitterness inhibiting  
267 capacity, while perception of sweetness would decrease as well (Breslin and  
268 Beauchamp, 1997). This may also lead to a reduction in the perception of appetitive  
269 aromas associated with this taste, which would have a negative impact on food  
270 preferences.

271 **1.3 Interaction between salt and flavour perception**


272 Flavour is a single perception, but it is considered as part of a unitary whole which can  
273 combine the inputs from separate sensory systems: taste, smell and chemical stimuli  
274 (Keast, Dalto and Breslin, 2004). This central integration ensures that there is ample  
275 opportunity for interaction between the senses. Salt imparts more than just saltiness,  
276 and it also enhances the palatability of foods. When salt is added to food, it can improve  
277 the thickness perception, enhance sweetness, mask metallic or chemical off-flavours,  
278 refine the overall flavour, and increase flavour intensity (Gillette, 1985). The  
279 enhancement effect of salt on flavour perception can be partially explained by the  
280 sodium cation. Various sodium-containing ingredients such as MSG, sodium  
281 bicarbonate is known to reduce bitterness in foods and enhance other flavour attributes  
282 such as sweetness (Breslin and Beauchamp, 1995). Another reason for its enhancing  
283 effect is that salt can decrease the water activity (aw) of the food, which would

284 effectively increase the flavour concentration and improve the volatility of the flavour  
285 components (Hutton, 2002). The flavour of foods is considerably influenced by their  
286 constituents, like water-soluble small molecules, monosaccharides, disaccharides or  
287 salts (such as NaCl). These compounds bind considerable amounts of water to build  
288 hydration shells during solubilization, while the decreased availability of water  
289 molecules due to salt binding would result in flavour release (Rabe, Krings and Berger,  
290 2003). As a result, the high volatility of flavour components would improve the aroma  
291 and flavour perception. Along with bitterness blocking and increasing volatility of  
292 flavour compounds, salt is also found to affect the flavour formation through two main  
293 pathways, i.e., Maillard reaction and lipid oxidation (Mariutti and Bragagnolo, 2017;  
294 Gokmen and Senyuva, 2007).

295 **1.3.1 Maillard Reaction**

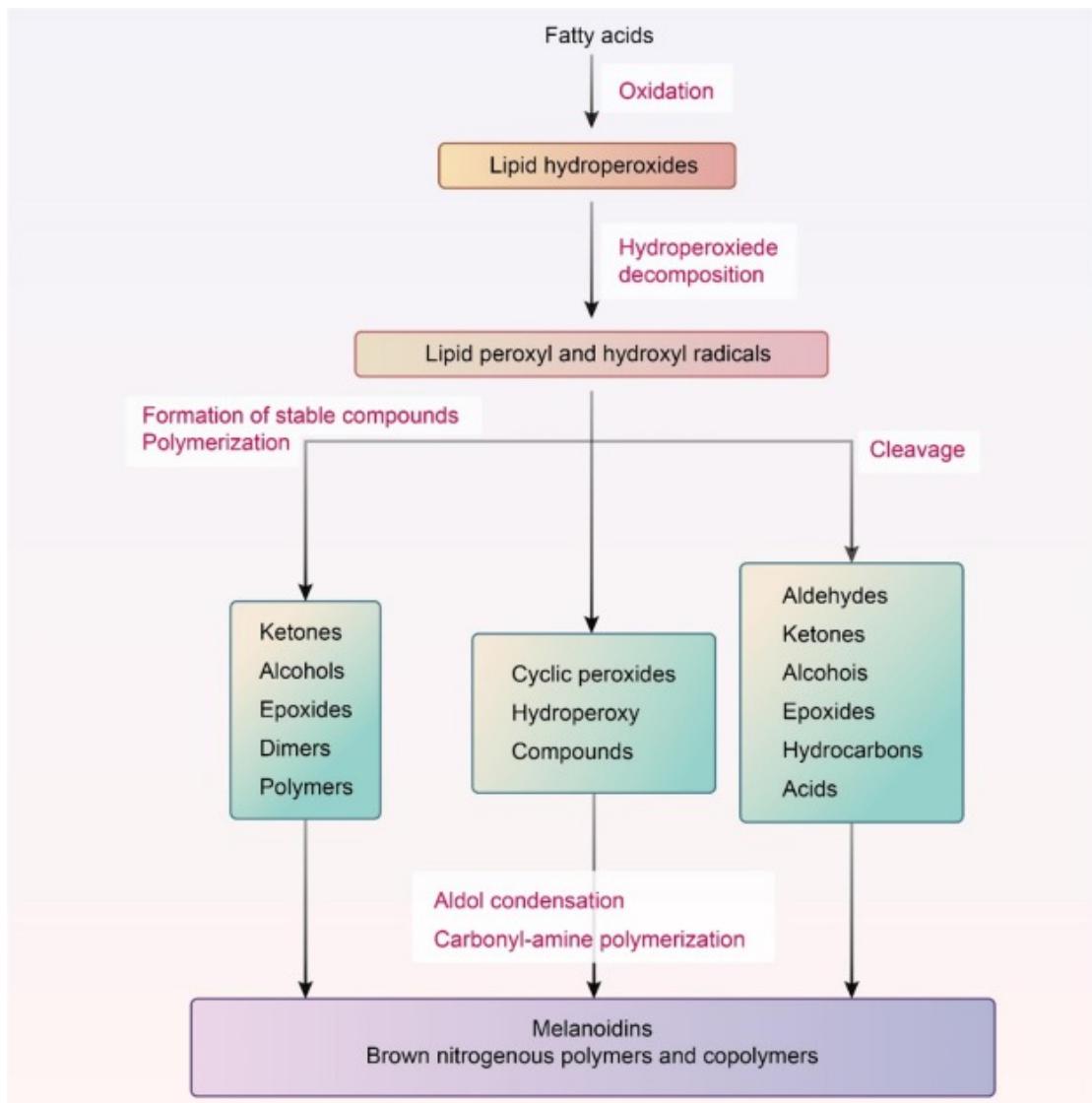
296 Maillard reaction, also known as non-enzymatic browning reaction, is widely present  
297 in food production. It is a reaction between carbonyl compounds (reducing sugars) and  
298 amino compounds (amino acids and proteins), which typically happens at the  
299 temperature from around 140 to 165 °C (280 to 330 °F). At higher temperatures,  
300 caramelization (the browning of sugars, a distinct process) and subsequently pyrolysis  
301 (final breakdown leading to burning and development of acrid flavors) become more  
302 pronounced (Ames, 1992). Figure 1.4 shows the mechanism of the Maillard reaction,  
303 which is usually divided into three stages. The first stage of the reaction is the  
304 condensation reaction between reducing sugars and amino acids. In the second stage,  
305 sugars are degraded and accompanied by the release of amino compounds. The last

306 stage is closely related to the formation of flavour. In this stage, the amino compounds  
307 undergo dehydration, decomposition, cyclization, and polymerization. According to the  
308 chemical composition, a series of aromatic compounds can be formed including ketones,  
309 aldehydes, alcohols, furans, and their derivatives such as pyrrole, pyridine, pyrazine,  
310 thiophene, and sulfides. Even though the flavour of each compound is unique, in  
311 particular, sulphur-containing compounds are important for the flavour of meat (Van  
312 Boekel, 2006).



313  
314 Figure 1.4 Mechanism of the Maillard reaction (Tamanna and Mahmood, 2015).

315 Most of the flavour compounds identified in cooked meat are the result of Maillard  
316 reaction. For example, the precursors formed from 1-deoxypine interact with the  
317 products of the Strecker reaction to produce many aromatic compounds including


318 furans, pyrazines, pyrroles, oxazoles, thiophenes, thiazoles and other heterocyclic  
319 compounds (Mottram, 1998). Thermal degradation of thiamin produces a number of  
320 sulfur compounds, such as thiols, sulphides and disulphide compounds, which offer  
321 meaty flavour or contribute to the flavour development of cooked meat (Grosch, 2001).  
322 Sulphur-containing amino acids, particularly cysteine, is one of the most important  
323 amino acids responsible of meaty flavour produced by Maillard reactions (Aaslyng and  
324 Meinert, 2017).

325 The impact of NaCl on the chemistry of Maillard reactions in meat was mentioned in  
326 some publications. Gokmen and Senyuva (2007) reported that the presence of NaCl in  
327 a reaction mixture of fructose and asparagine decreased the Schiff base formation,  
328 hence slowing down the formation of some Maillard compounds such as acrylamide.  
329 Reduction of NaCl may lead to an increase in proteolysis, the production of free amino  
330 acids and small molecule peptides associated with the Maillard reaction and Strecker  
331 degradation which can affect the flavour development of the meat, as their  
332 concentration usually exceeds the identification threshold (Luo *et al.*, 2021). So NaCl  
333 might influence Maillard reaction, either directly or indirectly, modifying the nature  
334 and number of volatile molecules formed.

335 **1.3.2 Lipid oxidation**

336 Lipids play an important role in the production of volatile flavour compounds. Meat  
337 flavour and palatability are influenced by fat content and types of fatty acids (Khan, Jo  
338 and Tariq, 2015). The degradation of unsaturated fatty acids would produce a variety  
339 of flavour compounds during the heating process which determines the flavour profile

340 of meat products (Sun *et al.*, 2022). Many of these flavour compounds have relatively  
341 high odour thresholds, but they can still have an impact on meat flavour because they  
342 are abundant (Mottram, 1992). Lipolysis leads to the production of large amounts of  
343 non-volatile compounds that are important for promoting meat flavour, while most  
344 endogenous enzymes are responsible for such reactions (Toldrá and Flores, 2000). It is  
345 mainly phospholipids that produce flavour compounds, while intramuscular  
346 triglycerides and structural phospholipids are the main contributors (Mottram and  
347 Edwards, 1983). Figure 1.5 shows the reaction mechanism of how lipids are oxidized  
348 to produce meat aroma. During the heating process, phospholipids and triglycerides are  
349 degraded, releasing short-chain fatty acids. At high temperatures, fatty acids are  
350 oxidized to produce hydroperoxides. Finally, hydroperoxides can be degraded to form  
351 alkoxy groups, and converted into volatile carbonyl compounds.



352

353 Figure 1.5 The mechanism of fat oxidation to produce meat flavour (Sun *et al.*, 2022).

354 It is generally assumed that salt accelerates lipid oxidation, which can cause undesirable  
 355 changes in the colour and flavour of meat and meat products (Kanner, Harel and Jaffe,  
 356 1991). One of the most important volatile compounds produced by lipid oxidation is  
 357 hexanal, which has a rancid flavour at excess level (Campagnol, Dos Santos and  
 358 Rodriguez-Pollonio, 2017). Most of the studies suggested that salt acted as a prooxidant  
 359 agent involved in the lipid oxidation of meat products. Purriños *et al.* (2012) confirmed  
 360 the dry-cured pork shoulder “lacón” that were salted for longer period produced more  
 361 volatile compounds from lipid oxidation, such as pentanal, heptanal and so on. Corral,

362 Salvador and Flores (2013) also indicated that volatile compounds from lipid oxidation  
363 like 1-pentanol, 2-octenol were significantly lower in salt-reduced fermented sausage  
364 than these in control sample. The mechanism of accelerated oxidation by NaCl may be  
365 attributed to its ability to disrupt cell membrane integrity, thereby facilitating access of  
366 oxidants to lipid substrates (Mariutti and Bragagnolo, 2017). Min, Cordray and Ahn  
367 (2010) studied the involvement of NaCl in a model system containing washed muscle  
368 residues and iron ions in cytosol and found that catalytic free iron ions were detected  
369 with an increased amount and they could penetrate the lipid phase to increase lipid  
370 peroxidation. Except grilled meat, meats with subcutaneous fat contain significantly  
371 high level of lipid-derived volatiles, whether cooked or uncooked. Because fatty acids  
372 can react with Maillard reaction compounds to form flavour compounds with a lower  
373 odour threshold and therefore it may have a greater impact on flavour (Aaslyng and  
374 Schäfer, 2008).

375 **1.4 Salt as key ingredient in meat processing**

376 Meat itself contains sodium but the amount is less than 100 mg Na per 100 g (Strazzullo  
377 and Leclercq, 2014). The main source of sodium in meat products is sodium chloride  
378 which is added during processing. As shown in Table 1.1, most meat products contain  
379 salt between 1.2 g/100 g to 4.3 g/100 g. Salt has a flavour enhancing effect in meat  
380 products and the perceived saltiness is mainly due to the perception of sodium ion. Both  
381 fat and salt together contribute to many of the sensory properties of processed meats  
382 (Miller and Barthoshuk, 1991).

383 Table 1.1 Sodium content in meat products (Pretorius and Schönfeldt, 2018).

| Food                 | Sodium content (mg/100g) | Salt content (g/100g) |
|----------------------|--------------------------|-----------------------|
| Gammon               | 711                      | 1.78                  |
| Frankfurters         | 1074                     | 2.69                  |
| Cooked Hams          | 1206                     | 3.02                  |
| Pork sausages        | 1018                     | 2.54                  |
| Hot dog              | 488                      | 1.22                  |
| Bacon                | 1270                     | 3.17                  |
| Cooked turkey breast | 595                      | 1.49                  |
| Salami               | 1695                     | 4.24                  |
| Chicken nuggets      | 661                      | 1.65                  |

384 **1.4.1 Formation of Meat Texture**

385 One main function of salt in processed meat is to solubilise the functional myofibrillar  
 386 proteins in meat, i.e., actin and myosin (Xiong, 1997), and increase their hydration and  
 387 water holding capacity (WHC), ultimately result in an improved texture (e.g.,  
 388 tenderness) and high processing yield (Desmond and Vasilopoulos, 2019). The effect  
 389 of NaCl on meat proteins is mainly attributed to Cl<sup>-</sup>, probably because Cl<sup>-</sup> are bound to  
 390 the myofibril filaments more strongly than Na<sup>+</sup> and thus increase the negative charges  
 391 of proteins (Petit *et al.*, 2019). This leads to repulsion between myofibrillar proteins,  
 392 and further causes an electrostatic repulsive force between individual molecules, which  
 393 results in a swelling of myofibrils (Offer and Trinick, 1983). The adsorption of Cl<sup>-</sup> with  
 394 positively charged groups of myosin results in a shift of the isoelectric point to lower  
 395 pH, causing a weakening of the interaction between oppositely charged groups at a pH  
 396 greater than the isoelectric point, as a result, WHC is increased (Puolanne and Halonen,  
 397 2010). Increasing the WHC of meat will reduce cooking loss and increase the  
 398 tenderness and juiciness of meat products.

399 In addition, the extraction of myosin from myofibrils is important in processed meat  
400 (Desmond and Vasilopoulos, 2019). The salt-soluble myofibrillar protein forms a sticky  
401 exudate on the surface of the meat product, and this exudate will form a matrix of heat-  
402 coagulated protein and bind the meat pieces together after cooking (Desmond, 2006).  
403 In chopped or emulsified meat products (such as sausages), the salt-soluble proteins in  
404 the continuous phase form a protein film around fat globules, thereby retaining the fat  
405 during cooking (Monahan and Troy, 1997). NaCl is therefore essential for the texture  
406 of processed meat products. The addition of 1.5% to 2.5% (w/w) salt enables the protein  
407 to bind more water, thus increasing the tenderness and reducing fluid loss in heat-  
408 processed meat products (Doyle and Glass, 2010).

409 **1.4.2 Salt as Preservative**

410 Fresh food generally has water activity (aw) value between 0.95 and 0.99, while raw  
411 meat has aw 0.99 or higher. Hence meat is considered as a highly perishable food with  
412 risk of immediate growth of microorganisms (Lund *et al.*, 2000). In general, water  
413 activity at 0.85 and 0.90 are considered as the lowest levels which the eukaryotic and  
414 prokaryotic pathogens can grow respectively, while for most spoilage bacteria aw  
415 above 0.90 is required, and some may grow at 0.85 or even lower in extreme cases  
416 (Houtsma *et al.*, 1993). For example, *Staphylococcus aureus* can grow at high salt  
417 concentrations (10 - 20%) and low water activity (0.83 to 0.86) due to its great adaptive  
418 response to osmotic stress (Medved'ová and Valík, 2012).

419 Salt has been used as a preservative in meat products including ham, sausages, salami,  
420 bacon and others (Hutton, 2002). It can inhibit the growth and survival of undesirable

421 microorganisms, prevent rapid spoilage and extend shelf life (Inguglia *et al.*, 2017).  
422 Salt influences the growth of most microorganisms. It is generally accepted that 10%  
423 salt inhibits the growth of most germs, whereas 5% salt can only inhibit anaerobes (Petit  
424 *et al.*, 2019). Reducing the NaCl level below the level normally used without adding  
425 any other preservative would shorten the shelf life of food products (Desmond and  
426 Vasilopoulos, 2019). For example, Desmond (2006) reported that 40% of salt reduction  
427 for frankfurters (from 2.5 to 1.5 % w/v) without any salt substitutes caused the natural  
428 flora to grow more rapidly. Stringer and Pin (2005) also found that bacon at 2% (w/w)  
429 salt content had vinegary off odour after 3 weeks storage, whereas it took only 2 weeks  
430 to develop this off odour was perceived after 2 weeks if the salt level was reduced  
431 to 1% (w/w).at same storage condition.

432 Salt works as a preservative mainly by lowering water activity (Albarracín *et al.*, 2011).  
433 The addition of salt causes water within bacteria to flow out through their semi-  
434 permeable membranes and triggers osmotic shock, leading to bacterial cell death or  
435 serious injury. As a result, bacterial growth is significantly reduced (Davidson, Taylor  
436 and Schmidt, 2012). In addition, salt may reduce the solubility of oxygen, interfere with  
437 cellular enzymes or force cells to expend energy to remove sodium ions from the cell,  
438 all of which can reduce growth rates (Shelef and Seiter, 2005).

439 **1.5 Strategies of sodium reduction in meat products**

440 Meat manufacturers and consumers have become more aware of the relationship  
441 between sodium and chronic diseases such as high blood pressure, as a result, demand  
442 for a variety of low-salt meat products has increased greatly in many countries. Food

443 processors are developing a wide range of low-salt products to meet consumer demand.  
444 Current approaches to reduce the sodium content of meat products include the  
445 following strategies.

446 **1.5.1 Reduction of salt content by stealth**

447 Stealth salt reduction means a gradual reduction of salt in processed foods over a long  
448 period of time (Dubow and Childs, 1998). This strategy has achieved a decent level of  
449 salt reduction within foods, but consumers perceived no significant sensory difference  
450 in products (Kilcast and Den Ridder, 2007). Studies on the perception of taste have  
451 shown that difference between the two concentrations of taste substances are often  
452 undetectable when their difference is less than approximately 10% (Henney, Taylor and  
453 Boon, 2010). This is now a common approach in the UK, and it has been successfully  
454 used all over the world for a variety of food products. For example, the sodium content  
455 of white bread, was reduced by 25% in six weeks, but consumers did not notice the  
456 difference in flavor (Girgis et al., 2003). In the UK, the sodium content of many  
457 processed foods has been reduced by 20-30% in three years, and it resulted in a  
458 reduction in NaCl intake of approximately 1 g/day for the UK population (He and  
459 MacGregor, 2009). For the food industry, this meant that sodium reduction goals can  
460 be achieved by gradually reducing the sodium content of their products over a period  
461 of years without losing consumers. However, the biggest limitation of this strategy is  
462 time consuming, and it may take years to reach the target. In addition, in practice, it is  
463 generally only possible to reduce salt by a limited amount without making the product  
464 unpalatable.

465 **1.5.2 Changing the physical form or distribution of salt**

466 **1.5.2.1 Changing the size/shape of salt crystal**

467 The size and shape of salt particles play important roles in food matrices. Dissolution  
468 of salt in the mouth is necessary to impart salt taste, but ordinary salt particles usually  
469 do not dissolve completely. As a consequence, the perceived saltiness is compromised.

470 Desmond (2006) stated that the perception of saltiness in solid form is influenced by  
471 the structure of salt crystals. The dissolution rate of sodium chloride in the oral cavity  
472 depends on the exposed surface area and is a function of crystal size and shape (Kilcast  
473 and Den Ridder, 2007). It is estimated that between 70% and 95% of NaCl is retained  
474 in the food matrix without being dissolved by saliva, in other words, most NaCl crystals  
475 are swallowed without being perceived any salty taste (Quilaqueo et al., 2015).

476 Therefore, a smaller crystal size and lower bulk density will result in a faster dissolution  
477 rate and quicker transportation of sodium to the saliva. Consequently, a stronger salt  
478 taste will be perceived (Henney, Taylor and Boon, 2010).

479 Optimization of salt crystals allows to reduce the salt content but maintain the same  
480 salty taste. Based on a time-intensity sensory technique, Rama et al. (2013) found that  
481 NaCl crystal sizes smaller than 106  $\mu\text{m}$  could offer snacks the fastest and highest  
482 maximum salty intensity, as well as the highest total salty taste. Moncada et al. (2015)  
483 demonstrated that the use of micronized salt allowed the salt content to be reduced from  
484 1.5% to 1.0% in beef burger without affecting its colour, yield, saltiness and juiciness.  
485 Gaudette, Pietrasik and Johnston (2019) found that the use of 3mm sized fat-coated salt

486 crystals in beef patty could achieve 30% sodium reduction but with a similar salty taste  
487 comparable to control samples.

488 Various forms of salt crystal (such as flake, granular) have been trialed to explore the  
489 feasibility of reducing salt content in meat products as well. In general, flake salt has  
490 better and faster solubility than granular salt, which offers better water binding capacity  
491 and increases protein solubility, thus improving product cooking yield (Tunieva and  
492 Gorbunova, 2017). Flake salts may be beneficial for products without any water  
493 addition during processing like dry cured products. Rios-Mera et al. (2021) showed that  
494 the fine flake NaCl crystals (0.55 mm) dissolved rapidly and were highly permeable in  
495 the dry cured pork. In addition, dendritic salt possesses the most beneficial  
496 characteristics of both crystal and flake salts. Dendritic crystals are branched or star-  
497 shaped and have the low density, high specific surface area and fast dissolution  
498 properties of fine-grained salts, especially macro porosity (Inguglia et al., 2017).  
499 Moncada et al. (2015) found that cheese crackers with 1% w/w 15  $\mu\text{m}$  Cargill flake salt  
500 even had higher saltiness than with 2% w/w regular salt. However, this method is  
501 mainly used in the food seasoning industry and is only applicable to dry and solid foods  
502 (Rama et al., 2013).

503 **1.5.2.2 Inhomogeneous salt distribution**

504 Controlling the distribution of salt has been used for salt reduction in bakery products.  
505 Monteiro et al. (2021) indicated inhomogeneous distribution of salt agglomerates could  
506 reduce the salt content of bread by up to 30% without changing other quality attributes.  
507 Guilloux et al. (2015) found that uneven salt distribution could achieve 30% salt

508 reduction in pizza without altering its organoleptic properties. The taste enhancement  
509 in an inhomogeneous system is thought to be the result of discontinuous stimulation of  
510 taste receptors (Busch et al., 2013). Uneven distribution of salt would create a partial  
511 salt contrast, which prevents adapting and gradually decreasing in taste perception  
512 caused by continuous exposure of taste buds, especially in high doses of salt (Nakao et  
513 al., 2013). Xiong et al. (2020) reported that edible coating with salt uneven distribution  
514 could reduce the salt content by even up to 60% for beef frankfurter sausage without  
515 affecting its salty intensity. Mosca et al. (2013) demonstrated that sausage with uneven  
516 distribution of salt was saltier and more desirable than with even distribution of salt at  
517 a constant salt concentration. However, this strategy has limited application to reduce  
518 salt in meat products due to a high moisture content. Consequently, the dissolution of  
519 salt would minimize the contract in concentration within meat products.

520 **1.5.3Alternative processing techniques**

521 **1.5.3.1 High pressure treatment**

522 High Pressure Processing (HPP) is a non-insulated technique that uses pressure rather  
523 than heat to inactivate harmful pathogens and spoilage microorganisms (Rodrigues *et*  
524 *al.*, 2015). High hydrostatic pressures at 300 - 600 MPa at mild temperatures (<45 °C)  
525 are commonly used to treat foods for a few minutes, thus allowing most foods to be  
526 preserved with minimal impact on flavour, texture, appearance and nutritional value  
527 (Inguglia *et al.*, 2017). It is considered as a useful method to assist salt reduction in  
528 meat products as it can partially perform the functions of salt in meat products. When  
529 salt is reduced, the functional properties of protein molecules will be affected including

530 solubilisation of myofibrillar proteins, depolymerization of F-actin, dissociation of  
531 actomyosin, aggregation of myofibrillar protein and alteration of enzymatic activity  
532 within meat, but high-pressure treatment could perform these functions to facilitate the  
533 formation of a gel network that retains water, and thus reduce the cooking losses of the  
534 meat batter (Iwasaki *et al.*, 2006). O'Flynn *et al.* (2014) reported that applying high-  
535 pressure-treatment at 150 MPa on raw meat increased the yield of 20% salt reduced  
536 breakfast sausages regardless of salt concentration. HPP can be used to partially replace  
537 NaCl because it can help extract myofibrillar proteins from the muscle, which is one of  
538 key functions of salt (Kim *et al.*, 2021). As a result, it helps to improve the cohesiveness,  
539 stickiness and chewiness of meat products (Jimenez-colmenero *et al.*, 1998). Crehan,  
540 Troy and Buckley (2000) found that hardness, cohesiveness, gumminess and chewiness  
541 of 40% salt-reduced frankfurter sausages with HPP at 150 MPa were improved. High  
542 pressure treated meat products have been shown to have an increased level of saltiness  
543 intensity without increasing salt content. This increase in saltiness perception was  
544 attributed to a weakening interaction between  $\text{Na}^+$  and protein which resulted in more  
545 sodium being released to the taste receptors on the tongue for a saltier taste (Clariana  
546 *et al.*, 2011). Zhu *et al.* (2022) presented that 50% salt-reduced emulsified beef sausage  
547 treated with HPP (200 - 400 MPa) had similar saltiness and juiciness compared to  
548 sausage at regular salt content. Most importantly, HPP has been shown to successfully  
549 inactivate harmful pathogens such as *E. coli*, *Salmonella* and *Listeria monocytogenes*  
550 in a variety of meat products, thus ensuring food safety and shelf life (Cheftel and  
551 Culioli, 1997). Myers *et al.* (2013) indicated that *L. monocytogenes* was inhibited in 25%

552 salt-reduced ham/turkey with 3 mins HPP (600 MPa). Luckose et al. (2015) also found  
553 that 50% salt-reduced chicken nuggets with 600 MPa pressure treatment effectively  
554 reduced all microbial counts to 10 CFU/g and remained low during the 60-day storage  
555 so that shelf life was improved.

556 However, HPP require expensive initial investment, high operation and maintenance  
557 costs, which can drive up the price of meat products (Kim *et al.*, 2021). In addition,  
558 microorganisms vary in their sensitivity to high pressure, with Gram-negative bacteria  
559 being the most sensitive and bacterial spores being the most resistant (Inguglia *et al.*,  
560 2017). As a result, most high-pressure-treated foods require cold storage to maintain  
561 their sensory qualities and may also require aseptic packaging conditions, which again  
562 further increases the cost of food production.

563 **1.5.3.2 Ultrasound**

564 The ultrasound is considered an emerging technology with great potential for  
565 application in food. In general, the range of sound used is divided into high-frequency  
566 ( $>1$  MHz) with low-intensity ( $<1$  W cm $^{-2}$ ), and low-frequency (20–100 kHz) with high-  
567 intensity (10–1000 W cm $^{-2}$ ), which is also known as power ultrasound (Alarcon-Rojo  
568 *et al.*, 2015). Ultrasound is a form of vibrational energy produced by a transducer that  
569 converts electrical energy into acoustic energy, which triggers a phenomenon known as  
570 cavitation (Pinton *et al.*, 2021). Cavitation produces a large number of bubbles which  
571 results in high local pressure and temperature when collapse (Boateng and Nasiru,  
572 2019). This phenomenon also generates strong physical forces, such as shear, shock  
573 waves and turbulence, which affect the functional properties of meat proteins and

574 increase the water retention capacity (Gómez-Salazar *et al.*, 2021). In addition, the  
575 collapse of cavitation bubbles produces microjets that collide with the surface structure  
576 of the myofibrils leading to the formation of micro fissures that alter the protein  
577 structure and improve the additive diffusion, thus improving the texture of meat (Awad  
578 *et al.*, 2012). Stadnik, Dolatowski and Baranowska (2008) found that beef (*m.*  
579 *semimembranosus*) sonicated at 24 h after slaughter treated with ultrasound (45 kHz)  
580 for 2 mins showed higher water holding capacity. Barreto *et al.* (2018) also presented  
581 that applying ultrasound (20 kHz, 600 W cm<sup>-2</sup>) for 10 mins on restructured cooked ham  
582 with 50% salt reduction increased its hardness but without changing taste, texture and  
583 global acceptance comparing with no salt reduction cooked ham. The use of ultrasound  
584 during curing improves salt distribution in meat and enhances salt transfer during  
585 processes such as meat curing (Ojha *et al.*, 2016), consequently a higher salt perception  
586 can be achieved even at lower NaCl levels. Barreto *et al.* (2020) proved that low  
587 sodium restructure cooked ham was subjected to power ultrasound treatment (20 kHz,  
588 600 W cm<sup>-2</sup>) for 10 mins, and the product exhibited better flavour, higher saltiness and  
589 global acceptance. Leães *et al.* (2020) also indicated that ultrasound treatment (25 kHz,  
590 175 W) for 20 min combined with basic electrolyzed water to replace salt would allow  
591 to reduce up to 30% NaCl content of meat batters. As similar with high pressure  
592 processing, ultrasound has also been proven the inactivation of microorganisms.  
593 Inguglia *et al.* (2018) demonstrated that a reduction of log<sub>10</sub><sup>6</sup> CFU ml<sup>-1</sup> for *E. coli* K12  
594 and log<sub>10</sub><sup>4</sup> inactivation for *L. innocua* within a one-hour treatment were achieved with  
595 a frequency ultrasound (20 kHz) in tryptic soy broth. Aguilar *et al.* (2021) also shown

596 that the ultrasound pulses (7.56 s wave pulse, 400 W) reduced the natural microflora,  
597 *L. delbrueckii* and *L. monocytogenes* of a raw meat emulsion, even inactivation reached  
598 up to 60% of the microbial population. The media particles present in the fluid are  
599 compressed and thinned during ultrasound, leading to the formation of cavities or  
600 bubbles. With successive cycles of ultrasound, they may become unstable and collapse,  
601 leading to localized high temperatures and pressure release, which may disrupt the  
602 cellular and functional components of the bacterial membrane and therefore microbial  
603 inactivation (Zhou, Lee and Feng, 2012).

604 Ultrasound has been used commercially due to its high speed, reliability, low cost and  
605 simplicity of application (Turantaş, Kılıç and Kılıç, 2015). However, similar to HPP,  
606 spores and fungi are more resistant to inactivation by ultrasound, gradually decreasing  
607 in yeasts, Gram-positive and Gram-negative cells (Inguglia *et al.*, 2017). Hence,  
608 ultrasound parameters need to be optimized for each meat product that may result in a  
609 difficult spread in manufacture.

#### 610 **1.5.3.3 Pulsed Electric Field Processing**

611 Pulsed electric field (PEF) treatment is a non-thermal technology used primarily in food  
612 processing to improve food quality and extend shelf life (Kim *et al.*, 2021). PEF  
613 treatment is a brief application of high voltage pulses (1-100  $\mu$ s) with electric field  
614 strengths ranging from 0.1 to 80 kV/cm to food placed between two electrodes (Barba  
615 *et al.*, 2019). This causes structural changes and rapid disruption (permanent or  
616 temporary) of the cell membrane, resulting in the cell membrane to trigger an increase  
617 in membrane permeability by enlarging existing pores or creating new pores, and then

allow membrane components exchange with the cellular environment and have a positive effect (Gómez *et al.*, 2019). The three most important parameters determined during PEF are electric field strength, processing temperature and energy delivery (Toepfl, Siemer and Heinz, 2014). Previous studies have reported that the pulsed electric fields affected the tenderness and other quality parameters of fresh meat and meat products. Bekhit *et al.* (2014) shown that PEF beef *Longissimus lumborum* muscles (0.27-0.56 kV/cm, 20 µs) had lower cooking loss and higher tenderness. The beneficial tendering effect of pulsed electric fields may associate with membrane damage which result in releasing of calcium, thereby activating calcium-dependent proteases, calpain and accelerating glycolysis; releasing of cathepsins from lysosomes, thereby accelerating protein hydrolysis (Warner *et al.*, 2017). PEF can also improve the shelf life of food because the formation of hydrophilic pores and the forced opening of protein channels in the membrane by PEF lead to enzyme inactivation and destruction by spoilage and pathogenic microorganisms (Buckow *et al.*, 2014). Limited research on the use of PEF to treat low-salt meat products. Bhat *et al.* (2020) found that PEF (0.52 kV/cm, 20 µs) treatment could reduce salt content in beef jerky by 40% without any negative effects on lipid oxidation, sensory quality and microbiological stability of the product. Treatment with PEF affects the diffusion, distribution and release of sodium from the meat matrix, thereby altering the interaction between protein and salt ions and influencing sodium release during mastication (Bhat *et al.*, 2019). PEF has the advantage of low energy consumption, short processing time and continuous operation in food processing (Puértolas and Barba, 2016), but the initial

640 capital investments and cost is high (Jeyamkondan, Jayas and Holley, 1999). The  
641 electrolysis products of PEF can have a detrimental effect on food and the uneven  
642 treatment distribution in non-uniform by PEF can lead to the presence of air bubbles  
643 (Gómez *et al.*, 2019). In addition, the technique also fails to inactivate bacterial spores  
644 because the high electric field strength required for inactivation which usually means  
645 that the distance gap between the electrodes is very small (in millimeters)  
646 (Oziembłowski and Kopeć, 2005).

647 **1.5.4 Use of flavour enhancer and salt substitutes**

648 **1.5.4.1 Flavour enhancers**

649 Flavour enhancers are substances or ingredients that can alter or increase the overall  
650 intensity of the perceived taste or smell of a food by enhancing desirable flavour or  
651 inhibiting undesirable flavour, which has little or no flavour/aroma in itself (Campagnol,  
652 Dos Santos and Rodriguez-Pollonio, 2017). Among them, salt enhancers are substances  
653 or ingredients that are added to food preparations that already include salt, with the aim  
654 of amplifying or intensifying the taste of salt and make the salt flavor more pronounced  
655 (Henney, Taylor and Boon, 2010). They can significantly help and balance the salty  
656 taste of reduced salt products by activating taste receptors in the mouth and throat  
657 (Brandsma, 2006). There are many flavour enhancers and flavour masking agents  
658 include nucleotides, yeast extracts, glutamates and amino acids on the market and the  
659 number of products entering the market is increasing.

660 **1.5.4.1.1 Monosodium glutamate**

661 Compared to the other four basic taste (sweetness, sourness, bitterness and saltiness),  
662 umami has its unique function to rebalance the taste of low sodium products and increase  
663 their savoury perception. The most commonly used source of umami is monosodium  
664 glutamate. Yamaguchi and Takahashi (1984) demonstrated that MSG could be used to  
665 reduce NaCl in a Japanese soup (Sumash-Jiru), where MSG was used in combination  
666 with 5'-nucleotides, such as inosine-5'-monophosphate (IMP) and guanosine-5'-  
667 monophosphate (GMP), to achieve a much stronger umami taste. Dos *et al.* (2014)  
668 found that MSG, disodium inosinate, disodium guanylate could enhance flavour and  
669 maintain saltiness at 50% reduction of NaCl in fermented cooked sausages. Quadros *et*  
670 *al.* (2015) also proved that 0.3% added MSG could compensate the saltiness loss caused  
671 by 50% salt reduction in low-sodium fish burgers. However, MSG itself contains  
672 sodium, so using MSG would lead to more sodium added than salt alone in some cases  
673 (Pangborn and Braddock, 1989). Additionally, some literature mentioned that  
674 continuous intake of high levels of MSG may increase risk of neurological diseases,  
675 including Alzheimer's dementia and Parkinson's disease (Blaylock, 1999). Therefore,  
676 MSG concentrations in food must be controlled. An acceptable daily intake of MSG  
677 which was established by European Food Safety Association is 30 mg /kg (Zanfirescu *et al.*,  
678 2019). For example, the acceptable daily intake for a 70 kg adult is 2.1 g.

679 **1.5.4.1.2 Yeast extract**

680 Yeast autolysates are also commonly used in low salt preparations, they are practically  
681 used to mask the metallic flavour of potassium chloride (KCl), one of the popular salt  
682 replacers. Campagnol *et al.* (2011b) found that 2% yeast extract could be used to

683 develop 50% salt reduced fermented sausage, while the sensory quality defects caused  
684 by KCl could be compensated by the yeast extract. They reported that yeast extract  
685 could increase volatile compounds production during sausage fermentation such as 3-  
686 methylbutanal which relevant to the aroma of cured meat product and may mask the  
687 unpleasant taste of KCl. Vidal *et al.* (2020) also demonstrated that the addition of 5%  
688 yeast extract significantly reduced the rancid aroma of mixtures containing NaCl, KCl  
689 and calcium chloride (CaCl<sub>2</sub>) in low sodium salted beef with 50% reduction of salt.  
690 Yeast extracts are rich in compounds or precursors, such as amino acids, and most of  
691 these volatile and non-volatile substances, as well as aroma-active compounds, are  
692 released during the heating process, thus improving the flavour (Alim *et al.*, 2018).  
693 According to Desmond (2006), yeast extracts can produce tasty products with low salt  
694 content, but it has a particular meaty flavour which may not be acceptable for some  
695 people.

#### 696 **1.5.4.2 Salt substitutes**

697 An ideal strategy for maintaining or improving the quality of low-salt foods would be  
698 replacing NaCl with a compound that produces a similar pure salty taste while  
699 containing lower amounts of sodium or using alternative ingredients, which identified  
700 as salt substitute (Liem Miremadi and Keast, 2011). The food industry currently uses  
701 many salt substitutes to replicate some functions of salt. Common salt substitutes are  
702 mineral salts such as KCl, CaCl<sub>2</sub> and magnesium sulphate, which have been used  
703 widely as salt substitutes in many foods, while certain type of amino acids also attracted  
704 lots of attention recently (Ruusunen and Puolanne, 2005; Kilcast and Den Ridder, 2007).

705 While both flavour enhancers and salt substitutes can enhance the taste of food, their  
706 mechanisms and purposes differ. From the definition, it can be seen that flavour/salt  
707 enhancers are additional ingredients which added in food, while salt substitutes are  
708 ingredients which replacing part of NaCl in food. Flavour enhancers focus on  
709 intensifying existing flavours, and salt enhancer specifically refers to the enhancement  
710 of saltiness, while salt substitutes aim to provide a salty taste while reducing sodium  
711 intake (Campagnol, Dos Santos and Rodriguez-Pollonio, 2017).

#### 712 **1.5.4.2.1 Potassium chloride**

713 One of the most common mineral salts used to replace or reduce salt is KCl which has  
714 been widely used in meat products, because the two salts have similar chemical  
715 properties. Particularly KCl has beneficial effect on lowering blood pressure (Geleijnse  
716 *et al.*, 2007). Paulsen *et al.* (2014) found that using KCl to replace NaCl from 20% to  
717 40% did not change the meaty flavour, juiciness, hardness and cohesiveness in sodium  
718 reduced sausage. Wu *et al.* (2014) indicated that the replacement of 40% of salt in the  
719 dry-cured bacon by KCl did not affect the proteolysis, colour, hardness and juiciness,  
720 but the saltiness was reduced. When the concentration of KCl reached to 70%, the  
721 saltiness decreased significantly and the bitterness increased obviously, even though it  
722 is juicier. KCl has been shown to have the same antibacterial effect as sodium chloride  
723 against a wide range of pathogenic bacterial species, such as *Aeromonas hydrophila*,  
724 thus it could ensure the shelf life is not shortened in salt-reduced foods (Bidlas and  
725 Lambert, 2008). Terrell *et al.* (1983) proved that the microbial load of *Micrococcus*,  
726 *Moraxella* and *Lactobacillus* in ground pork containing 1.6% or 3.19% KCl were close

727 to that of ground pork containing 2.5% NaCl stored at 5°C for 10 days. Although KCl  
728 does have some salty taste, it may also result in some unpleasant aftertastes, such as  
729 bitter, metallic and astringent taste, which limit its application in food manufacturing  
730 (Reddy and Marth, 1991). The substitution of salt with KCl in most foods must be  
731 limited to 30%, as higher levels can produce bitter and metallic tastes (Doyle and Glass,  
732 2010). A significant increase in bitterness and loss of saltiness were observed in foods  
733 treated with blends where the KCl is more than 50% (Desmond, 2006). That means KCl  
734 should be added with other salt substitutes or flavour enhancer in a salt-reduced meat  
735 product to cover unpleasure taste or maintain salty taste when the concentration of KCl  
736 is more than 30%. What is more, high potassium load is associated with impairments  
737 in people with type 1 diabetes, renal disease and adrenal insufficiency (Khaw and  
738 Barrett-Connor, 1984).

739 **1.5.4.2.2 Lysine**

740 Lysine is colourless crystal required for human growth as one of the nine essential  
741 amino acids in the human body that cannot be produced by the body and therefore must  
742 come from food (Blemings and Benevenga, 2007). It has a high nutritional value and  
743 is essential for protein synthesis for human metabolism (Wolfe, 2017). Foods rich in  
744 protein are generally good sources of lysine, such as meat, especially red meat (1.57  
745 g/100 g) (Liu *et al.*, 2016). Lysine itself could reduce the level of triglycerides in blood  
746 to prevent cardiovascular and cerebrovascular disease (Flodin, 1997). According to Li  
747 *et al.* (2019) report that L-lysine increases the solubility of myosin at low ionic strength,  
748 suggesting that lysine has great potential for improving the quality of low-salt meat

749 products. Recently, lysine has been successfully added to salt-reduced meat products  
750 as flavour enhancer to improve eating quality (Dos Santos Alves *et al.*, 2017; Zheng *et*  
751 *al.*, 2017; Dos Santos Alves *et al.*, 2014; Campagnol *et al.*, 2012; Campagnol *et al.*,  
752 2011a). Lysine is also as salt substitute and try to add in meat products, but Guo *et al.*,  
753 (2020) demonstrated that increasing concentration of lysine increased yield, WHC and  
754 global acceptance, improved mouthfeel, appearance of ham with 50% NaCl reduction,  
755 but saltiness intensity could not achieve similar level with non-salt-reduced ham at  
756 highest concentration (0.8%). Vidal *et al.*, (2020) also found that 50% NaCl reduced  
757 salted meat with KCl and 3% lysine had enhanced flavour and overall acceptance, but  
758 saltiness intensity still could not completely compensate saltiness intensity loss  
759 comparing with non-salt-reduced meat, even at high concentration level (3%). This  
760 could provide an idea that lysine can increase the salty taste intensity of salt-reduced  
761 meat products, but it needs to be at a relatively high concentration range when the  
762 consumers is not able to distinguish the difference in saltiness between salt-reduced  
763 meat products and non-salt-reduced meat products. As for the mechanism of action of  
764 lysine to produce salty taste is currently unknown, this need to be further explored. For  
765 example, whether it stimulates ENaC channel resulting in the transduction of salty taste  
766 signals in the brain, or alternatively whether it can enhance the overall taste of foods by  
767 interacting with salt receptors in the taste buds to make the perception of salt stronger,  
768 is not known. In addition to enhancing the eating quality of meat, lysine also contributes  
769 to the absorption of calcium in the human body and decreases the amount of calcium

770 lost in the urine, which is used with calcium to prevent and treat osteoporosis (Fini *et*  
771 *al.*, 2001).

772 **1.5.4.2.3 Calcium lactate**

773 There is less literature on the use of calcium lactate as a salt replacer, however, it has  
774 following potential benefits which could be consider as an feasible salt substitute.  
775 Calcium lactate is a white or gray crystalline salt, the most common form is  
776 pentahydrate (Shelef, 1994). It can be used directly as food ingredients or food additives  
777 (E327), such as flavor enhancers, thickeners or others in the food industry when it is  
778 used as a monohydrate (World Health Organization, 2011). Calcium lactate is  
779 associated with saltiness because the salts of divalent metal cations are mainly  
780 perceived with saltiness and bitterness (Lawless *et al.*, 2003), but calcium lactate also  
781 has a considerable sour component (Kilcast and Den Ridder, 2007). It is interesting to  
782 note that insufficient intake of calcium would stimulate the salty appetite (Tordoff,  
783 1996), which indicates that people with calcium deficiency prefer to eat more salt and  
784 lead to a vicious circle finally. The most prominent advantage of lactates as a salt  
785 substitute is that lactate anion can inhibit the growth of bacteria in meat products and  
786 antilisterial properties (Devlieghere *et al.*, 2009), which can compensate for the  
787 drawbacks of most salt substitutes. Weaver and Shelef (1993) found that 2% calcium  
788 lactate could inhibit the growth of *Listeria monocytogenes* (*L. monocytogenes*) which  
789 was very common in the meat products. In addition, Lawrence *et al.*, (2003) also  
790 indicated that the beef longissimus (muscle) marinated with calcium lactate was more  
791 resistant to the growth of aerobic bacteria than marinated with calcium ascorbate or

792 calcium chloride. Calcium lactate also affects the colour, texture and flavour of meat  
793 products. Yang *et al.* (2021) presented that 0.2–0.4% calcium lactate resulted in greater  
794 redness, oxidative stability and increased hardness, gumminess, chewiness in cured  
795 beef sausage. Irshad *et al.* (2016) also found a similar trend for redness, yellowness,  
796 hardness in restructured buffalo meat loaves with calcium lactate added at 1-1.25% but  
797 there was no change in sensory attributes. The sensory results were further confirmed  
798 by Aggarwal, Ahlawat and Sharma (2009), and they demonstrated that calcium  
799 enriched chicken meat roll with 1.5-2% calcium lactate had same flavour, colour,  
800 tenderness, juiciness and overall acceptability as control. In addition, calcium is not  
801 only an important mineral to support bone health, but also maintain the metabolism of  
802 human (Adluri *et al.*, 2010). Lack of calcium in the diet will cause rickets, osteoporosis  
803 and so on (Shaw, 2016). According to Lutz, Mazur and Litch (2014), adults were  
804 recommended a daily intake of calcium at 1000 mg/day, but the calcium content in the  
805 meat is relatively poor, only about 10 mg/100 g (Okuskanova *et al.*, 2016). Therefore,  
806 it is useful to enrich the calcium level in meat products for people's health and help  
807 people maintain a healthy appetite for salt.

808 In conclusion, although the literature has indicated that lysine could be used as a salt  
809 substitute to improve the quality of reduced-salt meat products, the relationship  
810 between the concentration of lysine and the perceive saltiness has not been explored. In  
811 addition, there is scarce information about how calcium lactate interacts with saltiness  
812 in aqueous or food model systems, although it can effectively extend the shelf life.

813 Therefore, the feasibility of using the combination of lysine and calcium lactate as salt  
814 substitutes is worth exploring.

815 **1.5.5 Challenges in reducing salt**

816 Developing low-salt meat products is not an easy task, so far there is no comparable  
817 salt substitute with all essential functions as salt. Quite often, several agents or salt  
818 substitute need combine with processing technologies to achieve successful salt  
819 reduction. One of the biggest barriers to salt substitution is the cost, as salt is one of the  
820 cheapest food ingredients. Sodium chloride plays multiple roles in meat products. A  
821 particular problem associated with low-salt meat products is that when salt is reduced,  
822 not only the perceived saltiness, but also the intensity of the characteristic flavour is  
823 reduced. Ideally, the quality characteristics of low-salt meat products must therefore be  
824 the same as those of the conventional meat products. What is more, maintaining  
825 microbiological stability and safety is an essential requirement for any salt reduction  
826 programme, and aspects related to process ability must also be considered.

827 **1.6 Conclusions**

828 Salty taste is an important sensory attribute of many foods and sodium chloride  
829 contributes to the characteristic flavour of many food types beyond just the salty taste.  
830 When salt intake is within recommended levels, it plays a very important physiological  
831 role in the body. However, higher concentrations of sodium-containing salt can pose a  
832 serious risk to human health. Reducing the dietary sodium intake for the public are  
833 facing lots of challenges. For meat industry, simply reducing the salt addition level in  
834 products would compromise the eating quality of products, particularly in saltiness and

835 overall acceptability. This review summarised the principles of saltiness perception in  
836 foods and discussed the mechanism, strength and weakness of different salt reduction  
837 strategies which were adapted by the meat industry, governments and manufacturers.  
838 Despite the progress made in the development of salt replacement ingredients and  
839 flavour enhancers, there are still factors associated with their negative sensory impact.  
840 Salt substitutes not only need to be effective in maintaining food safety, but also must  
841 meet consumer perceptions of low-salt meat products, such as taste, colour, flavour,  
842 texture and so on, all parameters that may become unacceptable if too much sodium is  
843 removed. There are evidence that combining lysine and calcium lactate can be effective  
844 strategy to improve the eating quality and maintain shelf life of salt-reduced foods.  
845 However, understanding for their perceived saltiness and shelf life in low salt foods is  
846 scarce. This needs to be fully validated by subsequent experiments.

847 **Reference**

848 Aaron, K. and Sanders, P., 2013. Role of Dietary Salt and Potassium Intake in  
849 Cardiovascular Health and Disease: A Review of the Evidence. *Mayo Clinic  
850 Proceedings*, 88(9), pp.987-995.

851 Aaslyng, M.D. and Schäfer, A., 2008. The effect of free fatty acids on the odour of pork  
852 investigated by sensory profiling and GC-O-MS. *European Food Research and  
853 Technology*, 226(5), pp.937-948.

854 Aaslyng, M.D. and Meinert, L., 2017. Meat flavour in pork and beef–From animal to  
855 meal. *Meat science*, 132, pp.112-117.

856 Adluri, R., Zhan, L., Bagchi, M., Maulik, N. and Maulik, G., 2010. Comparative effects  
857 of a novel plant-based calcium supplement with two common calcium salts on  
858 proliferation and mineralization in human osteoblast cells. *Molecular and Cellular*  
859 *Biochemistry*, 340(1-2), pp.73-80.

860 Aggarwal, P., Ahlawat, S. S., and Sharma, D. P., 2009. Development of calcium  
861 enriched chicken meat rolls. *Indian J. Poultr. Sci*, 44(2), 233-237.

862 Aguilar, C., Serna-Jiménez, J., Benitez, E., Valencia, V., Ochoa, O., and Sotelo, L. I.,  
863 2021. Influence of high power ultrasound on natural microflora, pathogen and lactic  
864 acid bacteria in a raw meat emulsion. *Ultrasonics Sonochemistry*, 72, 105415.

865 Alarcon-Rojo, A.D., Janacua, H., Rodriguez, J.C., Paniwnyk, L. and Mason, T.J., 2015.  
866 Power ultrasound in meat processing. *Meat science*, 107, pp.86-93.

867 Albarracín, W., Sánchez, I.C., Grau, R. and Barat, J.M., 2011. Salt in food processing;  
868 usage and reduction: a review. *International Journal of Food Science & Technology*,  
869 46(7), pp.1329-1336.

870 Alim, A., Song, H., Liu, Y., Zou, T., Zhang, Y., and Zhang, S., 2018. Flavour-active  
871 compounds in thermally treated yeast extracts. *Journal of the Science of Food and*  
872 *Agriculture*, 98(10), 3774-3783.

873 Ames, J.M., 1992. The maillard reaction. In *Biochemistry of food proteins* (pp. 99-153).  
874 Springer, Boston, MA.

875 Ashford, R., Jones, K. and Collins, D., 2020. National Diet and Nutrition Survey:  
876 Assessment of salt intake from urinary sodium in adults (aged 19 to 64 years) in  
877 England, 2018 to 2019. GOV. UK, pp.133-155.

878 Avenet, P. & Lindemann, B., 1991. Noninvasive recording of receptor cell action  
879 potentials and sustained currents from single taste buds maintained in the tongue: the  
880 response to mucosal NaCl and amiloride. *J. Membr. Biol.* 124, 33–41.

881 Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D.Y.M.M. and Youssef, M.M.,  
882 2012. Applications of ultrasound in analysis, processing and quality control of food: A  
883 review. *Food research international*, 48(2), pp.410-427.

884 Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., ... and  
885 Vorobiev, E., 2015. Current applications and new opportunities for the use of pulsed  
886 electric fields in food science and industry. *Food Research International*, 77, 773-798.

887 Bartoshuk, L.M., 1975. Taste mixtures: Is mixture suppression related to compression?.  
888 *Physiology & behavior*, 14(5), pp.643-649.

889 Barretto, T.L., Pollonio, M.A.R., Telis-Romero, J. and da Silva Barretto, A.C., 2018.  
890 Improving sensory acceptance and physicochemical properties by ultrasound  
891 application to restructured cooked ham with salt (NaCl) reduction. *Meat Science*, 145,  
892 pp.55-62.

893 Barretto, T.L., Bellucci, E.R.B., Barbosa, R.D., Pollonio, M.A.R., Romero, J.T. and da  
894 Silva Barretto, A.C., 2020. Impact of ultrasound and potassium chloride on the  
895 physicochemical and sensory properties in low sodium restructured cooked ham. *Meat  
896 science*, 165, p.108130.

897 Bekhit, A. E. D. A., van de Ven, R., Fahri, F., and Hopkins, D. L., 2014. Effect of  
898 pulsed electric field treatment on cold-boned muscles of different potential tenderness.  
899 *Food and Bioprocess Technology*, 7(11), 3136-3146.

900 Bhat, Z.F., Morton, J.D., Mason, S.L. and Bekhit, A.E.D.A., 2019. Current and future  
901 prospects for the use of pulsed electric field in the meat industry. *Critical Reviews in*  
902 *Food Science and Nutrition*, 59(10), pp.1660-1674.

903 Bhat, Z.F., Morton, J.D., Mason, S.L. and Bekhit, A.E.D.A., 2020. The application of  
904 pulsed electric field as a sodium reducing strategy for meat products. *Food Chemistry*,  
905 306, p.125622.

906 Bidlas, E. and Lambert, R.J., 2008. Comparing the antimicrobial effectiveness of NaCl  
907 and KCl with a view to salt/sodium replacement. *International Journal of Food*  
908 *Microbiology*, 124(1), pp.98-102.

909 Bigiani, A., 2020. Does ENaC work as sodium taste receptor in humans?. *Nutrients*,  
910 12(4), p.1195.

911 Blaylock, R. L., 1999. Food additive excitotoxins and degenerative brain disorders.  
912 *Medical Sentinel*, 4(6), 212-215.

913 Blemings, K. and Norlin J. Benevenga, N., 2007. Unique Aspects of Lysine Nutrition  
914 and Metabolism. *American Society for Nutrition*, 137(6), pp.1610S-1615S.

915 Boateng, E.F. and Nasiru, M.M., 2019. Applications of ultrasound in meat processing  
916 technology: A review. *Food Sci. Technol*, 7, pp.11-15.

917 Brandsma, I., 2006. Reducing sodium: a European perspective. *Food technology*  
918 (*Chicago*), 60(3), pp.24-29.

919 Breslin, P.A.S. and Beauchamp, G.K., 1995. Suppression of bitterness by sodium:  
920 variation among bitter taste stimuli. *Chemical senses*, 20(6), pp.609-623.

921 Breslin, P.A.S., 1996. Interactions among salty, sour and bitter compounds. *Trends in*  
922 *Food Science and Technology*, 7(12), pp. 390–399.

923 Breslin, P.A.S. and Beauchamp, G.K., 1997. Salt enhances flavour by suppressing  
924 bitterness. *Nature*, 387(6633), pp.563-563.

925 Brown, I.J., Tzoulaki, I., Candeias, V. and Elliott, P., 2009. Salt intakes around the  
926 world: implications for public health. *International journal of epidemiology*, 38(3),  
927 pp.791-813.

928 Buckow, R., Chandry, P.S., Ng, S.Y., McAuley, C.M. and Swanson, B.G., 2014.  
929 Opportunities and challenges in pulsed electric field processing of dairy products.  
930 *International Dairy Journal*, 34(2), pp.199-212.

931 Busch, J.L.H.C., Yong, F.Y.S. and Goh, S.M., 2013. Sodium reduction: Optimizing  
932 product composition and structure towards increasing saltiness perception. *Trends in*  
933 *Food Science & Technology*, 29(1), pp.21-34.

934 Campagnol, P.C.B., dos Santos, B.A., Morgano, M.A., Terra, N.N. and Pollonio,  
935 M.A.R., 2011a. Application of lysine, taurine, disodium inosinate and disodium  
936 guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. *Meat*  
937 *science*, 87(3), pp.239-243.

938 Campagnol, P. C. B., dos Santos, B. A., Wagner, R., Terra, N. N., and Pollonio, M. A.  
939 R., 2011b. The effect of yeast extract addition on quality of fermented sausages at low  
940 NaCl content. *Meat science*, 87(3), 290-298.

941 Campagnol, P., dos Santos, B., Terra, N. and Pollonio, M., 2012. Lysine, disodium  
942 guanylate and disodium inosinate as flavor enhancers in low-sodium fermented  
943 sausages. *Meat Science*, 91(3), pp.334-338.

944 Campagnol, P.C.B., dos Santos, B.A. and Rodriguez-Pollonio, M.A., 2017. Strategies  
945 to reduce the salt content in fermented meat products. *Strategies for Obtaining*  
946 *Healthier Foods*, p.291.

947 Chandrashekhar, J., Hoon, M.A., Ryba, N.J. and Zuker, C.S., 2006. The receptors and  
948 cells for mammalian taste. *Nature*, 444(7117), pp.288-294.

949 Chaudhari, N. and Roper, S.D., 2010. Review series: The cell biology of taste. *The*  
950 *Journal of cell biology*, 190(3), p.285.

951 Cheftel, J.C. and Culoli, J., 1997. Effects of high pressure on meat: a review. *Meat*  
952 *science*, 46(3), pp.211-236.

953 Clariana, M., Guerrero, L., Sárraga, C., Díaz, I., Valero, Á. and García-Regueiro, J.A.,  
954 2011. Influence of high pressure application on the nutritional, sensory and  
955 microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects  
956 along the storage period. *Innovative Food Science & Emerging Technologies*, 12(4),  
957 pp.456-465.

958 Corral, S., Salvador, A. and Flores, M., 2013. Salt reduction in slow fermented sausages  
959 affects the generation of aroma active compounds. *Meat science*, 93(3), pp.776-785.

960 Crehan, C. M., Troy, D. J., and Buckley, D. J., 2000. Effects of salt level and high  
961 hydrostatic pressure processing on frankfurters formulated with 1.5 and 2.5% salt. *Meat*  
962 *Science*, 55(1), 123-130.

963 Davidson, P.M., Taylor, T.M. and Schmidt, S.E., 2012. Chemical preservatives and  
964 natural antimicrobial compounds. *Food microbiology: fundamentals and frontiers*,  
965 pp.765-801.

966 Desmond, E., 2006. Reducing salt: A challenge for the meat industry. *Meat science*,  
967 74(1), pp.188-196.

968 Desmond, E. and Vasilopoulos, C., 2019. Reducing salt in meat and poultry products.  
969 In *Reducing salt in foods* (pp. 159-183). Woodhead Publishing.

970 Delay, R. J., Roper, S. D., & Kinnamon, J. C., 1986. Ultrastructure of mouse vallate  
971 taste buds: II. Cell types and cell lineage. *Journal of Comparative Neurology*, 253(2),  
972 242-252.

973 Devlieghere, F., Vermeiren, L., Bontenbal, E., Lamers, P.P. and Debevere, J., 2009.  
974 Reducing salt intake from meat products by combined use of lactate and diacetate salts  
975 without affecting microbial stability. *International journal of food science &*  
976 *technology*, 44(2), pp.337-341.

977 Domínguez, R., Pateiro, M., Pérez-Santaescolástica, C., Munekata, P.E.S. and Lorenzo,  
978 J.M., 2017. Salt reduction strategies in meat products made from whole pieces.  
979 *Strategies for Obtaining Healthier Foods; Lorenzo, JM, Carballo, FJ, Eds*, pp.267-289.

980 Dos Santos, B., Campagnol, P., Morgano, M. & Pollonio, M., 2014. Monosodium  
981 glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the  
982 sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl  
983 with KCl. *Meat Science*, 96(1), 509-513.

984 Dos Santos Alves, L.A.A., Lorenzo, J.M., Gonçalves, C.A.A., Dos Santos, B.A., Heck,  
985 R.T., Cichoski, A.J. and Campagnol, P.C.B., 2017. Impact of lysine and liquid smoke  
986 as flavor enhancers on the quality of low-fat Bologna-type sausages with 50%  
987 replacement of NaCl by KCl. *Meat science*, 123, pp.50-56.

988 Dötsch, M., Busch, J., Batenburg, M., Liem, G., Tareilus, E., Mueller, R. and Meijer,  
989 G., 2009. Strategies to Reduce Sodium Consumption: A Food Industry  
990 Perspective. *Critical Reviews in Food Science and Nutrition*, 49(10), pp.841-851.

991 Doyle, M.E. and Glass, K.A., 2010. Sodium reduction and its effect on food safety,  
992 food quality, and human health. *Comprehensive reviews in food science and food safety*,  
993 9(1), pp.44-56.

994 Dubow, J.S. and Childs, N.M., 1998. New Coke, mixture perception, and the flavor  
995 balance hypothesis. *Journal of Business Research*, 43(3), pp.147-155.

996 Elliott, E.J. and Simon, S.A., 1990. The anion in salt taste: a possible role for  
997 paracellular pathways. *Brain research*, 535(1), pp.9-17.

998 Fini, M., Torricelli, P., Giavaresi, G., Carpi, A., Nicolini, A. and Giardino, R., 2001.  
999 Effect of L-lysine and L-arginine on primary osteoblast cultures from normal and  
1000 osteopenic rats. *Biomedicine & Pharmacotherapy*, 55(4), pp.213-220.

1001 Flodin, N.W., 1997. The metabolic roles, pharmacology, and toxicology of lysine.  
1002 *Journal of the American College of Nutrition*, 16(1), pp.7-21.

1003 Gaudette, N.J., Pietrasik, Z. and Johnston, S.P., 2019. Application of taste contrast to  
1004 enhance the saltiness of reduced sodium beef patties. *LWT*, 116, p.108585.

1005 Geleijnse, J. M., Witteman, J., Stijnen, T., Kloos, M. W., Hofman, A., and Grobbee, D.  
1006 E., 2007. Sodium and potassium intake and risk of cardiovascular events and all-cause  
1007 mortality: the Rotterdam Study. *European journal of epidemiology*, 22(11), 763-770.

1008 Girgis, S., Neal, B., Prescott, J., Prendergast, J., Dumbrell, S., Turner, C. and  
1009 Woodward, M., 2003. A one-quarter reduction in the salt content of bread can be made  
1010 without detection. *European journal of clinical nutrition*, 57(4), pp.616-620.

1011 Gómez, B., Munekata, P.E., Gavahian, M., Barba, F.J., Martí-Quijal, F.J., Bolumar, T.,  
1012 Campagnol, P.C.B., Tomasevic, I. and Lorenzo, J.M., 2019. Application of pulsed  
1013 electric fields in meat and fish processing industries: An overview. *Food research*  
1014 *international*, 123, pp.95-105.

1015 Gómez-Salazar, J.A., Galván-Navarro, A., Lorenzo, J.M. and Sosa-Morales, M.E.,  
1016 2021. Ultrasound effect on salt reduction in meat products: a review. *Current opinion*  
1017 *in food science*, 38, pp.71-78.

1018 Grosch, W., 2001. Evaluation of the key odorants of foods by dilution experiments,  
1019 aroma models and omission. *Chemical senses*, 26(5), 533-545.

1020 Guilloux, M., Prost, C., Courcoux, P., Le Bail, A. and Lethuaut, L., 2015. How  
1021 inhomogeneous salt distribution can affect the sensory properties of salt-reduced multi-  
1022 component food: contribution of A mixture experimental design approach applied to  
1023 pizza. *Journal of sensory studies*, 30(6), pp.484-498.

1024 Guo, X., Tao, S., Pan, J., Lin, X., Ji, C., Liang, H., Dong, X. and Li, S., 2020. Effects  
1025 of L-Lysine on the physiochemical properties and sensory characteristics of salt-  
1026 reduced reconstructed ham. *Meat science*, 166, p.108133.

1027 He, F.J. and MacGregor, G.A., 2010. Reducing population salt intake worldwide: from  
1028 evidence to implementation. *Progress in cardiovascular diseases*, 52(5), pp.363-382.

1029 Henney, J.E., Taylor, C.L. and Boon, C.S., 2010. Taste and flavor roles of sodium in  
1030 foods: A unique challenge to reducing sodium intake. *Strategies to Reduce Sodium*  
1031 *Intake in The United States; National Academies Press: Washington, DC, USA.*

1032 Ho, C. T., Oh, Y. C., and Bae-Lee, M. (1994). The flavour of pork. Flavor of meat and  
1033 meat products, 38-51.

1034 Houtsma, P. C., De Wit, J. C., & Rombouts, F. M. (1993). Minimum inhibitory  
1035 concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring  
1036 in meat products. *International Journal of Food Microbiology*, 20(4), 247-257.

1037 Hutton, T. 2002. Sodium: Technological functions of salt in the manufacturing of food  
1038 and drink products. *British Food Journal*, 104(2):126-152.

1039 Inguglia, E., Zhang, Z., Tiwari, B., Kerry, J. and Burgess, C., 2017. Salt reduction  
1040 strategies in processed meat products – A review. *Trends in Food Science &*  
1041 *Technology*, 59, pp.70-78.

1042 Inguglia, E. S., Tiwari, B. K., Kerry, J. P., and Burgess, C. M., 2018. Effects of high  
1043 intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria  
1044 innocua with salt and salt replacers. *Ultrasonics Sonochemistry*, 48, 492-498.

1045 Irshad, A., Sharma, B., Ahmed, S., Talukder, S., Malav, O. and Kumar, A. (2016).  
1046 Effect of incorporation of calcium lactate on physico-chemical, textural, and sensory  
1047 properties of restructured buffalo meat loaves. *Veterinary World*, 9(2), pp.151-159.

1048 Ishimaru, Y., 2009. Molecular mechanisms of taste transduction in vertebrates.

1049 *Odontology*, 97(1), pp.1-7.

1050 Iwasaki, T., Noshiro, K., Saitoh, N., Okano, K., & Yamamoto, K., 2006. Studies of

1051 the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils

1052 and pork meat patty. *Food chemistry*, 95(3), 474-483.

1053 Jeyamkondan, S., Jayas, D.S. and Holley, R.A., 1999. Pulsed electric field processing

1054 of foods: a review. *Journal of food protection*, 62(9), pp.1088-1096.

1055 Jimenez-colmenero, F., Fernandez, P., Carballo, J. and Fernandez-martin, F., 1998.

1056 High-pressure-cooked low-fat pork and chicken batters as affected by salt levels and

1057 cooking temperature. *Journal of Food Science*, 63(4), pp.656-659.

1058 Kanner, J., Harel, S., and Jaffe, R., 1991. Lipid peroxidation of muscle food as affected

1059 by sodium chloride. *Journal of Agricultural and Food Chemistry*, 39(6), 1017-1021.

1060 Keast, R.S. and Breslin, P.A., 2003. An overview of binary taste–taste interactions.

1061 *Food quality and preference*, 14(2), pp.111-124.

1062 Keast, R.S., Dalton, P. and Breslin, P.A., 2004. Flavor interactions at the sensory level.

1063 *Flavor perception*, 228.

1064 Keast, R.S. and Roper, J., 2007. A complex relationship among chemical concentration,

1065 detection threshold, and suprathreshold intensity of bitter compounds. *Chemical senses*,

1066 32(3), pp.245-253.

1067 Kemp, S. E., Beauchamp, G. K., 1994. Flavor Modification by Sodium Chloride and

1068 Monosodium Glutamate. *Journal of Food Science*. 59:682-6.

1069 Khan, M.I., Jo, C. and Tariq, M.R., 2015. Meat flavor precursors and factors  
1070 influencing flavor precursors—A systematic review. *Meat science*, 110, pp.278-284.

1071 Khaw, K.T. and Barrett-Connor, E., 1984. Dietary potassium and blood pressure in a  
1072 population. *The American journal of clinical nutrition*, 39(6), pp.963-968.

1073 Kilcast, D. and Den Ridder, C., 2007. Sensory issues in reducing salt in food products.

1074 In *Reducing salt in foods* (pp. 201-220). Woodhead publishing.

1075 Kim, T.K., Yong, H.I., Jung, S., Kim, H.W. and Choi, Y.S., 2021. Technologies for the  
1076 production of meat products with a low sodium chloride content and improved quality  
1077 characteristics—A Review. *Foods*, 10(5), p.957.

1078 Lawless, H., Rapacki, F., Horne, J. and Hayes, A., 2003. The taste of calcium and  
1079 magnesium salts and anionic modifications. *Food Quality and Preference*, 14(4),  
1080 pp.319-325.

1081 Lawrence, T., Dikeman, M., Hunt, M., Kastner, C. and Johnson, D., 2003. Effects of  
1082 calcium salts on beef longissimus quality. *Meat Science*, 64(3), pp.299-308.

1083 Leães, Y. S. V., Pinton, M. B., de Aguiar Rosa, C. T., Robalo, S. S., Wagner, R., de  
1084 Menezes, C. R., and Cichoski, A. J., 2020. Ultrasound and basic electrolyzed water: A  
1085 green approach to reduce the technological defects caused by NaCl reduction in meat  
1086 emulsions. *Ultrasonics Sonochemistry*, 61, 104830.

1087 Li, S., Li, L., Zhu, X., Ning, C., Cai, K. and Zhou, C., 2019. Conformational and charge  
1088 changes induced by L-arginine and L-lysine increase the solubility of chicken myosin.

1089 *Food Hydrocolloids*, 89, pp.330-336.

1090 Liem, D., Miremadi, F. and Keast, R., 2011. Reducing Sodium in Foods: The Effect on  
1091 Flavor. *Nutrients*, 3(6), pp.694-711.

1092 Lin, W., Finger, T. E., Rossier, B. C. & Kinnamon, S. C., 1999. Epithelial Na<sup>+</sup> channel  
1093 subunits in rat taste cells: localization and regulation by aldosterone. *J. Comp. Neurol.*  
1094 405, 406–420.

1095 Lindemann, B., 1996. Taste reception. *Physiol. Rev.* 76, 719–766.

1096 Lindemann, B., 1997. Sodium taste. *Curr. Opin. Nephrol. Hypertension* 6, 425–429.

1097 Lindemann, B., 2001. Receptors and transduction in taste. *Nature*, 413(6852), 219-225.

1098 Liu, X., Zheng, L., Zhang, R., Liu, G., Xiao, S., Qiao, X., Wu, Y. and Gong, Z., 2016.

1099 Toxicological evaluation of advanced glycation end product Nε-(carboxymethyl)lysine:  
1100 Acute and subacute oral toxicity studies. *Regulatory Toxicology and Pharmacology*, 77,  
1101 pp.65-74.

1102 Logan, A., 2006. Dietary Sodium Intake and Its Relation to Human Health: A Summary  
1103 of the Evidence. *Journal of the American College of Nutrition*, 25(3), pp.165-169.

1104 Luckose, F., Pandey, M.C., Chauhan, O.P., Sultana, K. and Abhishek, V., 2015. Effect  
1105 of high pressure processing on the quality characteristics and shelf life of low-sodium  
1106 re-structured chicken nuggets. *Journal of Food & Nutrition Research*, 54(4).

1107 Lund, B., Baird-Parker, A.C., Baird-Parker, T.C., Gould, G.W. and Gould, G.W. eds.,  
1108 2000. *Microbiological safety and quality of food* (Vol. 1). Springer Science & Business  
1109 Media.

1110 Luo, J., Nasiru, M.M., Zhuang, H., Zhou, G. and Zhang, J., 2021. Effects of partial  
1111 NaCl substitution with high-temperature ripening on proteolysis and volatile

1112 compounds during process of Chinese dry-cured lamb ham. *Food Research*  
1113 *International*, 140, p.110001.

1114 Lutz, C., Mazur, E. and Litch, N., 2014. Dietary Reference Intakes for Individuals.  
1115 *Nutrition and diet therapy*, pp. 557-562.

1116 Mariutti, L.R. and Bragagnolo, N., 2017. Influence of salt on lipid oxidation in meat  
1117 and seafood products: A review. *Food Research International*, 94, pp.90-100.

1118 Medved'ová, A., & Valík, L., 2012. *Staphylococcus aureus*: Characterisation and  
1119 quantitative growth description in milk and artisanal raw milk cheese production.  
1120 Structure and function of food engineering, 71-102.

1121 Miller Jr, I.J., 1991. Taste perception, taste bud distribution and spatial relationships.  
1122 *Smell and taste in health and disease*, pp.205-233.

1123 Min, B., Cordray, J.C. and Ahn, D.U., 2010. Effect of NaCl, myoglobin, Fe (II), and Fe  
1124 (III) on lipid oxidation of raw and cooked chicken breast and beef loin. *Journal of*  
1125 *agricultural and food chemistry*, 58(1), pp.600-605.

1126 Monahan, F. J., & Troy, D. J., 1997. Overcoming sensory problems in low fat and low  
1127 salt products. In *Production and processing of healthy meat, poultry and fish products*  
1128 (pp. 257-281). Springer, Boston, MA.

1129 Moncada, M., Astete, C., Sabliov, C., Olson, D., Boeneke, C., and Aryana, K. J., 2015.  
1130 Nano spray-dried sodium chloride and its effects on the microbiological and sensory  
1131 characteristics of surface-salted cheese crackers. *Journal of dairy science*, 98(9), 5946-  
1132 5954.

1133 Monteiro, A.R.G., Nakagawa, A., Pimentel, T.C. and Sousa, I., 2021. Increasing  
1134 saltiness perception and keeping quality properties of low salt bread using  
1135 inhomogeneous salt distribution achieved with salt agglomerated by waxy starch. *LWT*,  
1136 146, p.111451.

1137 Moody, W. G., 1983. Beef flavor-a review. *Food Technol.*, 37, 227-238.

1138 Mottram, D.S. and Edwards, R.A., 1983. The role of triglycerides and phospholipids in  
1139 the aroma of cooked beef. *Journal of the Science of Food and Agriculture*, 34(5),  
1140 pp.517-522.

1141 Mosca, A. C., Bult, J. H., & Stieger, M., 2013. Effect of spatial distribution of tastants  
1142 on taste intensity, fluctuation of taste intensity and consumer preference of (semi-) solid  
1143 food products. *Food Quality and Preference*, 28(1), 182-187.

1144 Mottram, D., 1994. Meat flavour. *Understanding natural flavors*, (pp. 140-163).  
1145 Springer, Boston, MA.

1146 Mottram, D.S., 1998. Flavour formation in meat and meat products: a review. *Food  
1147 chemistry*, 62(4), pp.415-424.

1148 Mottram, D.S. and Nobrega, I.C., 2002. Formation of sulfur aroma compounds in  
1149 reaction mixtures containing cysteine and three different forms of ribose. *Journal of  
1150 Agricultural and Food Chemistry*, 50(14), pp.4080-4086.

1151 Myers, K., Montoya, D., Cannon, J., Dickson, J. and Sebranek, J., 2013. The effect of  
1152 high hydrostatic pressure, sodium nitrite and salt concentration on the growth of *Listeria*  
1153 *monocytogenes* on RTE ham and turkey. *Meat Science*, 93(2), pp.263-268.

1154 Nakao, S., Ishihara, S., Nakauma, M. and Funami, T., 2013. Inhomogeneous spatial  
1155 distribution of aroma compounds in food gels for enhancement of perceived aroma  
1156 intensity and muscle activity during oral processing. *Journal of Texture Studies*, 44(4),  
1157 pp.289-300.

1158 Offer, G. and Trinick, J., 1983. On the mechanism of water holding in meat: the  
1159 swelling and shrinking of myofibrils. *Meat science*, 8(4), pp.245-281.

1160 O'Flynn, C. C., Cruz-Romero, M. C., Troy, D., Mullen, A. M., and Kerry, J. P., 2014.  
1161 The application of high-pressure treatment in the reduction of salt levels in reduced-  
1162 phosphate breakfast sausages. *Meat science*, 96(3), 1266-1274.

1163 Ojha, K.S., Keenan, D.F., Bright, A., Kerry, J.P. and Tiwari, B.K., 2016. Ultrasound  
1164 assisted diffusion of sodium salt replacer and effect on physicochemical properties of  
1165 pork meat. *International journal of food science & technology*, 51(1), pp.37-45.

1166 Okuskhanova, E.; Assenova, B.; Rebezov, M.; Yessimbekov, Z.; Kulushtayeva, B.;  
1167 Zinina, O.; Stuart, M., 2016. Mineral composition of deer meat pate. *Pak. J. Nutr.*, 15,  
1168 217–222

1169 Olsen, N.V., Grunert, K.G. and Sonne, A.M., 2010. Consumer acceptance of high-  
1170 pressure processing and pulsed-electric field: a review. *Trends in Food Science &*  
1171 *Technology*, 21(9), pp.464-472.

1172 Oziembłowski, M., and Kopeć, W., 2005. Pulsed electric fields (PEF) as an  
1173 unconventional method of food preservation. *Pol. J. Food Nutr. Sci*, 14(55), 31-35.

1174 Pangborn, R.M., 1962, Taste interrelationships. *Journal of Food Science*, 27(5), pp.  
1175 495–500.

1176 Pangborn, R. M., and Braddock, K. S., 1989. Ad libitum preferences for salt in chicken

1177 broth. *Food Quality and Preference*, 1(2), 47-52.

1178 Partearroyo, T., Samaniego-Vaesken, M.D.L., Ruiz, E., Aranceta-Bartrina, J., Gil, Á.,

1179 González-Gross, M., Ortega, R.M., Serra-Majem, L. and Varela-Moreiras, G., 2019.

1180 Sodium intake from foods exceeds recommended limits in the Spanish population: The

1181 ANIBES study. *Nutrients*, 11(10), p.2451.

1182 Paulsen, M. T., Nys, A., Kvarberg, R., and Hersleth, M., 2014. Effects of NaCl

1183 substitution on the sensory properties of sausages: Temporal aspects. *Meat Science*,

1184 98(2), 164-170.

1185 Petit, G., Jury, V., de Lamballerie, M., Duranton, F., Pottier, L. and Martin, J.L., 2019.

1186 Salt intake from processed meat products: Benefits, risks and evolving practices.

1187 *Comprehensive Reviews in Food Science and Food Safety*, 18(5), pp.1453-1473.

1188 Pinton, M.B., dos Santos, B.A., Lorenzo, J.M., Cichoski, A.J., Boeira, C.P. and

1189 Campagnol, P.C.B., 2021. Green technologies as a strategy to reduce NaCl and

1190 phosphate in meat products: An overview. *Current Opinion in Food Science*, 40, pp.1-

1191 5.

1192 Pretorius, B. and Schönfeldt, H.C., 2018. The contribution of processed pork meat

1193 products to total salt intake in the diet. *Food chemistry*, 238, pp.139-145.

1194 Public Health England. *Salt Reduction Targets for 2024*; Public Health England:

1195 London, UK, 2020

1196 Puértolas, E., and Barba, F. J., 2016. Electrotechnologies applied to valorization of by-  
1197 products from food industry: Main findings, energy and economic cost of their  
1198 industrialization. *Food and Bioproducts Processing*, 100, 172-184.

1199 Puolanne, E. and Halonen, M., 2010. Theoretical aspects of water-holding in meat.  
1200 *Meat science*, 86(1), pp.151-165.

1201 Purriños, L., Franco, D., Carballo, J. and Lorenzo, J.M., 2012. Influence of the salting  
1202 time on volatile compounds during the manufacture of dry-cured pork shoulder “lacón”.  
1203 *Meat Science*, 92(4), pp.627-634.

1204 Quadros, D. A., Rocha, I. F. O., Ferreira, S. M. R., and Bolini, H. M. A., 2015. Low-  
1205 sodium fish burgers: Sensory profile and drivers of liking. *LWT - Food Science and  
1206 Technology*, 63, 236–242.

1207 Quilaqueo, M., Duizer, L., & Aguilera, J. M., 2015. The morphology of salt crystals  
1208 affects the perception of saltiness. *Food Research International*, 76, 675-681.

1209 Rabe, S., Krings, U. and Berger, R.G., 2003. Initial dynamic flavour release from  
1210 sodium chloride solutions. *European Food Research and Technology*, 218(1), pp.32-  
1211 39.

1212 Rama, R., Chiu, N., Carvalho Da Silva, M., Hewson, L., Hort, J., & Fisk, I. D., 2013.  
1213 Impact of salt crystal size on in-mouth delivery of sodium and saltiness perception from  
1214 snack foods. *Journal of Texture Studies*, 44(5), 338-345.

1215 Reddy, K.A. and Marth, E.H., 1991. Reducing the sodium content of foods: A review.  
1216 *Journal of food protection*, 54(2), pp.138-150.

1217 Rehnberg, B.G., MacKinnon, B.I., Hettinger, T.P. and Frank, M.E., 1993. Anion  
1218 modulation of taste responses in sodium-sensitive neurons of the hamster chorda  
1219 tympani nerve. *The Journal of general physiology*, 101(3), pp.453-465.

1220 Resconi, V.C., Escudero, A. and Campo, M.M., 2013. The development of aromas in  
1221 ruminant meat. *Molecules*, 18(6), pp.6748-6781.

1222 Rios-Mera, J.D., Selani, M.M., Patinho, I., Saldaña, E. and Contreras-Castillo, C.J.,  
1223 2021. Modification of NaCl structure as a sodium reduction strategy in meat products:  
1224 An overview. *Meat Science*, 174, p.108417.

1225 Rodrigues, F.M., Rosenthal, A., Tiburski, J.H. and Cruz, A.G.D., 2015. Alternatives to  
1226 reduce sodium in processed foods and the potential of high pressure technology. *Food  
1227 Science and Technology*, 36, pp.01-08.

1228 Roper, S. and Chaudhari, N., 2017. Taste buds: cells, signals and synapses. *Nature  
1229 Reviews Neuroscience*, 18(8), pp.485-497.

1230 Ruusunen, M. and Puolanne, E., 2005. Reducing sodium intake from meat  
1231 products. *Meat Science*, 70(3), pp.531-541.

1232 Shaw, N., 2016. Prevention and treatment of nutritional rickets. *The Journal of Steroid  
1233 Biochemistry and Molecular Biology*, 164, pp.145-147.

1234 Shelef, L., 1994. Antimicrobial Effects of Lactates: A Review. *Journal of Food  
1235 Protection*, 57(5), pp.445-450.

1236 Shelef, L.A. and Seiter, J., 2005. Indirect and miscellaneous antimicrobials. *Food  
1237 science and technology-new York-marcel dekker-*, 145, p.573.

1238 Stadnik, J., Dolatowski, Z. J., and Baranowska, H. M., 2008. Effect of ultrasound  
1239 treatment on water holding properties and microstructure of beef (m. semimembranosus)  
1240 during ageing. *LWT-Food Science and Technology*, 41(10), 2151-2158.

1241 Stähler, F., Riedel, K., Demgensky, S., Neumann, K., Dunkel, A., Täubert, A., ... &  
1242 Meyerhof, W., 2008. A role of the epithelial sodium channel in human salt taste  
1243 transduction?. *Chemosensory Perception*, 1(1), 78-90.

1244 Strazzullo P and Leclercq C., 2014. Sodium. *Advance in Nutrition*. 5(2), 188-90.

1245 Stringer, S. C. and Pin, C., 2005. Microbial risks associated with salt reduction in  
1246 certain foods and alternative options for preservation. *Institute of Food Research:*  
1247 *Norwich*. [https://www.food.gov.uk/sites/default/files/mnt/drupal\\_data/sources/files/multimedia/pdfs/acm740a.pdf](https://www.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/acm740a.pdf)

1248 Sun, A., Wu, W., Soladoye, O.P., Aluko, R.E., Bak, K.H., Fu, Y. and Zhang, Y., 2022.  
1249 Maillard reaction of food-derived peptides as a potential route to generate meat flavor  
1250 compounds: A review. *Food Research International*, 151, p.110823.

1251 Suzuki, T., 2007. Cellular mechanisms in taste buds. *The Bulletin of Tokyo Dental  
1253 College*, 48(4), pp.151-161.

1254 Tamanna, N. and Mahmood, N., 2015. Food processing and Maillard reaction products:  
1255 Effect on human health and Nutrition. *International Journal of Food Science*, 2015, pp.  
1256 1–6.

1257 Terrell, R. N., Quintanilla, M., Vanderzant, C., and Gardner, F. A., 1983. Effects of  
1258 reduction or replacement of sodium chloride on growth of Micrococcus, Moraxella and  
1259 Lactobacillus inoculated ground pork. *Journal of Food Science*, 48(1), 122-124.

1260 Toepfl, S., Siemer, C. and Heinz, V., 2014. Effect of high-intensity electric field pulses  
1261 on solid foods. *In Emerging technologies for food processing* (pp. 147-154). Academic  
1262 Press.

1263 Toldrá, F. and Flores, M., 2000. The use of muscle enzymes as predictors of pork meat  
1264 quality. *Food Chemistry*, 69(4), pp.387-395.

1265 Tordoff, M. (1996). The importance of calcium in the control of salt intake.  
1266 *Neuroscience & Biobehavioral Reviews*, 20(1), pp.89-99.

1267 Tunieva, E.K. and Gorbunova, N.A., 2017. Alternative methods of technological  
1268 processing to reduce salt in meat products. *Theory and practice of meat  
1269 processing*, 2(1), pp.47-56.

1270 Turantaş, F., Kılıç, G. B., and Kılıç, B., 2015. Ultrasound in the meat industry: General  
1271 applications and decontamination efficiency. *International journal of food  
1272 microbiology*, 198, 59-69.

1273 Van Boekel, M. A. J. S., 2006. Formation of flavour compounds in the Maillard reaction.  
1274 *Biotechnology advances*, 24(2), 230-233.

1275 Vanderklaauw, N. J., & Smith, D. V., 1995. Taste quality profiles for 15 organic and  
1276 inorganic salts. *Physiology & Behavior*, 58(2), 295-306.

1277 Vidal, V.A., Santana, J.B., Paglarini, C.S., da Silva, M.A., Freitas, M.Q., Esmerino,  
1278 E.A., Cruz, A.G. and Pollonio, M.A., 2020. Adding lysine and yeast extract improves  
1279 sensory properties of low sodium salted meat. *Meat Science*, 159, p.107911.

1280 Warner, R. D., McDonnell, C. K., Bekhit, A. E. D., Claus, J., Vaskoska, R., Sikes, A., ...

1281 and Ha, M., 2017. Systematic review of emerging and innovative technologies for meat

1282 tenderisation. *Meat science*, 132, 72-89.

1283 Weaver, R.A. and Shelef, L.A., 1993. Antilisterial activity of sodium, potassium or

1284 calcium lactate in pork liver sausage. *Journal of Food Safety*, 13(2), pp.133-146.

1285 Werkhoff, P., Bruening, J., Emberger, R., Guentert, M., Koepsel, M., Kuhn, W., &

1286 Surburg, H., 1990. Isolation and characterization of volatile sulfur-containing meat

1287 flavor components in model systems. *Journal of Agricultural and Food Chemistry*,

1288 38(3), 777-791.

1289 Wolfe, R.R., 2017. Branched-chain amino acids and muscle protein synthesis in

1290 humans: myth or reality?. *Journal of the International Society of Sports Nutrition*, 14(1),

1291 p.30.

1292 World Health Organization, 2011. Codex Alimentarius: general standard for food

1293 additives. *Codex Alimentarius: general standard for food additives*.

1294 World Health Organisation, 2020. Salt Reduction, Fact Sheets. Retrieved 3 November

1295 2020 from <https://www.who.int/news-room/fact-sheets/detail/salt-reduction>

1296 Woskow, M. H. Selectivity in flavor modification by 50-ribonucleotides. *Food*

1297 *Technology*. 1969,23:32-7.

1298 Wu, H., Zhang, Y., Long, M., Tang, J., Yu, X., Wang, J., and Zhang, J., 2014.

1299 Proteolysis and sensory properties of dry-cured bacon as affected by the partial

1300 substitution of sodium chloride with potassium chloride. *Meat science*, 96(3), 1325-

1301 1331.

1302 Xiong, Y.L., 2017. Structure-function relationships of muscle proteins. In *Food*  
1303 *proteins and their applications* (pp. 341-392). CRC Press.

1304 Xiong, Y., Deng, B., Warner, R.D. and Fang, Z., 2020. Reducing salt content in beef  
1305 frankfurter by edible coating to achieve inhomogeneous salt distribution. *International*  
1306 *Journal of Food Science & Technology*, 55(8), pp.2911-2919.

1307 Yamaguchi, S. and Takahashi, C., 1984. Interactions of monosodium glutamate and  
1308 sodium chloride on saltiness and palatability of a clear soup. *Journal of Food Science*,  
1309 49(1), pp.82-85.

1310 Yamamoto, K. and Ishimaru, Y., 2013. Oral and extra-oral taste perception. *Seminars*  
1311 *in Cell & Developmental Biology*, 24(3), pp.240-246.

1312 Yang, X., Sebranek, J.G., Luo, X., Zhang, W., Zhang, M., Xu, B., Zhang, Y. and Liang,  
1313 R., 2021. Effects of calcium salts on the physicochemical quality of cured beef sausages  
1314 during manufacturing and storage: A potential calcium application for sausages with  
1315 alginate casings. *Foods*, 10(11), p.2783.

1316 Zanfirescu, A., Ungurianu, A., Tsatsakis, A.M., Nițulescu, G.M., Kouretas, D.,  
1317 Veskoukis, A., Tsoukalas, D., Engin, A.B., Aschner, M. and Margină, D., 2019. A  
1318 review of the alleged health hazards of monosodium glutamate. *Comprehensive reviews*  
1319 *in food science and food safety*, 18(4), pp.1111-1134.

1320 Zheng, Y., Xu, P., Li, S., Zhu, X., Chen, C. G., & Zhou, C. L., 2017. Effects of L-  
1321 lysine/L-arginine on the physicochemical properties and quality of sodium-reduced and  
1322 phosphate-free pork sausage. *International Journal of Nutrition and Food Sciences*,  
1323 6(1), 12-18.

1324 Zhou, B., Lee, H. and Feng, H., 2012. Microbial decontamination of food by power

1325 ultrasound. *In Microbial decontamination in the food industry* (pp. 300-321).

1326 Woodhead Publishing.

1327 Zhu, Y., Yan, Y., Yu, Z., Wu, T. and Bennett, L.E., 2022. Effects of high pressure

1328 processing on microbial, textural and sensory properties of low-salt emulsified beef

1329 sausage. *Food Control*, 133, p.108596.

1330 **Chapter 2. Interactions of umami with the four other basic tastes in equi-intense**

1331 **aqueous solutions**

1332 **(Chapter modified from published paper in Food Quality and Preference, of the**

1333 **same title, Vol 98, June 2022, 104503)**

1334 **Abstract**

1335 Previous research has shown that the addition of equi-intense concentrations of taste

1336 compounds leads to mixture suppression, with sweetness being the least suppressed

1337 taste while being the strongest suppressor of the other taste stimuli. However, perceived

1338 intensity of umami (savoury) within complex mixtures is less defined. Since

1339 maintaining savoury taste of foods at reduced salt levels is a growing need, this study

1340 aims to investigate the role of umami in complex taste systems. Initially the

1341 concentrations of single tastants were adjusted until a trained sensory panel rated them

1342 as equi-intense using general labelled magnitude scale (gLMS). In order to evaluate the

1343 impact of umami taste on other tastes, and vice versa, three sample sets were prepared

1344 as binary and quinary systems. The first two sets utilised monosodium glutamate (MSG)

1345 as the umami tastant; one set without balancing the sodium level in MSG (sodium

1346 unbalanced) and another set accounting for it by the addition of sodium at an equivalent

1347 molarity to all but the umami single tastant solution (sodium balanced). The third set

1348 used monopotassium L-glutamate monohydrate (MPG) as the source of umami to

1349 overcome the confounding influence of sodium. All samples were rated by trained

1350 sensory panellists. The results of the three studies conclude that umami taste does not

1351 enhance or suppress the perception of any other taste in binary aqueous taste systems

1352 (p > 0.05); whereas sweet, salty, sour and bitter significantly suppress the perception of  
1353 umami in both binary and quinary systems (p < 0.05).

1354 **2.1 Introduction**

1355 Cross-modal interactions between two or more sensory modalities, have been  
1356 investigated as a strategy for the reduction of salt and sugar (Ponzo et al., 2021). For  
1357 example, odour-taste interactions have been explored for the reduction of sugar  
1358 (Velazquez et al., 2020) and the reduction of salt (Thomas-Danguin, Guichard & Salles,  
1359 2019; Emorine et al., 2021). Mojet et al. (2004) described how taste-taste interactions  
1360 influenced taste in various real foods, and found that tastants evoking salty, sweet, bitter  
1361 or umami could alter the perception of one or more other taste qualities in the product  
1362 which they had been added to. Such taste-taste interactions can be useful in salt  
1363 reduction strategies. For example, where potassium chloride (KCl) is used to replace  
1364 sodium chloride (NaCl) it can increase bitterness in the final product; however, Abu et  
1365 al. (2018) found that adding sweetness (via trehalose or sucrose) to a KCl/NaCl mixture  
1366 effectively reduced bitterness without changing saltiness. Therefore taste-taste  
1367 interactions are of relevance to the food scientist, with applications in salt and sugar  
1368 reduction continuing to be a growing interest.

1369 Psychophysical functions are used to study and express relationships between a  
1370 stimulus and a response, or perceived sensation, such as taste. For individual taste  
1371 stimuli, as the physical concentration increases the perceived intensity elicited by that  
1372 compound also increases, but the rate of increase is not always directly proportional. It  
1373 is dependent on both the specific tastant and whether the concentration is at relatively

1374 low levels (just above threshold, accelerating relationship), moderate levels (linear  
1375 relationship) or high levels (decelerating relationship) (Bartoshuk, 1975; McBride,  
1376 1987).

1377 Such stimulus response relationships are subsequently modified in tastant mixtures. In  
1378 a previous review, Keast and Breslin (2002a) concluded that perception of binary taste  
1379 mixtures is dependent on the position of the taste stimulus on the psychophysical curve.

1380 Whether the concentration is within the linear or decelerating (plateau) phase of the  
1381 curve, helps predict whether a particular tastant would cause enhancement or  
1382 suppression within a tastant mixture. In an earlier paper, McBride (1993) noted that the  
1383 binary mixing of two different tastants produces three senses: an overall total intensity  
1384 and a sensation from each of the two components; he suggested that the total intensity  
1385 would be determined only by the strength of the stronger components.

1386 In the case of more complex ternary and quaternary taste combinations, Bartoshuk  
1387 (1975) found that tastants suppressed each other. The extent of suppression was  
1388 dependent upon the function of the individual tastant; tastes where perception increased  
1389 sharply with increasing concentration tended to cause greater suppression. Similarly on  
1390 studying a tertiary taste mixture's intensity of sucrose, fructose, and citric acid,  
1391 McBride and Finlay (1990) found that the total perceived strength of the mixture was  
1392 determined by the perceptual intensity of the individual stronger components, and the  
1393 sweetness and sourness of the mixture tended to suppress each other. Taking a  
1394 modelling approach to understand the psychophysics of taste interaction, Schifferstein

1395 and Frijters (1993) concluded that a summation model (addition of individual  
1396 component intensities) was sufficiently able to predict total taste intensity of a mixture.

1397 Since many foods are formulated with tastants at moderate and not extreme levels, it is  
1398 likely that the influence of taste stimuli in the linear phase of the psychophysical curve  
1399 might be the most relevant. The approach taken by Green et al. (2010) focused on taste  
1400 mixtures combined at perceptually equi-intense moderate (not extreme) concentrations.

1401 They tested taste interactions in the four taste mixtures (salt, sweet, bitter and sour)  
1402 using equi-intense concentrations of sodium chloride, sucrose, quinine sulfate and citric  
1403 acid. Moreover, four tastes qualities in binary, ternary and quaternary mixtures were  
1404 also investigated. They concluded that suppression between stimuli in binary mixtures  
1405 could predict taste perception in more complex combinations. For example, the sweet  
1406 taste of sucrose tended to be the least suppressed quality, whereas it was a potent  
1407 suppressor to all other tastes.

1408 Umami tastants are widely used as flavour enhancers in food products, and especially  
1409 in developing salt-reduced foods. In practice such enhancement may result from  
1410 complex ingredients, such as yeast extracts, that comprise both amino acids (especially  
1411 glutamate) and 5'- nucleotides. However, literature often focuses on the understanding  
1412 of simpler systems. A review paper by Maluly et al (2017) recommended that  
1413 monosodium glutamate (MSG) could be used to reduce NaCl in a broad range of foods.

1414 In specific applications, Yamaguchi and Takahashi (1984) demonstrated that MSG  
1415 could be used to reduce NaCl in a Japanese soup (Sumash-Jiru). Where MSG is used  
1416 in combination with 5'-nucleotides, such as inosine-5'-monophosphate (IMP) and

1417 guanosine-5'-monophosphate (GMP), a much stronger umami taste can be achieved.  
1418 Yamaguchi and Kimizuka (1979) found that the perceived umami intensity was  
1419 affected by the ratio of IMP to MSG, and more recently Yamaguchi summarized that  
1420 maximum taste intensity could be achieved with a 70:30 ratio of IMP to MSG  
1421 (Yamaguchi, 1998). In using a combination of umami tastants, Dos et al. (2014) found  
1422 that MSG, disodium inosinate, disodium guanylate could enhance flavour and maintain  
1423 saltiness at 50% reduced NaCl when added into fermented cooked sausages.

1424 However, there is limited understanding about how MSG performs in mixture of  
1425 tastants, and how it interacts with other tastants, especially at equi-intense levels. Indeed,  
1426 some of the findings in the literature appear contradictory which is perhaps due to the  
1427 differences in levels, compounds, and test strategies applied in the sensory test. The  
1428 early study by Woskow (1969), investigated the effects of umami on other tastes, but  
1429 not vice versa. The study used a series of 50:50 combination of disodium 5'-inosinate  
1430 and disodium 5'-guanylate from low to moderate levels (0.1mM to 0.5mM), while MSG  
1431 was not included. This umami combination was found to enhance sweetness and  
1432 saltiness but suppress sourness and bitterness. Reporting on work from their laboratory  
1433 in 1979, Yamaguchi (1998) noted that MSG slightly enhanced saltiness from NaCl, but  
1434 only at high MSG concentrations, and found that NaCl had no substantial influence on  
1435 the perception of umami, while all other tastes did suppress umami. Kemp and  
1436 Beauchamp (1994) demonstrated that at threshold levels, MSG had no influence on  
1437 sweet, salt, sour and bitter, while at supra-threshold concentrations it suppressed sweet  
1438 and bitter tastes and enhanced salt perception.

Table 2.1: Summary of previous studies investigating the influence of umami taste in combined tastant aqueous mixtures.

| Reference     | Umami Tastant: Compound, Concentration and Recorded Intensity                                   | Additional Compounds, Concentration and Recorded Intensity                        | Tastants: Quinine sulfate: 0.007 mM<br>Citric acid: 0.005M<br>NaCl: 0.09M<br>Sucrose: 0.16M | Sensory scale/ sensory test employed                                                                       | Panelist type                                                                                              | Effect of Umami on Other Tastes*                                                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Woskow (1969) | A 50:50 mixture of disodium 5'-inosinate and disodium 5'-guanylate: (0.1, 0.2, 0.3, 0.4, 0.5mM) | Quinine sulfate: 0.007 mM<br>Citric acid: 0.005M<br>NaCl: 0.09M<br>Sucrose: 0.16M | Paired comparison: participants chose which one of the two was more bitter/sour/salty/sweet | 11 volunteers (no information on their ability to discriminate, detect and recognize the different tastes) | 11 volunteers (no information on their ability to discriminate, detect and recognize the different tastes) | Sweet ↑ (at 0.2mM and 0.4 mM of 5'Nucl)<br>Salty ↑ (only at 0.5 mM)<br>Sour ↓ (at concentrations ≥ 0.2mM of 5'Nucl)<br>Bitter ↓ (at concentrations ≥ 0.2mM of 5'Nucl) |

|                           |                                                                                                                                                            |                                                                                             |                                                                |                                                                                                                |                                                                                                |                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|
| Kemp & Beauchamp (1994)   | MSG: 0, 0.32mM (below detection threshold), 0.98mM (ca. detection threshold), 0.032M (moderately intense) and 0.059M (above level commonly found in foods) | Sucrose: 0.05M Citric acid: 0.0013M Quinine Sulfate: 0.025mM NaCl: 0.025M                   | Tastes were all easily detected and were of moderate strength. | Ranking procedure. Sip and spit, rinsing after each test. They were allowed to re-taste as often as necessary. | 15 trained panelists (screened for their ability to detect, recognize and discriminate tastes) | Sweet ↓ Salty ↑ Sour = Bitter ↓ |
| Keast & Breslin (2002b)   | MSG: 0.02M NaAMP: 0.02M                                                                                                                                    | Pseudoephedrine: 0.01mM Ranitidine: 0.004M Acetaminophen: 0.05M Quinine: 0.0001M Urea: 1.2M | (all scored moderate on gLMS)                                  | General labelled magnitude scale (gLMS). Sip and spit, rinsing with water at least 4 times                     | 14 trained panelists                                                                           | Bitter ↓                        |
| Lioe <i>et al.</i> , 2005 | MSG: 0.004M                                                                                                                                                | NaCl: 0.08M                                                                                 |                                                                | Ranking test. Taste and swallow                                                                                | 10 trained panelists                                                                           | Salty ↑                         |

\*↑ enhancement, ↓ suppression, = no effect.

\*\* Data reported as %, converted to Molarity assuming %w/v

1440

1441

1442 The findings of Kemp and Beauchamp (1994) for bitterness suppression corroborates  
1443 the work of Woskow (1969), which is perhaps unsurprising as the levels of bitter tastant,  
1444 quinine sulfate, were relatively similar (0.007 and 0.025 mM respectively) in the two  
1445 studies and the perceived intensity of MSG at the medium level was similar to the  
1446 recorded umami intensity of the two ribonucleotides in the earlier study. However, for  
1447 saltiness, Woskow (1969) concluded that ribonucleotides enhanced salty taste at  
1448 moderate concentration ( $\geq 0.2\text{mM}$ ), whereas Kemp and Beauchamp (1994) reported  
1449 the enhancement of umami taste on salty taste only happened at high concentration of  
1450 MSG (0.032mM and 0.059mM), as also concluded by Yamaguchi (1998). In relation  
1451 to sweet taste, the conflicting result is likely to be due to the difference in sucrose levels  
1452 used between the two studies. Sweetness was enhanced when the sucrose levels was 5%  
1453 (w/v) or 0.16 M (Woskow, 1969), whereas it was suppressed when the level was three  
1454 times lower at 0.05 M (Kemp & Beauchamp, 1994).

1455 Bitterness suppression was later confirmed by Keast and Breslin (2002b), concluding  
1456 that when using either MSG or adenosine monophosphate sodium salt (NaAMP), the  
1457 bitter taste of any of five different bitter tastants was suppressed. However, according  
1458 to the research by Fuke and Ueda (1996), NaAMP does not evoke umami taste alone,  
1459 hence, inferring that taste suppression may not require the suppressing tastant to be  
1460 perceived. Bitter and umami tastes are mediated via G-protein-coupled receptors, T1Rs  
1461 and T2Rs which are found in type II taste receptor cells (Bachmanov & Beauchamp,  
1462 2007). Kim et al. (2015) established that the suppression of bitter taste by umami could  
1463 occur at a cellular level, by investigating umami-bitter taste interactions with a cell-

1464 based assay using hTAS2R16-expressing cells. They tested the effect of five umami  
1465 peptides (Glu-Asp, Glu-Glu, Glu-Ser, Asp-Glu-Ser, and Glu-Gly-Ser) on the bitter  
1466 tastant salicin and found that the glutamayl peptides inhibited the salicin-induced  
1467 intracellular Ca<sup>2+</sup> response. Specifically, the Glu-Glu peptide suppressed salicin-  
1468 induced activation of hTAS2R16 to a greater extent compared with the probenecid, a  
1469 specific antagonist of hTAS2R16.

1470 Previous studies have considered taste-taste interactions within ternary and quaternary  
1471 mixtures (Bartoshuk, 1975; Breslin & Beauchamp, 1997; Green et al., 2010). Breslin  
1472 and Beauchamp (1997) investigated the interaction between sweet, salt and bitter, and  
1473 found that bitter (urea) and sweet (sucrose) suppressed each other when mixed together.  
1474 However, when salt (sodium acetate) was added the bitterness substantially decreased  
1475 and the sweetness increased. While these papers focused on complex tastant mixtures,  
1476 umami tastants were not included, and there are few studies exploring the specific  
1477 interaction between umami and saltiness along with other basic tastes i.e., sweet, bitter  
1478 and sour. Therefore, the aim of this study is to explore the effect of umami on the  
1479 perception of other taste stimuli and vice versa. Progressing understanding from  
1480 previous literature, this study specifically hypothesised that in an equi-intense aqueous  
1481 solution umami would neither enhance saltiness/sweetness/bitterness, nor be  
1482 suppressed by other tastes, anticipating therefore by the summation model that the  
1483 overall savoury sensation would be increased by adding umami compounds.

1484 **2.2 Materials and Methods**

1485 **2.2.1 Panelists**

1486 A total of 12 trained sensory panelists (11 females and 1 male, age 35 to 65) participated  
1487 in all experiments. They were also screened for their detection, discrimination and  
1488 description ability. All panelists were healthy and had no taste or olfactory defects or  
1489 disorders. They were all employed as sensory panelists and provided consent through  
1490 their employment to taste foods and for their data to be used.

1491 **2.2.2 Stimulus**

1492 The taste stimuli used (indicated in Table 1) were aqueous solutions of sucrose  
1493 (granulated sugar, Co-op Food, Manchester, UK) for the taste quality sweet (S), sodium  
1494 chloride (table salt, Co-op Food, Manchester, UK) for salty (N), citric acid (Sigma-  
1495 Aldrich, Gillingham, UK) for sour (C), quinine hemisulfate salt monohydrate (Sigma-  
1496 Aldrich, Gillingham, UK) for bitter (Q), monosodium glutamate MSG and  
1497 monopotassium L-glutamate monohydrate (MPG) (Ajinomoto, Paris, France) for the  
1498 taste quality umami (U). Each tastant solution was prepared in mineral water (Harrogate  
1499 Spa, UK) a day before the panel session and kept in the fridge (4 °C) overnight. All  
1500 tastant solutions were taken out of the fridge prior to the test to equilibrate to ambient  
1501 temperature, then 15 mL of the sample was poured into 20 mL transparent polystyrene  
1502 cups labeled with three-digit random codes and were served to the panel at ambient  
1503 temperature (22 ± 2 °C).

1504 **2.2.3 Training**

1505 Prior to the data collection, all panelists participated in training on the use of the general  
1506 labelled magnitude scale (gLMS). Compared to labelled magnitude scale (LMS) first  
1507 developed by Green et al. (1993), the top of gLMS is defined as “strongest imaginable

1508 of any sensation”, which is more suitable for this experiment where intensity across  
1509 modalities is compared (Bartoshuk et al., 2004). The descriptors of the magnitude  
1510 estimates were “barely detectable”, “weak”, “moderate”, “strong”, “very strong” and  
1511 “strongest imaginable of any sensation” (anchored values on gLMS scale 0.14, 0.76,  
1512 1.12, 1.52, 1.70, 1.98; exponentiated values 1.38, 5.01, 15.9, 31.6, 50.1 and 95  
1513 respectively) (Bartoshuk et al., 2004).

1514 During the training period, panelists were asked to rate the taste intensity of the five  
1515 basic taste stimuli respectively. The concentration of each stimulus used in this  
1516 experiment was finalized when each stimulus was perceived as equi-intense (within the  
1517 range from ‘strong’ to ‘very strong’ sensation on gLMS) by the panel. The training for  
1518 finalizing the choice of concentration for stimuli was completed in three days.

1519 **2.2.4 Tastants preparation**

1520 Each of the three experiments described below in detail, contained a total of 10 tastants,  
1521 including five single tastant solutions and five tastant mixtures (four binary, one  
1522 quinary). All 12 panelists took part in all three experiments. After the training session,  
1523 the first set of solutions (Experiment 1) using MSG as the source of umami with sodium  
1524 unbalanced (UB) was scored by the panel, which were followed by solutions using  
1525 MSG as the source for umami with sodium balanced (B) (Experiment 2). Finally, the  
1526 panel was required to taste the third set of solutions (Experiment 3) which were  
1527 prepared using MPG as the source for umami. For the three experiments, scoring for  
1528 the samples were completed within two days.

1529 **2.2.4.1 Experiment 1:MSG as the source of umami with sodium unbalanced (UB)**

1530 Based on the training results to determine equi-intensity, the single stimulus was  
1531 selected at concentrations with the mean panel scores being between strong and very  
1532 strong on the gLMS. The concentration of each tastant was kept constant in each binary  
1533 and quinary tastant mixture as seen in Table 2.2.

1534 **2.2.4.2 Experiment 2: MSG as the source for umami with sodium balanced (B)**

1535 NaCl contains 39.34% (w/w) sodium whereas MSG contains 13.6% (w/w) sodium.  
1536 Therefore, the experiment was designed to ensure that sodium levels were balanced in  
1537 all samples. To achieve this, 0.015 M NaCl was added to all single tastants except MSG  
1538 (Table 2.2). Based on the training results to determine equi-intensity, the single stimulus  
1539 was selected at concentrations with the mean panel scores being between strong and  
1540 very strong on the gLMS. The concentration of each tastant was kept constant in each  
1541 binary and quinary tastant mixture as seen in Table 2.2.

1542 **2.2.4.3 Experiment 3: MPG as the source for umami**

1543 In order to remove the possible influence of sodium in glutamate when evaluating  
1544 saltiness and umami, the source for the taste quality of umami was changed to MPG.  
1545 The concentration of each tastant was also adjusted to achieve a slightly lower equi-  
1546 intensity on the gLMS between the descriptors moderate and strong, which allows a  
1547 liner relationship between stimuli and response on the psychophysical curve as the one  
1548 achieved in experiments 1 and 2 (Table 2.2).

1549

Table 2.2 Concentration of tastants used in binary and quinary mixture sets

| Sample*   | Experiment 1: Concentration used in MSG (sodium unbalanced) set | Experiment 2: Concentration used in MSG (sodium balanced) set | Experiment 3: Concentration used in MPG set    |
|-----------|-----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
| S         | MSG (UB)                                                        | MSG (B)                                                       | set                                            |
| S         | S 0.19 M                                                        | S 0.19 M + N 0.015M                                           | S 0.10 M                                       |
| N         | N 0.08 M                                                        | N 0.08 M + N 0.015M                                           | N 0.05 M                                       |
| C         | C 0.005 M                                                       | C 0.005 M + N 0.015M                                          | C 0.004 M                                      |
| Q         | Q 0.025 mM                                                      | Q 0.025mM + N 0.015M                                          | Q 0.02 mM                                      |
| U         | U 0.015 M                                                       | U 0.015M                                                      | U 0.01 M                                       |
| U+S       | S 0.19M, U 0.015M                                               | S 0.19M, U 0.015M                                             | S 0.10M, U 0.01M                               |
| U+N       | N 0.08M, U 0.015M                                               | N 0.08M, U 0.015M                                             | N 0.05M, U 0.01M                               |
| U+C       | C 0.005 M, U 0.015M                                             | C 0.005 M, U 0.015M                                           | C 0.004 M, U 0.01M                             |
| U+Q       | Q 0.025mM, U 0.015M                                             | Q 0.025mM, U 0.015M                                           | Q 0.02mM, U 0.01M                              |
| U+S+N+C+Q | S 0.19M, N 0.08M, C 0.005 M, Q 0.025mM, U 0.015M                | S 0.19M, N 0.08M, C 0.005 M, Q 0.025mM, U 0.015M              | S 0.10M, N 0.05M, C 0.004 M, Q 0.02mM, U 0.01M |

1550

\*S = sucrose; N = sodium chloride; C = citric acid; Q = quinine hemisulfate salt monohydrate; U = monosodium glutamate (MSG) or potassium L-glutamate monohydrate (MPG)

1551    **2.2.5 Sensory evaluation**

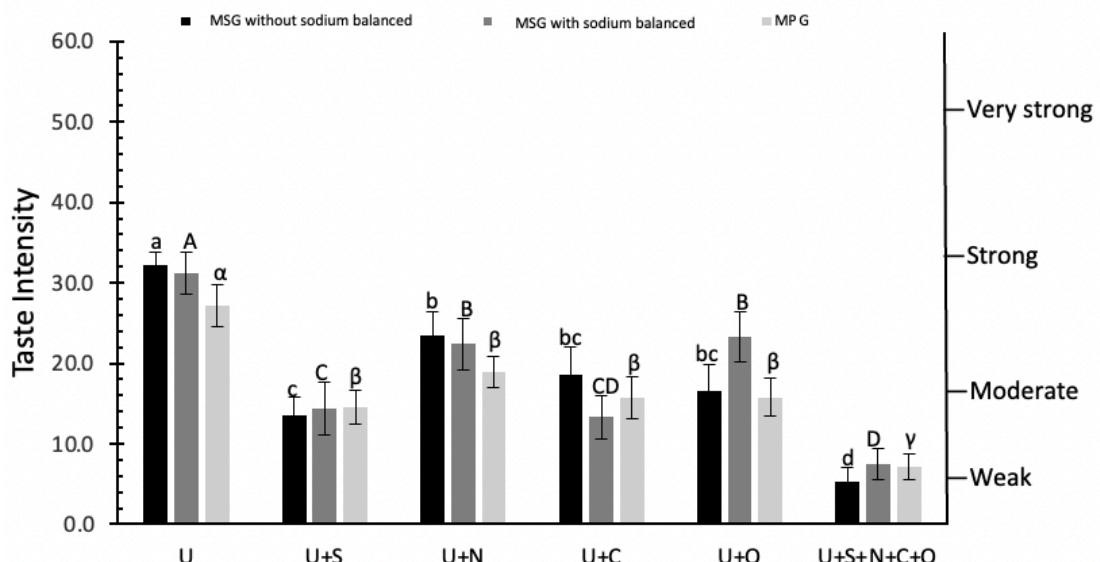
1552    The experiments were conducted within a standard sensory environment using  
1553    individual sensory booths, artificial daylight and controlled room temperature (22 ±  
1554    2 °C). All samples were blind-coded and presented monadically. During tasting  
1555    sessions, panelists were instructed to sip and hold the stimulus in their mouths for five  
1556    seconds before swallowing and rating six attributes for each sample as follows: overall  
1557    taste intensity, sweet, salty, sour, bitter and umami intensity. Between samples, the  
1558    panel was instructed to cleanse their palate with plain crackers and water (filtered tap  
1559    water at room temperature) to return the mouth back to a neutral state; an automatic  
1560    reminder appeared during the countdown of ninety seconds between each stimulus after  
1561    evaluating consecutive taste samples. Within each experiment scoring sessions  
1562    included 10 samples and 2 replicates scored across two days. Sample presentation order  
1563    was balanced across panelists; they each received different sample orders between each  
1564    other, between replicates and between experiments. Data were captured using the  
1565    sensory software Compusense® (cloud version, Guelph, Ontario).

1566    **2.2.6 Data analysis**

1567    Data from each of the three experiments was analysed separately. Log data from each  
1568    panelist from the gLMS were captured by Compusense®. Data were exponentiated.  
1569    Two-way analysis of variance (ANOVA) was carried out using Senpaq (QI Statistics,  
1570    Reading, UK) where panelists were treated as random effects and samples as fixed  
1571    effects, main effects were tested against the assessor by sample interaction. Multiple

1572 pairwise comparisons were carried out using Tukey's HSD at a significance level of  
1573 0.05.

1574 **2.3 Results and discussion**

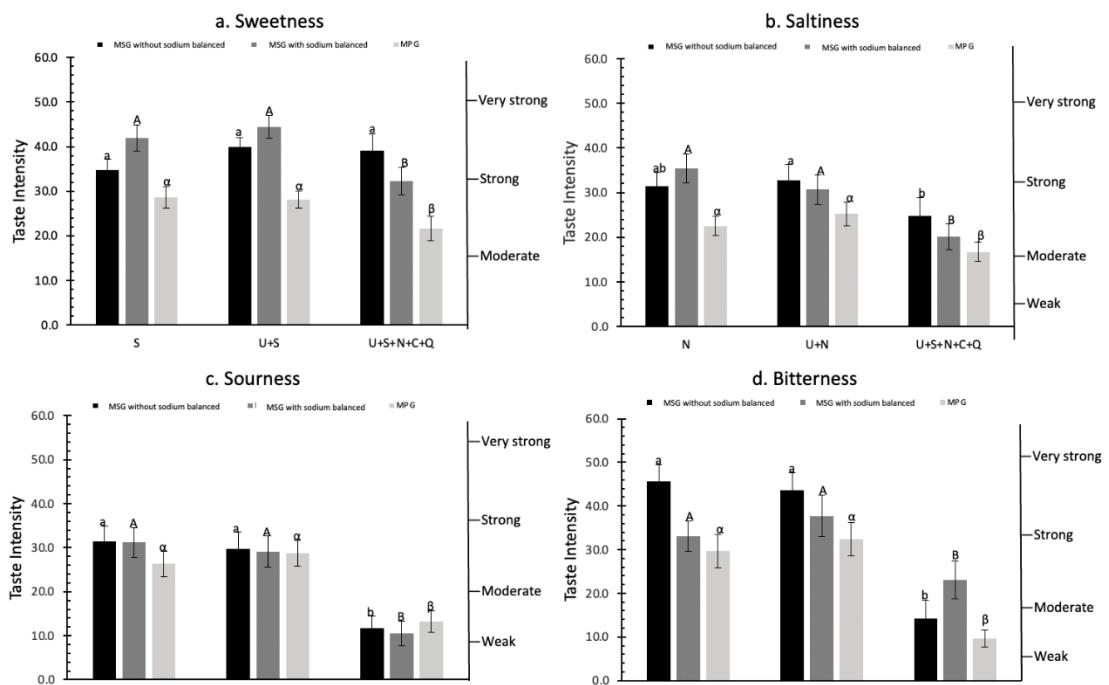

1575 The mean scores of perceived taste intensity for all single tastes and taste mixtures are  
1576 given in Figures 2.1 to 2.3 (further statistical details given in supplementary Table 4 to  
1577 6). The aim was to have all single tastants rated “strong to very strong” on the gLMS  
1578 (1.52 to 1.70 on the log scale, or 31.6 to 50.1 exponentiated values) in both the sodium  
1579 unbalanced and balanced sets. Although panelists were extensively trained on each  
1580 single tastant, saltiness and sourness were rated slightly lower than “strong”. However,  
1581 the mean ratings (exponentiated data) only fell below this descriptor by a maximum of  
1582 0.4 units, therefore it is suggested that this would not have greatly influenced the results.

1583 For samples using MPG as source of umami taste, all single tastants were rated as  
1584 “moderate to strong” on the gLMS (1.21 to 1.52 on the log scale, or 15.85 to 31.62 as  
1585 exponentiated values), while the concentration of tastants used was slightly lower in  
1586 comparison to the MSG set samples.

1587 **2.3.1 Intensity of umami**

1588 The ratings of perceived intensity of umami in the different experiments are presented  
1589 in Figure 2.1. It is clear from this figure that the perception of umami was significantly  
1590 suppressed by all other tastes in both the binary and quinary mixtures. In all experiment  
1591 sets, all the taste mixtures containing MSG were significantly ( $p < 0.05$ ) lower in  
1592 perceived umami intensity compared to MSG alone (U). The umami sensation was  
1593 reduced from just above “strong” to “moderate” or “weak” in virtually all cases. The

1594 main exceptions were where the binary mixture was with sodium chloride (U+N), this  
 1595 led to a lower reduction in umami, leading to “moderate” sensation rather than “weak”.  
 1596 The intensity of umami in the quinary taste systems (U+S+N+C+Q) was the lowest for  
 1597 all experiment sets.

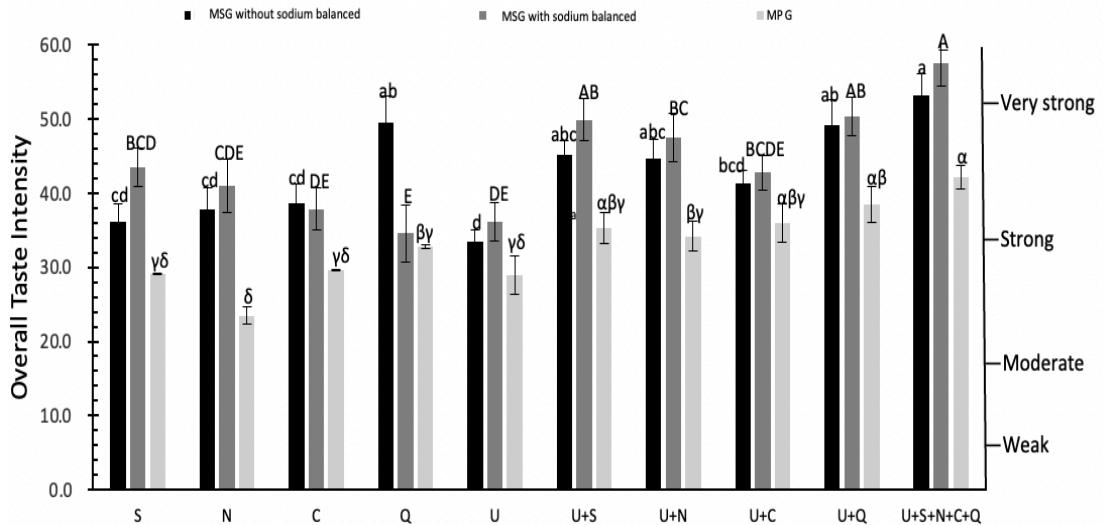



1598  
 1599 Figure 2.1. Ratings of perceived intensity (exponentiated values) of umami in the sodium unbalanced and balanced  
 1600 sets and using MPG as source of umami taste set. S = sucrose; N = sodium chloride; C = citric acid; Q = quinine  
 1601 hemisulfate salt monohydrate; U = monosodium glutamate (MSG) or potassium L-glutamate monohydrate (MPG).  
 1602 Within each sample set statistically significant differences between samples for the primary taste quality are  
 1603 indicated by different letters above the bar ( $p < 0.05$ ). Lower case letters use for Experiment 1:MSG without salt  
 1604 balanced, upper case letters use for Experiment 2: MGS with salt balanced, and Greek letters use for Experiment 3:  
 1605 MPG.

### 1606 2.3.2 Intensity of other tastes

1607 The ratings of perceived intensity of sweetness, saltiness, sourness and bitterness can  
 1608 be seen in Figure 2.2. The umami taste did not enhance or suppress the perceived  
 1609 intensity of any other taste in the binary taste systems ( $p > 0.05$ ) (further statistical  
 1610 details given in supplementary Table 4 to 6). This is an unusual phenomenon as all  
 1611 other taste modalities will suppress each other when added together (Green et al., 2010),  
 1612 and yet the addition of MSG as an umami tastant has neither suppressed, nor enhanced,

1613 perception of the other four tastes. Kemp and Beauchamp (1994) concluded that MSG  
 1614 at medium concentration (0.032M) suppressed sweet and bitter tastes and at higher  
 1615 concentrations (0.059M) enhanced salty taste. The MSG levels used by Kemp and  
 1616 Beauchamp (1994) are higher than the 0.015M used in the current study which may  
 1617 have partly led to the different findings. However, the main reason is likely to be the  
 1618 different concentration of the other tastants. The present study used 0.19 M sucrose and  
 1619 0.005 M citric acid for equi-intense perception of “strong to very strong”.




1620  
 1621 Figure 2.2. Ratings of perceived intensity (exponentiated values) of sweetness (a), saltiness (b), sourness (c), and  
 1622 bitterness (d) in the sodium unbalanced and balanced sets and using MPG as source of umami taste set. S = sucrose;  
 1623 N = sodium chloride; C = citric acid; Q = quinine hemisulfate salt monohydrate; U = monosodium glutamate (MSG)  
 1624 or potassium L-glutamate monohydrate (MPG). Within each sample set statistically significant differences between  
 1625 samples for the primary taste quality are indicated by different letters above the bar ( $p < 0.05$ ). Lower case letters  
 1626 use for Experiment 1:MSG without salt balanced, upper case letters use for Experiment 2: MGS with salt balanced,  
 1627 and Greek letters use for Experiment 3: MPG.

### 1628 2.3.3 Overall taste intensity

1629 The ratings of perceived intensity of overall taste in the different experiments are  
 1630 presented in Figure 2.3. Results indicated that the total taste intensity of binary mixtures

1631 was very similar to the total overall taste intensity of single tastants ( $p > 0.05$ ), except  
1632 for quinine hemisulfate with umami mixture (U+Q) in the sodium balanced set and  
1633 sodium chloride with umami mixture (U+N) in MPG set, where the binary mixture was  
1634 significantly higher in overall taste intensity ( $P < 0.05$ ). The total taste intensity of the  
1635 quinary solution had a higher mean rating than all binary mixtures. In particular, it had  
1636 a significantly higher rating compared to the binary mixture with citric acid (U+C) in  
1637 both MSG sessions, and the binary mixture with sodium chloride (U+N) in sodium  
1638 balanced set and MPG set ( $p < 0.05$ ). The perception of all five tastes were all  
1639 significantly and substantially lower in the quinary mixtures than as single tastants ( $p$   
1640  $< 0.05$ ) in the sodium balanced set and MPG set. In the sodium unbalanced set, sour,  
1641 bitter and umami tastes were similarly significantly lower in the quinary mixtures than  
1642 as single tastants ( $p < 0.05$ ).



1643

1644 Figure 2.3. Ratings of perceived intensity (exponentiated values) of overall taste in the sodium unbalanced and  
1645 balanced sets and using MPG as source of umami taste set. S = sucrose; N = sodium chloride; C = citric acid; Q =  
1646 quinine hemisulfate salt monohydrate; U = monosodium glutamate (MSG) or potassium L-glutamate monohydrate  
1647 (MPG). Within each sample set statistically significant differences between samples for the primary taste quality are  
1648 indicated by different letters above the bar ( $p < 0.05$ ). Lower case letters use for Experiment 1:MSG without salt  
1649 balanced, upper case letters use for Experiment 2: MGS with salt balanced, and Greek letters use for Experiment 3:  
1650 MPG.

1651 The binary mixture with quinine hemisulfate (U+Q) had a significantly higher overall

1652 taste intensity than the sample of quinine hemisulfate alone (Q) only in sodium balanced

1653 set ( $p < 0.05$ ), but not in sodium unbalanced set and MPG set. This could possibly be

1654 due to the inclusion of 0.015mM NaCl in quinine solution in the sodium balanced set.

1655 Keast and Breslin (2002a) reported that NaCl has suppression effect on the bitterness

1656 perception at low, medium and high intensity level. Therefore, 0.015M salt addition

1657 would lead to a lower intensity of bitterness for quinine solution in sodium balanced set

1658 (Experiment 2), while it is not the case in sodium unbalanced set (Experiment 1) and

1659 MPG set (Experiment 3). As the total overall intensity is determined by the dominant

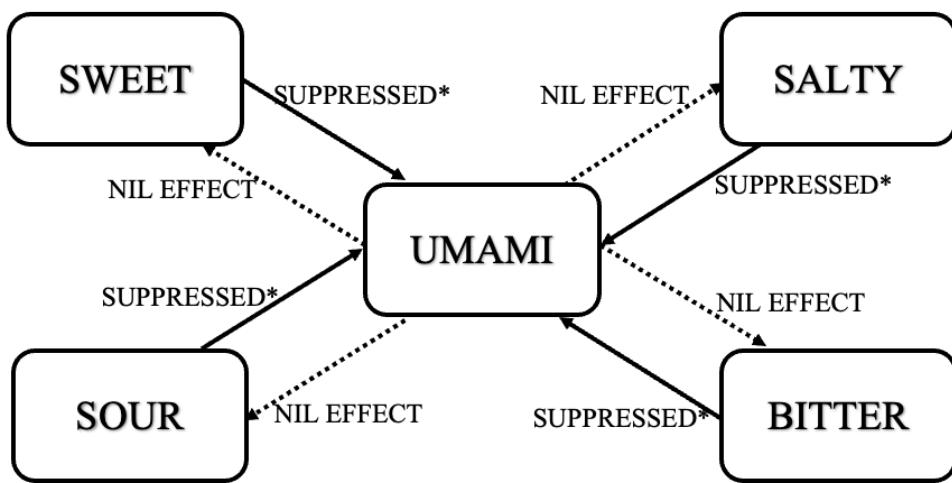
1660 taste (bitterness), as a result, a low overall taste intensity in quinine hemisulfate alone

1661 solution (Q) was expected compared with that in quinine hemisulfate with umami

1662 mixture (U+Q) in sodium balanced set. The binary mixture of MPG and NaCl (U+N)

1663 had a significantly higher overall taste intensity than the sample of NaCl (N) alone (p  
1664 < 0.05). This indicates that umami may enhance the total intensity of a salt solution  
1665 without enhancing the specific taste modality (saltiness) in the MPG mixture. The  
1666 binary mixtures of U+N in the MSG sample set had a similar trend, but the differences  
1667 were not significant (p > 0.05). These differences may be associated with the difference  
1668 in concentrations used in the MSG and MPG sets (0.08M or 0.095M vs 0.05M). Finally,  
1669 the total taste intensity of the quinary solution was the strongest, with all single tastants  
1670 having a significantly and substantially lower overall taste intensity than the quinary  
1671 mixtures except quinine hemisulfate (p < 0.05).

#### 1672 **2.3.4 Taste interaction**


1673 The testing of the balanced sodium sample set allowed for an unbiased investigation of  
1674 the influence of glutamate and the perception of all other tastes, and of the effect of  
1675 sodium on glutamate, without the sodium within the MSG as a confounding factor. In  
1676 conclusion, the results from both the sodium unbalanced and balanced trials were the  
1677 same, increasing the confidence in the overall finding that umami from glutamate does  
1678 not enhance or suppress other tastes when all tastes are presented at strong (but not  
1679 excessive) intensity levels. The findings in this MPG set again confirmed that all other  
1680 tastes suppressed umami (p < 0.05), whereby all binary mixtures had significantly lower  
1681 umami intensity than MPG alone (p < 0.05), and the quinary mixture was significantly  
1682 and very substantially lower in umami taste (p < 0.05). The results agree with the first  
1683 two studies that the umami taste did not enhance or suppress the perceived intensity of

1684 any other taste in the binary taste systems ( $p > 0.05$ ), all other tastes could suppress the  
1685 perception of umami taste in binary and quinary mixture ( $p < 0.05$ ).

1686 **2.4 Discussion**

1687 The purpose of this work is to understand the interaction between umami and the other  
1688 four tastes. However, it is unavoidable to have the impact of different cations involved  
1689 when selecting glutamate, the predominant taste compound of umami. Therefore,  
1690 different approaches were considered to make the results conclusive, including raising  
1691 the  $\text{Na}^+$  concentration when MSG was used, and using  $\text{K}^+$  to remove the potential effect  
1692 of  $\text{Na}^+$  on saltiness and umami. However, their impact on the saltiness and umami taste  
1693 is negligible. At low sodium concentrations, the afferent signal may be too weak and  
1694 not able to produce a noticeable difference from a similar solution without sodium. As  
1695 the concentration of sodium increases the afferent signal strength will increase and  
1696 reach a level where an individual will be able to discriminate a sodium solution from  
1697 water but remain unable to identify the taste quality. This is known as the detection  
1698 threshold and is often used as a measure of individual sensitivity to sodium (Keast and  
1699 Breslin, 2002a). Keast and Roper (2007) found that 0.015 M  $\text{NaCl}$  solution just reached  
1700 recognition threshold, so the additional concentration of sodium chloride (0.015 M)  
1701 added to achieve sodium balance has very little effect on the taste intensity. In addition,  
1702 due to similar chemical properties, the same concentration of sodium ions and  
1703 potassium ions has little difference in human umami and salty taste perception.  
1704 Therefore, the effect on taste intensity could be ignore.

1705 Figure 2.4 summarizes the overall findings which were common to all three studies  
1706 presented in this paper, illustrating the associations between umami and the other four  
1707 basic tastes. As seen in this figure the addition of umami taste did not enhance or  
1708 suppress any other taste, however, the addition of sweet, salty, sour and bitter do  
1709 significantly suppresses the umami taste.



1710  
1711 Figure 2.4 Binary interactions of taste qualities at equi-intense concentrations. Asterisks indicate statistically  
1712 significant suppression of the primary taste quality ( $p < 0.05$ ). Figure in line with schematic review of binary taste  
1713 interactions by Keast and Breslin (2002a).

1714 Keast and Breslin (2002a) have shown that the concentration of taste stimuli, and the  
1715 position on the concentration-intensity psychophysical curve could predict the  
1716 interactions of tastes in taste mixtures. In the current study however, no matter whether  
1717 it was in the “moderate” perceived intensity region or in “strong” perceived intensity  
1718 region, the umami taste did not enhance or suppress the perceived intensity of any other  
1719 taste in the binary taste systems; where sweet, salty, sour and bitter all significantly  
1720 suppressed the perception of umami intensity in the binary and quinary taste systems.  
1721 Previous research has tended to agree that umami enhances salt perception in aqueous  
1722 solutions (Woskow, 1969; Kemp & Beauchamp, 1994) and in foods (Dermiki et al.,

1723 2013; Kremer et al., 2013; Khetra et al., 2019), and in recent years food manufacturers  
1724 have been keen to use umami to enhance salty taste. However, the experimental results  
1725 from this study conclude that umami taste did not affect the salty taste when presented  
1726 at moderate or strong equi-intensities.

1727 The disagreement between the current study and previous findings may be explained  
1728 by the following factors: First, the levels of tastants used varies between studies.  
1729 Compared to studies that previously used MSG, the 0.015M used in this study was  
1730 lower than the levels found in the Kemp and Beauchamp study (1994) to enhance salty  
1731 taste (0.032 and 0.059M MSG), and the level of sodium chloride used in the previous  
1732 study was much lower (0.025M compared to 0.08M in the present study).

1733 In addition, test procedure differences, i.e. a taste and spit procedure vs a taste and  
1734 swallow procedure, are also responsible for the conflict. Running and Hayes (2017)  
1735 have previously concluded that taste ratings resulting from model solutions that had  
1736 been spat out are lower than ratings for swallowed samples on a gLMS scale. Taken  
1737 together these arguments might infer that umami may enhance salty perception where  
1738 salty taste is lower. Kawasaki et al. (2016) give an insight into the time over which the  
1739 different tastes are perceived, for example saltiness and sourness tend to be perceived  
1740 as dominant before swallowing, whereas umami was dominant after swallowing. This  
1741 finding highlights the effect of the test methodology on the perceived intensity of taste.

1742 The sip and spit method was used by Kemp and Beauchamp (1994), while Keast and  
1743 Breslin (2002b) did not include swallowing. But solutions were swallowed in the  
1744 present study. Therefore, it is difficult to compare the results of studies where the tests

1745 were not conducted in the same way. Kawasaki et al. (2016) also investigated the  
1746 duration of impact of taste attributes of umami (MSG), salty (sodium chloride), sour  
1747 (lactic acid) and their binary mixtures using temporal dominance of sensations  
1748 methodology. They found that the presence of MSG increased the duration of NaCl  
1749 saltiness but suppressed the sourness of lactic acid. On the other hand, the duration of  
1750 umami taste of MSG was suppressed in the presence of NaCl but was not affected by  
1751 lactic acid. This means that MSG could increase the duration of salty taste from NaCl  
1752 rather than enhance the peak intensity. This might imply that where previous studies  
1753 have reported an enhancement of salty taste, it could have been that the taste duration  
1754 was extended rather than an increase in maximum intensity. However, our study was  
1755 specifically set up to test maximum intensity following the sample remaining in the  
1756 mouth for 5s, and so would not have captured an increase in duration that the Kawasaki  
1757 study concluded.

1758 A second explanation for such discrepancies might be that umami is a less recognised  
1759 taste in Western countries and consumers may perhaps confuse it with salty perception,  
1760 despite it being one of the five basic tastes (Cecchini et al., 2019). Although the  
1761 panelists in this study were trained to recognise and score umami taste, they were UK  
1762 assessors and as such they would not be habituated to umami taste throughout their  
1763 lives, which might have affected their scoring. Certainly, in previous studies where  
1764 functional magnetic resonance imaging (fMRI) was employed, it was confirmed that  
1765 there was only a slight difference between the positions of the activation regions  
1766 between umami and salty taste, which led to the conclusion that the basic perception

1767 system of umami taste was very similar to the basic perception system of salty taste  
1768 (Nakamura et al., 2011). Furthermore, Onuma, Maruyama, and Sakai (2018) had  
1769 reported that the NaCl solutions with MSG increased responses in the frontal operculum  
1770 but did not affect the hemodynamic salivary by functional near-infrared spectroscopy  
1771 (fNIRS) data. This means that the umami induced saltiness enhancement effects occur  
1772 in the central gustatory processing in the brain. Additionally, this might partly explain  
1773 why umami, in the MPG model, was found to enhance the total taste intensity of the  
1774 salt solution, without enhancing the specific taste modality (saltiness).

1775 The type of panelist used in different studies should also be considered. Trained sensory  
1776 panelists, such as the assessors in this study, “dissect” a product into its component  
1777 attributes for rating, whereas consumers “synthesise” the information from the foods  
1778 they are tasting (Ares & Varela, 2017). Compared with untrained consumers, trained  
1779 panelists are more sensitive to taste discrimination, and they are significantly more  
1780 aware of the flavour in the mixture and the intensity of suppression (McBride & Finlay,  
1781 1989; Prescott, Ripandelli & Wakeling, 2001), although their hedonic perception of the  
1782 product may not fully represent the wide and varied perceptions from untrained  
1783 consumers (Ares & Varela, 2017). So, one might expect a consumer would synthesise  
1784 congruent taste information in a way that a trained panelist might not, leading more  
1785 readily to the conclusion that a salt reduced food that is higher in umami might have an  
1786 overall similar salty perception as the two tastes are congruent. However, the previous  
1787 studies which concluded that umami enhanced salty taste perception were all carried  
1788 out with trained panelists (Woskow, 1969; Kemp & Beauchamp, 1994; Keast & Breslin,

1789 2002b), as employed in the current study; so, the differences in perception between  
1790 trained panellists and consumers, does not lead to a satisfactory explanation of  
1791 conflicting results.

1792 When Green et al. (2010) studied binary, ternary and quaternary mixtures, they found  
1793 that the overall perceived intensity of the mixtures was best predicted by perceptual  
1794 additivity, the sum of the tastes perceived within the mixture (Green et al., 2010). In  
1795 fact, their study concluded the sum of the unmixed taste intensities to be much higher  
1796 than the sum of the taste intensities in the mixture, or the overall taste intensity ratings,  
1797 thus ruling out stimulus additivity (Keast & Breslin, 2002a). In the current study, it was  
1798 consistent that the overall taste intensity was lower than both the sum of the unmixed  
1799 taste intensities and the sum of the taste intensities in binary system and quinary mixture.  
1800 However, it was relatively easy to distinguish each taste in the binary system but much  
1801 more difficult to distinguish each taste in the quinary mixture system, which may lead  
1802 to a great reduction in intensity compared to a single tastant.

1803 One limitation of this work was that when the source of umami was changed from MSG  
1804 to MPG, the concentration level did not remain in the same taste intensity level. It  
1805 means the relationship between the five basic tastes is only valid at certain taste  
1806 intensity level and for certain umami compound, i.e., from moderate to strong when  
1807 MPG was used as the source of umami; from strong to very strong when MSG was used  
1808 as the source of umami. Even if the results presented same trend (suppression), the  
1809 impact of concentration range on perception was uncertain. However, it provides a

1810 prediction for the relationship of the five basic tastes when MSG is used as the source  
1811 of umami at other concentration levels in the future.  
1812 In fact, taste interactions in a real food matrix are more complicated compared to  
1813 aqueous solutions. This can explain why for example, MSG is added in variety of food  
1814 products (e.g., soup, potato chips, sausage) to replace NaCl as well as to enhance  
1815 flavour (Yamaguchi & Takahashi, 1984; Dos et al., 2014; Maluly et al., 2017). However,  
1816 increasing saltiness perception using MSG in the aqueous model system of the current  
1817 study was not observed. The discrepancy could be explained due to the complexity of  
1818 food matrices which affects the perception. In a real food there are cross-modal  
1819 interactions between two or more sensory modalities such as taste-flavour or flavour-  
1820 texture interactions. Additionally, ingredients used in food products are often added at  
1821 much higher concentrations than in the aqueous model systems to achieve the required  
1822 taste intensity, considering that the texture can reduce intensity. In general, meat  
1823 products have a high sodium content, and the salt content is around 2% (Inguglia et al.,  
1824 2017), where only 0.29% or 0.55% salt was used in this study. Other research used  
1825 higher MSG levels, 0.38% MSG was added to the sumashi-jiru (soup) to maintain the  
1826 salty taste, and 0.3% MSG added to the sausage to compensate the saltiness loss caused  
1827 by 50% salt reduction in low-sodium fish burgers (Quadros et al., 2015). In contrast,  
1828 only 0.19% or 0.25% MSG was used in this study. Therefore, the conclusions reached  
1829 by investigating aqueous model solution may not be applicable to food systems directly,  
1830 however they offer the basis for the design of further experiments in real foods.

1831 The present study employed a trained sensory panel to investigate taste interactions,  
1832 with limited variability in taste sensitivities. Prescott et al. (2001) concluded that  
1833 perception of tastes and interaction between tastes in binary mixture are affected by the  
1834 6-n-propylthiouracil (PROP) taster status, i.e., supertaster, medium taster and non-taster.  
1835 However, the taste sensitivity is determined by many factors, such as genetic  
1836 differences in taste receptors, including Tas2R38 gene that is predominantly  
1837 responsible for PROP/PTC (phenylthiocarbamide) tasting (Hayes et al, 2008), and  
1838 single nucleotide polymorphisms (SNPs) for epithelial sodium channel (ENaC)  
1839 (Chamoun et al, 2021). For example, SNPs for the T1R receptors influence perception  
1840 of sweet and umami taste. Therefore, to truly understand the influence of umami taste  
1841 in taste mixtures for all consumers, a study considering taste sensitivities to basics tastes  
1842 (each from more than one tastant) alongside genotyping would be needed in a large  
1843 population cohort in the future.

1844 **2.3 Conclusions**

1845 MSG with umami taste has been popularly used as salty taste enhancer for developing  
1846 salt reduction strategies. However, the exact role of MSG/umami was not sufficiently  
1847 explored. The aim of this study was to investigate taste interactions in mixtures  
1848 containing umami in the form of MSG and MPG. The addition of umami taste did not  
1849 enhance or suppress any other taste in equi-intense aqueous solutions which indicated  
1850 that umami is dissimilar to other tastants. However, the addition of sweet, salty, sour  
1851 and bitter do significantly suppresses the umami taste. The findings of this study are  
1852 significant because they fill the gap that existed in the literature considering the effect

1853 of umami taste in taste mixture interactions and have an impact on our understanding  
1854 of the underlying mechanisms of taste interactions that can be applied in food  
1855 reformulation. Although umami was not found to enhance salty perception, as  
1856 hypothesised, neither did it suppress it; hence when used together sodium chloride plus  
1857 glutamate tastants maintained salty perception in addition to savoury taste perception,  
1858 irrespective of the glutamate salt used. Overall, there is little evidence on the effect of  
1859 umami on other taste stimuli, and the findings of the current study are difficult to  
1860 compare directly with the limited information currently available in the literature. The  
1861 reasons for this are the different sensory tests used (ranking vs gLMS), the different  
1862 methodology (sip and spit vs swallowing), the different concentrations of tastants and  
1863 the difference in perception of similar concentrations by the different groups studied.  
1864 Although there are studies using umami as a flavour enhancer, real food systems are  
1865 more complicated than aqueous systems. Further investigation is needed to determine  
1866 whether these findings in aqueous solutions apply to real food systems where more  
1867 complex and cross-modal interactions take place.

## 1868 **Acknowledgement**

1869 The sensory panelists are thanked for attending the sensory evaluation sessions  
1870 Compusense are thanked for their provision of Compusense cloud software under their  
1871 academic consortium agreement.

## 1872 **References**

1873 Ares, G. & Varela, P. (2017). Trained vs. consumer panels for analytical testing:  
1874 Fueling a long lasting debate in the field. *Food Quality and Preference*, 61, 79-86.

1875 Abu, N.B., Harries, D., Voet, H. and Niv, M.Y., (2018). The taste of KCl—What a  
1876 difference a sugar makes. *Food chemistry*, 255, 165-173.

1877 Bachmanov, A.A & Beauchamp, G.K. (2007). Taste Receptor Genes. *Annual Review*  
1878 *of Nutrition*, 27, 389–414.

1879 Bartoshuk, L. M. (1975). Taste mixtures: Is mixture suppression related to compression?  
1880 *Physiology and Behavior*, 14(5), 643-649.

1881 Bartoshuk, L.M., Duffy, V.B., Green, B.G., Hoffman, H.J., Ko, C.W., Lucchina, L.A.,  
1882 Marks, L.E., Snyder, D.J. and Weiffenbach, J.M. (2004). Valid across-group  
1883 comparisons with labeled scales: the gLMS versus magnitude matching. *Physiology &*  
1884 *behavior*, 82(1), 109-114.

1885 Breslin, P. A. S. & Beauchamp, G. K. (1997). Salt enhances flavour by suppressing  
1886 bitterness. *Nature*, 387, 563-563.

1887 Cecchini, M., Knaapila, A., Hoffmann, E., Boschi, F., Hummel, T. & Iannilli, E. (2019).  
1888 A cross-cultural survey of umami familiarity in European countries. *Food Quality and*  
1889 *Preference*, 74, 172-178.

1890 Chamoun, E., Liu A.S. Duizer, L.M., Feng, Z., Darlington, G., Duncan, A.M., Haines,  
1891 J., Ma, D.W.L. (2021). Single nucleotide polymorphisms in sweet, fat, umami, salt,  
1892 bitter and sour taste receptor genes are associated with gustatory function and taste  
1893 preferences in young adults. *Nutrition Research*, 85, 40-46.

1894 Dermiki, M., Mounayar, R., Suwankanit, C., Scott, J., Kennedy, O., Mottram, D.,  
1895 Gosney, M., Blumenthal, H. and Methven, L. (2013). Maximising umami taste in meat  
1896 using natural ingredients: effects on chemistry, sensory perception and hedonic liking

1897 in young and old consumers. *Journal of the Science of Food and Agriculture*, 93(13),

1898 3312-3321.

1899 Dos Santos, B., Campagnol, P., Morgano, M. & Pollonio, M. (2014). Monosodium

1900 glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the

1901 sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl

1902 with KCl. *Meat Science*, 96(1), 509-513.

1903 Emorine, M., Septier, C., Martin, C., Cordelle, S., Sémon, E., Thomas-Danguin, T. and

1904 Salles, C. (2021). Salt and aroma compound distributions influence flavour release and

1905 temporal perception while eating hot-served flans. *Molecules*, 26(5), 1300-1317.

1906 Fuke, S. and Ueda, Y. (1996). Interactions between umami and other flavor

1907 characteristics. *Trends in Food Science & Technology*, 7(12), 407-411.

1908 Green, B.G., Shaffer, G.S. and Gilmore, M.M. (1993). Derivation and evaluation of a

1909 semantic scale of oral sensation magnitude with apparent ratio properties. *Chemical*

1910 *senses*, 18(6), 683-702.

1911 Green, B. G., Lim, J., Osterhoff, F., Blacher, K., & Nachtigal, D. (2010). Taste mixture

1912 interactions: Suppression, additivity, and the predominance of sweetness. *Physiology*

1913 & Behavior

1914 Hayes, J.E., Bartoshuk, L.M., Kidd, J.R., Duffy, V.B. (2008). Supertasting and PROP

1915 bitterness depends on more than the TAS2R38 gene. *Chemical Senses*, 33 (3), 255-265.

1916 Inguglia, E.S., Zhang, Z., Tiwari, B.K., Kerry, J.P. and Burgess, C.M., (2017). Salt

1917 reduction strategies in processed meat products–A review. *Trends in Food Science &*

1918 *Technology*, 59, 70-78.

1919 Kawasaki, H., Sekizaki, Y., Hirota, M., Sekine-Hayakawa, Y. & Nonaka, M. (2016).

1920 Analysis of binary taste-taste interactions of MSG, lactic acid, and NaCl by temporal  
1921 dominance of sensations. *Food Quality and Preference*, 52, 1-10.

1922 Keast, R. S. J. & Breslin, P. A. S. (2002a). An overview of binary taste-taste interactions.

1923 *Food Quality and Preference*, 14, 111-124.

1924 Keast, R. S. J. & Breslin, P. A. S. (2002b). Modifying the bitterness of selected oral  
1925 pharmaceuticals with cation and anion series of salts. *Pharmaceutical Research*, 19,  
1926 1019-1026.

1927 Keast, R.S. and Roper, J., 2007. A complex relationship among chemical concentration,  
1928 detection threshold, and suprathreshold intensity of bitter compounds. *Chemical  
1929 senses*, 32(3), pp.245-253.

1930 Kemp, S. E. & Beauchamp, G. K. (1994). Flavor Modification by Sodium Chloride and  
1931 Monosodium Glutamate. *Journal of Food Science*, 59, 682-686.

1932 Khetra, Y., Kanawjia, S., Puri, R., Kumar, R. & Meena, G. (2019). Using taste-induced  
1933 saltiness enhancement for reducing sodium in Cheddar cheese: Effect on physico-  
1934 chemical and sensorial attributes. *International Dairy Journal*, 91, 165-171.

1935 Kim, M., Son, H., Kim, Y., Misaka, T. & Rhyu, M. (2015). Umami-bitter interactions:  
1936 The suppression of bitterness by umami peptides via human bitter taste receptor.

1937 *Biochemical and Biophysical Research Communications*, 456(2), 586-590.

1938 Kremer, S., Shimojo, R., Holthuysen, N., Köster, E. & Mojet, J. (2013). Consumer  
1939 acceptance of salt-reduced “soy sauce” foods over rapidly repeated exposure. *Food  
1940 Quality and Preference*, 27(2), 179-190.

1941 Maluly, H.D., Arisseto-Bragotto, A.P. and Reyes, F.G., (2017). Monosodium glutamate  
1942 as a tool to reduce sodium in foodstuffs: Technological and safety aspects. *Food science*  
1943 & nutrition, 5(6), 1039-1048.

1944 McBride, R.L., (1987). Taste psychophysics and the Beidler equation. *Chemical Senses*,  
1945 12(2), 323-332.

1946 McBride, R.L. and Finlay, D.C., (1989). Perception of taste mixtures by experienced  
1947 and novice assessors 1. *Journal of Sensory Studies*, 3(4), 237-248.

1948 McBride, R.L. and Finlay, D.C., (1990). Perceptual integration of tertiary taste mixtures.  
1949 *Perception & psychophysics*, 48(4), 326-330.

1950 McBride, R.L., (1993). Integration psychophysics: The use of functional measurement  
1951 in the study of mixtures. *Chemical senses*, 18(2), 83-92.

1952 Mojet, J., Heidema, J. and Christ-Hazelhof, E., (2004). Effect of concentration on taste–  
1953 taste interactions in foods for elderly and young subjects. *Chemical senses*, 29(8), 671–  
1954 681.

1955 Nakamura, Y., Goto, T., Tokumori, K., Yoshiura, T., Kobayashi, K., Nakamura, Y.,  
1956 Honda, H., Ninomiya, Y. & Yoshiura, K. (2011). Localization of brain activation by  
1957 umami taste in humans. *Brain Research*, 1406, 18-29.

1958 Onuma, T., Maruyama, H. and Sakai, N. (2018). Enhancement of Saltiness Perception  
1959 by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy  
1960 Study. *Chemical Senses*, 43(3), 151-167.

1961 Prescott, J., Ripandelli, N. and Wakeling, I., (2001). Binary taste mixture interactions  
1962 in prop non-tasters, medium-tasters and super-tasters. *Chemical senses*, 26(8), 993-  
1963 1003.

1964 Ponzo, V., Pellegrini, M., Costelli, P., Vázquez-Araújo, L., Gayoso, L., D'Eusebio, C.,  
1965 Ghigo, E. and Bo, S., (2021). Strategies for reducing salt and sugar intakes in  
1966 individuals at increased cardiometabolic risk. *Nutrients*, 13(1), 279-296.

1967 Quadros, D. A., Rocha, I. F. O., Ferreira, S. M. R., & Bolini, H. M. A. (2015). Low-  
1968 sodium fish burgers: Sensory profile and drivers of liking. *LWT - Food Science and  
1969 Technology*, 63, 236–242.

1970 Running, C. & Hayes, J. (2017). Sip and spit or sip and swallow: Choice of method  
1971 differentially alters taste intensity estimates across stimuli. *Physiology & Behavior*, 181,  
1972 95-99.

1973 Schifferstein, H.N. and Frijters, J.E., (1993). Perceptual integration in heterogeneous  
1974 taste percepts. *Journal of Experimental Psychology: Human Perception and  
1975 Performance*, 19(3), 661-675.

1976 Thomas-Danguin, T., Guichard, E. and Salles, C., (2019). Cross-modal interactions as  
1977 a strategy to enhance salty taste and to maintain liking of low-salt food: A review. *Food  
1978 & function*, 10(9), 5269-5281.

1979 Velázquez, A.L., Vidal, L., Varela, P. and Ares, G., (2020). Cross-modal interactions  
1980 as a strategy for sugar reduction in products targeted at children: Case study with vanilla  
1981 milk desserts. *Food Research International*, 130, 108920.

1982 Woskow, M. H. (1969). Selectivity in flavor modification by 5'-ribonucleotides. *Food Technology*, 23, 32-37.

1984 Yamaguchi, S. & Kimizuka, A. (1979). Psychometric studies on the taste of monosodium glutamate. *Advances in biochemistry and physiology*, 35-54.

1986 Yamaguchi, S., & Takahashi, C. (1984). Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of clear soup. *Journal of Food Science*, 49(1), 82– 85.

1989 Yamaguchi, S. (1998). Basic properties of umami and its effect on food flavour. *Food Reviews International*, 14(2&3), 139-176.

1991 **Chapter 3. Effect of lysine and calcium lactate on saltiness perception in an**  
1992 **aqueous solution**

1993 **Abstract**

1994 In order develop low-sodium foods, different types of metallic salts have been used to  
1995 replace salt. However, they often lead to a significant loss in saltiness if used alone, or  
1996 introduce substantial off-notes, such as bitterness. This study aimed to investigate  
1997 whether lysine and calcium lactate could compensate the saltiness loss in a salt-reduced  
1998 solution. A trained sensory panel rated solutions of 0.25% (w/v) NaCl, 1% (w/v) lysine  
1999 and 0.75% (w/v) calcium lactate in single, binary, and ternary solutions, in comparison  
2000 to 0.5 % (w/v) NaCl, for intensity of saltiness, bitterness and sourness. Results  
2001 concluded that calcium lactate did not offer saltiness whereas lysine gave weak saltiness.  
2002 When used with 0.25% (w/v) NaCl, lysine with/without calcium lactate had the same  
2003 intensity of saltiness as control ( $p > 0.05$ ), whereas the saltiness perceived from 0.25%  
2004 NaCl with calcium lactate remained lower than control. This indicates that lysine can  
2005 enhance saltiness whereas, within the levels tested, calcium lactate cannot. Moreover,  
2006 whereas the bitterness of most tastants combinations were significantly higher than that  
2007 of control, the bitterness of lysine with 0.25% (w/v) salt was lower than for lysine alone  
2008 and not significantly different to the 0.5% (w/v) NaCl control. Additionally, saltiness  
2009 increased with the increase in concentration of the composite solutions, while the  
2010 perceived bitterness increased gradually at low and medium concentrations and reached  
2011 a plateau at high concentration. In conclusion, 1% (w/v) lysine with/without 0.75%  
2012 (w/v) calcium lactate could replace 50% salt in aqueous solution without compromising  
2013 saltiness perception.

2014    **3.1 Introduction**

2015    Sodium chloride (NaCl) is frequently used in many foods as it provides a variety of  
2016    functions. It is used to extend the shelf life of meat products as a preservative (Inguglia  
2017    *et al.*, 2017), and has a beneficial effect on flavour, taste and texture of foods (De  
2018    Marchi *et al.*, 2017). However, excess salt intake is associated with high blood pressure  
2019    (He and MacGregor, 2010). According to a recommendation from the World Health  
2020    Organization (WHO) in 2020, the average sodium consumption should be  
2021    approximately 2 g sodium per day (equivalent to about 5 g salt per day) for adults to  
2022    prevent chronic diseases, but current salt intake is much higher than the recommended  
2023    standard by WHO for most populations. For example, in the UK the average sodium  
2024    intake is estimated to be 9.2 g salt per day in men and 7.6 g salt per day in women (age  
2025    19-64 years) (Ashford, Jones and Collins, 2020). Therefore, it continues to be a rising  
2026    demand for low sodium content foods.

2027    It is widely accepted that dietary sodium reduction could be effectively achieved by  
2028    reducing the sodium content of foods, rather than by merely giving dietary advice.  
2029    However, complete salt replacement is almost unfeasible, even from the perspective of  
2030    taste alone, due to the specificity of sodium in saltiness perception. The receptor  
2031    mechanisms are hard to mimic by other molecules (Henney, Taylor and Boon, 2010).  
2032    Although salty taste is elicited by many ionic species, it is sodium ions ( $\text{Na}^+$ ) that are  
2033    predominantly responsible for the salty taste of most foods (Lindemann, 1997).  
2034    Saltiness is a distinctive sensory quality linked primarily to sodium or lithium  
2035    containing compounds, while other cations like potassium and calcium can also exhibit

2036 salty taste, but it is not their dominant taste quality (Vanderklaauw and Smith, 1995).  
2037 The epithelial sodium channel (ENaC) is considered as one of the most important  
2038 receptors for saltiness perception. ENaC allows primarily sodium (and lithium) to move  
2039 into the taste cell from outside the taste receptor cell, where it has been dissolved in  
2040 saliva. In principle,  $\text{Na}^+$  activates the ENaC to produce electrical pulses which are then  
2041 transmitted via the sensory neurons to the brain to form salty taste (Yamamoto and  
2042 Ishimaru, 2013).  
2043 The popular strategy to reduce salt content by the food industry is to utilize salt  
2044 substitutes, such as potassium chloride (KCl) (Tamm *et al.*, 2016). Although these  
2045 compounds can contribute to saltiness perception, they often cause some unsatisfactory  
2046 tastes, like bitterness, at high concentration (Sinopoli and Lawless, 2012). This is  
2047 because these non-sodium cations can activate non-specific cation channels which are  
2048 responsible of the off tastes (Liem, Miremadi and Keast, 2011). In addition, reducing  
2049 NaCl levels below those typically used, without any other preservative measure, will  
2050 reduce product shelf life. For example, Desmond (2006) reported that reducing the salt  
2051 content of frankfurters by 40% (from 2.5 to 1.5 % w/v) without any salt substitutes  
2052 caused the natural bacterial flora to grow more rapidly. Indeed, KCl has been proven to  
2053 have the same antibacterial effect as NaCl against a wide range of pathogenic bacterial  
2054 species, thus ensuring that the shelf life is not shortened in salt-reduced foods (Bidlas  
2055 and Lambert, 2008). However, the substitution of salt with KCl in most foods must be  
2056 limited to 30%, as higher levels can produce bitter and metallic tastes (Doyle and Glass,  
2057 2010). Additionally, a high potassium load is associated with impairments in people

2058 with type 1 diabetes, renal disease and adrenal insufficiency (Khaw and Barrett-Connor,  
2059 1984). Hence, these shortcomings have greatly limited the application of alternative  
2060 metal salts in food manufacturing.

2061 Recently, lysine has been explored as a successful taste and flavour enhancer in meat  
2062 products. Campagnol *et al.* (2011) indicated that 50% NaCl reduced fermented sausage  
2063 (from 2.5% to 1.25% w/w NaCl), containing both KCl (1.25% w/w) and lysine (from  
2064 0.313% w/w to 0.833% w/w) had a similar sensory aroma and taste to the control,  
2065 whereas this was not achieved with KCl replacement alone. Dos Santos Alves *et al.*  
2066 (2017) reported that 50% NaCl reduced low-fat Bologna-type sausage (from 2.5% to  
2067 1.25% w/w NaCl) with KCl (1.25% w/w) and lysine (1% w/w) increased aroma, flavour  
2068 and overall acceptability compared with KCl replacement alone. One of the most  
2069 significant findings of lysine was that it could relieve the sensory defects caused by  
2070 other salt substitutes, without introducing bitterness or sourness (Campagnol *et al.*,  
2071 2011). However, some authors (Guo *et al.* (2020) and Vidal *et al.* (2020)) have found  
2072 that lysine alone, at 3% w/w, was not able to compensate the saltiness lost in 50% salt-  
2073 reduced ham or beef, although the physical-chemical characteristics were improved.

2074 There is limited literature on the use of calcium lactate as a salt replacer, however, it  
2075 has three potential benefits. The calcium cation may confer some salty taste, although  
2076 as noted above, this is not the primary taste, the  $\text{Ca}^{2+}$  salts were predominantly bitter  
2077 (Vanderklaauw and Smith, 1995). Nevertheless, the most prominent advantage of  
2078 calcium lactate is that the lactate ion can inhibit the growth of bacteria in meat products  
2079 and provide anti-Listerial activity (Devlieghere *et al.*, 2009), which are not provided by

2080 most other salt substitutes. Muchaamba *et al.* (2021) indicated that, in salami, a low salt  
2081 (2.8% w/w NaCl) plus potassium lactate (1.6% w/w) combination had comparable anti-  
2082 *Listeria monocytogene* activity to the high salt treatment (4% NaCl w/w). The third one  
2083 is, the added benefit of calcium fortification. Irshad *et al.* (2016) reported that  
2084 restructured buffalo meat loaves with 1.25% w/w calcium lactate could meet  
2085 recommended dietary recommendations for calcium without affecting the textural and  
2086 sensory properties of the product.

2087 Previous studies have shown the individual benefits of either lysine or calcium lactate  
2088 in salt-reduced foods, and their effects were tested in real food matrices without their  
2089 modes of action proven in model systems. There is scarce information about how lysine  
2090 and calcium lactate interact each other on salty taste perception in an aqueous solution.  
2091 Therefore, the aim of this work was to investigate whether lysine and calcium lactate  
2092 could compensate for the loss of salty taste in a reduced salt solution, without imparting  
2093 off-tastes. Progressing the understanding from previous literature, it is hypothesised  
2094 that lysine and/or calcium lactate could enhance the salty intensity in a salt-reduced  
2095 aqueous solution.

### 2096 **3.2 Materials and Method**

#### 2097 **3.2.1 Panelists**

2098 A total of 12 sensory panelists participated in this study, all were screened and selected  
2099 for their detection, discrimination and description ability, and had over 6 months  
2100 sensory experience. There were 11 females and 1 male with age ranging from 35 to 65.  
2101 All team members were healthy and had no defects or disorders in taste or olfaction.

2102 All of them were trained and employed as sensory panelists and provided consent  
2103 through their employment to taste foods and for their data to be used.

2104 **3.2.2 Stimulus**

2105 The taste stimuli used were aqueous solutions of sodium chloride (Co-op Food,  
2106 Manchester, UK), L-lysine (Health Leads®, Llandysul, UK) and calcium lactate  
2107 (Sigma-Aldrich, Gillingham, UK). Each tastant solution was prepared in mineral water  
2108 (Harrogate Spa, UK) a day before the panel session and kept in the fridge (4 °C)  
2109 overnight. All tastants solutions were taken out of the fridge prior to the test to  
2110 equilibrate to ambient temperature, then 15 mL of the sample was poured into a 20 mL  
2111 transparent polystyrene cups labeled with three-digit random codes and were served to  
2112 the panel at room temperature (22 ± 2°C).

2113 **3.2.3 Training**

2114 Prior to the data collection, all panelists participated in a training in which they were  
2115 trained on how to score the intensity of the taste on the general labelled magnitude scale  
2116 (gLMS). The descriptor anchors on the gLMS logarithmic scale were “barely detectable”  
2117 (0.14), “weak” (0.7), “moderate” (1.2), “strong” (1.5), “very strong” (1.7) and  
2118 “strongest imaginable sensation of any sensation” (1.98) (exponentiated values 1.38,  
2119 5.01, 15.9, 31.6, 50.1 and 95, respectively) (Bartoshuk et al., 2004).

2120 During the training session, the panellists were trained with NaCl (0.25% w/v), lysine  
2121 (0.75% and 1.0% w/v) and calcium lactate (0.375% and 0.75% w/v) until they were  
2122 familiar with the taste of each stimulus. These training samples were presented with  
2123 blind code and in a random order, and panellists were asked to rate the salty taste

2124 intensity of each stimulus respectively on gLMS. The higher level of each compound  
2125 was selected according to the daily recommended intake level (about 0.8 g/day for  
2126 lysine and 0.6 g/day for calcium lactate) (Tomé and Bos, 2007). Because red meat  
2127 intake is recommended below 80 g/day (Islam et al., 2014; McAfee et al., 2010), the  
2128 higher lysine and calcium lactate levels were selected (1.0% and 0.75% w/v  
2129 respectively) for progression into the experiments as they approached “strong to very  
2130 strong” on the gLMS scale when used in combination with 0.25% (w/v) NaCl.

2131 **3.2.4 Tastants preparation**

2132 **3.2.4.1 Effect of lysine and calcium lactate on the perceived intensity of tastes**

2133 This first experiment contained a total of 8 treatments, including four single tastant  
2134 solutions and four tastant mixtures (three binary, one ternary). The standard NaCl level  
2135 was 0.5 % w/v, whereas lysine and calcium lactate were used at 1.0 and 0.75 % w/v  
2136 respectively (levels are justified in section 3.2.4). The aim was to replace 50% NaCl  
2137 using lysine and calcium lactate, which led to the 8 formulations detailed in table 3.1.

2138 Table 3.1 Formulations used to evaluate the effects of calcium lactate and lysine on  
2139 perceived taste intensity of aqueous solutions.

| Treatment | Sodium chloride<br>(% w/v) | Lysine<br>(% w/v) | Calcium lactate<br>(% w/v) |
|-----------|----------------------------|-------------------|----------------------------|
| Control   | 0.5                        | -                 | -                          |
| H         | 0.25                       | -                 | -                          |
| L         | -                          | 1                 | -                          |
| CL        | -                          | -                 | 0.75                       |
| H+L       | 0.25                       | 1                 | -                          |
| H+CL      | 0.25                       | -                 | 0.75                       |
| L+CL      | -                          | 1                 | 0.75                       |
| H+L+CL    | 0.25                       | 1                 | 0.75                       |

2140 H = half of control salt; L = lysine; CL = calcium lactate.

2141 **3.2.4.2 Relationship between concentration of composite solution and perceived  
2142 taste intensity**

2143 **3.2.4.2.1 Varying concentration of composite solution with a fixed ratio between  
2144 components**

2145 The ratio between the three stimuli used in experiment 1 (Section 3.2.4.1) was  
2146 maintained for the second experiment (0.25% NaCl: 1.0% Lysine: 0.75% Calcium  
2147 Lactate), where the aim was to determine the psychophysical function between the  
2148 concentration of this composite solution and perceived intensity of taste(s). Initially the  
2149 concentration of composite was varied to identify, with the sensory panel, the  
2150 approximate recognition threshold for salty taste and suprathreshold levels that led to  
2151 “very strong” on the gLMS. An optimal dilution factor 1.7 was used to ensure that the  
2152 perceived saltiness of the composite solution would cover the range of gLMS

2153 descriptors, from barely detectable to very strong within six treatments. Table 3.2 shows  
2154 the formulation of the six treatments.

2155 Table 3.2 Formulation of treatments used to evaluate the relationship between  
2156 concentration of composite solution with fixed ratio between components and the  
2157 perceived intensity of tastes.

| Treatment | Sodium chloride<br>(% w/v) | Lysine<br>(% w/v) | Calcium lactate<br>(% w/v) |
|-----------|----------------------------|-------------------|----------------------------|
| T1        | 0.05                       | 0.21              | 0.15                       |
| T2        | 0.09                       | 0.35              | 0.26                       |
| T3        | 0.15                       | 0.59              | 0.44                       |
| T4        | 0.25                       | 1.00              | 0.75                       |
| T5        | 0.43                       | 1.70              | 1.28                       |
| T6        | 0.72                       | 2.90              | 2.17                       |

2158 T4 was the standard solution which contained 0.25% w/v NaCl, 1% lysine w/v and 0.75% w/v calcium lactate. T1  
2159 =  $1.7^{-3} \times T4$ , T2 =  $1.7^{-2} \times T4$ , T3 =  $1.7^{-1} \times T4$ , T5 =  $1.7 \times T4$ , T6 =  $1.7^2 \times T4$ .

### 2160 **3.2.4.2.2 Composite solution with varied lysine levels**

2161 The experiment contained 7 treatments. All composite solutions contained 0.25% w/v  
2162 NaCl and 0.75% w/v calcium lactate, however the lysine level was either diluted or  
2163 concentrated from the standard level of 1% w/v, using the dilution factor of 1.7. The  
2164 purpose is to further investigate the psychophysical function between the perceived  
2165 intensity of salty taste and the concentration of lysine. Table 3.3 shows the formulation  
2166 of each treatment.

2167 Table 3.3 Formulation of solutions used to evaluate the relationship between  
2168 concentration of composite solution with varied lysine levels and perceived taste  
2169 intensity.

| Treatment | Sodium chloride<br>(% w/v) | Lysine<br>(% w/v) | Calcium lactate<br>(% w/v) |
|-----------|----------------------------|-------------------|----------------------------|
| L1        | 0.25                       | 0.21              | 0.75                       |
| L2        | 0.25                       | 0.35              | 0.75                       |
| L3        | 0.25                       | 0.59              | 0.75                       |
| L4        | 0.25                       | 1.00              | 0.75                       |
| L5        | 0.25                       | 1.70              | 0.75                       |
| L6        | 0.25                       | 2.90              | 0.75                       |
| L7        | 0.25                       | 4.91              | 0.75                       |

2170 L4 is the standard solution containing 0.25% w/v NaCl, 1% w/v lysine and 0.75% w/v calcium lactate. The lysine  
2171 level in L1 is  $1.7^{-3} \times L4$ , L2 is  $1.7^{-2} \times L4$ , L3 is  $1.7^{-1} \times L4$ , L5 is  $1.7 \times L4$ , L6 is  $1.7^2 \times L4$ , L6 is  $1.7^3 \times L4$ .

### 2172 **3.2.5 Sensory evaluation**

2173 The experiments were conducted within a standard sensory environment using  
2174 individual sensory booths, artificial daylight and controlled room temperature ( $22 \pm$   
2175  $2^{\circ}\text{C}$ ). All samples were blind-coded (3-digit random number codes) and presented  
2176 monadically in a balanced order. During tasting sessions, panelists were instructed to  
2177 sip and hold the stimulus in their mouths for five seconds before swallowing and then  
2178 rate all attributes for each sample. In experiment 1 of saltiness perception of tastants,  
2179 the attributes including overall taste intensity, saltiness, bitterness, sourness, and  
2180 sweetness were rated. However, in experiments two and three, both investigating the  
2181 psychophysical relationships between concentration of composite solutions and  
2182 perceived taste intensity, the attributes were reduced to overall taste intensity, saltiness,  
2183 and bitterness. Between samples, the panel was instructed to cleanse the palate with

2184 plain crackers and water (filtered tap water at room temperature) to return the mouth  
2185 back to a neutral state; an automatic reminder appeared during the countdown of ninety  
2186 seconds between each stimulus after evaluating consecutive taste samples. The panel  
2187 rated the samples in duplicate on separate days. Data were captured using the sensory  
2188 software Compusense® (cloud version, Guelph, Ontario).

2189 **3.2.6 Data analysis**

2190 Log data from each panelist from the gLMS were anti-logged. Subsequently, two-way  
2191 analysis of variance (ANOVA) was carried out using Senpaq (QI Statistics, Reading,  
2192 UK) where panelists were treated as random effects and samples as fixed effects, the  
2193 main effects were tested against the assessor by sample interaction. Multiple pairwise  
2194 comparisons were carried out using Tukey's HSD at a significance level of 0.05. In  
2195 order to evaluate the psychophysical relationship (experiment 2.4.2), the taste intensity  
2196 (log data) was plotted against the concentration of the taste complex (log data) using  
2197 Excel (Microsoft, version 16.68) and linear regression was applied. The concentration  
2198 of the composite solution was presented with relative concentration to the standard  
2199 (explained further in section 3.2.1) during plotting and regression.

2200 **3.3 Results and discussion**

2201 **3.3.1 Saltiness perception of tastants**

2202 The mean log scores of perceived taste intensity for all single tastants and tastant  
2203 mixtures are given in Table 3.4.

2204 Table 3.4. Perceived taste intensity of sodium chloride, lysine and calcium lactate in  
2205 single, binary and ternary solutions.

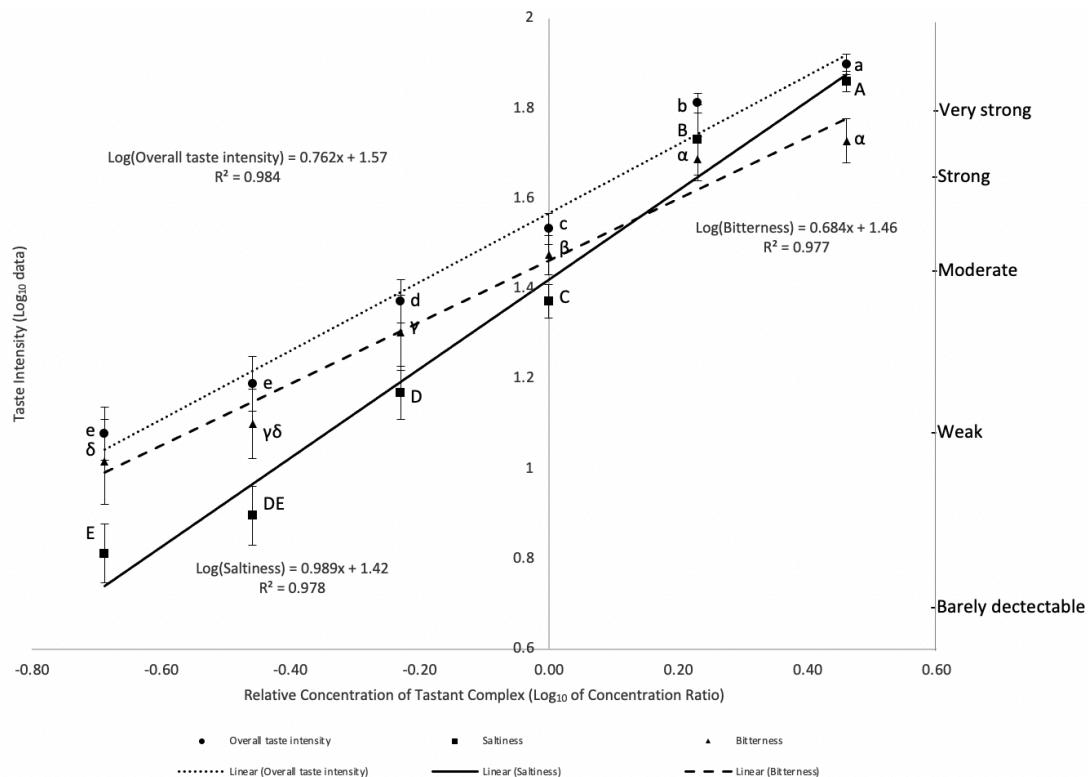
---

**Perceived intensity** (mean of gLMS intensity rating)

| Treatment | Overall taste intensity | Saltiness          | Bitterness        | Sourness            | Sweetness           |
|-----------|-------------------------|--------------------|-------------------|---------------------|---------------------|
| Control   | 1.57 <sup>b</sup>       | 1.51 <sup>a</sup>  | 0.75 <sup>c</sup> | 0.18 <sup>d</sup>   | 0.11 <sup>c</sup>   |
| H         | 1.40 <sup>c</sup>       | 1.28 <sup>cd</sup> | 0.97 <sup>c</sup> | 0.36 <sup>cd</sup>  | 0.32 <sup>bc</sup>  |
| L         | 1.55 <sup>b</sup>       | 1.05 <sup>e</sup>  | 1.40 <sup>b</sup> | 0.70 <sup>ab</sup>  | 0.62 <sup>a</sup>   |
| CL        | 1.47 <sup>bc</sup>      | 0.65 <sup>f</sup>  | 1.37 <sup>b</sup> | 0.58 <sup>bcd</sup> | 0.18 <sup>c</sup>   |
| H+L       | 1.53 <sup>b</sup>       | 1.46 <sup>ab</sup> | 1.13 <sup>c</sup> | 0.61 <sup>abc</sup> | 0.56 <sup>ab</sup>  |
| H+CL      | 1.52 <sup>bc</sup>      | 1.37 <sup>bc</sup> | 1.39 <sup>b</sup> | 0.65 <sup>abc</sup> | 0.30 <sup>bc</sup>  |
| L+CL      | 1.71 <sup>a</sup>       | 1.13 <sup>de</sup> | 1.63 <sup>a</sup> | 0.79 <sup>a</sup>   | 0.46 <sup>abc</sup> |
| H+L+CL    | 1.70 <sup>a</sup>       | 1.45 <sup>ab</sup> | 1.58 <sup>a</sup> | 0.65 <sup>abc</sup> | 0.41 <sup>abc</sup> |

2206 Means within a column which do not share a common superscript are significantly different in the perceived  
 2207 magnitude from Tukey's HSD test at the 95% confidence interval. C = NaCl at 0.5% w/v; H = NaCl at 0.25% w/v;  
 2208 L = lysine at 1.0% w/v; CL = calcium lactate at 0.75 % w/v.  
 2209 Reducing the NaCl concentration by half (from 0.5 to 0.25 % w/v) significantly lowered  
 2210 saltiness intensity ( $p < 0.05$ ), (reduced from "strong" to "moderate"). This confirms that,  
 2211 as expected, reduction of salt level in solution by 50% would lead to significant loss in  
 2212 saltiness perception. As shown in Table 4, the lysine (at 1 % w/v) did evoke a "weak"  
 2213 perception of saltiness (mean log value 1.05) which was significantly higher than that  
 2214 of calcium lactate (at 0.75 % w/v) at "barely detectable" (mean log value 0.65). Where  
 2215 lysine (1% w/v) was used with half NaCl (0.25% w/v), the resulting solution (H+L)  
 2216 was significantly saltier than the half salt (H) and the lysine alone (L) ( $p < 0.05$ ), and  
 2217 importantly it has similar salty taste with the control salt solution ( $p > 0.05$ ). However,  
 2218 where calcium lactate was used with half NaCl (0.25% w/v), the resulting solution  
 2219 (H+CL) was significantly saltier than calcium lactate alone (CL) ( $p < 0.05$ ), but not  
 2220 significantly different to the half NaCl (H) ( $p > 0.05$ ) and significantly less salty than

2221 the control salt solution ( $p < 0.05$ ). The ternary solution (H+L+CL) was very similar to  
2222 the binary solution of NaCl and lysine (H+L) ( $p > 0.05$ ); it was significantly saltier than  
2223 the half salt (H), the lysine alone (L), calcium lactate alone (CL) and their combination  
2224 (L+CL) ( $p < 0.05$ ), but not significantly different in salty taste than the control salt  
2225 solution ( $p > 0.05$ ). Therefore, in line with the study hypothesis, this indicates that 1%  
2226 (w/v) lysine, with or without calcium lactate (H+L+CL or H+L), could make up the  
2227 saltiness loss caused by 50% NaCl reduction. However, contrary to the study hypothesis,  
2228 calcium lactate alone did not enhance any saltiness perception.


2229 Additional tastes were also perceived by the panel. Lysine (L) and calcium lactate (CL)  
2230 solutions presented moderate bitterness, which was significantly higher than the control  
2231 ( $p < 0.05$ ). However, when lysine was used together with NaCl (H+L) the bitterness  
2232 decreased (from “moderate” to “weak”) compared with the bitterness of lysine (L)  
2233 alone ( $p > 0.05$ ); resulting in a solution that was similar in both saltiness and bitterness  
2234 intensity to the control NaCl ( $p > 0.05$ ). Where calcium lactate was used with NaCl  
2235 (H+CL) the bitterness was not significantly different from calcium lactate alone (CL)  
2236 ( $p > 0.05$ ) and it remained significantly higher in bitterness than the control ( $p < 0.05$ ).

2237 Although sweetness and sourness also changed in different solutions, the effect could  
2238 be ignored because the taste intensity were located between barely detectable to weak  
2239 on the gLMS (1.38 to 5.01 antilog on gLMS). Although calcium lactate is weakly acidic,  
2240 there are few free hydrogen ions in aqueous solution so that sour taste is difficult to  
2241 perceive. Additionally, the overall taste intensity of 50% substitution of NaCl with  
2242 lysine (H+L) or calcium lactate (H+CL) was similar to the control ( $p > 0.05$ ), whereas

2243 50% substitution of NaCl with both lysine and calcium lactate (H+L+CL) was  
2244 significantly higher than the control ( $p < 0.05$ ). In conclusion, the addition of 1% (w/v)  
2245 lysine with or without 0.75% (w/v) calcium lactate into a 50% salt-reduced aqueous  
2246 solution were optimal treatments for further investigation to establish the relationship  
2247 between concentration and perceived intensity. Although the addition of calcium lactate  
2248 increased bitterness it can provide additional benefits to shelf-life which was discussed  
2249 earlier, therefore the treatment of 50% substitution of NaCl with 1% (w/v) lysine and  
2250 0.75% (w/v) calcium lactate was chosen for the subsequent experiments.

2251 **3.3.2 Relationship between concentration of composite solution and perceived**  
2252 **taste intensity**

2253 **3.3.2.1 Composite solution with fixed ratio of NaCl, lysine and calcium lactate**  
2254 Since sweetness and sourness resulting from the tastants used were negligible (Table  
2255 4), only overall taste, salty and bitter were used to establish the psychophysical  
2256 functions for this composite solution. The ratio of the tastants in the composite solutions  
2257 was constant, with the standard levels used from the first experiment (0.25% NaCl: 1.0%  
2258 lysine: 0.75% calcium lactate w/v). The series of composite solutions were developed  
2259 by following a geometric progression of 1.7 in concentration. In order to illustrate the  
2260 psychophysical relationship between the concentration in stimuli and the perceived  
2261 intensity of taste, the concentration ratio relative to the standard (i.e., 0.21, 0.35, 0.59,  
2262 1.0, 1.7 and 2.89) was used to plot the curve. The resulting psychophysical relationship  
2263 is shown in Figure 1.



2264

2265 Figure 3.1 Logarithmic relationship between perceived intensity of overall taste, saltiness and bitterness, and the

2266 concentration of a composite tastant solution (fixed ratio of 0.25% NaCl: 1.0% lysine : 0.75% calcium lactate). The

2267 standard solution (0.25% NaCl, 1% lysine, 0.75% calcium lactate w/v) was denoted a concentration value of 1 (ie

2268  $\log_{10} = 0$ ). Within each intensity set, means that do not share a common letter denote samples are significantly

2269 different ( $p < 0.05$ ). Lower case letters used for overall taste intensity, upper case letters use for saltiness, and Greek

2270 letters use for bitterness.

2271 Steven's law describes the relationship between concentration and intensity as  $I = kC^n$ ;

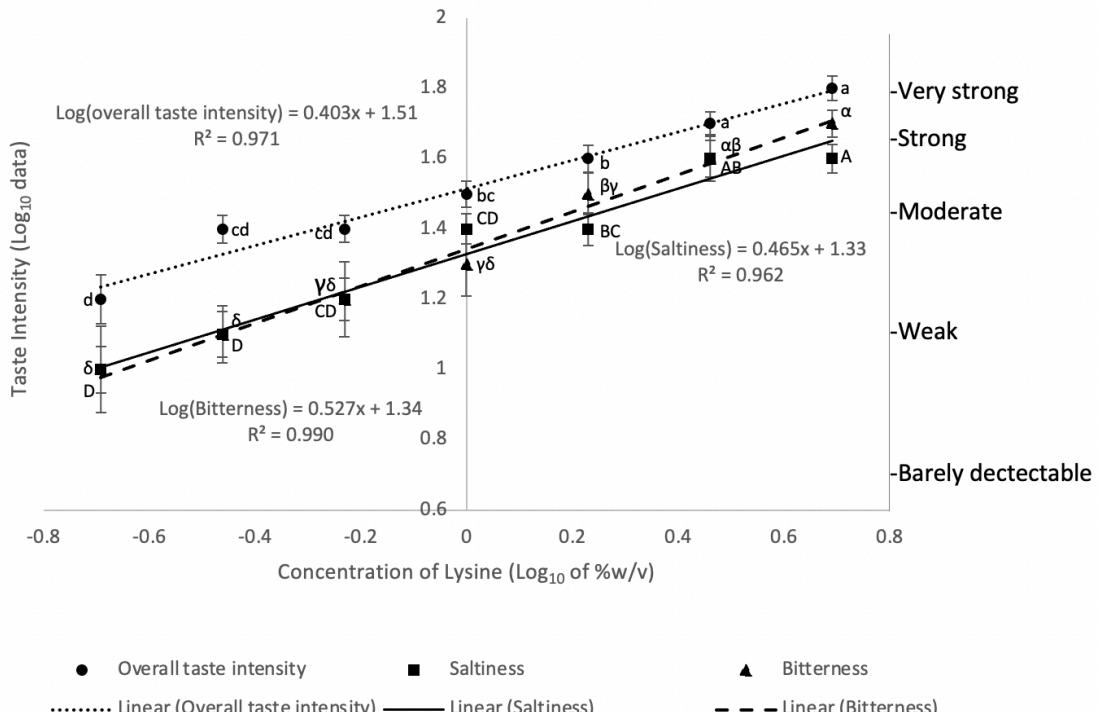
2272 where  $I$  is intensity,  $k$  is a constant,  $C$  is concentration and  $n$  is the exponent that

2273 describes the relationship between concentration and perceived intensity (Keast and

2274 Breslin, 2002). As shown in Figure 1, salty taste had a proportional relationship with

2275 the concentration of the mixture ( $n = 0.989$ ). However, the overall taste intensity and

2276 bitter taste had slightly decelerating relationships with the concentration of the mixture,


2277 where the exponents were 0.762 and 0.684 respectively. The saltiness and bitterness of

2278 the standard solution (relative concentration 1.0,  $\log_{10}$  (Concentration ratio) 0.0) were in

2279 the "strong" region (Figure 3.1). This was in line with the first experiment (Table 4),  
2280 where the H+L+CL sample had log values for salty and bitter of 1.45 and 1.58  
2281 respectively, both equivalent to "strong". However, the overall taste intensity was also  
2282 in the "strong" region in this latter experiment, whereas it had been closer to "very  
2283 strong" (log value 1.70) in the first experiment (Table 3.4). It could be beneficial that  
2284 the concentration of tastant mixture had a proportionate relationship with perceived  
2285 saltiness, whereas the perceived bitterness increased at a slower rate. As concentration  
2286 increased, salty taste perception started to become stronger than the bitter taste  
2287 perception (Figure 3.1). However, bitterness cannot be ignored as it was "strong" to  
2288 "very strong" at the high concentrations of the tastant mixture.

2289 **3.3.2.2 Composite solution with fixed ratio of NaCl and calcium lactate but varied  
2290 level of lysine**

2291 In this experiment the level of NaCl and calcium lactate were constant in each  
2292 experiment, whereas the concentration of lysine was changed, in a geometric  
2293 progression of 1.7. The psychophysical relationship between the concentration of lysine  
2294 and the intensity of taste is presented in Figure 3.2.



2295

2296 Figure 3.2 Logarithmic relationship between perceived intensity of overall taste, saltiness and  
 2297 bitterness, and concentration of lysine composite solution (each composite solution containing 0.25% NaCl and 0.75% calcium  
 2298 lactate w/v in addition to lysine). Within each intensity set means that do not share a common letter denote samples  
 2299 are significantly different ( $p < 0.05$ ). Lower case letters used for overall taste intensity, upper case letters use for  
 2300 saltiness, and Greek letters use for bitterness.

2301 According to the Steven's power law, the overall taste intensity, salty taste and bitter  
 2302 taste all had decelerating relationships with lysine concentration, where the exponents  
 2303 were 0.403, 0.465 and 0.527 respectively (Figure 3.2). Therefore, it was clear that lysine  
 2304 contributed similarly to both saltiness and bitterness, and the proportionate nature of  
 2305 the relationship between salty taste and concentration of the composite mixture seen in  
 2306 Figure 1 (sodium chloride with calcium lactate and lysine) must have been driven more  
 2307 by the sodium chloride than the lysine. However, this does not detract from the fact that  
 2308 lysine contributes to salty taste and the salty intensity evoked by lysine is dose-  
 2309 dependent (Figure 3.2).

2310 **3.4 Discussion**

2311 **3.4.1 Salty taste of lysine solution**

2312 This study found 1% w/v lysine alone was perceived to have a weak saltiness intensity,  
2313 however when used in combination with NaCl it could compensate for the saltiness loss  
2314 in a 50% salt-reduced aqueous solution. Salty taste increased with the level of lysine,  
2315 although the relationship was non-proportional. According to previous studies (Guo *et  
2316 al.*, 2020, Vidal *et al.*, 2020) lysine was used as a salt substitute in 50% NaCl reduced  
2317 meat products, yet the lysine could not compensate for the saltiness loss in salt-reduced  
2318 ham or beef. One possible reason is that the concentration of lysine was too low. The  
2319 highest concentration of lysine used by Guo *et al.* (2020) was 0.8% w/w, whereas in  
2320 this experiment lysine at 1% w/v or more was used to have the ability to make up the  
2321 salty taste loss caused by 50% salt reduction. Another reason may be the difference in  
2322 food matrix. Previous studies have used solid food matrix, like meat, rather than pure  
2323 aqueous systems to test the substitution effect of lysine. In fact, ingredients used in food  
2324 products are often added at much higher concentrations than in the aqueous model  
2325 systems to achieve the required taste intensity. The rheological properties of food  
2326 matrices affect sensory perception, including taste; for example, tastants have greater  
2327 mobility to reach taste receptors in liquids than that in solid foods (Liu *et al.*, 2017), as  
2328 a result, the perceived taste intensity is much stronger than that in solid food. This could  
2329 explain why in the experiment of Vidal *et al.* (2020) 3% w/w lysine addition in low-  
2330 sodium salted beef was not detected with an increase in saltiness. Consequently, the  
2331 perceived intensity of salt reduced system may vary greatly in different matrices.

2332 Therefore, saltiness evaluation in aqueous solutions is only used for preliminary  
2333 screening purposes (Kilcast and Den Ridder, 2007). In addition, individual recipes will  
2334 require specific salt reduction strategies.

2335 **3.4.2 Bitter taste of calcium lactate and benefit/risk as salt substitute**

2336 The results found that calcium lactate did not offer saltiness in isolation, and it produced  
2337 higher bitterness. Although 50% substitution of NaCl using combination of lysine and  
2338 calcium lactate achieved similar intensity of saltiness in solution to the full NaCl control,  
2339 bitterness resulting from this combination was increased. This is because the main taste  
2340 characteristic of divalent cationic salts such as calcium and magnesium are bitterness,  
2341 while other sensations are described as saltiness, metallic, astringent, sourness and  
2342 sweetness, usually in decreasing order of intensity (Lawless *et al.*, 2003). However,  
2343 Lawless *et al.* (2003) also found that compared to equimolar concentrations of calcium  
2344 chloride, calcium lactate had a lower bitter response, even if the salty response was  
2345 lower as well at the same time. Although calcium lactate brings some off-taste, it is still  
2346 chosen as a salt substitute because it can be used to reinforce calcium content in food.  
2347 Irshad *et al.* (2016) reported that restructured buffalo meat loaves with 1.25% w/w  
2348 calcium lactate used as a calcium fortifier could meet recommended dietary allowance  
2349 for calcium without affecting the textural and sensory properties. Another important  
2350 reason is it can be used as a preservative, which may not be possessed by other salt  
2351 substitutes. In meat products, lactic acid could pass across the cell membrane in their  
2352 undissociated form and dissociate within the cell to acidify the cell interior.

2353 Consequently, it could lower the water activity and inhibit the growth of bacteria in  
2354 fresh and processed meat products to achieve longer shelf life (Shelef, 1994).

2355 **3.4.3 Psychophysical function between the lysine-calcium composite solutions and**  
2356 **taste**

2357 In general, the perceived saltiness, bitterness and overall taste intensity increased with  
2358 the concentration of tri-stimuli composite solution. For bitterness, although the  
2359 sensation increased rapidly with the increase in concentration from weak to strong, the  
2360 increase in bitterness was not proportional to concentration and could be considered to  
2361 reach a plateau at a strong concentration range. This further confirms that bitterness has  
2362 no effect on salty taste, but salty taste inhibits bitterness at any concentration intensity  
2363 (Keast and Breslin, 2002). Due to the gradual increase of salty taste, the inhibition of  
2364 bitterness became more obvious, so the relationship between bitterness and  
2365 concentration was decelerating. In this experiment the relationship between salty taste  
2366 and the concentration of composite solution was approximately proportional, and this  
2367 is in line with the linear relationship between saltiness and NaCl reported by Moskowitz  
2368 and Arabie (1970). They found that the saltiness increased linearly with the increase of  
2369 NaCl from 0.05 mol/L to 1 mol/L. For an individual taste stimulus, as the physical  
2370 concentration increases the perceived intensity elicited by that compound also increases,  
2371 but at varying rates. For example, at very low concentrations of sapid compounds the  
2372 taste intensity can grow in an exponential fashion. At medium concentration the  
2373 perceived intensity can increase in linear fashion and at higher concentrations the  
2374 perceived intensity may plateau (Keast and Breslin, 2002). In this experiment, the

2375 relationship between bitterness and the composite solution seems to fit this pattern as  
2376 the intensity of bitterness increased with increasing concentration up to 1.7 % w/v  
2377 lysine (with 0.43% NaCl and 1.28 % calcium lactate; treatment T5 in Table 3.2;  
2378 Supplementary table 8), while the bitterness did not increase beyond it. However, this  
2379 is not supported by the experiment (Table 3.3) with fixed level of NaCl and calcium  
2380 lactate but varied level of lysine where bitterness did significantly increase from 1.7 to  
2381 4.91 % lysine in Figure 2 (Supplementary table 10). It could be explained by the weak  
2382 saltiness elicited by lysine compared to NaCl.

### 2383 **3.5 Conclusion**

2384 The results indicated that 1% w/v lysine produced a weak saltiness, and 0.75 % w/v  
2385 calcium lactate did not offer saltiness alone. However, 0.75% w/v calcium lactate with  
2386 1% w/v lysine was successful in replacing 50% of salt in solution whilst maintaining  
2387 saltiness of a control full salt sample, although additional bitterness was introduced.  
2388 Furthermore, saltiness increased proportionally with the increase in concentration of  
2389 the composite mixture (lysine, calcium lactate and NaCl), while the bitterness increase  
2390 was less than proportionate. This suggests that at high concentration the saltiness  
2391 increased to a greater extent than the bitter taste. In terms of application in real food  
2392 matrix, lysine alone may face the issue of shortened shelf life caused by salt reduction,  
2393 although the saltiness loss could be compensated. Therefore, the antibacterial effect of  
2394 calcium lactate could be utilized to combine with lysine to offer practical application  
2395 for food industry, i.e.to ensure both saltiness and shelf life of the food products could  
2396 be maintained/enhanced in a salt reduced scenario. What is more, ingredients used in

2397 food products are often added at much higher concentrations than in aqueous model  
2398 systems to achieve the desired taste intensity. Therefore, applying lysine and calcium  
2399 lactate to food matrices should be further investigated to verify their effects. Overall,  
2400 the findings of this study fill a gap in the literature regarding the role of lysine as a salt  
2401 substitute in terms of saltiness perception, providing new ideas for salt reduction in  
2402 subsequent food products development through using lysine and calcium lactate blends.  
2403 In addition, this study has used lysine with calcium lactate as a proposed mixture to  
2404 replace salt in various food matrices, with the main roles of the two constituents being  
2405 salty taste and antimicrobial activity respectively.

#### 2406 **Acknowledgement**

2407 The sensory panelists are thanked for attending the sensory evaluation sessions.  
2408 Compusense are thanked for their provision of Compusense cloud software under their  
2409 academic consortium agreement.

#### 2410 **Reference**

2411 Ashford, R., Jones, K. and Collins, D., 2020. National Diet and Nutrition Survey:  
2412 Assessment of salt intake from urinary sodium in adults (aged 19 to 64 years) in  
2413 England, 2018 to 2019. GOV. UK, pp.133-155.  
2414 Bartoshuk, L.M., Duffy, V.B., Green, B.G., Hoffman, H.J., Ko, C.W., Lucchino, L.A.,  
2415 Marks, L.E., Snyder, D.J. and Weiffenbach, J.M. (2004). Valid across-group  
2416 comparisons with labeled scales: the gLMS versus magnitude matching. *Physiology &*  
2417 *behavior*, 82(1), 109-114.

2418 Bidlas, E. and Lambert, R.J., 2008. Comparing the antimicrobial effectiveness of NaCl  
2419 and KCl with a view to salt/sodium replacement. *International Journal of Food  
2420 Microbiology*, 124(1), pp.98-102.

2421 Campagnol, P.C.B., dos Santos, B.A., Morgano, M.A., Terra, N.N. and Pollonio,  
2422 M.A.R., 2011. Application of lysine, taurine, disodium inosinate and disodium  
2423 guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. *Meat  
2424 science*, 87(3), pp.239-243.

2425 Desmond, E., 2006. Reducing salt: A challenge for the meat industry. *Meat science*,  
2426 74(1), pp.188-196.

2427 De Marchi, M., Manuelian, C., Ton, S., Manfrin, D., Meneghesso, M., Cassandro, M.  
2428 and Penasa, M., 2017. Prediction of sodium content in commercial processed meat  
2429 products using near infrared spectroscopy. *Meat Science*, 125, pp.61-65.

2430 Devlieghere, F., Vermeiren, L., Bontenbal, E., Lamers, P.P. and Debevere, J., 2009.  
2431 Reducing salt intake from meat products by combined use of lactate and diacetate salts  
2432 without affecting microbial stability. *International journal of food science &  
2433 technology*, 44(2), pp.337-341.

2434 Dos Santos Alves, L., Lorenzo, J., Gonçalves, C., dos Santos, B., Heck, R., Cichoski,  
2435 A. and Campagnol, P., 2017. Impact of lysine and liquid smoke as flavor enhancers on  
2436 the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl.  
2437 *Meat Science*, 123, pp.50-56.

2438 Doyle, M.E. and Glass, K.A., 2010. Sodium reduction and its effect on food safety,  
2439 food quality, and human health. *Comprehensive reviews in food science and food safety*,  
2440 9(1), pp.44-56.

2441 Guo, X., Tao, S., Pan, J., Lin, X., Ji, C., Liang, H., Dong, X. and Li, S., 2020. Effects  
2442 of L-Lysine on the physiochemical properties and sensory characteristics of salt-  
2443 reduced reconstructed ham. *Meat science*, 166, p.108133.

2444 He, F. and MacGregor, G., 2010. Reducing Population Salt Intake Worldwide: From  
2445 Evidence to Implementation. *Progress in Cardiovascular Diseases*, 52(5), pp.363-382.

2446 Henney, J.E., Taylor, C.L. and Boon, C.S., 2010. Taste and flavor roles of sodium in  
2447 foods: A unique challenge to reducing sodium intake. *Strategies to Reduce Sodium*  
2448 *Intake in The United States; National Academies Press: Washington, DC, USA.*

2449 Inguglia, E., Zhang, Z., Tiwari, B., Kerry, J. and Burgess, C., 2017. Salt reduction  
2450 strategies in processed meat products – A review. *Trends in Food Science &*  
2451 *Technology*, 59, pp.70-78.

2452 Irshad, A., Sharma, B., Ahmed, S., Talukder, S., Malav, O. and Kumar, A., 2016. Effect  
2453 of incorporation of calcium lactate on physico-chemical, textural, and sensory  
2454 properties of restructured buffalo meat loaves. *Veterinary World*, 9(2), pp.151-159.

2455 Islam, M. Z., Shamim, A. A., Ahmed, A., Akhtaruzzaman, M., Kärkkäinen, M., and  
2456 Lamberg-Allardt, C., 2014. Effect of vitamin D, calcium and multiple micronutrients  
2457 supplementation on lipid profile in pre-menopausal Bangladeshi garment factory  
2458 workers with hypovitaminosis D. *Journal of health, population, and nutrition*, 32(4),  
2459 687.

2460 Keast, R. S. J., Breslin, P. A. S., 2002. An overview of binary taste-taste interactions.

2461 *Food Quality and Preference*, 14:111-24.

2462 Khaw, K.T. and Barrett-Connor, E., 1984. Dietary potassium and blood pressure in a

2463 population. *The American journal of clinical nutrition*, 39(6), pp.963-968.

2464 Kilcast, D. and Den Ridder, C., 2007. Sensory issues in reducing salt in food products.

2465 *In Reducing salt in foods* (pp. 201-220). Woodhead publishing.

2466 Lawless, H., Rapacki, F., Horne, J. and Hayes, A., 2003. The taste of calcium and

2467 magnesium salts and anionic modifications. *Food Quality and Preference*, 14(4),

2468 pp.319-325.

2469 Liem, D., Miremadi, F. and Keast, R., 2011. Reducing Sodium in Foods: The Effect on

2470 Flavor. *Nutrients*, 3(12), pp.694-711.

2471 Lindemann, B., 1997. Sodium taste. *Curr. Opin. Nephrol. Hypertension* 6, 425–429.

2472 Liu, D., Deng, Y., Sha, L., Abul Hashem, M. and Gai, S., 2017. Impact of oral

2473 processing on texture attributes and taste perception. *Journal of food science and*

2474 *technology*, 54(8), pp.2585-2593.

2475 McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M., Bonham,

2476 M. P., and Fearon, A. M., 2010. Red meat consumption: An overview of the risks and

2477 benefits. *Meat science*, 84(1), 1-13.

2478 Moskowitz, H. and Arabie, P., 1970. Taste intensity as a function of stimulus

2479 concentration and solvent viscosity. *Journal of Texture Studies*, 1(4), pp.502-510.

2480 Muchaamba, F., Stoffers, H., Blase, R., Ah, U. V., and Tasara, T., 2021. Potassium  
2481 lactate as a strategy for sodium content reduction without compromising salt-associated  
2482 antimicrobial activity in salami. *Foods*, 10(1), 114.

2483 Pangborn, R. and Pecore, S., 1982. Taste perception of sodium chloride in relation to  
2484 dietary intake of salt. *The American Journal of Clinical Nutrition*, 35(3), pp.510-520.

2485 Shelef, L.A., 1994. Antimicrobial effects of lactates: a review. *Journal of Food  
2486 Protection*, 57(5), pp.445-450.

2487 Sinopoli, D. A., and Lawless, H. T., 2012. Taste properties of potassium chloride alone  
2488 and in mixtures with sodium chloride using a check-all-that-apply method. *Journal of  
2489 food science*, 77(9), S319-S322.

2490 Tamm, A., Bolumar, T., Bajovic, B. and Toepfl, S., 2016. Salt (NaCl) reduction in  
2491 cooked ham by a combined approach of high pressure treatment and the salt replacer  
2492 KCl. *Innovative Food Science & Emerging Technologies*, 36, pp.294-302.

2493 Tomé, D. and Bos, D., 2007. Lysine Requirement through the Human Life Cycle, *The  
2494 Journal of Nutrition*, 137(6), 1642S–1645S,

2495 World Health Organisation, 2020. *Salt Reduction, Fact Sheets*. Retrieved 3 November  
2496 2020 from <https://www.who.int/news-room/fact-sheets/detail/salt-reduction>

2497 Vanderklaauw, N. J., and Smith, D. V., 1995. Taste quality profiles for 15 organic and  
2498 inorganic salts. *Physiology & Behavior*, 58(2), 295-306.

2499 Vidal, V.A., Santana, J.B., Paglarini, C.S., da Silva, M.A., Freitas, M.Q., Esmerino,  
2500 E.A., Cruz, A.G. and Pollonio, M.A., 2020. Adding lysine and yeast extract improves  
2501 sensory properties of low sodium salted meat. *Meat Science*, 159, p.107911.

2502 Yamamoto, K. and Ishimaru, Y., 2013. Oral and extra-oral taste perception. *Seminars*  
2503 *in Cell & Developmental Biology*, 24(3), pp.240-246.

2504 **Chapter 4. Effect of lysine and calcium lactate in physicochemical characteristics,**  
2505 **sensory properties and shelf-life in salt-reduced pork patty**

2506 **Abstract**

2507 The aim of this study was to evaluate the effects of calcium lactate and lysine on the  
2508 physicochemical characteristics and sensory properties of pork patties that had 50% of  
2509 salt (sodium chloride) replaced. The use of 0, 1.5%, 3% (w/w) calcium lactate and 0%,  
2510 3%, 6% (w/w) lysine as salt substitutes were added into the pork patties and compared  
2511 to the full salt (2% w/w) control patty. The results showed that both calcium lactate and  
2512 lysine increased texture attributes, decreased water holding capacity and water activity  
2513 of a salt-reduced pork patty ( $p < 0.05$ ). Additionally, lysine increased the yield, and  
2514 calcium lactate improved shelf-life ( $p < 0.05$ ). The combination of calcium lactate (3%  
2515 w/w) and lysine (3% w/w, 6% w/w) or 1.5% w/w calcium lactate with 3% w/w lysine  
2516 could compensate the loss in saltiness caused by 50% salt reduction in pork patty.  
2517 Considering the effects of lysine and calcium lactate on physical-chemical  
2518 characteristic, shelf-life and sensory traits, it was recommended that the addition of 3%  
2519 w/w lysine and 1.5% w/w calcium lactate could be used to develop pork patty with 50%  
2520 NaCl reduction with comparable eating quality.

2521 **4.1 Introduction**

2522 Sodium chloride (NaCl), known as salt, has been used as an ingredient or food  
2523 preservative for thousands of years. It plays a beneficial role on flavour, taste, and  
2524 texture (Rios-Mera et al., 2021; De Marchi et al., 2017; Inguglia et al., 2017). In Europe,  
2525 around 70% of salt consumption comes from processed foods, among which 20% is

2526 derived from meat products (Ruusunen and Puolanne, 2005). For example, fresh pork  
2527 typically contains only 0.18 g salt/100 g, but bacon contains about 3.2 g salt/100 g  
2528 (Inguglia et al., 2017). According to the recommendation of World Health Organization  
2529 (WHO) in 2020, the average sodium consumption should be approximately 2 g sodium  
2530 per day (equivalent to about 5 g salt per day) for adults to prevent chronic diseases.  
2531 However, current salt intake is much higher than the standard recommended by WHO  
2532 in most counties. In the UK, the dietary intake for salt reached 8.4 g per day (equivalent  
2533 to about 3.4 g sodium per day) in 2018/2019 (Ashford, Jones and Collins, 2020).  
2534 Numerous literatures have reported that the consumption of sodium in excess is directly  
2535 related to the increase of blood pressure, which is a risk factor for cardiovascular  
2536 diseases including heart diseases and stroke (Rybicka et al., 2022; Rucker, Rudemiller  
2537 and Crowley, 2018; He and MacGregor, 2010). Moreover, it can also lead to calcium  
2538 losses and impairment of skeletal mass (Tiyasatkulkovit et al., 2021). Therefore, an  
2539 increasing number of countries have implemented various initiatives to reduce the use  
2540 of sodium salt in the food industry in the last decade.

2541 Current approaches to reduce the sodium level in processed foods and meat products  
2542 have consisted of the following strategies: complete or partial replacement of NaCl;  
2543 replacement with a low-sodium mixture; use of flavour enhancers such as monosodium  
2544 glutamate or yeast extract; changes in the physical form of salt; improvement of salt  
2545 diffusion via high pressure treatment or ultrasound technology (Fellendorf, O'Sullivan  
2546 and Kerry, 2016; Ojha et al., 2016; Dos Santos et al., 2014; Emorine et al., 2014;  
2547 Paulsen et al., 2014). Among them, utilization of salt substitutes such as potassium

2548 chloride (KCl) has been considered as the most popular and effective method to reduce  
2549 sodium level in food products (Tamm et al., 2016). Although such compounds make a  
2550 contribution to saltiness perception, they may also cause some unsatisfactory taste like  
2551 bitterness at high concentration or shorten the shelf life of products (Inguglia et al.,  
2552 2017; Van Der Klaauw and Smith, 1995), which limits their application in food  
2553 manufacturing. It should be noted that ideal salt substitutes should replace the role of  
2554 salts in meat products without compromising the eating quality of meat products.

2555 Recently, lysine has been added into meat products to improve its eating quality. Lysine  
2556 is one of the nine essential amino acids in the human body that cannot be produced by  
2557 the body and therefore must come from food (Blemings and Benevenga, 2007). It has  
2558 been used as flavour enhancer in low-sodium sausage (Dos Santos Alves et al., 2014;  
2559 Campagnol et al., 2012). Both Guo et al. (2020) and Vidal et al. (2020) also reported  
2560 that lysine could improve the physical-chemical characteristics in salt-reduced ham or  
2561 beef. However, the saltiness loss caused by salt reduction could not be compensated  
2562 even at 3% w/w lysine. Calcium lactate could be another effective salt substitute,  
2563 although few studies have tested this. Calcium lactate is associated with saltiness  
2564 because Ca<sup>2+</sup> the divalent metal cations are mainly perceived with saltiness and  
2565 bitterness, but calcium lactate also has a considerable sour component (Lawless et al.,  
2566 2003; Kilcast and Den Ridder, 2007). In addition, it could also be used in salt reduced  
2567 formulations as a preservative because it can inhibit the growth of bacteria (Irshad et  
2568 al., 2016; Shelef and Potluri, 1995), a property not delivered by some other salt  
2569 substitutes. Weaver and Shelef (1993) found that 2% w/w calcium lactate could inhibit

2570 the growth of *Listeria monocytogenes* (*L. monocytogenes*) which is relatively common  
2571 in the meat products. Calcium lactate would also provide a function of calcium  
2572 fortification to improve the nutrition value of meat products because the calcium  
2573 content in the meat is relatively poor at about 10 mg/100 g whereas adults require a  
2574 daily intake of calcium of 1000 mg/day (Okus Khanova et al., 2016).

2575 Our previous research in aqueous solutions (chapter 3) found that 1% w/v lysine had a  
2576 very weak salty taste, however when used together with sodium chloride it could  
2577 enhance salty taste to enable a 50% salt reduction, with or without calcium lactate. This  
2578 research aimed to test whether the salt taste enhancement tested in aqueous solution is  
2579 still effective in a real food matrix and further to evaluate their effects on  
2580 physicochemical characteristics, sensory properties and microbial load of food product.

2581 Progressing understanding from previous literature and our previous research, this  
2582 study specifically hypothesized that combination of lysine and calcium lactate could  
2583 achieve a 50% salt-reduced pork patty without reducing salty taste and shelf-life. If salt  
2584 substitution using lysine and calcium lactate is successful in meat products, this could  
2585 offer health benefits to consumer through decreasing dietary sodium intake and  
2586 increasing calcium intake from processed meat products.

2587 **4.2 Materials and Methods**

2588 **4.2.1 Pork raw meat**

2589 All the ground lean pork leg and pork back fat was purchased from a local supplier  
2590 (Solent Butchers & Co. Limited, UK) on three occasions to provide material for three  
2591 replicates (section 2.2). All the meat was vacuum packaged (A300/52, Multivac

2592 Gastrovac, Germany) and stored at -18 °C in a freezer until further use. The samples  
2593 were thawed at 4 °C in a refrigerator for 24 h before use.

2594 **4.2.2 Experiment design**

2595 The salt content of meat products is usually around 1.5% - 2.5% (Guo *et al.*, 2020),  
2596 hence, for the control sample a salt concentration of 2% w/w sodium chloride was used.

2597 In addition, Public Health England (2020) has set 2024 ideal salt content for pork  
2598 sausages as 1.08 g salt per 100g, so a 50% salt reduction was chosen in order to target

2599 1% w/w sodium chloride contained. To develop sodium reduced pork patties calcium  
2600 lactate (Merck, USA) and lysine (Health Leads, UK), were combined with each at three

2601 levels. Because ingredients used in food products are often added at much higher  
2602 concentrations than in aqueous model systems to achieve the desired taste intensity, a

2603 higher concentration of lysine and calcium lactate were used in the preliminary trials.

2604 According to the results of these preliminary trials, for calcium lactate, levels at 0%,  
2605 1.5% and 3% (w/w) were used, and lysine was added at 0%, 3% and 6% (w/w).

2606 According to the factorial design for two factors and three levels, 9 treatments plus one  
2607 control sample were prepared as detailed in Table 4.1. Each treatment was prepared in

2608 triplicate, each using a different batch of pork.

2609 Table 4.1. Formulation of pork patties used to investigate the effects of calcium lactate  
 2610 and lysine.

| Treatment* | Lean<br>pork leg<br>(% w/w) | Pork<br>back fat<br>(% w/w) | Distilled<br>water<br>w/w) | Sodium<br>Chloride<br>(% w/w) | Lysine<br>(%w/w) | Calcium<br>lactate<br>(% w/w) |
|------------|-----------------------------|-----------------------------|----------------------------|-------------------------------|------------------|-------------------------------|
| Control    | 70                          | 10                          | 18                         | 2                             | -                | -                             |
| C0L0       | 70                          | 10                          | 18                         | 1                             | -                | -                             |
| C0L3       | 70                          | 10                          | 18                         | 1                             | 3                | -                             |
| C0L6       | 70                          | 10                          | 18                         | 1                             | 6                | -                             |
| C1.5L0     | 70                          | 10                          | 18                         | 1                             | -                | 1.5                           |
| C1.5L3     | 70                          | 10                          | 18                         | 1                             | 3                | 1.5                           |
| C1.5L6     | 70                          | 10                          | 18                         | 1                             | 6                | 1.5                           |
| C3L0       | 70                          | 10                          | 18                         | 1                             | -                | 3                             |
| C3L6       | 70                          | 10                          | 18                         | 1                             | 3                | 3                             |
| C3L6       | 70                          | 10                          | 18                         | 1                             | 6                | 3                             |

\*Control = 2% w/w NaCl; C0L0 = 1% w/w NaCl; C0L3 = 1% w/w NaCl + 3% w/w lysine; C0L6 = 1% w/w NaCl + 6% w/w lysine; C1.5L0 = 1% w/w NaCl + 1.5% w/w calcium lactate; C1.5L3 = 1% w/w NaCl + 1.5% w/w calcium lactate + 3% w/w lysine; C1.5L6 = 1% w/w NaCl + 1.5% w/w calcium lactate + 6% w/w lysine; C3L0 = 1% w/w NaCl + 3% w/w calcium lactate; C3L3 = 1% w/w NaCl + 3% w/w calcium lactate + 3% w/w lysine; C3L6 = 1% w/w NaCl + 3% w/w calcium lactate + 6% w/w lysine.

2611 **4.2.3 Preparation of pork patties**

2612 The formulation of pork patties was adapted from the work of Lu, Kuhnle and Cheng  
 2613 (2017) with slight modification to include lean pork leg (700 g/kg), pork back fat (100  
 2614 g/kg), and distilled water (180 g/kg). For each formulation (Table 1), the ground meat  
 2615 and all ingredients (distilled water, salt, calcium lactate and lysine) were homogenized  
 2616 at 5000 rpm for 5min until uniformity was reached using a food processor (Titanium  
 2617 Major KMM020, Kenwood Limited, UK). Each pork patty was formed with 100 g

2618 mixture in a foil cup (8 cm diameter). In order to assess the impact of calcium lactate  
2619 and lysine on the quality of raw patties over shelf life, the samples were packed in  
2620 resealable dual-track food freezer bags (Co-op, UK) and stored at 4 °C for 1, 3, 5 and 7  
2621 days. Samples were cooked at 200°C in an oven (B1542, Naff, Germany) until the  
2622 centre temperature reached 75°C. After cooking, samples were covered with foil and  
2623 chilled at 4°C in a refrigerator for 24 h before physical analysis (i.e., yield, colour and  
2624 texture). A portion of the chilled cooked samples were ground to a powder using a  
2625 blender (AT640, Kenwood Limited, UK), then vacuum packed and stored at -18°C in  
2626 a freezer, for further chemical analysis (pH after cooking, water holding capacity and  
2627 moisture content).

2628 **4.2.4 Microbial analysis**

2629 **4.2.4.1 Water activity**

2630 Water activity measurements were carried out on the raw samples at 1, 3, 5 and 7 day  
2631 of storage and using a water activity meter (HYGROLAB C1, Rotronic, USA) at room  
2632 temperature (20°C). The raw ground pork patties were added to sample container  
2633 without exceeding half height of the container. The analysis was performed in triplicate.

2634 **4.2.4.2 pH**

2635 pH was measured on both raw (1, 3, 5 and 7 day of storage) and cooked ground pork  
2636 patties. 10 g patty sample was added into 100 ml distilled water and mixed using a  
2637 magnetic stirrer (SS3H STIRRER-HOTPLATE, hemLab, Netherlands) for 90 s at a  
2638 medium speed. pH was measured using a pH meter (Orion star A111, Thermo scientific,  
2639 USA). Analysis was performed in triplicate.

2640 **4.2.4.3 Total viable count (TVC)**

2641 TVC was carried out at 1, 3, 5 and 7 days of storage. 10 g of raw ground pork patty  
2642 were aseptically weighted and mixed with 90 ml of buffered peptone water. After 2 min  
2643 mixing in a stomacher blender (Stomacher 400 circulator, Seward, UK), appropriate  
2644 decimal dilutions were plated in duplicate on Plate Count Agar (PCA) (Oxiod Ltd, UK)  
2645 for TVC. Plates were incubated at 37°C (constant temperature room) for 48 h. All  
2646 microbial counts were converted to logarithms of colony-forming units per gram (log  
2647 cfu/g).

2648 **4.2.5 Physical-chemical characteristics of pork patties**

2649 **4.2.5.1 Moisture content**

2650 According to AOAC method, 3 g ground sample was put into the aluminium moisture  
2651 dish, then dried in an oven (GALLENKAMP, UK) at 100 ° C for 24 h. Samples were  
2652 cooled in a desiccator at least 30 min and reweighed to calculate the weight difference.  
2653 The moisture content was calculated by the weight difference divided by the starting  
2654 weight of sample before drying and expressed as %. The analysis was performed in  
2655 triplicate.

2656 **4.2.5.2 Yield**

2657 The cooking loss was calculated using the formula as follows:

2658 Yield (%) = 1 - (W<sub>b</sub> - W<sub>a</sub>)/W<sub>b</sub> x 100

2659 W<sub>b</sub> means weight of pork patty before cooking, and W<sub>a</sub> means weight of pork patty  
2660 after chilling.

2661 **4.2.5.3 Water holding capacity**

2662 This method was based up that of Zhou, Li and Tan (2014). Ground sample (5g) was  
2663 wrapped with filter paper and put into a centrifuge tube. The tube was centrifuged at  
2664 3800 g for 10 min (Sorvall X Pro/ST plus series, Thermo Scientific, USA) at room  
2665 temperature (20°C). The water holding capacity was determined as follows: Water  
2666 holding capacity (%) =  $(1 - (W_a - W_b)/5) \times 100\%$ , where  $W_a$  was filter paper weight  
2667 after centrifuge, and  $W_b$  was the filter paper weight before centrifuge. The analysis was  
2668 performed in triplicate.

2669 **4.2.5.4 Texture profile analysis**

2670 The texture profile analysis was measured by the Texture Analyser (TA-XT2, Stable  
2671 Micro Systems, USA). Cooked pork patties were equilibrated for 30 min at room  
2672 temperature (20 °C) before sampled using a cork borer. Each sample was 1.8 cm height  
2673 and 2.2 cm diameter. A 30 kg load cell was used, and test speed was 2 mm/s with the  
2674 strain at 30%. The samples were compressed twice, and the interval time between each  
2675 compression was 5 s, for texture profile analysis to calculate the hardness, springiness,  
2676 cohesiveness, and chewiness. Hardness (N) was defined as the peak force that occurs  
2677 during the first compression; springiness was expressed as a ratio or percentage of a  
2678 product's original height; cohesiveness was the area of work during the second  
2679 compression divided by the area of work during the first compression; chewiness (N  
2680 cm) was calculated as the product of hardness x cohesiveness x springiness (Del Pulgar,  
2681 Gázquez and Ruiz-Carrascal, 2012.). At least 5 patties per sample were used to measure  
2682 the texture attributes of each sample, and the average was recorded as the value of the  
2683 sample.

2684 **4.2.5.5 Colour**

2685 A chroma meter (CR-400, Konica minolta, Japan) with 8mm diameter measuring  
2686 aperture, illuminant D65, 2° standard observer was used to determine the colour of  
2687 cooked pork patty. The instrument was calibrated using white calibration plate (CR-  
2688 A43, Y = 93.5, x = 0.3140, y = 3318) and CIELAB colour space was selected. Colour  
2689 characteristics, including L\* (lightness), a\* (redness) and b\* (yellowness), were  
2690 measured at three surface locations, and the average was recorded as the value of the  
2691 sample.

2692 **4.2.6 Sensory evaluation**

2693 Sensory profiling is a method that is used to determine a food product's specific sensory  
2694 profile, and such profiling relies on the panelist's ability to evaluate the specific  
2695 attributes of the product by describing and quantitative rating them, followed by  
2696 statistical analysis (Fauza *et al.*, 2021). An employed trained sensory profiling panel  
2697 were used for the sensory evaluation. There were 11 females and 1 male with age  
2698 ranging from 35 to 65 years. They are all screened for sensory acuity, as well as  
2699 descriptive and discrimination ability, and each has a minimum of 6 months' experience.  
2700 The consent to taste foods as part of the employment contract as sensory panellists. The  
2701 panel developed a consensus vocabulary to describe the attributes of the pork patties.  
2702 Where possible reference standards were used to ensure panellists were in agreement  
2703 over the attribute descriptions, where an appropriate reference standard could not be  
2704 found then the panel agreed on a descriptor for the attribute (see final attribute list in  
2705 the results section, Table 4). Five samples were selected for sensory evaluation by

2706 principal component analysis (PCA) based upon the physio-chemical and  
2707 microbiological analysis results (see detail explanation in the section 4.3.3). The  
2708 scoring of samples was carried out in a quiet, air-conditioned room (21°C) under  
2709 artificial daylight lighting, with panelists sitting in separate booths. To ensure that each  
2710 meat sample was served to the panel within 1 h of cooking at same temperature (50°C),  
2711 a bain-marie was used to serve food. Each sample with gold curst (approximately 5 g)  
2712 was coded with three-digit random number and presented to the panellists sequentially  
2713 in a balanced order. The panellists were asked to use warm water to clean the palate  
2714 between samples, and the time delay between samples (post after-effects scoring) was  
2715 30 s. Samples were assessed using unstructured line scales and panellists rated attribute  
2716 based on their perception with 'not' for '0' and 'very' for '100'. Different anchors were  
2717 used for following attributes: overall intensity of colour used '0' for 'pale' and '100'  
2718 for 'intense'; golden crust used '0' for 'none' and '100' for 'lots'; dense used '0' for  
2719 'open structure' and '100' for 'dense structure'; moist used '0' for 'dry' and '100' for  
2720 'moist'; smooth used '0' for 'rough' and '100' for 'smooth'. All samples were scored  
2721 in duplicate on separate days.

#### 2722 **4.2.7 Statistical analysis**

2723 For all analysis other than the sensory evaluation, two factors (lysine and calcium  
2724 lactate), each at three levels (0%, 3%, 6% w/w for lysine and 0%, 1.5%, 3% w/w for  
2725 calcium lactate) were used to evaluate the impact of lysine and calcium lactate on the  
2726 quality of salt reduced pork patties. This resulted in 9 treatments plus one control  
2727 treatment, and each treatment had 3 replicates. SPSS Statistics 27 (IBM, USA) was

2728 used to carry out the statistical analysis. One-way analysis of variance (ANOVA) was  
2729 used to evaluate the significant difference between 10 treatments in physical-chemical  
2730 and microbial analysis at the significant level 0.05, while two-way ANOVA was used  
2731 to examine the effect of factors (lysine, calcium lactate) and the interaction between  
2732 factors at significant level 0.05. Duncan test was selected for multiple comparisons if  
2733 equal variances were assumed, otherwise, Tamhane's T2 test was used. PCA was  
2734 carried out by XLSTAT Version 2022.4.1 (Addinsoft, Paris, France) on the correlation  
2735 matrix from the physicochemical and microbiological results to visualise the main  
2736 differences the different formulations.

2737 For the sensory profiling a partial design was used where 5 treatments were selected  
2738 from the physical-chemical analysis alongside control treatment, all samples assessed  
2739 in two replicates. Two-way analysis of variance (ANOVA) was carried out using  
2740 Senpaq (QI Statistis, Reading, UK) where panelists were treated as random effects and  
2741 samples as fixed effects, main effects were tested against the assessor by sample  
2742 interaction. Multiple pairwise comparisons were carried out using Tukey's HSD at a  
2743 significance level of 0.05.

### 2744 **4.3 Results and discussion**

#### 2745 **4.3.1 Shelf Life**

2746 The effect of calcium lactate and lysine on factors influencing the shelf life of pork  
2747 patties are shown in Table 4.2.

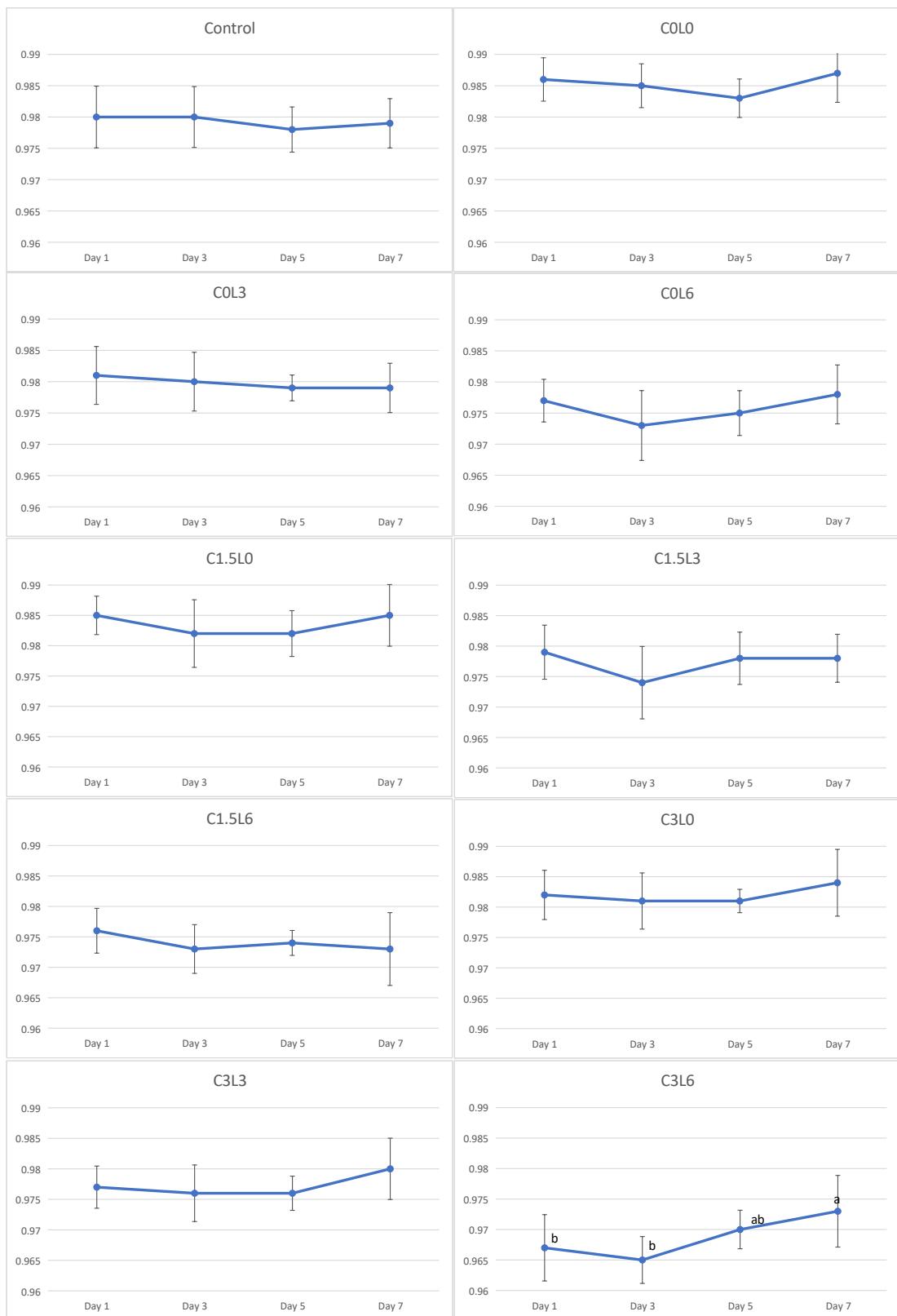
2748 Table 4.2. Analysis related to the shelf life of salt-reduced pork patties formulated with calcium lactate and lysine.

2749 Table 4.2a. The significant difference for each treatment on shelf life of salt-reduced pork patties.

| Treatment | Day 1                      |                        | Day 3                      |                            | Day 5                    |                         | Day 7                      |                            | TVC                     |                            |                         |                         |
|-----------|----------------------------|------------------------|----------------------------|----------------------------|--------------------------|-------------------------|----------------------------|----------------------------|-------------------------|----------------------------|-------------------------|-------------------------|
|           | WA                         | pH                     | TVC                        |                            | WA                       | pH                      | TVC                        |                            | WA                      | pH                         |                         |                         |
|           |                            |                        | (Log cfu g <sup>-1</sup> ) | (Log cfu g <sup>-1</sup> ) |                          |                         | (Log cfu g <sup>-1</sup> ) | (Log cfu g <sup>-1</sup> ) |                         |                            |                         |                         |
| Control   | 0.980±0.005 <sup>cde</sup> | 5.57±0.07 <sup>a</sup> | 5.56±0.28 <sup>ab</sup>    | 0.980±0.005 <sup>bc</sup>  | 5.55±0.10 <sup>ab</sup>  | 6.18±0.07 <sup>ab</sup> | 0.978±0.004 <sup>cd</sup>  | 5.58±0.05 <sup>ab</sup>    | 6.81±0.37 <sup>a</sup>  | 0.979±0.004 <sup>cd</sup>  | 5.64±0.06 <sup>ab</sup> | 8.56±0.28 <sup>a</sup>  |
| COL0      | 0.986±0.003 <sup>a</sup>   | 5.57±0.12 <sup>a</sup> | 5.60±0.24 <sup>ab</sup>    | 0.985±0.004 <sup>a</sup>   | 5.52±0.09 <sup>abc</sup> | 6.38±0.11 <sup>a</sup>  | 0.983±0.003 <sup>a</sup>   | 5.48±0.34 <sup>cd</sup>    | 6.82±0.27 <sup>a</sup>  | 0.987±0.005 <sup>a</sup>   | 5.55±0.14 <sup>bc</sup> | 8.93±0.46 <sup>a</sup>  |
| COL3      | 0.981±0.005 <sup>bcd</sup> | 5.56±0.06 <sup>a</sup> | 5.59±0.23 <sup>ab</sup>    | 0.980±0.005 <sup>bc</sup>  | 5.53±0.09 <sup>abc</sup> | 6.44±0.35 <sup>a</sup>  | 0.979±0.002 <sup>bcd</sup> | 5.58±0.08 <sup>ab</sup>    | 7.08±0.26 <sup>a</sup>  | 0.979±0.004 <sup>cd</sup>  | 5.75±0.21 <sup>a</sup>  | 8.63±0.77 <sup>a</sup>  |
| COL6      | 0.977±0.003 <sup>de</sup>  | 5.59±0.05 <sup>a</sup> | 5.57±0.31 <sup>ab</sup>    | 0.973±0.006 <sup>d</sup>   | 5.53±0.11 <sup>abc</sup> | 6.50±0.44 <sup>a</sup>  | 0.975±0.003 <sup>c</sup>   | 5.56±0.08 <sup>abc</sup>   | 6.97±0.31 <sup>a</sup>  | 0.978±0.005 <sup>de</sup>  | 5.73±0.13 <sup>a</sup>  | 7.83±0.83 <sup>bc</sup> |
| C1.5L0    | 0.985±0.003 <sup>ab</sup>  | 5.57±0.07 <sup>a</sup> | 5.43±0.31 <sup>ab</sup>    | 0.982±0.006 <sup>ab</sup>  | 5.41±0.18 <sup>c</sup>   | 6.38±0.14 <sup>a</sup>  | 0.982±0.004 <sup>ab</sup>  | 5.52±0.10 <sup>abcd</sup>  | 6.83±0.14 <sup>a</sup>  | 0.985±0.005 <sup>ab</sup>  | 5.53±0.17 <sup>bc</sup> | 7.87±0.63 <sup>b</sup>  |
| C1.5L3    | 0.979±0.004 <sup>cde</sup> | 5.59±0.05 <sup>a</sup> | 5.48±0.52 <sup>ab</sup>    | 0.974±0.006 <sup>d</sup>   | 5.55±0.15 <sup>ab</sup>  | 5.89±0.44 <sup>b</sup>  | 0.978±0.004 <sup>cd</sup>  | 5.50±0.12 <sup>bcd</sup>   | 7.06±0.20 <sup>a</sup>  | 0.978±0.004 <sup>de</sup>  | 5.51±0.15 <sup>bc</sup> | 7.46±0.33 <sup>bc</sup> |
| C1.5L6    | 0.976±0.004 <sup>c</sup>   | 5.58±0.09 <sup>a</sup> | 5.70±0.37 <sup>a</sup>     | 0.973±0.004 <sup>d</sup>   | 5.58±0.11 <sup>a</sup>   | 5.95±0.56 <sup>b</sup>  | 0.974±0.002 <sup>c</sup>   | 5.54±0.04 <sup>abc</sup>   | 6.80±0.28 <sup>a</sup>  | 0.973±0.006 <sup>c</sup>   | 5.49±0.09 <sup>c</sup>  | 7.31±0.36 <sup>c</sup>  |
| C3L0      | 0.982±0.004 <sup>bc</sup>  | 5.58±0.04 <sup>a</sup> | 5.30±0.14 <sup>b</sup>     | 0.981±0.005 <sup>abc</sup> | 5.44±0.09 <sup>bc</sup>  | 5.48±0.17 <sup>c</sup>  | 0.981±0.002 <sup>abc</sup> | 5.44±0.15 <sup>d</sup>     | 6.03±0.46 <sup>b</sup>  | 0.984±0.005 <sup>abc</sup> | 5.44±0.06 <sup>c</sup>  | 7.06±0.45 <sup>d</sup>  |
| C3L3      | 0.977±0.003 <sup>de</sup>  | 5.59±0.05 <sup>a</sup> | 5.44±0.18 <sup>ab</sup>    | 0.976±0.005 <sup>cd</sup>  | 5.47±0.15 <sup>abc</sup> | 5.36±0.24 <sup>c</sup>  | 0.976±0.003 <sup>de</sup>  | 5.54±0.12 <sup>abc</sup>   | 5.85±0.52 <sup>bc</sup> | 0.980±0.005 <sup>bcd</sup> | 5.52±0.02 <sup>bc</sup> | 7.21±0.38 <sup>d</sup>  |
| C3L6      | 0.967±0.005 <sup>f</sup>   | 5.59±0.07 <sup>a</sup> | 5.28±0.16 <sup>b</sup>     | 0.965±0.004 <sup>c</sup>   | 5.48±0.15 <sup>abc</sup> | 5.30±0.33 <sup>c</sup>  | 0.970±0.003 <sup>f</sup>   | 5.60±0.06 <sup>a</sup>     | 5.64±0.48 <sup>c</sup>  | 0.973±0.006 <sup>c</sup>   | 5.52±0.07 <sup>bc</sup> | 7.01±0.16 <sup>d</sup>  |

2750 Table 4.2b. Effect of calcium lactate and lysine on shelf life of salt-reduced pork patties.

| Substitutes     | Dosage | Day 1                    |                        | Day 3                  |                          | Day 5                  |                        | Day 7                    |                        | TVC ((Log cfu g <sup>-1</sup> ) |
|-----------------|--------|--------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|--------------------------|------------------------|---------------------------------|
|                 |        | WA                       | pH                     | WA                     | pH                       | WA                     | pH                     | WA                       | pH                     |                                 |
| Calcium lactate | 0      | 0.982±0.005 <sup>a</sup> | 5.57±0.08 <sup>a</sup> | 5.59±0.26 <sup>a</sup> | 0.979±0.007 <sup>a</sup> | 5.53±0.09 <sup>a</sup> | 6.44±0.32 <sup>a</sup> | 0.979±0.005 <sup>a</sup> | 5.54±0.08 <sup>a</sup> | 6.96±0.29 <sup>a</sup>          |
|                 | 1.5    | 0.980±0.005 <sup>a</sup> | 5.58±0.07 <sup>a</sup> | 5.54±0.41 <sup>a</sup> | 0.976±0.006 <sup>b</sup> | 5.52±0.16 <sup>a</sup> | 6.07±0.46 <sup>b</sup> | 0.978±0.005 <sup>a</sup> | 5.52±0.09 <sup>a</sup> | 6.90±0.24 <sup>b</sup>          |
|                 | 3      | 0.975±0.008 <sup>b</sup> | 5.58±0.05 <sup>a</sup> | 5.35±0.17 <sup>b</sup> | 0.974±0.008 <sup>b</sup> | 5.47±0.13 <sup>a</sup> | 5.38±0.26 <sup>c</sup> | 0.975±0.005 <sup>b</sup> | 5.52±0.13 <sup>a</sup> | 5.83±0.50 <sup>b</sup>          |

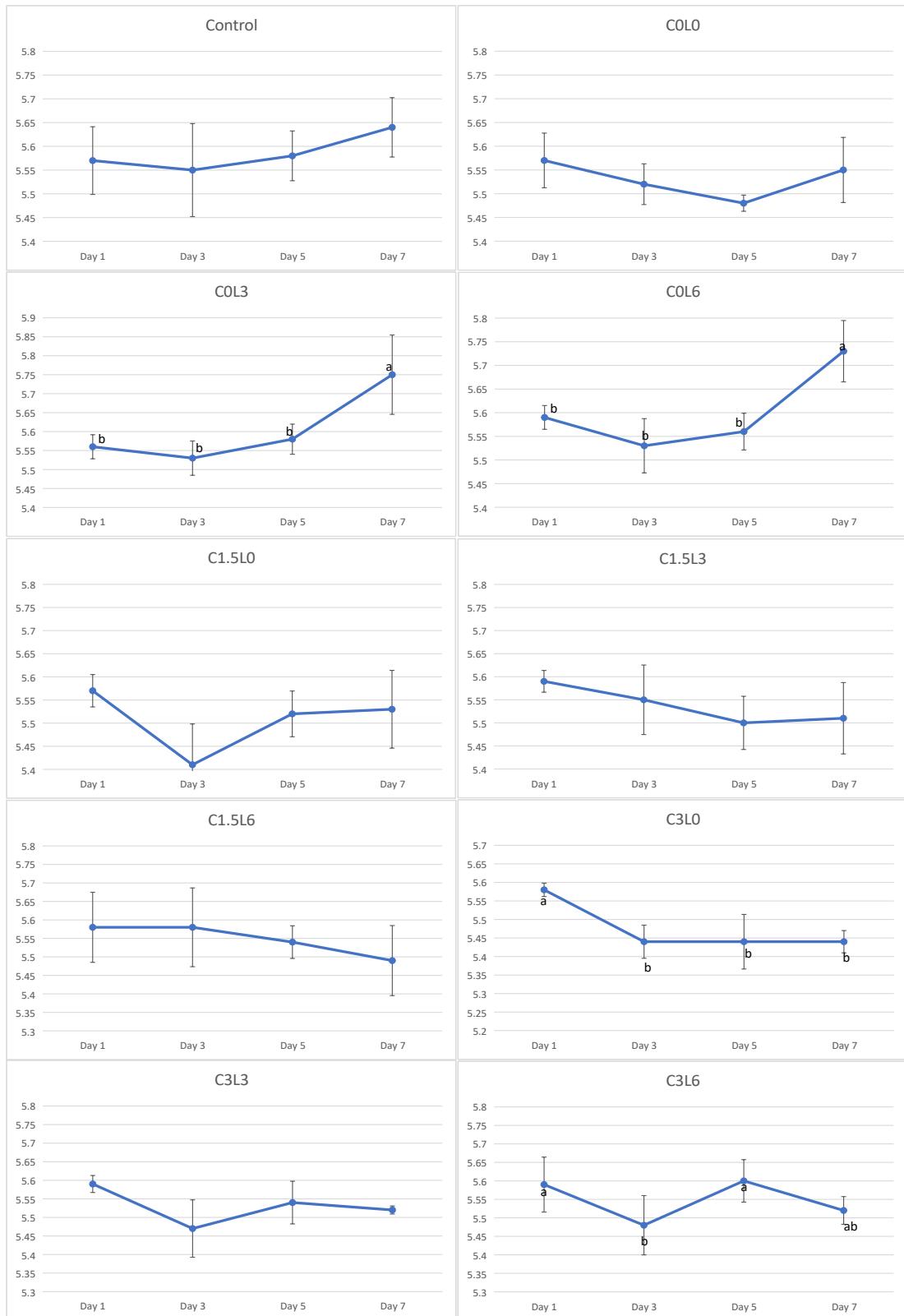

| P (C)  |   | <0.001                   | 0.879                  | 0.014                  | 0.002                    | 0.199                  | <0.001                 | <0.001                   | 0.648                  | <0.001                 | 0.133                    | <0.001                 | <0.001                 |
|--------|---|--------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|
| Lysine | 0 | 0.985±0.004 <sup>a</sup> | 5.57±0.08 <sup>a</sup> | 5.46±0.26 <sup>a</sup> | 0.983±0.005 <sup>a</sup> | 5.46±0.13 <sup>a</sup> | 6.11±0.44 <sup>a</sup> | 0.982±0.003 <sup>a</sup> | 5.47±0.10 <sup>a</sup> | 6.60±0.48 <sup>a</sup> | 0.985±0.005 <sup>a</sup> | 5.50±0.14 <sup>a</sup> | 8.00±0.91 <sup>a</sup> |
|        | 3 | 0.979±0.004 <sup>b</sup> | 5.58±0.05 <sup>a</sup> | 5.51±0.34 <sup>a</sup> | 0.977±0.005 <sup>b</sup> | 5.52±0.14 <sup>a</sup> | 5.90±0.57 <sup>b</sup> | 0.978±0.003 <sup>b</sup> | 5.54±0.10 <sup>b</sup> | 6.67±0.68 <sup>a</sup> | 0.979±0.004 <sup>b</sup> | 5.60±0.18 <sup>b</sup> | 7.77±0.81 <sup>a</sup> |
|        | 6 | 0.973±0.006 <sup>c</sup> | 5.59±0.07 <sup>a</sup> | 5.52±0.33 <sup>a</sup> | 0.970±0.006 <sup>c</sup> | 5.53±0.13 <sup>a</sup> | 5.91±0.66 <sup>b</sup> | 0.973±0.004 <sup>c</sup> | 5.57±0.06 <sup>b</sup> | 6.47±0.70 <sup>a</sup> | 0.975±0.006 <sup>c</sup> | 5.58±0.15 <sup>b</sup> | 7.38±0.66 <sup>b</sup> |
| P (L)  |   | <0.001                   | 0.849                  | 0.687                  | <0.001                   | 0.112                  | 0.103                  | <0.001                   | <0.001                 | 0.124                  | <0.001                   | 0.023                  | <0.001                 |
| P (I)  |   | 0.058                    | 0.938                  | 0.323                  | 0.063                    | 0.307                  | 0.097                  | 0.619                    | 0.062                  | 0.187                  | 0.416                    | 0.095                  | 0.072                  |

2751 \*Control = 2% w/w NaCl; C0L0 = 1% w/w NaCl; C0L3 = 1% w/w NaCl + 3% w/w lysine; C0L6 = 1% w/w NaCl + 6% w/w lysine; C1.5L0 = 1% w/w NaCl + 1.5% w/w calcium lactate; C1.5L3  
 2752 = 1% w/w NaCl + 1.5% w/w calcium lactate + 3% w/w lysine; C1.5L6 = 1% w/w NaCl + 1.5% w/w calcium lactate + 6% w/w lysine; C3L0 = 1% w/w NaCl + 3% w/w calcium lactate; C3L3 =  
 2753 1% w/w NaCl + 3% w/w calcium lactate + 3% w/w lysine; C3L6 = 1% w/w NaCl + 3% w/w calcium lactate + 6% w/w lysine. P(D) = significance level of days; P(C) = significance level for  
 2754 calcium lactate; P(L) = significance level for lysine; P(I) = significance of any interaction between lysine and calcium lactate; WA = water activity; TVC = total viable count. Averages within the  
 2755 same column followed by the same letter in Table 2a for each salt substitute are not significantly different (P > 0.05); Within each sample set statistically significant differences between samples  
 2756 for the primary taste quality are indicated by different letters above the bar (p < 0.05). Values represented as the Mean ± standard deviation (SD), n = 3.

2757 **4.3.1.1 Water activity**

2758 Water activity plays an important role in meat preservation, as it is negatively correlated  
2759 with the growth and metabolic activity of microorganisms. Its measurement has been a  
2760 valuable tool for predicting the microbial stability (and safety) of meat and meat  
2761 products (Fernández-Salguero *et al.*, 1993). The water activity of all pork patties except  
2762 C3L6 was unchanged over the 7 days storage (Figure 4.1,  $p > 0.05$ ). Significant increase  
2763 in water activity was observed when the salt content was reduced by 50% at all storage  
2764 days (Table 2,  $p < 0.05$ ) because the water binding ability was decreased due to the  
2765 reduction of salt (Albarracín *et al.*, 2011). It further confirmed that 50% salt reduction  
2766 would reduce the suppression of bacterial growth and deteriorate the shelf life. Irshad  
2767 *et al.* (2016) found that water activity of fortified restructured buffalo meat loaves with  
2768 1% calcium lactate was significantly lower than their control product. Similar results  
2769 were also achieved in this work. Lysine was also found with the ability to reduce the  
2770 water activity because of its polarity. Campagnol *et al.* (2011) reported that an  
2771 increasing concentration of lysine had no effect on the water activity of 50% salt -  
2772 reduced fermented cooked sausage. This contradicts the current study where lysine was  
2773 found to significantly decrease water activity. While the difference could be explained  
2774 by the concentration difference in lysine. In this work, the higher concentration of lysine  
2775 (3% w/w) was used compared to 0.139 - 0.833% in their work. Although the addition  
2776 of calcium lactate and lysine decreased water activity of patties (Table 2,  $p < 0.05$ ), the  
2777 water activities in all samples were still above 0.96, which is much higher than the  
2778 maximum water activity of 0.85 recommended to inhibit growth of microorganisms in

2779 food products (Houtsma *et al.*, 1993). The there was no significance of any interaction  
2780 between lysine and calcium lactate observed as shown in Table 2 ( $p > 0.05$ ).




2781

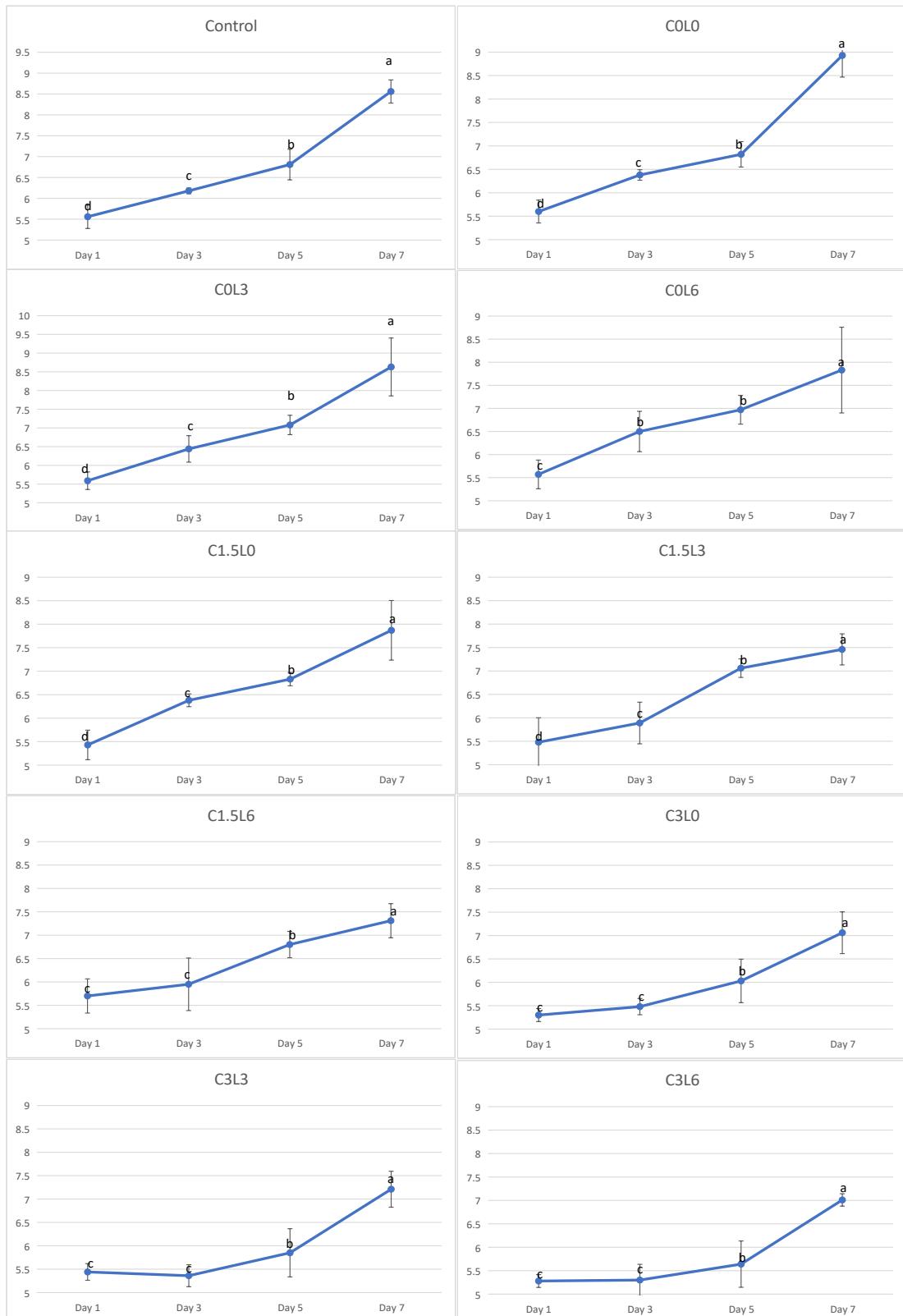
2782 Figure 4.1 The changing of water activity within a week for different treatments. Error  
 2783 bars representing the standard error indicate the variability of the sample mean or  
 2784 estimate. Different letters mean significantly different ( $p < 0.05$ ).

2785    **4.3.1.2 pH before cooking**

2786    A reduction in pH generally improves food safety or shelf life of meat products as it  
2787    reduces or inhibits microbial growth associated with food deterioration or pathogenicity.  
2788    The pH range of fresh meat is around 5.5-6.0 (Calkins and Hodgen, 2007). pH in the  
2789    raw control pork patty and 50% salt reduction patty (C0L0) remained stable during 7  
2790    days of storage (Figure 4.2,  $p > 0.05$ ). However, when lysine only was added to salt-  
2791    reduced pork patty (C0L3, C0L6), the pH increased significantly on day 7 (Figure 4.2,  
2792     $p < 0.05$ ), and the pH increased with the increasing concentration of lysine from day 5  
2793    (Table 2,  $p < 0.05$ ). This result is consistent with Vidal *et al.* (2020) experimental results,  
2794    where they found that adding lysine to low sodium salted meat significantly increased  
2795    pH. This may be because the amino acid side chain of lysine is basic (Watanabe,  
2796    Kadokawa, and Fujimura, 2005). In contrast, when 3% w/w calcium lactate was added  
2797    to salt-reduced pork patty (C3L0), there was a significant drop in pH on the third day  
2798    compared to the first day (Figure 4.2,  $p < 0.05$ ). In addition, the addition of calcium  
2799    lactate did not have an impact on pH of the raw salt-reduced pork patties over the first  
2800    5 days of storage ( $p > 0.05$ ), but it significantly reduced the pH value on day 7 (Table  
2801    2,  $p < 0.05$ ). Lawrence *et al.* (2004) reported that the addition of 2.4% calcium lactate  
2802    to beef muscle led to a significant decrease in pH on day 7 of storage because the  
2803    calcium lactate had thoroughly dispersed through the meat over the seven days. Table  
2804    2 also shown that there was no interaction between lysine and calcium lactate in terms  
2805    of pH ( $p > 0.05$ ).



2806


2807 Figure 4.2 The changing of pH before cooking within a week for different treatments.

2808 Error bars representing the standard error indicate the variability of the sample mean or

2809 estimate. Different letters mean significantly different ( $p < 0.05$ ).

2810    **4.3.1.3 Total viable count**

2811    The total viable count was increased from 5.28 to 8.93 log cfu g<sup>-1</sup> during seven days  
2812    storage (Figure 4.3). No treatment presented a higher TVC than the control patty. At  
2813    day 3, 5, 7, the addition of 3% w/w calcium lactate significantly reduced the TVC  
2814    compared to both 2% salt control and the 50% salt reduced patty only (C0L0) (p < 0.05);  
2815    1.5% w/w calcium lactate treatments reduced TVC but only at day 7 of storage  
2816    compared with 2% salt control (Table 2a, p < 0.05). Such a reduction in TVC can be  
2817    explained through the decrease in pH and water activity caused by calcium lactate. As  
2818    shown in Table 2a, at day 7 the highest concentration of lysine (6% w/w) did inhibit  
2819    the growth of bacteria compared to 2% salt control (p < 0.05). The finding that lysine  
2820    had a smaller inhibiting effect on microbiological growth than calcium lactate can be  
2821    expected because lysine had less of an effect on water activity and did not reduce pH.  
2822    However, Vidal *et al.* (2020) found 3% lysine added into low sodium salted meat  
2823    significantly reduced water activity which did result in low total counts was observed  
2824    for their treatments. However, the water activity of their low sodium salted meat was  
2825    much lower at 0.753, while the water activity in this study was more than 0.97. In  
2826    addition, it should be noted that although lysine alone can guarantee the same shelf life,  
2827    the addition of calcium lactate can significantly increase the shelf life of salt-reduced  
2828    meat products. This is a distinctive advantage for developing reduced-salt meat  
2829    products.



2830

2831 Figure 4.3 The changing of total viable count within a week for different treatments.

2832 Error bars representing the standard error indicate the variability of the sample mean or

2833 estimate. Different letters mean significantly different ( $p < 0.05$ ).

2834 **4.3.2 Physical-chemical analysis**

2835 The effect of calcium lactate and lysine on physical-chemical properties of pork patties

2836 are shown in Table 4.3.

2837 Table 4.3. Effect of calcium lactate and lysine on physical-chemical characteristics in a salt-reduced pork patty.

2838 Table 4.3a. The significant difference for each treatment on physical-chemical characteristics of salt-reduced pork patties.

| Treatment | pH after cooking                       | Moisture                | Yield                    | WHC                        | Hardness                 | Chewiness                 | Springiness             | Cohesiveness            | L*                      | a*                       | b*                       |
|-----------|----------------------------------------|-------------------------|--------------------------|----------------------------|--------------------------|---------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
| Control   | 5.99±0.08 <sup>a</sup>                 | 59.50±7.84 <sup>a</sup> | 74.89±5.75 <sup>a</sup>  | 92.70±1.55 <sup>abc</sup>  | 20.60±2.34 <sup>c</sup>  | 9.35±1.21 <sup>cde</sup>  | 0.80±0.03 <sup>ab</sup> | 0.52±0.04 <sup>b</sup>  | 56.49±4.50 <sup>a</sup> | 4.74±0.74 <sup>bcd</sup> | 17.56±0.91 <sup>a</sup>  |
| C0L0      | 6.00±0.07 <sup>a</sup>                 | 59.69±3.14 <sup>a</sup> | 64.74±6.44 <sup>c</sup>  | 93.67±0.67 <sup>a</sup>    | 16.13±1.03 <sup>d</sup>  | 5.39±0.29 <sup>f</sup>    | 0.73±0.02 <sup>d</sup>  | 0.44±0.03 <sup>c</sup>  | 59.05±3.77 <sup>a</sup> | 4.15±1.16 <sup>de</sup>  | 16.56±1.25 <sup>ab</sup> |
| C0L3      | 5.98±0.04 <sup>a</sup>                 | 61.46±3.17 <sup>a</sup> | 76.24±4.31 <sup>a</sup>  | 92.37±1.11 <sup>abcd</sup> | 21.49±2.72 <sup>c</sup>  | 9.00±1.75 <sup>de</sup>   | 0.81±0.02 <sup>a</sup>  | 0.54±0.03 <sup>b</sup>  | 51.50±3.31 <sup>b</sup> | 5.75±1.20 <sup>ab</sup>  | 17.40±1.28 <sup>a</sup>  |
| C0L6      | 5.88±0.11 <sup>a</sup>                 | 61.00±3.64 <sup>a</sup> | 77.55±5.52 <sup>a</sup>  | 92.21±1.73 <sup>abcd</sup> | 21.44±3.13 <sup>c</sup>  | 8.36±2.08 <sup>e</sup>    | 0.80±0.03 <sup>ab</sup> | 0.51±0.07 <sup>b</sup>  | 48.08±4.06 <sup>b</sup> | 6.66±0.77 <sup>a</sup>   | 16.62±0.80 <sup>ab</sup> |
| C1.5L0    | 5.70±0.19 <sup>b</sup>                 | 60.09±3.69 <sup>a</sup> | 69.61±2.25 <sup>b</sup>  | 93.33±1.48 <sup>ab</sup>   | 20.56±2.23 <sup>c</sup>  | 7.95±1.47 <sup>e</sup>    | 0.76±0.03 <sup>c</sup>  | 0.52±0.04 <sup>b</sup>  | 60.36±6.96 <sup>a</sup> | 3.52±1.53 <sup>e</sup>   | 15.59±0.90 <sup>bc</sup> |
| C1.5L3    | 5.62±0.14 <sup>b</sup><br><sup>c</sup> | 60.48±2.34 <sup>a</sup> | 74.54±6.91 <sup>ab</sup> | 91.49±0.83 <sup>cde</sup>  | 24.45±2.79 <sup>ab</sup> | 10.17±2.28 <sup>bcd</sup> | 0.79±0.02 <sup>ab</sup> | 0.52±0.09 <sup>b</sup>  | 56.58±3.54 <sup>a</sup> | 4.78±1.11 <sup>bcd</sup> | 16.51±1.38 <sup>ab</sup> |
| C1.5L6    | 5.58±0.16 <sup>b</sup><br><sup>c</sup> | 59.68±3.47 <sup>a</sup> | 77.33±4.58 <sup>a</sup>  | 91.11±1.72 <sup>de</sup>   | 25.04±2.58 <sup>a</sup>  | 10.76±0.90 <sup>abc</sup> | 0.78±0.04 <sup>bc</sup> | 0.56±0.06 <sup>ab</sup> | 56.36±3.76 <sup>a</sup> | 3.65±0.51 <sup>de</sup>  | 13.96±1.09 <sup>d</sup>  |
| C3L0      | 5.65±0.18 <sup>b</sup>                 | 58.96±4.21 <sup>a</sup> | 72.71±5.01 <sup>ab</sup> | 91.95±1.09 <sup>bcd</sup>  | 22.61±1.96 <sup>bc</sup> | 9.10±1.67 <sup>de</sup>   | 0.78±0.02 <sup>bc</sup> | 0.52±0.08 <sup>b</sup>  | 60.55±5.60 <sup>a</sup> | 3.97±1.03 <sup>de</sup>  | 15.43±1.19 <sup>bc</sup> |
| C3L3      | 5.60±0.12 <sup>b</sup><br><sup>c</sup> | 60.38±2.77 <sup>a</sup> | 75.13±4.26 <sup>a</sup>  | 91.37±1.95 <sup>cde</sup>  | 26.24±1.87 <sup>a</sup>  | 12.03±2.06 <sup>a</sup>   | 0.80±0.02 <sup>ab</sup> | 0.61±0.04 <sup>a</sup>  | 55.98±4.57 <sup>a</sup> | 5.36±1.27 <sup>bc</sup>  | 16.21±1.53 <sup>ab</sup> |
| C3L6      | 5.50±0.17 <sup>c</sup>                 | 59.14±2.20 <sup>a</sup> | 76.58±4.44 <sup>a</sup>  | 90.44±1.52 <sup>e</sup>    | 26.06±0.78 <sup>a</sup>  | 11.61±1.43 <sup>ab</sup>  | 0.79±0.02 <sup>ab</sup> | 0.55±0.06 <sup>b</sup>  | 56.81±3.41 <sup>a</sup> | 4.31±1.70 <sup>cde</sup> | 14.38±2.82 <sup>cd</sup> |

2839 Table 4.3b. Effect of calcium lactate and lysine on shelf life of salt-reduced pork patties.

| Substitutes     | Dosage | Yield                   | Moisture                | WHC                     | Hardness                | Chewiness               | Springiness              | Cohesiveness           | L                       | a                      | b                       | pH after               |
|-----------------|--------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Calcium lactate | 0      | 72.84±7.89 <sup>a</sup> | 60.72±3.28 <sup>a</sup> | 92.75±1.37 <sup>a</sup> | 19.68±3.49 <sup>a</sup> | 7.58±2.21 <sup>a</sup>  | 0.780±0.044 <sup>a</sup> | 0.50±0.06 <sup>a</sup> | 52.88±5.89 <sup>a</sup> | 5.52±1.47 <sup>a</sup> | 16.86±1.15 <sup>a</sup> | 5.95±0.09 <sup>a</sup> |
|                 | 1.5    | 73.83±5.77 <sup>a</sup> | 60.08±3.11 <sup>a</sup> | 91.97±1.66 <sup>b</sup> | 23.35±3.17 <sup>b</sup> | 9.63±2.01 <sup>b</sup>  | 0.778±0.031 <sup>a</sup> | 0.53±0.07 <sup>b</sup> | 57.77±5.16 <sup>b</sup> | 3.98±1.23 <sup>b</sup> | 15.35±1.54 <sup>b</sup> | 5.64±0.17 <sup>b</sup> |
|                 | 3      | 74.90±4.76 <sup>a</sup> | 59.34±3.07 <sup>a</sup> | 91.22±1.65 <sup>b</sup> | 25.18±2.09 <sup>c</sup> | 11.08±1.99 <sup>c</sup> | 0.795±0.019 <sup>b</sup> | 0.57±0.07 <sup>c</sup> | 58.19±4.49 <sup>b</sup> | 4.62±1.42 <sup>b</sup> | 15.39±2.07 <sup>b</sup> | 5.57±0.16 <sup>b</sup> |
| P (C)           | 0.37   | 0.284                   | 0.001                   | <0.001                  | <0.001                  | 0.031                   | <0.001                   | <0.001                 | <0.001                  | <0.001                 | <0.001                  | <0.001                 |
| Lysine          | 0      | 68.89±5.83 <sup>a</sup> | 59.43±3.57 <sup>a</sup> | 93.02±1.34 <sup>a</sup> | 19.77±3.33 <sup>a</sup> | 7.51±2.04 <sup>a</sup>  | 0.757±0.032 <sup>a</sup> | 0.50±0.06 <sup>a</sup> | 60.48±4.89 <sup>a</sup> | 3.92±1.24 <sup>a</sup> | 15.94±1.15 <sup>a</sup> | 5.78±0.22 <sup>a</sup> |

|       |                         |                         |                         |                         |                         |                          |                        |                         |                        |                         |                        |
|-------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| 3     | 75.30±5.15 <sup>b</sup> | 60.94±2.72 <sup>a</sup> | 91.74±1.40 <sup>b</sup> | 24.06±3.12 <sup>b</sup> | 10.40±2.34 <sup>b</sup> | 0.803±0.019 <sup>b</sup> | 0.56±0.07 <sup>b</sup> | 54.69±4.36 <sup>b</sup> | 5.30±1.22 <sup>b</sup> | 16.71±1.44 <sup>a</sup> | 5.73±0.21 <sup>a</sup> |
| 6     | 77.15±4.70 <sup>b</sup> | 59.94±3.15 <sup>a</sup> | 91.26±1.76 <sup>b</sup> | 24.18±3.06 <sup>b</sup> | 10.24±2.05 <sup>b</sup> | 0.791±0.030 <sup>b</sup> | 0.54±0.06 <sup>b</sup> | 53.75±5.45 <sup>b</sup> | 4.87±1.70 <sup>b</sup> | 14.98±2.10 <sup>b</sup> | 5.65±0.22 <sup>b</sup> |
| P (L) | <0.001                  | 0.293                   | <0.001                  | <0.001                  | <0.001                  | <0.001                   | <0.001                 | <0.001                  | <0.001                 | <0.001                  | 0.008                  |
| P (I) | 0.055                   | 0.915                   | 0.698                   | <0.001                  | 0.649                   | <0.001                   | <0.001                 | <0.001                  | <0.001                 | 0.355                   | 0.946                  |

2840 \*Control = 2% w/w NaCl; C0L0 = 1% w/w NaCl; C0L3 = 1% w/w NaCl + 3% w/w lysine; C0L6 = 1% w/w NaCl + 6% w/w lysine; C1.5L0 = 1% w/w NaCl + 1.5% w/w calcium lactate; C1.5L3  
2841 = 1% w/w NaCl + 1.5% w/w calcium lactate + 3% w/w lysine; C1.5L6 = 1% w/w NaCl + 1.5% w/w calcium lactate + 6% w/w lysine; C3L0 = 1% w/w NaCl + 3% w/w calcium lactate; C3L3 =  
2842 1% w/w NaCl + 3% w/w calcium lactate + 3% w/w lysine; C3L6 = 1% w/w NaCl + 3% w/w calcium lactate + 6% w/w lysine. P(C) = significance level for calcium lactate; P(L) = significance  
2843 level for lysine; P(I) = significance of any interaction between lysine and calcium lactate; WHC = water holding capacity. Averages within the same column followed by the same letters for each  
2844 salt substitute did not show any significant difference (P > 0.05). Values represented as the Mean ± standard deviation (SD), n = 3.

2845    **4.3.2.1 pH after cooking**

2846    The pH of the patties increased by approximately 0.4 unit after cooking (from 5.56 to  
2847    5.60 up to 5.88 to 6.00), except samples with calcium lactate addition. Fletcher, Qiao  
2848    and Smith (2000) also found the similar tendency in chicken breast meat, and they  
2849    reported pH of cooked chicken breast had about 0.3 unit of pH increase compared with  
2850    raw meat. The pH increase could be attributed to the bond breaking of imidazole,  
2851    sulphydryl and hydroxyl groups during cooking (Oz and Celik, 2015). The addition of  
2852    lysine showed a tendency to lower pH, however, this was to a lesser effect than calcium  
2853    lactate. The significant difference was only observed when lysine was combined with  
2854    3% w/w calcium lactate, where 6% w/w lysine resulted in a drop of 0.15 unit of pH  
2855    than 0% lysine addition. In this experiment, the L-lysine used is in the form of Lysine  
2856    HCl (Hydrochloride). During the cooking of the sample, the degree of ionization of  
2857    hydrochloric acid increases due to the increased temperature, released more hydrogen  
2858    ions (H<sup>+</sup>), leaded to a pH dropping. Adding calcium lactate without lysine reduced  
2859    approximately 0.3 unit of the final pH value of cooked pork patties. This was  
2860    unsurprising as calcium lactate is acidic and is used as a pH regulator in the food  
2861    industry. The results of this study were consistent with the experimental results of  
2862    Irshad *et al.* (2016), where the final pH of cooked restructured buffalo meat loaves with  
2863    1.5% added calcium lactate was dropped by 0.32 comparing to control. Calcium lactate  
2864    did not affect the pH of the raw material (up to day 5 shown on Table 4.2), because it  
2865    has a weak dissolving capacity and can dissolve in cold water at very slow speed (Chen  
2866    and Shelef, 1992). Therefore, the hydrogen ion may not have been fully released into

2867 the raw meat. However, the subsequent cooking process led to release of hydrogen ions  
2868 into the meat matrix, thereby lowering the pH. Table 4.3 also showed that there was no  
2869 significance of any interaction between lysine and calcium lactate ( $p > 0.05$ ).

2870 **4.3.2.2 Moisture content**

2871 The moisture content of salt-reduced pork patties ranged from 59.1% to 61.5%.  
2872 Neither calcium lactate nor lysine ( $p > 0.05$ ) had an impact on moisture content of a  
2873 pork patty ( $p > 0.05$ ). Zhang *et al.* (2018) reported that 0.6% lysine added as a salt  
2874 substitute with KCl and histidine to dry-cured loin did not impact final moisture content.  
2875 Similarly, Seyfert *et al.* (2007) reported a similar finding that beef patties treated with  
2876 high concentrations of calcium lactate (2.6%, 4.4%) did not change the final moisture  
2877 content. Table 3 also showed that there was no significance of any interaction between  
2878 lysine and calcium lactate ( $p > 0.05$ ).

2879 **4.3.2.3 Yield**

2880 The yield of the control pork patty was 74.89%, however, this reduced substantially to  
2881 64.74% in the 50% NaCl reduced pork patty when no substitutes were added ( $p < 0.05$ ).  
2882 Ideally, salt reduction leads to lower water content so that the yield was decreased  
2883 (Desmond and Vasilopoulos, 2019). However, the moisture content of control and 50%  
2884 NaCl reduced pork patty was similar ( $P > 0.05$ ). This may be due to cooking losses in  
2885 addition to moisture loss, other substrates from the meat may also be lost in large  
2886 quantities which cause a reduction of yield. Table 4.3 shown that the addition of lysine  
2887 substantially increased cooking yield of the salt-reduced pork patties ( $p < 0.05$ ) and  
2888 could completely compensate the cooking loss caused by salt reduction ( $p > 0.05$ ). This

2889 is in agreement with Guo *et al.* (2020), yield of low-salt ham was increased with the  
2890 level of lysine addition from 0.2% to 0.8%. The reason for this phenomenon is that  
2891 lysine is a positively charged and polar amino acid which can bind with anions to form  
2892 hydrogen bonds, that then retain water within the structure (Betts and Russell, 2003).  
2893 Addition of calcium lactate did not affect the yield ( $p > 0.05$ ). This disagreed with  
2894 Irshad *et al.* (2016) who found that addition of 1.5% calcium lactate eventually resulted  
2895 in a huge loss (12.53%) of yield in fortified restructured buffalo meat loaves, whereas  
2896 1.5% w/w calcium lactate only reduced 5.38%. The difference in results may be  
2897 because phosphate was also used in Irshad's experiments. Calcium competes with  
2898 phosphate for protein binding sites resulting in more water loss from the product  
2899 (Lawrence *et al.*, 2004). Table 4.3 also shown that there was no significance of any  
2900 interaction between lysine and calcium lactate ( $p > 0.05$ ).

#### 2901 **4.3.2.4 Water holding capacity**

2902 Water holding capacity is one of the most important quality attributes of meat products,  
2903 as it influences both cooking yield and juiciness. Table 4.3 indicated that both lysine  
2904 and calcium lactate had decrease effect in WHC ( $p < 0.05$ ). Swift and Berman (1959)  
2905 found that an increased cation concentration lowers water-binding ability. But Zhou, Li  
2906 and Tan (2014) reported a negative relationship between lysine level and water holding  
2907 capacity of pork sausage, i.e., a lower level of lysine addition would result in a higher  
2908 level of WHC. The L-lysine (0.4% - 0.8%) used in Zhou, Li and Tan's experiments  
2909 significantly increased the pH of the pork sausage, whereas the lysine hydrochloride  
2910 used in this experiment did not increase the pH, but rather tended to decrease it.

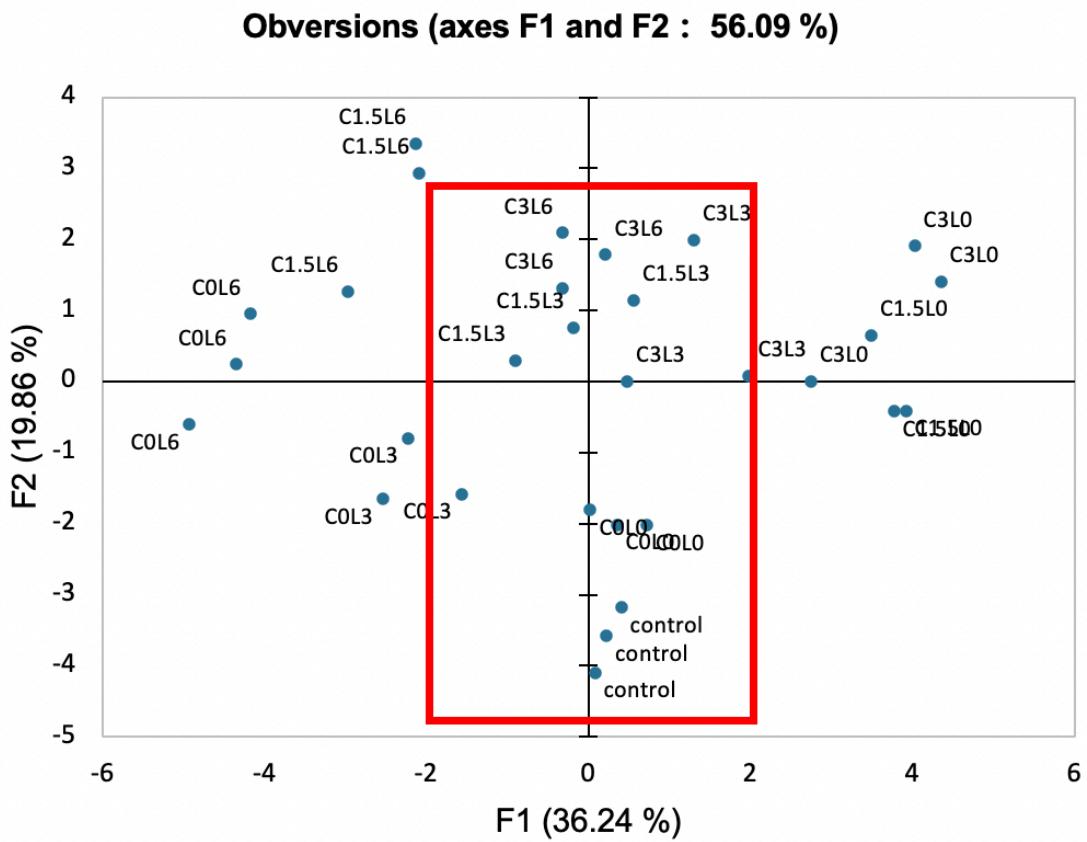
2911 Especially when used in combination with calcium lactate, the pH decreased  
2912 significantly. Because lower pH leads to higher protein-protein interactions, reducing  
2913 the space within and between myofilaments, resulting in a reduced immobilization of  
2914 water (Honikel, 2004), so the WHC was decreased.

2915 **4.3.2.5 Texture**

2916 50% NaCl reduction without any substitutes substantially reduced all textural properties  
2917 (hardness, chewiness springiness and cohesiveness) compared to the full salt control ( $p < 0.05$ ). Both calcium lactate and lysine significantly increased the values of texture  
2918 attributes of salt-reduced pork patty (Table 4.3,  $p < 0.05$ ). However, the addition of  
2919 lysine (at either 3 or 6% w/w) or calcium lactate (at 1.5% or 3% w/w), was able to  
2920 achieve comparable results with 2% control samples in all textural attributes ( $p > 0.05$ ).  
2921 Overall, there was no interaction between calcium lactate and lysine on both hardness  
2922 and chewiness ( $p > 0.05$ ); but interaction between them was found in springiness and  
2923 cohesiveness ( $p < 0.05$ ). Guo *et al.* (2020) showed a similar result using L-lysine (0.2%  
2924 - 0.8%), where they were able to maintain hardness, chewiness and springiness in a 50%  
2925 salt-reduced reconstructed ham. What is more, lysine caused an increase in  
2926 cohesiveness between lysine added samples and the control with an increased  
2927 substitution ratio. It was proposed that lysine could increase the solubility of porcine  
2928 myosin even at the low ionic strength solution (Guo *et al.*, 2015). During ham  
2929 production, myosin protein extractability can be further enhanced by tumbling to ensure  
2930 better textural properties (Maddock, 2014). As a result, better cohesion would be  
2931 expected in lysine added pork patties because it is the main binder in muscles. In

2933 agreement with results, Irshad *et al.* (2016) found that hardness was increased with  
2934 increase in calcium lactate levels (1% - 1.5%) in restructured buffalo meat loaves. The  
2935 presence of calcium promotes the mutual bonding between myosin to form a stronger  
2936 network, which results in an increase of hardness (Jimenez *et al.*, 2012). However, they  
2937 also indicated that chewiness, springiness and cohesiveness were not affected by  
2938 different level of calcium lactate. But Mehta *et al.* (2015) found similar results with this  
2939 work that the texture values of low-fat and low-salt chicken meat patties fortified with  
2940 calcium lactate (1.5% - 2%) were marginally higher compared to that of the control,  
2941 because calcium salts provided an increased gelling effect. This may imply that  
2942 chewiness, springiness and cohesiveness would only be affected at higher levels of  
2943 calcium lactate (above 1.5%). Hence, significant increase in texture attributes would be  
2944 expected when (1.5%, 3% w/w) of calcium lactate was added at 1.5% and 3% in this  
2945 work.

2946 **4.3.2.6 Colour**


2947 Table 4.3 found that lysine did decrease lightness and yellowness in a salt-reduced pork  
2948 patty, but the redness was increased ( $p < 0.05$ ; Supplementary table 12). Campagnol *et*  
2949 *al.* (2011) discovered that using a low concentration of lysine (< 1.25%) as a salt  
2950 substitute with 50% replacement of salt by KCl in fermented cooked sausage had no  
2951 significant difference in colour compared with the control group. But the results showed  
2952 that lysine had an impact on colour at higher concentration is higher (3%, 6%) ( $p <$   
2953 0.05). The main reason for such colour difference is likely to be that as one kinds of  
2954 amino acid, lysine can promote the generation of colour through the Maillard Reaction

2955 (Martins, Jongen and Van Boekel, 2000). As for calcium lactate, it was shown that  
2956 calcium lactate did decrease redness and yellowness in a salt-reduced pork patty, but  
2957 increased lightness ( $p < 0.05$ ). According to the experiments of Kim *et al.* (2006),  
2958 lactate dehydrogenase (LDH) in the meat can convert exogenous lactic acid into  
2959 pyruvate and NADH (nicotinamide adenine dinucleotide), and then NADH can  
2960 effectively promote the reduction of metmyoglobin to myoglobin (oxy- or deoxy-),  
2961 thereby improving the stability of flesh color. Yang *et al.* (2021) reported that the L\*  
2962 values gradually increased in the cooked sausage with calcium lactate addition at 0.2%,  
2963 0.4% and 0.7%, and b\* values gradually declined ( $p < 0.05$ ) which disagreed with the  
2964 findings in this work. As mentioned above, exogenous lactic acid needs to react with a  
2965 series of substances inside the meat, so as to achieve the purpose of improving the  
2966 stability of meat colour. However, the quality of meat products in the experiment is not  
2967 constant. The activity of substances was not clear, which may be the reason why lactic  
2968 acid did not maintain or improve the stability of meat colour in this test. In addition, the  
2969 different concentration of calcium lactate was used, the level used in this work was 1.5%  
2970 and 3%, vs 0.2-0.7% in their work. That may imply that the colour changed by calcium  
2971 lactate will be dependent on the concentration. Significant interaction was found  
2972 between lysine and calcium lactate on the redness of pork patties ( $p = 0.013$ ). As lysine  
2973 and calcium lactate had opposite effects on the redness, this may mean that their  
2974 combination will tend to leave the redness unchanged. This is probably because the  
2975 addition of calcium lactate lowers the pH, which further inhibited the Maillard reaction  
2976 during cooking (Ames, 1998).

2977 **4.4.4 Sensory evaluation**

2978 In order to improve sensory analysis for better focus, all treatments need to be screened.

2979 A PCA based upon the physio-chemical and microbiological analysis result was done.



2980

2981 Figure 4.4. PCA plot for physical-chemical and microbiological results of cooked salt-reduced pork patty. Control

2982 = 2% w/w NaCl; C0L0 = 1% w/w NaCl; C0L3 = 1% w/w NaCl + 3% w/w lysine; C0L6 = 1% w/w NaCl + 6% w/w

2983 lysine; C1.5L0 = 1% w/w NaCl + 1.5% w/w calcium lactate; C1.5L3 = 1% w/w NaCl + 1.5% w/w calcium lactate

2984 + 3% w/w lysine; C1.5L6 = 1% w/w NaCl + 1.5% w/w calcium lactate + 6% w/w lysine; C3L0 = 1% w/w NaCl

2985 + 3% w/w calcium lactate; C3L3 = 1% w/w NaCl + 3% w/w calcium lactate + 3% w/w lysine; C3L6 = 1% w/w NaCl

2986 + 3% w/w calcium lactate + 6% w/w lysine.

2987 It clearly presented from the score plot (Figure 4.4) that C0L0, C0L3, C1.5L3, C3L3

2988 and C3L6 were the samples with overall similarity for all the variables compared to

2989 control. Therefore, these treatments were selected for following sensory evaluation.

2990 The Effects of salt reduction, calcium lactate and lysine on the sensory profile of salt-  
 2991 reduced pork patties are shown in Table 4.4.

2992 Table 4.4. Sensory profile of pork patties varying in levels of salt, calcium lactate and  
 2993 lysine.

| Treatment                   | Control            | C0L0               | C0L3               | C1.5L3             | C3L3               | C3L6               | p      |
|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|
| <b>Appearance</b>           |                    |                    |                    |                    |                    |                    |        |
| Overall intensity of colour | 37.9 <sup>a</sup>  | 28.9 <sup>b</sup>  | 33.7 <sup>ab</sup> | 27.3 <sup>b</sup>  | 30.8 <sup>ab</sup> | 32.6 <sup>ab</sup> | 0.006  |
| Golden crust                | 38.5 <sup>ab</sup> | 24.2 <sup>c</sup>  | 39.5 <sup>ab</sup> | 30.9 <sup>bc</sup> | 42 <sup>ab</sup>   | 48.9 <sup>a</sup>  | <0.001 |
| Rubbery                     | 41.6 <sup>a</sup>  | 19.3 <sup>b</sup>  | 42.1 <sup>a</sup>  | 43.3 <sup>a</sup>  | 48.4 <sup>a</sup>  | 49.3 <sup>a</sup>  | <0.001 |
| Dense                       | 54.7 <sup>b</sup>  | 28.7 <sup>c</sup>  | 61.9 <sup>ab</sup> | 62.3 <sup>ab</sup> | 64.6 <sup>ab</sup> | 67.6 <sup>a</sup>  | <0.001 |
| Moist                       | 45.7 <sup>a</sup>  | 19.8 <sup>b</sup>  | 50.6 <sup>a</sup>  | 44.0 <sup>a</sup>  | 42.8 <sup>a</sup>  | 48.1 <sup>a</sup>  | <0.001 |
| Smooth                      | 51.2 <sup>b</sup>  | 22.1 <sup>c</sup>  | 53.8 <sup>b</sup>  | 55.6 <sup>ab</sup> | 66.3 <sup>a</sup>  | 65.3 <sup>a</sup>  | <0.001 |
| <b>Aroma</b>                |                    |                    |                    |                    |                    |                    |        |
| Boiled meat/pork            | 37.5 <sup>a</sup>  | 37.5 <sup>a</sup>  | 38.7 <sup>a</sup>  | 39.1 <sup>a</sup>  | 38.8 <sup>a</sup>  | 36.4 <sup>a</sup>  | 0.949  |
| Roasted meat/pork           | 23.8 <sup>a</sup>  | 15.3 <sup>a</sup>  | 23.3 <sup>a</sup>  | 19.3 <sup>a</sup>  | 19.8 <sup>a</sup>  | 24.9 <sup>a</sup>  | 0.065  |
| Blood                       | 15.2 <sup>a</sup>  | 20.5 <sup>a</sup>  | 16.3 <sup>a</sup>  | 17.7 <sup>a</sup>  | 17.7 <sup>a</sup>  | 15.4 <sup>a</sup>  | 0.408  |
| Rancid/stale                | 4.0 <sup>a</sup>   | 4.6 <sup>a</sup>   | 7.5 <sup>a</sup>   | 4.5 <sup>a</sup>   | 5.2 <sup>a</sup>   | 4.0 <sup>a</sup>   | 0.644  |
| <b>Taste and flavour</b>    |                    |                    |                    |                    |                    |                    |        |
| Salty                       | 54.9 <sup>ab</sup> | 35.1 <sup>c</sup>  | 44.7 <sup>bc</sup> | 50.0 <sup>ab</sup> | 49.0 <sup>ab</sup> | 56.7 <sup>a</sup>  | <0.001 |
| Umami                       | 34.2 <sup>a</sup>  | 22.1 <sup>b</sup>  | 27.4 <sup>ab</sup> | 30.6 <sup>ab</sup> | 29.0 <sup>ab</sup> | 29.0 <sup>ab</sup> | 0.107  |
| Sour                        | 5.5 <sup>bc</sup>  | 2.9 <sup>c</sup>   | 6.3 <sup>bc</sup>  | 13.1 <sup>ab</sup> | 20.3 <sup>a</sup>  | 20.0 <sup>a</sup>  | <0.001 |
| Sweet                       | 12.3 <sup>a</sup>  | 13.3 <sup>a</sup>  | 17.7 <sup>a</sup>  | 14.4 <sup>a</sup>  | 10.2 <sup>a</sup>  | 11.1 <sup>a</sup>  | 0.083  |
| Bitter                      | 7.1 <sup>b</sup>   | 4.3 <sup>b</sup>   | 6.1 <sup>b</sup>   | 12.4 <sup>b</sup>  | 24.3 <sup>a</sup>  | 27.4 <sup>a</sup>  | <0.001 |
| Metallic                    | 15.6 <sup>a</sup>  | 17.2 <sup>a</sup>  | 14.7 <sup>a</sup>  | 17.0 <sup>a</sup>  | 20.6 <sup>a</sup>  | 21.8 <sup>a</sup>  | 0.205  |
| Boiled meat/pork            | 33.4 <sup>ab</sup> | 32.7 <sup>ab</sup> | 33.3 <sup>ab</sup> | 37.0 <sup>a</sup>  | 28.5 <sup>ab</sup> | 24.8 <sup>b</sup>  | 0.016  |
| Roasted meat/pork           | 22.5 <sup>a</sup>  | 17.2 <sup>a</sup>  | 18.1 <sup>a</sup>  | 16.1 <sup>a</sup>  | 19.5 <sup>a</sup>  | 19.0 <sup>a</sup>  | 0.657  |
| Fatty                       | 14.6 <sup>a</sup>  | 11.0 <sup>a</sup>  | 14.8 <sup>a</sup>  | 14.5 <sup>a</sup>  | 13.2 <sup>a</sup>  | 11.9 <sup>a</sup>  | 0.772  |
| <b>Mouthfeel</b>            |                    |                    |                    |                    |                    |                    |        |

|             |                     |                   |                    |                    |                    |                    |        |
|-------------|---------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------|
| Soft        | 46.5 <sup>a</sup>   | 48.7 <sup>a</sup> | 54.6 <sup>a</sup>  | 51.5 <sup>a</sup>  | 54.1 <sup>a</sup>  | 45.6 <sup>a</sup>  | 0.078  |
| Chewy       | 51.4 <sup>a</sup>   | 53.2 <sup>a</sup> | 41.3 <sup>a</sup>  | 50.8 <sup>a</sup>  | 43.5 <sup>a</sup>  | 47.4 <sup>a</sup>  | 0.094  |
| Moist       | 45.9 <sup>a</sup>   | 22.0 <sup>b</sup> | 50.05 <sup>a</sup> | 44.6 <sup>a</sup>  | 41.4 <sup>a</sup>  | 41.0 <sup>a</sup>  | <0.001 |
| Rubbery     | 35.2 <sup>abc</sup> | 22.5 <sup>c</sup> | 32.0 <sup>bc</sup> | 38.7 <sup>ab</sup> | 44.3 <sup>ab</sup> | 46.6 <sup>a</sup>  | <0.001 |
| Dense       | 54.8 <sup>a</sup>   | 31.2 <sup>b</sup> | 52.6 <sup>a</sup>  | 53.9 <sup>a</sup>  | 57.8 <sup>a</sup>  | 60.6 <sup>a</sup>  | <0.001 |
| Greasy      | 24.4 <sup>a</sup>   | 13.3 <sup>b</sup> | 27.0 <sup>a</sup>  | 18.7 <sup>ab</sup> | 18.6 <sup>ab</sup> | 20.8 <sup>ab</sup> | 0.003  |
| Sticky      | 6.0 <sup>b</sup>    | 17.1 <sup>a</sup> | 6.0 <sup>b</sup>   | 9.8 <sup>ab</sup>  | 6.0 <sup>b</sup>   | 9.1 <sup>ab</sup>  | 0.002  |
| Bitty       | 37.9 <sup>b</sup>   | 57.0 <sup>a</sup> | 28.4 <sup>b</sup>  | 37.5 <sup>b</sup>  | 30.1 <sup>b</sup>  | 29.9 <sup>b</sup>  | <0.001 |
| After taste |                     |                   |                    |                    |                    |                    |        |
| Salty       | 42.7 <sup>ab</sup>  | 27.0 <sup>d</sup> | 35.1 <sup>c</sup>  | 36.3 <sup>bc</sup> | 39.3 <sup>bc</sup> | 47.4 <sup>a</sup>  | <0.001 |
| Metallic    | 14.8 <sup>a</sup>   | 16.4 <sup>a</sup> | 16.1 <sup>a</sup>  | 14.4 <sup>a</sup>  | 18.0 <sup>a</sup>  | 16.7 <sup>a</sup>  | 0.841  |
| Meaty       | 27.5 <sup>a</sup>   | 26.8 <sup>a</sup> | 25.2 <sup>a</sup>  | 25.3 <sup>a</sup>  | 19.8 <sup>a</sup>  | 18.9 <sup>a</sup>  | 0.074  |
| Residue     | 19.7 <sup>b</sup>   | 31.1 <sup>a</sup> | 16.4 <sup>b</sup>  | 22.5 <sup>b</sup>  | 16.3 <sup>b</sup>  | 17.7 <sup>b</sup>  | <0.001 |
| Salivating  | 29.2 <sup>ab</sup>  | 20.5 <sup>b</sup> | 27.3 <sup>ab</sup> | 23.4 <sup>ab</sup> | 29.1 <sup>ab</sup> | 32.4 <sup>a</sup>  | 0.004  |
| Drying      | 23.6 <sup>a</sup>   | 26.9 <sup>a</sup> | 25.8 <sup>a</sup>  | 26.1 <sup>a</sup>  | 29.3 <sup>a</sup>  | 28.5 <sup>a</sup>  | 0.366  |

2994 \*Control = 2% NaCl; C0L0 = 1% NaCl; C0L3 = 1% NaCl + 3% lysine; C1.5L3 = 1% NaCl + 1.5% calcium lactate

2995 + 3% lysine; C3L3 = 1% NaCl + 3% calcium lactate + 3% lysine; C3L6 + 3% calcium lactate + 6% lysine. References:

2996 boiled meat/pork was boiled pork belly; roasted meat/pork was roasted pork belly; blood/metallic was iron sulfate;

2997 rancid/stale was butyric acid; salty was sodium chloride solution. Averages within the same row followed by the

2998 same letters for each salt substitute are not significantly different ( $p > 0.05$ ). Values represented as the Mean  $\pm$

2999 standard deviation (SD),  $n = 3$ .

3000 The colour of fresh red meat is crucial in meat marketing as it is the first quality attribute

3001 perceived by the consumer and is considered as an indicator of freshness, shelf life and

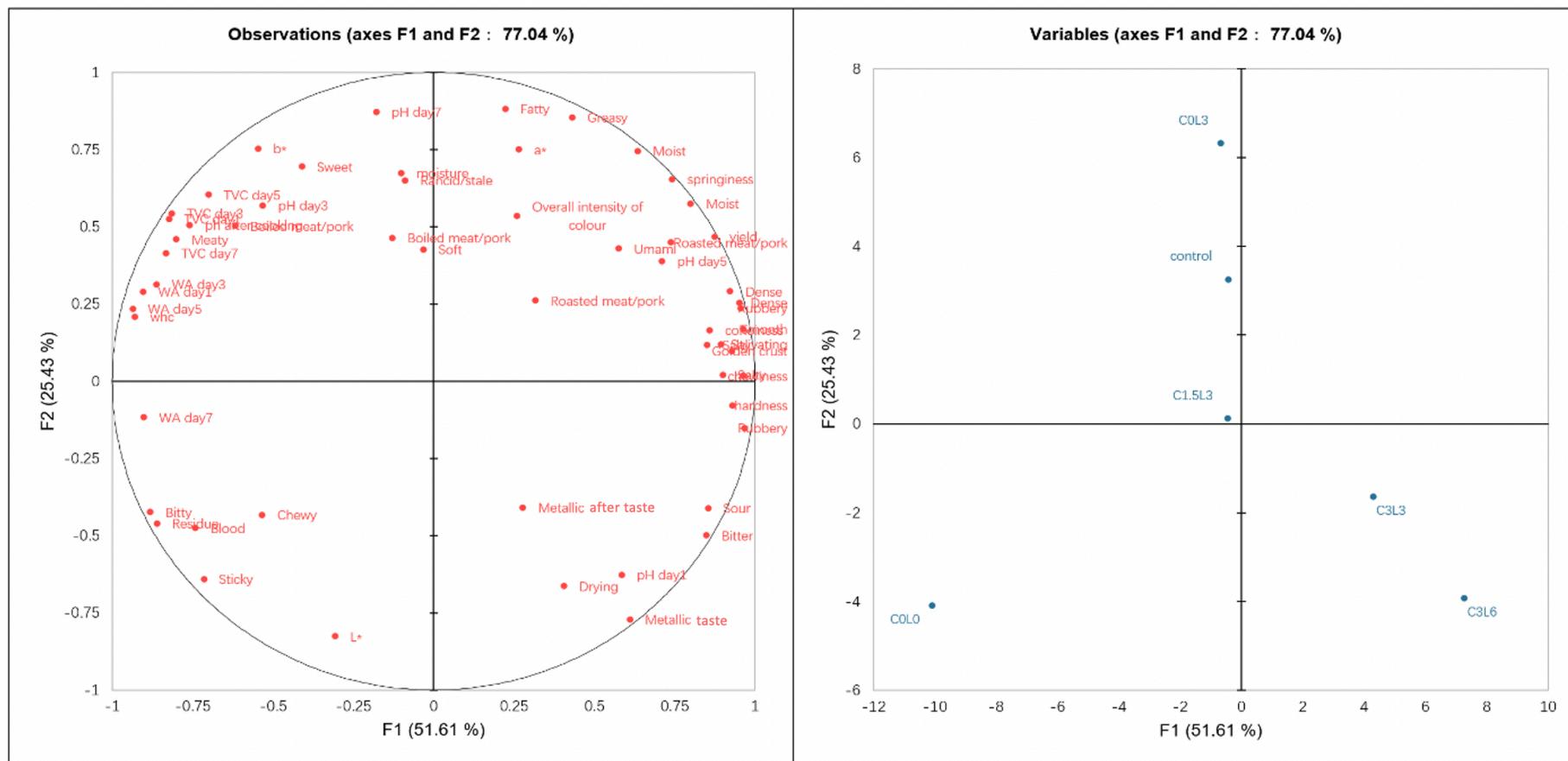
3002 eating quality. In terms of appearance, the full salt control had the highest overall

3003 intensity of surface colour; while 3% lysine alone (C0L3), or with 3% lysine combined

3004 with 3% or 6% (C3L3, C3L6) achieved similar colour intensity with the control ( $p >$

3005 0.05). This was consistent with colour results ( $a^*$  value) measured by instruments

3006 (Table 4.3). Considering the golden crust, all of the salt reduced patties containing  
3007 lysine or calcium lactate were able to maintain the same golden crust as the control ( $p >$   
3008 0.05), whereas the salt reduced patty without any salt substitutes had a significantly less  
3009 golden crust ( $p < 0.05$ ). This may be related to the Maillard reaction. This experiment  
3010 found that lysine and calcium lactate lowered the water activity of salt-reduced pork  
3011 patty, and that reduction from high water activity resulted in increased reaction rates  
3012 (Van Boekel, 2001).


3013 Perception of texture was assessed through both visual appearance (including rubbery,  
3014 dense, moist and smooth) and mouthfeel. The salt reduced pork patty without  
3015 substitutions was significantly less smooth in appearance ( $p < 0.05$ ); less rubbery, dense  
3016 and moist than 2% salt control both in visually and in the mouthfeel ( $p < 0.05$ ); as well  
3017 as less greasy, stickier and bittier in mouthfeel ( $p < 0.5$ ). The substituted formulations  
3018 had comparable values with 2% control samples in any of the four visual texture  
3019 attributes ( $p > 0.05$ ), although the high calcium lactate formulations had significantly  
3020 higher value in dense appearance (C3L6) and smooth (C3L3 and C3L6) than the full  
3021 salt control ( $p < 0.05$ ). Similarly, none of the substituted formulations were significantly  
3022 lower than the control in mouthfeel texture ( $p < 0.05$ ). Although the instrument analysis  
3023 in colour and texture showed difference in specific texture attributes, the mouthfeel  
3024 texture changes were not reflected in the sensory analysis.

3025 There were no differences between any treatments in the aroma of the patties ( $p > 0.05$ ),  
3026 inferring that salt reduction did not affect aroma. The most noteworthy sensory result,  
3027 saltiness, is in line with previous findings with aqueous solutions (Chapter 3). The

3028 saltiness of 50% salt-reduced pork patty was significantly reduced compared to the full  
3029 salt control ( $p < 0.05$ ), however lysine effectively mitigated the loss of saltiness ( $p >$   
3030 0.05). The salty taste of salt reduced patties substituted with lysine were same with that  
3031 of the full salt control, although patties with high levels of lysine and calcium lactate  
3032 (C3L6) was reported significantly saltier than the ones with lower level of lysine  
3033 without calcium lactate (C0L3) ( $p < 0.05$ ). The source of the salty taste is because  
3034 calcium lactate is associated with saltiness.  $\text{Ca}^{2+}$  the divalent metal cations are mainly  
3035 perceived with saltiness and bitterness, but calcium lactate also has a considerable sour  
3036 component (Lawless *et al.*, 2003). However, the mechanism for lysine eliciting saltiness  
3037 is unknown, and follow-up experiments are needed to explore, for example, whether  
3038 the salty taste signal is also generated through ENaC. The umami taste of 50% salt-  
3039 reduced pork patty was significantly reduced compared to the full salt control ( $p < 0.05$ ),  
3040 and again all samples with the substituted formulations were not significantly different  
3041 than the full salt control in umami taste. This may be because that umami is a less  
3042 recognized taste in Western countries and consumers may confuse it with the perceived  
3043 saltiness (Cecchini *et al.*, 2019). None of samples differed in sweetness ( $p > 0.05$ ). One  
3044 obvious disadvantage, however, is a significantly higher bitter and sour taste observed  
3045 in samples with calcium lactate at the higher concentration of 3% w/w ( $p < 0.05$ ). The  
3046 chloride ions existing in the patty's matrix could explain the high bitterness in the  
3047 sample, as the binding of calcium ion and  $\text{Cl}^-$  could generate stronger bitterness  
3048 sensation compared to calcium lactate (Lawless *et al.*, 2003). High level (3%) of  
3049 calcium lactate addition in the meat would create more opportunity for calcium ions to

3050 bind chloride ions. As a result, a higher bitterness would be expected in samples with  
3051 3% calcium lactate addition. The increased sourness was expected due to the increased  
3052 H<sup>+</sup> in the matrix (a decrease in pH) due to calcium lactate addition, while similar results  
3053 were reported by Lawrence *et al.* (2004), and Devatkal and Mendiratta (2001). None of  
3054 the products differed significantly from the control in metallic taste, boiled or roasted  
3055 meat flavour and fatty flavour.

3056 For after effect, almost all treatments showed similar results to the full salt control (p >  
3057 0.05), except that the salt-reduced pork patty with no substitutions or only lysine was  
3058 significantly lower in salty aftertaste (p < 0.05). The salt-reduced pork patty with no  
3059 substitutions also led to a significantly higher residue in the mouth than the control and  
3060 all other treatments. This is probably due to its lower off-taste (sour and bitter) and  
3061 smoother mouthfeel (open structure). In general, all treatments were in line with the  
3062 requirements of the full salt control patty and did not substantially change the original  
3063 sensory properties of the pork patty, except that the highest concentration of calcium  
3064 lactate brought tastes normally perceived as unpleasant (bitter and sour).



3065  
3066 Figure 4.5. Principal component analysis of pork patties varying in physical-chemical characteristics, shelf-life and sensory evaluation. Control = 2% w/w NaCl; C0L0 = 1% w/w NaCl; C0L3 =  
3067 1% w/w NaCl + 3% w/w lysine; C0L6 = 1% w/w NaCl + 6% w/w lysine; C1.5L0 = 1% w/w NaCl + 1.5% w/w calcium lactate; C1.5L3 = 1% w/w NaCl + 1.5% w/w calcium lactate + 3% w/w  
3068 lysine; C1.5L6 = 1% w/w NaCl + 1.5% w/w calcium lactate + 6% w/w lysine; C3L0 = 1% w/w NaCl + 3% w/w calcium lactate; C3L3 = 1% w/w NaCl + 3% w/w calcium lactate + 3% w/w  
3069 lysine; C3L6 = 1% w/w NaCl + 3% w/w calcium lactate + 6% w/w lysine. WA = water activity; TVC = total viable count.

3070 PCA was performed to offer visual compare the physical-chemical characteristics,  
3071 shelf-life and sensory quality for the 10 samples (Figure 4.5), and to observe the  
3072 correlations between lysine, calcium lactate and physiochemical data, sensory data. The  
3073 PCA results clearly showed that the salt-reduced pork with 3% lysine with/without 1.5%  
3074 calcium lactate had similar food quality with control. Salt-reduced pork patty  
3075 containing high concentration of calcium lactate (3% w/w) was furthest away from  
3076 control. They had higher sourness and bitterness, and it was negatively correlated with  
3077 most of the attributes including meaty flavour, WHC, etc. In contrast, reduced-salt pork  
3078 patty containing low concentration of lysine (3% w/w) had similar food quality to the  
3079 control. They had higher moisture, meaty flavour, yield, etc., and it was positively  
3080 correlated with most of the attributes including redness, softness, etc. It was worth  
3081 noting that the higher the concentration of lysine combined with calcium lactate in the  
3082 salt-reduced pork patty, the worse the food quality compared to the control. In addition,  
3083 PCA also clearly reflected the correlation between physical-chemical properties and  
3084 sensory indicators. For example, salt-reduced pork patties with high moisture content  
3085 were positively associated with juicy and negatively associated with drying and bitty.  
3086 This means that the salt-reduced pork patty needs to have an increased moisture content  
3087 in order to be perceived as juicier. PCA also reflected a negative correlation between  
3088 metallic taste and TVC, which means that the salt-reduced pork patty with higher shelf-  
3089 life had more metallic taste, due to the addition of high concentration of calcium lactate.

#### 3090 **4.4 Conclusion**

3091 In this study, utilization of calcium lactate and lysine influenced colour, texture and  
3092 water activity of pork patty with 50% salt reduction. Although lysine increased the pH  
3093 value of the raw salt-reduced pork patty, the elevating effect could be cancelled out by  
3094 addition of calcium lactate. Hence comparable yield could be achieved for patties with  
3095 50% salt reduction by combining lysine and calcium lactate and 2% full salt control.  
3096 The addition of calcium lactate decreased water activity of the salt-reduced pork patty,  
3097 which inhibited the growth of bacteria. According to the sensory result, lysine and  
3098 calcium lactate could effectively compensate the saltiness loss in a salt-reduced pork  
3099 patty. Therefore, it is recommended that a 50% salt reduced pork patty can be  
3100 successfully processed with 3% lysine and 1.5% calcium lactate, although costs need  
3101 to be considered. This combination is the optimal choice for the meat industry based on  
3102 physical-chemical characteristics, shelf-life and sensory profile. In addition, it should  
3103 be noted that although lysine alone can guarantee the same shelf life, the addition of  
3104 calcium lactate can significantly increase the shelf life of salt-reduced meat products.  
3105 This is a substantial advantage for reduced-salt meat products. However, high level of  
3106 calcium lactate addition significantly increased the bitterness, and balancing the shelf  
3107 life and bitter taste should be carefully considered.

### 3108 **Acknowledgement**

3109 The sensory panelists are thanked for attending the sensory evaluation sessions.  
3110 Compusense are thanked for their provision of Compusense cloud software under the  
3111 academic consortium agreement. Christopher Bussey and Olivia Roman at University  
3112 of Reading are thanked for their technical support.

3113 **References**

3114 Aaron, K. and Sanders, P. (2013). Role of Dietary Salt and Potassium Intake in  
3115 Cardiovascular Health and Disease: A Review of the Evidence. Mayo Clinic  
3116 Proceedings, 88(9), pp.987-995.

3117 Aaslyng, M., Bejerholm, C., Erbjer, P., Bertram, H. and Andersen, H., 2003. Cooking  
3118 loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food  
3119 Quality and Preference, 14(4), pp.277-288.

3120 Albarracín, W., Sánchez, I.C., Grau, R. and Barat, J.M., 2011. Salt in food processing;  
3121 usage and reduction: a review. International Journal of Food Science & Technology,  
3122 46(7), pp.1329-1336.

3123 Ames, J.M., 1998. Applications of the Maillard reaction in the food industry. Food  
3124 Chemistry, 62(4), pp.431-439.

3125 Ashford, R., Jones, K. and Collins, D., 2020. National Diet and Nutrition Survey:  
3126 Assessment of salt intake from urinary sodium in adults (aged 19 to 64 years) in  
3127 England, 2018 to 2019. GOV. UK, pp.133-155.

3128 Betts, M.J. and Russell, R.B., 2003. Amino acid properties and consequences of  
3129 substitutions. Bioinformatics for geneticists, 317, p.289.

3130 Blemings, K. and Norlin J. Benevenga, N., 2007. Unique Aspects of Lysine Nutrition  
3131 and Metabolism. American Society for Nutrition, 137(6), pp.1610S-1615S.

3132 Campagnol, P.C.B., dos Santos, B.A., Morgano, M.A., Terra, N.N. and Pollonio,  
3133 M.A.R., 2011. Application of lysine, taurine, disodium inosinate and disodium

3134 guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. Meat  
3135 science, 87(3), pp.239-243.

3136 Campagnol, P., Dos Santos, B., Terra, N. and Pollonio, M., 2012. Lysine, disodium  
3137 guanylate and disodium inosinate as flavor enhancers in low-sodium fermented  
3138 sausages. Meat Science, 91(3), pp.334-338.

3139 Calkins, C.R. and Hodgen, J.M., 2007. A fresh look at meat flavor. Meat science, 77(1),  
3140 pp.63-80.

3141 Cecchini, M. P., Knaapila, A., Hoffmann, E., Boschi, F., Hummel, T., and Iannilli, E.,  
3142 2019. A cross-cultural survey of umami familiarity in European countries. Food Quality  
3143 and Preference, 74, 172-178.

3144 Chen, N. and Shelef, L., 1992. Relationship Between Water Activity, Salts of Lactic  
3145 Acid, and Growth of *Listeria monocytogenes* in a Meat Model System. Journal of Food  
3146 Protection, 55(8), pp.574-578.

3147 De Marchi, M., Manuelian, C., Ton, S., Manfrin, D., Meneghesso, M., Cassandro, M.  
3148 and Penasa, M., 2017. Prediction of sodium content in commercial processed meat  
3149 products using near infrared spectroscopy. Meat Science, 125, pp.61-65.

3150 Desmond, E. and Vasilopoulos, C., 2019. Reducing salt in meat and poultry products.  
3151 In Reducing salt in foods (pp. 159-183). Woodhead Publishing.

3152 Devatkal, S. and Mendiratta, S., 2001. Use of calcium lactate with salt-phosphate and  
3153 alginate-calcium gels in restructured pork rolls. Meat Science, 58(4), pp.371-379.

3154 Del Pulgar, J. S., Gázquez, A., and Ruiz-Carrascal, J., 2012. Physico-chemical, textural  
3155 and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum,  
3156 cooking temperature, and cooking time. *Meat science*, 90(3), 828-835.

3157 Dos Santos, B., Campagnol, P., Morgano, M. and Pollonio, M., 2014. Monosodium  
3158 glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the  
3159 sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl  
3160 with KCl. *Meat Science*, 96(1), pp.509-513.

3161 Dos Santos Alves, L., Lorenzo, J., Gonçalves, C., Dos Santos, B., Heck, R., Cichoski,  
3162 A. and Campagnol, P., 2017. Impact of lysine and liquid smoke as flavor enhancers on  
3163 the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl.  
3164 *Meat Science*, 123, pp.50-56.

3165 Doyle, M. and Glass, K., 2010. Sodium Reduction and Its Effect on Food Safety, Food  
3166 Quality, and Human Health. *Comprehensive Reviews in Food Science and Food Safety*,  
3167 9(1), pp.44-56.

3168 Emorine, M., Septier, C., Thomas-Danguin, T. and Salles, C., 2014. Ham particle size  
3169 influences saltiness perception in flans. *Journal of food science*, 79(4), pp.S693-S696.

3170 Fauza, G., Muhammad, D.R.A., Affandi, D.R. and Ariviani, S., 2021, July. Sensory  
3171 profile analysis of steamed brownies using Quantitative Descriptive Analysis (QDA).  
3172 In *IOP Conference Series: Earth and Environmental Science* (Vol. 828, No. 1, p.  
3173 012058). IOP Publishing.

3174 Fellendorf, S., O'Sullivan, M.G. and Kerry, J.P., 2016. Impact of ingredient replacers  
3175 on the physicochemical properties and sensory quality of reduced salt and fat black  
3176 puddings. *Meat Science*, 113, pp.17-25.

3177 Fernández-Salguero J, Gómez R, Carmona MA. Water activity in selected high-  
3178 moisture foods. *J Food Compost Anal.* 1993; 6:364–369.

3179 Fletcher, D.L., Qiao, M. and Smith, D.P., 2000. The relationship of raw broiler breast  
3180 meat color and pH to cooked meat color and pH. *Poultry science*, 79(5), pp.784-788.

3181 Guo, X., Tao, S., Pan, J., Lin, X., Ji, C., Liang, H., Dong, X. and Li, S., 2020. Effects  
3182 of L-Lysine on the physiochemical properties and sensory characteristics of salt-  
3183 reduced reconstructed ham. *Meat science*, 166, p.108133.

3184 He, F. and MacGregor, G., 2010. Reducing Population Salt Intake Worldwide: From  
3185 Evidence to Implementation. *Progress in Cardiovascular Diseases*, 52(5), pp.363-382.

3186 Honikel, K.O., 2004. Water-holding capacity of meat. Muscle development of livestock  
3187 animals: Physiology, genetics and meat quality, pp.389-400.

3188 Houtsma, P. C., De Wit, J. C., and Rombouts, F. M., 1993. Minimum inhibitory  
3189 concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring  
3190 in meat products. *International Journal of Food Microbiology*, 20(4), 247-257.

3191 Inguglia, E., Zhang, Z., Tiwari, B., Kerry, J. and Burgess, C., 2017. Salt reduction  
3192 strategies in processed meat products – A review. *Trends in Food Science &*  
3193 *Technology*, 59, pp.70-78.

3194 Irshad, A., Sharma, B., Ahmed, S., Talukder, S., Malav, O. and Kumar, A., 2016. Effect  
3195 of incorporation of calcium lactate on physico-chemical, textural, and sensory  
3196 properties of restructured buffalo meat loaves. *Veterinary World*, 9(2), pp.151-159.

3197 Jimenez-Colmenero F, Herrero A, Cofrades S, Capillas C.R. Meat and functional foods.  
3198 Handbook of Meat and Meat Processing. 2nd ed. Boca Raton, London, New York: CRC  
3199 Press, Taylor & Francis Group; 2012. pp. 225–242.

3200 Kilcast, D. and Den Ridder, C., 2007. Sensory issues in reducing salt in food products.  
3201 In Reducing salt in foods (pp. 201-220). Woodhead publishing.

3202 Kim, Y. H., Hunt, M. C., Mancini, R. A., Seyfert, M., Loughin, T. M., Kropf, D. H.,  
3203 and Smith, J. S., 2006. Mechanism for lactate-color stabilization in injection-enhanced  
3204 beef. *Journal of agricultural and food chemistry*, 54(20), 7856-7862.

3205 Kountouras, J., Zavos, C. and Chatzopoulos, D. (2004). Salt intake and Helicobacter  
3206 pylori infection. *Journal of Hypertension*, 22(12), p.2397.

3207 Lawrence, T.E., Dikeman, M.E., Hunt, M.C., Kastner, C.L. and Johnson, D.E., 2003.  
3208 Staged injection marination with calcium lactate, phosphate and salt may improve beef  
3209 water-binding ability and palatability traits. *Meat Science*, 65(3), pp.967-972.

3210 Lawrence, T.E., Dikeman, M.E., Hunt, M.C., Kastner, C.L. and Johnson, D.E., 2004.  
3211 Effects of enhancing beef longissimus with phosphate plus salt, or calcium lactate plus  
3212 non-phosphate water binders plus rosemary extract. *Meat Science*, 67(1), pp.129-137.

3213 Lu, F., Kuhnle, G.K. and Cheng, Q., 2017. Vegetable oil as fat replacer inhibits  
3214 formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat  
3215 pork patties. *Food Control*, 81, pp.113-125.

3216 Maddock, R., 2014. Meats–Beef and pork based. Food processing: Principles and  
3217 applications, 535-548.

3218 Martins, S.I., Jongen, W.M. and Van Boekel, M.A., 2000. A review of Maillard reaction  
3219 in food and implications to kinetic modelling. Trends in food science & technology,  
3220 11(9-10), pp.364-373.

3221 Mehta, N., Sharma, B.D., Kumar, R.R., Kumar, P., Malav, O.P. and Verma, A.K., 2015.  
3222 Fortification of low-fat chicken meat patties with calcium, vitamin E and vitamin C.  
3223 Nutrition & Food Science.

3224 Ojha, K.S., Keenan, D.F., Bright, A., Kerry, J.P. and Tiwari, B.K., 2016. Ultrasound  
3225 assisted diffusion of sodium salt replacer and effect on physicochemical properties of  
3226 pork meat. International journal of food science & technology, 51(1), pp.37-45.

3227 Okuskhanova, E.; Assenova, B.; Rebezov, M.; Yessimbekov, Z.; Kulushayeva, B.;  
3228 Zinina, O.; Stuart, M., 2016. Mineral composition of deer meat pate. Pak. J. Nutr., 15,  
3229 217–222

3230 Oz, F. and Celik, T., 2015. Proximate composition, color and nutritional profile of raw  
3231 and cooked goose meat with different methods. Journal of food processing and  
3232 preservation, 39(6), pp.2442-2454.

3233 Paulsen, M.T., Nys, A., Kvarberg, R. and Hersleth, M., 2014. Effects of NaCl  
3234 substitution on the sensory properties of sausages: Temporal aspects. Meat Science,  
3235 98(2), pp.164-170.

3236 Powles, J., Fahimi, S., Micha, R., Khatibzadeh, S., Shi, P., Ezzati, M., Engell, R., Lim,  
3237 S., Danaei, G. and Mozaffarian, D. (2013). Global, regional and national sodium intakes

3238 in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary  
3239 surveys worldwide. *BMJ Open*, 3(12), p.e003733.

3240 Public Health England. Salt Reduction Targets for 2024; Public Health England:  
3241 London, UK, 2020

3242 Rios-Mera, J.D., Selani, M.M., Patinho, I., Saldaña, E. and Contreras-Castillo, C.J.,  
3243 2021. Modification of NaCl structure as a sodium reduction strategy in meat products:  
3244 An overview. *Meat Science*, 174, p.108417.

3245 Rucker, A.J., Rudemiller, N.P. and Crowley, S.D., 2018. Salt, hypertension, and  
3246 immunity. *Annual review of physiology*, 80, p.283.

3247 Ruusunen, M. and Puolanne, E., 2005. Reducing sodium intake from meat products.  
3248 *Meat Science*, 70(3), pp.531-541.

3249 Rybicka, I., Gonçalves, A., Oliveira, H., Marques, A. and Nunes, M.L., 2022. Salt  
3250 reduction in seafood—A review. *Food Control*, p.108809.

3251 Seyfert, M., Hunt, M., Lundesjö Ahnström, M. and Johnson, D., 2007. Efficacy of lactic  
3252 acid salts and sodium acetate on ground beef colour stability and metmyoglobin-  
3253 reducing activity. *Meat Science*, 75(1), pp.134-142.

3254 Shelef, L.A. and Potluri, V., 1995. Behaviour of foodborne pathogens in cooked liver  
3255 sausage containing lactates. *Food Microbiology*, 12, pp.221-227.

3256 Swift C E, Berman M D. Factors affecting the water retention of beef. 1. Variations in  
3257 composition and properties among 8 muscles[J]. *Food Technology*, 1959, 13(7): 365-  
3258 370.

3259 Tamm, A., Bolumar, T., Bajovic, B. and Toepfl, S. (2016). Salt (NaCl) reduction in  
3260 cooked ham by a combined approach of high pressure treatment and the salt replacer  
3261 KCl. *Innovative Food Science & Emerging Technologies*, 36, pp.294-302.

3262 Tiyasatkulkovit, W., Aksornthong, S., Adulyariththikul, P., Upanan, P., Wongdee, K.,  
3263 Aeimlapa, R., Teerapornpuntakit, J., Rojviriya, C., Panupinthu, N. and  
3264 Charoenphandhu, N., 2021. Excessive salt consumption causes systemic calcium  
3265 mishandling and worsens microarchitecture and strength of long bones in rats.  
3266 *Scientific reports*, 11(1), pp.1-15.

3267 Van Boekel, M.A.J.S., 2001. Kinetic aspects of the Maillard reaction: a critical review.  
3268 *Food/Nahrung*, 45(3), pp.150-159.

3269 Van Der Klaauw, N. and Smith, D., 1995. Taste quality profiles for fifteen organic and  
3270 inorganic salts. *Physiology & Behavior*, 58(2), pp.295-306.

3271 Vidal, V.A., Santana, J.B., Paglarini, C.S., da Silva, M.A., Freitas, M.Q., Esmerino,  
3272 E.A., Cruz, A.G. and Pollonio, M.A., 2020. Adding lysine and yeast extract improves  
3273 sensory properties of low sodium salted meat. *Meat Science*, 159, p.107911.

3274 Watanabe, Y., Kadowaki, M. and Fujimura, S., 2005. Regulation of Taste-active  
3275 Components of Meat by Dietary Lysine Levels. In 51th International Congress of Meat  
3276 Science and Technology (pp. 444-447).

3277 Weaver, R.A. and Shelef, L.A., 1993. Antilisterial activity of sodium, potassium or  
3278 calcium lactate in pork liver sausage. *Journal of Food Safety*, 13(2), pp.133-146.

3279 World Health Organisation, 2020. Salt Reduction, Fact Sheets. Retrieved 3 November  
3280 2020 from <https://www.who.int/news-room/fact-sheets/detail/salt-reduction>

3281 Yang, X., Sebranek, J.G., Luo, X., Zhang, W., Zhang, M., Xu, B., Zhang, Y. and Liang,  
3282 R., 2021. Effects of calcium salts on the physicochemical quality of cured beef sausages  
3283 during manufacturing and storage: A potential calcium application for sausages with  
3284 alginate casings. *Foods*, 10(11), p.2783

3285 Zhang, Y., Guo, X., Liu, T. and Peng, Z., 2018. Effects of substitution of NaCl with  
3286 KCl, L-histidine, and L-lysine on instrumental quality attributes of cured and cooked  
3287 pork loin. *CyTA-Journal of Food*, 16(1), pp.877-883.

3288 Zhou, C., Li, J., and Tan, S., 2014. Effect of L-lysine on the physicochemical properties  
3289 of pork sausage. *Food Science and Biotechnology*, 23(3), 775-780.

3290 **Chapter 5. Effect of pH on physio-chemical characteristics and volatile flavour**  
3291 **compounds in a salt-reduced pork patty with lysine and calcium lactate**

3292 **Abstract**

3293 The Maillard reaction is an important route to many of the aroma volatiles found in  
3294 cooked meat. Previous work has identified that lysine and calcium lactate can be used  
3295 together to partially replace sodium chloride in pork patties. Since lysine is highly  
3296 reactive substrate for the Maillard reaction during heating processes, so may therefore  
3297 contribute to flavour generation which could further impact perception of salty taste.  
3298 However, the Maillard reaction is very pH dependent. Therefore, this study was  
3299 designed to test the effects of lysine (3%), calcium lactate (1.5%) and pH (5.5, 6.0, and  
3300 6.5, controlled through addition of dipotassium phosphate) on physio-chemical  
3301 characteristics and volatile compounds of salt-reduced pork patties, while 2% NaCl and  
3302 1% pork patty were used as conventional control and 50% salt reduction control,  
3303 respectively. Cooking loss, colour, moisture content and pH were measured as physio-  
3304 chemical characteristics; GC-MS was used to analysis the volatile compounds.  
3305 Increasing pH significantly decreased cooking loss and resulted in a high moisture  
3306 product. Redness and yellowness increased with increasing pH, whereas lightness  
3307 decreased. Almost all volatile compounds came from lipid degradation, whereas very  
3308 few Maillard reaction-derived volatile flavour compounds were detected after heating,  
3309 and these were only in relatively small amounts with increased pH. Therefore, where  
3310 lysine is added as a partial salt replacer in meat patties, this can be carried out without  
3311 concern that it will substantially change the flavour profile of the product. In conclusion,

3312 lysine and calcium lactate could be used as salt substitute to develop salt reduced meat  
3313 products without substantial change of their flavour profile.

3314 **5.1 Introduction**

3315 Sodium chloride (NaCl) is an important ingredient in meat products, such as enhance  
3316 product texture and ensure shelf-life (Desmond and Vasilopoulos, 2019; Inguglia *et al.*,  
3317 2017). However, high intake of salt increases the risk of hypertension and  
3318 cardiovascular disease (Petit *et al.*, 2019; Rucker, Rudemiller and Crowley, 2018). Due  
3319 to the health concern, salt reduction has attracted lots of attention from both industry  
3320 and academia. One of the most common strategies to reduce salt content in meat  
3321 products is to use salt substitutes (Inguglia *et al.*, 2017). In addition to the most  
3322 commonly used metal salts (e.g., potassium chloride), many alternatives have been  
3323 explored. Lysine had been successfully used to enhance the aroma, flavour and suppress  
3324 off-flavour of meat products (Guo *et al.*, 2020; Dos Santos Alves *et al.*, 2017;  
3325 Campagnol *et al.*, 2011). Calcium lactate has been added to meat products for calcium  
3326 fortification and as a preservative (Irshad *et al.*, 2016; Lawrence *et al.*, 2003). In  
3327 previous work (Chapter 4), 3% w/w lysine and 1.5% w/w calcium lactate were proven  
3328 to be effective in retaining salty taste, physicochemical properties and shelf life of a 50%  
3329 salt reduced pork patty. However, as a reactive amino acid, lysine can be involved in  
3330 Maillard reaction during heating processes, which may generate volatile compounds  
3331 and subsequently affect salty taste (Martins, Jongen and Van Boekel, 2000).  
3332 Flavour is one of the most important factors influencing consumer buying behaviour  
3333 and preference on meat products (Robbins *et al.*, 2003). Generally speaking, raw meat

3334 has little aroma and only a bloody flavour (Jayasena *et al.*, 2013). However, due to the  
3335 complex interaction of precursors from the lean and fatty components of the meat, it  
3336 can develop a series of volatile flavour compounds during cooking (Van Ba, Amna and  
3337 Hwang, 2013). Typically, the volatile flavour compounds produced during cooking are  
3338 mainly due to the Maillard reaction, thermal degradation of lipids and Maillard-lipid  
3339 interactions (Sun *et al.*, 2022). Maillard reaction, also known as non-enzymatic  
3340 browning, is a reaction between carbonyl compounds (reducing sugars) and amino  
3341 compounds (amino acids and proteins) (Ames, 1992). The Maillard derived flavour  
3342 compounds include many sulphur-containing compounds which are important for the  
3343 flavour of meat (Van Boekel, 2006). In addition, thermal degradation of thiamin  
3344 produces a few sulfur compounds, such as thiols, sulphides and disulphide compounds  
3345 which contribute to the meaty flavour (Grosch, 2001). Cysteine is one of the most  
3346 important sulphur-containing amino acids contributing to meaty flavour through  
3347 Maillard reactions (Aaslyng and Meinert, 2017). Several compounds produced by lipid  
3348 oxidation contribute to the overall flavor of cooked meat, especially typical fatty fried  
3349 notes (Parker, 2013). Although the flavour detection threshold of the meaty-flavored  
3350 compounds produced by lipid oxidation are much higher than that of the sulfur- and  
3351 nitrogen-containing heterocyclic compounds formed by the Maillard reaction of water-  
3352 soluble precursors, however, some aldehydes which produced by lipid oxidation,  
3353 including 6 – 10 saturated and unsaturated aldehydes of 10 carbon atoms, are the main  
3354 volatile constituents of all cooked meats (Mottram, 1998). In addition, amino acids can  
3355 undergo the Strecker degradation process in Maillard reaction, and then generate some

3356 reactive radicals, such as ammonia, hydrosulfide, and these free radicals can further  
3357 react with the secondary oxidation products of lipids to generate volatile flavour  
3358 compounds such as thiols and thiophenes, thiazoles (Van Ba *et al.*, 2012).

3359 The formation of Maillard derived flavour compounds is dependent on the type of  
3360 sugars and amino acids involved, as well as temperature, time, pH and water content  
3361 (Van Boekel, 2006). As pH increases, colour and polymeric compounds increase and  
3362 nitrogen-containing compounds like pyrazines are favoured (Calkins and Hodgen,  
3363 2007). At low pH (for example pH < 5), flavour is readily generated by Strecker  
3364 degradation of amino acids. From non-sulfur amino acids this can lead to compounds  
3365 such as methylbutanals (malty aromas), whereas from the sulfur amino acids this leads  
3366 to highly reactive intermediates (including hydrogen sulfide and methanethiol), which  
3367 interact to form a many odourless compounds; At high pH (for example pH > 7) more  
3368 nitrogen-containing volatiles are formed, particularly the pyrazines as well as more  
3369 brown pigment (melanoidin) (Parker, 2013). The pH value of muscle is now recognized  
3370 as an important factor affecting the rate and extent of lipid oxidation in meat  
3371 (Tichivangana, and Morrissey, 1985). The oxidative stability is more stable at a neutral  
3372 or acidic pH (pH = 4, 7), but the rate of lipid degradation can be increased at an alkaline  
3373 condition (pH = 10) (Kim *et al.*, 2016). In addition, thiamin is considered as a source  
3374 of meat flavour generated on heating, and it is affected by temperature and pH  
3375 (Madruga, 1997). 2-methyl-3-furanthiol and bis (2-methyl-3-furyl) disulfide (meaty  
3376 aromas) and thiophene are the main aroma volatile compounds at pH 5 and 7; however,

3377 when the pH is increased to 9, the levels of these meaty flavour compounds decrease  
3378 (Van Ba, Amna and Hwang, 2013).  
3379 Although previous literature has confirmed the role of pH in the formation of flavour  
3380 through the Maillard reaction in model systems, less research has investigated the effect  
3381 of pH on Maillard products within meat where the pH is buffered and relatively low  
3382 (pH 5.5-6.5) (Calkins and Hodgen, 2007). Therefore, the aim of this study was to  
3383 investigate whether relatively small changes in pH, at below pH 7, would affect the  
3384 physicochemical quality and volatile flavour compounds of pork patties varying in salt  
3385 (sodium chloride), lysine and calcium lactate. Based on the understanding of previous  
3386 literature, this study specifically hypothesised that addition of lysine and calcium lactate  
3387 would modify the flavour profile of salt reduced meat products due to involvement of  
3388 Maillard reaction at different pH values.

3389 **5.2 Method & materials**

3390 **5.2.1 Raw pork meat**

3391 All the lean pork leg and pork back fat was purchased from a local supplier (Solent  
3392 Butchers & Co. Limited, UK) on three occasions in considering the batch effect. All  
3393 the meat were vacuum packaged (A300/52, Multivac Gastrovac, Germany) and stored  
3394 at -18 °C in a freezer until further use. The sample was thawed at 4 °C in a refrigerator  
3395 for 24 h before use.

3396 **5.2.2 Experiment design**

3397 For the control sample, a salt (sodium chloride, NaCl) concentration at 2% (w/w) was  
3398 used, while 1% NaCl was used to target 50% sodium reduction for the sodium reduced

3399 meat samples. The sodium reduced pork patties, contained 3% lysine (Health Leads,  
3400 UK) and 1.5% calcium lactate (Merck, USA) based on previous work (Chapter 4).  
3401 Dipotassium phosphate (Merck, USA) was used to adjust meat pH to 5.5, 6 and 6.5  
3402 respectively. Overall, 12 treatments plus one control sample were prepared as detailed  
3403 in Table 1. Each treatment preparation was repeated three times.

3404 **5.2.3 Preparation of pork patties**

3405 The formulation of pork patties was adapted from the previous work (Chapter 4). All  
3406 the ground meat and ingredients (distilled water, salt, calcium lactate, lysine and  
3407 dipotassium phosphate) were homogenized at 5000 rpm for 5 min until uniformity was  
3408 reached using a food processor (Titanium Major KMM020, Kenwood Limited, UK),  
3409 according to the formulation described in Table 5.1. Each pork patty was formed with  
3410 100 g batter in a foil cup (8 cm diameter, 3 cm thickness). Samples were cooked at  
3411 200°C in an oven (B1542, Naff, Germany) until the centre temperature reached 75°C.  
3412 After cooking, samples were covered up by foil and chilled at 4 °C in a refrigerator for  
3413 24 h before physical analysis (cooking loss and colour). Some of the chilled samples  
3414 were ground by a blender (AT640, Kenwood Limited, UK), then vacuum packed and  
3415 stored at -18 °C in a freezer for further chemical analysis (pH after cooking, moisture  
3416 content). At each sampling point samples were withdrawn in triplicate for subsequent  
3417 analyses.

3418

Table 5.1. Formulation of pork patties varying in salt, lysine, calcium lactate and pH.

| Treatment Code | Lean pork leg (%) | Pork back fat (%) | Distilled water (%) | Sodium Chloride (%) | Lysine (%) | Calcium lactate (%) | Dipotassium phosphate (%) |
|----------------|-------------------|-------------------|---------------------|---------------------|------------|---------------------|---------------------------|
| Control        | 70                | 10                | 18                  | 2                   | -          | -                   | -                         |
| S5.5           | 70                | 10                | 18                  | 1                   | -          | -                   | -                         |
| S6             | 70                | 10                | 18                  | 1                   | -          | -                   | 0.4                       |
| S6.5           | 70                | 10                | 18                  | 1                   | -          | -                   | 0.8                       |
| SL5.5          | 70                | 10                | 18                  | 1                   | 3          | -                   | -                         |
| SL6            | 70                | 10                | 18                  | 1                   | 3          | -                   | 0.4                       |
| SL6.5          | 70                | 10                | 18                  | 1                   | 3          | -                   | 0.8                       |
| SC5.5          | 70                | 10                | 18                  | 1                   | -          | 1.5                 | -                         |
| SC6            | 70                | 10                | 18                  | 1                   | -          | 1.5                 | 0.9                       |
| SC6.5          | 70                | 10                | 18                  | 1                   | -          | 1.5                 | 1.9                       |
| SLC5.5         | 70                | 10                | 18                  | 1                   | 3          | 1.5                 | -                         |
| SLC6           | 70                | 10                | 18                  | 1                   | 3          | 1.5                 | 0.9                       |
| SLC6.5         | 70                | 10                | 18                  | 1                   | 3          | 1.5                 | 1.9                       |

3419

\*Control = 2% NaCl, pH = 5.5; S5.5 = 1% NaCl, pH = 5.5; S6 = 1% NaCl, pH 6; S6.5 = 1% NaCl, pH = 6.5; SL5.5 = 1% NaCl + 3% lysine, pH = 5.5; SL6 = 1% NaCl + 3% lysine, pH = 6; SL6.5

3420

= 1% NaCl + 3% lysine, pH = 6.5; SC5.5 = 1% NaCl + 1.5% calcium lactate, pH = 5.5; SC6 = 1% NaCl + 1.5% calcium lactate, pH = 6; SC6.5 = 1% NaCl + 1.5% calcium lactate, pH = 6.5;

3421

SLC5.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 5.5; SLC6 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6; SLC6.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate,

3422

pH = 6.5.

3423 **5.2.4 Physical-chemical characteristics of pork patties**

3424 **5.2.4.1 pH**

3425 The pH was measured on raw and cooked ground pork patties. The patty sample (10g)  
3426 was added to 100 ml distilled water and mixed using a magnetic stirrer (SS3H stirrer  
3427 hot plate, hemLab, Netherlands) for 90 s at a medium speed. The pH was measured  
3428 using an electrode meter (Orion star A111, Thermo scientific, USA).

3429 **5.2.4.2 Moisture content**

3430 According to AOAC method, 3 g ground sample was put into the aluminium moisture  
3431 dish, then dried in an oven (Gallenkamp, UK) at 100 ° C for 24 h. Samples were cooled  
3432 in a desiccator at least 30 min and reweighed to calculate the weight difference. The  
3433 moisture content was calculated by the weight difference (before and after drying)  
3434 divided by the starting weight of sample before drying and expressed as % (w/w).

3435 **5.2.4.3 Cooking loss**

3436 The cooking loss was calculated using the formula as follows: cooking loss (%) =  $(W_b - W_a)/W_b \times 100\%$ .  $W_b$  means weight of pork patty before cooking, and  $W_a$  means  
3437 weight of pork patty after chilling.

3439 **5.2.4.4 Colour**

3440 A chroma meter (CR-400, Konica minolta, Japan) with 8mm diameter measuring  
3441 aperture, illuminant D65, 2° standard observer was used to determine the colour of  
3442 cooked pork patty. The instrument was calibrated using white calibration plate (CR-  
3443 A43, Y = 93.5, x = 0.3140, y = 3318) and CIELAB color space was selected to describe  
3444 the colour feature of pork patties. Colour characteristics including L\* (lightness), a\*  
3445 (redness) and b\* (yellowness) were measured at three surface and internal locations and  
3446 the average was calculated to present the colour characteristics of the pork patty.

3447 **5.2.5 Analysis of volatile compounds**

3448 The pork patties were immediately ground after cooking, and ground meat (2 g) was  
3449 transferred into 20 mL headspace sample vials which were rapidly fitted with a screw  
3450 cap. Analyses were conducted by automated headspace SPME using an Agilent 110  
3451 PAL injection system and a 7890A gas chromatography system with 5975C mass  
3452 spectrometer (Agilent, Santa Clara, CA, USA). An SPME fiber coated with  
3453 polydimethylsiloxane/divinylbenzene/carboxen (PDMS/DVB/CAR) was used for  
3454 extraction (Supelco, Bellefonte, PA). The samples were equilibrated by constant  
3455 agitation at 500 rpm for 10 mins at 50°C, and then extracted at the same temperature  
3456 for 30 mins. After extraction, the SPME device was inserted into the injection port  
3457 (260 °C) of the GC instrument and immediately desorbed for 20 mins. An Agilent  
3458 capillary column DB-5 (30 m × 0.32 mm × 0.25 µm thickness) (Agilent, Santa Clara,  
3459 CA, USA) was used for chromatographic separation. The initial oven temperature was  
3460 held at 40°C for 5 minutes, and subsequently increased to 260°C at 4°C/min before  
3461 holding isothermal for 5 minutes. The inlet was a splitless injection with a helium  
3462 carrier gas introduced at a constant flow rate of 0.9 mL/min (pressure pulse of 6.2035  
3463 psi). Mass spectra were measured in electron ionization mode with ion source  
3464 temperatures at 230 °C and scanned from m/z 20 to m/z 350. Volatile compounds were  
3465 identified by comparing each mass spectrum with the NIST mass spectral database  
3466 (NIST/EPA/NIH Mass Spectral database, 2011). The retention times of the homologous  
3467 series of C6-C25 n-alkanes were used to calculate a linear retention index (LRI) for  
3468 each volatile compound to confirm the identification. Measurement of the GC peak area  
3469 for each compound was used to provide semi-quantitative relative values in order to  
3470 compare the volatile profile of different samples.

3471 **5.2.6 Statistical analysis**

3472 The data of physical-chemical characteristics of pork patties and quantitative data for  
3473 each compound identified in the SPME GC-MS analysis were analysed by both one-  
3474 way and two-way analysis of variance (ANOVA) using SPSS Statistics 27 (IBM, USA).  
3475 One-way analysis of variance (ANOVA) was used to evaluate the significant difference  
3476 between treatments at the significant level 0.05, while two-way ANOVA was used to  
3477 examine the effect of factors (ingredients, pH) at significant level 0.05. Duncan test was  
3478 selected for multiple comparisons if equal variances were assumed, otherwise,  
3479 Tamhane's T2 test was used. Principal component analysis (PCA) was carried out by  
3480 XLSTAT Version 2022.4.1 (Addinsoft, Paris, France) on the correlation matrix from  
3481 the volatile data to visualise the main differences in volatile profile between the  
3482 different formulations.

3483 **5.3 Results and discussion**

3484 **5.3.1 Physical-chemical characteristics**

3485 The effect of pH on physical-chemical characteristics of the pork patties are shown in  
3486 Table 5.2. It demonstrates that both the variation in ingredients and the initial pH had  
3487 significant effects on the pH after cooking, cooking loss, moisture and colour ( $p < 0.05$ ).

Table 5.2. Physical-chemical characteristics of pork patties varying in salt, lysine, calcium lactate and pH

| Treatment       | pH before cooking       | pH after cooking        | Moisture                   | Cooking loss             | L* surface                | a* surface               | b* surface                | L* internal               | a* internal              | b* internal             |
|-----------------|-------------------------|-------------------------|----------------------------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|-------------------------|
| Control         | 5.57±0.10 <sup>c</sup>  | 6.11±0.04 <sup>c</sup>  | 65.13±3.37 <sup>bcd</sup>  | 25.05±1.60 <sup>c</sup>  | 56.49±4.50 <sup>bcd</sup> | 4.74±0.74 <sup>bcd</sup> | 17.56±0.91 <sup>a</sup>   | 67.72±2.43 <sup>bcd</sup> | 4.98±1.00 <sup>bcd</sup> | 8.96±0.17 <sup>fg</sup> |
| S5.5            | 5.56±0.07 <sup>c</sup>  | 6.11±0.06 <sup>c</sup>  | 60.31±1.12 <sup>f</sup>    | 34.37±1.73 <sup>a</sup>  | 59.05±3.77 <sup>b</sup>   | 4.08±0.27 <sup>def</sup> | 14.47±1.01 <sup>ef</sup>  | 69.53±2.89 <sup>ab</sup>  | 3.61±1.14 <sup>f</sup>   | 10.36±0.21 <sup>b</sup> |
| S6              | 6.00±0.09 <sup>cd</sup> | 6.17±0.04 <sup>c</sup>  | 66.18±4.92 <sup>abcd</sup> | 29.45±3.53 <sup>b</sup>  | 56.06±4.35 <sup>bcd</sup> | 4.48±0.86 <sup>cde</sup> | 15.22±0.78 <sup>de</sup>  | 67.90±0.58 <sup>bcd</sup> | 5.03±0.25 <sup>abc</sup> | 10.50±0.14 <sup>b</sup> |
| S6.5            | 6.55±0.04 <sup>a</sup>  | 6.57±0.11 <sup>a</sup>  | 68.69±3.20 <sup>a</sup>    | 21.42±2.59 <sup>de</sup> | 54.60±1.26 <sup>cde</sup> | 4.95±0.72 <sup>bc</sup>  | 16.56±1.25 <sup>abc</sup> | 66.15±0.59 <sup>def</sup> | 5.71±0.39 <sup>a</sup>   | 10.88±0.83 <sup>a</sup> |
| SL5.5           | 5.56±0.06 <sup>c</sup>  | 6.11±0.11 <sup>c</sup>  | 63.59±0.88 <sup>de</sup>   | 24.04±2.45 <sup>cd</sup> | 54.63±1.15 <sup>cde</sup> | 5.10±0.35 <sup>bc</sup>  | 13.92±0.58 <sup>f</sup>   | 66.61±2.79 <sup>cde</sup> | 4.89±0.82 <sup>bcd</sup> | 8.85±0.12 <sup>g</sup>  |
| SL6             | 5.97±0.07 <sup>d</sup>  | 6.19±0.07 <sup>c</sup>  | 66.64±4.04 <sup>abcd</sup> | 20.45±7.40 <sup>ef</sup> | 51.50±3.31 <sup>ef</sup>  | 5.43±0.35 <sup>ab</sup>  | 14.84±1.40 <sup>ef</sup>  | 64.57±0.38 <sup>efg</sup> | 5.37±1.14 <sup>ab</sup>  | 9.37±0.13 <sup>de</sup> |
| SL6.5           | 6.47±0.05 <sup>b</sup>  | 6.54±0.08 <sup>ab</sup> | 68.43±5.64 <sup>ab</sup>   | 17.64±4.93 <sup>f</sup>  | 49.96±3.62 <sup>f</sup>   | 5.91±0.64 <sup>a</sup>   | 17.40±1.28 <sup>ab</sup>  | 63.37±0.41 <sup>g</sup>   | 5.70±0.33 <sup>a</sup>   | 9.60±0.31 <sup>d</sup>  |
| SC5.5           | 5.55±0.07 <sup>c</sup>  | 5.58±0.08 <sup>e</sup>  | 60.23±2.54 <sup>f</sup>    | 29.55±1.28 <sup>b</sup>  | 62.58±3.48 <sup>a</sup>   | 2.28±0.51 <sup>g</sup>   | 14.93±1.19 <sup>ef</sup>  | 70.50±4.56 <sup>a</sup>   | 4.28±0.43 <sup>def</sup> | 8.85±0.14 <sup>g</sup>  |
| SC6             | 6.05±0.08 <sup>c</sup>  | 6.00±0.10 <sup>d</sup>  | 63.85±4.50 <sup>cde</sup>  | 25.41±2.81 <sup>c</sup>  | 58.16±5.39 <sup>bc</sup>  | 2.74±0.16 <sup>g</sup>   | 15.59±0.90 <sup>cde</sup> | 68.70±1.09 <sup>abc</sup> | 4.42±0.33 <sup>cde</sup> | 9.65±0.30 <sup>d</sup>  |
| SC6.5           | 6.51±0.12 <sup>ab</sup> | 6.49±0.07 <sup>b</sup>  | 65.88±1.76 <sup>abde</sup> | 20.08±3.39 <sup>ef</sup> | 55.87±4.32 <sup>bcd</sup> | 3.52±1.52 <sup>f</sup>   | 16.59±1.24 <sup>abc</sup> | 67.23±0.75 <sup>bcd</sup> | 5.34±0.98 <sup>ab</sup>  | 9.99±0.16 <sup>c</sup>  |
| SLC5.5          | 5.57±0.04 <sup>c</sup>  | 5.58±0.05 <sup>e</sup>  | 62.65±1.99 <sup>ef</sup>   | 24.50±2.10 <sup>cd</sup> | 59.07±0.77 <sup>b</sup>   | 3.85±0.42 <sup>ef</sup>  | 16.18±1.14 <sup>bcd</sup> | 67.42±1.47 <sup>bcd</sup> | 3.71±0.18 <sup>f</sup>   | 8.03±0.18 <sup>h</sup>  |
| SLC6            | 6.01±0.04 <sup>c</sup>  | 5.99±0.10 <sup>d</sup>  | 67.17±1.63 <sup>abc</sup>  | 20.11±2.56 <sup>ef</sup> | 56.58±3.54 <sup>bcd</sup> | 4.10±1.24 <sup>def</sup> | 16.55±1.99 <sup>abc</sup> | 66.40±0.83 <sup>cde</sup> | 4.04±0.30 <sup>ef</sup>  | 9.18±0.40 <sup>ef</sup> |
| SLC6.5          | 6.50±0.07 <sup>ab</sup> | 6.48±0.07 <sup>b</sup>  | 69.07±1.36 <sup>a</sup>    | 18.51±1.75 <sup>ef</sup> | 53.84±3.05 <sup>de</sup>  | 4.78±1.11 <sup>bcd</sup> | 16.91±1.57 <sup>ab</sup>  | 64.02±4.37 <sup>fg</sup>  | 4.45±0.91 <sup>cde</sup> | 9.33±0.31 <sup>de</sup> |
| P (ingredient)  | 0.143                   | <0.001                  | 0.003                      | <0.001                   | <0.001                    | <0.001                   | 0.003                     | <0.001                    | <0.001                   | <0.001                  |
| P (pH)          | <0.001                  | <0.001                  | <0.001                     | <0.001                   | <0.001                    | <0.001                   | <0.001                    | <0.001                    | <0.001                   | <0.001                  |
| P (interaction) | 0.187                   | <0.001                  | 0.751                      | 0.042                    | 0.951                     | 0.986                    | 0.055                     | 0.992                     | 0.016                    | <0.001                  |

3489 \*Control = 2% NaCl, pH = 5.5; S5.5 = 1% NaCl, pH = 5.5; S6 = 1% NaCl, pH 6; S6.5 = 1% NaCl, pH = 6.5; SL5.5 = 1% NaCl + 3% lysine, pH = 5.5; SL6 = 1% NaCl + 3% lysine, pH = 6; SL6.5 = 1% NaCl + 3% lysine, pH = 6.5; SC5.5 = 1% NaCl + 1.5% calcium lactate, pH = 5.5; SC6 = 1% NaCl + 1.5% calcium lactate, pH = 6; SC6.5 = 1% NaCl + 1.5% calcium lactate, pH = 6.5; SLC5.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 5.5; SLC6 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6; SLC6.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6.5. Averages within the same column followed by the same letters are not significantly different (P > 0.05). Values represented as the Mean ± standard deviation (SD), n = 3

3493 **5.3.1.1 pH**

3494 As shown in Table 5.2, the pH of the cooked patties was significantly affected by the  
3495 ingredients when the pH of the raw patties was same ( $p < 0.05$ ; Supplementary table  
3496 12). Pork patties without addition of calcium lactate or dipotassium phosphate (control,  
3497 S5.5 and SL5.5) increased in pH during cooking from 5.5 to 6.11. This may be due to  
3498 thermally induced dynamic changes in the acidic and basic groups in the denatured  
3499 protein (Yang *et al.*, 2021). However, where calcium lactate was added, the pH  
3500 seemingly did not increase with cooking. Although calcium lactate (1.5% w/w) is acidic  
3501 it did not lower the pH of the uncooked patties (SC5.5, SC6, SC6.5, SLC5, SLC6,  
3502 SLC6.5), and yet their pH did not increase over cooking unlike for the other patties;  
3503 therefore, it is likely that the water solubility of calcium lactate was improved by the  
3504 increasing temperature during cooking (Kubantseva and Hartel, 2002).

3505 **5.3.1.2 Moisture content**

3506 The moisture content of the control (2% salt) cooked patty was 65.1% (w.v), whereas  
3507 the moisture content of the salt-reduced pork patty (1%) without any salt substitutes  
3508 (S5.5) was 4.82% (w/v) lower ( $p < 0.05$ ; Supplementary table 12). This is in agreement  
3509 with Tobin *et al.* (2013) where the higher salt samples were correlated with lower  
3510 moisture content in pork breakfast sausages. This is because salt reduction leads to  
3511 lower solubilisation of functional myofibrillar protein in meat (actin and myosin),  
3512 which reduces protein hydration and water holding capacity, resulting in a lower water  
3513 content (Desmond and Vasilopoulos, 2019). However, where the pH was raised 6 or  
3514 above this additional moisture loss was avoided (S6, S6.5). This is supported by an  
3515 earlier study of Guerrero, Gou and Arnau (1999) where cooked ham at pH 6.2 had a  
3516 higher water content than that at pH 5.8, because high pH far away from isoelectric

3517 point of muscle protein would create more space between thin filament and thick  
3518 filament to allow more water retained in the muscle structure (Honikel, 2004).

3519 The lowest moisture content was measured in pork patty with calcium lactate at pH  
3520 5.5(SC5.5), and the highest moisture content was measured in pork patty with lysine  
3521 and calcium lactate at pH 6.5 (SLC6.5). Lysine may have reduced the water loss due to  
3522 its positively charged polar amino acid which can bind with anions to form hydrogen  
3523 bonds in order to retain water within the structure (Betts and Russell, 2003). This result  
3524 is consistent with the work of Vidal *et al.* (2020) where a 50% salt-reduced meat with  
3525 3% lysine had similar moisture content compared to the non-salt reduced meat.

3526 According to Table 2, SC5.5 and SLC5.5 were significantly lower in moisture than that  
3527 of the control ( $p < 0.05$ ), whereas SC6, SC6.6, SLC6 and SLC 6.5 had similar moisture  
3528 content with control ( $p > 0.05$ ). It indicates that, to avoid excess moisture loss where  
3529 calcium lactate was used in the salt-reduced formulation, the pH needed to be adjusted  
3530 6 or above. Irshad *et al.* (2016) found that calcium lactate (1% - 1.5%) reduced moisture  
3531 in a restructured buffalo meat loaf and they proposed that an increase in tightly bound  
3532 multivalent cations could result in a lower water binding ability (Yang *et al.*, 2004).  
3533 Consequently, low moisture content would be expected in calcium lactate added  
3534 samples. While high pH (6 or above) would create more charged anions within the  
3535 muscle structure due to far away from the isoelectrical point of muscle protein (pH5.2),  
3536 which could cancel out the effect of cations effect of calcium to achieve similar  
3537 moisture level of control meat patties. Overall, the water holding capacity of raw meat  
3538 increased with the increasing pH. Lower pH leads to higher protein-protein interactions,  
3539 reducing the space within and between myofilaments, resulting in a lower level of  
3540 immobilization of water (Honikel, 2004).

3541 **5.3.1.3 Cooking loss**

3542 The cooking loss of the standard salt control patty was 25.1%, whilst the highest loss  
3543 (34.4%) was in the salt-reduced pork patty without any salt substitutes (S5.5) which is  
3544 9.32% higher than that of control. The cooking loss is in-line with the moisture loss,  
3545 indicating the moisture loss formed main part of the cooking loss. The cooking loss was  
3546 reduced significantly when the pH was raised to 6.0 and 6.5. The lowest cooking loss  
3547 was achieved by the pork patty with lysine at pH 6.5 (SL6.5) where the yield was 7.5%  
3548 higher than the control (ie cooking loss 17.6% compared to 25.1%). This was consistent  
3549 with moisture content results that lysine reduced the cooking loss of the salt-reduced  
3550 pork patties. For calcium lactate addition, the cooking loss decreased with the increase  
3551 of pH ( $p < 0.05$ ; Supplementary table 12), sample with pH 6 (SC6) achieved similar  
3552 cooking loss with control sample ( $p > 0.05$ ). The result is in line with the moisture  
3553 content result whereas the salt-reduced pork patties with calcium lactate needed to be  
3554 adjusted to a pH above 6 in order to avoid excess moisture loss and hence cooking loss.  
3555 These results are in agreement with Tobin *et al.* (2013), Guo *et al.* (2020) and Irshad *et*  
3556 *al.* (2016), where they indicated respectively that increasing either the concentration of  
3557 salt (0.8% - 2.4%) or lysine (0.2% - 0.8%) decreased cooking loss in a pork breakfast  
3558 sausage or salt-reduced restructure ham, while calcium lactate (1% - 1.5%) increased  
3559 cooking loss in a restructured buffalo meat loaf. Aaslyng *et al.* (2003) reported that pork  
3560 steak at high pH ( $\text{pH} > 5.8$ ) had a lower cooking loss, whereas the cooking loss was  
3561 higher at low pH ( $\text{pH} < 5.4$ ). The conclusion of the current study (see Table 2) is that  
3562 cooking loss is affected by the interaction of ingredients and pH, meaning that when  
3563 salt substitutes are used such as calcium lactate, the pH of the meat may need to be  
3564 raised to ensure a constant yield.

### 3565 **5.3.1.4 Colour**

3566 The lightness ( $L^*$ ) of the standard salt patty (control) was 56.5 on the surface and 67.7  
3567 inside. The measurement data also shown that red colour ( $a^*$ ) was consistent between  
3568 the surface and inside, whereas the yellow colour ( $b^*$ ) was almost halved compared to  
3569 the surface. When the salt content was reduced by 50% (S5.5), the lightness and surface  
3570 redness were not influenced, but the internal redness and surface yellowness were  
3571 significantly decreased ( $p < 0.05$ ; Supplementary table 12), whereas internal yellowness  
3572 increased ( $p < 0.05$ ; Supplementary table 12). These differences were mostly consistent  
3573 across the salt reduced patties at higher pH (S6, S6.5). Tobin *et al.* (2013) previously  
3574 found a 50% salt-reduced pork breakfast sausage to have a paler colour than the higher  
3575 salt control and concluded this was because salt has the ability to reduce the oxygen  
3576 solubility in food matrix and then alleviate the oxidation of myoglobin. The reduction  
3577 of salt would promote myoglobin to be oxidized into metmyoglobin and colour would  
3578 shift from purple colour to brown colour which resulted in a reduction of redness (Petit  
3579 *et al.*, 2019). The addition of lysine (SL5.5) resulted in a similar colour with the 2%  
3580 control ( $p > 0.05$ ), except for the surface yellowness. But the addition of calcium lactate  
3581 (SC5.5) only ensured that the internal redness and internal yellowness were similar with  
3582 the control ( $p > 0.05$ ), while all other colour measurements were significantly different.  
3583 The effects of lysine and calcium lactate on colour were in agreement with the findings  
3584 reported by Zhou and Tan (2014) and Yang *et al.* (2021) in sausages. The variation in  
3585  $L^*$  is related to water content of pork products that higher water content leads to a lower  
3586  $L^*$  in colour (Hong *et al.*, 2016). It is because that high moisture content indicates  
3587 swelling of muscle fiber, and a bigger space within the myofiber lattice. while the  
3588 increased myofiber lattice and space would reduce the light scattering as a result a low  
3589  $L^*$  would be expected (Ruedt, Gibis, and Weiss, 2022). The redness ( $a^*$ ) depends on  
3590 the amount of deoxymyoglobin and/or oxymyoglobin and oxidation of myoglobin to

3591 metmyoglobin, while lysine was reported promoting their oxidation (Zhou and Tan,  
3592 2014). With the addition of lysine and calcium lactate, the lightness was increased from  
3593 8 to 18 units, and the yellowness reduced around 6 to 8 units from surface to inside  
3594 which were in the same trend with the control sample ( $L^*$  increased around 12 units  
3595 and  $b^*$  dropped around 7 units). Differences in measured values for interior and surface  
3596 may be due to a small surface area to volume ratio, meaning that very little of the patty  
3597 would have reached temperature of over 100 °C at low water activity that is required  
3598 for greater Maillard reaction (Van Ba, Amna and Hwang, 2013).

3599 **5.3.2 Volatile composition**

3600 In total, 29 compounds were identified in the headspace by GC-MS of the different pH  
3601 pork patties varying in salt, lysine, calcium lactate and pH, as listed in Table 5.3. These  
3602 included 2 acids, 1 alkane, 6 alcohols, 12 aldehydes, 1 furan, 5 ketones, 1 phenol and 1  
3603 pyrazine. The formation of these volatile compounds is mainly associated with the  
3604 degradation of lipids and, to a lesser extent, the Maillard reaction. Volatile compounds  
3605 originating from lipid degradation usually have low thresholds and play a major role in  
3606 flavour development (Wen *et al.*, 2019). The aldehydes contributed almost average of  
3607 89.1% of the flavour composition and clearly dominate. Similar results were reported  
3608 by Xie *et al.* (2008), who indicated that the major volatile compounds in roasted pork  
3609 was the aldehyde group, accounting for 52.6% of the total flavour profile. In the current  
3610 study, hexanal, which is considered to be the most abundant lipid oxidation product in  
3611 meat, was found in the largest quantities within the aldehyde group (typically  
3612 accounting for 88.6% of aldehydes). Other straight chain aldehydes such as pentanal,  
3613 heptanal and nonanal, which were present at relatively high quantities, are also derived  
3614 from the oxidation of unsaturated fatty acids and are known to contribute to the  
3615 characteristic fatty aroma of meat (Wen *et al.*, 2019). Ketones and alcohols were also

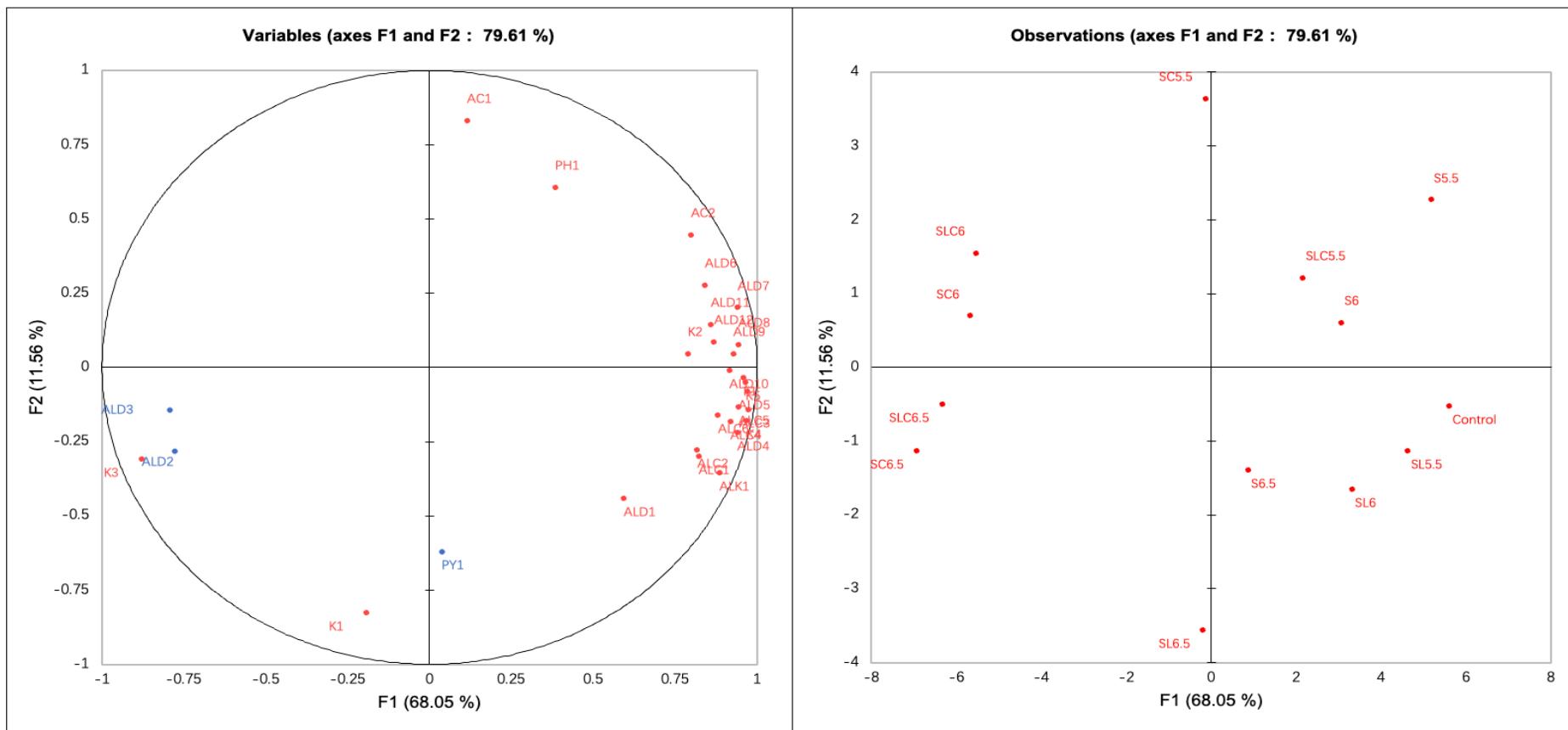
3616 abundant lipid derived volatiles in the pork patties. Volatile alcohols can be derived  
3617 from lipid oxidation or Maillard reaction in meat products and can provide a wide  
3618 variety of aromatic compounds by reacting with themselves or other compounds.  
3619 Ketones are often regarded as secondary products formed during lipid oxidation, alkane  
3620 degradation and dehydrogenation of secondary alcohols (Deng *et al.*, 2021). Relative  
3621 quantitative differences were observed between the different pH levels (5.5, 6, 6.5) and  
3622 ingredients (50% salt, lysine, calcium lactate) used in this study. Changes to the  
3623 ingredients (salt, lysine and calcium lactate) had significant effects ( $p < 0.05$ ;  
3624 Supplementary table 13) on the relative amounts of most aldehydes, alcohols, ketones,  
3625 hexanoic acid and phenols. Likewise, the adjustment of pH also significantly affected  
3626 ( $p < 0.05$ ; Supplementary table 13) the relative amounts of most aldehydes, alkanes and  
3627 ketones in addition to acids, 1-heptanol 1-octen-3-ol, 1-octanol, phenols and pyrazines.  
3628 There was a significant interaction of pH and ingredients on a limited number of  
3629 volatiles: hexanoic acid, 1-pentanol, 2-methylbutanal, 3-methylbutanal, pentanal,  
3630 hexanal and 2-phenoxyethanol ( $p < 0.05$ ; Supplementary table 13). Kim *et al.* (2016)  
3631 reported that the protonation state of the lipid molecule can influence the stability of  
3632 the molecule and the ease with which it undergoes chemical reactions. Consequently, a  
3633 low pH (acidic conditions) can promote lipid oxidation by creating a more favourable  
3634 environment for oxidation reactions to occur. Conversely, a high pH (basic or alkaline  
3635 conditions) can inhibit lipid oxidation by reducing the rate of oxidation reactions.

3636 Table 5.3. Volatile flavour compounds in the headspace above pork patties (by SPME GC-MS), relative amounts are mean peak areas (/1000).  
 3637 Patties varied in salt, lysine, calcium lactate and pH.

| Compound        | Code | LRI               | Control                | s5.5                    | s6                      | s6.5                    | sl5.5                   | sl6                     | sl6.5                   | sc5.5                  | sc6                 | sc6.5               | slc5.5                  | slc6                | slc6.5              | p(ingredient) | p(pH)  | p(interaction) |
|-----------------|------|-------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------|--------|----------------|
| Acids (2)       |      |                   |                        |                         |                         |                         |                         |                         |                         |                        |                     |                     |                         |                     |                     |               |        |                |
| Butanoic acid   | AC1  | 780 <sup>b</sup>  | 2,211 <sup>ab</sup>    | 4,231 <sup>ab</sup>     | 3,633 <sup>ab</sup>     | 2,507 <sup>ab</sup>     | 1,550 <sup>b</sup>      | 3,061 <sup>ab</sup>     | 1,753 <sup>b</sup>      | 5,295 <sup>a</sup>     | 2,335 <sup>ab</sup> | 1,294 <sup>b</sup>  | 4,420 <sup>ab</sup>     | 4,494 <sup>ab</sup> | 2,525 <sup>ab</sup> | 0.208         | 0.041  | 0.354          |
| Hexanoic acid   | AC2  | 974 <sup>b</sup>  | 3,615 <sup>bc</sup>    | 5,424 <sup>a</sup>      | 1,968 <sup>cdef</sup>   | 1,766 <sup>def</sup>    | 3,251 <sup>bcd</sup>    | 2,920 <sup>bcd</sup>    | 1,983 <sup>cdef</sup>   | 4,478 <sup>ab</sup>    | 675 <sup>f</sup>    | 353 <sup>f</sup>    | 4,177 <sup>ab</sup>     | 1,291 <sup>ef</sup> | 416 <sup>f</sup>    | 0.027         | <0.001 | 0.037          |
| Total           |      |                   | 5,825                  | 9,655                   | 5,602                   | 4,274                   | 4,801                   | 5,981                   | 3,736                   | 9,773                  | 3,010               | 1,647               | 8,597                   | 5,785               | 2,941               |               |        |                |
| Alkanes (1)     |      |                   |                        |                         |                         |                         |                         |                         |                         |                        |                     |                     |                         |                     |                     |               |        |                |
| 2-Pentyloxirane | ALK1 | 917 <sup>b</sup>  | 1,703 <sup>ab</sup>    | 943 <sup>d</sup>        | 1,338 <sup>abcd</sup>   | 1,047 <sup>bcd</sup>    | 1,639 <sup>abcd</sup>   | 1,737 <sup>a</sup>      | 784 <sup>d</sup>        | ND                     | ND                  | ND                  | 1,002 <sup>cd</sup>     | ND                  | ND                  | 0.147         | 0.016  | 0.063          |
| Alcohols (6)    |      |                   |                        |                         |                         |                         |                         |                         |                         |                        |                     |                     |                         |                     |                     |               |        |                |
| 1-Penten-3-ol   | ALC1 | 678 <sup>a</sup>  | 2,370 <sup>ab</sup>    | 1,430 <sup>b</sup>      | 1,611 <sup>ab</sup>     | 2,797 <sup>ab</sup>     | 2,173 <sup>ab</sup>     | 3,575 <sup>a</sup>      | 1,902 <sup>ab</sup>     | 1,520 <sup>b</sup>     | ND                  | ND                  | 2,077 <sup>ab</sup>     | ND                  | ND                  | 0.676         | 0.438  | 0.205          |
| 1-Pentanol      | ALC2 | 765 <sup>a</sup>  | 29,707 <sup>ab</sup>   | 22,440 <sup>b</sup>     | 35,969 <sup>ab</sup>    | 47,985 <sup>a</sup>     | 32,191 <sup>ab</sup>    | 29,725 <sup>ab</sup>    | 25,597 <sup>b</sup>     | 16,456 <sup>bc</sup>   | ND                  | ND                  | 21,954 <sup>b</sup>     | 512                 | ND                  | 0.013         | 0.411  | 0.024          |
| 1-Hexanol       | ALC3 | 878 <sup>a</sup>  | 6,430 <sup>a</sup>     | 5,723 <sup>ab</sup>     | 4,590 <sup>abc</sup>    | 3,466 <sup>abc</sup>    | 4,920 <sup>ab</sup>     | 4,830 <sup>ab</sup>     | 3,208 <sup>bc</sup>     | 1,716 <sup>c</sup>     | ND                  | ND                  | 3,072 <sup>bc</sup>     | ND                  | ND                  | 0.044         | 0.094  | 0.85           |
| 1-Heptanol      | ALC4 | 973 <sup>a</sup>  | 2,589 <sup>ab</sup>    | 2,858 <sup>a</sup>      | 2,576 <sup>ab</sup>     | 1,437 <sup>b</sup>      | 2,250 <sup>abc</sup>    | 2,711 <sup>ab</sup>     | 1,261 <sup>c</sup>      | ND                     | ND                  | ND                  | 1,563 <sup>abc</sup>    | ND                  | ND                  | 0.165         | 0.013  | 0.628          |
| 1-Octen-3-ol    | ALC5 | 982 <sup>a</sup>  | 40,424 <sup>a</sup>    | 33,550 <sup>ab</sup>    | 27,551 <sup>abc</sup>   | 24,109 <sup>bc</sup>    | 38,337 <sup>ab</sup>    | 23,550 <sup>bc</sup>    | 14,047 <sup>cd</sup>    | 4,399 <sup>d</sup>     | 1,310 <sup>d</sup>  | ND                  | 25,046 <sup>bc</sup>    | 915 <sup>d</sup>    | 386 <sup>d</sup>    | <0.001        | <0.001 | 0.132          |
| 1-Octanol       | ALC6 | 1070 <sup>a</sup> | 3,467 <sup>a</sup>     | 2,851 <sup>ab</sup>     | 2,689 <sup>abc</sup>    | 2,535 <sup>abc</sup>    | 1,665 <sup>cd</sup>     | 2,540 <sup>abc</sup>    | 1,015 <sup>d</sup>      | ND                     | ND                  | ND                  | 1,823 <sup>bcd</sup>    | ND                  | ND                  | 0.011         | 0.06   | 0.123          |
| Total           |      |                   | 84,987                 | 68,851                  | 74,986                  | 82,330                  | 81,536                  | 66,931                  | 47,029                  | 24,091                 | 1,310               | 0                   | 55,535                  | 1,427               | 386                 |               |        |                |
| Aldehydes (12)  |      |                   |                        |                         |                         |                         |                         |                         |                         |                        |                     |                     |                         |                     |                     |               |        |                |
| Butanal         | ALD1 | 580 <sup>a</sup>  | 2,251 <sup>ab</sup>    | ND                      | ND                      | 3,097 <sup>a</sup>      | 2,399 <sup>ab</sup>     | 1,300 <sup>b</sup>      | ND                      | ND                     | ND                  | 1,428 <sup>b</sup>  | ND                      | ND                  | 0.024               | 0.054         | /      |                |
| 2-Methylbutanal | ALD2 | 656 <sup>a</sup>  | ND                     | ND                      | ND                      | ND                      | ND                      | 1,114 <sup>b</sup>      | ND                      | 690 <sup>b</sup>       | 3,320 <sup>a</sup>  | ND                  | 1,075 <sup>b</sup>      | 1,428 <sup>b</sup>  | 0.016               | 0.002         | 0.008  |                |
| 3-Methylbutanal | ALD3 | 644 <sup>a</sup>  | ND                     | ND                      | ND                      | ND                      | ND                      | 209 <sup>b</sup>        | ND                      | 618 <sup>b</sup>       | 2,405 <sup>a</sup>  | ND                  | 810 <sup>b</sup>        | 938 <sup>b</sup>    | 0.002               | 0.005         | 0.011  |                |
| Pentanal        | ALD4 | 697 <sup>a</sup>  | 136,736 <sup>a</sup>   | 83,322 <sup>a</sup>     | 108,737 <sup>a</sup>    | 88,174 <sup>a</sup>     | 130,695 <sup>a</sup>    | 109,443 <sup>a</sup>    | 106,912 <sup>a</sup>    | 74,278 <sup>a</sup>    | 1,223 <sup>b</sup>  | 835 <sup>b</sup>    | 97,924 <sup>a</sup>     | 2,526 <sup>b</sup>  | ND                  | <0.001        | 0.007  | 0.04           |
| Hexanal         | ALD5 | 800 <sup>a</sup>  | 1,670,382 <sup>a</sup> | 1,433,613 <sup>ab</sup> | 1,349,386 <sup>ab</sup> | 1,329,246 <sup>ab</sup> | 1,471,910 <sup>ab</sup> | 1,279,524 <sup>ab</sup> | 1,160,749 <sup>ab</sup> | 1,077,237 <sup>b</sup> | 52,146 <sup>c</sup> | 11,308 <sup>c</sup> | 1,208,683 <sup>ab</sup> | 28,670 <sup>c</sup> | 7,059 <sup>c</sup>  | <0.001        | <0.001 | 0.007          |
| 2-Hexenal, (E)- | ALD6 | 862 <sup>a</sup>  | 1,671 <sup>a</sup>     | 1,502 <sup>a</sup>      | 1,618 <sup>a</sup>      | ND                      | 1,483 <sup>a</sup>      | 1,761 <sup>a</sup>      | ND                      | 1,175 <sup>a</sup>     | ND                  | ND                  | 1,677 <sup>a</sup>      | ND                  | ND                  | 0.328         | 0.293  | 0.654          |

|                  |       |                   |                      |                       |                       |                       |                       |                      |                       |                      |                      |                      |                      |                     |                     |        |        |        |
|------------------|-------|-------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|--------|--------|--------|
| Heptanal         | ALD7  | 913 <sup>a</sup>  | 32,777 <sup>ab</sup> | 41,189 <sup>a</sup>   | 30,746 <sup>abc</sup> | 20,111 <sup>bc</sup>  | 24,101 <sup>bc</sup>  | 18,686 <sup>bc</sup> | 15,645 <sup>c</sup>   | 23,055 <sup>bc</sup> | ND                   | ND                   | 23,055 <sup>bc</sup> | ND                  | ND                  | 0.033  | 0.022  | 0.403  |
| 2-Heptenal, (E)- | ALD8  | 963 <sup>a</sup>  | 6,843 <sup>a</sup>   | 5,247 <sup>abc</sup>  | 3,345 <sup>cd</sup>   | 2,413 <sup>d</sup>    | 6,019 <sup>ab</sup>   | 3,142 <sup>cd</sup>  | 1,635 <sup>d</sup>    | 2,821 <sup>cd</sup>  | ND                   | ND                   | 3,975 <sup>bcd</sup> | ND                  | ND                  | 0.087  | 0.001  | 0.609  |
| Benzaldehyde     | ALD9  | 970 <sup>a</sup>  | 3,191 <sup>a</sup>   | 3,243 <sup>a</sup>    | 2,097 <sup>bc</sup>   | 1,209 <sup>cd</sup>   | 2,711 <sup>ab</sup>   | 1,442 <sup>cd</sup>  | 1,169 <sup>cd</sup>   | 807 <sup>d</sup>     | ND                   | ND                   | 1,501 <sup>cd</sup>  | 573 <sup>d</sup>    | ND                  | <0.001 | <0.001 | 0.703  |
| Octanal          | ALD10 | 1004 <sup>a</sup> | 16,602 <sup>ab</sup> | 23,081 <sup>a</sup>   | 15,383 <sup>abc</sup> | 10,432 <sup>bcd</sup> | 11,006 <sup>bcd</sup> | 17,482 <sup>ab</sup> | 7,857 <sup>cd</sup>   | 5,515 <sup>d</sup>   | ND                   | ND                   | 7,801 <sup>cd</sup>  | ND                  | ND                  | 0.006  | 0.012  | 0.055  |
| 2-Octenal, (E)-  | ALD11 | 1061 <sup>a</sup> | 4,708 <sup>b</sup>   | 6,891 <sup>a</sup>    | 2,140 <sup>c</sup>    | 1,496 <sup>c</sup>    | 4,605 <sup>b</sup>    | 2,061 <sup>c</sup>   | 1,303 <sup>c</sup>    | 1,495 <sup>c</sup>   | ND                   | ND                   | 2,130 <sup>c</sup>   | ND                  | ND                  | <0.001 | <0.001 | 0.258  |
| Nonanal          | ALD12 | 1105 <sup>a</sup> | 23,797 <sup>b</sup>  | 33,213 <sup>a</sup>   | 15,183 <sup>c</sup>   | 13,512 <sup>c</sup>   | 14,725 <sup>c</sup>   | 14,776 <sup>c</sup>  | 10,347 <sup>cde</sup> | 7,410 <sup>cde</sup> | 2,571 <sup>de</sup>  | 2,084 <sup>de</sup>  | 10,886 <sup>c</sup>  | 3,037 <sup>de</sup> | 1,839 <sup>de</sup> | <0.001 | <0.001 | 0.058  |
| Total            |       |                   | 1,898,958            | 1,631,302             | 1,528,634             | 1,466,594             | 1,670,353             | 1,450,716            | 1,308,240             | 1,193,793            | 57,248               | 19,952               | 1,359,061            | 36,692              | 11,264              |        |        |        |
| Furans (1)       |       |                   |                      |                       |                       |                       |                       |                      |                       |                      |                      |                      |                      |                     |                     |        |        |        |
| 2-Pentylfuran    | F1    | 994 <sup>a</sup>  | 8,434 <sup>a</sup>   | 7,737 <sup>a</sup>    | 7,606 <sup>a</sup>    | 6,502 <sup>a</sup>    | 9,331 <sup>a</sup>    | 6,932 <sup>a</sup>   | 6,668 <sup>a</sup>    | 6,943 <sup>a</sup>   | ND                   | ND                   | 7,648 <sup>a</sup>   | ND                  | ND                  | 0.709  | 0.278  | 0.635  |
| Ketones (5)      |       |                   |                      |                       |                       |                       |                       |                      |                       |                      |                      |                      |                      |                     |                     |        |        |        |
| Acetol           | K1    | 670 <sup>b</sup>  | 643 <sup>d</sup>     | ND                    | 1,063 <sup>cd</sup>   | 1,395 <sup>bcd</sup>  | 523 <sup>d</sup>      | 2,669 <sup>b</sup>   | 4,546 <sup>a</sup>    | ND                   | 311 <sup>d</sup>     | 2,061 <sup>bc</sup>  | 227 <sup>d</sup>     | 698 <sup>d</sup>    | 2,042 <sup>bc</sup> | <0.001 | <0.001 | 0.06   |
| 2,3-Pentanedione | K2    | 694 <sup>a</sup>  | 4,341 <sup>a</sup>   | 4,019 <sup>a</sup>    | 3,857 <sup>a</sup>    | ND                    | 5,126 <sup>a</sup>    | 4,033 <sup>a</sup>   | 5,175 <sup>a</sup>    | 4,995 <sup>a</sup>   | ND                   | ND                   | 5,033 <sup>a</sup>   | ND                  | ND                  | 0.747  | 0.52   | 0.51   |
| Acetoin          | K3    | 714 <sup>a</sup>  | 1,743 <sup>def</sup> | 1,231 <sup>f</sup>    | 1,435 <sup>f</sup>    | 2,840 <sup>cde</sup>  | 719 <sup>f</sup>      | 1,856 <sup>def</sup> | 2,973 <sup>cd</sup>   | 788 <sup>f</sup>     | 3,789 <sup>bc</sup>  | 4,700 <sup>ab</sup>  | 1,501 <sup>ef</sup>  | 3,738 <sup>bc</sup> | 5,420 <sup>a</sup>  | <0.001 | <0.001 | 0.057  |
| 2-Heptanone      | K4    | 903 <sup>a</sup>  | 3,533 <sup>ab</sup>  | 3,123 <sup>ab</sup>   | 2,105 <sup>abc</sup>  | 1,985 <sup>bc</sup>   | 3,695 <sup>a</sup>    | 2,939 <sup>ab</sup>  | 1,880 <sup>bc</sup>   | 983 <sup>c</sup>     | ND                   | ND                   | 2,267 <sup>abc</sup> | ND                  | ND                  | 0.011  | 0.024  | 0.523  |
| 2,3-Octanedione  | K5    | 985 <sup>b</sup>  | 94,291 <sup>ab</sup> | 100,517 <sup>ab</sup> | 95,944 <sup>ab</sup>  | 91,352 <sup>ab</sup>  | 121,744 <sup>a</sup>  | 82,482 <sup>ab</sup> | 62,129 <sup>b</sup>   | 66,295 <sup>b</sup>  | 638 <sup>c</sup>     | 456 <sup>c</sup>     | 77,943 <sup>ab</sup> | 719 <sup>c</sup>    | ND                  | <0.001 | <0.001 | 0.176  |
| Total            |       |                   | 104,551              | 108,889               | 104,406               | 97,571                | 131,808               | 93,979               | 76,703                | 73,061               | 4,738                | 7,216                | 86,970               | 5,154               | 7,463               |        |        |        |
| Phenols (1)      |       |                   |                      |                       |                       |                       |                       |                      |                       |                      |                      |                      |                      |                     |                     |        |        |        |
| 2-Phenoxyethanol | PH1   | 1227 <sup>b</sup> | 1,742 <sup>cd</sup>  | 2,120 <sup>bc</sup>   | 2,775 <sup>ab</sup>   | 423 <sup>f</sup>      | 990 <sup>def</sup>    | 1,595 <sup>cd</sup>  | 1,324 <sup>cde</sup>  | 3,042 <sup>a</sup>   | 1,118 <sup>def</sup> | 1,077 <sup>def</sup> | 1,379 <sup>cde</sup> | 1,470 <sup>cd</sup> | 514 <sup>ef</sup>   | 0.021  | <0.001 | <0.001 |
| Pyrazines (1)    |       |                   |                      |                       |                       |                       |                       |                      |                       |                      |                      |                      |                      |                     |                     |        |        |        |
| 2-methylpyrazine | PY1   | 830 <sup>a</sup>  | ND                   | ND                    | ND                    | ND                    | 349 <sup>b</sup>      | 1,457 <sup>a</sup>   | ND                    | ND                   | ND                   | ND                   | ND                   | ND                  | ND                  | /      | 0.044  | /      |

\*Control = 2% NaCl, pH = 5.5; S5.5 = 1% NaCl, pH = 5.5; S6 = 1% NaCl, pH 6; S6.5 = 1% NaCl, pH = 6.5; SL5.5 = 1% NaCl + 3% lysine, pH = 5.5; SL6 = 1% NaCl + 3% lysine, pH = 6; SL6.5 = 1% NaCl + 3% lysine, pH = 6.5; SC5.5 = 1% NaCl + 1.5% calcium lactate, pH = 5.5; SC6 = 1% NaCl + 1.5% calcium lactate, pH = 6; SC6.5 = 1% NaCl + 1.5% calcium lactate, pH = 6.5; SLC5.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 5.5; SLC6 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6; SLC6.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6.5. ND means not detected. The letters in LRI column presented the reliability of identification, a means identification by mass spectrum and by coincidence with the LRI on a DB-5 column of an authentic standard; b means tentatively identification by mass spectrum. Averages within the same row followed by the same letters are not significantly different (P > 0.05).


3643 A total of 26 volatile compounds were detected in the control; notable the Maillard  
3644 derived 2-methylbutanal, 3-methylbutanal, and 2-methylpyrazine were not observed in  
3645 the control. 2-Methylpyrazine from the Maillard reaction was only released in the salt-  
3646 reduced pork patties with added lysine, and the amount increased with increasing pH  
3647 ( $p < 0.05$ ; Supplementary table 13). This is not surprising since lysine as an amino acid  
3648 is an efficient reactant for the Maillard reaction, and the higher the pH, the more reactive  
3649 the protonated amino groups are with sugars, resulting in increasing the products of the  
3650 Maillard reaction (Martins, Jongen and Van Boekel, 2000). The Strecker aldehydes 2-  
3651 methylbutanal and 3-methylbutanal, also from the Maillard reaction, were only released  
3652 in the salt-reduced pork patties containing lysine and calcium lactate, and their levels  
3653 also increased with raising pH ( $p < 0.05$ ; Supplementary table 13). The salt-reduced  
3654 pork patties with lysine alone only contained these Strecker aldehydes at the highest pH  
3655 (SL6.5), whilst the salt-reduced pork patties with calcium lactate began to show 2-  
3656 methylbutanal and 3-methylbutanal from pH 6, and the amount was higher than that  
3657 from the lysine only patty ( $p < 0.05$ ; Supplementary table 13). Table 4.3 also shows that  
3658 when lysine and calcium lactate were added together to salt-reduced pork patties, the  
3659 amount of 2-methylbutanal and 3-methylbutanal were lower than when only calcium  
3660 lactate was added ( $p < 0.05$ ). According to Jane's (2013) work, it could be explained  
3661 that Strecker aldehydes are produced more at lower pH and pyrazines more at higher  
3662 pH, and the calcium lactate kept the pH lower during cooking (and there may well still  
3663 be sufficient of the amino acids that lead to 3 and 2 methyl butanal in the meat itself).  
3664 The reduction in salt alone (without salt replacers) had no effect on the relative amounts  
3665 of alcohols, furans, hydrocarbons, phenols, and most of aldehydes and ketones;  
3666 however, only hexanoic acid, 2-pentyloxirane, butanal, nonanal, 2-octenal and acetol  
3667 were significantly decreased compared with the control ( $p > 0.05$ ; Supplementary table

3668 9). Hu *et al.* (2020) report a similar result that different NaCl levels almost not vary  
3669 volatile flavour compounds derived from lipid oxidation in treatments. When lysine  
3670 was added to the salt-reduced pork patty alone as a salt substitute, there was little change  
3671 in the amount of lipid-derived flavour compounds compared to the control ( $p > 0.05$ ),  
3672 except for a significant reduction in the amount of 1-octanol and nonanal ( $p < 0.05$ ;  
3673 Supplementary table 13). However, the addition of calcium lactate alone had a  
3674 substantial and significant impact in reducing the majority of lipid-derived volatile  
3675 flavour compounds compare to control ( $p < 0.05$ ; Supplementary table 13), the only  
3676 compound not affected by calcium lactate were acids, 1-penten-3-ol, 1-pentanol,  
3677 pentanal, heptanal, 2-hexenal, furans, and some ketones ( $p > 0.05$ ; Supplementary table  
3678 13). When these two salt substitutes were added together to the salt-reduced pork patty,  
3679 the amounts of phenols, ketones, furans, benzenes and acids were not significantly  
3680 different compared to the control ( $p > 0.05$ ), half of the alcohols and aldehydes were  
3681 significantly reduced ( $p < 0.05$ ). It may be explained by the pH and moisture content.  
3682 According to Kim's work (2016), an acidic environment can slow down lipid oxidation  
3683 by limiting the formation of free radicals and decreasing the solubility of oxygen. In  
3684 addition, In the presence of water, lipid oxidation reactions can occur faster, as water  
3685 can participate in the reactions and enhance the formation of peroxides (Shahidi and  
3686 Zhong, 2010). Therefore, the addition of calcium lactate resulted in a low water content  
3687 and pH after cooking, thereby reducing the rate of lipid oxidation, so lipid-derived  
3688 flavor compounds were less relative to other treatments. In addition, it is worth noting  
3689 that table 3 clearly shows that there are interactions between the type of salt substitute  
3690 and pH, affecting the level of hexanoic acid, 1-pentanol, 2-methylbutanal, 3-  
3691 methylbutanal, pentanal, hexanal and 2-phenoxyethanol. Therefore, the effect of salt  
3692 substitutes on these chemical compounds are dependent on the pH. Apart from 2-

3693 methylbutanal and 3-methylbutanal which increased with the level of salt substitutes at  
3694 high pH only, the levels of the other flavor compounds decreased significantly with  
3695 level of salt substitutes at all pHs. So far the mechanism of action remains unclear, and  
3696 further experiments are needed to elucidate potential mechanisms.

3697 PCA was performed to visually compare the volatile profile from the 13 treatments  
3698 (Figure 5.1) and to observe the correlations between ingredients, pH and volatile  
3699 compounds. The PCA results (Figure 1a) clearly showed that the salt-reduced pork with  
3700 different ingredients and pH were well differentiated. In total, principal components  
3701 one (F1) and two (F2) explained 79.61% of the variation present in the data, F1  
3702 explained 68.05% of the variance and 11.56% for F2. The first component (F1)  
3703 separated samples predominantly on the different ingredients (50% salt, lysine, calcium  
3704 lactate), while the second component (F2) separated samples predominantly by pH (5.5,  
3705 6, 6.5). Salt-reduced pork containing calcium lactate was positioned on the left and  
3706 furthest away from the standard salt control. These sample were characterised by  
3707 containing fewer volatile compounds overall, but by being higher in the Strecker  
3708 aldehydes (2- and 3-methylbutanal) and acetoin. Salt-reduced pork treated with lower  
3709 pH (5.5, 6) with calcium lactate or no added salt substitutes were inversely associated  
3710 with F2. These sample mainly produced acids, phenols and lots of lipid-derived  
3711 aldehydes like heptanal and nonanal. In contrast, any reduced-salt pork containing  
3712 lysine alone and at the highest pH (6.5) were positively associated with F2, and these  
3713 sample mainly presented alkanes, alcohols, pyrazines and pentanal, hexanal, octanal.  
3714 The volatile compounds in salt-reduced pork containing lysine only or without any  
3715 substitutes at lower pH (5.5, 6) were similar with control, especial only contain lysine  
3716 at pH 5.5 (SL5.5). It could be that the volatile flavour compounds of pork were like  
3717 alcohols, ketones, aldehydes when heated. A strong significant relationship between

3718 compound groups were also found, such as alcohols and alkanes showed a strong  
3719 positive correlation, while most of the aldehydes and ketones showed a strong negative  
3720 correlation. Whereas the addition of lysine led to the formation and release of the one  
3721 pyrazine identified, and only in the higher pH samples (pH 6 and 6.5), which fits with  
3722 the expect. ntified, and only in the higher pH samples (pH 6 and 6.5), which fits with  
3723 the expect. It is worth noting that most of the low pH samples had more volatile  
3724 compounds. This is because low pH accelerates lipid oxidation and releases more flavor  
3725 compounds (Parker, 2013). Acidic conditions can promote chemical reactions to  
3726 generate more volatile compounds. For example, under acidic conditions esterification  
3727 and hydrolysis reactions were accelerated, leading to the formation or breakdown of  
3728 volatile esters or other volatile compounds (Khan *et al.*, 2021). In addition, functional  
3729 groups on organic compounds can become protonated in low pH conditions.  
3730 Protonation can alter the polarity and reactivity of molecules, making them more  
3731 volatile (Petukh, Stefl and Alexov, 2013). This is particularly relevant for compounds  
3732 containing amine groups, which can be protonated to form ammonium ions that are  
3733 more volatile (Zhu, Riskowski and Torremorell, 1999).



3734  
 3735 Figure 5.1. Principal component analysis of pork patties varying in salt, lysine, calcium lactate and pH. Control = 2% NaCl, pH = 5.5; S5.5 = 1% NaCl, pH = 5.5; S6 = 1% NaCl, pH 6; S6.5 = 1%  
 3736 NaCl, pH = 6.5; SL5.5 = 1% NaCl + 3% lysine, pH = 5.5; SL 6 1% NaCl + 3% lysine, pH = 6; SL6.5 = 1% NaCl + 3% lysine, pH = 6.5; SC5.5 = 1% NaCl + 1.5% calcium lactate, pH = 5.5; SC6  
 3737 = 1% NaCl + 1.5% calcium lactate, pH = 6; SC6.5 = 1% NaCl + 1.5% calcium lactate, pH = 6.5; SLC5.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 5.5; SLC6 = 1% NaCl + 3%  
 3738 lysine + 1.5% calcium lactate, pH = 6; SLC6.5 = 1% NaCl + 3% lysine + 1.5% calcium lactate, pH = 6.5. AC1 = butanoic acid; AC2 = hexanoic acid; ALK1 = 2-pentyloxirane; ALC1 = 1-  
 3739 penten-3-ol; ALC2 = 1-pentanol; ALC3 = 1-hexanol; ALC4 = 1-heptanol; ALC5 = 1-octen-3-ol; ALC6 = 1-octanol; ALD1 = butanal; ALD2 = 2-methylbutanal; ALD3 = 3-methylbutanal;  
 3740 ALD4 = pentanal; ALD5 = hexanal; ALD6 = 2-hexenal,(E)-; ALD7 = heptanal; ALD8 = 2-heptenal, (E)-; ALD9 = benzaldehyde; ALD10 = octanal; ALD11 = 2-octenal, (E)-; ALD12 = nonanal;  
 3741 F1 = 2-pentylfuran; K1 = acetol; K2 = 2,3-pentanedione; K3 = acetoin; K4 = 2-heptanone; K5 = 2,3-octanedione; PH1= 2-phenoxyethanol; PY1 = 2-methylpyrazine. Compounds in red were  
 3742 produced by lipid degradation, compounds in blue were produced by Maillard reaction.

3743 **5.4 Conclusion**

3744 This work analysed the changes in the physicochemical properties and volatile flavour  
3745 compounds of pork patty at different levels of pH and using different salt substitutes.  
3746 The results showed that increasing the pH significantly increased the moisture content  
3747 post processing, thus reducing cooking loss. According to the analysis of GC-MS, only  
3748 a small amount of volatile flavour compounds associated with the Maillard reaction  
3749 were produced in pork patties at increased pH, with almost all other volatile compounds  
3750 coming from lipid degradation. Therefore, this means that lysine is not heavily involved  
3751 in the Maillard reaction in an acidic environment (5.5 – 6.5) when added to pork patty  
3752 as a salt substitute without additional adjustment of pH. This provides an idea of the  
3753 content of lysine to be added to different type of meat products, while subsequent  
3754 experiments can further analyse the flavour compounds corresponding to the salty taste  
3755 produced by lysine. There are also some limitations in this experiment, which need to  
3756 be improved in future experiment. Since the experimental sample (salt-reduced pork  
3757 patty) was not extracted, and minced meat was directly used for the analysis of flavour  
3758 compounds, some interfering compounds existing in the product may interfere result  
3759 and reduce the accuracy of measurement. Hence extraction methodd other than SPME  
3760 should be explored. In addition, the flavour compounds generated due to addition of  
3761 lysine and calcium lactate at pH 5.5 - 6.5 may be odour-active compounds that may be  
3762 present at much lower level, that may affect the consumers' eating experience, hence  
3763 further sensory tests should be conducted to verify the result.

3764 **Acknowledgement**

3765 Christopher Bussey and Stephen Elmore at University of Reading are thanked for the  
3766 technical support.

3767 **References**

3768 Ames, J.M., 1992. The Maillard reaction. In *Biochemistry of food proteins* (pp. 99-153).  
3769 Springer, Boston, MA.

3770 Aaslyng, M.D., Bejerholm, C., Ertbjerg, P., Bertram, H.C. and Andersen, H.J., 2003.  
3771 Cooking loss and juiciness of pork in relation to raw meat quality and cooking  
3772 procedure. *Food quality and preference*, 14(4), pp.277-288.

3773 Aaslyng, M.D. and Meinert, L., 2017. Meat flavour in pork and beef—From animal to  
3774 meal. *Meat science*, 132, pp.112-117.

3775 Betts, M.J. and Russell, R.B., 2003. Amino acid properties and consequences of  
3776 substitutions. *Bioinformatics for geneticists*, 317, p.289.

3777 Calkins, C.R. and Hodgen, J.M., 2007. A fresh look at meat flavor. *Meat science*, 77(1),  
3778 pp.63-80.

3779 Campagnol, P.C.B., dos Santos, B.A., Morgano, M.A., Terra, N.N. and Pollonio,  
3780 M.A.R., 2011. Application of lysine, taurine, disodium inosinate and disodium  
3781 guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. *Meat*  
3782 *science*, 87(3), pp.239-243.

3783 Deng, S., Liu, Y., Huang, F., Liu, J., Han, D., Zhang, C. and Blecker, C., 2021.  
3784 Evaluation of volatile flavor compounds in bacon made by different pig breeds during  
3785 storage time. *Food Chemistry*, 357, p.129765.

3786 Desmond, E. and Vasilopoulos, C., 2019. Reducing salt in meat and poultry products.  
3787 In *Reducing salt in foods* (pp. 159-183). Woodhead Publishing.

3788 Dos Santos Alves, L., Lorenzo, J., Gonçalves, C., dos Santos, B., Heck, R., Cichoski,  
3789 A. and Campagnol, P., 2017. Impact of lysine and liquid smoke as flavor enhancers on  
3790 the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl.  
3791 *Meat Science*, 123, pp.50-56.

3792 Grosch, W., 2001. Evaluation of the key odorants of foods by dilution experiments,  
3793 aroma models and omission. *Chemical senses*, 26(5), 533-545.

3794 Guerrero, L., Gou, P. and Arnau, J., 1999. The influence of meat pH on mechanical and  
3795 sensory textural properties of dry-cured ham. *Meat science*, 52(3), pp.267-273.

3796 Guo, X., Tao, S., Pan, J., Lin, X., Ji, C., Liang, H., Dong, X. and Li, S., 2020. Effects  
3797 of L-Lysine on the physiochemical properties and sensory characteristics of salt-  
3798 reduced reconstructed ham. *Meat science*, 166, p.108133.

3799 Hong, G. P., Park, S. H., Kim, J. Y., and Min, S. G., 2006. The effects of high pressure  
3800 and various binders on the physico-chemical properties of restructured pork meat.  
3801 *Asian-australasian journal of animal sciences*, 19(10), 1484-1489.

3802 Honikel, K.O., 2004. Water-holding capacity of meat. *Muscle development of livestock  
3803 animals: Physiology, genetics and meat quality*, pp.389-400.

3804 Hu, Y., Zhang, L., Zhang, H., Wang, Y., Chen, Q. and Kong, B., 2020. Physicochemical  
3805 properties and flavour profile of fermented dry sausages with a reduction of sodium  
3806 chloride. *Lwt*, 124, p.109061.

3807 Inguglia, E., Zhang, Z., Tiwari, B., Kerry, J. and Burgess, C., 2017. Salt reduction  
3808 strategies in processed meat products – A review. *Trends in Food Science &  
3809 Technology*, 59, pp.70-78.

3810 Irshad, A., Sharma, B., Ahmed, S., Talukder, S., Malav, O. and Kumar, A., 2016. Effect  
3811 of incorporation of calcium lactate on physico-chemical, textural, and sensory  
3812 properties of restructured buffalo meat loaves. *Veterinary World*, 9(2), pp.151-159.

3813 Jayasena, D.D., Ahn, D.U., Nam, K.C. and Jo, C., 2013. Factors affecting cooked  
3814 chicken meat flavour: A review. *World's Poultry Science Journal*, 69(3), pp.515-526.

3815 Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Zimmerman, W.B.  
3816 and Rehman, F., 2021. Current developments in esterification reaction: A review on

3817 process and parameters. *Journal of Industrial and Engineering Chemistry*, 103, pp.80-  
3818 101.

3819 Kim, J.Y., Yi, B., Lee, C., Gim, S.Y., Kim, M.J. and Lee, J., 2016. Effects of pH on the  
3820 rates of lipid oxidation in oil-water system. *Applied Biological Chemistry*, 59(2),  
3821 pp.157-161.

3822 Kubantseva, N. and Hartel, R.W., 2002. Solubility of calcium lactate in aqueous  
3823 solution. *Food Reviews International*, 18(2-3), pp.135-149.

3824 Lawrence, T., Dikeman, M., Hunt, M., Kastner, C. and Johnson, D., 2003. Effects of  
3825 calcium salts on beef longissimus quality. *Meat Science*, 64(3), pp.299-308.

3826 Lawrence, T.E., Dikeman, M.E., Hunt, M.C., Kastner, C.L. and Johnson, D.E., 2004.  
3827 Effects of enhancing beef longissimus with phosphate plus salt, or calcium lactate plus  
3828 non-phosphate water binders plus rosemary extract. *Meat Science*, 67(1), pp.129-137.

3829 Madruga, M.S., 1997. Studies on some precursors involved in meat flavour  
3830 formation. *Food Science and Technology*, 17, pp.148-153.

3831 Martins, S.I., Jongen, W.M. and Van Boekel, M.A., 2000. A review of Maillard reaction  
3832 in food and implications to kinetic modelling. *Trends in food science &*  
3833 *technology*, 11(9-10), pp.364-373.

3834 Mottram, D.S., 1998. Flavour formation in meat and meat products: a review. *Food  
3835 chemistry*, 62(4), pp.415-424.

3836 Parker, J.K., 2013. The kinetics of thermal generation of flavour. *Journal of the Science  
3837 of Food and Agriculture*, 93(2), pp.197-208.

3838 Petit, G., Jury, V., de Lamballerie, M., Duranton, F., Pottier, L. and Martin, J.L., 2019.  
3839 Salt intake from processed meat products: Benefits, risks and evolving practices.  
3840 *Comprehensive Reviews in Food Science and Food Safety*, 18(5), pp.1453-1473.

3841 Petukh, M., Stefl, S. and Alexov, E., 2013. The role of protonation states in ligand-  
3842 receptor recognition and binding. *Current pharmaceutical design*, 19(23), pp.4182-  
3843 4190.

3844 Richards, M.P., 2013. Redox reactions of myoglobin. *Antioxidants & redox signaling*,  
3845 18(17), pp.2342-2351.

3846 Robbins, K., Jensen, J., Ryan, K. J., Homco-Ryan, C., McKeith, F. K., & Brewer, M.  
3847 S., 2003. Consumer attitudes towards beef and acceptability of enhanced beef. *Meat*  
3848 *Science*, 65(2), 721-729.

3849 Ruedt, C., Gibis, M. and Weiss, J., 2022. Effect of varying salt concentration on  
3850 iridescence in precooked pork meat. *European Food Research and Technology*, pp.1-  
3851 12.

3852 Rucker, A.J., Rudemiller, N.P. and Crowley, S.D., 2018. Salt, hypertension, and  
3853 immunity. *Annual review of physiology*, 80, p.283.

3854 Shahidi, F. and Zhong, Y., 2010. Lipid oxidation and improving the oxidative  
3855 stability. *Chemical society reviews*, 39(11), pp.4067-4079.

3856 Sun, A., Wu, W., Soladoye, O.P., Aluko, R.E., Bak, K.H., Fu, Y. and Zhang, Y., 2022.  
3857 Maillard reaction of food-derived peptides as a potential route to generate meat flavor  
3858 compounds: A review. *Food Research International*, 151, p.110823.

3859 Tichivangana, J.Z. and Morrissey, P.A., 1985. The influence of pH on lipid oxidation  
3860 in cooked meats from several species. *Irish Journal of Food Science and Technology*,  
3861 pp.99-106.

3862 Tobin, B.D., O'Sullivan, M.G., Hamill, R.M. and Kerry, J.P., 2013. The impact of salt  
3863 and fat level variation on the physicochemical properties and sensory quality of pork  
3864 breakfast sausages. *Meat Science*, 93(2), pp.145-152.

3865 Van Ba, H., Hwang, I., Jeong, D. and Touseef, A., 2012. Principle of meat aroma  
3866 flavors and future prospect. *Latest research into quality control*, 2, pp.145-176.

3867 Van Ba, H., Amna, T. and Hwang, I., 2013. Significant influence of particular  
3868 unsaturated fatty acids and pH on the volatile compounds in meat-like model systems.  
3869 *Meat Science*, 94(4), pp.480-488.

3870 Van Boekel, M. A. J. S., 2006. Formation of flavour compounds in the Maillard reaction.  
3871 *Biotechnology advances*, 24(2), 230-233.

3872 Vidal, V.A., Santana, J.B., Paglarini, C.S., da Silva, M.A., Freitas, M.Q., Esmerino,  
3873 E.A., Cruz, A.G. and Pollonio, M.A., 2020. Adding lysine and yeast extract improves  
3874 sensory properties of low sodium salted meat. *Meat Science*, 159, p.107911.

3875 Wen, R., Hu, Y., Zhang, L., Wang, Y., Chen, Q. and Kong, B., 2019. Effect of NaCl  
3876 substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage.  
3877 *Meat Science*, 156, pp.33-43

3878 World Health Organisation, 2020. Salt Reduction, Fact Sheets. Retrieved 3 November  
3879 2020 from <https://www.who.int/news-room/fact-sheets/detail/salt-reduction>

3880 Xie, J., Sun, B., Zheng, F. and Wang, S., 2008. Volatile flavor constituents in roasted  
3881 pork of Mini-pig. *Food Chemistry*, 109(3), pp.506-514.

3882 Yang, X., Sebranek, J.G., Luo, X., Zhang, W., Zhang, M., Xu, B., Zhang, Y. and Liang,  
3883 R., 2021. Effects of calcium salts on the physicochemical quality of cured beef sausages  
3884 during manufacturing and storage: A potential calcium application for sausages with  
3885 alginate casings. *Foods*, 10(11), p.2783.

3886 Zhou, C., Li, J., and Tan, S., 2014. Effect of L-lysine on the physicochemical properties  
3887 of pork sausage. *Food Science and Biotechnology*, 23(3), 775-780.

3888 Zhu, J., Riskowski, G.L. and Torremorell, M., 1999. Volatile fatty acids as odor  
3889 indicators in swine manure—a critical review. *Transactions of the ASAE*, 42(1), pp.175-  
3890 182.

3891    **Chapter 6 General discussion and conclusion**

3892    As explained in the previous chapter (Chapter 1), salt has important roles in meat  
3893    products, such as improving texture, extending shelf life and contributing to salty taste  
3894    (Liem Miremadi and Keast, 2011; Hutton, 2002). However, excessive salt intake will  
3895    increase the risk of high blood pressure and cardiovascular disease (Aaron and Sanders,  
3896    2013; He and MacGregor, 2010). Therefore, there are some widely used salt reduction  
3897    strategies, including changing the physical form of salt, using flavor enhancers and  
3898    replacing sodium chloride with potassium chloride (Campagnol, Dos Santos and  
3899    Rodriguez-Pollonio, 2017; Moncada *et al.*, 2015; Doyle and Glass, 2010). However,  
3900    each of these strategies has its limitations. Salt reduction by changing form only and  
3901    can changes salt taste intensity over time in solid food (Kilcast and Den Ridder, 2007);  
3902    KCl leads to salty taste, but also bring off- taste like bitterness (Wu *et al.*, 2014); use of  
3903    flavour enhancers is usually achieved through ingredients high in umami taste (e.g. soy  
3904    sauce) (Maluly *et al.*, 2017), which questions whether salty taste is really enhanced or  
3905    whether it is the taste quality that has changed. With this in mind, in order to better  
3906    select a more suitable new salt substitute, one of the first aspects of this thesis was to  
3907    address the role of umami, and later an amino acid (lysine) in salt-taste interactions.  
3908    In Chapter 2, five aqueous solutions presenting the 5 basic tastes at equi-intense levels,  
3909    were used to evaluate the relationship between umami and other tastes, by scoring their  
3910    specific and overall taste intensity using the general labeled magnitude scale. The  
3911    results concluded that the addition of umami taste did not enhance or suppress any other  
3912    taste; but the addition of sweet, salty, sour and bitter did significantly suppress umami

3913 taste. Although this experiment filled the gap in the literature concerning the  
3914 relationship between umami and other taste sensations, the experimental results  
3915 rejected the hypothesis that umami could be used as a salt substitute. Although there  
3916 are many studies claiming that umami taste can increase salty taste in food (Maluly *et*  
3917 *al.*, 2017; Dos Santos Alves *et al.*, 2014; Yamaguchi & Takahashi, 1984), the results  
3918 could be conflicted due to the difference in methodology, tastant concentration or  
3919 sensory group. Trained sensory panelists, such as the assessors in this study, “dissect”  
3920 a product into its component attributes for rating, whereas consumers “synthesise” the  
3921 information from the foods they are tasting (Ares and Varela, 2017). So, where a trained  
3922 panel might be better at discriminating between salty and umami taste (and therefore  
3923 not conclude that umami enhances salty taste), consumers may be more inclined to  
3924 notice the overall increase in salty or savoury taste where umami and salty are used  
3925 together.

3926 Since it was confirmed in Chapter 2 that umami could not increase saltiness, new salt  
3927 substitutes were further explored. Lysine and calcium lactate were considered as viable  
3928 options. Previous studies have used lysine as a flavour enhancer, and it could effectively  
3929 improve the physical-chemical properties of meat products like high yield and cover  
3930 the off-taste by KCl (Guo *et al.*, 2020; Dos Santos Alves *et al.*, 2014; Campagnol *et al.*,  
3931 2012); whereas calcium ions are perceived with a weak salty taste, and lactic acid can  
3932 inhibit the growth of bacteria (Kilcast and Den Ridder, 2007; Shelef and Potluri, 1995).  
3933 Therefore, the combination of lysine and calcium lactate could offer great potential to  
3934 replace salt in terms of salty taste and ionic function, and at the same time it may even

3935 effectively prevent the reduction in shelf life usually caused by salt reduction. In order  
3936 to find the taste of the potential salt replacers, a simple aqueous solutions system was  
3937 used. Chapter 3 used a trained sensory panel with same method as Chapter 2 to assess  
3938 the replacers in an aqueous system. The result indicated that 1% w/v lysine produced a  
3939 very weak saltiness, and 0.75 % w/v calcium lactate alone did not offer saltiness, while  
3940 the combination of 0.75% w/v calcium lactate and 1% w/v lysine or 1% lysine alone  
3941 could replace 50% of salt in solution as they offered comparable saltiness with the  
3942 control full salt sample (0.5%), although bitterness was perceived by the sensory panel.  
3943 Therefore, lysine can be considered as an effective salt substitute.

3944 Although Calcium lactate did not confer any salty taste, it can offer the benefit of  
3945 antimicrobial function to address key issue of shelf life for salt reduced food products  
3946 along with function of calcium fortification. Hence, the combination of lysine and  
3947 calcium lactate were considered as great potential for developing salt reduction strategy  
3948 for food production, hence their effects were further validated in a real food matrix. In  
3949 chapter 4, varied levels of lysine (3% and 6% w/w) and calcium lactate (1.5% and 3%  
3950 w/w) were added into a 50% salt-reduced pork patty, and physical-chemical properties,  
3951 sensory and microbiological tests were carried out to determine whether they can be  
3952 effectively used in meat products. The results showed that both calcium lactate and  
3953 lysine improved texture and colour but decreased water holding capacity of a salt-  
3954 reduced pork patty. Additionally, lysine increased the yield, and calcium lactate  
3955 improved shelf-life. Most importantly, the combination of 1.5% w/w calcium lactate  
3956 and 3% w/w lysine could compensate the loss in saltiness caused by 50% salt reduction

3957 in pork patty. This provides a good strategy for the meat processing industry to reduce  
3958 salt content while maintaining the quality of the final product. However, the cost needs  
3959 to be considered, as lysine and calcium lactate are more expensive than salt. Research  
3960 reported that consumers were willing to pay extra for the health benefit of salt reduced  
3961 products, hence it would be worthwhile to perform market research to confirm this in  
3962 the future.

3963 The Maillard reaction is one of the most important routes forming aroma volatiles in  
3964 cooked meat (Van Boekel, 2006). As one of the basic active amino acids, lysine could  
3965 participate in the Maillard reaction during the heating process, resulting in a decrease  
3966 in lysine content and affecting its function of compensating salty taste in salt reduced  
3967 products. In addition, the Maillard reaction is very pH dependent (Calkins and Hodgen,  
3968 2007). Therefore, Chapter 5 explored the effects of normal meat pH levels (5.5, 6, 6.5)  
3969 and substrates (lysine and calcium lactate) on the physico-chemical properties of salt-  
3970 reduced pork patty, especially the volatile flavor compounds. The results showed that  
3971 increasing the pH significantly decreased cooking loss, thus increasing the moisture  
3972 content. Most volatile compounds within the patties were attributed to lipid degradation,  
3973 whereas there were very few Maillard reaction-derived volatile flavour compounds  
3974 detected after heating, and they were only in relatively small amounts within the  
3975 observed meat pH range. Therefore, this means that lysine was not heavily involved in  
3976 the Maillard reaction in the meat products which typically have a weak acidic  
3977 environment (5.5 - 6.5). In addition, the patties had a small surface area to volume ratio,  
3978 meaning that very little of the patty would have reached temperature of over 100 °C at

3979 low water activity that is required for greater Maillard reaction. Combined with the  
3980 sensory results from the previous chapters (Chapter 4), thus, it is feasible to use lysine  
3981 as a salt substitute in meat products without substantially altering the flavor profile of  
3982 the food.

3983 In conclusion, lysine and calcium lactate could effectively compensate the saltiness loss  
3984 in 50% salt reduction pork patty as salt substitutes. Additionally, it also provides  
3985 important directions for future research. Of course, this study also has many limitations.

3986 Although the experiment in Chapter 2 showed that umami had no effect on other tastes,  
3987 the results are only limited to a specific concentration range and trained panelists.

3988 Hence, future research should further explore the relationship between umami and  
3989 saltiness, and more complex food models should also be used, such as real food systems,  
3990 different concentrations, etc. Chapter 3 found that 1% w/v lysine had weak salty taste,  
3991 but the mechanism of lysine eliciting saltiness is not clear, this deserves a more in-depth  
3992 study. Therefore, the future work needs to understand the mode of action of lysine in  
3993 terms of salty taste. For example, lysine could produce saltiness through ENaC, or there  
3994 may be another specific channel or multi-pathways involved for lysine to stimulate the

3995 brain to release salty signals. In Chapter 4, the combination of 1.5% w/w calcium lactate  
3996 and 3% w/w lysine could compensate the loss in saltiness caused by 50% salt reduction  
3997 in pork patty and achieve comparable or better shelf life. However, this combination is  
3998 verified in pork patties, further validation in other food matrices, such as bread, etc.  
3999 should be conducted before application. In addition, the potentially positive effect of  
4000 calcium fortification using calcium lactate needs further analysis. Overall, the

4001 combination of lysine and calcium lactate offers a viable option for meat industry to  
4002 develop salt reduced meat products, while validation of the salt substitution effect  
4003 should be conducted before applying to other foods. At the same time, the content of  
4004 lysine and calcium should also be optimised to confirm if they can provide health  
4005 benefits to consumers. Although the experiment in Chapter 5 confirmed that lysine  
4006 hardly participates the Maillard reaction when heated in a typical meat product  
4007 environment ( $\text{pH} = 5.5 \sim 6.5$ ), the surface area and thickness of salt-reduced pork patties  
4008 may also affect the extent of Maillard reaction due to high temperature/low moisture  
4009 condition (the optimum reaction environment). So, future experiments can further  
4010 refine the experiments by considering the product dimension in this aspect. For example,  
4011 the flavor compounds of different parts (surface, centre) can also be analyzed separately  
4012 considering the difference in the degree of Maillard reaction. Since Maillard reaction  
4013 only happens on the surface of the meat products, it would be useful to investigate the  
4014 effect of ratio of surface area to mass on the flavour formation, because meat products  
4015 differ in size and shape. The involvement in Maillard reaction could directly affect the  
4016 efficiency of lysine imparting its saltiness. In addition, it is useful to measure the  
4017 content of lysine in pork patty before and after heating in order to further confirm the  
4018 extent of lysine participating the Maillard reaction. In the follow-up experiments, the  
4019 flavor compounds corresponding to the salty taste produced by lysine can be further  
4020 studied and analyzed.

4021 **Reference**

4022 Aaron, K. and Sanders, P., 2013. Role of Dietary Salt and Potassium Intake in  
4023 Cardiovascular Health and Disease: A Review of the Evidence. *Mayo Clinic  
4024 Proceedings*, 88(9), pp.987-995.

4025 Ares, G. and Varela, P., 2017. Trained vs. consumer panels for analytical testing:  
4026 Fueling a long lasting debate in the field. *Food Quality and Preference*, 61, 79-86.

4027 Calkins, C.R. and Hodgen, J.M., 2007. A fresh look at meat flavor. *Meat science*, 77(1),  
4028 pp.63-80.

4029 Campagnol, P., Dos Santos, B., Terra, N. and Pollonio, M., 2012. Lysine, disodium  
4030 guanylate and disodium inosinate as flavor enhancers in low-sodium fermented  
4031 sausages. *Meat Science*, 91(3), pp.334-338.

4032 Campagnol, P.C.B., dos Santos, B.A. and Rodriguez-Pollonio, M.A., 2017. Strategies  
4033 to reduce the salt content in fermented meat products. *Strategies for Obtaining  
4034 Healthier Foods*, p.291.

4035 Dos Santos, B., Campagnol, P., Morgano, M. and Pollonio, M., 2014. Monosodium  
4036 glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the  
4037 sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl  
4038 with KCl. *Meat Science*, 96(1), 509-513.

4039 Doyle, M.E. and Glass, K.A., 2010. Sodium reduction and its effect on food safety,  
4040 food quality, and human health. *Comprehensive reviews in food science and food safety*,  
4041 9(1), pp.44-56.

4042 Guo, X., Tao, S., Pan, J., Lin, X., Ji, C., Liang, H., Dong, X. and Li, S., 2020. Effects  
4043 of L-Lysine on the physiochemical properties and sensory characteristics of salt-  
4044 reduced reconstructed ham. *Meat science*, 166, p.108133.

4045 He, F.J. and MacGregor, G.A., 2010. Reducing population salt intake worldwide: from  
4046 evidence to implementation. *Progress in cardiovascular diseases*, 52(5), pp.363-382.

4047 Hutton, T. 2002. Sodium: Technological functions of salt in the manufacturing of food  
4048 and drink products. *British Food Journal*, 104(2):126-152.

4049 Kilcast, D. and Den Ridder, C., 2007. Sensory issues in reducing salt in food products.  
4050 In *Reducing salt in foods* (pp. 201-220). Woodhead publishing.

4051 Liem, D., Miremadi, F. and Keast, R., 2011. Reducing Sodium in Foods: The Effect on  
4052 Flavor. *Nutrients*, 3(6), pp.694-711.

4053 Maluly, H.D., Arissetto-Bragotto, A.P. and Reyes, F.G., 2017. Monosodium glutamate  
4054 as a tool to reduce sodium in foodstuffs: Technological and safety aspects. *Food science  
4055 & nutrition*, 5(6), 1039-1048.

4056 Moncada, M., Astete, C., Sabliov, C., Olson, D., Boeneke, C., and Aryana, K. J., 2015.  
4057 Nano spray-dried sodium chloride and its effects on the microbiological and sensory  
4058 characteristics of surface-salted cheese crackers. *Journal of dairy science*, 98(9), 5946-  
4059 5954.

4060 Shelef, L.A. and Potluri, V., 1995. Behaviour of foodborne pathogens in cooked liver  
4061 sausage containing lactates. *Food Microbiology*, 12, pp.221-227.

4062 Van Boekel, M. A. J. S., 2006. Formation of flavour compounds in the Maillard reaction.  
4063 *Biotechnology advances*, 24(2), 230-233.

4064 Wu, H., Zhang, Y., Long, M., Tang, J., Yu, X., Wang, J., and Zhang, J., 2014.

4065 Proteolysis and sensory properties of dry-cured bacon as affected by the partial

4066 substitution of sodium chloride with potassium chloride. *Meat science*, 96(3), 1325-

4067 1331.

4068 Yamaguchi, S., and Takahashi, C., 1984. Interactions of monosodium glutamate and

4069 sodium chloride on saltiness and palatability of clear soup. *Journal of Food Science*,

4070 49(1), 82– 85.

4071 **Acknowledgement**

4072 As I embark on the final stages of my PhD journey, I would like to express my heartfelt  
4073 gratitude to all those who have supported me along the way.

4074 Firstly, I would like to extend my deepest appreciation to my advisor, Prof.Lisa  
4075 Methven and Dr.Qiaofen Cheng, for their unwavering support, guidance, and  
4076 mentorship throughout my studies. Their expertise, encouragement, and constructive  
4077 feedback have been instrumental in shaping my research and helping me to reach my  
4078 full potential. I cannot image that I could finish my PhD work without their help.

4079 I am also grateful to my friends who have provided me with academic and moral  
4080 support during my studies. Their friendship and camaraderie have made my PhD  
4081 journey an enjoyable and memorable experience.

4082 Finally, I would like to express my love and gratitude to my family, who have always  
4083 been my source of inspiration and support. They let me study from undergraduate to  
4084 Ph.D. in the UK at their own expense. Their unwavering love and encouragement have  
4085 helped me to persevere through the challenges of my PhD journey.

4086 This thesis would not have been possible without the support and guidance of all those  
4087 mentioned above. I am truly grateful for all that they have done for me and I will carry  
4088 their encouragement and wisdom with me as I move forward in my academic and  
4089 professional endeavours.

4090 **Statement**

4091 The COVID-19 pandemic has had a profound impact on various aspects of academic  
4092 research, including the pursuit of a PhD. As a PhD student, my own research and  
4093 progress have been significantly affected by the pandemic. The pandemic has caused  
4094 widespread disruptions in research activities. Laboratory access, fieldwork, and data  
4095 collection have been severely limited or halted altogether due to lockdowns, travel  
4096 restrictions, and physical distancing measures. This has led to delays in conducting  
4097 experiments, gathering essential data, and executing planned research methodologies.  
4098 What is more, libraries, archives, and research facilities have been closed or limited in  
4099 their operations, making it challenging to access critical resources and references  
4100 necessary for comprehensive literature reviews and data analysis. This limited access  
4101 to resources has hampered the depth and breadth of research that could be conducted  
4102 during this time. I was in China during the lockdown, and the restrictions were more  
4103 sever than in the UK.

4104 **Appendix**

4105 Supplementary table 1. Assessors performance of perceived intensity (antilogged  
 4106 values) of overall taste, sweet, salty, sour, bitter and umami where MSG was used as  
 4107 the umami tastant without sodium balance.

4108 Table 1a. Assessor mean scores with significance of assessor differences for each  
 4109 attribute (showing different use of scale).

|            | Total intensity | Sweet | Salty  | Sour  | Bitter | Umami  |
|------------|-----------------|-------|--------|-------|--------|--------|
| Assessor 1 | 43.2            | 14    | 8.3    | 6.7   | 18.2   | 11.1   |
| Assessor 2 | 42.6            | 12.7  | 11.5   | 11.8  | 13.3   | 11     |
| Assessor 3 | 42.7            | 12.5  | 13     | 1     | 9.7    | 6.7    |
| Assessor 4 | 47.4            | 14.3  | 17.1   | 7     | 17.7   | 13     |
| Assessor 5 | 37.7            | 11.2  | 6.8    | 10.9  | 7      | 15.1   |
| Assessor 6 | 36.3            | 9.1   | 7.7    | 7.3   | 13.2   | 14.9   |
| Assessor 7 | 45.5            | 14.4  | 11.4   | 14.9  | 12.3   | 13     |
| Assessor 8 | 41.5            | 12.6  | 8.6    | 7     | 12.3   | 14.1   |
| Assessor 9 | 49.2            | 12.9  | 19.7   | 8.5   | 16.1   | 5.2    |
| HSD        | 13.8            | 8.4   | 11     | 9.5   | 14.5   | 10.8   |
| p - value  | 0.0758          | 0.592 | 0.0029 | 0.002 | 0.2579 | 0.0388 |

4110 Table 1b. F values for Assessor Discrimination

|            | Total intensity | Sweet  | Salty | Sour  | Bitter | Umami |
|------------|-----------------|--------|-------|-------|--------|-------|
| Assessor 1 | 19.9            | 2.5    | 177.4 | 20.6  | 96.4   | 10.5  |
| Assessor 2 | 10.9            | 332.2  | 3.7   | 598.4 | 22.6   | 4.1   |
| Assessor 3 | 1.7             | 14.1   | 4.8   | NA    | 8.4    | 4.6   |
| Assessor 4 | 2               | 27.2   | 11.1  | 8.3   | 7.6    | 4.8   |
| Assessor 5 | 0.6             | 24.9   | 26.5  | 46.4  | 308.1  | 9.1   |
| Assessor 6 | 9               | 25.1   | 35.4  | 34.9  | 53.1   | 29.4  |
| Assessor 7 | 3.8             | 14.8   | 3.4   | 6.8   | 2.5    | 9.1   |
| Assessor 8 | 5.8             | 1109.8 | 4.2   | 295.2 | 37.7   | 377.8 |
| Assessor 9 | 5               | 6.6    | 31.3  | 12.3  | 6.4    | 13.6  |

4111 Table 1c. p-values for Assessor Discrimination

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | <.0001          | 0.0837 | <.0001 | <.0001 | <.0001 | 0.0005 |
| Assessor 2 | 0.0004          | <.0001 | 0.0271 | <.0001 | <.0001 | 0.0197 |
| Assessor 3 | 0.1989          | 0.0001 | 0.0114 | NA     | 0.0013 | 0.0126 |
| Assessor 4 | 0.1543          | <.0001 | 0.0004 | 0.0013 | 0.0019 | 0.011  |
| Assessor 5 | 0.7906          | <.0001 | <.0001 | <.0001 | <.0001 | 0.0009 |
| Assessor 6 | 0.001           | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 7 | 0.0252          | 0.0001 | 0.0346 | 0.0031 | 0.0815 | 0.0009 |

|            |        |        |        |        |        |        |
|------------|--------|--------|--------|--------|--------|--------|
| Assessor 8 | 0.0056 | <.0001 | 0.0171 | <.0001 | <.0001 | <.0001 |
| Assessor 9 | 0.0099 | 0.0033 | <.0001 | 0.0003 | 0.0038 | 0.0002 |

4112 Table 1d. Correlations of each assessor's mean scores with panel average

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 0.72            | 0.84  | 0.87  | 0.99 | 0.95   | 0.97  |
| Assessor 2 | 0.62            | 0.98  | 0.95  | 0.99 | 0.96   | 0.87  |
| Assessor 3 | 0.78            | 0.94  | 0.72  | 0    | 0.92   | 0.78  |
| Assessor 4 | 0.87            | 0.99  | 0.96  | 0.9  | 0.85   | 0.93  |
| Assessor 5 | 0.01            | 0.99  | 0.87  | 0.98 | 0.97   | 0.87  |
| Assessor 6 | 0.77            | 0.95  | 0.95  | 0.99 | 0.98   | 0.92  |
| Assessor 7 | -0.1            | 0.99  | 0.83  | 0.91 | 0.37   | 0.79  |
| Assessor 8 | 0.82            | 0.99  | 0.97  | 0.97 | 0.91   | 0.87  |
| Assessor 9 | 0.84            | 0.97  | 0.99  | 0.96 | 0.99   | 0.7   |

4113 Table 1e. Assessor's repeatability standard deviation

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 4.75            | 13.33 | 1.39  | 3.41 | 4.08   | 4.17  |
| Assessor 2 | 4.01            | 1.47  | 8.7   | 1.07 | 6.36   | 7.73  |
| Assessor 3 | 9.87            | 7.5   | 9.82  | NA   | 6.68   | 7.03  |
| Assessor 4 | 9               | 5.43  | 7.66  | 6.19 | 9.98   | 8.34  |
| Assessor 5 | 7.83            | 4.63  | 3.11  | 3.46 | 1.01   | 7.62  |
| Assessor 6 | 6.34            | 3.98  | 2.69  | 2.53 | 4.55   | 3.9   |
| Assessor 7 | 10.39           | 7.95  | 7.99  | 9.36 | 8.76   | 7.38  |
| Assessor 8 | 4.97            | 0.77  | 7.7   | 1.02 | 4.24   | 1.15  |
| Assessor 9 | 8.27            | 10.83 | 6.05  | 6.02 | 11.85  | 3.12  |

4114 Table 1f. Test of each assessor's repeatability (replicate variability) against the Panel average repeatability (F value)

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 0.4             | 3.3   | 0     | 0.5  | 0.3    | 0.5   |
| Assessor 2 | 0.3             | 0     | 1.7   | 0.1  | 0.8    | 1.6   |
| Assessor 3 | 1.7             | 1     | 2.1   | NA   | 0.9    | 1.3   |
| Assessor 4 | 1.4             | 0.5   | 1.3   | 1.8  | 2      | 1.9   |
| Assessor 5 | 1.1             | 0.4   | 0.2   | 0.6  | 0      | 1.6   |
| Assessor 6 | 0.7             | 0.3   | 0.2   | 0.3  | 0.4    | 0.4   |
| Assessor 7 | 1.9             | 1.2   | 1.4   | 4.1  | 1.5    | 1.5   |
| Assessor 8 | 0.4             | 0     | 1.3   | 0    | 0.4    | 0     |
| Assessor 9 | 1.2             | 2.2   | 0.8   | 1.7  | 2.8    | 0.3   |

4116 Table 1g. Test of each assessor's repeatability (replicate variability) against the Panel average repeatability (p - value)

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | 0.9475          | 0.0011 | 1      | 0.8589 | 0.972  | 0.9074 |
| Assessor 2 | 0.9844          | 1      | 0.1014 | 1      | 0.6339 | 0.1173 |

|            |        |        |        |        |        |        |
|------------|--------|--------|--------|--------|--------|--------|
| Assessor 3 | 0.0963 | 0.4126 | 0.0305 | NA     | 0.5584 | 0.2277 |
| Assessor 4 | 0.1918 | 0.8511 | 0.2476 | 0.0765 | 0.0476 | 0.0599 |
| Assessor 5 | 0.3994 | 0.9436 | 0.9947 | 0.8465 | 1      | 0.1315 |
| Assessor 6 | 0.7249 | 0.9808 | 0.9984 | 0.9801 | 0.9398 | 0.9397 |
| Assessor 7 | 0.0598 | 0.3179 | 0.1921 | 0.0001 | 0.1495 | 0.1662 |
| Assessor 8 | 0.9293 | 1      | 0.241  | 1      | 0.9628 | 1      |
| Assessor 9 | 0.3118 | 0.0259 | 0.6251 | 0.0986 | 0.0052 | 0.9878 |

4118 Table 1h. F-values for Assessor contribution to the interaction

|               | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|---------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1    | 5               | 3.7   | 2.1   | 0.5  | 7.7    | 0.5   |
| Assessor 2    | 2.1             | 0.8   | 0.7   | 4.7  | 2.3    | 2     |
| Assessor 3    | 1.3             | 2     | 5.6   | 15.4 | 2.1    | 3.1   |
| Assessor 4    | 0.8             | 0.6   | 2.3   | 3.2  | 4.8    | 1.5   |
| Assessor 5    | 2.3             | 0.2   | 2     | 2.8  | 1.4    | 4.5   |
| Assessor 6    | 3.5             | 1.5   | 0.9   | 0.6  | 2.4    | 2.4   |
| Assessor 7    | 10.3            | 1.2   | 2.5   | 6.6  | 11.6   | 5.7   |
| Assessor 8    | 0.9             | 0.4   | 0.5   | 1    | 2.7    | 4     |
| Assessor 9    | 2.7             | 1.1   | 6.6   | 2.2  | 1.2    | 3.7   |
| Interaction F | 3.2             | 1.3   | 2.6   | 4.1  | 4      | 3.1   |

4119 Table 1i. p-values for Assessor contribution to the interaction

|                     | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|---------------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1          | <.0001          | 0.0009 | 0.0403 | 0.8309 | <.0001 | 0.8603 |
| Assessor 2          | 0.0441          | 0.6218 | 0.6571 | 0.0001 | 0.0295 | 0.0588 |
| Assessor 3          | 0.2456          | 0.0496 | <.0001 | <.0001 | 0.0469 | 0.0035 |
| Assessor 4          | 0.5884          | 0.8056 | 0.0275 | 0.003  | 0.0001 | 0.167  |
| Assessor 5          | 0.0266          | 0.9869 | 0.0562 | 0.0081 | 0.1941 | 0.0001 |
| Assessor 6          | 0.0016          | 0.1762 | 0.5513 | 0.7636 | 0.02   | 0.0204 |
| Assessor 7          | <.0001          | 0.3159 | 0.015  | <.0001 | <.0001 | <.0001 |
| Assessor 8          | 0.5062          | 0.9384 | 0.8675 | 0.4363 | 0.0117 | 0.0004 |
| Assessor 9          | 0.0096          | 0.3628 | <.0001 | 0.0372 | 0.3121 | 0.0008 |
| Interaction p-value | <.0001          | 0.1404 | <.0001 | <.0001 | <.0001 | <.0001 |

4120 \*NA means not applicable.

4121 Supplementary Table 2. Assessor performance of perceived intensity (antilogged  
 4122 values) of overall taste, sweet, salty, sour, bitter and umami where MSG was used as  
 4123 the umami tastant with sodium balance.

4124 Table 2a. Assessor mean scores with significance of assessor differences for each  
 4125 attribute (showing different use of scale).

|             | Total intensity | Sweet  | Salty  | Sour  | Bitter | Umami  |
|-------------|-----------------|--------|--------|-------|--------|--------|
| Assessor 1  | 43.3            | 10.7   | 7.4    | 7.1   | 18.5   | 9.4    |
| Assessor 2  | 46.2            | 14.2   | 7.1    | 9.9   | 4.1    | 23.5   |
| Assessor 3  | 49.1            | 14.8   | 22.3   | 12.6  | 16.2   | 15.4   |
| Assessor 4  | 46.1            | 10.4   | 17     | 1.9   | 8.6    | 6.1    |
| Assessor 5  | 43.9            | 15.5   | 15.6   | 6.9   | 11.6   | 14.3   |
| Assessor 6  | 54.7            | 14.7   | 11.1   | 7.2   | 9.6    | 14.4   |
| Assessor 7  | 25.9            | 9.1    | 6      | 7     | 5.7    | 9.3    |
| Assessor 8  | 34.7            | 9.8    | 8      | 6.8   | 12.9   | 10.8   |
| Assessor 9  | 52.3            | 16.8   | 17.7   | 16.7  | 10.8   | 15.2   |
| Assessor 10 | 41.1            | 14.3   | 11     | 7.2   | 11.2   | 10.5   |
| Assessor 11 | 53.6            | 15     | 19     | 11.1  | 18.2   | 6.6    |
| HSD         | 15.1            | 8.7    | 11.9   | 10.9  | 15.4   | 11.5   |
| p - value   | <.0001          | 0.0246 | <.0001 | 0.003 | 0.0251 | 0.0001 |

4126 Table 2b. F values for Assessor Discrimination

|             | Total intensity | Sweet | Salty | Sour  | Bitter | Umami |
|-------------|-----------------|-------|-------|-------|--------|-------|
| Assessor 1  | 3.4             | 40.2  | 28.8  | 4     | 18.1   | 52.6  |
| Assessor 2  | 4.6             | 15    | 2.2   | 11.2  | 1.7    | 3.2   |
| Assessor 3  | 2.4             | 25.2  | 11.8  | 27.3  | 6.2    | 5.7   |
| Assessor 4  | 1               | 16.9  | 10.6  | 17.5  | 5.3    | 3.1   |
| Assessor 5  | 3.6             | 36.4  | 2.1   | 22.1  | 5.4    | 3.9   |
| Assessor 6  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 7  | 10.3            | 33.1  | 9.1   | 6.4   | 15.4   | 2     |
| Assessor 8  | 6.4             | 40.8  | 12    | 2.3   | 29.8   | 11.7  |
| Assessor 9  | 2.4             | 9.7   | 10.4  | 6.8   | 4.2    | 3.4   |
| Assessor 10 | 7.4             | 39.4  | 6     | 196.7 | 33.8   | 4.3   |
| Assessor 11 | 5.3             | 19.4  | 56.3  | 23.6  | 69     | 1     |

4127 Table 2c. p-values for Assessor Discrimination

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | 0.0346          | <.0001 | <.0001 | 0.02   | <.0001 | <.0001 |
| Assessor 2 | 0.0124          | 0.0001 | 0.1176 | 0.0004 | 0.2158 | 0.0409 |
| Assessor 3 | 0.0911          | <.0001 | 0.0003 | <.0001 | 0.0043 | 0.0059 |
| Assessor 4 | 0.505           | 0.0001 | 0.0005 | 0.0001 | 0.0078 | 0.0472 |
| Assessor 5 | 0.0282          | <.0001 | 0.1311 | <.0001 | 0.0071 | 0.0219 |

|             |        |        |        |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|
| Assessor 6  | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 7  | 0.0005 | <.0001 | 0.0009 | 0.0038 | 0.0001 | 0.1505 |
| Assessor 8  | 0.0038 | <.0001 | 0.0003 | 0.1019 | <.0001 | 0.0003 |
| Assessor 9  | 0.09   | 0.0007 | 0.0005 | 0.0031 | 0.0182 | 0.0337 |
| Assessor 10 | 0.0022 | <.0001 | 0.0048 | <.0001 | <.0001 | 0.0158 |
| Assessor 11 | 0.0076 | <.0001 | <.0001 | <.0001 | <.0001 | 0.4941 |

4128 Table 2d. Correlations of each assessor's mean scores with panel average

|             | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|-------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1  | 0.53            | 0.97  | 0.92  | 0.97 | 0.98   | 0.88  |
| Assessor 2  | 0.53            | 0.97  | 0.99  | 0.77 | 0.67   | 0.93  |
| Assessor 3  | 0.54            | 0.99  | 0.55  | 0.93 | 0.88   | 0.71  |
| Assessor 4  | 0.74            | 0.94  | 0.97  | 0.96 | 0.99   | 0.85  |
| Assessor 5  | 0.75            | 1     | 0.91  | 0.96 | 0.97   | 0.97  |
| Assessor 6  | 0.83            | 0.92  | 0.74  | 0.88 | 0.77   | 0.72  |
| Assessor 7  | 0.67            | 1     | 0.8   | 1    | 0.94   | 0.83  |
| Assessor 8  | 0.14            | 0.98  | 0.94  | 0.87 | 0.99   | 0.93  |
| Assessor 9  | 0.78            | 0.98  | 0.94  | 0.95 | 0.31   | 0.89  |
| Assessor 10 | 0.95            | 0.99  | 0.94  | 0.96 | 0.95   | 0.89  |
| Assessor 11 | 0.6             | 0.99  | 0.93  | 0.97 | 0.97   | 0.73  |

4129 Table 2e. Assessor's repeatability standard deviation

|             | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|-------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1  | 10.04           | 3.23  | 3.02  | 8.74 | 9.07   | 2.27  |
| Assessor 2  | 11.04           | 7.45  | 7.79  | 6.45 | 4.23   | 14.38 |
| Assessor 3  | 7.81            | 6.31  | 6.42  | 5.49 | 12.24  | 9.32  |
| Assessor 4  | 8.06            | 5.61  | 6.94  | 0.58 | 7.3    | 7.01  |
| Assessor 5  | 6.45            | 4.8   | 11.48 | 3.46 | 7.39   | 9.75  |
| Assessor 6  | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 7  | 4.5             | 3.25  | 4.09  | 5.7  | 2.95   | 7.83  |
| Assessor 8  | 6.07            | 3.14  | 4.22  | 7.31 | 5.21   | 4.8   |
| Assessor 9  | 12.21           | 10.83 | 6.31  | 8.71 | 5.91   | 10.2  |
| Assessor 10 | 5.09            | 4.14  | 6.42  | 1.21 | 4.01   | 8     |
| Assessor 11 | 7.78            | 7.49  | 4.25  | 5.66 | 4.3    | 11.09 |

4130 Table 2f. Test of each assessor's repeatability (replicate variability) against the Panel average repeatability (F value)

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 1.5             | 0.3   | 0.2   | 2.1  | 1.8    | 0.1   |
| Assessor 2 | 1.8             | 1.5   | 1.4   | 1.2  | 0.4    | 2.5   |
| Assessor 3 | 0.9             | 1.1   | 1     | 0.8  | 3.2    | 1.1   |
| Assessor 4 | 1               | 0.8   | 1.1   | 0    | 1.2    | 0.6   |
| Assessor 5 | 0.6             | 0.6   | 3.1   | 0.3  | 1.2    | 1.2   |
| Assessor 6 | NA              | NA    | NA    | NA   | NA     | NA    |

|             |     |     |     |     |     |     |
|-------------|-----|-----|-----|-----|-----|-----|
| Assessor 7  | 0.3 | 0.3 | 0.4 | 0.9 | 0.2 | 0.7 |
| Assessor 8  | 0.5 | 0.3 | 0.4 | 1.5 | 0.6 | 0.3 |
| Assessor 9  | 2.2 | 3.2 | 0.9 | 2.1 | 0.8 | 1.3 |
| Assessor 10 | 0.4 | 0.5 | 1   | 0   | 0.3 | 0.8 |
| Assessor 11 | 0.9 | 1.5 | 0.4 | 0.9 | 0.4 | 1.5 |

4132 Table 2g. Test of each assessor's repeatability (replicate variability) against the Panel  
 4133 average repeatability (p-value)

|             | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|-------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1  | 0.1597          | 0.9842 | 0.9945 | 0.0272 | 0.075  | 1      |
| Assessor 2  | 0.0728          | 0.1524 | 0.1784 | 0.3205 | 0.9503 | 0.0093 |
| Assessor 3  | 0.5421          | 0.3908 | 0.4734 | 0.5842 | 0.0012 | 0.399  |
| Assessor 4  | 0.4915          | 0.5848 | 0.3442 | 1      | 0.3328 | 0.8097 |
| Assessor 5  | 0.803           | 0.793  | 0.0018 | 0.9693 | 0.3144 | 0.3261 |
| Assessor 6  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 7  | 0.9804          | 0.9834 | 0.9469 | 0.5239 | 0.9968 | 0.6774 |
| Assessor 8  | 0.8581          | 0.9872 | 0.9341 | 0.1489 | 0.8226 | 0.984  |
| Assessor 9  | 0.0247          | 0.0015 | 0.5029 | 0.0286 | 0.6719 | 0.2567 |
| Assessor 10 | 0.9529          | 0.9107 | 0.4738 | 1      | 0.9654 | 0.6461 |
| Assessor 11 | 0.5485          | 0.1461 | 0.9313 | 0.5366 | 0.9439 | 0.1495 |

4134 Table 2h. F-values for Assessor contribution to the interaction

|               | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|---------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1    | 4               | 2     | 1.2   | 0.5  | 9.2    | 0.8   |
| Assessor 2    | 6.7             | 1.7   | 0.7   | 5.9  | 6.6    | 2.3   |
| Assessor 3    | 1.9             | 1.2   | 9.2   | 6.7  | 6.1    | 3.3   |
| Assessor 4    | 0.7             | 2.3   | 1.6   | 6.2  | 0.3    | 0.9   |
| Assessor 5    | 1.1             | 0.4   | 1.3   | 0.7  | 0.7    | 0.5   |
| Assessor 6    | 3.6             | 2.7   | 3     | 1    | 2.2    | 2.5   |
| Assessor 7    | 1.9             | 1.7   | 2.5   | 0.2  | 2.3    | 1     |
| Assessor 8    | 4.8             | 1.6   | 0.8   | 2.3  | 2      | 0.5   |
| Assessor 9    | 2.6             | 2.7   | 1.5   | 2.2  | 9.3    | 1.1   |
| Assessor 10   | 0.4             | 0.5   | 0.8   | 0.7  | 1.4    | 0.7   |
| Assessor 11   | 3.3             | 2     | 8.2   | 4.5  | 6.8    | 1.4   |
| Interaction F | 2.8             | 1.7   | 2.8   | 2.8  | 4.3    | 1.4   |

4135 Table 2i. p-values for Assessor contribution to the interaction

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | 0.0003          | 0.0545 | 0.3329 | 0.8271 | <.0001 | 0.6098 |
| Assessor 2 | <.0001          | 0.1161 | 0.7043 | <.0001 | <.0001 | 0.0253 |
| Assessor 3 | 0.0641          | 0.3242 | <.0001 | <.0001 | <.0001 | 0.0018 |
| Assessor 4 | 0.6544          | 0.0231 | 0.1354 | <.0001 | 0.9568 | 0.5509 |
| Assessor 5 | 0.3855          | 0.9201 | 0.243  | 0.6554 | 0.7324 | 0.872  |
| Assessor 6 | 0.0009          | 0.0098 | 0.0039 | 0.4662 | 0.033  | 0.0161 |

|                     |        |        |        |        |        |        |
|---------------------|--------|--------|--------|--------|--------|--------|
| Assessor 7          | 0.0739 | 0.118  | 0.0172 | 0.9918 | 0.0244 | 0.4755 |
| Assessor 8          | 0.0001 | 0.1327 | 0.6369 | 0.0255 | 0.0496 | 0.8465 |
| Assessor 9          | 0.0108 | 0.0102 | 0.168  | 0.0307 | <.0001 | 0.3996 |
| Assessor 10         | 0.9045 | 0.8372 | 0.6388 | 0.7155 | 0.1955 | 0.6528 |
| Assessor 11         | 0.002  | 0.0546 | <.0001 | 0.0001 | <.0001 | 0.1915 |
| Interaction p-value | <.0001 | 0.0051 | <.0001 | <.0001 | <.0001 | 0.0663 |

4136

\*NA means not applicable.

4137 Supplementary Table 3. Assessor performance of perceived intensity (antilogged  
 4138 values) of overall taste, sweet, salty, sour, bitter and umami where MPG was used as  
 4139 the umami tastant.

4140 Table 3a. Assessor mean scores with significance of assessor differences for each  
 4141 attribute (showing different use of scale).

|             | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|-------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1  | 29.8            | 7.5    | 5.2    | 6.6    | 11.3   | 13.4   |
| Assessor 2  | 39.4            | 13     | 12.7   | 7.4    | 7.2    | 16.1   |
| Assessor 3  | 43.7            | 9.3    | 9.5    | 14.1   | 14     | 9.3    |
| Assessor 4  | 31.6            | 7.5    | 8      | 5.5    | 8.4    | 4.4    |
| Assessor 5  | 31.4            | 8.5    | 8.4    | 7.5    | 10.8   | 10.4   |
| Assessor 6  | 26.6            | 8.7    | 8.8    | 5.9    | 8.2    | 7.1    |
| Assessor 7  | 18.9            | 4.4    | 4.5    | 6.7    | 6.5    | 7.1    |
| Assessor 8  | 29              | 7.6    | 6.5    | 5.2    | 9      | 12.2   |
| Assessor 9  | 30.6            | 7.4    | 8.4    | 11.7   | 4.7    | 10.7   |
| Assessor 10 | 31.6            | 9.2    | 6.5    | 7.1    | 8.8    | 14     |
| Assessor 11 | 50.2            | 7.5    | 15.2   | 15.1   | 20.3   | 10.4   |
| Assessor 12 | 37              | 12.3   | 9.7    | 8.1    | 7.6    | 12.4   |
| HSD         | 14.8            | 8.2    | 8.7    | 9.8    | 12.2   | 10.8   |
| p - value   | <.0001          | 0.1336 | 0.0201 | 0.0058 | 0.0366 | 0.0157 |

4142 Table 3b. F values for Assessor Discrimination

|             | Total intensity | Sweet | Salty | Sour  | Bitter | Umami |
|-------------|-----------------|-------|-------|-------|--------|-------|
| Assessor 1  | 2               | 49    | 15.7  | 21.6  | 16.2   | 3.9   |
| Assessor 2  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 3  | 4.2             | 10.8  | 6.2   | 141.9 | 5.6    | 107.6 |
| Assessor 4  | 0.5             | 9.4   | 8.4   | 14.9  | 6.7    | 10.3  |
| Assessor 5  | 16.2            | 21.9  | 10.7  | 31.1  | 23.3   | 8.3   |
| Assessor 6  | 0.3             | 8.3   | 14.6  | 7.6   | 0.8    | 2.3   |
| Assessor 7  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 8  | 17.5            | 65.2  | 11.1  | 51.7  | 49.3   | 12.4  |
| Assessor 9  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 10 | 14.4            | 46    | 458.6 | 35.6  | 74.2   | 18.8  |
| Assessor 11 | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 12 | 3.4             | 185.1 | 4.2   | 2.2   | 1.8    | 4.2   |

4143 Table 3c. p-values for Assessor Discrimination

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | 0.1455          | <.0001 | 0.0001 | <.0001 | 0.0001 | 0.0217 |
| Assessor 2 | <.0001          | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 3 | 0.0178          | 0.0004 | 0.0043 | <.0001 | 0.0063 | <.0001 |

|             |        |        |        |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|
| Assessor 4  | 0.8595 | 0.0008 | 0.0013 | 0.0001 | 0.0032 | 0.0006 |
| Assessor 5  | 0.0001 | <.0001 | 0.0005 | <.0001 | <.0001 | 0.0014 |
| Assessor 6  | 0.9382 | 0.0014 | 0.0001 | 0.002  | 0.6009 | 0.1055 |
| Assessor 7  | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 8  | 0.0001 | <.0001 | 0.0004 | <.0001 | <.0001 | 0.0003 |
| Assessor 9  | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 10 | 0.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 11 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 12 | 0.0352 | <.0001 | 0.0176 | 0.1197 | 0.189  | 0.0176 |

4144 Table 3d. Correlations of each assessor's mean scores with panel average

|             | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|-------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1  | 0.71            | 0.98  | 0.85  | 0.95 | 0.97   | 0.95  |
| Assessor 2  | 0.37            | 0.92  | 0.88  | 0.56 | 0.95   | 0.79  |
| Assessor 3  | 0.46            | 0.94  | 0.96  | 0.99 | 0.88   | 0.92  |
| Assessor 4  | 0.68            | 0.97  | 0.98  | 0.94 | 0.95   | 0.65  |
| Assessor 5  | 0.88            | 0.96  | 0.95  | 0.99 | 0.89   | 0.83  |
| Assessor 6  | 0.18            | 0.94  | 0.9   | 0.89 | 0.64   | 0.88  |
| Assessor 7  | -0.04           | 0.88  | 0.8   | 0.92 | 0.98   | 0.86  |
| Assessor 8  | 0.53            | 0.91  | 0.89  | 0.94 | 0.99   | 0.94  |
| Assessor 9  | 0.22            | 0.93  | 0.78  | 0.94 | 0.12   | 0.48  |
| Assessor 10 | 0.93            | 0.98  | 0.99  | 1    | 0.92   | 0.85  |
| Assessor 11 | 0.84            | 0.9   | 0.85  | 0.96 | 0.83   | 0.83  |
| Assessor 12 | 0.18            | 0.99  | 0.93  | 0.98 | 0.91   | 0.94  |

4145 Table 3e. Assessor's repeatability standard deviation

|             | Total intensity | Sweet | Salty | Sour  | Bitter | Umami |
|-------------|-----------------|-------|-------|-------|--------|-------|
| Assessor 1  | 7.94            | 2.23  | 2.49  | 3.02  | 5.65   | 7.87  |
| Assessor 2  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 3  | 9.36            | 6.54  | 6.08  | 2.63  | 12.22  | 1.21  |
| Assessor 4  | 12.27           | 4.84  | 5.67  | 3.5   | 7.01   | 4.03  |
| Assessor 5  | 4.11            | 3.66  | 4.26  | 2.74  | 4.05   | 4.53  |
| Assessor 6  | 14.98           | 6.06  | 3.24  | 2.73  | 8.34   | 5.55  |
| Assessor 7  | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 8  | 3.88            | 1.86  | 3.67  | 1.75  | 3.19   | 5.14  |
| Assessor 9  | #N/A            | #N/A  | #N/A  | #N/A  | #N/A   | #N/A  |
| Assessor 10 | 3.55            | 2.74  | 0.58  | 2.38  | 2.08   | 4.31  |
| Assessor 11 | NA              | NA    | NA    | NA    | NA     | NA    |
| Assessor 12 | 7.4             | 1.87  | 7.3   | 10.76 | 6.58   | 7.69  |

4146 Table 3f. Test of each assessor's repeatability (replicate variability) against the Panel  
4147 average repeatability (F value)

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 0.8             | 0.3   | 0.3   | 0.4  | 0.7    | 2.1   |

|             |     |     |     |     |     |     |
|-------------|-----|-----|-----|-----|-----|-----|
| Assessor 2  | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 3  | 1.1 | 2.5 | 1.7 | 0.3 | 3.2 | 0   |
| Assessor 4  | 1.9 | 1.4 | 1.5 | 0.6 | 1   | 0.6 |
| Assessor 5  | 0.2 | 0.8 | 0.8 | 0.4 | 0.4 | 0.7 |
| Assessor 6  | 2.9 | 2.2 | 0.5 | 0.4 | 1.5 | 1   |
| Assessor 7  | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 8  | 0.2 | 0.2 | 0.6 | 0.1 | 0.2 | 0.9 |
| Assessor 9  | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 10 | 0.2 | 0.4 | 0   | 0.3 | 0.1 | 0.6 |
| Assessor 11 | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 12 | 0.7 | 0.2 | 2.5 | 5.5 | 0.9 | 2   |

4148 Table 3g. Test of each assessor's repeatability (replicate variability) against the Panel  
 4149 average repeatability (p-value)

|             | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|-------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1  | 0.6223          | 0.9808 | 0.9815 | 0.9247 | 0.7372 | 0.0331 |
| Assessor 2  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 3  | 0.3561          | 0.0108 | 0.0883 | 0.9709 | 0.0017 | 1      |
| Assessor 4  | 0.0533          | 0.2047 | 0.153  | 0.8232 | 0.411  | 0.8468 |
| Assessor 5  | 0.9942          | 0.6386 | 0.585  | 0.9611 | 0.9637 | 0.7221 |
| Assessor 6  | 0.0041          | 0.0285 | 0.8907 | 0.9622 | 0.1596 | 0.4109 |
| Assessor 7  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 8  | 0.9964          | 0.9954 | 0.7841 | 0.9989 | 0.994  | 0.5392 |
| Assessor 9  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 10 | 0.9983          | 0.9218 | 1      | 0.9861 | 0.9999 | 0.7815 |
| Assessor 11 | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 12 | 0.721           | 0.9953 | 0.0118 | <.0001 | 0.5135 | 0.0429 |

4150 Table 3h. F-values for Assessor contribution to the interaction

|               | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|---------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1    | 0.9             | 0.8   | 2.6   | 1.1  | 1.5    | 1.1   |
| Assessor 2    | 2.8             | 6     | 8.2   | 5.3  | 0.4    | 7.1   |
| Assessor 3    | 4.1             | 4     | 1.1   | 13.7 | 6.4    | 1     |
| Assessor 4    | 0.6             | 1.3   | 1     | 1.4  | 0.7    | 4.4   |
| Assessor 5    | 1.5             | 1.7   | 0.9   | 0.2  | 1.9    | 2.1   |
| Assessor 6    | 1.6             | 2.4   | 1.8   | 4.6  | 3.8    | 1.8   |
| Assessor 7    | 1.2             | 3.7   | 1.7   | 0.9  | 0.1    | 0.9   |
| Assessor 8    | 2.7             | 3.1   | 1.9   | 1.7  | 1.1    | 2     |
| Assessor 9    | 2.1             | 1.2   | 2.3   | 1.5  | 3.1    | 3.6   |
| Assessor 10   | 0.7             | 1     | 0.3   | 0.1  | 1.1    | 3.9   |
| Assessor 11   | 1.4             | 2     | 4.9   | 5.3  | 3.3    | 3.1   |
| Assessor 12   | 2.9             | 4.7   | 1.5   | 0.6  | 1.9    | 1.1   |
| Interaction F | 1.9             | 2.7   | 2.3   | 3    | 2.1    | 2.7   |

4151 Table 3i. p-values for Assessor contribution to the interaction

|                     | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|---------------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1          | 0.5384          | 0.6474 | 0.0137 | 0.3412 | 0.1727 | 0.4    |
| Assessor 2          | 0.0076          | <.0001 | <.0001 | <.0001 | 0.8998 | <.0001 |
| Assessor 3          | 0.0004          | 0.0004 | 0.4052 | <.0001 | <.0001 | 0.4532 |
| Assessor 4          | 0.7931          | 0.2571 | 0.4448 | 0.1911 | 0.6869 | 0.0002 |
| Assessor 5          | 0.1544          | 0.1213 | 0.5146 | 0.9933 | 0.0751 | 0.0438 |
| Assessor 6          | 0.15            | 0.0199 | 0.0933 | 0.0001 | 0.0006 | 0.0927 |
| Assessor 7          | 0.2956          | 0.0009 | 0.1029 | 0.4842 | 0.9971 | 0.5395 |
| Assessor 8          | 0.0113          | 0.0035 | 0.0746 | 0.1129 | 0.3884 | 0.0531 |
| Assessor 9          | 0.0388          | 0.3014 | 0.0281 | 0.1789 | 0.0041 | 0.0011 |
| Assessor 10         | 0.71            | 0.4334 | 0.9738 | 0.9995 | 0.3505 | 0.0006 |
| Assessor 11         | 0.2187          | 0.0553 | <.0001 | <.0001 | 0.0022 | 0.0037 |
| Assessor 12         | 0.0067          | 0.0001 | 0.1695 | 0.7482 | 0.069  | 0.3437 |
| Interaction p-value | 0.002           | <.0001 | 0.0001 | <.0001 | 0.0003 | <.0001 |

4152 \*NA means not applicable.

4153      Supplementary table 4. Ratings and significance testing (ANOVA) results of perceived  
 4154      intensity (antilogged values) of overall taste, sweet, salty, sour, bitter and umami where  
 4155      MSG was used as the umami tastant without sodium balance.

| Sample                   | Perceived intensity (mean of antilogged gLMS intensity ratings) |                   |                    |                   |                   |                    |
|--------------------------|-----------------------------------------------------------------|-------------------|--------------------|-------------------|-------------------|--------------------|
|                          | Total intensity                                                 | Sweet             | Salty              | Sour              | Bitter            | Umami              |
| S                        | 36.2 <sup>cd</sup>                                              | 34.7 <sup>a</sup> | 2.5 <sup>c</sup>   | 2.2 <sup>c</sup>  | 1.9 <sup>c</sup>  | 1.2 <sup>d</sup>   |
| S+U                      | 45.1 <sup>abc</sup>                                             | 39.9 <sup>a</sup> | 6.3 <sup>c</sup>   | 1.6 <sup>c</sup>  | 1.9 <sup>c</sup>  | 13.5 <sup>c</sup>  |
| N                        | 37.9 <sup>cd</sup>                                              | 1.1 <sup>b</sup>  | 31.4 <sup>ab</sup> | 1.1 <sup>c</sup>  | 4.1 <sup>c</sup>  | 2.8 <sup>d</sup>   |
| N+U                      | 44.6 <sup>abc</sup>                                             | 4.5 <sup>b</sup>  | 32.8 <sup>a</sup>  | 1.3 <sup>c</sup>  | 2.5 <sup>c</sup>  | 23.5 <sup>b</sup>  |
| C                        | 38.7 <sup>cd</sup>                                              | 1.4 <sup>b</sup>  | 3.6 <sup>c</sup>   | 31.4 <sup>a</sup> | 9.3 <sup>c</sup>  | 1.0 <sup>d</sup>   |
| C+U                      | 41.3 <sup>bcd</sup>                                             | 2.2 <sup>b</sup>  | 5.0 <sup>c</sup>   | 29.8 <sup>a</sup> | 8.3 <sup>c</sup>  | 18.5 <sup>bc</sup> |
| Q                        | 49.6 <sup>ab</sup>                                              | 1.0 <sup>b</sup>  | 1.1 <sup>c</sup>   | 1.9 <sup>c</sup>  | 45.6 <sup>a</sup> | 1.0 <sup>d</sup>   |
| Q+U                      | 49.2 <sup>ab</sup>                                              | 1.1 <sup>b</sup>  | 2.7 <sup>c</sup>   | 1.4 <sup>c</sup>  | 43.6 <sup>a</sup> | 16.6 <sup>bc</sup> |
| U                        | 33.4 <sup>d</sup>                                               | 1.4 <sup>b</sup>  | 5.6 <sup>c</sup>   | 1.1 <sup>c</sup>  | 1.5 <sup>c</sup>  | 32.2 <sup>a</sup>  |
| S+N+C+Q+U                | 53.2 <sup>a</sup>                                               | 39.1 <sup>a</sup> | 24.7 <sup>b</sup>  | 11.7 <sup>b</sup> | 14.2 <sup>b</sup> | 5.3 <sup>d</sup>   |
| <i>df</i> of Sample      | 9                                                               | 9                 | 9                  | 9                 | 9                 | 9                  |
| <i>df</i> of Interaction | 72                                                              | 72                | 72                 | 72                | 72                | 72                 |
| F-value of Sample Effect | 4.08                                                            | 80.81             | 24.8               | 29.93             | 25.45             | 19.22              |
| Sample significance (p)  | 0.0003                                                          | <0.0001           | <0.0001            | <0.0001           | <0.0001           | <0.0001            |

4156      <sup>abcde</sup> Values within a column which do not share a common superscript are significantly different in means ratings  
 4157      of the perceived magnitude from Tukey's HSD test at the 95% confidence interval. S = sucrose; N = sodium chloride;  
 4158      C = citric acid; Q = quinine hemisulfate salt monohydrate; U = monosodium glutamate (MSG). *df* = degrees of  
 4159      freedom of interaction, noting that the main effect of sample (F-value of sample) was determined by dividing the  
 4160      variance of sample by the variance of the interaction (MSsample/MSinteraction) hence both the *df* of sample and  
 4161      interaction are given.

4162      Supplementary Table 5. Ratings and significance testing (ANOVA) results of perceived  
 4163      intensity (antilogged values) of overall taste, sweet, salty, sour, bitter and umami where  
 4164      MSG was used as the umami tastant with sodium balance.

| Sample                   | Perceived intensity (mean of antilogged gLMS intensity ratings) |                   |                   |                   |                   |                    |
|--------------------------|-----------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                          | Total intensity                                                 | Sweet             | Salty             | Sour              | Bitter            | Umami              |
| S                        | 43.5 <sup>bcd</sup>                                             | 41.9 <sup>a</sup> | 4.9 <sup>c</sup>  | 1.2 <sup>c</sup>  | 1.1 <sup>c</sup>  | 1.0 <sup>e</sup>   |
| S+U                      | 49.9 <sup>ab</sup>                                              | 44.4 <sup>a</sup> | 5.3 <sup>c</sup>  | 2.2 <sup>c</sup>  | 1.6 <sup>c</sup>  | 14.4 <sup>c</sup>  |
| N                        | 41.0 <sup>cde</sup>                                             | 2.1 <sup>c</sup>  | 35.4 <sup>a</sup> | 2.8 <sup>c</sup>  | 3.0 <sup>c</sup>  | 6.2 <sup>e</sup>   |
| N+U                      | 47.5 <sup>bc</sup>                                              | 2.4 <sup>c</sup>  | 30.7 <sup>a</sup> | 2.8 <sup>c</sup>  | 3.0 <sup>c</sup>  | 22.4 <sup>b</sup>  |
| C                        | 37.9 <sup>de</sup>                                              | 2.0 <sup>c</sup>  | 5.0 <sup>c</sup>  | 31.2 <sup>a</sup> | 6.0 <sup>c</sup>  | 1.3 <sup>e</sup>   |
| C+U                      | 42.8 <sup>bcd</sup>                                             | 1.7 <sup>c</sup>  | 7.4 <sup>c</sup>  | 29.1 <sup>a</sup> | 6.7 <sup>c</sup>  | 13.3 <sup>cd</sup> |
| Q                        | 34.6 <sup>e</sup>                                               | 1.4 <sup>c</sup>  | 5.2 <sup>c</sup>  | 2.5 <sup>c</sup>  | 33.0 <sup>a</sup> | 1.5 <sup>e</sup>   |
| Q+U                      | 50.4 <sup>ab</sup>                                              | 1.4 <sup>c</sup>  | 8.3 <sup>c</sup>  | 1.5 <sup>c</sup>  | 37.7 <sup>a</sup> | 23.3 <sup>b</sup>  |
| U                        | 36.2 <sup>de</sup>                                              | 1.9 <sup>c</sup>  | 8.1 <sup>c</sup>  | 2.8 <sup>c</sup>  | 1.5 <sup>c</sup>  | 31.2 <sup>a</sup>  |
| S+N+C+Q+U                | 57.5 <sup>a</sup>                                               | 32.3 <sup>b</sup> | 20.1 <sup>b</sup> | 10.5 <sup>b</sup> | 23.1 <sup>b</sup> | 7.4 <sup>de</sup>  |
| <i>df</i> of Sample      | 9                                                               | 9                 | 9                 | 9                 | 9                 | 9                  |
| <i>df</i> of Interaction | 90                                                              | 90                | 90                | 90                | 90                | 90                 |
| F-value of Sample Effect | 2.64                                                            | 113.66            | 23.5              | 28.39             | 21.03             | 21.16              |
| Sample significance (p)  | <0.0001                                                         | <0.0001           | <0.0001           | <0.0001           | <0.0001           | <0.0001            |

4165      <sup>abcde</sup> Values within a column which do not share a common superscript are significantly different in means ratings  
 4166      of the perceived magnitude from Tukey's HSD test at the 95% confidence interval. S = sucrose; N = sodium chloride;  
 4167      C = citric acid; Q = quinine hemisulfate salt monohydrate; U = monosodium glutamate (MSG). *df* = degrees of  
 4168      freedom of interaction, noting that the main effect of sample (F-value of sample) was determined by dividing the  
 4169      variance of sample by the variance of the interaction (MSsample/MSinteraction) hence both the *df* of sample and  
 4170      interaction are given.

4171      Supplementary Table 6. Ratings and significance testing (ANOVA) results of perceived  
 4172      intensity (antilogged values) of overall taste, sweet, salty, sour, bitter and umami where  
 4173      MPG was used as the umami tastant.

| Sample                   | Perceived intensity (mean of antilogged gLMS intensity ratings) |                   |                   |                   |                   |                   |
|--------------------------|-----------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                          | Total intensity                                                 | Sweet             | Salty             | Sour              | Bitter            | Umami             |
| S                        | 29.2 <sup>cd</sup>                                              | 28.6 <sup>a</sup> | 2.2 <sup>c</sup>  | 1.2 <sup>c</sup>  | 1.3 <sup>c</sup>  | 1.1 <sup>d</sup>  |
| S+U                      | 35.3 <sup>abc</sup>                                             | 28.1 <sup>a</sup> | 4.2 <sup>c</sup>  | 2 <sup>c</sup>    | 3.4 <sup>a</sup>  | 14.5 <sup>b</sup> |
| N                        | 23.5 <sup>d</sup>                                               | 1 <sup>c</sup>    | 22.5 <sup>a</sup> | 1.6 <sup>c</sup>  | 3.3 <sup>c</sup>  | 2.4 <sup>cd</sup> |
| N+U                      | 34.2 <sup>bc</sup>                                              | 1.3 <sup>c</sup>  | 25.2 <sup>a</sup> | 1.6 <sup>c</sup>  | 2 <sup>a</sup>    | 18.9 <sup>b</sup> |
| C                        | 29.6 <sup>cd</sup>                                              | 1.4 <sup>c</sup>  | 1.5 <sup>c</sup>  | 26.3 <sup>a</sup> | 5.8 <sup>bc</sup> | 1.1 <sup>d</sup>  |
| C+U                      | 36 <sup>abc</sup>                                               | 1.3 <sup>c</sup>  | 3.7 <sup>c</sup>  | 28.8 <sup>a</sup> | 6.1 <sup>bc</sup> | 15.7 <sup>b</sup> |
| Q                        | 32.8 <sup>bc</sup>                                              | 1.1 <sup>c</sup>  | 1.5 <sup>c</sup>  | 1.2 <sup>c</sup>  | 29.7 <sup>a</sup> | 1.4 <sup>d</sup>  |
| Q+U                      | 38.5 <sup>ab</sup>                                              | 1.1 <sup>c</sup>  | 2.7 <sup>c</sup>  | 3.4 <sup>c</sup>  | 32.4 <sup>a</sup> | 15.8 <sup>b</sup> |
| U                        | 29 <sup>cd</sup>                                                | 1.3 <sup>c</sup>  | 3.1 <sup>c</sup>  | 1.3 <sup>c</sup>  | 3.8 <sup>bc</sup> | 27.2 <sup>a</sup> |
| S+N+C+Q+U                | 42.2 <sup>a</sup>                                               | 21.6 <sup>b</sup> | 16.7 <sup>b</sup> | 13.2 <sup>b</sup> | 9.7 <sup>b</sup>  | 7.2 <sup>c</sup>  |
| <i>df</i> of Sample      | 9                                                               | 9                 | 9                 | 9                 | 9                 | 9                 |
| <i>df</i> of Interaction | 99                                                              | 99                | 99                | 99                | 99                | 99                |
| F-value of Sample Effect | 3.98                                                            | 65.36             | 34.69             | 37.19             | 26.64             | 21.49             |
| Sample significance (p)  | 0.0002                                                          | <0.0001           | <0.0001           | <0.0001           | <0.0001           | <0.0001           |

4174      <sup>abcde</sup> Values within a column which do not share a common superscript are significantly different in means ratings  
 4175      of the perceived magnitude from Tukey's HSD test at the 95% confidence interval. S = sucrose; N = sodium chloride;  
 4176      C = citric acid; Q = quinine hemisulfate salt monohydrate; U = potassium L-glutamate monohydrate (MPG). *df* =  
 4177      degrees of freedom of interaction, noting that the main effect of sample (F-value of sample) was determined by  
 4178      dividing the variance of sample by the variance of the interaction (MSsample/MSinteraction) hence both the *df* of  
 4179      sample and interaction are given.

4180 Supplementary table 7. Assessor performance of perceived taste intensity of sodium  
 4181 chloride, lysine and calcium lactate in single, binary and ternary solutions.

4182 Table 7a. Assessor mean scores with significance of assessor differences for each  
 4183 attribute (showing different use of scale).

|             | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|-------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1  | 37.1            | 1.3    | 26     | 4.7    | 22.2   | 37.1   |
| Assessor 2  | 42.4            | 3      | 23.4   | 1.2    | 32.8   | 42.4   |
| Assessor 3  | 49              | 6.8    | 19.6   | 6      | 38.1   | 49     |
| Assessor 4  | 37.4            | 1      | 20.4   | 2.2    | 17.6   | 37.4   |
| Assessor 5  | 36.7            | 4.1    | 21.3   | 2.5    | 25.6   | 36.7   |
| Assessor 6  | 47.4            | 2.2    | 10.3   | 6.5    | 39.2   | 47.4   |
| Assessor 7  | 24.4            | 1.9    | 12.5   | 4.7    | 12.6   | 24.4   |
| Assessor 8  | 27.8            | 1      | 17.2   | 3.1    | 16.7   | 27.8   |
| Assessor 9  | 41.1            | 3.7    | 25.4   | 9.4    | 17.7   | 41.1   |
| Assessor 10 | 12.6            | 1.3    | 9.6    | 1.6    | 1.5    | 12.6   |
| Assessor 11 | 39.5            | 1.1    | 26.8   | 1.5    | 19.4   | 39.5   |
| Assessor 12 | 44.7            | 1.4    | 24     | 1.6    | 30.2   | 44.7   |
| HSD         | 10.7            | 2.1    | 8.1    | 3      | 11.1   | 10.7   |
| p - value   | <.0001          | <.0001 | 0.0001 | <.0001 | <.0001 | <.0001 |

4184 Table 7b. F values for Assessor Discrimination

|             | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|-------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1  | 2               | 1.4   | 2.9   | 0.5  | 8.9    | 2     |
| Assessor 2  | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 3  | 6.6             | 0.7   | 5.4   | 0.5  | 15.3   | 6.6   |
| Assessor 4  | 2.2             | 4.6   | 0.6   | 0.9  | 1.7    | 2.2   |
| Assessor 5  | 3               | 2.5   | 8.1   | 1.2  | 1.8    | 3     |
| Assessor 6  | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 7  | 0.7             | 3.6   | 1.4   | 1.6  | 7.2    | 0.7   |
| Assessor 8  | 3.8             | 1     | 4.4   | 1.6  | 6.8    | 3.8   |
| Assessor 9  | 5.8             | 0.6   | 13.9  | 0.7  | 5.9    | 5.8   |
| Assessor 10 | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 11 | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 12 | 12.1            | 2.4   | 17.2  | 1    | 40.7   | 12.1  |

4185 Table 7c. p-values for Assessor Discrimination

|            | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1 | 0.1771          | 0.3272 | 0.0793 | 0.8308 | 0.0031 | 0.1771 |
| Assessor 2 | <.0001          | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 3 | 0.0082          | 0.6493 | 0.0154 | 0.837  | 0.0005 | 0.0082 |
| Assessor 4 | 0.1457          | 0.0241 | 0.777  | 0.5488 | 0.2343 | 0.1457 |

|             |        |        |        |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|
| Assessor 5  | 0.0754 | 0.1114 | 0.0043 | 0.4191 | 0.2229 | 0.0754 |
| Assessor 6  | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 7  | 0.6545 | 0.0479 | 0.3128 | 0.2731 | 0.0062 | 0.6545 |
| Assessor 8  | 0.0408 | 0.4934 | 0.0269 | 0.2507 | 0.0076 | 0.0408 |
| Assessor 9  | 0.012  | 0.7161 | 0.0007 | 0.6809 | 0.0115 | 0.012  |
| Assessor 10 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 11 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 12 | 0.0011 | 0.1255 | 0.0003 | 0.4868 | <.0001 | 0.0011 |

4186 Table 7d. Correlations of each assessor's mean scores with panel average

|             | Total intensity | Sweet | Salty | Sour  | Bitter | Umami |
|-------------|-----------------|-------|-------|-------|--------|-------|
| Assessor 1  | 0.71            | 0.62  | 0.91  | 0.56  | 0.9    | 0.71  |
| Assessor 2  | 0.68            | 0.76  | 0.81  | 0.04  | 0.84   | 0.68  |
| Assessor 3  | 0.4             | 0.82  | 0.94  | 0.83  | 0.73   | 0.4   |
| Assessor 4  | 0.74            | 0.67  | 0.53  | 0.6   | 0.9    | 0.74  |
| Assessor 5  | 0.77            | 0.52  | 0.84  | 0.12  | 0.87   | 0.77  |
| Assessor 6  | 0.73            | -0.3  | 0.85  | -0.24 | 0.87   | 0.73  |
| Assessor 7  | 0.81            | 0.58  | 0.87  | 0.5   | 0.93   | 0.81  |
| Assessor 8  | 0.97            | -0.2  | 0.94  | 0.69  | 0.95   | 0.97  |
| Assessor 9  | 0.72            | 0.74  | 0.74  | 0.8   | 0.59   | 0.72  |
| Assessor 10 | 0.72            | 0.49  | 0.95  | 0.4   | 0.01   | 0.72  |
| Assessor 11 | 0.73            | 0.06  | 0.86  | 0.3   | 0.68   | 0.73  |
| Assessor 12 | 0.57            | 0.81  | 0.82  | 0.31  | 0.89   | 0.57  |

4187 Table 7e. Assessor's repeatability standard deviation

|             | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|-------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1  | 9.9             | 0.63  | 10.19 | 6.2  | 7.5    | 9.9   |
| Assessor 2  | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 3  | 8.85            | 8.07  | 5.54  | 8.81 | 6.37   | 8.85  |
| Assessor 4  | 10.56           | 0.07  | 20.59 | 3.76 | 14.24  | 10.56 |
| Assessor 5  | 10.7            | 2.34  | 6.09  | 2.3  | 15.29  | 10.7  |
| Assessor 6  | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 7  | 14.01           | 1.46  | 10.71 | 4.68 | 6.01   | 14.01 |
| Assessor 8  | 10.71           | 0.05  | 7.54  | 3.13 | 9.08   | 10.71 |
| Assessor 9  | 7.6             | 4.19  | 5.63  | 8.74 | 6.04   | 7.6   |
| Assessor 10 | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 11 | NA              | NA    | NA    | NA   | NA     | NA    |
| Assessor 12 | 4.81            | 0.5   | 5.43  | 0.95 | 4.81   | 4.81  |

4188 Table 7f. Test of each assessor's repeatability (replicate variability) against the Panel  
4189 average repeatability (F value)

|            | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1 | 1               | 0     | 1     | 1.3  | 0.6    | 1     |
| Assessor 2 | NA              | NA    | NA    | NA   | NA     | NA    |

|             |     |     |     |     |     |     |
|-------------|-----|-----|-----|-----|-----|-----|
| Assessor 3  | 0.8 | 5.7 | 0.3 | 2.5 | 0.5 | 0.8 |
| Assessor 4  | 1.1 | 0   | 4.1 | 0.5 | 2.3 | 1.1 |
| Assessor 5  | 1.2 | 0.5 | 0.4 | 0.2 | 2.6 | 1.2 |
| Assessor 6  | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 7  | 2   | 0.2 | 1.1 | 0.7 | 0.4 | 2   |
| Assessor 8  | 1.2 | 0   | 0.5 | 0.3 | 0.9 | 1.2 |
| Assessor 9  | 0.6 | 1.5 | 0.3 | 2.5 | 0.4 | 0.6 |
| Assessor 10 | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 11 | NA  | NA  | NA  | NA  | NA  | NA  |
| Assessor 12 | 0.2 | 0   | 0.3 | 0   | 0.3 | 0.2 |

4190 Table 7g. Test of each assessor's repeatability (replicate variability) against the Panel  
4191 average repeatability (p-vaule)

|             | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|-------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1  | 0.4541          | 1      | 0.4429 | 0.2809 | 0.7474 | 0.4541 |
| Assessor 2  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 3  | 0.6135          | <.0001 | 0.9647 | 0.0181 | 0.8817 | 0.6135 |
| Assessor 4  | 0.3603          | 1      | 0.0005 | 0.8775 | 0.0325 | 0.3603 |
| Assessor 5  | 0.3409          | 0.8644 | 0.9385 | 0.9937 | 0.0149 | 0.3409 |
| Assessor 6  | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 7  | 0.0638          | 0.9918 | 0.3703 | 0.677  | 0.913  | 0.0638 |
| Assessor 8  | 0.34            | 1      | 0.8149 | 0.9557 | 0.5002 | 0.34   |
| Assessor 9  | 0.7895          | 0.1601 | 0.9612 | 0.0198 | 0.9108 | 0.7895 |
| Assessor 10 | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 11 | NA              | NA     | NA     | NA     | NA     | NA     |
| Assessor 12 | 0.9832          | 1      | 0.9685 | 1      | 0.9763 | 0.9832 |

4192 Table 7h. F-values for Assessor contribution to the interaction

|               | Total intensity | Sweet | Salty | Sour | Bitter | Umami |
|---------------|-----------------|-------|-------|------|--------|-------|
| Assessor 1    | 1.2             | 0.1   | 0.6   | 0.4  | 1.2    | 1.2   |
| Assessor 2    | 2.1             | 0.5   | 1.6   | 0.1  | 1.3    | 2.1   |
| Assessor 3    | 4.9             | 3.3   | 0.2   | 0.7  | 3.5    | 4.9   |
| Assessor 4    | 1.2             | 0.2   | 2.1   | 0.3  | 0.9    | 1.2   |
| Assessor 5    | 1.5             | 1     | 0.9   | 0.3  | 1.2    | 1.5   |
| Assessor 6    | 2.8             | 0.6   | 0.3   | 1    | 5.9    | 2.8   |
| Assessor 7    | 0.7             | 0.5   | 0.5   | 0.9  | 0.6    | 0.7   |
| Assessor 8    | 0.9             | 0.2   | 0.3   | 0.3  | 0.9    | 0.9   |
| Assessor 9    | 1.8             | 0.6   | 2.1   | 1.2  | 2.9    | 1.8   |
| Assessor 10   | 0.4             | 0.1   | 0.2   | 0.1  | 2.1    | 0.4   |
| Assessor 11   | 1.3             | 0.1   | 0.6   | 0.1  | 1.5    | 1.3   |
| Assessor 12   | 2.2             | 0.1   | 2     | 0.1  | 3.4    | 2.2   |
| Interaction F | 1.7             | 0.6   | 1     | 0.5  | 2.1    | 1.7   |

4193 Table 7i. p-values for Assessor contribution to the interaction

|                     | Total intensity | Sweet  | Salty  | Sour   | Bitter | Umami  |
|---------------------|-----------------|--------|--------|--------|--------|--------|
| Assessor 1          | 0.332           | 0.9952 | 0.7715 | 0.8538 | 0.3327 | 0.332  |
| Assessor 2          | 0.0628          | 0.8401 | 0.1488 | 0.998  | 0.2625 | 0.0628 |
| Assessor 3          | 0.0003          | 0.0063 | 0.9672 | 0.6641 | 0.0036 | 0.0003 |
| Assessor 4          | 0.2953          | 0.9877 | 0.0599 | 0.9455 | 0.5376 | 0.2953 |
| Assessor 5          | 0.1761          | 0.4436 | 0.5    | 0.9251 | 0.2991 | 0.1761 |
| Assessor 6          | 0.0157          | 0.72   | 0.9474 | 0.4636 | <.0001 | 0.0157 |
| Assessor 7          | 0.6987          | 0.8251 | 0.82   | 0.4818 | 0.748  | 0.6987 |
| Assessor 8          | 0.5201          | 0.9814 | 0.9248 | 0.936  | 0.5003 | 0.5201 |
| Assessor 9          | 0.1147          | 0.7438 | 0.0598 | 0.3364 | 0.0137 | 0.1147 |
| Assessor 10         | 0.8602          | 0.9989 | 0.9762 | 0.999  | 0.0638 | 0.8602 |
| Assessor 11         | 0.2903          | 0.9974 | 0.749  | 0.9989 | 0.1908 | 0.2903 |
| Assessor 12         | 0.0516          | 0.9986 | 0.0759 | 0.9913 | 0.005  | 0.0516 |
| Interaction p-value | 0.0115          | 0.9849 | 0.5773 | 0.9994 | 0.0012 | 0.0115 |

4194

\*NA means not applicable.

4195      Supplementary Table 8. Ratings of perceived intensity of overall taste, salty, bitter and  
 4196      the concentration of a composite tastant solution (fixed ratio of 0.25% NaCl : 1.0%  
 4197      lysine : 0.75% calcium lactate).

| Perceived intensity (mean of gLMS intensity ratings) |                   |                    |                    |
|------------------------------------------------------|-------------------|--------------------|--------------------|
| Concentration ratio                                  | Total intensity   | Saltiness          | Bitterness         |
| 0.21                                                 | 1.08 <sup>e</sup> | 0.81 <sup>e</sup>  | 1.02 <sup>d</sup>  |
| 0.35                                                 | 1.19 <sup>e</sup> | 0.90 <sup>de</sup> | 1.10 <sup>cd</sup> |
| 0.59                                                 | 1.37 <sup>d</sup> | 1.17 <sup>d</sup>  | 1.30 <sup>c</sup>  |
| 1                                                    | 1.54 <sup>c</sup> | 1.37 <sup>c</sup>  | 1.48 <sup>b</sup>  |
| 1.7                                                  | 1.81 <sup>b</sup> | 1.73 <sup>b</sup>  | 1.69 <sup>a</sup>  |
| 2.89                                                 | 1.90 <sup>a</sup> | 1.86 <sup>a</sup>  | 1.73 <sup>a</sup>  |
| <i>df</i> of sample                                  | 9                 | 9                  | 9                  |
| <i>df</i> of interaction                             | 45                | 45                 | 45                 |
| F-value of sample effect                             | 141.48            | 94.81              | 45.17              |
| Sample significance (p)                              | <0.001            | <0.001             | <0.001             |

4198      Means within a column which do not share a common superscript are significantly different in the perceived  
 4199      magnitude from Tukey's HSD test at the 95% confidence interval. 1 means the fixed ratio of 0.25% NaCl : 1.0%  
 4200      lysine : 0.75% calcium lactate. Other means the composite tastant solution (1) was concentrated or diluted by 1.7,  
 4201      and the concentration of NaCl, lysine and calcium lactate were concentrated or diluted at the same time. *df*= degrees  
 4202      of freedom of interaction, noting that the main effect of sample (F-value of sample) was determined by dividing the  
 4203      variance of sample by the variance of the interaction (MSsample/MSinteraction) hence both the *df* of sample and  
 4204      interaction are given.

4205      Supplementary Table 9. Assessor performance of perceived intensity of overall taste,  
 4206      salty, bitter and the concentration of a composite tastant solution (fixed ratio of 0.25%  
 4207      NaCl : 1.0% lysine : 0.75% calcium lactate).

4208      Table 9a. Assessor mean scores with significance of assessor differences for each  
 4209      attribute (showing different use of scale).

|             | Total intensity | Salty  | Bitter | Sour   |
|-------------|-----------------|--------|--------|--------|
| Assessor 1  | 32.2            | 29.5   | 24.4   | 4.9    |
| Assessor 2  | 54.6            | 30.3   | 54.7   | 1.1    |
| Assessor 3  | 48.1            | 38.4   | 42.5   | 3.9    |
| Assessor 4  | 39              | 36.2   | 30.5   | 2.1    |
| Assessor 5  | 19.9            | 21     | 14.1   | 7      |
| Assessor 6  | 34.3            | 30.9   | 25.5   | 1      |
| Assessor 7  | 36.4            | 15.7   | 27.2   | 6.5    |
| Assessor 8  | 35.1            | 25.8   | 12.3   | 1.2    |
| Assessor 9  | 36.7            | 33.4   | 19.3   | 2.4    |
| Assessor 10 | 43.5            | 36     | 27.5   | 1.2    |
| HSD         | 9.1             | 10.9   | 10.7   | 3.1    |
| p - value   | <.0001          | 0.0005 | <.0001 | 0.0001 |

4210      Table 9b. F values for Assessor Discrimination

|             | Total intensity | Salty | Bitter | Sour |
|-------------|-----------------|-------|--------|------|
| Assessor 1  | 170.1           | 134.8 | 7.7    | 0.8  |
| Assessor 2  | 13              | 15.4  | 11.5   | 0.4  |
| Assessor 3  | 27.8            | 17.6  | 6.4    | 2    |
| Assessor 4  | 93              | 94.9  | 13.8   | 0.9  |
| Assessor 5  | 21.8            | 20.2  | 3.4    | 1.5  |
| Assessor 6  | 17.1            | 14.8  | 3.6    | NA   |
| Assessor 7  | 12.9            | 19.7  | 4.2    | 0.7  |
| Assessor 8  | NA              | NA    | NA     | NA   |
| Assessor 9  | 116.2           | 103.4 | 20.6   | 0.6  |
| Assessor 10 | 36.2            | 33.5  | 4.5    | 1.8  |

4211      Table 9c. p-values for Assessor Discrimination

|            | Total intensity | Salty  | Bitter | Sour   |
|------------|-----------------|--------|--------|--------|
| Assessor 1 | <.0001          | <.0001 | 0.0018 | 0.6    |
| Assessor 2 | 0.0002          | 0.0001 | 0.0003 | 0.823  |
| Assessor 3 | <.0001          | <.0001 | 0.0041 | 0.1463 |
| Assessor 4 | <.0001          | <.0001 | 0.0001 | 0.5397 |
| Assessor 5 | <.0001          | <.0001 | 0.0391 | 0.2498 |
| Assessor 6 | <.0001          | 0.0001 | 0.0321 | NA     |
| Assessor 7 | 0.0002          | <.0001 | 0.0201 | 0.6265 |

|             |        |        |        |        |
|-------------|--------|--------|--------|--------|
| Assessor 8  | <.0001 | <.0001 | <.0001 | <.0001 |
| Assessor 9  | <.0001 | <.0001 | 0.001  | 0.7349 |
| Assessor 10 | <.0001 | <.0001 | 0.0158 | 0.1815 |

4212 Table 9d. Correlations of each assessor's mean scores with panel average

|             | Total intensity | Salty | Bitter | Sour  |
|-------------|-----------------|-------|--------|-------|
| Assessor 1  | 0.99            | 1     | 1      | 0.53  |
| Assessor 2  | 0.98            | 0.99  | 0.98   | 0.06  |
| Assessor 3  | 1               | 0.99  | 0.98   | 0.71  |
| Assessor 4  | 0.99            | 1     | 0.96   | 0.83  |
| Assessor 5  | 0.99            | 0.99  | 0.95   | 0.74  |
| Assessor 6  | 0.98            | 0.97  | 0.96   | 0     |
| Assessor 7  | 0.99            | 0.83  | 0.98   | 0.71  |
| Assessor 8  | 0.99            | 0.89  | 0.88   | 0.39  |
| Assessor 9  | 1               | 0.99  | 0.98   | 0.89  |
| Assessor 10 | 0.98            | 1     | 0.69   | -0.93 |

4213 Table 9e. Assessor's repeatability standard deviation

|             | Total intensity | Salty | Bitter | Sour  |
|-------------|-----------------|-------|--------|-------|
| Assessor 1  | 4.1             | 4.83  | 12.94  | 7.16  |
| Assessor 2  | 12.1            | 11.79 | 11.96  | 0.13  |
| Assessor 3  | 9.5             | 13.39 | 14.16  | 4.09  |
| Assessor 4  | 6.04            | 6.05  | 13.47  | 3.22  |
| Assessor 5  | 6.84            | 8.03  | 8.08   | 4.18  |
| Assessor 6  | 8.18            | 9.45  | 15.97  | NA    |
| Assessor 7  | 12.81           | 8.26  | 16.17  | 11.55 |
| Assessor 8  | NA              | NA    | NA     | NA    |
| Assessor 9  | 4.81            | 4.57  | 6.82   | 1.85  |
| Assessor 10 | 9.16            | 9.99  | 13.38  | 0.12  |

4214 Table 9f. Test of each assessor's repeatability (replicate variability) against the Panel average repeatability (F value)  
4215

|             | Total intensity | Salty | Bitter | Sour |
|-------------|-----------------|-------|--------|------|
| Assessor 1  | 0.2             | 0.3   | 1      | 1.9  |
| Assessor 2  | 1.9             | 1.7   | 0.8    | 0    |
| Assessor 3  | 1.2             | 2.1   | 1.2    | 0.6  |
| Assessor 4  | 0.5             | 0.4   | 1      | 0.4  |
| Assessor 5  | 0.6             | 0.8   | 0.4    | 0.6  |
| Assessor 6  | 0.9             | 1.1   | 1.5    | NA   |
| Assessor 7  | 2.1             | 0.8   | 1.5    | 4.9  |
| Assessor 8  | NA              | NA    | NA     | NA   |
| Assessor 9  | 0.3             | 0.3   | 0.3    | 0.1  |
| Assessor 10 | 1.1             | 1.2   | 1      | 0    |

4216 Table 9g. Test of each assessor's repeatability (replicate variability) against the Panel  
 4217 average repeatability (p-value)

|             | Total intensity | Salty  | Bitter | Sour   |
|-------------|-----------------|--------|--------|--------|
| Assessor 1  | 0.9974          | 0.9914 | 0.4876 | 0.0443 |
| Assessor 2  | 0.046           | 0.0864 | 0.6263 | 1      |
| Assessor 3  | 0.3243          | 0.02   | 0.3265 | 0.8244 |
| Assessor 4  | 0.9289          | 0.9442 | 0.4147 | 0.9673 |
| Assessor 5  | 0.8385          | 0.678  | 0.9694 | 0.8005 |
| Assessor 6  | 0.5923          | 0.3946 | 0.1482 | NA     |
| Assessor 7  | 0.0229          | 0.6332 | 0.1345 | <.0001 |
| Assessor 8  | NA              | NA     | NA     | NA     |
| Assessor 9  | 0.9371          | 0.9582 | 0.9506 | 0.9928 |
| Assessor 10 | 0.3886          | 0.2981 | 0.4273 | 1      |

4218 Table 9h. F-values for Assessor contribution to the interaction

|               | Total intensity | Salty | Bitter | Sour |
|---------------|-----------------|-------|--------|------|
| Assessor 1    | 1.2             | 1.3   | 0.2    | 1.2  |
| Assessor 2    | 1.4             | 0.8   | 0.7    | 0.2  |
| Assessor 3    | 0.3             | 1.7   | 0.3    | 0.8  |
| Assessor 4    | 2               | 2     | 2.9    | 0.1  |
| Assessor 5    | 3.9             | 2     | 2.2    | 0.6  |
| Assessor 6    | 3.7             | 3.1   | 0.5    | 0.2  |
| Assessor 7    | 0.6             | 9.1   | 0.3    | 2.8  |
| Assessor 8    | 1.1             | 2.1   | 0.5    | 0.1  |
| Assessor 9    | 2.5             | 1.4   | 0.4    | 0    |
| Assessor 10   | 2.1             | 1.7   | 3.7    | 0.3  |
| Interaction F | 1.9             | 2.5   | 1.2    | 0.6  |

4219 Table 9i. p-values for Assessor contribution to the interaction

|                     | Total intensity | Salty  | Bitter | Sour   |
|---------------------|-----------------|--------|--------|--------|
| Assessor 1          | 0.3147          | 0.2602 | 0.9626 | 0.33   |
| Assessor 2          | 0.2375          | 0.5632 | 0.5752 | 0.9338 |
| Assessor 3          | 0.8904          | 0.144  | 0.8701 | 0.536  |
| Assessor 4          | 0.0925          | 0.0898 | 0.0208 | 0.9851 |
| Assessor 5          | 0.0042          | 0.0852 | 0.0688 | 0.6968 |
| Assessor 6          | 0.0056          | 0.0154 | 0.7659 | 0.9335 |
| Assessor 7          | 0.6855          | <.0001 | 0.9088 | 0.0268 |
| Assessor 8          | 0.3691          | 0.0842 | 0.7743 | 0.9941 |
| Assessor 9          | 0.0404          | 0.225  | 0.8589 | 0.9985 |
| Assessor 10         | 0.0849          | 0.1572 | 0.0054 | 0.9157 |
| Interaction p-value | 0.0049          | 0.0001 | 0.26   | 0.9596 |

4220 \*NA means not applicable.

4221      Supplementary Table 10. Ratings of perceived intensity of overall taste, salty, bitter and  
 4222      concentration of lysine composite solution (each composite solution containing 0.25%  
 4223      NaCl and 0.75% calcium lactate w/v in addition to lysine).

| Perceived intensity (mean of gLMS intensity ratings) |                    |                    |                    |
|------------------------------------------------------|--------------------|--------------------|--------------------|
| Concentration ratio                                  | Total intensity    | Saltiness          | Bitterness         |
| 0.21                                                 | 1.33 <sup>d</sup>  | 1.13 <sup>d</sup>  | 1.21 <sup>d</sup>  |
| 0.35                                                 | 1.40 <sup>cd</sup> | 1.17 <sup>d</sup>  | 1.26 <sup>d</sup>  |
| 0.59                                                 | 1.43 <sup>cd</sup> | 1.26 <sup>cd</sup> | 1.36 <sup>cd</sup> |
| 1                                                    | 1.56 <sup>bc</sup> | 1.42 <sup>cd</sup> | 1.44 <sup>cd</sup> |
| 1.7                                                  | 1.63 <sup>b</sup>  | 1.47 <sup>bc</sup> | 1.54 <sup>bc</sup> |
| 2.89                                                 | 1.75 <sup>a</sup>  | 1.60 <sup>ab</sup> | 1.66 <sup>ab</sup> |
| 4.91                                                 | 1.82 <sup>a</sup>  | 1.67 <sup>a</sup>  | 1.75 <sup>a</sup>  |
| <i>df</i> of sample                                  | 10                 | 10                 | 10                 |
| <i>df</i> of interaction                             | 60                 | 60                 | 60                 |
| F-value of sample effect                             | 24.85              | 18.09              | 18.55              |
| Sample significance (p)                              | <0.001             | <0.001             | <0.001             |

4224      Means within a column which do not share a common superscript are significantly different in the perceived  
 4225      magnitude from Tukey's HSD test at the 95% confidence interval. 1 means the fixed ratio of 0.25% NaCl : 1.0%  
 4226      lysine : 0.75% calcium lactate. Other means the composite tastant solution (1) was concentrated or diluted by 1.7,  
 4227      but only the concentration of lysine was concentrated or dilute, the concentration of NaCl and calcium lactate did  
 4228      not change. *df* = degrees of freedom of interaction, noting that the main effect of sample (F-value of sample) was  
 4229      determined by dividing the variance of sample by the variance of the interaction (MSsample/MSinteraction) hence  
 4230      both the *df* of sample and interaction are given.

4231 Supplementary Table 11. Assessor performance of perceived intensity of overall taste,  
4232 salty, bitter and concentration of lysine composite solution (each composite solution  
4233 containing 0.25% NaCl and 0.75% calcium lactate w/v in addition to lysine).

4234 Table 11a. Assessor mean scores with significance of assessor differences for each  
4235 attribute (showing different use of scale).

|             | Total intensity | Salty  | Bitter |
|-------------|-----------------|--------|--------|
| Assessor 1  | 1.5             | 1.4    | 1.5    |
| Assessor 2  | 1.6             | 1.4    | 1.5    |
| Assessor 3  | 1.5             | 1.3    | 1.4    |
| Assessor 4  | 1.5             | 1.4    | 1.4    |
| Assessor 5  | 1.7             | 1.3    | 1.6    |
| Assessor 6  | 1.3             | 1.2    | 0.6    |
| Assessor 7  | 1.3             | 1.2    | 1.4    |
| Assessor 8  | 1.5             | 1.4    | 1.4    |
| Assessor 9  | 1.6             | 1.3    | 1.5    |
| Assessor 10 | 1.6             | 1.5    | 1.1    |
| Assessor 11 | 1.7             | 1.1    | 1.6    |
| HSD         | 0.1             | 0.2    | 0.2    |
| p - value   | <.0001          | 0.0022 | <.0001 |

4236 Table 11b. F values for Assessor Discrimination

|             | Total intensity | Salty | Bitter |
|-------------|-----------------|-------|--------|
| Assessor 1  | 15.7            | 2.9   | 8      |
| Assessor 2  | 6.5             | 4.5   | 4.5    |
| Assessor 3  | 7.5             | 3.7   | 3.1    |
| Assessor 4  | 10.3            | 14.1  | 3.7    |
| Assessor 5  | 2.6             | 27.4  | 1.9    |
| Assessor 6  | 3.6             | 6.5   | 10.5   |
| Assessor 7  | NA              | NA    | NA     |
| Assessor 8  | 10.4            | 3.7   | 18.7   |
| Assessor 9  | NA              | NA    | NA     |
| Assessor 10 | 3.2             | 1.5   | 1.8    |
| Assessor 11 | 15.5            | 5     | 9.5    |

4237 Table 11c. p-values for Assessor Discrimination

|            | Total intensity | Salty  | Bitter |
|------------|-----------------|--------|--------|
| Assessor 1 | 0.001           | 0.0979 | 0.0074 |
| Assessor 2 | 0.0131          | 0.0348 | 0.0344 |
| Assessor 3 | 0.0088          | 0.0539 | 0.083  |
| Assessor 4 | 0.0035          | 0.0014 | 0.0562 |
| Assessor 5 | 0.1186          | 0.0002 | 0.2063 |

|             |        |        |        |
|-------------|--------|--------|--------|
| Assessor 6  | 0.0582 | 0.0133 | 0.0033 |
| Assessor 7  | <.0001 | <.0001 | <.0001 |
| Assessor 8  | 0.0034 | 0.0543 | 0.0006 |
| Assessor 9  | <.0001 | <.0001 | <.0001 |
| Assessor 10 | 0.0759 | 0.2962 | 0.2283 |
| Assessor 11 | 0.001  | 0.0264 | 0.0045 |

4238 Table 11d. Correlations of each assessor's mean scores with panel average

|             | Total intensity | Salty | Bitter |
|-------------|-----------------|-------|--------|
| Assessor 1  | 0.8             | 0.92  | 0.75   |
| Assessor 2  | 0.9             | 0.71  | 0.97   |
| Assessor 3  | 0.97            | 0.84  | 0.95   |
| Assessor 4  | 0.97            | 0.9   | 0.98   |
| Assessor 5  | 0.82            | 0.83  | 0.74   |
| Assessor 6  | 0.85            | 0.91  | 0.92   |
| Assessor 7  | 0.77            | 0.69  | 0.75   |
| Assessor 8  | 0.98            | 0.87  | 0.88   |
| Assessor 9  | 0.74            | 0.74  | 0.74   |
| Assessor 10 | 0.78            | 0.68  | 0.88   |
| Assessor 11 | 0.94            | 0.86  | 0.86   |

4239 Table 11e. Assessor's repeatability standard deviation

|             | Total intensity | Salty | Bitter |
|-------------|-----------------|-------|--------|
| Assessor 1  | 0.09            | 0.24  | 0.15   |
| Assessor 2  | 0.11            | 0.11  | 0.13   |
| Assessor 3  | 0.16            | 0.22  | 0.33   |
| Assessor 4  | 0.11            | 0.1   | 0.21   |
| Assessor 5  | 0.09            | 0.11  | 0.12   |
| Assessor 6  | 0.18            | 0.17  | 0.21   |
| Assessor 7  | NA              | NA    | NA     |
| Assessor 8  | 0.12            | 0.13  | 0.17   |
| Assessor 9  | NA              | NA    | NA     |
| Assessor 10 | 0.19            | 0.38  | 0.4    |
| Assessor 11 | 0.05            | 0.16  | 0.06   |

4240 Table 11f. Test of each assessor's repeatability (replicate variability) against the Panel  
4241 average repeatability (F value)

|            | Total intensity | Salty | Bitter |
|------------|-----------------|-------|--------|
| Assessor 1 | 0.5             | 1.4   | 0.4    |
| Assessor 2 | 0.7             | 0.3   | 0.3    |
| Assessor 3 | 1.5             | 1.3   | 2.2    |
| Assessor 4 | 0.8             | 0.2   | 0.9    |
| Assessor 5 | 0.4             | 0.3   | 0.3    |
| Assessor 6 | 2               | 0.7   | 0.9    |

|             |     |     |     |
|-------------|-----|-----|-----|
| Assessor 7  | NA  | NA  | NA  |
| Assessor 8  | 0.8 | 0.4 | 0.6 |
| Assessor 9  | NA  | NA  | NA  |
| Assessor 10 | 2.1 | 3.6 | 3.3 |
| Assessor 11 | 0.2 | 0.7 | 0.1 |

4242 Table 9g. Test of each assessor's repeatability (replicate variability) against the Panel  
 4243 average repeatability (p-value)

|             | Total intensity | Salty  | Bitter |
|-------------|-----------------|--------|--------|
| Assessor 1  | 0.8099          | 0.2109 | 0.8731 |
| Assessor 2  | 0.6653          | 0.9401 | 0.9407 |
| Assessor 3  | 0.1807          | 0.2774 | 0.0459 |
| Assessor 4  | 0.5977          | 0.9729 | 0.5388 |
| Assessor 5  | 0.8727          | 0.9555 | 0.9607 |
| Assessor 6  | 0.0725          | 0.6387 | 0.5351 |
| Assessor 7  | NA              | NA     | NA     |
| Assessor 8  | 0.5957          | 0.8874 | 0.7421 |
| Assessor 9  | NA              | NA     | NA     |
| Assessor 10 | 0.0574          | 0.0024 | 0.0045 |
| Assessor 11 | 0.9913          | 0.6997 | 0.9989 |

4244 Table 11h. F-values for Assessor contribution to the interaction

|               | Total intensity | Salty | Bitter |
|---------------|-----------------|-------|--------|
| Assessor 1    | 3.3             | 0.8   | 1.8    |
| Assessor 2    | 1               | 1.4   | 0.4    |
| Assessor 3    | 1.9             | 1.6   | 1.4    |
| Assessor 4    | 0.9             | 0.7   | 0.1    |
| Assessor 5    | 2.4             | 3.3   | 1.8    |
| Assessor 6    | 2.1             | 1.1   | 2.8    |
| Assessor 7    | 4.3             | 1.2   | 0.8    |
| Assessor 8    | 0.8             | 0.7   | 4.6    |
| Assessor 9    | 1.3             | 1     | 0.8    |
| Assessor 10   | 2.9             | 3.3   | 1.7    |
| Assessor 11   | 0.9             | 1     | 1.2    |
| Interaction F | 2               | 1.5   | 1.6    |

4245 Table 11i. p-values for Assessor contribution to the interaction

|            | Total intensity | Salty  | Bitter |
|------------|-----------------|--------|--------|
| Assessor 1 | 0.0091          | 0.5921 | 0.1268 |
| Assessor 2 | 0.4253          | 0.2184 | 0.8579 |
| Assessor 3 | 0.1035          | 0.1702 | 0.2246 |
| Assessor 4 | 0.4661          | 0.6139 | 0.9898 |
| Assessor 5 | 0.0452          | 0.0089 | 0.1252 |
| Assessor 6 | 0.0669          | 0.3947 | 0.022  |

|                     |        |        |        |
|---------------------|--------|--------|--------|
| Assessor 7          | 0.0016 | 0.3245 | 0.5451 |
| Assessor 8          | 0.5754 | 0.6293 | 0.0009 |
| Assessor 9          | 0.2771 | 0.4456 | 0.5979 |
| Assessor 10         | 0.018  | 0.0091 | 0.1481 |
| Assessor 11         | 0.5006 | 0.4478 | 0.3127 |
| Interaction p-value | 0.0042 | 0.0727 | 0.0379 |

4246 \*NA means not applicable.

4247

4248

Supplementary Table 12. Physical-chemical characteristics of pork patties varying in salt, lysine, calcium lactate and pH.

| Factor         | pH before cooking       | pH after cooking        | Cooking loss             | Moisture                 | L surface                | a* surface              | b* surface               | L internal               | a* internal             | b* internal             |
|----------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| Salt           | 6.035±0.09 <sup>a</sup> | 6.284±0.12 <sup>a</sup> | 28.412±6.03 <sup>a</sup> | 65.0574.88 <sup>a</sup>  | 56.572±3.77 <sup>b</sup> | 4.506±0.73 <sup>c</sup> | 15.416±1.33 <sup>b</sup> | 67.859±2.19 <sup>a</sup> | 4.783±1.12 <sup>b</sup> | 10.58±0.53 <sup>a</sup> |
| CL             | 6.034±0.09 <sup>a</sup> | 6.021±0.08 <sup>b</sup> | 25.012±4.69 <sup>b</sup> | 63.317±3.85 <sup>b</sup> | 58.87±5.14 <sup>a</sup>  | 2.847±1.03 <sup>b</sup> | 15.704±1.28 <sup>b</sup> | 68.809±2.97 <sup>a</sup> | 4.678±0.78 <sup>b</sup> | 9.495±0.53 <sup>b</sup> |
| LY             | 5.999±0.08 <sup>a</sup> | 6.28±0.06 <sup>a</sup>  | 20.712±5.77 <sup>c</sup> | 66.218±4.38 <sup>a</sup> | 52.029±3.42 <sup>c</sup> | 5.481±0.56 <sup>a</sup> | 15.38±1.86 <sup>b</sup>  | 64.849±2.09 <sup>b</sup> | 5.32±0.74 <sup>a</sup>  | 9.274±0.38 <sup>c</sup> |
| LY+CL          | 6.042±0.08 <sup>a</sup> | 6.017±0.08 <sup>b</sup> | 21.04±3.59 <sup>c</sup>  | 66.296±3.18 <sup>a</sup> | 56.496±3.41 <sup>b</sup> | 4.24±1.03 <sup>c</sup>  | 16.548±1.57 <sup>a</sup> | 65.949±2.98 <sup>b</sup> | 4.063±0.62 <sup>c</sup> | 8.849±0.67 <sup>d</sup> |
| p(ingredients) | 0.143                   | <0.001                  | <0.001                   | <0.001                   | <0.001                   | <0.001                  | <0.001                   | <0.001                   | <0.001                  | <0.001                  |
| pH 5.5         | 5.559±0.06 <sup>c</sup> | 5.847±0.08 <sup>c</sup> | 28.114±4.65 <sup>a</sup> | 61.693±2.24 <sup>c</sup> | 58.834±3.83 <sup>a</sup> | 3.827±1.09 <sup>c</sup> | 14.876±1.28 <sup>c</sup> | 68.515±3.39 <sup>a</sup> | 4.121±0.79 <sup>c</sup> | 9.021±0.87 <sup>c</sup> |
| pH 6           | 6.017±0.08 <sup>b</sup> | 6.085±0.12 <sup>b</sup> | 23.855±5.94 <sup>b</sup> | 65.958±4.02 <sup>b</sup> | 55.575±4.76 <sup>b</sup> | 4.188±1.22 <sup>b</sup> | 15.55±1.45 <sup>b</sup>  | 66.892±1.76 <sup>b</sup> | 4.712±0.80 <sup>b</sup> | 9.677±0.57 <sup>b</sup> |
| pH 6.5         | 6.506±0.08 <sup>a</sup> | 6.519±0.09 <sup>a</sup> | 19.413±3.55 <sup>c</sup> | 68.015±3.51 <sup>a</sup> | 53.567±3.84 <sup>c</sup> | 4.791±1.15 <sup>a</sup> | 16.866±1.33 <sup>a</sup> | 65.193±2.67 <sup>c</sup> | 5.299±0.86 <sup>a</sup> | 9.95±0.75 <sup>a</sup>  |
| p(pH)          | <0.001                  | <0.001                  | <0.001                   | <0.001                   | <0.001                   | <0.001                  | <0.001                   | <0.001                   | <0.001                  | <0.001                  |
| p(interaction) | 0.187                   | <0.001                  | 0.042                    | 0.751                    | 0.951                    | 0.986                   | 0.055                    | 0.992                    | 0.016                   | <0.001                  |

4249

CL = calcium lactate; LY = lysine. Averages within the same column followed by the same letters are not significantly different (P &gt; 0.05). Values represented as the Mean ± standard deviation

4250

(SD), n = 3.

4251

4252 Supplementary Table 13. Volatile flavour compounds in the headspace above pork patties (by SPME GC-MS), relative amounts are mean peak  
 4253 areas (/1000). Patties varied in salt, lysine, calcium lactate and pH.

| Compound         | Salt                   | LY                     | CL                   | LY+CL                | p(ingredients) | pH 5.5                 | pH 6                 | pH 6.5               | p(pH)  | p(interaction) |
|------------------|------------------------|------------------------|----------------------|----------------------|----------------|------------------------|----------------------|----------------------|--------|----------------|
| Acids (2)        |                        |                        |                      |                      |                |                        |                      |                      |        |                |
| Butanoic acid    | 3,457 <sup>a</sup>     | 2,121 <sup>a</sup>     | 2,975 <sup>a</sup>   | 3,813                | 0.208          | 3,874 <sup>a</sup>     | 3,381 <sup>a</sup>   | 2,020 <sup>b</sup>   | 0.041  | 0.354          |
| Hexanoic acid    | 3,053 <sup>a</sup>     | 2,718 <sup>ab</sup>    | 1,835 <sup>b</sup>   | 1,961 <sup>b</sup>   | 0.027          | 4,338 <sup>a</sup>     | 1,713 <sup>b</sup>   | 1,130 <sup>b</sup>   | <0.001 | 0.037          |
| Alkanes (1)      |                        |                        |                      |                      |                |                        |                      |                      |        |                |
| 2-Pentyloxirane  | 1,109 <sup>a</sup>     | 1,387 <sup>a</sup>     | ND                   | 1,002 <sup>a</sup>   | 0.147          | 1,195 <sup>ab</sup>    | 1,538 <sup>a</sup>   | 916 <sup>b</sup>     | 0.016  | 0.063          |
| Alcohols (6)     |                        |                        |                      |                      |                |                        |                      |                      |        |                |
| 1-Penten-3-ol    | 1,952 <sup>a</sup>     | 2,279 <sup>a</sup>     | 1,798 <sup>a</sup>   | 2,077 <sup>a</sup>   | 0.676          | 1,822 <sup>a</sup>     | 2,187 <sup>a</sup>   | 2,235 <sup>a</sup>   | 0.438  | 0.205          |
| 1-Pentanol       | 35,465 <sup>c</sup>    | 29,171 <sup>b</sup>    | 16,456 <sup>ab</sup> | 11,233 <sup>a</sup>  | 0.013          | 23,260 <sup>a</sup>    | 22,069 <sup>a</sup>  | 36,791 <sup>a</sup>  | 0.411  | 0.024          |
| 1-Hexanol        | 4,593 <sup>a</sup>     | 4,319 <sup>a</sup>     | 1,716 <sup>b</sup>   | 3,072 <sup>ab</sup>  | 0.044          | 3,858 <sup>a</sup>     | 4,710 <sup>a</sup>   | 3,337 <sup>a</sup>   | 0.094  | 0.85           |
| 1-Heptanol       | 2,290 <sup>a</sup>     | 2,074 <sup>a</sup>     | ND                   | 1,563 <sup>a</sup>   | 0.165          | 2,227 <sup>a</sup>     | 2,643 <sup>a</sup>   | 1,349 <sup>c</sup>   | 0.013  | 0.628          |
| 1-Octen-3-ol     | 28,403 <sup>a</sup>    | 25,311 <sup>a</sup>    | 2,854 <sup>b</sup>   | 8,782 <sup>b</sup>   | <0.001         | 25,333 <sup>a</sup>    | 13,332 <sup>b</sup>  | 12,847 <sup>b</sup>  | <0.001 | 0.132          |
| 1-Octanol        | 2,692 <sup>a</sup>     | 1,740 <sup>b</sup>     | ND                   | 1,823 <sup>b</sup>   | 0.011          | 2,113 <sup>a</sup>     | 2,615 <sup>a</sup>   | 1,775 <sup>a</sup>   | 0.06   | 0.123          |
| Aldehydes (12)   |                        |                        |                      |                      |                |                        |                      |                      |        |                |
| Butanal          | ND                     | 2,265 <sup>a</sup>     | ND                   | 1,428 <sup>b</sup>   | 0.024          | 2,263 <sup>a</sup>     | 1,910 <sup>a</sup>   | 1,300 <sup>a</sup>   | 0.054  | /              |
| 2-Methylbutanal  | ND                     | 1,114 <sup>b</sup>     | 2,005 <sup>a</sup>   | 1,251 <sup>ab</sup>  | 0.016          | ND                     | 883 <sup>b</sup>     | 1,954 <sup>a</sup>   | 0.002  | 0.008          |
| 3-Methylbutanal  | ND                     | 209 <sup>b</sup>       | 1,512 <sup>a</sup>   | 874 <sup>a</sup>     | 0.002          | ND                     | 714 <sup>b</sup>     | 1,184 <sup>a</sup>   | 0.005  | 0.011          |
| Pentanal         | 93,411 <sup>a</sup>    | 115,684 <sup>a</sup>   | 25,445 <sup>b</sup>  | 50,225 <sup>b</sup>  | <0.001         | 96,555 <sup>a</sup>    | 55,482 <sup>b</sup>  | 65,307 <sup>b</sup>  | 0.007  | 0.04           |
| Hexanal          | 1,370,748 <sup>a</sup> | 1,304,061 <sup>a</sup> | 380,231 <sup>b</sup> | 414,804 <sup>b</sup> | <0.001         | 1,297,861 <sup>a</sup> | 677,431 <sup>b</sup> | 627,091 <sup>b</sup> | <0.001 | 0.007          |
| 2-Hexenal, (E)-  | 1,560 <sup>a</sup>     | 1,622 <sup>a</sup>     | 1,175 <sup>a</sup>   | 1,677 <sup>a</sup>   | 0.328          | 1,459 <sup>a</sup>     | 1,690 <sup>a</sup>   | ND                   | 0.293  | 0.654          |
| Heptanal         | 30,682 <sup>a</sup>    | 19,477 <sup>b</sup>    | 23,055 <sup>ab</sup> | 23,055 <sup>ab</sup> | 0.033          | 27,850 <sup>a</sup>    | 24,716 <sup>ab</sup> | 17,878 <sup>b</sup>  | 0.022  | 0.403          |
| 2-Heptenal, (E)- | 3,668 <sup>a</sup>     | 3,599 <sup>a</sup>     | 2,821 <sup>a</sup>   | 3,975 <sup>a</sup>   | 0.087          | 4,516 <sup>a</sup>     | 3,243 <sup>ab</sup>  | 2,024 <sup>b</sup>   | 0.001  | 0.609          |

|                  |                     |                      |                     |                     |        |                     |                     |                     |        |        |
|------------------|---------------------|----------------------|---------------------|---------------------|--------|---------------------|---------------------|---------------------|--------|--------|
| Benzaldehyde     | 2,183 <sup>a</sup>  | 1,774 <sup>ab</sup>  | 807 <sup>c</sup>    | 1,037 <sup>bc</sup> | <0.001 | 2,065 <sup>a</sup>  | 1,371 <sup>b</sup>  | 1,189 <sup>b</sup>  | <0.001 | 0.703  |
| Octanal          | 16,299 <sup>a</sup> | 12,115 <sup>ab</sup> | 5,515 <sup>b</sup>  | 7,801 <sup>b</sup>  | 0.006  | 11,851 <sup>b</sup> | 16,433 <sup>a</sup> | 9,145 <sup>b</sup>  | 0.012  | 0.055  |
| 2-Octenal, (E)-  | 3,509 <sup>a</sup>  | 2,657 <sup>a</sup>   | 1,494 <sup>b</sup>  | 2,130 <sup>b</sup>  | <0.001 | 3,780 <sup>a</sup>  | 2,101 <sup>b</sup>  | 1,400 <sup>b</sup>  | <0.001 | 0.258  |
| Nonanal          | 20,636 <sup>a</sup> | 13,283 <sup>b</sup>  | 4,021 <sup>c</sup>  | 5,254 <sup>c</sup>  | <0.001 | 16,559 <sup>a</sup> | 8,891 <sup>b</sup>  | 6,945 <sup>b</sup>  | <0.001 | 0.058  |
| Furans (1)       |                     |                      |                     |                     |        |                     |                     |                     |        |        |
| 2-Pentylfuran    | 7,282 <sup>a</sup>  | 7,643 <sup>a</sup>   | 6,943 <sup>a</sup>  | 7,648 <sup>a</sup>  | 0.709  | 7,915 <sup>a</sup>  | 7,269 <sup>a</sup>  | 6,585 <sup>a</sup>  | 0.278  | 0.635  |
| Ketones (5)      |                     |                      |                     |                     |        |                     |                     |                     |        |        |
| Acetol           | 1,229 <sup>b</sup>  | 2,579 <sup>a</sup>   | 1,186 <sup>b</sup>  | 989 <sup>b</sup>    | <0.001 | 375 <sup>c</sup>    | 1,185 <sup>b</sup>  | 2,511 <sup>a</sup>  | <0.001 | 0.06   |
| 2,3-Pentanedione | 3,938 <sup>a</sup>  | 4,778 <sup>a</sup>   | 4,995 <sup>a</sup>  | 5,033 <sup>a</sup>  | 0.747  | 4,793 <sup>a</sup>  | 3,945 <sup>a</sup>  | 5,175 <sup>a</sup>  | 0.52   | 0.51   |
| Acetoin          | 1,835 <sup>b</sup>  | 1,849 <sup>b</sup>   | 3,092 <sup>a</sup>  | 3,553 <sup>a</sup>  | <0.001 | 1,060 <sup>c</sup>  | 2,705 <sup>b</sup>  | 3,983 <sup>a</sup>  | <0.001 | 0.057  |
| 2-Heptanone      | 2,404 <sup>a</sup>  | 2,838 <sup>a</sup>   | 983 <sup>b</sup>    | 2,267 <sup>a</sup>  | 0.011  | 2,517 <sup>a</sup>  | 2,522 <sup>a</sup>  | 1,933 <sup>b</sup>  | 0.024  | 0.523  |
| 2,3-Octanedione  | 95,938 <sup>a</sup> | 88,785 <sup>a</sup>  | 22,463 <sup>b</sup> | 38,498 <sup>b</sup> | <0.001 | 91,208 <sup>a</sup> | 44,946 <sup>b</sup> | 51,312 <sup>b</sup> | <0.001 | 0.176  |
| Phenols (1)      |                     |                      |                     |                     |        |                     |                     |                     |        |        |
| 2-Phenoxyethanol | 1,773 <sup>a</sup>  | 1,303 <sup>b</sup>   | 1,746 <sup>a</sup>  | 1,121 <sup>b</sup>  | 0.021  | 1,882 <sup>a</sup>  | 1,740 <sup>a</sup>  | 834 <sup>c</sup>    | <0.001 | <0.001 |
| Pyrazines (1)    |                     |                      |                     |                     |        |                     |                     |                     |        |        |
| 2-methylpyrazine | ND                  | 903 <sup>a</sup>     | ND                  | ND                  | /      | ND                  | 349 <sup>b</sup>    | 1,459 <sup>a</sup>  | /      | /      |

4254

CL = calcium lactate; LY = lysine. ND means not detected. Averages within the same row followed by the same letters are not significantly different ( $P > 0.05$ ).

