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ABSTRACT

Conceptual box models of the interhemispheric thermohaline circulation are studied with
respect to bifurcations. Freshwater fluxes are the main control parameters of the system: they
determine the stable states and transitions between stable states of the large-scale thermohaline
circulation. In this study of interhemispheric box models both numerical and analytical methods
are used to investigate transition mechanisms of the thermohaline circulation. The box model
examined first is an interhemispheric four-box model. It is shown that the two bifurcations
where the present THC can become unstable, the saddle-node and the Hopf bifurcation, depend
in a different way on hemispheric freshwater fluxes. A reduction of the model variables leads
to the conclusion that two fixed freshwater fluxes between three surface boxes are the model
feature responsible for the bifurcation behaviour found. The significance of the Hopf bifurcation
for the stability of the thermohaline circulation is discussed.

1. Introduction

The thermohaline circulation (THC) of the
Atlantic ocean (sometimes referred to as the
“conveyor belt” is a density-driven large-scale
overturning motion with relatively warm surface
waters flowing northward and cold North Atlantic
deep water returning southward at 2-3 km depth.
This circulation carries heat northward at a rate
of up to 1 PW (1 PW = 10'® W) and has a signi-
ficant effect on climate, which can be seen e.g. in
climate model experiments (Manabe and Stouffer,
1988), or by looking at the winter sea ice margins
(Fig. 1 of Rahmstorf, 1997) or the deviations of
the climatological air temperature from the zonal
mean (Fig. 1 of Rahmstorf and Ganopolski, 1999).
The air over the northern North Atlantic is
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warmed by up to ~10°C in annual mean, with
the largest effect occurring in winter when oceanic
heat release is at its maximum and solar heating
at its minimum.

Paleoclimatic reconstructions show that the
Atlantic circulation has been subject to large and
rapid changes throughout the last Ice Age. Three
main circulation modes have been identified in
both sediment data and models (Alley et al., 1999;
Ganopolski and Rahmstorf, 2001): a warm or
interglacial mode with deep water forming in the
Nordic Seas and large oceanic heat transport to
northern high latitudes (the present climate oper-
ates in this mode); a cold or stadial mode with
deep water forming south of the shallow sill
between Greenland, Iceland and Scotland; and a
“switched off ” or “Heinrich” mode with practically
no deep water formation in the North Atlantic.
In the last mode, the Atlantic deep circulation is
dominated by inflow of Antarctic bottom water
from the south.
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A full hierarchy of ocean and climate models
has been used to study the nonlinear behaviour
of the Atlantic circulation, its equilibria, stability
thresholds and mode transitions (see reviews by
Weaver and Hughes, 1992; Rahmstorf et al., 1996
and Rahmstorf, 2000). It was found that the non-
linearity stems mainly from two positive feedbacks:
an advective feedback and a convective feedback
(Rahmstorf, 1999). Simple box models play an
important role in understanding the THC, as they
are easy to understand, individual processes and
feedbacks can be studied in isolation, and bifurca-
tion maps can often be computed analytically.
Qualitative agreement between box models and
highly complex circulation models is good in many
respects (Rahmstorf, 1996), and box models can
be used to interpret results from coupled general
circulation models [e.g., the apparent climate
instability found by Tziperman (1997) can be
reproduced and explained with the help of a box
model, Rahmstorf and Ganopolski, 19987]. The
present paper is concerned with the nonlinearity
of the circulation arising from advective feedback.
This feedback was first studied in the seminal box
model of Stommel (1961), which consisted of two
boxes in one hemisphere. In this model, the stable
state of the THC loses its stability at a saddle-
node bifurcation (Stommel’s bifurcation point).
Increasing freshwater forcing (the responsible con-
trol parameter) reduces the north—south density
difference which determines the overturning rate,
while northward salt advection by the overturning
circulation counteracts this. At the bifurcation
point the northward advection of salty water is
no longer able to balance the surface freshwater
input to the northernmost box in the model, and
the THC breaks down. This basic mechanism
occurs in all the variations on Stommel’s model
which have subsequently been studied (e.g., Rooth,
1982; Marotzke, 1990; Joyce, 1991; Huang and
Stommel, 1992; Tziperman et al., 1994).

In addition to Stommel’s bifurcation a Hopf
bifurcation occurs in some models (Tziperman
et al., 1994; Scott et al., 1999), and the THC
becomes unstable before the saddle-node bifurca-
tion point is reached.

In this paper we use the box model of Rahmstorf
(1996) and modifications of it to investigate sys-
tematically the role of freshwater forcing for both
saddle-node and Hopf bifurcations. The model
has been designed to mimic the interhemispheric

THC of the Atlantic ocean. Both numerical and
(where possible) analytical bifurcation analyses are
performed. We try to make the box model as
simple as possible while retaining the key features
of its qualitative behaviour [i.e., the topology in
phase and parameter space, including bifurcations:
see Guckenheimer and Holmes (1983) for an
introduction]. Bifurcation points are followed in
parameter space and interpreted as instability
mechanisms of the box model THC. In section 2
of this paper the basic box model is described
briefly, and a numerical bifurcation analysis using
path-following software is performed. For chan-
ging freshwater fluxes two bifurcations can be
found: a Hopf bifurcation and a saddle-node
bifurcation. The analytical solutions for these
bifurcations are presented for a “minimal” version
of the box model in section 3. Section 4 describes
the impact of the Hopf bifurcation on the stability
of the THC in terms of its basin of attraction in
phase space. In the final section the implications
of the analysis are discussed.

2. The basic four-box model

2.1. Description

The basic box model we study and modify is
Rahmstorf’s (1996) interhemispheric four-box
model. It has been designed to cover the qualitat-
ive behaviour of the large-scale circulation cell of
the THC found in general circulation models
(GCMs). In Fig. 1 it is shown that two boxes
represent the surface and deep water layer in the
tropics, whereas one box is set up for the North
and South Atlantic, respectively. Mixed boundary
conditions are applied, i.e. surface temperatures
are relaxed to prescribed values and freshwater

Py I
. m . m .
- Ty, Sa ™

South | Ti, Si Equatorial boxes Ty, Sa North

Ty, S

Fig. 1. The basic box model: box 3 represents the trop-
ical surface layer, and box 4 the deep water layer.
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fluxes are fixed. The boxes are connected by a
flow with volume transport m as indicated by
arrows in Fig.1.

For the present circulation direction the model
equations read:

. 1 X

Ti= 4 m(Ti—T)+ ATt~ T)) ()
. 1 A

1= m(T, — T) + UTS — T3) 2)
. 1 X
T3=I7'"(T1—T3)+A(T§‘—T3) (3)
. 1

Ti=mT-T) 4
. 1 1
31—17’”(54_S1)+I7SOF1 (5)
. 1

S =—m(S3—S,) I7SOF2 (6)
. 1 1
S3=I7111(51—S3)+I7S0(F2—F1) (7)

Every box has a homogeneous temperature T;
and salt content S;. S, is a reference salinity
(So=35.0psu) used to convert the freshwater
fluxes into the unit psu s~

The salinity of box 4 can be computed from the
total salt content S, and the other salinities

because of salt conservation in the model:
S4:Stol_Sl_SZ_S3 (8)

As the dynamical equations (1)—(7) of the model
do not depend on absolute salinity values but
only on salinity differences, we can use any value
for Sio-

The inverse of the temperature restoring coeffi-
cient A is the relaxation time t, and the T3} are
the prescribed restoring temperatures. F; and F,
are hemispheric freshwater fluxes which not only
represent atmospheric water vapour transport but
also wind-driven oceanic transports. The latter is
the reason why F; in the present climate is a
freshwater transport directed towards the Equator
(ie., into the Atlantic; Rahmstorf, 1996; a view
which is supported by Weijer et al. 1999), in spite
of the Atlantic being an evaporative basin.

The overturning rate m is proportional to the
density difference between box 1 and box 2.
Density depends linearly on temperature and
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salinity. Thus, the overturning rate m is
m=k[p(S,—S1)— (T, — T;)] 9)

where k is a hydraulic constant which is the most
tunable parameter. It can be used to fit bifurcation
diagrams to simulation runs with global circula-
tion models. Here, we use k=23 x 10" m® yr~ 1.
This value yields an overturning rate of about
18 Sv (1 Sverdrup=1x10°m3s~!) when the
approximated parameter values of “present cli-
mate” (given later) are used. o and f§ are expansion
coefficients for temperature and salinity (o=
1.7x107*K tand =08 x 10 3 psu~1).

In general, we use the following parameter
values: TF=0°C, T¥=3.8°C, T¥=15°C, F, =
0.05 Sv (a conservative estimate), F, = 0.25 Sv and
t=25yr, that is A=0.04 yr—!. The box volume
used for all four boxes is V'=10""m? Some
authors use different volumes for different boxes
(Rooth, 1982; Joyce, 1991; Tziperman et al. 1994).
For example, they use a smaller box volume for
box 2, as the water column of deeply mixed water
is less extended compared to the tropical water
masses. This can be considered as a more realistic
setup. We have also studied the box model with
different box volumes but found no difference in
the qualitative behaviour. For simplicity we there-
fore present the results with equal box volumes.

If (o, — py) is negative, the advective terms of
the model must be adequately reformulated,
because the circulation direction is inverse then.
In this case, the model equations are

, 1

n:_;m(n—n)+/l(Tik_n) (10)
. 1 :

T,= = m(Ti— )+ ATE — T5) (1)
. 1 p

L=— mL—T)+ AT —Ty) (12)
. 1

Ti= . m(T,~ Ty (13)
. 1 1

S, = _[7'"(53_S1)+I7S0F1 (14)
, 1 1
S2=—I7m(54—32)—I7SOF2 (15)
. 1 1

Sy= = m(S2=S3)+ 4 SolF— Fy) (16)

For the given formulation the model equations
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are not differentiable with respect to m at m=0,
but algorithms of numerical bifurcation analysis
only work properly with differentiable models.
This shortcoming was eliminated by a technical
trick: instead of m we use the function
m
"

m= e (17)
for advection terms with northward surface flow,
and the function

mo=—— (18)

for those with southward surface flow. We then
use both advection terms in each model equation.
The parameter a has no physical meaning. The
deviation from the physically correct function m
can be made arbitrarily small by increasing the
parameter a:

Iimm*=—limm =

a— oo a— oo

m form>=0
(19)

0 form<0

Qualitative behaviour, and in particular bifurca-
tion points near m =0, are always checked with
respect to the limit a— oo. In the numerical
bifurcation analysis, a = 10 is used.

2.2. Bifurcation study of the basic model

Conceptual models can contribute to a better
understanding of some basic properties of the
THC. Although quantitative results cannot be
expected to be exact, the occurrence of bifurcations
is a rather robust finding from box models.
Therefore, a numerical bifurcation analysis of the
basic model is performed. We use CANDYS/QA
(Feudel and Jansen, 1992) for that purpose.

For this ocean box model, the most important
control parameters are the freshwater fluxes F;
and F,.

In Fig. 2 the bifurcation behaviour for varied
F, is displayed. If the southern freshwater flux F;
is increased, the stable steady state (upper branch
with northern sinking) will become unstable at a
Hopf bifurcation. It is a subcritical Hopf bifurca-
tion because the emerging cycle is unstable.

The additional bifurcation point shown in Fig. 2
is a saddle-node bifurcation where the stationary
state remains unstable. This saddle-node bifurca-
tion is the same bifurcation as in Stommel’s box
model, where it corresponds to the loss of stability;

00— 1

"present climate"

5 o o
£

®

g

=] 5 F —
g

g °r

ST

T e

E

3 ot —

L L 1
0.02 0.04 0.06 0.08 0.10 0.12
F1(Sv)

Fig. 2. Upper stable (solid) branch: increasing F; leads
to a Hopf bifurcation (star), where an unstable periodic
solution (dashed) emerges. The points of the unstable
periodic solution are the minimum and the maximum
overturning rate. At the saddle-node bifurcation (square)
instability remains. Lower stable branch: inverse flow of
the THC.

the Hopf bifurcation does not exist in Stommel’s
two-box model.

An unstable periodic solution emerges at the
Hopf bifurcation. The advective mechanism which
is responsible for the periodic solution is due to
the fixed freshwater fluxes. The Hopf bifurcation
cannot occur in Stommel’s box model, as at least
three boxes are needed for the mechanism. Period
times of the unstable periodic solution are on a
millennial timescale.

If one chooses the values of state variables at
the Hopf bifurcation point as initial condition for
a simulation with F; > F} ¢, the new fixed point
attractor will be a state with southern sinking and
inverse flow of about —9 Sv (lower stable branch).
Thus, we have a bistable system for F; < F} yops-
Decreasing F, on the lower stable branch leads to
another subcritical Hopf bifurcation (not shown)
where the THC switches on again, resulting in a
hysteresis behaviour of the model circulation.
However, there is a caveat, as this box model with
parameters and geometry chosen appropriately
for the present climate is unlikely to cover the
behaviour of the THC with weak or inverse
overturning.

The same bifurcation behaviour also holds with
different volumes for different boxes.

In the box model of Scott et al. (1999), Hopf

Tellus 54A (2002), 1
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bifurcations also occur on the stable branches
with northern and southern sinking. In their
bifurcation diagram, the northern freshwater flux
is the bifurcation parameter. Scott et al. (1999)
show a curve of a transient, unstable solution
connecting the two Hopf bifurcations. This transi-
ent solution was observed by the authors in critical
perturbation experiments. As Scott et al. (1999)
state, it is not rigorously defined. Using numerical
bifurcation analysis, we find that the emerging
unstable cycles are not connected with each other.

The restoring temperature T% can also be used
as a control parameter, as the atmospheric temper-
atures of the northern hemispheric high latitudes
will probably increase most in future climate
change. The corresponding bifurcation diagram is
not shown, because it looks very similar to Fig. 2.
For increasing T%, the upper stable branch
becomes unstable at a Hopf bifurcation.

With constant temperatures, the box model can
be fitted to a perturbation experiment with a
global circulation model, as shown in Fig. 7 of
Rahmstorf (1996). For this purpose, k and the
interhemispheric temperature difference (T, — T;)
are tuned.

By following the two bifurcation points of the
upper stable branch in two-parameter space of F,
and F,, one can study when the Hopf bifurcation
occurs. This is shown in Fig. 3. The Hopf bifurca-
tion curve vanishes where it touches the saddle-
node bifurcation curve [in a Takens—Bogdanov

unstable
030 | i
unstable

0.25 | I N

&
= 0.20 - -
&

0.15 | B

stable
0.10 | E
0.05 e
.00 L L L
0.090 0.095 0.100 0.105 0.110
F1(Sv)

Fig. 3. Two-parameter bifurcation diagram. The Hopf
bifurcation point curve (dotted) and the saddle-node
bifurcation point curve (solid) meet in a Takens—
Bogdanov point (cross).
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(TB) point]. It is obvious that the saddle-node
bifurcation does not depend on the northern fresh-
water flux F,, which can be shown analytically for
reduced box models (see section 3). In contrast,
the Hopf bifurcation curve is determined by both
freshwater fluxes. We can derive a qualitative
distinction of paths from present climate (with a
stable THC) to instability of the THC with north-
ern sinking from Fig. 3:

Increase of F; alone; saddle-node

F, <F;1p bifurcation
Increase of F; alone; Hopf bifurcation
F,>F, 8

Increase of F, alone

Decrease of Fy;
increase of F,

Increase of F; and F,

Hopf bifurcation
Hopf bifurcation

saddle-node or
Hopf bifurcation

saddle-node or
Hopf bifurcation

Increase of Fy;
decrease of F,

The outcome of the last two paths depends on
the ratio F, /F, and on the initial parameter values.

Following this qualitative picture of a box
model, the THC of the present climate (or, gener-
ally speaking, the THC in a strong pole-to-pole
state) can become unstable due to an increase in
one of the hemispheric freshwater fluxes or due to
combined changes.

3. Bifurcations in simpler box models

3.1. Description

A four-box model with seven independent vari-
ables is in itself a highly conceptual model.
Nevertheless, we study simpler modifications in
order to find the essential features needed for the
bifurcation behaviour of the basic model. For this
purpose a model with constant temperatures is
considered (as temperature restoring terms are
small compared with the advection and freshwater
flux terms). In the simplified box model the equa-
torial deep-water box (box 4) was omitted.
Actually, this is very similar to the box model of
Rooth (1982), although he used a model with
different box volumes for the tropics and the high
latitudes. Box 4 can be neglected when steady
states and bifurcations are studied, but it seems
to be necessary for a better representation of the
time-dependent system behaviour.
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In the modified model, only two, independent
variables are left:

. m(S,—S;) form=0
VS, =SoF, + (20)
m(S; —S;) form<0
. m(S;—S,) form=0
VS,=—S,F, + (21)
m(S,—S8;) form<0

The salinity S; is computed from the other
salinities:

S3:Stol_S1_S2

In the equation for the overturning rate m the
temperature difference is now a parameter:

m=k[B(S;—S;) —aT*]

1 %k
with T* = Tz,const - TLCOHSt'

(22)

(23)

3.2. Analytical solutions for the bifurcations

We consider the model with positive over-
turning rate m which is equivalent to the upper
stable branch of the basic model. The stationary
state is calculated for the reduced model from eqgs.
(20) and (21) by solving S;=0, i=1,2. Then,
linear stability theory is applied: the characteristic
equation for the eigenvalues of the Jacobian at
the stationary state can be solved analytically. It
yields equations for the occurrence of local bifurca-
tions of the model (see Appendix).

The qualitative behaviour turns out to be the
same as for the basic model. The saddle-node
bifurcation is independent of F, (as for the basic
model):

ka?

Fy=-—0T*

4S, 24)

The Hopf bifurcation depends on F,, F,, and
T*:

7S, So
3(62/B)kT*2 — Sy F,\ 12
« (24 5,5, 2P 072 (25)
16
with

O!Z

3 L |
C=; 5 kT =L SoFs (26)

The curves of the two bifurcation points meet
in the TB point which is independent of F;:

2ﬁ 1/2
T*= — <W SOF2>

Thus, we have an analytic expression for the
occurrence of Hopf bifurcations:

(27)

ko?

26S,

Equation (28) says that the minimum value of
the freshwater flux F, required for a Hopf bifurca-
tion is proportional to the square of the prescribed
interhemispheric temperature difference T* =

T*2

F,> (28)

Tz,const - Tl,const'

The qualitative behaviour of the basic model,
ie. a saddle-node bifurcation and a subcritical
Hopf bifurcation which meet in a Takens—
Bogdanov point, is fully represented by the simple
three-box model with constant temperatures. The
model feature which is essential for Hopf bifurca-
tions is the existence of three surface boxes with
two connecting freshwater fluxes. Thus, we have
a “minimal” interhemispheric box model.

Variable temperatures provide a negative feed-
back and are important for the quantitative
response (Rahmstorf and Ganopolski, 1999 and
appendix of Rahmstorf, 1996), but temperatures
can be held constant in box model studies of the
qualitative behaviour of the THC. This is sup-
ported by the fact that the qualitative features of
the bifurcation diagrams shown do not change
whether the temperatures are variables or not.

4. The unstable cycle of the Hopf bifurcation
and the basin boundary

Both the basic box model and the reduced
model can exhibit a subcritical Hopf bifurcation.
At the bifurcation point an unstable cycle emerges.
In the following the role of the unstable cycle is
discussed.

The stable state coexisting with the unstable
cycle has a certain basin of attraction which can
be computed numerically. Every simulation start-
ing with initial conditions within the basin of
attraction leads to the stable state of the THC.
The unstable cycle turns out to be located on the
boundary of this basin. In the reduced model it is
the basin boundary itself. This is shown in Fig. 4
for a value of F; near the Hopf bifurcation. All
initial conditions within the cycle converge to the
stable steady state. In a box model with a different

Tellus 54A (2002), 1
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Fig. 4. The unstable cycle is the boundary of the basin of attraction for F; =0.045Sv and T* = —2 K.

heat flux parameterization, Stone and Krasovskiy
(1999) investigated this cycle using Van der Pol’s
method, which yields an equation for the period
of the limit cycle.

The period of the unstable periodic orbit
strongly depends on the box volumes used. As it
is very difficult to define realistic box volumes, we
think that periodic behaviour of the THC should
not be studied with box models, since the uncer-
tainties are too big to relate model results to
observations (e.g. paleodata).

When the control parameter F; is increased, the
stable state gets closer to the Hopf bifurcation
and both the unstable cycle and the basin bound-
ary shrink in size. Thus, there is a critical radius
of deviations from the stable state: disturbances
in the state variables pushing the system beyond
that radius would make the THC become unstable
before F, reaches the value of the Hopf bifurcation.
In addition, even those disturbances which cause
a temporary increase of the overturning strength
can destabilize the THC and lead to a collapse.

Subcritical Hopf bifurcations do occur in simple
box models, but not in 2D fluid models: Quon
and Ghil (1995) and Dijkstra and Molemaker
(1997) found supercritical Hopf bifurcations on
the pole-to-pole branches of their bifurcation dia-
grams, that is, a stable cycle emerges at the bifurca-
tion point. Rivin and Tziperman (1997) studied a
coupled box model and found that there are stable
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oscillations only if the overturning rate is a nonlin-
ear function of the density gradient instead of a
linear one. Rahmstorf (1996) found a linear rela-
tion between overturning strength and density
difference in a GCM study, and this is why we
use a linear function here.

Using nonlinear transformations according to
normal form theory it can be shown (Titz et al.,
2002) that the Hopf bifurcation on the positive
overturning branch is always subcritical, i.e., the
emerging cycle is always unstable.

5. Conclusions

In this paper, interhemispheric box models of
the THC are studied with respect to state tran-
sitions when freshwater fluxes are varied. A “min-
imal” box model of the interhemispheric THC is
found. The unstable periodic solution that emerges
at one bifurcation point limits the stability of
the THC.

Like Stommel’s (1961) model, the box models
exhibit bistability, i.e., for a certain parameter
range both the positive and the negative over-
turning circulation are stable. The stable state of
“present climate” THC (positive overturning) can
become unstable due to two bifurcations that are
different in nature: a saddle-node bifurcation or a
Hopf bifurcation. Scott et al. (1999) also found
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these bifurcations in their box model. Which of
the bifurcations occurs depends on hemispheric
freshwater fluxes; this is now shown in a specific
bifurcation diagram (Fig. 3). The two bifurcations
represent two different mechanisms by which the
present THC can become unstable: the saddle-
node bifurcation can only occur for a change in
total freshwater input into the North Atlantic
catchment, but not for a redistribution of fresh-
water between the low and high latitudes of the
Northern Atlantic. The Hopf bifurcation, in con-
trast, depends on both freshwater fluxes.

We have reduced the variables of the box models
to find a “minimal” interhemispheric box model
which exhibits both bifurcations described above.
At least three boxes with surface contact connected
by two hemispheric freshwater flux terms appear
to be required for the qualitative behaviour, i.e.,
the properties of the water masses on a large scale
in the Atlantic (two well-mixed high-latitude water
columns and the tropical surface layer) are the
essential feature needed for the bifurcations we
found. Analytical solutions for the two bifurcations
are given, so that one can clearly see how they
depend on the parameters.

It is not clear a priori which of the bifurcations
could lead to a state transition of the THC when
freshwater fluxes change in the model. Only
beyond a threshold for the freshwater flux in the
Northern Hemisphere does the Hopf bifurcation
exist in the model. In contrast to Scott et al. (1999)
we find that the Southern Hemisphere freshwater
flux governs stability in general and that the
Northern Hemisphere freshwater flux only plays
a role if its value is beyond the threshold
mentioned above.

If a Hopf bifurcation is possible, this has con-
sequences for the stability of the THC near the
bifurcation point. At the Hopf bifurcation, an
unstable periodic orbit emerges which coexists
with the stable steady state of the THC with
positive overturning. In the “minimal” model, the
unstable periodic orbit is identical with the bound-
ary of the basin of attraction that belongs to the
stable steady state. As this basin of attraction
shrinks when the Hopf bifurcation is approached,
small perturbations may destabilize the THC even
if the bifurcation point is not yet reached. Positive
overturning perturbations can also destabilize the
THC in this case.

Therefore, it is not sufficient to study bifurcation

points alone: the basin of attraction around stable
steady states should also be taken into account
when the risk of state transitions is investigated.
It is not necessarily at the bifurcation point where
state transitions may occur, since small perturba-
tions are always present.

Whether a Hopf bifurcation may possibly cause
a destabilization of the THC should be investi-
gated with two- or three-dimensional fluid models.
Whether the Hopf bifurcation is super- or sub-
critical is an important additional question. Up
to now, Hopf bifurcations occurring in two-
dimensional models were supercritical, i.e., the
emerging cycle was stable (Quon and Ghil, 1995;
Dijkstra and Molemaker, 1997). Rivin and
Tziperman (1997) found with a box model that
the Hopf bifurcation is supercritical only if the
overturning rate is a nonlinear function of the
density gradient, which was not the case in the
GCM study of Rahmstorf (1996). In our study we
used a linear function, and this is probably why
the Hopf bifurcation we find is subcritical. Perhaps
a Hopf bifurcation could be found in models
of even higher resolution, and especially with
strongly asymmetric boundary conditions. A thor-
ough comparison of the underlying mechanism
and its dependence on model setup needs to be
done in further studies.

Oscillations on a decadal and centennial scale
discovered in GCMs and intermediate models are
often localized on the North Atlantic (with a
decadal time scale), except for the 320 yr oscilla-
tion found by Mikolajewicz and Maier-Reimer
(1990) in an ocean general circulation model and
the 200-300 yr oscillations studied by Mysak et al.
(1993) in a two-dimensional ocean model. If a
supercritical Hopf bifurcation can be found in a
three-dimensional model, with a stable oscillation
connected to it, the latter oscillations on a centen-
nial timescale might perhaps be explained in this
way.

This study shows that methods of nonlinear
dynamics applied to simple ocean box models
yield valuable information about different possible
transition mechanisms of the THC and their
dependence on relevant parameters.
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7. Appendix: Bifurcations of the minimal
model

After a transformation of variables (S, =S,
S,=85,—8,), the stationary state of the reduced
model is given by

c 1 SoFL+F) \

$i=3 (S g ) - (A1)
CEE T
=5 FI\ 2 ) T kg | (A2)

By solving S;=0 (i—1,2) the characteristic
equation for the eigenvalues of the Jacobian can
be computed.

The characteristic equation yields the eigen-

values of the system:

3 . 1/2
lia=At <A2—ka(2ﬁS2—ocT*)> (A3)
with

A=${kﬁ[$mt—3(§1+2§2)]+3kocT*} (A4)

If one real eigenvalue becomes zero, a saddle-
node bifurcation exists. Hence, we can find eq. (24)
for the saddle-node bifurcation.

At a Hopf bifurcation, two purely imaginary,
complex conjugate eigenvalues must exist, i.e.,
A =0. Thus, we can calculate eq.(25) for Hopf
bifurcations.

At a TB point, both conditions (for the saddle-
node bifurcation and the Hopf bifurcation) must
hold.
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