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Abstract Tropical peatlands are a significant carbon
store and contribute to global carbon dioxide (CO,)
and methane (CH,) emissions. Tropical peatlands are
threatened by both land use and climate change,
including the alteration of regional precipitation
patterns, and the 3—4 °C predicted warming by 2100.
Plant communities in tropical peatlands can regulate
greenhouse gas (GHG) fluxes through labile carbon
inputs, but the extent to which these inputs regulate the
temperature response of CO, and CH, production in
tropical peat remains unclear. We conducted an anoxic
incubation experiment using three peat types of
contrasting botanical origin to assess how carbon
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addition affects the temperature response (Q;¢) of CO,
and CH,4 production. Peats from forested peatlands in
Panama and Malaysia, and a converted oil palm and
pineapple intercropping system in Malaysia, differed
significantly in redox potential, total carbon and
carbon: nitrogen ratio. The production of CO, and
CH, varied significantly among peat types and
increased with increasing temperature, with Qs for
both gases of 1.4. Carbon addition further increased
gas fluxes, but did not influence the Q,y for CO, or
CH, production or significantly affect the Q; of either
gas. These findings demonstrate that the production of
CO, and CHy, in tropical peat is sensitive to warming
and varies among peat types, but that the effect of root
inputs in altering Qo appears to be limited.
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Introduction

Global atmospheric concentrations of carbon dioxide
(CO,) and methane (CH,) are increasing, driven by
anthropogenic activities and accelerating climate
change (IPCC 2013). Tropical peatlands represent an
important component of the carbon cycle, being an
important source of both CO, and CH4 and a major
store of carbon. Indeed, tropical peatlands account for
11% of total peatland area but 15-19% of peat carbon
stocks worldwide, equivalent to approximately 104.7
Gt C, with significant deposits reported throughout the
tropics in Central and South America, Central Africa,
and Southeast Asia (Dargie et al. 2017; Page et al.
2011).

Greenhouse gas (GHG) emissions from tropical
peatlands are strongly regulated by peat temperature,
with increased temperature associated with greater
fluxes in situ (Jauhiainen et al. 2014). This is
particularly important in the context of predicted
climate change for tropical peatlands globally. Current
estimates of air temperature changes in the Neotropics
and Southeast Asia are for 3—4 °C warming by 2100
(IPCC 2013). Previous ex situ studies have demon-
strated that the temperature response of tropical peats
to warming is not linear (Sjogersten et al. 2018),
meaning that relatively small increases in temperature
have the potential to dramatically increase emissions.

In addition to changing regional climate patterns,
many tropical peatlands are under significant threat
from changes in land use. In Southeast Asia, the
drainage, deforestation and expansion of plantation
agriculture has the potential to significantly alter the
balance of emissions from peatland sites (Hergoualc’h
and Verchot 2014). Conversion to plantation agricul-
ture has previously been shown to significantly alter
organic matter properties (Cooper et al. 2019; Tonks
et al. 2017). In turn, this may affect the response of
these ecosystems to environmental change, including
to elevated temperatures and altered patterns of
precipitation. Differences in organic matter properties
between contrasting vegetation types have also been
reported in Neotropical systems (Girkin et al. 2019;
Hoyos-Santillan et al. 2015; Upton et al. 2018).

Root exudates represent an important plant carbon
input which, depending on their composition, can
contribute significantly to net greenhouse gas emis-
sions in tropical peats even at relatively low addition
rates (Girkin et al. 2018a, b). Root respiration, which
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includes microbial use of exudates, can be the
dominant driver of CO, fluxes in situ in tropical
peatlands (Girkin et al. 2018c; Melling et al. 2013).
Emissions of both CO, and CH, are also driven by the
decomposition of peat organic matter, with the extent
of production determined by substrate quality (Bridg-
ham and Richardson 1992; Hoyos-Santillan et al.
2015). Under low oxygen to anoxic conditions that can
predominate in peatlands, methanogenic archaea pro-
duce CH4 through the reduction of acetate (acetoclas-
tic methanogenesis), the reduction of CO, and H,
(hydrogenotrophic methanogenesis), or the cleavage
of methylated organic compounds (Holmes et al.
2015; Kolton et al. 2019; Le Mer and Roger 2001).
These pathways are strongly influenced by prevalent
environmental conditions in situ, including substrate
and nutrient availability, microbial community struc-
ture, water table depth, and temperature (Couwenberg
et al. 2009; Gorham 1991; Le Mer and Roger 2001).

The temperature sensitivity of soil respiration under
aerobic conditions increases with the recalcitrance of
organic matter due to the higher activation energies
required (Fierer et al. 2005; Lloyd and Taylor 1994).
Tropical (and some temperate) peats have been shown
to have a lower carbohydrate content and a higher
proportion of aromatic compounds compared to boreal
peatlands (Hodgkins et al. 2018), therefore requiring
higher energy yield terminal electron acceptors to
drive decomposition, which are likely less available in
the low oxygen to anaerobic conditions of peatlands
(Keiluweit et al. 2016). The degradation of root
exuded labile carbon compounds, which can include a
range of organic acids, sugars and amino acids, are
likely to therefore have a lower sensitivity than other
organic matter components, the oxidation of which
may be coupled to lower yielding terminal electron
acceptors (Davidson and Janssens 2006; Keiluweit
et al. 2016). Previous ex situ studies of the response of
tropical peat have not accounted for the influence of
continuous low input rates of labile carbon (Sjogersten
et al. 2018), for example low concentrations of
glucose, a common component of plant root exudate
profiles (Smith 1976).

Developing an understanding of temperature sen-
sitivity of peat and soils is important in accurately
assessing future changes in the global carbon cycle in
response to rises in temperature. Strong responses of
greenhouse gas production to increased temperature,
and greater temperature sensitivity with increasing
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carbon substrate recalcitrance are predicted by kinetic
theory (Davidson and Jannssens 2006) and supported
by some experimental data (Conant et al. 2008).
Decomposition of recalcitrant peatland carbon (par-
ticularly highly aromatic tropical peat) may also be
subject to thermodynamic limitation due to a shortage
of terminal electron acceptors (Beer and Blodau
2007). Previous studies in mineral soils have reported
an increase in the temperature sensitivity of aerobic
respiration on the addition of labile carbon (Gershen-
son et al. 2009; Nianpeng et al. 2013; Song et al. 2010),
most likely because microbial respiration in these soils
was limited by carbon lability. High latitude peatlands
have previously been demonstrated to have high
temperature sensitivity for CH, production (Bergman
et al. 1998). Increased temperatures have also been
shown to result in substantial changes in microbial
community structure, possibly resulting in changes in
methanogenic pathways (Lupascu et al. 2012). How-
ever, it is unclear how this applies in tropical peatlands
with high organic matter content (> 60%), but a high
aromatic content, and how responses vary between
dominant vegetation types with different litter inputs
(Upton et al. 2018; Cooper et al. 2019), and under
waterlogged and low oxygen conditions (Wright et al.
2013).

In this study, we assessed the response of CO, and
CH,4 production of three tropical peats to elevated
temperatures and carbon addition, in the form of
glucose. Based on the strong role of organic matter
quality in regulating greenhouse gas emissions we
predicted that (i) basal CO, and CH,4 production would
differ among peat types, and (ii) temperature sensi-
tivity would differ among peat types. As labile carbon
can be rapidly depleted during decomposition, and
peat is predominantly composed of recalcitrant
biomolecules, we also hypothesised that (iii) glucose
addition would increase Q, for all peat types due to
waterlogged, low oxygen conditions, and strong
substrate limitation resulting in thermodynamic
limitation.

Methods
Study sites

This study was conducted using peat samples col-
lected from sites in Panama and Malaysia between

May 2016 and July 2017. Panamanian peat samples
were collected in May 2016 from the 80 km?
ombrotrophic peatland at Changuinola, part of the
San San Pond Sak freshwater and marine wetland
located in Bocas del Toro province (Fig. 1a). The site
was located approximately 600 m from the coast (09°
18’ 13.00” N, 82° 21’ 13.80” W) in a mixed forest
stand. The central peat dome is approximately 8 m
deep and was initiated approximately
4000-5000 years ago (Phillips et al. 1997). The site
features seven distinct plant phasic communities
beginning with a Rhizophora mangle mangrove
swamp on the coastal margins, which is succeeded
by palm swamp dominated by Raphia taedigera, a
mixed forest stand, a monodominant Campnosperma
panamensis forest stand, and a Myrica-Cyrilla bog-
plain (Phillips et al. 1997). This vegetation gradient is
matched by a pronounced decrease in nutrient avail-
ability, particularly phosphorus (Cheesman et al.
2012; Sjogersten et al. 2011). The microbial commu-
nity throughout the peatland is dominated by Aci-
dobacteria, with precise community composition
clustered by phosphorus availability (Troxler et al.
2012). Sampling was conducted in the mixed forest
stand dominated by C. panamensis, R. taedigera, and
Symphonia globulifera.

The Malaysian forested peatland site is located in
Terengganu state, in northeastern Peninsular Malay-
sia. The site is approximately 8.42 km? and, and is
11.3 km from the coast, located in Kampung Mat
Jintan (5° 25’ 16.2” N, 102° 55 46.2" E) in the
boundary between Kula Nerus and Setiu districts
(Fig. 1b). The forest vegetation comprised trees that
were up to 40 m tall and with a diameter-at-breast-
height (DBH) of 40-50 cm. Common species
included Antisoptera sp., Shorea sp., Calophyllum
sclerophyllum, Calophylum sp., Blumeondendron tok-
brai, Durio carinatus, Gonostylus bancanus, Elate-
riospermum tapos, and Syzgium sp. Both Macaranga
pruinosa and M. gigantean were present on the forest
edges. Pandanus helicopus and Nepenthes ampullaria
were common understory species. Peat depth was
approximately 2 m.

The Malaysian oil palm and pineapple intercrop-
ping site is located in Selangor State, approximately
14 km from the west coast of Peninsular Malaysia (3°
25'20.6” N, 101° 19’ 56.6” E). The site is surrounded
by recently planted (2014) 2nd generation oil palm
mono-cropping and is drained by two drainage ditches
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(a)Panama

Changuinola

Panama City

(b)Peninsular Malaysia

Terengganu peat
swamp forest

North Selangor peat
swamp forest

Kuala Lumpur

Fig. 1 Study site locations in a Panama: Changuinola, Bocas del Toro province. b Malaysia: Kampung Raja Musa, North Selangor and

Kampung Mat Jintan, Terenganu

along the borders at opposite sides of the site
(Dhandapani et al. 2019b). During sampling the site
was not flooded, although the peat was moist, with
high gravimetric moisture content.

At each site, three 10 x 10 x 10 cm bulk peat
samples were collected using a hand trowel, excluding
any recent surface litter. Samples were shipped to the
University of Nottingham and kept at 4 °C for
1 month prior to analysis.

Experimental design

Peat samples (20 g) from each site were placed in
stainless steel chambers (0.6 dm®) with polypropylene
lids and a silicon ring seal. Two holes were drilled in
the lids and fitted with three-way stopcock valves
silicon-sealed in place. The gas-tightness of chambers
was tested by closing all valves and submersing in
water, and through flushing the chamber with N, and
observing for changes in headspace CO, and CHyu
concentrations over time prior to adding peat. Each
peat sample was mixed with 20 ml of deionised water
to mimic in situ flooded conditions. Chambers were
flushed with N, to displace accumulated headspace
gases for two minutes and were placed in incubators
set at 25, 30 and 35 °C for acclimation of microbial
communities for seven weeks following sample stor-
age and preparation. Temperatures were selected to
represent broad scale warming of peatlands in the
Central Americas and in Southeast Asia (IPCC 2013).
Chambers were subsequently opened to displace
accumulated headspace gases, flushed again with N,
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for two minutes and sealed. Overall conditions most
closely match the flooded oxic conditions outlined in
Sjogersten et al. (2018), namely, water saturated with
low oxygen, but not entirely anoxic, mostly closely
resembling peat in situ conditions in the 0-10 cm
horizon (Girkin 2018; Hoyos-Santillan et al. 2016).

Glucose solutions were prepared for an input rate
equivalent to 0.1 mg C g~ soil per day. This addition
rate represents a relatively low daily addition rate for
plant carbon inputs (Grayston and Campbell 1996).
Solutions were adjusted to a pH of 5.5 using HCI
sterilised, and stored at 4 °C prior to addition. Oxygen
was not removed from exudate solutions prior to
addition to better mimic the combined inputs of
oxygen and labile carbon at the root-peat interface
(Hoyos-Santillan et al. 2016).

During headspace sampling, chambers were con-
nect to a Los Gatos ultraportable greenhouse gas
analyser (San Jose, California), sampling at 0.5 Hz.
Fluxes were subsequently measured over 90 s, with
measurement occurring immediately prior to glucose
addition, and at 6, 24, 72 and 120 h following the first
addition. Glucose (or deionised water) was added to
each chamber at the rate of 1 ml per day. Gas
concentrations were adjusted for incubation tempera-
ture (25-35 °C), as well tube and optical bench
volume, according to the ideal gas law. The rate of
potential gas production, expressed as pg CO, g_1 h™!
or pg CH, g~' h™', was calculated assuming a linear
accumulation rate of gases in the headspace (Hogg
et al. 1992).
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Q10, describing the temperature sensitivity of CO,
and CH, production was calculated as:

Q]() — 10(m><10)

where m is the regression slope of a log;y CO, or CHy
flux versus temperature plot.

Peat characterisation

Sub-samples from each site were used to characterise
peat physicochemical properties. Gravimetric water
content was determined by analysis of the mass of
water lost from 10 g fresh peat oven dried at 105 °C
for 24 h. Organic matter content was determined as the
mass lost after ignition for 7 h at 550 °C. Total carbon
(C) and total nitrogen (N) content were determined
from 0.2 g of dry, homogenised peat combusted using
a total element analyser (Flash EA 1112, CE Instru-
ments, Wigan, UK). pH and redox potential were
measured using a Hanna 209 m coupled with pH and
redox probes following 1 week acclimation but prior
to beginning the experiment. After measurement,
chambers were flushed with N, and resealed.

Statistical analysis

Differences in CO, and CH,4 production were assessed
using a repeated-measures ANOVA. Differences in
peat properties and Qpos were tested using the
restricted maximum likelihood method (REML),
including site, temperature and presence/absence of
glucose as fixed effects and replicate as a random
effect. CO, and CH, fluxes were log-transformed to
meet test assumptions. Significance was assessed at
p < 0.05. All statistical analyses were conducted
using Genstat v17.

Results
Peat biochemical properties

Peats were acidic (pH < 5), with high gravimetric
moisture and organic matter contents. These proper-
ties were not significantly different among peat types
(p > 0.05). There was, however, a significant differ-
ence in redox potential among sites (p = 0.003), with
substantially lower redox potential in the Malaysian

primary forest peats compared to the Panamanian
forest or intercropping site (Table 1). Total carbon was
also significantly different among sites (p = 0.021),
and was greatest in pineapple intercropping sites.
Total nitrogen did not differ significantly among peat
types (p = 0.134). C:N was significantly different
among peat types (p = 0.003), and was lowest in
Panamanian forest peat but broadly comparable
between Malaysian peats.

Basal peat CO, and CH4 production

Mean basal CO, production (CO, production at 25 °C,
matching in situ conditions) varied between 69.0 and
777 ug CO, g~'h™' (Fig. 2) but did not differ
significantly among peat types (p = 0.151). CHy
production, however, varied significantly among peat
types (p = 0.02) and was greatest from the Malaysian
primary forest peats. The magnitude of CH,4 produc-
tion compared to CO, was considerably lower,
ranging from 0.06 to 0.08 pg CH, g~ ' h™".

Temperature and labile carbon sensitivity

Temperature strongly influenced CO, fluxes, with
increased production relative to basal rates for all sites
at both 30 °C and 35 °C (p < 0.001, Fig. 3a, c, e).
Glucose addition significantly increased CO, produc-
tion (p < 0.001), with a significant (p < 0.001) inter-
action between glucose addition and peat type, with a
178% increase in mean fluxes from Malaysian primary
forest peats, but only 34% for the Panamanian mixed
forest peat.

CH, production increased significant with temper-
ature (p < 0.001), with mean production increasing at
both 30 and 35 °C (Fig. 3b, d, f). Glucose addition
increased mean CH, fluxes by 11% (p = 0.034). There
was also a significant interaction between glucose
addition and peat type (p < 0.001). In Malaysian
forest and Panamanian forest peats, there were 5 and
7% declines in mean CH, fluxes respectively on
glucose addition, but there was a 56% increase in
mean fluxes for the intercropping site.

There were no significant differences in tempera-
ture sensitivity (Q;q) of CO, or CH4 production in the
presence or absence of glucose (p > 0.05, Table 2),
between sites (p > 0.05), or in the interaction between
treatment and sites (p > 0.05).
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Table 1 Peat properties for Panamanian and Malaysian forested peatlands, and converted Malaysian oil palm with pineapple
intercropping. Italics indicate significance at p < 0.05. Means £ one SE (n = 3)

Panamanian forest Malaysian forest Malaysian intercropping p-value
Peat depth (m) 5° 24 3¢ -
pH 4.0 £ 0.01 44 £ 04 42 £ 0.1 0.457
Redox potential (mV) 303.7 £ 6.9 185.3 £21.2 294.3 + 3.5 0.001
Moisture content (%) 77.00 £ 9.5 904 + 0.2 772 £ 1.2 0.225
Organic matter content (%) 938 + 14 789 + 11.8 86.3 £ 2.5 0.378
C (%) 43.8 £ 3.9 51.3 £ 06 59.4 £ 2.8 0.021
N (%) 2.6 +£04 1.9 £ 0.1 2.3 +£0.05 0.134
C:N 17 £ 1.0 269 £ 1.3 25+ 1.7 0.003
Peat temperature (°C) 239 + 0.1 273 £ 0.1 27.7 £ 0.5 -
Air temperature (°C) 26.3 26.8 26.6 -
Mean annual rainfall (mm) 3206° 10009 1359 to 2480° -
Water table range (cm) — 20 to 20°¢ 5t0 104 — 150 to — 50f -

“Phillips et al. (1997)

"Isla Colon, STRI Environmental Monitoring
“Wright et al. (2013)

dDhandapani et al. (2019b)

“Dhandapani et al. (2019a)

fGlobal Environment Centre (2014)

100 010 <
= — CO, =
@ 80 = CHi Loge
s ES e
(3] (3]
g 60 - 0.08 g
5 s
= 404 -0.07 =
o 2]
3 3
T
o 204 [0.06 o
(=X [-X
5 -
S o | ! 005 &
Panamanian Malaysian Malaysian
forest forest pineapple

Fig. 2 Ex situ basal CO, and CH, fluxes at 25 °C and in the
absence of glucose. Means =+ one SE (n = 3)

Discussion

Warming promoted CO, and CH, production in all
peat types, in common with previous studies in both
temperate and boreal (Dunfield et al. 1993, Inglett
et al. 2012), and tropical peats (Sjogersten et al. 2018),
as well as drained lowland tropical soils from Peru
(Nottingham et al. 2015). Previously, it has been
proposed that heterotrophic microbial communities in
tropical peat respond weakly to warming primarily
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due to adaptation to high peat temperatures, and
because optimal temperature for respiration and
methanogenesis is approximately 25 °C (Kolton
et al. 2019; Menichetti et al. 2015; Sjogersten et al.
2018). Qqo for both CO, (1.07-2.25) and CH,
(1.10-2.39) production were relatively low in our
study, particularly when compared to 6.1 for anaerobic
CH, production reported for Panamanian peats
(Sjogersten et al. 2018), although they are closer to
the 2.2-3.7 reported from studies of CH, production in
Central Kalimantan, Indonesia (Brady 1997; Hirano
et al. 2009; Jauhiainen et al. 2014), and 1.8 under
flooded oxic conditions from Panamanian peats
(Sjogersten et al. 2018). Previous studies have
reported a higher temperature sensitivity of CHy
production than CO, production, although we found
no supporting evidence for this (Table 2) (Sjogersten
et al. 2018, and references therein). These results have
clear implications in assessing the impact of future
environmental change on gaseous carbon emissions
from tropical peatlands: warming peat will result in
increased CO, and CH, emissions from flooded, low
oxygen peats.
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Fig. 3 Mean CO, and CH, fluxes for a, b Panamanian forest, ¢, d Malaysian forest, e, f Malaysian pineapple intercropping.

Means + one SE (n = 3)

Table 2 Q,( for Site
Panamanian and Malaysian
forests, and Malaysian

pineapple intercropping
sites in the presence and
absence of

glucose. Mean + one SE
(n=3)

Panamanian forest

Malaysian forest

Malaysian intercropping

Glucose CO, CH,4

QIO R2 Q]() Rz

1.3+ 04 0.67 1.1 £ 0.04 0.48
1.5+ 0.2 0.78 1.5+03 0.74
1.4 £ 0.1 0.31 1.2 +£ 0.1 0.50
1.3 £ 0.01 0.80 1.5£03 0.57
1.2 £ 0.04 0.83 1.3 £02 0.04
1.3£03 0.81 1.3£0.2 0.68

Although there was no difference in basal CO,
production (from unamended peats at 25 °C), or in
temperature sensitivity among peat types, both CO,
and CHy production varied significantly among sites
across the three temperatures. While organic matter
content was similar among peat types, there were
significant differences in total carbon and C:N, likely
reflecting contrasting aboveground vegetation and
management practices. Previous work in Malaysia
(Tonks et al. 2017; Cooper et al. 2019) and Panama

(Hoyos-Santillan et al. 2015; Upton et al. 2018; Girkin
etal. 2019) has demonstrated substantial differences in
organic matter properties between contrasting plant
functional types and land uses, driven by differences in
plant litter inputs and decomposition rates. While
various studies have assessed the impacts of land use
change on organic matter properties (Cooper et al.
2019; Kononen et al. 2018; Tonks et al. 2017), there is
limited data available regarding the role of intercrop-
ping systems on organic matter properties, meaning

@ Springer



94

Biogeochemistry (2020) 147:87-97

differences in responses cannot be readily ascribed to
contrasts in organic matter properties alone. The low
CH, fluxes from the Malaysian intercropping system
may reflect significant depletion of labile carbon
(Cooper et al. 2019), but could also be driven by a
poorly adapted methanogenic community, or a highly
active methanotrophic community under partially
aerobic conditions (Andersen et al. 2013), as well as
a redox potential c. 300 mV.

Changes in CO, and CH, production in response to
glucose addition varied between peat types. At 35 °C,
CH, fluxes were greater from unamended Panamanian
and Malaysian forest peats compared to carbon
amended peats, implying that labile carbon availabil-
ity was not a limiting factor for production at this
temperature. Similarly, CO, production in peat from
the Panamanian primary forest was comparable at
30-35 °C even with glucose amendment implying an
additional limiting factor other than temperature.
Rates of CO, and CH,4 production in tropical peatlands
have previously been reported as lower at low fertility
(Sjogersten et al. 2011), with litter decomposition
partially constrained by nutrient availability (Hoyos
Santillan et al. 2018). The higher response of the
Malaysian intercropping peat to glucose addition may
reflect the effects of management practices, specifi-
cally fertiliser addition. This may substantially alter
the temperature sensitivity of the system by alleviating
inorganic nitrogen (NH,*/NO, /NO;~) limitation
(Liu et al. 2016; Wang et al. 2010), although in this
study only total peat nitrogen was assessed and this did
not differ significantly between peat types. The lack of
significant difference in temperature sensitivity of
CO; and CH, production with glucose addition may be
because despite an increase in carbon lability, una-
mended peats still had sufficient available carbon for
respiration due to high organic matter content (Dai
et al. 2017). Alternatively, the system is thermody-
namically limited due to a shortage of high energy
terminal electron acceptors necessary for the decom-
position of recalcitrant aromatic carbon which is likely
under the low oxygen conditions (Hodgkins et al.
2018; Kolton et al. 2019), and with the relatively low
concentration glucose additions being rapidly con-
sumed (Girkin et al. 2018a).

Fully understanding the impact of increased tem-
perature on fluxes in situ is more complex due to the
additional regulatory roles of microtopography (Jauhi-
ainen et al. 2005), water table changes (Wright et al.
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2013), plant inputs of oxygen (Hoyos-Santillan et al.
2016), and small scale heterogeneity of peat organic
matter properties (Girkin et al. 2019). In temperate
peatlands, vegetation cover has been shown to also
have a significant impact on the temperature sensitiv-
ity of GHG production (Leroy et al. 2017). Increasing
atmospheric CO, has been found to increase rates of
root exudation in wetland ecosystems (Sanchez-Car-
rillo et al. 2018) and increases in temperature have also
been reported to enhance rates of root exudation in
some tree species (Uselman et al. 2000), and alter the
composition of exudate profiles (Badri and Vivanco
2009; Vancura 1967), both known to be critical
regulators of GHG emissions and peat properties
(Girkin et al. 2018a, b). As a consequence, the true
response of in situ net emissions of GHGs will
comprise components driven by both the temperature
sensitivity of the peat itself, and any changes in root
inputs.

Taken together, our results demonstrate that
increased temperatures will substantially increase
CO; and CH, production in tropical peats, regardless
of current land cover. As a consequence, predicted
warming for Central America and Southeast Asia will
be associated with substantial increases in gaseous
carbon emissions (IPCC 2013). However, the extent of
this increase is likely to be lower than the response of
higher latitude peatlands for which higher Q;¢s have
been reported, including 2.4-5.8 for a Sphagnum
peatland (Lupascu et al. 2012) and 2.5-35 (Bergman
et al. 1998). Differences in fluxes between peat types
are likely driven by contrasts in organic matter
properties (Cooper et al. 2019) and/or nutrient avail-
ability (Hoyos Santillan et al. 2018; Sjogersten et al.
2011) and microbial community structure and func-
tion. Processes that alter organic matter properties, for
example the conversion of pristine forest to oil palm,
or the use of intercropping species, will further affect
fluxes. In addition, our findings demonstrate that the
temperature sensitivity of CO, and CH, production is
not affected by labile carbon addition. This is impor-
tant because plants can input significant quantities of
labile carbon which are not accounted for in the
majority of studies of GHG temperature sensitivity.
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