

Genome-wide association study reveals candidate genes controlling root system architecture under low phosphorus supply at seedling stage in Brassica napus

Article

Accepted Version

Yuan, P., Liu, H., Wang, X., Hammond, J. P. ORCID: <https://orcid.org/0000-0002-6241-3551> and Shi, L. ORCID: <https://orcid.org/0000-0002-5312-8521> (2023) Genome-wide association study reveals candidate genes controlling root system architecture under low phosphorus supply at seedling stage in *Brassica napus*. *Molecular Breeding*, 43 (8). 63. ISSN 1380-3743 doi: 10.1007/s11032-023-01411-2 Available at <https://centaur.reading.ac.uk/112938/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1007/s11032-023-01411-2>

Publisher: Springer Verlag

the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Genome-wide association study reveals candidate genes controlling
2 root system architecture under low phosphorus supply at seedling
3 stage in *Brassica napus***

4 **Running title: RSA of *B. napus* at LP**

5

6 **Pan Yuan^{1,2}, Haijiang Liu^{1,2}, Xiaohua Wang³, John P. Hammond⁴, Lei Shi^{1,2*}**

7 ¹ *National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University,
8 Wuhan 430070, China*

9 ² *Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/
10 Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070,
11 China*

12 ³ *College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China*

13 ⁴ *School of Agriculture, Policy and Development, University of Reading, Reading RG6
14 6AR, UK*

15

16 *** Correspondence:** Lei shi (leish@mail.hzau.edu.cn), Tel: +86 027-87286871.

17

18 **Keywords:** Oilseed rape (*B. napus* L.), root system architecture (RSA), low phosphorus
19 supply, genome-wide association study (GWAS), haplotype analysis.

20

21 **Abstract**

22 Optimal root system architecture (RSA) is essential for vigorous growth and yield in
23 crops. Plants have evolved adaptive mechanisms in response to low phosphorus (LP)
24 stress, and one of those is changes in RSA. Here, more than five million single-
25 nucleotide polymorphisms (SNPs) obtained from whole genome re-sequencing data
26 (WGR) of an association panel of 370 oilseed rape (*Brassica napus* L.) were used to
27 conduct genome-wide association study (GWAS) of RSA traits of the panel at LP in
28 ‘pouch and wick’ system. Fifty-two SNPs were forcefully associated with lateral root
29 length (LRL), total root length (TRL), lateral root density (LRD), root number (RN),
30 mean lateral root length (MLRL) and root dry weight (RDW) at LP. There were

31 significant correlations between phenotypic variation and the number of favorable
32 alleles of the associated loci on chromosomes A06 (chrA06_20030601), C03
33 (chrC03_3535483) and C07 (chrC07_42348561), respectively. Three candidate genes
34 (*BnaA06g29270D*, *BnaC03g07130D* and *BnaC07g43230D*) were detected by
35 combining transcriptome, candidate gene association analysis and haplotype analysis.
36 Cultivar carrying “CCGC” at *BnaA06g29270DHap1*, “CAAT” at
37 *BnaC03g07130DHap1* and “ATC” at *BnaC07g43230DHap1* had greater LRL, LRN
38 and RDW than lines carrying other haplotypes at LP supply. The RSA of cultivar
39 harboring the three favorable haplotypes was further confirmed by solution culture
40 experiments. These findings define exquisite insights into genetic architectures
41 underlying *B. napus* RSA at LP, and provide valuable gene resources for root breeding.
42

43 **Introduction**

44 Oilseed rape (*Brassica napus* L.; *B. napus*) is a globally important oil crop (Chalhoub
45 et al. 2014). *B. napus* has high phosphorus (P) demand and P deficiency affects root
46 development and reduces seed yield (Wang et al. 2017; Liu et al. 2021a). As populations
47 expand around the world, the demand for edible oil is also growing. However, P
48 fertilizers are derived from non-renewable P rock resources and over application of P
49 fertilizers are associated with environmental issues, such as eutrophication (Vance et al.
50 2003; Liu et al. 2015). Therefore, detecting the genetic mechanisms for tolerance to low
51 P (LP) availability and breeding P-efficient *B. napus* cultivars to reduce P use in
52 agricultural systems is crucial.

53 Root system architecture (RSA) is the spatial configuration of different types and
54 ages of roots emerging from a single plant and is important for plant survival (Lynch et
55 al. 1995). Traditional linkage analysis has identified abundant quantitative trait loci
56 (QTLs) for root traits in *B. napus* in response to low P availability. A *B. napus* DH
57 population (*BnaTNDH*) has been constructed from a cross between a P-efficient
58 cultivar, ‘Ningyou7’, and a P-inefficient cultivar, ‘Tapidor’ (Shi et al. 2013). Thirty
59 QTLs were detected for primary root length (PRL), total root length (TRL), root number
60 (RN) and lateral root density (LRD) in an agar-based growth system with P-deficient

61 and P-sufficient supply in *BnaTNDH* population of *B. napus* (Shi et al. 2013). Among
62 them, QTLs clustered on A03 chromosome associated with LRN and RDW at a low P
63 supply. Altogether, 131 QTLs were detected for RSA traits using a high-density single-
64 nucleotide polymorphism (SNP)-based genetic linkage map (Zhang et al. 2016). The
65 intervals of QTLs for root and shoot biomass overlapped on chromosome A03, and
66 QTLs for root biomass and lateral root emergence on chromosome A04 and C04, C08
67 and C09 were co-located. A major QTL explained 18.0% of the phenotypic variation
68 for lateral root density on chromosome C09 (Zhang et al. 2016).

69 Compared with traditional linkage analysis, GWAS (genome-wide association study)
70 does not require construction of mapping populations, which can save time (Xiao et al.
71 2017). For *B. napus*, a 60K SNP chip has been developed for genotyping line in GWAS
72 studies and was used GWAS analysis of RSA at LP. Two hundred and eighty-five SNPs
73 were significantly associated with RSA in response to LP by GWAS study involving
74 405 accessions (Wang et al. 2017). Nine SNPs linked with RSA were consistent with
75 the published QTL mapping of RSA in the *BnaTNDH* population (Wang et al. 2017;
76 Zhang et al. 2016). Eleven SNPs were identified by a combined GWAS and QTL
77 mapping approach, with the SNPs located on A06, A08 and C01 co-located with QTLs
78 associated with root angle at LP (Duan et al. 2021).

79 GWAS of RSA of *B. napus* under nutrient conditions have also been reported. Thirty-
80 one significant SNPs were detected for root traits by shovelingomics approach in the field
81 using GWAS analysis with 216 *B. napus* accessions (Arifuzzaman et al. 2019). Two
82 association mapping panels were used to perform GWAS on root related traits in *B.*
83 *napus*, and 27 significant SNPs were identified (He et al. 2019). Thirty-two SNPs are
84 identified as significantly associated with root related traits at five vegetative stages by
85 a GWAS analysis with 280 *B. napus* accessions, with *BnaA03g52990D*,
86 *BnaA06g37280D*, and *BnaA09g07580D* identified as candidate genes (Li et al. 2021).

87 Compared with SNP chip genotyping, whole genome re-sequencing (WGR) provides
88 higher accuracy in mapping the location of recombination events and is capable of
89 detecting more genetic variants. Recently, WGR technology has been used to analyze
90 the genetic structure of agronomic traits of *B. napus* including seed oil content (Tang et

91 al. 2021), glucosinolate content (Tan et al. 2022), phytate (Liu et al. 2021a) and low-
92 temperature tolerance (Luo et al. 2021).

93 In this study, the genetic architecture of RSA at LP in the seeding stage was
94 investigated by GWAS using a panel of 370 *B. napus* accessions and more than 5
95 million SNPs. Here we report the (1) significant SNPs and candidate genes linked with
96 RSA traits at LP and (2) identify the favourable haplotypes for breeding cultivars with
97 optimal RSA in *B. napus*.

98

99 Materials and methods

100 Plant materials

101 The *B. napus* association panel contained 370 cultivars and inbred lines, comprising
102 327 semi-winter, 37 spring, 4 winter and 2 vegetable types, converged from major *B.*
103 *napus* breeding centers across China (Table S1).

104

105 Phenotypic investigation

106 The phenotype data for RSA of the association panel from the ‘pouch and wick’
107 system of *B. napus* at low P (0 mM Pi) published by Wang et al. (2007) were used in
108 this study. For individual genotypes, at least 16 replicates were sown. Fourteen days
109 after sowing on free-P paper, seedling’s root system was detected using a digital single-
110 lens reflex camera (Canon EOS 1100D, Canon Inc., Tokyo, Japan) with a marker at the
111 base. Root images were analyzed using RootReader2D (RR2D) and automatically
112 calculates PRL (primary root length), LRL (lateral root length) and LRN (lateral root
113 number) (Clark et al. 2013). TRL (total root length) = PRL + LRL, LRD (lateral root
114 density) = LRN / PRL and MLRL (mean lateral root length) = LRL/LRN as described
115 by Wang et al. (2017). Root samples were oven-dried at 80°C for two days and dry
116 biomass were collected. The mean, maximum, range, skewness and coefficient of
117 variation were calculated using the psych package in R software (<https://cran.r-project.org/web/packages/psych/index.html>). The correlation coefficients between
118 phenotypes were calculated by R language.

119
120 Cultivar L133 with three favourable haplotypes and cultivar L154 without these

121 haplotypes were used to investigate the difference in RSA between them. Seedlings
122 were grown at sufficient P (SP: 250 $\mu\text{mol L}^{-1}$ P) and low P (LP: 5 $\mu\text{mol L}^{-1}$ P) in
123 hydroponics in growth chamber (16 h light (7:00 am-23:00 pm)/ 8 h dark regime at
124 22°C) (Wang et al. 2017). Twenty-four-day-old seedlings were harvested after the
125 measurement of net photosynthetic rate (Pn). Pn of the youngest fully expanded leaf
126 was measured between 10 am to 12 am using a portable photosynthesis system (Li6400;
127 LI-COR, Lincoln, NE, USA). The root was scanned with a modified flatbed scanner
128 (Epson V700, Nagano-ken, Japan) at 400 dpi. Total root length (TRL, cm), root volume
129 (RV, cm^3), root area (RA, cm^2) and lateral root number (LRN, N) were determined with
130 the WinRHIZO program (Regent Instruments Inc., Quebec, Canada). Leaves were
131 scanned with the scanner and the whole area of leaves was measured using the Image J
132 software (<http://rsbweb.nih.gov/ij/download.html>). Shoot and root samples were dried
133 at 80°C for two days for dry biomass measurements.

134

135 **Genome-wide association study and candidate gene identification**

136 High-quality SNP markers (more than 10 million) across the *B. napus* association
137 panel, comprising 403 distinct genotypes, cultivars and inbred lines were obtained
138 previously (Tang et al. 2021). The SNPs filtered with minor-allele frequency (MAF)
139 (>0.05) and missing rate (<0.2), 1.60 million SNPs were obtained for GWAS in this
140 study. We used the factored spectrally transformed linear mixed models (Fast-LMM)
141 (<https://www.softpedia.com/get/Science-CAD/FaST-LMM-Set.shtml>). The threshold
142 for screening significant SNPs in this association panel is set to 6.25×10^{-7} (Liu et al.
143 2021a; Liu et al. 2021b). Use GGplot2 package ([https://cran.r-
144 project.org/web/packages/ggplot2/index.html](https://cran.r-project.org/web/packages/ggplot2/index.html)) in R software to draw Manhattan plot
145 and CMplot package (<https://cran.r-project.org/web/packages/CMplot/>) to draw
146 Quantile-Quantile plot. Population structure and kinship was calculated by Admixture
147 software and Tassel 5.0 software, respectively (Bradbury et al. 2007; Alexander et al.
148 2009). Analysis of molecular variance (AMOVA) was performed with the arlequin
149 software (3.5.2.2) with 1000 permutations to statistically examine differences between
150 populations (Excoffier et al. 2010). PopLDdecay software was used to calculated LD

151 decay value (Zhang et al. 2019). Genes located within 173 kb upstream and downstream
152 of the peak SNPs were viewed as candidate genes according to the LD decay of the
153 panel (173 kb).

154

155 **Candidate gene association analysis and haplotype analysis**

156 The coding region and the upstream 2 kb promoter region of candidate genes were
157 extracted using vcftools software (<https://vcftools.github.io/index.html>, Danecek et al.
158 2011). Candidate gene association analysis of *BnaA06g29270D*, *BnaC03g07130D* and
159 *BnaC07g43230D* were performed with Tassel 5.0 and LDBlockShow software
160 (Bradbury et al. 2007; Dong et al. 2021). Haploview4.2 software was used for
161 haplotype analysis (Barrett et al. 2005). Further comparative analysis was conducted
162 based on haplotypes containing at least 10 *B. napus* accessions. To compared the
163 differences in the haplotypes of RSA, student's t-test was applied.

164

165 **Expression profile of putative candidate genes in P efficient *B. napus* cultivar**

166 RNA was extracted using the EastepR super total RNA extraction kit (Promega,
167 Madison, WI). RNA concentration was quantified using the NanoDropND-1000
168 spectrophotometer (Thermo Scientific). One μ g RNA was convert into cDNA with the
169 ReverTra Ace qPCR RT master mix with gDNA remover (TOYOBO, Osaka, Japan).
170 cDNA samples were diluted at 1:10 in ddH₂O. RT-qPCR was performed in 10 μ L
171 reaction volumes with gene specific primers (Table S2), and conducted with a
172 QuantStudioTM 6 Flex System (Applied Biosystems, Foster City, CA) using the SYBR
173 Green Real-Time PCR Master Mix Kit (TOYOBO). The RT-qPCR was performed as
174 following: 95°C for 5 min followed by 40 cycles of 95°C for 10 s, 55°C for 20 s, and
175 72°C for 20 s, and a subsequent standard dissociation protocol to validate the presence
176 of a unique PCR product. Each sample was analyzed in three technical replicates, and
177 the 2^{- $\Delta\Delta CT$} method was applied to calculate the relative expression from the normalizing
178 of two housekeeping genes (*Tubulin* and *Actin2*). Primer sequences are listed in Table
179 S2.

180

181 **Transcriptome sequencing**

182 The transcriptome data of P deficient *B. napus* cultivars 'Eyou changjia' at LP and SP
183 conditions have been published (Du et al. 2017). Fifteen-day old seedlings were grown
184 at 250 μ M Pi (SP) and P-free nutrient solution (LP, 0 μ M P) for 10 days. The roots and
185 leaves were harvested with three biological replicates. Twelve RNA samples were
186 subjected to the Illumina HiSeq 2000 platform (Illumina, USA). Data analysis was
187 performed as described in Du et al. (2017).

188

189 **Statistical analysis**

190 Data were presented as means \pm SEM. Student's *t* test using Excel software
191 (Microsoft, Redmond, WA) and SigmaPlot (SPSS Science Inc., IL) were applied for
192 comparisons between samples. The asterisks indicate significant differences between
193 samples at the * $P < 0.05$, ** $P < 0.01$, *** $P < 0.0001$, **** $P < 0.0001$ level using the *t*
194 test. The phenotypic data of root traits were analyzed by restricted maximum likelihood
195 (REML) programs to evaluate the line means and sources of variation (Shi et al. 2013).
196 Means were approximated using the [Genotype] term as a fixed factor, retaining
197 [(Replicate/Side of paper/Tray/Frame/Room)] as random factors. The sources of
198 variation were estimated using the Random terms and no defined fixed factor. Statistical
199 analysis was performed by GenStat15th (VSN International, Oxford, UK).

200

201 **Results**

202 **Phenotypic variation for root system architecture (RSA) of an association panel of**
203 ***B. napus* at LP supply**

204 The phenotype data for RSA of 405 genotypes in the association panel of *B. napus*
205 at low P published by Wang et al. (2017) and the re-sequencing of 370 cultivars (Tang
206 et al. 2021) from the 405 were used in this study. Extensive phenotypic variations for
207 TRL, LRD, LRN, MLRL and RDW were detected in the association panel at LP in
208 'pouch and wick' system (Fig. 1; Table S3). At LP, the LRL varied from 15.49 to 53.41
209 cm with a coefficient of variation of 24.26% and a mean value of 33.72 cm (Table 1).
210 The LRN varied from 7.5 to 24.8 per plant with a coefficient of variation of 23.27%

211 and a mean value of 16.2 per plant (Table 1). In addition, the skewness values of traits
212 were close to 0, which indicates that these traits conform to a normal distribution and
213 were suitable for GWAS analysis (Table 1). The correlation coefficient (r) between LRL
214 and TRL, TRL and LRN, TRL and RDW, LRN and RDW were 0.97, 0.85, 0.73 and
215 0.77, respectively (Fig. S1).

216

217 **Population structure, relative kinship and LD decay**

218 To identify genes involved in RSA in response to low P availability, we used
219 published genotype data consisting of more than 1.6 million high-quality SNPs for the
220 370 accessions (Tang et al. 2021) to conduct a GWAS based on the six RSA traits at
221 low P in the ‘pouch and wick’ system. When r^2 was 0.1, the LD decay in this 370 *B.*
222 *napus* association panel was 173 kb (Fig. S2). Quality control for the imputed data was
223 conducted using Plink software, where SNPs were removed if they had a minor allele
224 frequency lower than 0.2. The number of markers retained for subsequent analyses was
225 417,787. Population was divided into four subgroups (Fig. S3). There were significant
226 differences between the K = 4 assigned populations ($P < 0.01$, Table S4). The kinship
227 heatmap shows that most cultivars are distantly related, which showed that this
228 association panel was suitable for GWAS analysis (Fig. S4). A total of 433,432 LD
229 blocks were identified in the whole genome (Table S5), and the majority of LD blocks
230 were less than 10 kb, and only 15 LD blocks were larger than 100 kb (Fig. S5). These
231 data indicated that the genetic distance of the accessions in the association panel was
232 appropriate for GWAS analysis.

233

234 **Genome-wide association study of RSA related traits of *B. napus* at LP supply**

235 GWAS for all six RSA traits was performed using the Fast-LMM. The quantile-
236 quantile plots indicated that the model of the six RSA could be used to detect association
237 signals (Fig. 2). Fifty-two SNPs were confirmed to be significantly associated with
238 these RSA traits at LP with a $P < 6.25 \times 10^{-7}$ in *B. napus* (Fig. 2; Table S6). Of the 52
239 SNPs, 18 were located in the LD block interval (Table S7). Among them, 6, 4, 12, 6, 3
240 and 21 SNPs were significantly associated with LRL, TRL, LRD, LRN, MLRL and

241 RDW, respectively, and were distributed on 12 chromosomes, explaining between 7.35
242 and 12.37% of the phenotypic variance explained (PVE) (Fig. 2; Table S6).
243 Chromosome C07 had the largest number of significant SNPs (11) and chromosome
244 A01 had the least number of significant SNPs (1) (Fig. 2; Table S6). Four SNPs on
245 chromosomes C03 and C07 (chrC03_3535476, chrC03_3535483, chrC07_42348561
246 and chrC07_42348533) were significantly associated with RSA and were consistently
247 associated with two RSA traits (Table S6). SNP chrC03_3535476 was associated with
248 LRL and TRL, and explained 9.82% and 9.09% of the PVE, respectively (Table S6).
249 SNP chrC07_42348561 was associated with LRN and RDW, and explained 8.99% and
250 9.54% of the PVE, respectively (Table S6). In addition, 42 of the 52 significant SNPs
251 were located in the 18 LD blocks in this study. These results indicated that RSA traits
252 such as LRL were highly correlated with TRL, and LRN was highly correlated with
253 RDW (Fig. S1).

254

255 **Prediction of candidate genes for RSA at LP supply in *B. napus***

256 The lead SNP chrC03_3535483 ($P=2.37E-07$, $PVE=10.19\%$) on C03 was
257 significantly associated with LRL and TRL, and may be a major genetic locus
258 responsible for RSA in *B. napus* at LP (Fig. 2; Table S6). LD decay was 173 kb for this
259 370 *B. napus* association panel (Fig. S2). Based on the LD decay, 93 candidate genes
260 were explored in the 173 kb up/down-stream of the significant SNP (chrC03_3535483)
261 (Table S8). The transcriptome data of P-efficient *B. napus* cultivars ‘Eyou changjia’
262 under LP and SP conditions (Li et al. 2019) were used to determine differential
263 expression of candidate genes identified by GWAS analysis. Transcript abundance of
264 *BnaC03g07130D* was significantly increased at LP in both shoots and roots, and was
265 also evidenced by qRT-PCR (Table 2; Fig. 3A). Lead SNP (chrC07_42348561, $P =$
266 $1.82E-07$, $PVE = 9.54\%$) on C07 was associated with both LRN and RDW at LP (Fig.
267 2; Table S6). Based on the LD decay, 76 candidate genes were detected (Table S8).
268 Transcriptome data and qRT-PCR analysis showed that the transcript of
269 *BnaC07g43230D* was induced by P deficiency in shoots and roots (Table 2; Fig. 3B).
270 In addition, one region significantly associated with LRD on chromosome A06

271 ranged from 19.93 to 20.03 Mb (Fig. 2; Table S6). Seventy genes were detected
272 underlying the region around lead SNP chrA06_20030601, and two of the candidate
273 genes were significantly expressed by LP (Table 2; Table S8). The expression levels of
274 *BnaA06g29270D* in shoots and roots were significantly decreased at LP supply by qRT-
275 PCR analysis (Table 2; Fig. 3C). Twenty-four SNPs were located within the 2 kb
276 promoter region and the entire coding region of *BnaA06g29270D*. However, no SNPs
277 were identified within the corresponding region of *BnaA06g29530D* (Table 2).
278 Therefore, *BnaA06g29270D* was predicted to be the candidate gene for further study.

279

280 **Candidate gene association study and haplotype analysis of BnaA06g29270D,
281 BnaC03g07130D and BnaC07g43230D**

282 To further understand the intragenic variation affecting the phenotypic values and
283 identify the favorable alleles and haplotypes, we extracted the SNPs within the entire
284 coding regions and promoters (upstream, 2 kb) of three candidate genes
285 *BnaC03g07130D*, *BnaA06g29270D* and *BnaC07g43230D*, respectively. Thirty-seven
286 SNPs were identified in *BnaC03g07130D*, and 26 in *BnaC07g43230D* and 24
287 in *BnaA06g29270D* (Fig. 4-6).

288 Ten and four SNPs in *BnaC03g07130D* were significantly associated with LRL and
289 TRL, respectively (Fig. 4A; 3G). Among the ten significant SNPs, four were located in
290 the promoter, five in the exon and one in the intron region (Table 3). The five SNPs
291 identified in the exons resulted in synonymous mutations, which were unlikely to
292 influence the function of *BnaC03g07130D* protein (Table 3). Further, the ‘C’ allele of
293 chrC03_3396486, ‘A’ allele of chrC03_3396712, ‘A’ allele of chrC03_3396812 and ‘T’
294 allele of chrC03_3396932 located in the promoter of *BnaC03g07130D* were all
295 identified as strong alleles associated with LRL and TRL (Fig. 4B-E, H-K). Two major
296 haplotypes were detected, among which *BnaC03g07130Hap1* (CAAT) had higher LRL
297 and TRL, while *BnaC03g07130Hap2* (“TGCC”) had lower LRL and TRL (P = 0.0002)
298 (Fig. 4F, L).

299 For candidate gene *BnaC07g43230D* three SNPs were associated with the LRN and
300 RDW (Fig. 5A, F), and the ‘A’ allele of chrC07_42368601, ‘T’ allele of

301 chrC07_42368638 and ‘C’ allele of chrC07_42368650 were the positive alleles for root
302 development at LP (Fig. 5B-D, G-I). Two major haplotypes were identified, with
303 *BnaC07g43230Hap1* (“ATC”) having significantly greater LRN and RDW than
304 *BnaC07g43230Hap2* (“TCT”) (Fig. 5E, J).

305 For candidate gene *BnaA06g29270D*, 11 SNPs were significantly associated with the
306 LRD, and had strong LDs with each other (Fig. 6A; Table 3). Among the 11 significant
307 SNPs, 3, 6 and 2 were located in the promoter, exon and intron region, respectively
308 (Table 3). Five SNPs (chrA06_19976766, chrA06_19976785, chrA06_19976887,
309 chrA06_19977025 and chrA06_19977610) were in the exon region, but were
310 synonymous mutations which resulted in no amino acid changes (Table 3). The SNP of
311 chrA06_19977004 (C/A) was located in the exon region of the gene *BnaA06g29270D*
312 and resulted in amino acid change from cysteine to a stop codon, and might contribute
313 to the phenotypic difference in LRD (Table 3). The ‘C’ allele of chrA06_19975674, ‘C’
314 allele of chrA06_19975707, ‘G’ allele of chrA06_19975749 and ‘C’ allele of
315 chrA06_19977004 were associated with higher LRD (Fig. 6B-E). Two major
316 haplotypes were identified, with *BnaA06g29270Hap1* (“CCGC”) having significantly
317 higher LRD than *BnaA06g29270Hap2* (“TACA”) ($P < 0.0001$) (Fig. 6F).

318 A total of 73 *B. napus* cultivars in this association panel contained these three
319 favorable haplotypes. As expected, RSA (such as, LRL, TRL, LRN and RDW) were
320 significantly higher in the 73 cultivars than in the other 297 cultivars at low P (Fig. 7).
321 To better understand the relative influence of the three favorable haplotypes on the root
322 and shoot growth of *B. napus*, a cultivar harboring the three favorable haplotypes (L133)
323 and a cultivar with none of these haplotypes (L154) with extremely different in root
324 system architecture traits at low P (Figure 7) were chose to dissect root system
325 architecture, biomass, whole leaf area and net photosynthesis at both sufficient P and
326 low P (Fig. 8). TRL and WLA (whole leaf area) were higher in L133 cultivar than in
327 L154 cultivar at SP (Fig. 8A, B, H). P deficiency decreased the RSA (TRL, RV, RA,
328 LRN and RDW), shoot dry weight (SDW) and WLA significantly and resulted in
329 decreased net photosynthesis rate. Moreover, L154 cultivar had lower RSA, SDW,
330 WLA and NP than L133 cultivar at LP (Fig. 8). L154 was more sensitive to P deficiency

331 than L133.

332

333 Discussion

334 Advantages of WGR for genotyping in GWAS

335 GWAS is a powerful method for connecting identified phenotypic differences and
336 the underlying causative loci (Korte et al. 2013). Currently, SNP chips and WGR are
337 widely employed genotyping methods to identify genetic variants within genotypes
338 combined with GWAS. By far, more than half of GWAS in *B. napus* were performed
339 based on 60K SNP chip (Liu et al. 2022). As the continuous development of sequencing
340 technology and the continuous reduction in costs, WGR has become a routine method
341 to identify genetic variants. Compared with SNP chip, WGR data have more genetic
342 loci and cover the whole genome (Liu et al. 2022). In *B. napus*, a total of 24,403 SNPs
343 are selected to perform association mapping of flowering time (Jun et al. 2019), and
344 11,804 SNPs were used (Raman et al. 2019), which all the two panel were genotyped
345 with a 60 K SNP array. However, 5.56 million SNPs were confirmed used for
346 association analyses by WGR, and with identified 22 SNPs linked with 37 genes were
347 associated with flowering time in *B. napus* (Wu et al. 2019). A total of 26,841 SNPs
348 were selected by SNP array to perform association mapping of seed weight in *B. napus*,
349 and detected a major QTL on chromosome A09 (Li et al. 2014). While, 690,953 SNPs
350 high quality were used by WGR and 20 SNPs were detected to associate with seed
351 weight in *B. napus* (Dong et al. 2018).

352 Previously, a total of 19,397 SNPs with minor allele frequency (MAF) > 0.05 were
353 selected to conduct association analyses of RSA in *B. napus* at LP with the panel of *B.*
354 *napus* lines genotyped with a 60 K *Brassica* Infinium SNP array (Wang et al. 2017).
355 However, in this study, a total of 1.6 million higher quality SNPs (MAF > 0.2) identified
356 by WGR were used for association analyses. As the 60 K SNP chip contains fewer SNPs
357 than WGR, some SNPs that are significantly associated with the target traits could not
358 be detected in the previous association analysis. A total of 52 significant SNPs
359 associated with RSA at LP were identified on 12 of the 19 *B. napus* chromosomes,
360 explaining a higher average of PVE (9.14%; Table S6) in this study than observed by

361 60 K SNP chip (an average of 6.09% PVE) (Wang et al. 2017). In this study, 12
362 significant SNPs detected by WGR for RSA were adjacent to previously reported
363 significant SNPs detected by 60 K SNP chip, proving the accuracy of the results of
364 GWAS in this study (Table S9). For example, significant SNP chrA03_26604503
365 located at 26604503 bp on chromosome A03 was associated with RDW in this study,
366 and SNP Bn-A03-p28127216 located at 26598176 bp on chromosome A03 was also
367 associated with RDW by Wang et al. (2017) (Table S9).

368 **Favorable haplotype of candidate genes for RSA of *B. napus* at LP**

369 GWAS of six RSA traits (LRL, TRL, LRD, LRN, MLRL and RDW) identified a total
370 of 52 significant SNPs in *B. napus* at LP (Fig. 2; Table S6), and a total of 184 candidate
371 genes were assessed based on the lead SNPs (Table S8). We did not compare the SNPs
372 for RSA identified at LP and SP as the RSA of the association panel of *B. napus* at high
373 P was not investigated in Wang et al. (2017). Some significant SNPs, candidate genes
374 and haplotypes identified at low P might also have a function under sufficient P. Using
375 GWAS data in combination with transcriptome data to mine candidate genes has
376 become a conventional method in *B. napus*, such as harvest index (Lu et al. 2017), seed
377 oil content (Tang et al. 2021), flowering time (Huang et al. 2021) and glucosinolate
378 content (Kittipol et al. 2019). Based on our previously published transcriptome
379 sequencing of the root and shoot of P-efficient cultivar ('Eyouchangjia') at SP and LP,
380 four significantly differentially expressed genes were detected at LP in close proximity
381 to the significant SNPs associated with RSA traits (Table 2). Gene transcripts of
382 *BnaC03g07130D* and *BnaC07g43230D* were significantly increased, and the transcript
383 of *BnaA06g29270D* was significantly decreased by Pi deficiency (Table 2; Fig. 3).
384 These candidate genes might play an important part in root development of *B. napus* at
385 a deficiency P supply. In this study, *BnaA06g29270D* was located within the interval of
386 the SNP chrA06_20030601 for LRD (Fig. 2). *BnaA06g29270D* is homologous to
387 *Arabidopsis At5g28770*, basic leucine zipper 63 (*bZIP63*), which was phosphorylated
388 by Snf1-related-kinase1 (SnRK1) and then activates the promoter of AUXIN
389 RESPONSE FACTOR 19 (ARF19), promoting LR emergence and subsequently LRD
390 (Muralidhara et al. 2021). In *Arabidopsis*, *bzip63* mutants have increased PRL and

391 emerged LRD (defined as the number of LRs per primary root length) than wild type
392 plants under control conditions (Muralidhara et al. 2021). These data support the role
393 *BnaA06g29270D* in controlling LR density in *B. napus*.

394 *BnaC03g07130D*, a gene that encodes a reversibly glycosylated polypeptide 2
395 (RGP2), was located within the interval of the SNP chrC03_3535483 and linked with
396 the trait for LRL and TRL (Fig. 2; Table S6). In castor oilseeds (*Ricinus communis*),
397 sucrose synthase (SUS) interacts with RGP1 in roots, which suggests that these proteins
398 interact to directly channel UDPG derived toward RGP glycosyl chain initiation and
399 extension (Fedosejevs et al. 2017). Further study of the protein interaction between SUS
400 and RGP in root development will be conducive to a better understanding of RSA and
401 root carbon balance.

402 *BnaC07g43230D* was identified by significant SNP chrC07_42348561, which was
403 likely to influence the LRN and RDW at LP (Fig. 2; Table S6). *BnaC07g43230D* is an
404 AIG2-like (avirulence induced gene) family protein and its function is unknown. In
405 *Arabidopsis*, FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION
406 FACTOR) is a key regulator of iron uptake in root. *AtAIG2*-like was detected by iron
407 deficiency in the roots of proteomic and transcriptomic study of WT, *fit* knock-out
408 mutant and FIT overexpression lines (Mai et al. 2015). Primary root extension is
409 inhibited and lateral root formation is stimulated at Pi deprivation in members of the
410 Brassicaceae family in agar system. Studies have confirmed external Pi sensing at the
411 root tips depends on Fe availability by hormone and peptide signaling pathways (Ward
412 et al., 2008; Ticconi et al., 2009; Müller et al., 2015; Singh et al., 2018). The function
413 of this BnaAIG2-like protein may be involved in RSA at LP and should be
414 examined in further studies.

415 Candidate gene association analysis is widely used to detect favorable haplotypes of
416 candidate genes. Favorable haplotypes of candidate gene *BnaC02.GTR2* associated
417 with seed glucosinolate content in *B. napus* (Tan et al. 2022) and the favorable
418 haplotype of candidate gene *BnaA09.MRP5*, which influenced rapeseed phytate content
419 (Liu et al. 2021b) have been reported previously. Additionally, overexpressing
420 favorable haplotype of *BnaA03.NIP5* increased low boron tolerance in boron inefficient

421 cultivar of *B. napus* (He et al. 2021).

422 The favorable haplotypes of *BnaA06g29270D*, *BnaC03g07130D* and
423 *BnaC07g43230D* were determined as “CCGC”, “CAAT” and “ATC” by candidate gene
424 association analysis, respectively (Fig. 4-6). Furthermore, 73 *B. napus* cultivars
425 containing three favorable haplotypes have higher LRL, LRN, RDW, and TRL than
426 other *B. napus* cultivars (Fig. 7). L133, the cultivar containing three favorable
427 haplotypes showed more tolerance to Pi starvation than L154, the cultivar which did
428 not have these haplotypes confirm the root breeding value of these favorable haplotypes.

429

430 **Conclusions**

431 A total of 52 significant SNPs were significantly associated with RSA at LP by
432 GWAS based on WGR of an association panel of *B. napus*. “CCGC”, “CAAT” and
433 “ATC” were identified to be favorable haplotypes in candidate genes, which could be
434 used for molecular marker-assisted breeding of optimal RSA in response to low P
435 availability in *B. napus*. In addition, gene editing and modification can be applied to
436 reveal the function and the underlying mechanism of these candidate genes.

437

438 **Data availability statement**

439 The original contributions presented in this study are included in the
440 article/Supplementary Material, further inquiries can be directed to the corresponding
441 author.

442

443 **Author contribution**

444 **Pan Yuan, Haijiang Liu and Lei Shi** designed research, reviewed the writing and
445 drafted the manuscript. **Pan Yuan, Haijiang Liu and Xiaohua Wang** participated the
446 experiments. **John P. Hammond** participated in manuscript revision.

447

448 **Funding**

449 This work was supported by the National Nature Science Foundation of China (Grant
450 No. 31972498 and 32172662). The computations in this paper were run on the

451 bioinformatics computing platform of the National Key Laboratory of Crop Genetic
452 Improvement, Huazhong Agricultural University.

453

454 **Data availability**

455 Raw sequencing data of genome re-sequencing are available in the Genome Sequence
456 Archive (<https://bigd.big.ac.cn/gsa/>) with Bio-project IDs PRJCA002835 and
457 PRJCA002836. All the materials in this study are available upon request.

458

459 **Declarations**

460 **Ethics approval and consent to participate** Not applicable.

461 **Consent for publication** Not applicable.

462 **Competing interests** The authors declare no competing interests.

463

464 **Figure legend**

465 **Fig. 1** Distribution of RSA (root system architecture) phenotypes in 370 *B. napus*
466 accessions. Histograms of the distribution of LRL (A), TRL (B), LRD (C), RN (D),
467 MLRL (E) and RDW (F) measured at low phosphorus supplies. LRL, lateral root length;
468 TRL, total root length; LRD, lateral root density; RN, lateral root number; MLRL; mean
469 lateral root length; RDW, root dry weight.

470 **Fig. 2** Quantile-quantile (QQ) and Manhattan plots for the RSA (root system
471 architecture) by genome-wide association study (GWAS). GWAS of LRL (A), MLRL
472 (B), TRL (C), RN (D), LRD (E) and RDW (F) in 370 *B. napus* at low phosphorus
473 supplies by Fast-LMM model. LRL, lateral root length; MLRL, mean lateral root length;
474 TRL, total root length; RN, lateral root number; LRD, lateral root density; RDW, root
475 dry weight.

476 **Fig. 3** Relative expression level of three candidate genes (A, *BnaA06g29270D*; B,
477 *BnaC03g07130D* and C, *BnaC07g43230D*) under low phosphorus and sufficient
478 phosphorus conditions. LP, low phosphorus; SP, sufficient phosphorus. Data are means
479 \pm SEM (n=4). Asterisks indicate the significance of Student's t-test (*P < 0.05, ***P
480 < 0.0001, ****P < 0.0001).

481 **Fig. 4** Candidate gene association and haplotypes analysis of *BnaC03g07130D* with
482 LRL (lateral root length) and TRL (total root length). (A) Candidate gene association
483 analysis of *BnaC03g07130D* with LRL. (B-E) Association of the two alleles in
484 chrC03_3396486 (B), chrC03_3396712 (C), chrC03_3396812 (D) and
485 chrC03_3396932 (E) with LRL, respectively. (F) Two haplotypes of *BnaC03g07130D*.
486 (G) Candidate gene association analysis of *BnaC03g07130D* with TRL. (H-K)
487 Association of the two alleles in chrC03_3396486 (H), chrC03_3396712 (I),
488 chrC03_3396812 (J) and chrC03_3396932 (K) with TRL, respectively. (L) Two
489 haplotypes of *BnaC03g07130D*. The number of inbred lines harbouring the
490 corresponding allele is shown in brackets at the bottom.

491 **Fig. 5** Candidate gene association and haplotypes analysis of *BnaC07g43230D* with
492 LRN (lateral root number) and RDW (root dry weight). (A) Candidate gene association
493 analysis of *BnaC07g43230D* with LRN. (B-D) Association of the three alleles in
494 chrC07_42368601 (B), chrC07_42368638 (C) and chrC07_42368650 (D) with LRN,
495 respectively. (E) Two haplotypes of *BnaC07g43230D*. (F) Candidate gene association
496 analysis of *BnaC07g43230D* with LRN. (G-I) Association of the three alleles in
497 chrC07_42368601 (G), chrC07_42368638 (H) and chrC07_42368650 (I) with RDW,
498 respectively. (J) Two haplotypes of *BnaC07g43230D*. The number of inbred lines
499 harbouring the corresponding allele is shown in brackets at the bottom.

500 **Fig. 6** Candidate gene association and haplotypes analysis of *BnaA06g29270D* with
501 LRD (lateral root density). (A) Candidate gene association analysis of *BnaA06g29270D*
502 with LRD. (B-E) Association of the four alleles in chrA06_19975674 (B),
503 chrA06_19975707 (C), chrA06_19975749 (D) and chrA06_19977004 (E) with LRD,
504 respectively. (F) Two haplotypes of *BnaA06g29270D*. The number of inbred lines
505 harbouring the corresponding allele is shown in brackets at the bottom.

506 **Fig. 7** Differences in root system architecture at LP between *B. napus* cultivars with
507 three favorable haplotypes (CCGC, CAAT and ATC) and *B. napus* cultivars without the
508 three favorable haplotypes in the association panel. Favorable haplotypes of LRL (A),
509 TRL (B), LRD (C), RN (D), MLRL (E) and RDW (F) were analysed. (73) represents
510 73 cultivars with the three favorable haplotypes; (297) represents the rest of the

511 association panel after removing the above 73 cultivars. LRL, lateral root length; TRL,
512 total root length; LRD, lateral root density; RN, lateral root number; MLRL, mean
513 lateral root length; RDW, root dry weight.

514 **Fig. 8** Differences in root system architecture, biomass, whole leaf area and net
515 photosynthesis between *B. napus* cultivar (L133) with three favorable haplotypes
516 (CCGC, CAAT and ATC) and *B. napus* cultivar (L154) without the three favorable
517 haplotypes (TGCC, TACA and TCT). (A) Root growth of L133 and L154 at LP for 14
518 d in the ‘pouch and wick’ system. (B) TRL. (C) RV. (D) RA. (E) LRN. (F) RDW. (G)
519 SDW. (H) WLA. (I) NP. LP, low phosphorus; TRL, total root length; RV, root volume;
520 RA, root area; LRN, lateral root number; RDW, root dry weight; SDW, shoot dry weight;
521 WLA, whole leaf area; NP, net photosynthesis. Data are means \pm SEM (n=6).
522 Asterisks indicate the significance of Student's t-test (*P < 0.05, **P < 0.01, ***P <
523 0.0001, ****P < 0.0001). Scale bar is 2 cm in (A).

524

525 **Supplementary material**

526 The following supplemental materials are available.

527 **Fig. S1.** Correlation of eight root related traits at low phosphorus supplies.

528 **Fig. S2.** The LD decay of an association panel of *B. napus*.

529 **Fig. S3.** Population structure of an association panel of *B. napus* with K from 2 to 8.

530 **Fig. S4.** The kinship of an association panel of 370 *B. napus* accessions.

531 **Fig. S5.** Distribution of linkage disequilibrium block sizes across all chromosomes.

532 **Table S1.** List of 370 accessions of *B. napus* used in the study.

533 **Table S2.** Primers used for qRT-PCR.

534 **Table S3.** Root related traits at low phosphorus supplies in an association panel of *B.*
535 *napus*.

536 **Table S4.** AMOVA analysis between the K = 4 assigned populations in *Brassica napus*.

537 **Table S5.** Linkage disequilibrium block in this study.

538 **Table S6.** Significant SNP loci for root related traits of *B. napus* by genome wide
539 association study at low phosphorus supplies.

540 **Table S7.** LD blocks harboring significant SNPs associated with RSA.

541 **Table S8.** Candidate genes within LD decay value up and down the lead SNPs
542 (chrA06_19934701, chrC03_3535476 and chrC07_42348526) for root related traits.

543 **Table S9.** Comparison of SNPs detected by WGR for RSA in this study with previously
544 identified SNPs by 60 K SNP chip for RSA at a low phosphorus supply.

545

546 **References**

547 Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry
548 in unrelated individuals. *Genome Res* 19 (9):1655-1664.
549 <https://doi.org/10.1101/gr.094052.109>

550 Arifuzzaman M, Oladzadabbasabadi A, McClean P et al (2019) Shovelomics for
551 phenotyping root architectural traits of rapeseed/canola (*Brassica napus* L.) and
552 genome-wide association mapping. *Mol Genet Genomics* 294 (4):985-1000.
553 <https://doi.org/10.1007/s00438-019-01563-x>

554 Barrett JC, Fry B, Maller J et al (2005) Haplovew: analysis and visualization of LD
555 and haplotype maps. *Bioinformatics* 21 (2):263-265.
556 <https://doi.org/10.1093/bioinformatics/bth457>

557 Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association
558 mapping of complex traits in diverse samples. *Bioinformatics* 23 (19):2633-
559 2635. <https://doi.org/10.1093/bioinformatics/btm308>

560 Chalhoub B, Denoeud F, Liu SY et al (2014) Early allopolyploid evolution in the post-
561 Neolithic *Brassica napus* oilseed genome. *Science* 345 (6199):950-953.
562 <https://doi.org/10.1126/science.1253435>

563 Clark RT, Famoso AN, Zhao K et al (2013) High-throughput two-dimensional root
564 system phenotyping platform facilitates genetic analysis of root growth and
565 development. *Plant Cell Environ* 36 (2):454-466.
566 <https://doi.org/10.1111/j.1365-3040.2012.02587.x>

567 Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools.
568 *Bioinformatics* 27 (15):2156-2158.
569 <https://doi.org/10.1093/bioinformatics/btr330>

570 Dong HL, Tan CD, Li YZ et al (2018) Genome-wide association study reveals both

571 overlapping and independent genetic loci to control seed weight and silique length
572 in *Brassica napus*. Front Plant Sci 9:921. <https://doi.org/10.3389/fpls.2018.00921>

573 Dong SS, He WM, Ji JJ et al (2021) LDBlockShow: a fast and convenient tool for
574 visualizing linkage disequilibrium and haplotype blocks based on variant call
575 format files. Brief Bioinform 22 (4). <https://doi.org/10.1093/bib/bbaa227>

576 Du HY, Yang C, Ding GD (2017) Genome-wide identification and characterization of
577 SPX domain-containing members and their responses to phosphate deficiency
578 in *Brassica napus*. Front Plant Sci 8. <https://doi.org/10.3389/fpls.2017.00035>

579 Duan XJ, Wang XH, Jin KM et al (2021) Genetic dissection of root angle of *Brassica*
580 *napus* in response to low phosphorus. Front Plant Sci 12.
581 <https://doi.org/10.3389/Fpls.2021.697872>

582 Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to
583 perform population genetics analyses under Linux and Windows. Mol Ecol
584 Resour 10 (3):564-567. <https://doi.org/10.1111/j.1755-0998.2010.02847.x>

585 Fedosejevs ET, Liu LNC, Abergel M et al (2017) Coimmunoprecipitation of reversibly
586 glycosylated polypeptide with sucrose synthase from developing castor oilseeds.
587 Febs Lett 591 (23):3872-3880. <https://doi.org/10.1002/1873-3468.12893>

588 He ML, Wang SL, Zhang C et al (2021) Genetic variation of *BnaA3.NIP5;1* expressing
589 in the lateral root cap contributes to boron deficiency tolerance in *Brassica*
590 *napus*. Plos Genet 17 (7). <https://doi.org/10.1371/journal.pgen.1009661>

591 He YJ, Hu DX, You JC et al (2019) Genome-wide association study and protein network
592 analysis for understanding candidate genes involved in root development at the
593 rapeseed seedling stage. Plant Physiol 137:42-52.
594 <https://doi.org/10.1016/j.plaphy.2019.01.028>

595 Huang LY, Min Y, Schiessl S et al (2021) Integrative analysis of GWAS and
596 transcriptome to reveal novel loci regulation flowering time in semi-winter
597 rapeseed. Plant Sci 310. <https://doi.org/10.1016/j.plantsci.2021.110980>

598 Jan HU, Guan M, Yao M et al (2019) Genome-wide haplotype analysis improves trait
599 predictions in *Brassica napus* hybrids. Plant Sci 283:157-164.
600 <https://doi.org/10.1016/j.plantsci.2019.02.007>

601 Kittipol V, He ZS, Wang LH et al (2019) Genetic architecture of glucosinolate variation
602 in *Brassica napus*. J Plant Physiol 240.
603 <https://doi.org/10.1016/J.Jplph.2019.06.001>

604 Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS:
605 a review. Plant Methods 9. <https://doi.org/10.1186/1746-4811-9-29>

606 Li F, Chen B, Xu K et al (2014) Genome-wide association study dissects the genetic
607 architecture of seed weight and seed quality in rapeseed (*Brassica napus* L.).
608 DNA Res 21 (4):355-367. <https://doi.org/10.1093/dnares/dsu002>

609 Li KQ, Wang J, Kuang LQ et al (2021) Genome-wide association study and
610 transcriptome analysis reveal key genes affecting root growth dynamics in
611 rapeseed. Biotechnol Biofuels 14 (1). <https://doi.org/10.1186/s13068-021-02032-7>

613 Li Y, Wang X, Zhang H et al (2019) Molecular identification of the phosphate
614 transporter family 1 (PHT1) genes and their expression profiles in response to
615 phosphorus deprivation and other abiotic stresses in *Brassica napus*. PLoS One
616 14 (7). <https://doi.org/10.1371/journal.pone.0220374>

617 Liu HJ, Wang JC, Zhang BB et al (2021a) Genome-wide association study dissects the
618 genetic control of plant height and branch number in response to low-
619 phosphorus stress in *Brassica napus*. Ann Bot 128 (7):919-929.
620 <https://doi.org/10.1093/aob/mcab115>

621 Liu HJ, Li XJ, Zhang QW et al (2021b) Integrating a genome-wide association study
622 with transcriptomic data to predict candidate genes and favourable haplotypes
623 influencing *Brassica napus* seed phytate. DNA Res 28 (5).
624 <https://doi.org/10.1093/dnares/dsab011>

625 Liu HJ, Wang W, Yang M et al (2022) Genome-wide association studies of important
626 agronomic traits in *Brassica napus*: what we have learned and where we are
627 headed. Annual Plant Reviews 5:1-30.

628 Liu YX, Wang L, Deng M et al (2015) Genome-wide association study of phosphorus-
629 deficiency-tolerance traits in *Aegilops tauschii*. Theor Appl Genet 128
630 (11):2203-2212. <https://doi.org/10.1007/s00122-015-2578-x>

631 Lu K, Peng L, Zhang C et al (2017) Genome-wide association and transcriptome
632 analyses reveal candidate genes underlying yield-determining traits in *Brassica*
633 *napus*. *Front Plant Sci* 8. <https://doi.org/10.3389/Fpls.2017.00206>

634 Luo T, Zhang YT, Zhang CN et al (2021) Genome-wide association mapping unravels
635 the genetic control of seed vigor under low-temperature conditions in rapeseed
636 (*Brassica napus* L.). *Plants* (Basel) 10 (3).
637 <https://doi.org/10.3390/Plants10030426>

638 Lynch J (1995) Root Architecture and Plant Productivity. *Plant Physiol* 109 (1):7-13.
639 <https://doi.org/10.1104/Pp.109.1.7>

640 Mai HJ, Lindermayr C, von Toerne C et al (2015) Iron and FER-LIKE IRON
641 DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation
642 of proteins and genes in *Arabidopsis thaliana* roots. *Proteomics* 15 (17):3030-
643 3047. <https://doi.org/10.1002/pmic.201400351>

644 Müller J, Toev T, Heisters M. et al (2015). Iron-dependent callose deposition adjusts
645 root meristem maintenance to phosphate availability. *Dev Cell* 33 (2): 216-230.
646 <https://doi.org/10.1016/j.devcel.2015.02.007>

647 Muralidhara P, Weiste C, Collani S et al (2021) Perturbations in plant energy
648 homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling.
649 *Proc Natl Acad Sci USA* 118 (37). <https://doi.org/10.1073/pnas.2106961118>

650 Raman H, Raman R, Qiu Y et al (2019) GWAS hints at pleiotropic roles for
651 FLOWERING LOCUS T in flowering time and yield-related traits in canola. *BMC*
652 *Genomics* 20 (1):636. <https://doi.org/10.1186/s12864-019-5964-y>

653 Shi L, Shi TX, Broadley MR et al (2013) High-throughput root phenotyping screens
654 identify genetic loci associated with root architectural traits in *Brassica napus*
655 under contrasting phosphate availabilities. *Ann Bot* 112 (2):381-389.
656 <https://doi.org/10.1093/aob/mcs245>

657 Singh AP, Fridman Y, Holland N et al (2018). Interdependent nutrient availability and
658 steroid hormone signals facilitate root growth plasticity. *Dev Cell* 46 (1):59-
659 72.e4. <https://doi.org/10.1016/j.devcel.2018.06.002>

660 Tan ZD, Xie ZQ, Dai LH et al (2022) Genome- and transcriptome-wide association

661 studies reveal the genetic basis and the breeding history of seed glucosinolate
662 content in *Brassica napus*. *Plant Biotechnol J* 20 (1):211-225.
663 <https://doi.org/10.1111/pbi.13707>

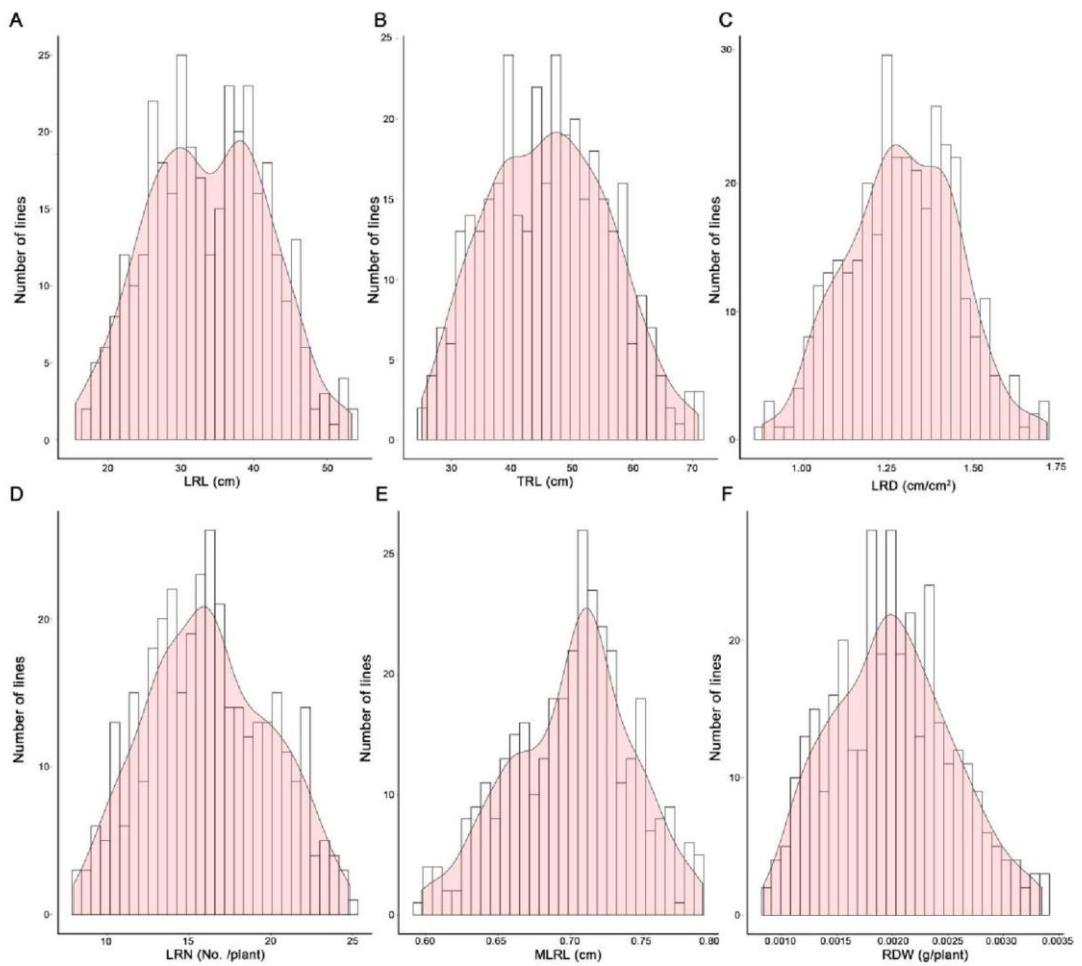
664 Tang S, Zhao H, Lu SP et al (2021) Genome- and transcriptome-wide association
665 studies provide insights into the genetic basis of natural variation of seed oil
666 content in *Brassica napus*. *Mol Plant* 14 (3):470-487.
667 <https://doi.org/10.1016/j.molp.2020.12.003>

668 Ticconi CA, Lucero RD, Sakhonwasee S et al (2009) ER-resident proteins PDR2 and
669 LPR1 mediate the developmental response of root meristems to phosphate
670 availability. *Proc Natl Acad Sci U S A* 106 (33):14174-14179.
671 <https://doi.org/10.1073/pnas.0901778106>

672 Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical
673 adaptations by plants for securing a nonrenewable resource. *New Phytol* 157
674 (3):423-447. <https://doi.org/10.1046/j.1469-8137.2003.00695.x>

675 Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron
676 on the primary root elongation of *Arabidopsis* during phosphate deficiency.
677 *Plant Physiol* 147:1181-1191. <https://doi.org/10.1104/pp.108.118562>

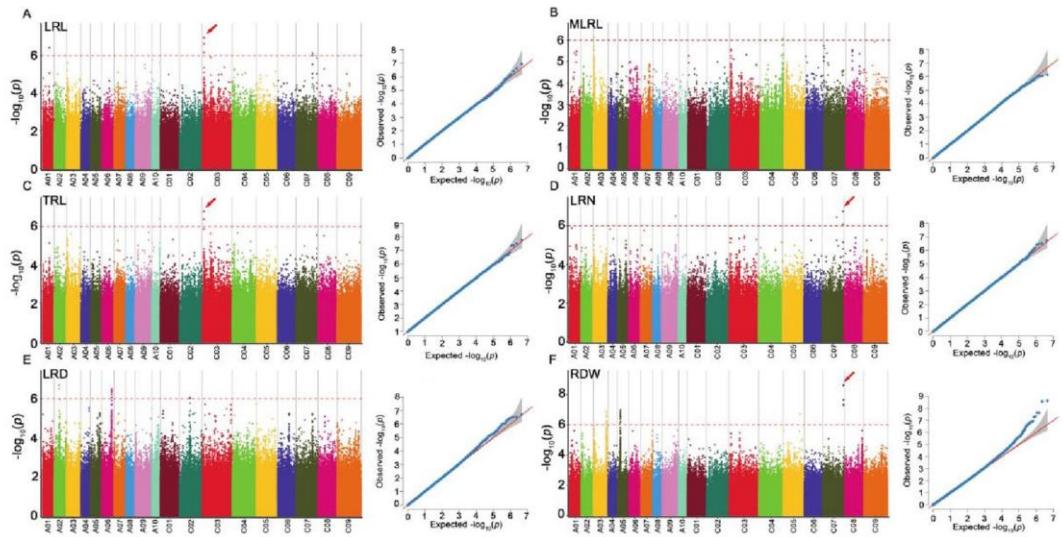
678 Wang XH, Chen YL, Thomas CL et al (2017) Genetic variants associated with the root
679 system architecture of oilseed rape (*Brassica napus* L.) under contrasting
680 phosphate supply. *DNA Res* 24 (4):407-417.
681 <https://doi.org/10.1093/dnares/dsx013>


682 Wu D, Liang Z, Yan T et al (2019) Whole-Genome Resequencing of a Worldwide
683 Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype
684 Divergence. *Mol Plant* 12 (1):30-43.
685 <https://doi.org/10.1016/j.molp.2018.11.007>

686 Xiao YJ, Liu HJ, Wu LJ et al (2017) Genome-wide Association Studies in Maize: Praise
687 and Stargaze. *Mol Plant* 10 (3):359-374.
688 <https://doi.org/10.1016/j.molp.2016.12.008>

689 Zhang C, Dong SS, Xu JY et al (2019) PopLDdecay: a fast and effective tool for linkage
690 disequilibrium decay analysis based on variant call format files. *Bioinformatics*

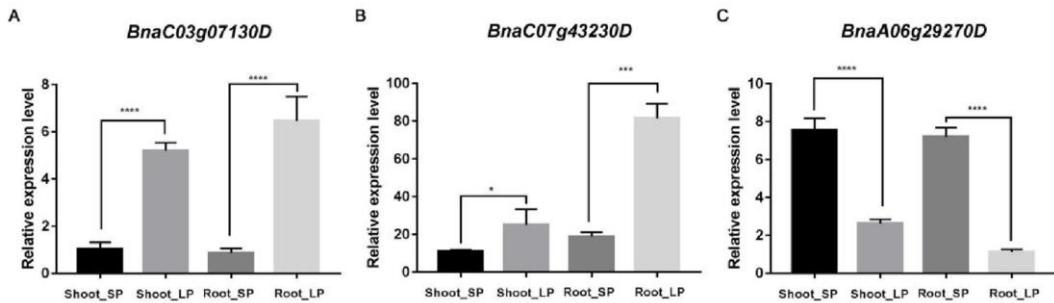
691 35 (10):1786-1788. <https://doi.org/10.1093/bioinformatics/bty875>
692 Zhang Y, Thomas CL, Xiang JX et al (2016) QTL meta-analysis of root traits in
693 *Brassica napus* under contrasting phosphorus supply in two growth systems.
694 Sci Rep 6. <https://doi.org/10.1038/Srep33113>
695
696



697

698 **Fig. 1** Distribution of RSA (root system architecture) phenotypes in 370 *B. napus*
 699 accessions. Histograms of the distribution of LRL (A), TRL (B), LRD (C), RN (D),
 700 MLRL (E) and RDW (F) measured at low phosphorus supplies. LRL, lateral root length;
 701 TRL, total root length; LRD, lateral root density; RN, lateral root number; MLRL; mean
 702 lateral root length; RDW, root dry weight.

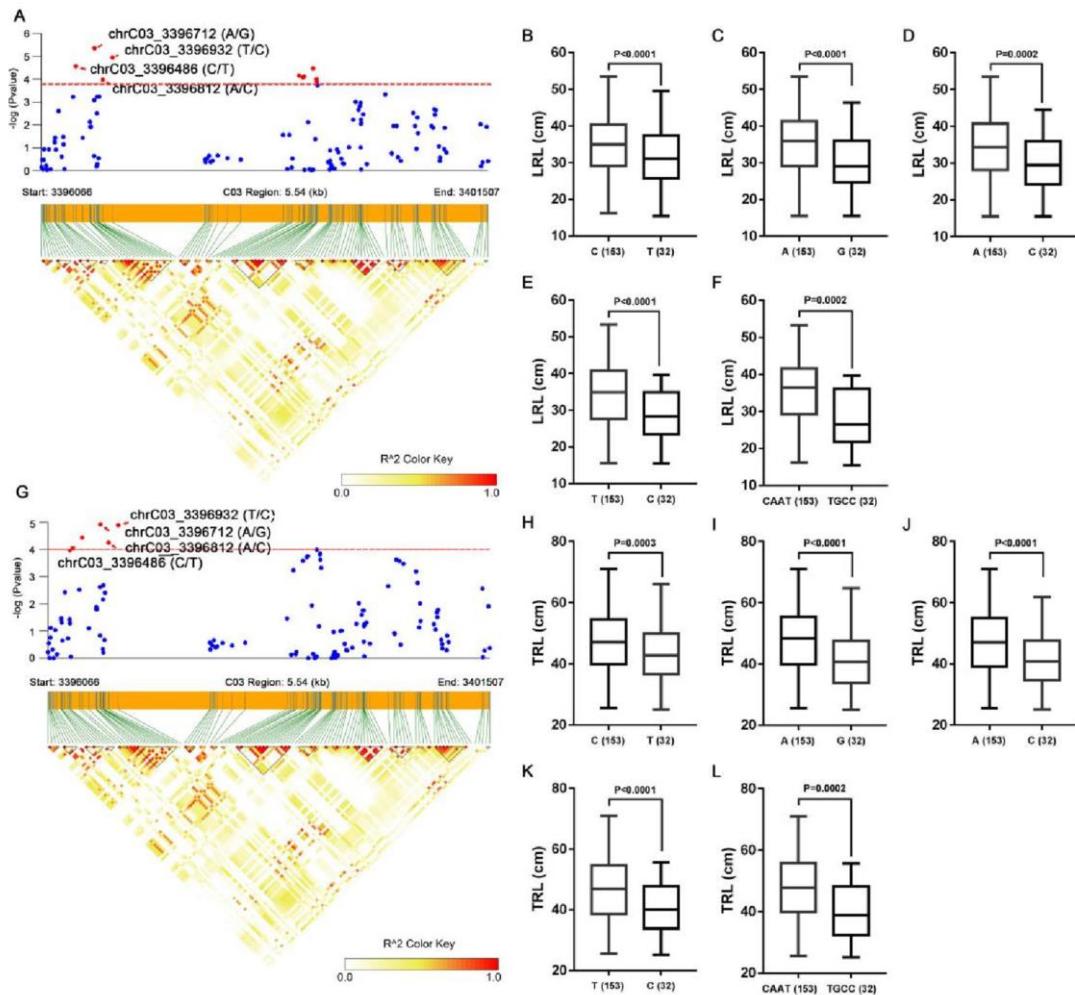
703



704

705 **Fig. 2** Quantile-quantile (QQ) and Manhattan plots for the RSA (root system
706 architecture) by genome-wide association study (GWAS). GWAS of LRL (A), MLRL
707 (B), TRL (C), RN (D), LRD (E) and RDW (F) in 370 *B. napus* at low phosphorus
708 supplies by Fast-LMM model. LRL, lateral root length; MLRL, mean lateral root length;
709 TRL, total root length; RN, lateral root number; LRD, lateral root density; RDW, root
710 dry weight.

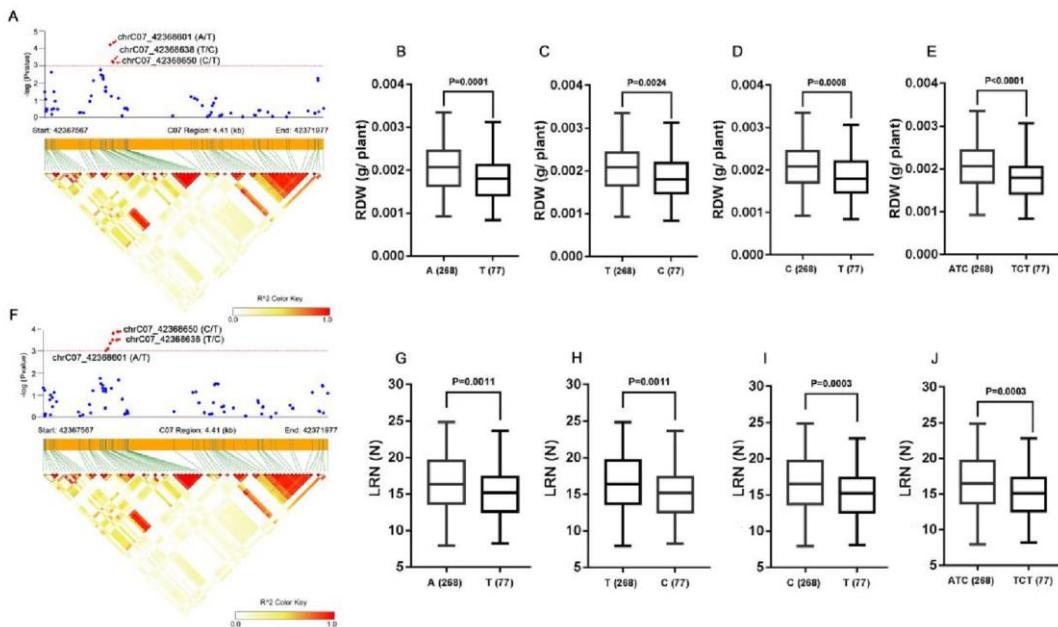
711


712

713

714 **Fig. 3** Relative expression level of three candidate genes (A, *BnaA06g29270D*; B,
 715 *BnaC03g07130D* and C, *BnaC07g43230D*) under low phosphorus and sufficient
 716 phosphorus conditions. LP, low phosphorus; SP, sufficient phosphorus. Data are means
 717 \pm SEM (n=4). Asterisks indicate the significance of Student's t-test (*P < 0.05, ***P
 718 < 0.0001, ****P < 0.0001).

719
 720
 721
 722

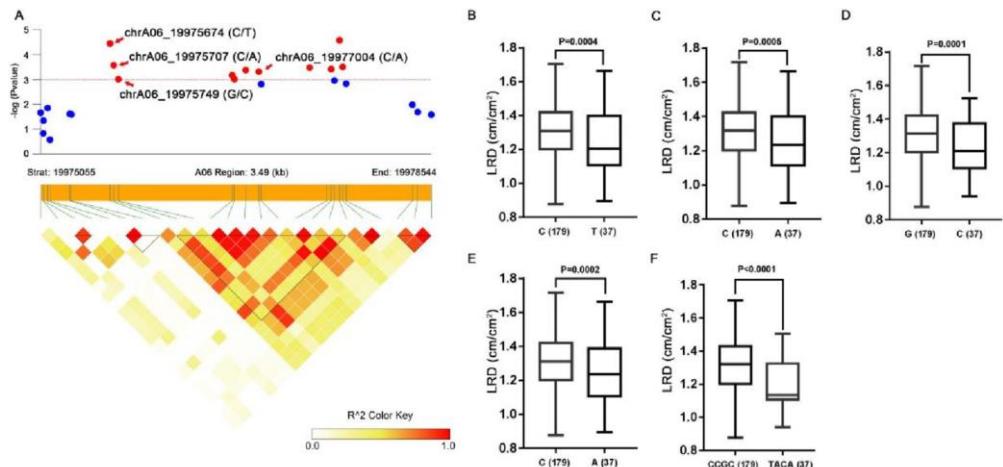

723

724 **Fig. 4** Candidate gene association and haplotypes analysis of *BnaC03g07130D* with
 725 LRL (lateral root length) and TRL (total root length). (A) Candidate gene association
 726 analysis of *BnaC03g07130D* with LRL. (B-E) Association of the two alleles in
 727 chrC03_3396486 (B), chrC03_3396712 (C), chrC03_3396812 (D) and
 728 chrC03_3396932 (E) with LRL, respectively. (F) Two haplotypes of *BnaC03g07130D*.
 729 (G) Candidate gene association analysis of *BnaC03g07130D* with TRL. (H-K)
 730 Association of the two alleles in chrC03_3396486 (H), chrC03_3396712 (I),
 731 chrC03_3396812 (J) and chrC03_3396932 (K) with TRL, respectively. (L) Two
 732 haplotypes of *BnaC03g07130D*. The number of inbred lines harbouring the
 733 corresponding allele is shown in brackets at the bottom.

734

735

736

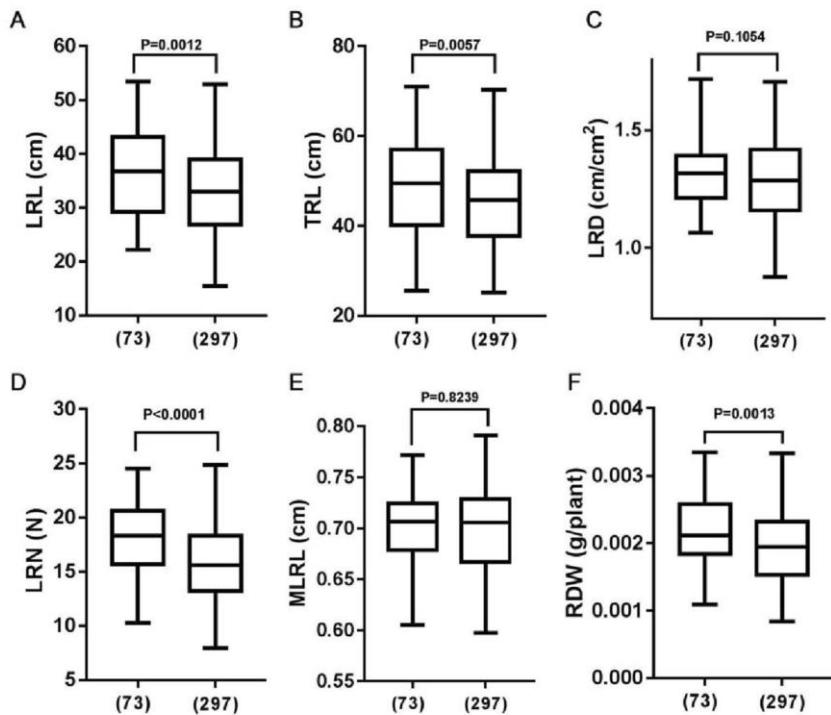


737

738 **Fig. 5** Candidate gene association and haplotypes analysis of *BnaC07g43230D* with
 739 LRN (lateral root number) and RDW (root dry weight). (A) Candidate gene association
 740 analysis of *BnaC07g43230D* with LRN. (B-D) Association of the three alleles in
 741 chrC07_42368601 (B), chrC07_42368638 (C) and chrC07_42368650 (D) with LRN,
 742 respectively. (E) Two haplotypes of *BnaC07g43230D*. (F) Candidate gene association
 743 analysis of *BnaC07g43230D* with RDW. (G-I) Association of the three alleles in
 744 chrC07_42368601 (G), chrC07_42368638 (H) and chrC07_42368650 (I) with RDW,
 745 respectively. (J) Two haplotypes of *BnaC07g43230D*. The number of inbred lines
 746 harbouring the corresponding allele is shown in brackets at the bottom.

747

748

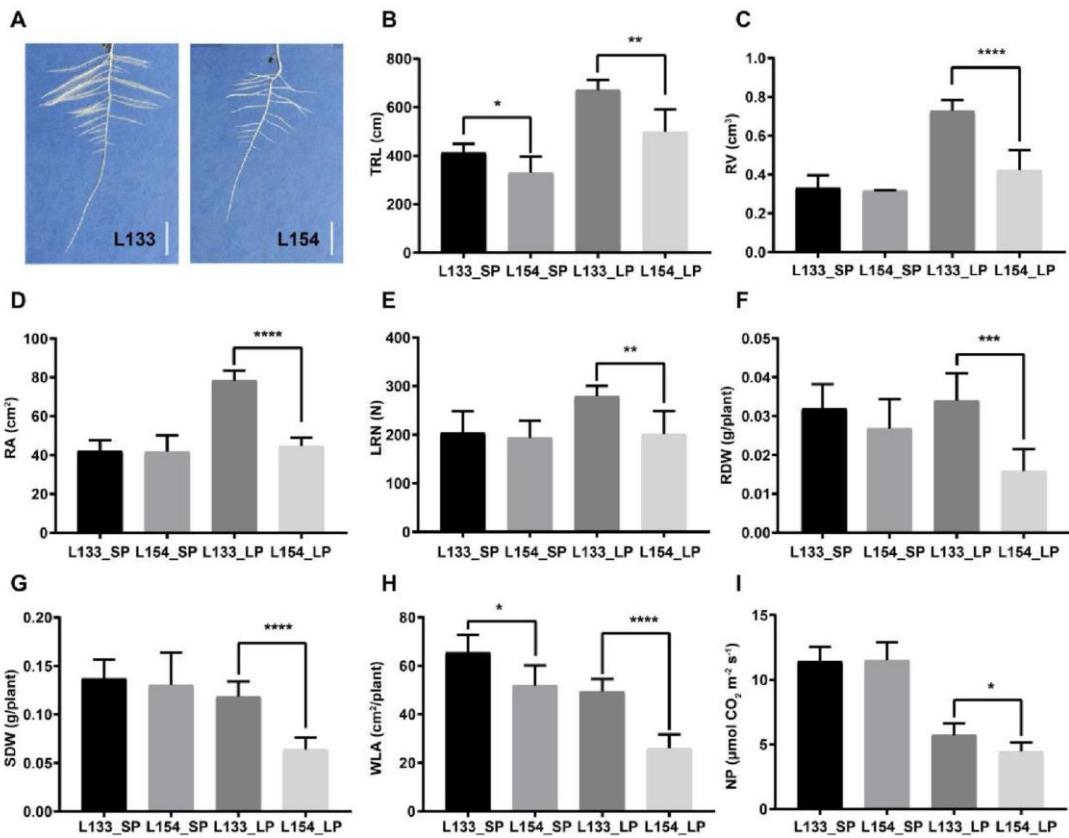


749

750 **Fig. 6** Candidate gene association and haplotypes analysis of *BnaA06g29270D* with
 751 LRD (lateral root density). (A) Candidate gene association analysis of *BnaA06g29270D*
 752 with LRD. (B-E) Association of the four alleles in chrA06_19975674 (B),
 753 chrA06_19975707 (C), chrA06_19975749 (D) and chrA06_19977004 (E) with LRD,
 754 respectively. (F) Two haplotypes of *BnaA06g29270D*. The number of inbred lines
 755 harbouring the corresponding allele is shown in brackets at the bottom.

756

757



758

759 **Fig. 7** Differences in root system architecture at LP between *B. napus* cultivars with
760 three favorable haplotypes (CCGC, CAAT and ATC) and *B. napus* cultivars without the
761 three favorable haplotypes in the association panel. Favorable haplotypes of LRL (A),
762 TRL (B), LRD (C), RN (D), MLRL (E) and RDW (F) were analysed. (73) represents
763 73 cultivars with the three favorable haplotypes; (297) represents the rest of the
764 association panel after removing the above 73 cultivars. LRL, lateral root length; TRL,
765 total root length; LRD, lateral root density; RN, lateral root number; MLRL, mean
766 lateral root length; RDW, root dry weight.

767

768

769

770 **Fig. 8** Differences in root system architecture, biomass, whole leaf area and net
 771 photosynthesis between *B. napus* cultivar (L133) with three favorable haplotypes
 772 (CCGC, CAAT and ATC) and *B. napus* cultivar (L154) without the three favorable
 773 haplotypes (TGCC, TACA and TCT). (A) Root growth of L133 and L154 at LP for 14
 774 d in the 'pouch and wick' system. (B) TRL. (C) RV. (D) RA. (E) LRN. (F) RDW. (G)
 775 SDW. (H) WLA. (I) NP. LP, low phosphorus; TRL, total root length; RV, root volume;
 776 RA, root area; LRN, lateral root number; RDW, root dry weight; SDW, shoot dry weight;
 777 WLA, whole leaf area; NP, net photosynthesis. Data are means \pm SEM (n=6).
 778 Asterisks indicate the significance of Student's t-test (*P < 0.05, **P < 0.01, ***P <
 779 0.0001, ****P < 0.0001). Scale bar is 2 cm in (A).

780