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Abstract

We say that I', the boundary of a bounded Lipschitz domain, is locally dilation invariant
if,ateach x € I, " is either locally C! or locally coincides (in some coordinate system
centred at x) with a Lipschitz graph I'y such that I'y = «, "y, for some «, € (0, 1).
In this paper we study, for such I', the essential spectrum of Dr, the double-layer (or
Neumann—Poincaré) operator of potential theory, on L?(I"). We show, via localisa-
tion and Floquet—-Bloch-type arguments, that this essential spectrum is the union of the
spectra of related continuous families of operators K;, fort € [—m, ]; moreover, each
K; is compact if " is C! except at finitely many points. For the 2D case where, addi-
tionally, I is piecewise analytic, we construct convergent sequences of approximations
to the essential spectrum of Dr; each approximation is the union of the eigenvalues of
finitely many finite matrices arising from Nystrom-method approximations to the oper-
ators K;. Through error estimates with explicit constants, we also construct functionals
that determine whether any particular locally-dilation-invariant piecewise-analytic I"
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636 S.N. Chandler-Wilde et al.

satisfies the well-known spectral radius conjecture, that the essential spectral radius of
Dr on L2(I") is < 1/2 for all Lipschitz I". We illustrate this theory with examples; for
each we show that the essential spectral radius is < 1/2, providing additional support
for the conjecture. We also, via new results on the invariance of the essential spectral
radius under locally-conformal C!-# diffeomorphisms, show that the spectral radius
conjecture holds for all Lipschitz curvilinear polyhedra.

Mathematics Subject Classification 31A10 - 65R15 - 45P05 - 45E05 - 45105

1 Introduction

Given a bounded Lipschitz domain! Q_ c RY,d > 2, with boundary I'" and
outward-pointing unit normal vector n, the interior and exterior Dirichlet and Neumann
problems for Laplace’s equation (posed in _ and in Q4 := R\ Q_, respectively),
can be reformulated as boundary integral equations involving the operators

Dr+%l and Dj£11 (1.1)

(see, e.g., [64], [46, Sects. 5.9, 5.15.1]), where the double-layer (or Neumann or
Neumann-Poincaré) operator Dr and the adjoint double-layer operator Dj. are

defined by

0D (x, , P (x,
Dré(x) = / 9PV () ds(y) and Dl (x) = / 9PV 4y dsy),
r on(y) r on(x) 12)

for ¢ € L?*(I") and (almost all) x € I, with the integrals understood, in general,
as Cauchy principal values. Here ®(x, y) is the fundamental solution for Laplace’s
equation, defined by?

1 1 1
D(x,y) = —1 ,d=2, = , d>3,
) = o Og(|x—y|> (d —2)cq |x — yld-2
(1.3)
where ¢, is the surface measure of the unit sphere in R?. Explicitly,
L [ (x=y)-nky)
Drow = — [ F2 00 as0) and
caJr Ix—yl
L [ (—x) - -nk)
Dhoe = — [ B2 g0 asi. (1.4)
caJr  |x—yl
for ¢ € L*(I") and (almost all) x € T.
Complementing (1.1),
D — A, (1.5)

I For us, as, e.g., in [47], “domain” will just mean “non-empty open set”; a domain need not be connected.

2 Our sign convention and normalisation are those of many authors (e.g. [41, 62]), but other authors (e.g.
[34]), use a fundamental solution that is the negative of ours.
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The double-layer operator on locally-dilation-invariant domains 637

with A € C\{— %, %}, arises as the operator in the boundary integral equation reformu-
lation of transmission problems in electrostatics, where the Laplace equation Au = 0
holds in 2_ and €24 and the trace of u or its normal derivative jumps across I" (see,
e.g., [46, Sect. 5.12]). In this context the case |A| > 1/2, especially with A real, is clas-
sically of interest (e.g., [46, Sect. 5.12]); more recently the case where A is complex
with |A| < 1/2 has been studied intensively as a model of quasi-static electromagnetic
plasmonic problems (e.g., [1, 15, 27, 59]).

Motivated by these physical applications, and by questions in harmonic analysis,
there has been long-standing interest in the computation of the spectrum and essential
spectrum’ of Dr as an operator on a variety of function spaces, especially for non-
smooth domains (e.g., [1, 12, 18, 27, 34, 38, 39, 48, 52, 53]). The largest part of this
literature is concerned specifically with the 2D/3D cases where I' is a (curvilinear)
polygon (e.g., [10, 49, 50, 60, 61]) or polyhedron (e.g., [15, 16, 20, 26, 27, 48, 50, 56]).
In this paper we will study and compute the essential spectrum of Dr as an operator
on L*(I") for a substantially larger class of boundaries, namely for the case where the
boundary I is locally dilation invariant in the sense of Definition 1.3 below. In 2D
(3D) this class includes polygons (polyhedra) but it also admits much wilder boundary
behaviour (e.g., Fig. 1) as we discuss next in Sect. 1.1.

1.1 The spectral radius conjecture and the main question we address

Given a bounded linear operator 7: ¥ — Y on a Banach space Y, we define its
spectral radius, p(T; Y), and its essential spectral radius, pess(T; Y), by

p(T;Y):= sup |A| and pess(T;Y):= sup |A], (1.6)
reo (T;Y) A€oess(T5Y)

abbreviating p(T;Y) and pess(T; Y) by p(T) and pess(T), respectively, when the
space Y is clear from the context. The analysis and computation we will carry out are
motivated by the so-called spectral radius conjecture.

This conjecture, in the explicit 1994 formulation of Kenig [34], is as follows, where
L3(T) :={¢ € L*(I) : [ ¢ ds =0}

Conjecture 1.1 If I is the boundary of a bounded Lipschitz domain ©2_ and is con-
nected, the spectral radius of D} on L3(I') is < 1, i.e. p(Df; L3(I) < 1.

In Sect. 2 we will discuss the following alternative formulation of the conjecture
which makes sense regardless of the connectivity of I', and show its equivalence with
Conjecture 1.1.

Conjecture 1.2 If I is the boundary of a bounded Lipschitz domain 2_, the essential
spectral radius of D on L3(I') is < 1, i.e. pess(Dr; LX) < 1.

3 Given a Banach space Y and a bounded linear operator 7': ¥ — Y we denote the spectrum of 7', the set
of A € C for which T — A[ is not invertible, by ¢ (T'; Y), and the essential spectrum, the set of A for which
T — AT is not Fredholm, by oegss(T'; Y), abbreviating these by o (T') and oegs(T) where the Banach space
Y is clear from the context.
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638 S.N. Chandler-Wilde et al.

(a) (b)

Fig. 1 Examples of bounded Lipschitz domains Q_ with boundaries I' € 4 C & that are piecewise
analytic locally dilation invariant

The spectral radius conjecture is very well studied, owing to its intrinsic interest
in harmonic analysis, its possible relevance for computation,* and its immediate role
within electrostatics, as well as in interpretations of electrodynamical problems [26]. It
originated in the setting of continuous functions in _, dating all the way back to Neu-
mann in the late 1800s, who treated convex domains, and to Radon [55], who famously
analyzed curves of bounded rotation. In a tour de force, Kral [38, 39] completely char-
acterized when the essential norm of Dr is < 1/2. This result was extended into higher
dimensions by Burago and Maz’ya [8] and Netuka [51]. For polyhedrain 3D, the essen-
tial norm can be > 1/2. Nevertheless, Rathsfeld [56] (and see [57]) and Grachev and
Maz’ya [20] independently proved the spectral radius conjecture in the continuous
setting holds for general polyhedra. These results were extended to locally conformal
deformations of polyhedra by Medkova [45]. Even when specialised to the continuous
setting, the history is vast, and we refer to Wendland [65] for an in-depth survey.

As modern harmonic analysis developed, the natural setting for the double-layer
potential shifted toward L?(I"). We make particular mention of the demonstrations of
L2-boundedness of the Cauchy integral due to Calder6n [9] and Coifman, Mcintosh,
and Meyer [13], and Verchota’s [64] application of these results to study invertibility of
Dp =+ %I on L*(I") and L%(F) when I is connected. Since then, a flurry of activity and
findings in this area have provided support for Kenig’s conjecture, though a complete
proof has proved elusive.

Indeed, to the best of our knowledge, Conjecture 1.1 has been established (only)
in the following cases: (a) 2_ is convex [18] (and see [12] for extensions to locally
convex domains); (b) 2_ has small Lipschitz character® [48], a case which includes
all C! domains [197; (¢) e-regular Semmes—Kenig—Toro domains 2_ for sufficiently
small ¢ > 0 [30], including in particular all domains whose gradient has vanishing
mean oscillation [28]; (d) €2_ is a polygon or curvilinear polygon in 2D [60, 61], or a
Lipschitz polyhedron in 3D [16].

Note that polygonal and polyhedral boundaries I' are locally invariant under all
dilations: at every point x € I', T" locally coincides with a graph I'y such that (in

4 Notably, if the spectral radius conjecture holds then the Neumann series for (D} + % I¢ = g,equivalently
the Neumann iteration j:%qb(") =g- D}¢<"_1), n € N, converges in L(Z)(l")‘
5 See, e.g., [11, Definition 3.1] for the definition of the Lipschitz character of a Lipschitz domain.
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The double-layer operator on locally-dilation-invariant domains 639

some local coordinate system centred at x) I'y = «["y for all « > 0. In this paper we
will investigate domains where, locally, the dilation invariance I'y = o, 'y only holds
for one ay € (0, 1) (in which case we say that I is locally dilation invariant at x).
Precisely our focus will be on the following class of boundaries.

Definition 1.3 (Locally dilation invariant) Given I', the boundary of a Lipschitz
domain Q_, we say that I' € 2, the set of locally-dilation-invariant boundaries
if, at every x € T, T is either locally C' or locally coincides (in some coordinate
system centred at x) with a Lipschitz graph I', which is dilation invariant with respect
to some oy € (0, 1),1.e. 'y = a,y.

Note that, already in 2D, & is a hugely larger class of domains than that of the
curvilinear polygons. Indeed, for a Jordan curve I' ¢ R? and x € T, let

2 4o

i0
vr(x):/ Hx +re'” el 1 r >0} —,
0 2

where |-| in this equation denotes the counting measure of a set. Then Dr¢ is uniformly
continuous on 2_ for every ¢ € C(I') if and only if

sup vr(x) < oo, (1.7)

xel’

see [7, 36, 37]. If " is Lipschitz and locally dilation invariant at x, then it is clear
that vr (x) = oo, unless I' coincides with two line segments around x. It follows that
the only curves I' € Z satisfying (1.7) are curvilinear polygons. That is, except for
curvilinear polygons, our curves exhibit such wild boundary behaviour that it is not
possible to consider Dr in the setting of continuous boundary data.

In the context of studying the double-layer and related operators, the class of
domains Z seems to have been first considered in [11], where the essential numerical
ramge6 of Dr was studied and, in 2D and 3D, examples of boundaries I' € & with large
Lipschitz character were constructed such that Dr: L>(I') — L?(I") has arbitrarily
large essential numerical radius,

Wess (Dr) := sup  |z|,
7€ Wess(Dr)

and so also arbitrarily large essential norm,

[Drlless:= inf |[Dr — K|,
Kcompact

since, for any bounded operator 7 on a Hilbert space [22, Sect. 1.3],

FNT lless < Wess(T) < 1T Jless.- (1.8)

6 Recall that, for a bounded linear operator T: H — H on a Hilbert space H, the numerical range of 7 is
W(T) :={({T¢, ¢) : ¢l = 1} and its essential numerical range is Wess(T) := (g compact W(T + K).
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640 S.N. Chandler-Wilde et al.

The 2D examples in [11] (see, e.g., [11, Fig. 3] and cf. Fig. 1) with arbitrarily large
wess (Dr) are necessarily examples for which (1.7) fails to hold, since for curvilinear
polygons on L?(I") it is well-known that

IDrlless = Wess(Dr) = p(Dr; LA () < 1

(see [10, 49, 60, 61] for || Dr |less and p(Dr; L2(I")); equality for wess(Dr) follows
by (1.8) and since Wess(Dr) D 0ess(Dr; LA(I)) [6]).

A natural question, prompted by the examples from Chandler-Wilde and Spence
[11] with wegs (Dr) arbitrarily large and the spectral radius conjecture, is the following:

Given that there exist I' € & with wegs(Dr) > %, in particular such examples in
2D, isthereal” € 2, inparticular an example in 2D, with pess (Dr; L3(IN)) > %?

Of course, a positive answer would provide a counterexample to Conjecture 1.2 and
hence to the original spectral radius conjecture, Conjecture 1.1. The aim of this paper
is to address this question, through mathematical analysis and computational methods
supported by numerical analysis error estimates where constants are made explicit.
These will enable us to estimate pess (Dr; L2(I")) fora largeclassof I' € Z sufficiently
accurately to determine whether or not pess(Dr; LZ(F)) > %

1.2 Our main results and their significance

The first step in our analysis is Theorem 5.2 in Sect. 5.1, the localisation result (cf.
[11, 15, 16, 48]) that, for I' € Z (and for any dimension d > 2), there exists a finite
set ' C I such that

Oess(Dri L* () = | 0ess(Dr, s LA(T)). (1.9)

xeF

In the above formula I, is defined as above if I is locally dilation invariant at x, while
if T is locally C! at x then I, is the graph of a C! compactly supported function so
that [19] Dr, is compact and oegs(Dr, ; L(T,)) = {03.

The localisation (1.9) reduces the computation of oess(Dr; L%(I")) to that of
Oess(Dr, LZ(FX)) for finitely many x for which 'y = I'y, for some o, € (0, 1).
Computation of oess(Dr, ; LZ(F +)) for such x is our focus in Sect. 4 where we study
and compute spectral properties of Dr in the case that I' € R is a dilation invariant
Lipschitz graph, meaning that there exists an @ € (0, 1) such that «I" = I" (an exam-
ple is Fig. 3). If ['g C T" \ {0} is a particular relatively closed and bounded Lipschitz
subgraph of I" such that

r=|Ja/T. (1.10)
JjEZ

and such that (a/ T'g) NIy has zero surface measure for Jj # 0, we show that Dr can be
written as a discrete £1 convolution operator whose entries are bounded linear operators
on LZ(FO) related to the discretization (1.10) of I'. This allows us to decompose Dr,
by a Floquet-Bloch transform, into a continuous family (K;);c[—xr 7] of operators
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The double-layer operator on locally-dilation-invariant domains 641

K;: L2(Fo) — LZ(FO), and, by standard results for such convolutions (see [54,
Theorem 2.3.25]), to characterise the essential spectrum of Dr as (Theorem 4.4)

Oess(Dr; L* (D) = o(Dr; LX) = | ] o(Ks; LA(T)). (1.11)

te[—m,m]

This characterisation is particularly useful when, apart from a singularity at 0, I"
is C! (see, e.g., Fig. 3), for then (Corollary 4.6) each K; is compact, and so has a
more easily computed discrete spectrum. The characterisation (1.11) holds for every
Lipschitz dilation invariant graph in any dimension; in Sect. 4.3 we specialise to the
2D case where I, except at 0, is the graph of a real analytic function (see, e.g., Fig. 3);
we denote by A this subset of the 2D dilation invariant graphs. We show, for each
t € [—m, ], that K; is unitarily equivalent to K +» a2 x 2 matrix of integral operators
on L?(0, 1) that have real analytic kernels. Further, the range of each of these integral
operators is a space of 1-quasi-periodic real analytic functions. As a consequence,

o (Ks; L2 (D)) = o (K (C[O, 11)?),

and this latter spectrum can be computed by approximating K; by a2N x 2N matrix
A,, N obtained by a simple midpoint-rule based Nystrom discretization. As is well-
known (see [41, 63], Theorem 4.11), the midpoint rule is exponentially convergent for
periodic analytic functions, so that it follows from Nystrom-method spectral estimates
for integral operators with continuous kernels [3] that, for each ¢, the eigenvalues of
A; n converge at an exponential rate to those of K ;as N — oo.

This leads (see Theorem 4.19) to a Nystrém approximation, oV (Dr), for o (Dr) =
0ess(Dr), which is {0} plus the union of the eigenvalues of finitely many 2N x 2N
matrices. Our first main result is to show, as Theorem 4.19, that oV (Dr) — o (Dr)
in the Hausdorff metric as N — oo; that this convergence is achievable is somewhat
surprising given that Dr is neither compact nor self-adjoint. Our second, and more
substantial result (Theorem 4.21) is that we develop a fully discrete algorithm to
test whether, as an operator on L), Pess(Dr) < % Precisely, we construct (see
Remark 4.22), for each ¢ > 0, a nonlinear functional S, : A x Nx N x N — R
with the properties that: a) the functional can be computed in finitely many arithmetic
operations and finitely many evaluations of elementary functions, given finitely many
sampled values of f and its first and second derivatives for real arguments, plus bounds
on the analytic continuation of f to a neighbourhood of the real line that depends on
¢; b) pess(Dr) < % if, for some ¢ > QO and m, M, N € N, it holds that:

@ p(Af‘klN) < g, fork = 1,...,m, where t; := (k — 1/2)/m and A{‘k{N is a
specific approximation to A;, y depending on the parameter M
(ii) Sc(I',m, M, N) < 0.

Conversely, if pess(Dr) < %, then, for all sufficiently small ¢ > 0, (i) and (ii) hold for
all sufficiently large N, M, m € N.

In Sect. 6 we bring these results together to address our question at the end of
Sect. 1.1. We restrict attention to the following 2D class of domains; this class
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642 S.N. Chandler-Wilde et al.

includes polygons and piecewise-analytic curvilinear polygons, but also wilder bound-
ary behaviour as illustrated in Fig. 1.

Definition 1.4 (Piecewise analytic locally dilation invariant) In the case d = 2 we
say that I" € Z 4, the set of piecewise-analytic locally-dilation-invariant boundaries,
if ' € 2 and T is locally analytic (i.e., is locally the graph of a real-analytic function)
at all but finitely many x € I'.

Given I' € 24, if F C T is the finite set of points at which I is not locally analytic
and is locally dilation invariant, it is easy to see that 'y € A for x € F and that (1.9)
holds for this set F. Thus (see Theorem 6.1)

=V (Dr) = [ oM (Dr,) — oes(Dr) (1.12)

xeF

in the Hausdorff metric as N — oo, and note that ¥ (Dr) is the union of the
eigenvalues of finitely many 2N x 2N matrices. Further, as we discuss in Sect. 6, it
follows that pess(Dr) < % if these eigenvalues lie within the disc of radius %, ie.if

Ry(Dr) := max{|z| : z € Z¥(Dp)} < 3, (1.13)
and if also, for some ¢ > 0,

S(I',N) := ma;(SC(I‘X,N,N,N) <0, (1.14)
xXe

where .7, (I", N) can be computed in finitely many arithmetic operations plus finitely
many evaluations of elementary functions, given inputs describing each I', as dis-
cussed above. Conversely, if pess(Dr) < % then, for all sufficiently small ¢ > 0
and all sufficiently large N, Ry(Dr) < % and .. (I', N) < 0. Thus, given inputs
describing I", our fully discrete algorithms enable us to test, for individual I' € Z 4,
the validity of Conjecture 1.2, i.e. whether or not pess(Dr) < % through computa-
tion of the eigenvalues of finitely many finite matrices, plus finitely many additional
arithmetic operations.

In Sect. 5 we prove the localisation result (1.9). We also, in the spirit of Medkova’s
study in the continuous setting [43, 45], consider the stability of Conjecture 1.2 under
locally conformal deformations. We prove that the spectral radius conjecture is inde-
pendent of such deformations, under the assumption that the absolute value of the
kernel of the double-layer potential also defines a bounded operator on L2(I"). While
this additional hypothesis may fail to include the wildest of boundaries, it applies to
many domains from 2. For example, as we discuss in Sect. 5.2, it is satisfied by any
dilation invariant Lipschitz graph I' whose generating set I'o is polygonal or poly-
hedral, in particular it holds if I" is a polyhedron and, in 2D, if I' € Z 4. As one
consequence (Corollary 5.7), Conjecture 1.2 holds for Lipschitz curvilinear polyhe-
dra, because [16] it holds for polyhedra; as another (Corollary 5.11), if it holds for
I' € 24, then it holds for any locally conformal deformation of T.
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The double-layer operator on locally-dilation-invariant domains 643

To illustrate the above results, and use them to test Conjecture 1.2 and address our
main question from Sect. 1.1, we include a range of numerical examples in Sect. 6,
for piecewise-analytic Lipschitz graphs I' € A, and for piecewise-analytic locally-
dilation-invariant I' € Z4 that are the boundaries of bounded Lipschitz domains.
For each example we plot an approximation (o¥ (Dr) or £V (Dr), as appropriate) to
0ess (Dr). Moreover, we employ the algorithms described above to provide convincing
numerical evidence that pess(Dr; L2(I)) < % in every case we examine, including
cases where wegs (Dr) is significantly > % These results are evidence that the spectral
radius conjecture holds for the class of 2D domains Z 4; we emphasise again that this
conjecture has not been studied previously for boundaries in this class, except for the
special case of curvilinear polygons.

Let us briefly summarise the remainder of the paper. In Sect. 2 we prove the equiv-
alence of Conjectures 1.1 and 1.2. In Sect. 3, as a key step to our main results, we
derive bounds for the spectral radii of general compact operators in Sect. 3.1 (e.g.,
Corollary 3.5), specialising to the case of integral operators approximated by the Nys-
trom method in Sect. 3.2 (e.g., Theorem 3.8). In Sect. 4 we prove the results noted
above on the essential spectrum and essential spectral radius of Dr in the case when
I' is a dilation-invariant Lipschitz graph, with particular focus (Sects. 4.2-4.4) on the
2D piecewise-analytic case. In Sect. 5 we prove our localisation results. In Sect. 6 we
bring the earlier results together, in particular to study the spectral radius conjecture
for I' € 2 4, and we illustrate our theory by numerical examples.

2 Formulations of the spectral radius conjecture

Our results are related to the spectral radius conjecture of Kenig [34, Problem 3.2.12],
that p(DF-; L%(F)) < % if T is the boundary of a bounded Lipschitz domain. Conjec-
ture 1.1, stated in the introduction, is a version of this conjecture that avoids difficulties
when I is not connected’. In this section we show the equivalence between Conjec-
ture 1.1 and Conjecture 1.2, also stated in the introduction. Conjecture 1.2 concerns
the essential spectrum rather than the spectrum and makes sense whatever the con-
nectedness of I', 2_, and 2.

Of course, because D’F is the adjoint of Dr (as an operator on L%(I")), and so
shares the same essential spectrum, a statement equivalent to Conjecture 1.2 is that
Pess (D L2 < % Further, as bounded Lipschitz domains have only finitely many
boundary components, it is clear that Conjecture 1.2 is true if it is true whenever I" is
connected.® Thus the equivalence of Conjectures 1.1 and 1.2, i.e. that Conjecture 1.1
holds (as claimed, whenever I' is connected) if and only if Conjecture 1.2 holds (as
claimed, whatever the topology of I'), is implied by the following lemma.

7 By results of Mitrea [47, Theorem 4.1] if Q2_ or Q4 are not connected, {%, —%} N O’(Df-; L(z)(l")) # 0.
Indeed, D{— + %I are Fredholm of index zero on L2(I‘) by part (2) of [47, Theorem 4.1], but by (4) of the
same theorem, and since D (1) = 7% so that D{— (L%(I‘)) C L(Z) (T") [see (2.1) below], the codimension
of Df — %I on L(%(F) is > 1 if Q4 is not connected; that of D} + %I is > 1 if Q_ is not connected.

8 Note that if I'1 and I'; are separate components of I', so that there is a positive distance between I'{ and
', the double-layer operator from L2(F1) to L2 (") has a kernel that is bounded, so is a Hilbert-Schmidt
operator and hence compact.
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644 S.N. Chandler-Wilde et al.

Lemma 2.1 Assume that T is the boundary of a bounded Lipschitz domain Q— and is
connected. Then p(D/-; L%(F)) < % if and only if pess(Dp; L*(IN)) < %

The main step in the proof of this lemma is the following theorem stated in [18].°
As noted in [18], the proof of this result is that in Kellogg’s classical book for the
case of smooth boundaries (see [33, Chapter IX, Sect. 11]), which carries over to the
Lipschitz case.

Theorem 2.2 [Theorem 1.1 in [18]] If T is the boundary of a bounded Lipschitz
domain Q_, the eigenvalues of Dy, as an operator on L*(I"), are real and lie in
[_%7 %]'

Proofof Lemma 2.1 Let ¢ € L*(T") and let (-, -) denote the inner product on L?(T").
We first observe that, since Dr(1) = —%, we have

(Dpo, 1) = (¢, Dr(D) = —3(¢, 1), 2.1)

so D(L3(T")) € LE(I).

Now assume that A € C and D}. — A is invertible as an operator on L(z)(F). Let
P be orthogonal projection from L?(I") onto the constants, so that Q := [ — P is
projection onto L%(F). Then (D} — A)Q + P is invertible as an operator on LZ(F).
It follows that

Dr =M =((DF =20+ P)+ (D —M)P —P) (2.2)

is Fredholm as an operator on L%(T"). This implies that oess(D}-; L*T) C
o (D}; L(z)(l")), which settles one direction.

Conversely, assume that pegs(Dr; LZ(F)) < % Let A € C with [A] > % Then
Dp. — Al is Fredholm of index 0 on L2(I"), so [see (2.2)] (Dr —2)Q + P is Fredholm
of index zero on L2(I"), so that D — Al is Fredholm of index zero on L%(F). Thus
A€ o(D-; L%(F)) if and only if A is an eigenvalue of D[.. Hence, if A ¢ [—%, %],
Dy — Al is invertible on both L?(T") and L(I") by Theorem 2.2 (as L3(I") € L*(T),
every eigenvalue on L(2)(1") is also an eigenvalue on L*(I")). But also, if » = :I:%, since
I' is connected, Verchota’s results [64] show that D} + %I is invertible on L%(F). Thus
D{- — M is invertible on L%(F) for |A| > %, so that, since the spectrum is closed,
p(Dp; Li(D) < 5. =

3 Approximation of the spectral radius for compact operators

In this section we recall in Sect. 3.1 results from operator approximation theory in
Banach spaces related to the spectra of compact operators, and derive what appear to

9 In [18, Theorem 1.1] slightly more is claimed, that the eigenvalues of Diﬂ lie in [7%, %). This is more
than is claimed in [33, Chapter IX, Sect. 11], and in fact % is an eigenvalue if €24 is not connected; see [47,
Theorem 4.1].
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be new general criteria for p(7') < po when T is compact and pp > 0 (Lemma 3.2,
Corollary 3.5). This leads, in Sect. 3.2, to results relating to the approximation of
integral operators with continuous kernels by the Nystrom method that will be key for
the arguments in Sect. 4.2 and Sect. 4.3. Notably, Theorem 3.8 provides criteria for
p(T) < po when T is an integral operator with a continuous kernel that requires the
computation only of the spectral radius of a finite matrix plus the norms of finitely
many finite matrix resolvents.

3.1 Operator approximation results

We recall first two standard results on the approximation of operators in £(Y), the
space of bounded linear operators on a Banach space Y. The first is the basic per-
turbation estimate that, if S, 7 € L£(Y) and S is invertible, then T is invertible if
IS =TIl | S~ < 1, with

1]~ 1!
HT— H > Hs— H ST 3.1
If S € L(Y) is invertible, then [[S~![|~! = inf |41 [|S¢|, this sometimes called the
lower norm of § (see, e.g., [42, Lemma 2.35]). The second estimate is as follows:
Lemma 3.1 (Theorem 4.7.7 of [23]) Let Y be a Banach space, S € L(Y) and )\ ¢
o(S)U{0}. If T € L(Y) is a compact operator that satisfies

-1
I =TI <12 s =27

then T — A1 is invertible.

The following result is a consequence of the above estimates and the maximum
principle applied to the resolvent. Here T = {z : |z] = 1} is the unit circle in the
complex plane, so that poT is the circle of radius pyp.

Lemma 3.2 LetY be a Banach space, S, S.T e L(Y), po >0, F C poT, and suppose
that: T is compact; p(S) < po, for every A € poT there exists ;1 € F such that

-~ -1 P
MT—&Tn<m(WS—u01H —HS—SW4A—MO. (3.2)

Then p(T) < po.

The idea is to choose F to be a finite set,'” S a finite rank approximation to T', and Sa
numerical approximation to S, in which case one can show p(T') < pp by computing
p(§) and ||(§ — wI)~ | for finitely many . Taking F = poT,, where T, is the nth
roots of unity, we obtain:

10" we will also apply this lemma later in the case that F = pT, when (3.2) reduces to the condition that,
for every 1 € poT, (T = $)T|| < po(I(S = 2D 71|71 = IS = S).

@ Springer



646 S.N. Chandler-Wilde et al.

Corollary 3.3 Let Y bg\a Banach space, S, 3’\, T € L(Y), po > 0, n €N, and suppose
that T is compact, p(S) < po, and

o~ _ _ o~ . s
1T = $)T1 < po (IS = D™ 17" = 115 = 31l = 200 sin (2—)) . uepTy.
n
(3.3)
Then p(T) < po.

Proof of Lemma 3.2 Suppose that the conditions of the lemma are satisfied. Then
p(S) < po and, for every A € poT, there exists u € F such that (3.2) holds. It
follows from (3.1) that

1T =71 < o0 (IS =AD" =15 =81), renT. (G4

The resolvent map A +— (§— A" is analytic on |A| > p(§), which set contains all
A with |A| > pg. Thus, by the maximum principle, || (§— A0~ attains its maximum
in |A| > po on poT. Thus (3.4) in fact holds for all A with |A| > pg, so that § — AT is
invertible for all such A and, by (3.1),

—1
1T =TI <po|s=2D7| . if1xl = . (3.5)

Since T is compact, the result follows from Lemma 3.1. O

When Lemma 3.2 is used for computation with F finite, it is desirable to minimise
the cardinality of F since || (§— wI)~| has to be computed for every u € F. One can
choose F = pgT,,, with points uniformly distributed on pgT, as in Corollary 3.3, but n
needs to be at least large enough so that || (§— w1 > 2pg sin(rr/(2n)), for every
® € F.In many applications, including in Sects. 4.2 and 4.3, ||(§— wl)~Y| varies
significantly as u moves around pgT and it is more efficient to vary the spacing of the
points in F approximately in proportion to || = wI)~1|~!. The adaptive algorithm
described in the following lemma, which we will see implemented in Fig. 4b below,
approximately achieves this.

Lemma 3.4 LetY be a Banach space, Se L(Y), and py > 0. Suppose thatp(§) < po,
and recursively define i, for £ € N, by 1 := po, and by

~ -1 T
Vg 1= H (S — WI)_1H and gy = pee' 20, forl e N. (3.6)

Further, set n, € N to be the smallest integer such that ZZ*:I vy > 4mpg, and set
F :={w1, ua, ..., n,+1}. Then, for every h € poT there exists u € F such that

~ -1 —~ -1
H(S _ u)—lH > H(S _ ;u)—lﬂ A —pu|>R.:= min (% + @)
=1,..., Ny 4 2
3.7
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Proof Arguing as in the proof of Lemma 3.2, ||(§ — AD7 Y7 is bounded below
by some ¢ > 0 on pgT, so that n, is well-defined with n, < 1 4 4mwpy/c. For
C=1,...,nu+1, g = poe'®, with6) = 0,6, 11 > 2m,and Oy 1 — 60y = ve/(200).
Thus, if L € poT, then

A= peexp(isve/(2p0)) = pes1exp(i(s — Dve/(2p0)),

for some £ € {1, ..., ny} and some s € [0, 1]. Since |¢/! — 1| = |f0[ e du| < |t|, for
t € R, it follows, using (3.1), that

o~ S S

I8 =D~ = ve— = pel = v = 3ve = (1-3) ve and
< —1y—1 1—s

IS =AD" 7" = vegr — [A = pegr| = veqr — 5 ve

In particular, vpy1 > vg/2and vy > vpp1 —ve/2,sothats* :=3/2—vpi1/ve € [0, 1].
But, for 0 < s < s*, (1 —s/2)vy > (1 — s*/2)vy = v¢/4 + ve41/2, while, for
s*<s < 1Lveyr — (=95 /2 = vep1 — (1 — 5" /2 = vy /4 + vpq1/2, and the
bound (3.7) follows. ]

The following corollary is immediate from the above lemma and Lemma 3.2.

Corollary 3.5 Lft Y be a Banach space, S, § T € L(Y), po > 0, and suppose that T
is compact, p(S) < po, and

(T =TI < po (Re — IS = S1), (3.8)

where R, is as defined in Lemma 3.4. Then p(T) < po.

We will apply the above results in the case when S = Ty, where (Ty)neN 1S
a collectively compact'! sequence of operators converging strongly to T’ (we write
Ty — T for strong convergence). A standard, simple but important result (e.g., [2,
Cor. 1.9], [41, Theorem 10.10]) is that

(Ty)Nen collectively compact, Ty — T = |(T —Ty)T| — 0. 3.9)

A consequence of (3.9) is Theorem 3.6 below, which follows from [2, Theorem 4.8] and
[2, Theorem 4.16] (or see [3]). This gives conditions on operators 7 and T that ensure
convergence of o (Ty) to o (T') in the standard Hausdorff metric dy (-, -) (see, e.g., [24,
Sect. 3.1.2]) on the set C€ of compact subsets of C. Given a sequence (Ay)yeny C C€
and A € C€ we will write Ay 5 Aifdy (A, B) — 0,1i.e.if Ay converges to A in the
Hausdorff metric. We recall (e.g., [24, Proposition 3.6]) that Ay —> A if and only if
(AN) NeN is uniformly bounded and lim inf Ay = limsup Ay = A, where lim inf Ay
is the set of limits of sequences (zy) such that zy € Ay foreach N, while lim sup Ay
is the set of partial limits of such sequences.

1T Recall, e.g., [2], [41, Sect. 10.3] that a set S C L£(Y) is said to be collectively compact if {T¢ : T €
S, ¢ €Y, o]l < 1}isrelatively compact.
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Theorem 3.6 [2] Let Y be a Banach space and T € L(Y) a compact operator. Further,
assume that (Ty)yen C L(Y) is collectively compact and converging strongly to T.
Then o (Ty) ~> o (T).

3.2 The Nystrom method

In this section, with a view to applications in Sects. 4.2 and 4.3, we apply the results
of Sect. 3.1 to the case where Y = C(X), for some compact X C R9=1 and where
the operators are integral operators that we approximate by the Nystrém method. So
suppose d > 2, let X C R?"! be a compact set of positive ((d — 1)-dimensional)
Lebesgue measure, and K € L£(C(X)) an integral operator with continuous kernel
K (-, ), so that K is compact. Thus, for ¢ € C(X) and x € X,

Ko(x) = /X K(x,y)¢(y)dy = J(K(x,-)¢p), where
J(Y) ::/Xw(y)dy, for ¢ € C(X). (3.10)

In the Nystrom method we approximate K by replacing the integration functional
J : C(X) — C by a sequence of numerical quadrature rules. For each N € N we
choose points x, y € X and Weights12 wgNy > 0,forg = 1,..., N, and define
Jy : C(X) - Cby

N
INW) = qu,Nlﬂ(xq,N), v e C(X), (.11

g=1

and a Nystrom approximation Ky € L(C(X)) to K by

N
Kno(x) = IN(K(x,)¢9)) = Z wg NK(x, xg NP (xg,N), x €X, ¢ € CX).
g=1
(3.12)
We will assume that the sequence of quadrature rules is convergent, by which we mean
that

Iy — J, ie. Jyy — Jy, forally € C(X). (3.13)

This implies (e.g., [2, Proposition 2.1, 2.2]) that Ky — K and that the sequence
(KN)NeN C L(C(X)) is collectively compact, so that (3.9) holds and Theorem 3.6 is
applicable. We will also assume that, for each N, Jy¢ = J¢ if ¢ € C(X) is constant,
i.e. that

N
> wgn = 1XI, (3.14)
g=1

12 We assume, for simplicity, that the weights w, y are positive, but the theory below applies, with minor
changes, to the case of general real or complex weights.
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where | X| Ei\enotes the Lebesgue measure of X.
Define Ky : CN — C(X) by

N
Knv(x) = qu,NK(x, Xg,N)Vq,
g=1

forx € X and v = (vy, ..., vy) € CV. Moreover, let Py: C(X) — CV be defined
by Pyg(q) i= ¢(xqn),forg =1,..,N,¢ € C(X), and define Ay: C¥ — CV by
AN = Py K N, so that the matrix entries of Ay are given by

AN(p,q) =wg NK(Xp N, Xg.N)s Pog=1,...,N. (3.15)

In the following we will use | - || to denote all of: i) the standard supremum norm
on C(X); ii) the standard infinity norm on CN. iii) the induced operator norm of an
operator on C(X); iv) the infinity norm of a square matrix.

Lemma 3.7 The following inequalities and equalities hold for all N € N:
(1)
N

max Za) K(x X =||A < |IK
1<p<N 1 q,N| ( p.N> q,N)| ” N“oo = ” N”oo
q:

N

= max qu,NlK(x, xg. M

xeX 1
(1:

(ii) o(Kn) = {0} Uo(An);
(iii) for A € C\ o(Kp),

max <|)\|*1,

] ) <o

o]

=™ (14 1Ko [an =207 ).

Proof The first equality in (i) is the standard explicit formula for the infinity norm
of a matrix. The last equality is proved similarly, and then (i) is clear (or see [23,
Lemma 4.7.17]). That the spectra of Ky and Ay coincide on C \ {0} is standard
(e.g.,[23,Lemma4.7.18]),and 0 € o (Ky) since K is compact and C (X) is infinite-
dimensional, so (ii) holds. Part (iii) is a combination of Hackbusch [23, Lemma 4.7.18]
and Anselone [2, Proposition 2.3], plus the facts that 0 € o(Ky) and (e.g., [14,
Th. 1.2.10]) |(Ky — AD ™| > (dist(r, o (Kn))) L. 0

Note that, by Lemma 3.7(i) and (3.14),

[ANlloo < IKNlloo < Kmax| X[,  where  Kmax := max |K(x, y)I.  (3.16)
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Commonly, for computational efficiency or otherwise, and this is the case in
Sects. 4.2 and 4.3, we approximate K (-, -) by another continuous kernel K (-, -) in
(3.12) and (3.15). Let K ITV € L(C(X)) denote the operator defined by the right hand
side of (3.12) with K replaced by K T, and similarly A;, denote the matrix (3.15) with
K replaced by KT. Lemma 3.7(i) and (3.14) imply that

IAN=Aylloo < IKn =K} lloo < efX], where e = max |K (v, y)=K'(x, )]

(3.17)
The following theorem (cf. Corollary 3.5) follows in large part from Lemmas 3.2, 3.4,
and 3.7.

Theorem 3.8 Suppose that pg > 0, N € N, and ,O(A;f\,) < po, and recursively define
We, for £ € N, by 1 1= po, and by

. -1 - Vg
Vg 1= H (A} — “‘1)_1”00 and gy i= pee' 20, forl e N. (3.18)

Further, let ny € N be the smallest integer such that ZZL ve > 4mpg, and let

. 14 Ve+1
Ry = (— —) 3.19
=, AT (3-19)
If
: —1 .
1K = Kn)K oo < p0 (po (141K IooRy) = KN — K'Nnoo) . (3.20)

orllAx — Al lleo < Ry and

. -1
1K = Kn)Klloo < 0§ (14 1Ky lloo(Ry = 14x = A l)™") . (321

then p(K) < po. Conversely, if p(K) < po, provided ' defined by (3.17) is sufficiently
small, (3.20), (3.21), and p(Ajv) < po hold for all sufficiently large N.

Proof If pp > 0 and p(AjV) < po then, by Lemmg 3.4, ||(Ajv — 2D s < R;,l for
A€ poT,sothat (K, —AD) oo < rg "1+ 11K} oo Ry"), by Lemma 3.7(iii). Thus
(K) < po if (3.20) holds, by Lemma 3.2 applied with Y = C(X), T = K, S = Ky,
S=K! n»and F = poT. Further, for A € poT, the first of the above bounds and (3.1)
implies that Ry — ||Any — A;r\/”oo < [(Ay — AD)™ 1||Oo , so that, by Lemma 3.7(iii),
1Ky —AD oo < 75 ' (1 + 1K N llso(Ry — AN — Ajvlloo)’l)- Thus p(K) < po
if (3.21) holds, by Lemma 3.2 applied with ¥ = C(X), T = K, S=5= Ky, and
F = poT.
To see the converse, note that, by Theorem 3.6, o (K ) — o (K). Indeed [2, The-
orem 4.7], there exists Ny € N such that ||(Ky — AI) ™! s is bounded uniformly in
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Aand N for N > Ny and |A| > pg, which implies, by (3.1) and (3.17), that the same
holds for || (K}, = #1)~![l if ¢ is sufficiently small. This implies, by Lemma 3.7(iii),
that the same holds for || (Ajv 2D o. Noting Lemma 3.7(ii), it follows that there
exists ¢ > 0 such that, for all sufficiently large N, ,o(A}f\,) = p(K;,) < poand Ry > c.
Thus, and applying (3.16) and (3.17), we see that, for some ¢* > 0, the right hand
sides of (3.20) and (3.21) are > ¢* for all sufficiently large N if e' is sufficiently small.
But also ||(K — Ky)K || — 0 by (3.9), so that (3.20) holds for all sufficiently large
N. O

Remark 3.9 (Computational cost as N increases) The argument in the above proof
makes clear that, if p(K) < pg and et is sufficiently small, then, for some Ny € N,
I (A}r\, — 1) 7| is bounded uniformly in A and N for A € pgT and N > Ny. This in
turn implies that, for some nmax € N, ny < nmax for N > Ny. Thus the computational
cost of evaluation of Ry given by (3.19) is O(N?3), the cost of inverting ny < Hmax
order N matrices by classical direct methods.

Remark 3.10 (Comparison of (3.20) and (3.21)) Let RHS; and RHS; denote the
right hand sides of (3.20) and (3.21), respectively. If K;[, = Ky (so A;rv = Apn),

then RHS,; = RHS;. If K}:/ # Ky with ||[Ay — Ajv||oO < Ry, then, where D =
po_z(RN + KN llo — 1AN — A/T\,Iloo)(RHsz — RHS)),

D = py KN — K} loo(IKn lloc — p0 + Ry — |AN — Alylloc)
N 1K oo (IKN — Ky lloo — I1AN — Al lloo) + Ry (KN — Ky lloo + 1K fylloo — 1K lloc)
Ry + 1K} lloo

so that RHS; — RHS; > pol| Ky — K}:/”oo(”KN”oo —p0)/ (RN + | Knlloo — I|AN —
A}L\,Hoo), recalling (3.17). Thus (3.20) implies (3.21) if ||[Ay — A}L\,Hoo < Ry and
00 < ||Knlloco- Note that [2, Theorem 2.13] ||[Kn|lco — [|K]| as N — oo and it is
0o < || K||oo for which Theorem 3.8 is arguably of most interest, as p(K) < || K| o,
and we may be able to estimate || K ||, sharply by other methods.

Remark 3.11 (The matrix case) In Sect. 4.3 we will apply the above results, in particu-
lar Theorem 3.8, in a case where K is a 2 x 2 matrix of integral operators on C (X) with
continuous kernels, and Ky is its Nystrom method approximation defined by approx-
imating each integral operator in the 2 x 2 matrix as in (3.12). The matrix Ay is then a
2N x 2N matrix consisting of four N x N blocks each defined as in (3.15). Parts (ii) and
(iii) of Lemma 3.7 apply in this case, as does (i) in a straightforwardly modified form,
in particular we still have that [|Ax|lco < || KN |lco- (Here || Ay ||oo 1S the usual infinity
norm of the matrix Ay and || Ky || is the norm of Ky as an operator on (C(X))2,
which we equip with the norm defined by ||(¢1, $2)]lco := max{||®1|lco, P2 |0}, for
(P1,¢0) € C(X )2). Thus Theorem 3.8, which depends on Lemma 3.7(ii) and (iii) and
the general Banach space results of Sect. 3.1, still applies. One way to see the validity
of Lemma 3.7(ii) and (iii) in this matrix case is to argue as follows. Choose x* € RI-1
such that X’ := X + x* does not intersect X. K is equivalent, through an obvious
isometric isomorphism, to a matrix operator K’ on C(X) x C(X’), which is in turn
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equivalent, through another obvious isometric isomorphism, to a single integral opera-
tor K on C(X UX'). Lemma 3.7 applies to K andits Nystrom method approximation,
so that (ii) and (iii) of this lemma [and (i) in modified form] apply to K.

4 The double-layer operator on dilation invariant graphs

Let A € RY! be an open cone, f: A — R a Lipschitz continuous function, and
consider the graph I" = {(x, f(x)) : x € A} C R in the case that «" = T, for some
a € (0, 1); that is, in the case that

flax) =af(x), xe€A. “4.1)

We will term such graphs dilation invariant.

In this section, the largest of the paper, we study the spectrum and essential spec-
trum of the double-layer (DL) operator Dr: L3 — L*I) given by (1.2) on
such graphs. (The case A = RY~! is of particular interest for later applications.)
In Sect. 4.1 we show, for general dimension d > 2, that (as operators on L2(T"))
0 (Dr) = 0ess(Dr) (and, similarly, that W (Dr) = Wess(Dr)) and, by Floquet-Bloch-
transform arguments, that o (Dr) is the union of the spectra of a family of operators
K; : LZ(FO) — L2(Fo), for t € [—m, ], where 'y is a particular relatively closed
and bounded subset of I". Moreover, helpful for the later computation of o (K;), each
K; is compact, and so has a discrete spectrum, if f € clA \ {0}) (Corollary 4.6).

In the remaining subsections, Sects. 4.2—4.4, we focus on the 2D case, considering
the Nystrom approximation of spectral properties of K;, combining the general results
of Sect. 3.2 with explicit estimates for the particular operators K;. The case A = R,
with f real-analytic on R \ {0}, is treated in Sect. 4.3. It is this case that is relevant,
via, e.g., (1.12), to the computation of o (Dr) and the spectral radius conjecture when
I is the boundary of a bounded Lipschitz domain. But this case is rather complex;
the operator K; is studied by reducing it to a 2 x 2 operator matrix, corresponding to
the split of R \ {0} into the two half-axes (—o0, 0) and (0, c0). To get the main ideas
across, and prove many of the results we need in a simpler setting, we first study, in
Sect. 4.2, the easier case A = (0, co) with f real-analytic. Sections4.2 and 4.3 are
concerned with computation of the spectrum and spectral radius of Dr. In Sect. 4.4,
related to the question at the end of Sect. 1.1, we also compute lower bounds for
Wess(Dr), under the same assumptions on I" as in Sects. 4.2 and 4.3.

4.1 Floquet-Bloch transform results
Let V,: L>(I') — L?(I") be dilation by «, that is,
Vo (x) = ¥ D 2¢(ax), xeT. 4.2)

Vg is unitary and commutes with Dr: noting that n(y) = n(ay), for y € T', we see
that, for all ¢ € L?(I") and almost every x € I,
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i (x—y) 'n(y)a(dfl)/Z
caJr lx—yl
a V2 —aly) n@ly)

= () Vds(y)
ca Jr lx—alyl

(d-1)/2 — V).
=2 /(“x D10 g ) ds ()
ca rloex—yl

DrVo¢(x) = ¢ (ay)ds(y)

= Vo Dro(x).

This already implies that the spectrum and the essential spectrum of Dr coincide,
as implied by the following simple proposition (cf. [11, Lemma 2.7]).

Proposition 4.1 Let H be a Hilbert space and T € L(H). If T commutes with a
sequence of unitary operators (U;)jen that converges weakly to 0, then o(T) =
Oess(T).

Proof Assume there exists ¢ € H \ {0} suchthat T¢ = 0. As T and U; commute, also
TUj¢ = 0 for all j € N. In particular, {U;¢ : j € N} C ker(T). As the operators
U; are unitary and U; — 0 weakly, the sequence (U;¢) jen cannot have a conver-
gent subsequence. Hence, ker(7') is either trivial or infinite-dimensional. Similarly,
ker(T") is either trivial or infinite-dimensional. Thus, if T is Fredholm, it is invertible.
Considering T — A instead of T yields the result. O

Corollary 4.2 Let I' C R? be a dilation invariant graph. Then o (Dr) = 0ess(Dr),
W(Dr) = Wess(Dr), and || Dr|less = | Drl.

Proof Assume that ¢, € L?(I") have compact support and 0 ¢ supp ¢ U supp .
Then

(Vio.w) = [ /DR p@l i dser.

If | j| is sufficiently large, the integrand vanishes. Because compactly supported func-
tions are dense in L2(I"), it follows that VJ — 0 weakly as |j| — o0o. The equality
of spectrum and essential spectrum follows from Proposition 4.1. The results for the
numerical range and norm follow from Chandler-Wilde and Spence [11, Lemma 2.7].

|

To make use of standard Floquet—Bloch/Fourier transform results, it is con-
venient to view Dr as a discrete convolution operator. For j € Z let I'; :=
{()E, fGx) el |x|e [ozj+1,aj]}. We can identify LZ(FJ-) with a closed subspace
of L*(I") by extending by 0. Let P;: L?(I') — L?(T';) denote orthogonal projection.
Clearly,

p(x) ifx ely,
0 otherwise,

Pigp(x) =
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and we note that P;V, = V, Pjy1, so that also P; Voﬁ‘ = V(fPHk, k € 7. Let
Dj := V] P;Drlp2ry : L*(To) — L*(Ty),

so that _ _
Dip(x) =a/ " D2Dro(alx), x eTly, ¢eL*Ty). (4.3)

LetG : L2(T") — ¢%(Z, L2(T'y)) be the unitary operator.'3 ¢ > (Vi P; i) jez,and let
Dr =GgDrG ' Itisa straightforward calculation to see that the action of Dr is that
of a discrete convolution: for ¥ = (Y,,)nez € £2(Z, L2(F0)), Dryr = ((D]" Vm)mez,
where

(Dry)m =Y Du-nn. m € L. (4.4)

nez

The series in the above definition converges absolutely; indeed Dr is an operator in
the so-called Wiener algebra, i.e. Z;’eZ ID;ll < oo (e.g., [42, Defintion 1.43]), by
the following estimate. '

Proposition 4.3 The operators D; are Hilbert-Schmidt for |j| > 2 and satisfy the
Hilbert-Schmidt norm estimate

1 ITol Jld-ne
| D]l s = ama s =2, 4.5)

where |I'g| denotes the surface measure of T'y.

Proof For j > 2 we have

o b

and |[x — y| > @ — a/. Hence

1
yld ds(y)dS(X) 5/1" /1; mds(y)ds(x)
i “/To

(x — ITj11Tol [Fof?e/ ™D
d ds(x) < - = - .
/r,. /ro - (74500 = (@ —al)2=2 (@ —al)2=2
Similarly, for j < -2,

x =y -nM| de(od |To|2a/@=D |To|2a=/@=D
() ds(x) = @+ — 122~ (g —q)d2

Ji ),

Thus, recalling the standard characterisation of the Hilbert-Schmidt norm of integral
operators (e.g., [32, Ex. 11.11]), P;Dr |L2(Fo) is Hilbert-Schmidt, with Hilbert-
Schmidt norm bounded by the right hand side of (4.5). As unitary operators preserve
Hilbert-Schmidt norms, it follows that D is Hilbert-Schmidt and that (4.5) holds. O

13 This is a discretization operator in the sense, e.g., of Lindner [42, Sect. 1.2.3].
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The double-layer operator on locally-dilation-invariant domains 655

Given a Hilbert space H let F : @2(Z, H) — L2([—7t, ], H) denote the operator,
often termed in the general Hilbert space case, e.g., [S], a Floquet—Bloch transform,
that constructs a Fourier series from coefficients, given by

FY)@) = @n)~ Y ey, tel-m, ),

JEL

for v = (¥j)jez € 02(Z, H). Tt is standard that this is a unitary operator (e.g.,
[14, Proof of Theorem 4.4.9]) that diagonalises discrete convolutions (see, e.g., [14,
Theorem 4.49] for the case when H is finite-dimensional, [54, Theorem 2.3.25]
for the general case). In the case H = LX), defining D : L*([-7n, 7], H) —
Lz([—n, ], H) by D:=F l~)r}" -1 straightforward calculations yield that

T
(DY, V) 12— ), 12(0g)) = / (Kip(), ¥ (@) dt, ¢, ¢ € L*([—m, ], L*(T0)),

-7
(4.6)

where
o
K =Y é/'Dj, teR. 4.7
Jj=—00

(The bounds of Proposition 4.10 imply that K; is well-defined by (4.7) and depends
continuously on ¢; indeed the mapping ¢ — K, is C®°.) The following characterisation

follows immediately from (4.6), the continuity of t — K;, and Corollary 4.2; note
that conv denotes the closed convex hull.

Theorem 4.4 We have

[ Drlless = IDrll = max [[K|l,
te[—m,m]

Wess(Dr) = W(Dr) =conv | ] WK |,

tel—m,m)

oes(Dr) =0 (Dr) = | ) o(Kp).

te[—m,m]

Proof That the essential spectrum, numerical range, and norm coincide with their
non-essential counterparts is Corollary 4.2. Since Dr and D are unitarily equivalent,
they have the same spectrum, numerical range, and norm. The result thus follows from
(4.6); see [54, Theorem 2.3.25] for the case of the spectrum; the argument for the norm

and numerical range are similar. O
Remark 4.5 (Symmetry of K;) Where K, (-, -) denotes the kernel of K;, K_;(-,-) =
K;(-, ), fort € [—m, m]. Thus [[K—|| = |K:ll, W(K-) = {z : z € W(K,)}, and

o(K—1) ={z:z€0(K,)}, fort € [-m, 7], so that, where w(K) := sup,cy k,) |2l
is the numerical radius of K;,

”DF”eSs: max ”Kt”a wess(DF)= max w(Kt)a pess(DF)Z max IO(KI)-
te[0,7] tel0,7] tel0,7]
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Our focus in the next subsections will be 2D cases where f is analytic on A \ {0}.
In such cases, indeed whenever I' is locally C! away from 0, K, is compact for all ¢
as a consequence of standard results on the double-layer operator on C! domains [19]
and Proposition 4.10.

Corollary 4.6 Suppose that f € C'(A\{0}) so that T is locally C' at each x € T'\ {0}.
Then K, is compact for every t € R.

Proof Let Q = P_; + Py + Pi. Then QDr|;2r_,uryur,) is the DL operator on
['_1 UTo UTY. It thus follows from [19, Theorem 1.2] that O Dr|;2(r_,ur,ur,) 18
compact. As, for j = —1,0, 1,

D= Vo{PjDrle(Fo) =V]P; ODrlr2ry),

Dj is compact for j = —1, 0, 1. The compactness of K, thus follows from Proposi-
tion 4.3. O

4.2 The 2D case: one-sided infinite graphs

We continue to assume that I" is a dilation invariant graph, as defined at the start of
Sect. 4, but specialise now to the case where d = 2 and the cone is the half-axis
A =Ry = (0,00). Thus I' = {(x, f(x)) : x € Ry} and, for some « € (0, 1),
flax) = af(x), x € Ry. Our starting point is Corollary 4.4 which expresses o (Dr)
as the union of the spectra of the operators K;, ¢ € [—m, ]. Recall that these operators
are compact if f € C'(R.). Our goal is to apply the Nystrém method and the results
of Sect. 3.2 to compute spectral properties of K; and hence of Dr in the case that
f € ARy), the space of functions R, — R that are real analytic (a prototypical
example is Fig.2). Our standing assumption through this subsection is that

' ={(x, f(x)) :x € Ry} where f e A(Ry) and, for some
ae0,1), flax) =af(x), xeR;. 4.8)

Notably, via approximations of the spectrum of K; for each ¢, we will obtain (see
Theorem 4.13) a Nystrom approximation o (Dr), for o (Dr) = 0es(Dr), which is
{0} plus the union over finitely many ¢t € [—m, 7] of the spectraof N x N matrices Af’[N R

where each A;"’N is obtained via Nystrom discretisation of a unitary transformation,

K;, of K;. Our first main result, Theorem 4.13, is to show that o (Dr) > o (Dr)
as N — oo. Our other, more substantial result (Theorem 4.15) is to develop a fully
discrete algorithm to test whether the spectral radius conjecture holds for I', i.e. to test
whether oo (Dr) = o(Dr) < % This algorithm, which derives from Theorem 3.8,
requires the computation only of the spectral radii of finitely many finite matrices plus
the norms of finitely many finite matrix resolvents.

Before we begin our analysis we note the following equivalences to (4.8) that will

play a key role in our calculations. Here, and throughout, the notations

Yo ={z€eC:Imz € (—c,0)}, Xg:=R, 4.9)
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The double-layer operator on locally-dilation-invariant domains 657

Fig.2 Graphof f: Ry — R, 1.2
fx):=x sinz(n log, (x)), for
a=3
4 1L
0.8
0.6
04r
02r
0 1
0 0.2 0.4 0.6 0.8 1 1.2

for ¢ > 0 will be convenient.

Lemma4.7 Given f : Ry — Randa € (0, 1), define g : R — R by
g):=arf(@"), xeR, sothar f(x)=xg(og,x), x eRi. (4.10)

Then the following are equivalent:

(1) f is real analytic on Ry and f(ax) = a f(x), x > 0;
(i) g : R — Ris real analyticand g(x + 1) = g(x), x € R;
(iii) for some c > 0, g has an analytic extension to X that satisfies g(z + 1) = g(z),
for z € ., and g and its derivatives g’ and g" are bounded in %..

Note that if f satisfies our standing assumption (4.8), then, defining g by (4.10),

goga ) iy 8002 0) | g700ge )
log o x loga xlog? a
4.11D)
It follows from (4.10), the first of (4.11), and the equivalence of i) and iii), that f is
Lipschitz continuous on [0, co) if we set f(0) := 0.
To make use of the results from Sect. 3.2 it is convenient to make a change of
variables so that we work with integral operators on [0, 1] rather than I'y. Introducing

the unitary transformation U : LZ(FO) — LZ(O, 1) given by

f'(x) = glogy x) +

Up(s) := ¢ @, f@)NA+ f @) o [loga|'?, s€[0,1], ¢ e L*(Ty),
4.12)
define

o0
K, :=UK,U ' = Z NUD;UT!, teR. (4.13)

j=—00
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Straightforward computations, starting from (4.13), (4.3), and (1.4), give that

1
K¢ (x) =/0 Ki(x,y)¢(y)dy, x€l[0,1], reR, (4.14)

where, forr € R,and x, y € Rwithx — y ¢ Z,

5 1S piy) (14 e\ e
K/(x,y) = — el 0 ( ) o 2 |logal|, (4.15
(G y) = o ,-:Zoo a6 T F@y logal, (4.15)

with

(@ — o) f (@) + f@) — fa)
(ozx"‘j _ ay)z
fla*tiy — f)

x+] — oY

pjx,y) =

3

qj(x,y) = (4.16)

By Taylor’s theorem applied to F(¢) := f((1 — t)a” + ta*/), we see that, for the
same range of x and y,

1
qj(x,y) =/ £ = e 4ty dr, 4.17)
0
1
pj(x,y) =/ (= Da? + ™Y1 — 1) dt. (4.18)
0

Using (4.17) and (4.18) to extend the definitions of g (x, y) and p;(x, y) to {(x, y) €
R?:x— y € 7}, 14 we see that, foreach s € R, each term in the sum (4.15) is continuous
on R2. Further, using (4.11) and the equivalence of (i) and (iii) in Lemma 4.7, it is
easy to see that p;(x,y) = O(1)as j — oo, = O(a~/) as j — —oo, uniformly for
x and y in compact subsets of R, so that the series (4.15) converges absolutely and
uniformly on | compact subsets, so that ft( ) € C(R?). Further, flax) = af(x)
implies that K, (x + 1, y) = e 'K, (x, y) and Ki(x,y+1) ="K, (x, ), x,yeR
Note that Kt( ) € C(R2) implies that K, LZ(O 1) — CJ0, 1], that K, is compact
as an operator on both C[0, 1] and L2(0 1), and that the spectrum of K ; 1s the same
on C[0, 1] as on L%(0, 1), so that

o(K;; L*(To)) = o(K;; L*(0,1)) = o (K;; C[0,1]), € R. (4.19)

We will use the above equivalence, and the Nystrom method results from Sect. 3.2, to
compute the spectrum and spectral radius of K, in particular by applying Theorem 3.8.
As a step towards estimating the left hand side of (3.20) in the case when K = K;
and K is its Nystrom method approximation, we first show that, under our standing

14 Precisely, for j € Z, pj(x, y) and g;(x, y) are given explicitly by (4.16) for y — x # j, while (4.17)
and (4.18) imply that p; (x, y) = 3 f"(@"). ¢ (x.y) = f'(@), fory — x = j.
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The double-layer operator on locally-dilation-invariant domains 659

assumption (4.8), K. (x,-)and K, (-, y) can be extended to bounded analytic functions
on X, for some ¢ > 0. We will use the notation ||-||. for the sup norm on X, and, for
functions 4 : X, x Xy — C, the notation

Alle.q :== sup |h(x, y)|.
xXeX,
YEXy

In an extension of these notations, for #: ¥, x X, — C we define

Allco == sup |h(x, )| and |l&llg. = sup |h(x, y)|,
XeX, xeR
yeR YEX,

and, for functions i : £, — C, we set ||h]lo := ||h]leo 1= sup,cg |1(x)], the ordinary
sup norm on R.

Let us now estimate the norms || K, lc.oand || K, llo.c under our standing assumption
(4.8). Since g is real-valued on R, it follows, using Lemma 2.1, that (4.21) holds for
all sufficiently small ¢ > 0.

Proposition 4.8 Given (4.8), define g by (4.10) so that, by Lemma 4.7, g has an analytic
continuation to X, for some ¢ > 0, such that g, g, and g'"" are bounded on T, and
gz+1)=g),z€ T Let I := || Imgll + || Im g'||c/|log |, and set

Fa = lgla + lg'la/Iogal and &g :=lig'lla + llg"lla/logal, ford =0,c.
(4.20)

If
¢ <arccos(e)/ |logee| and J. <1, 4.21)

then Iet (x, ) and I?l(~, y) extend to bounded analytic functions on X, forall x, y, t €
R, and

1/4 1/2 —-1/2
. 1+ 37 1+a!2+ a7V
”KIHC,OE( C) c

° jl2
+logalFe +30) Y — }
j=2

7[(1 —3%) 4o2 o —al
(4.22)
1/4 _ 00 ;
- (l—i-&(z)) 1+al?24a1/2 all?
1 Ktllo,e < ¢ + 2[log | §¢ - |.
T A La-w
(4.23)

Moreover, R — C([0, 1] x [0, 1]), t — I%,(-, -) is continuous.

Remark 4.9 [Bound on the sum in (4.22) and (4.23)] For fixed o € (0, 1), let F(x) :=
o*/? /(e — a¥), for x > 0, so that the jth term in the sum in (4.22) and (4.23) is F(j).
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Since F is decreasing on (1, oo) we have that, forn =2,3,...and 0 < o < 1,

O @i/
- < B, () so that (4.24)
a— ol
j=n+1
O gl n
> - < Bi(@) =Y _F(j)+ Bu(), (4.25)
% o/ =

where

o0 1 o dx
B(@) .=/n F(x)dx = 2a1/2/n e (e ey
_ log(tanh((n — 1)|log«|/4))
N al?loga '

We note, for later reference, that
By () ~ 2a"*7 /| logal|, as n — oo. (4.26)

Proof of Proposition 4.8 Using (4.11) it follows that

@) =a'g(x), fla") =g+ f 2y
ogu
f”(()lx) — g'(x) g"(x) x € R. 4.27)

aloga  a*log’a’

Note that the first of the bounds (4.21) implies that c|loga| < /2, so that the
assumptions we have made on g mean that (4.10) provides an analytic extension of f
from R to the sector of the complex plane

Ge={re" :r>0,10] <cllogal} = {a®:z € B},

and the Eqgs. (4.11) hold for all x in this sector. Further, with this extension, (4.27)
holds for all x € ¥.. Since (4.11) holds for all x € G, and noting that G is convex,
we see that the integrals (4.17) and (4.18) are well-defined for all x,y € X., j € Z,
and provide analytic continuations of p; and g; to X x ¥.. Further, by the uniqueness
of analytic continuation, the equations (4.16) hold for all x, y € ¥, with x + j # y.
To complete the proof we will demonstrate that (4.15) provides, for each x, y €
R, analytic continuations of K, (, y) and K:(x,) from R to ¥, which satisfy the
bounds (4.22) and (4.23), by showing that each term in (4.15) is well-defined (i.e., that
f’(ozy)2 # —1,fory € Z,and 1+ (g (x, y))2 # 0forx, y € X.), and that the series
(4.15) converges absolutely and uniformly for (x, y) € R x ¥, and (x, y) € £, x R.
Using (4.27) we see that

sup [Im f'(z)| = sup |Im f'(e”)| < T,

zeG¢ yeX,
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so that
inf l—l—f’(ay)2’ >1— sup |Im f/(@)| = 1- 32, (4.28)
yeZc YEX,
and, using (4.17),
inf |1+4¢;(x,)? >1—sup |Im f'(z)]* > 1—32 (4.29)
X, ye€X, 2eG,

Thus, where T (x, y) denotes the j-th term in the sum (4.15), we see that T (x, y) is
well-defined and analytic for x,y € X, j € Z. Moreover, we have T (x +1,y) =
e "Tj11(x, y) anditfollows from f(ax) = o f (x) that T (x, y+1) = "' Tj_ (x, y),
for x,y € ¥., j € Z. Thus, to prove absolute and uniform convergence of (4.15) and
the bounds (4.22) and (4.23), it suffices to restrict considerationto x, y € E. := {z €
C:Reze[0,1],Imz € (—c,c)}.

We see that sup,.cz. lo*/2| < 1 and, using (4.27), that

sup}’l +f/(ax)2’ < 1+S(2), SUP

x€[0,1 X€B,

1+f/(a")2’ <143

To obtain a bound on |7 (x, y)| for (x, y) € [0, 1] X E., and for (x, y) € E x [0, 1],
it remains to bound p;(x, y). Let

Gl = {reiezazfrfofl, 6] < clloga|} = {a“:Rez € [-1,2], Imze(—c,c)}.

It is clear that (1 — H)a” + ra* 1/ € G} foreveryt € [0,1], |j| < 1,x € B¢, and
y € [0, 1] if and only if G! is star-shaped with respect to every point in [e, 1], which
holds if and only if ¢ satisfies the first of the bounds (4.21). Likewise, (1 — f)a¥ +
ta*t/ € G* forevery t € [0,1],]j] < 1,x €[0,1],and y € E, if and only if the
first of (4.21) holds. Thus, if (4.21) holds, |j| < 1, and either (x, y) € [0, 1] x E. or
(x,y) € B, x [0, 1], it follows from (4.11) and (4.18) that

1 " ¢
' < Z < —
piCr = 3 80 1@ = 21004l

On the other hand, if |j| > 2 and x, y € E, then it follows from (4.16) (which we
have observed above holds for all x, y € ¥, with x 4+ j # y) that

/@) + 1q; (x, y)]
ot~

[pj(x, y)| <
Further, for j € Z,

lgj(x, I < sup [f'(D)] <Fe, x,y € E,

z€G,
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while | f/(a”)| < Fo, for y € [0,1], < F., for y € E.. Moreover, for |j| > 2,
-xs y € EC>

|O[x7j _ayl > OlRe)cfj _aRey

- oc—oej, j=12,
o/t —1, j < -2

Putting these bounds together we see that, for |j| < 1,

6 (1+32)"* il
sup T (x, Yl < 2a2(16—33) :

xeBe,yel0,1]
/4
6 (1+§2) " il
sup  |Tj(x, y)| = 5/
xel0,1],yeE, 202 (1 —32)

while, for | j| > 2,

[loge|(Fo + Fe) (1 + 33)1/4 il

sup [T (x, y)| <

x€Be,yel0,1] (1 =32) (@ —alih ’
/4 1i12
2|logar| Fe (1 +32) " alil/
sup | T5(x, y)| < 0(5/4 g —.
xe[0,1], ye Ee (1=32)"" (a — alil)

From these bounds on |7 (x, y)| itis clear that the series (4.15), with p; and g i given
by (4.17) and (4.18), converges absolutely and uniformly for (x, y) € [0, 1] x E. and
(x,y) € E; x [0, 1], so that K,(x -) and Kt( y) are analytic in ¥., for x, y € R,
as required. The convergence of the series is also uniform in 7, which implies the
continuity of ¢ +— K ¢ (-, -). Further, the above bounds on |7 (x, y)| imply the bounds
(4.22) and (4.23). O

Recalling (4.19) and that the kernel of K, is continuous, we will approximate the
spectrum and spectral radius of K;, for ¢+ € R, by approximating the spectrum and
spectral radius of K +, considered as an operator on C[0, 1], using the Nystrom method
results of Sect. 3.2. Define IE,,N: C[0,1] — C[0,1], for N € Nand t € R, by
[cf. (3.12)]

K ng(x) i= In (K (x, o)

1 &
= N ZKt(x,xq’N)qﬁ(xq,N), x €[0,1], ¢ € C[O, 1], (4.30)
q=1

where
N
INY(x) =Y wgnp(gn), ¥ €CI01], NEeN,
q=1
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with X v := %(q — 3), wgn == N~',forqg = 1,...,N, N € N. Note that Jyy

is just the N-point midpoint rule approximation to Ji := /01 ¥ (x) dx, and that this

numerical quadrature rule sequence satisfies (3.13) and (3.14), so that, foreach t € R,
K, N — K;as N — oo and (K, N) NeN is collectlvely compact. This implies, from

the general result (3.9), that (K, — I{,J\/)I(,||Oo — 0as N — oo. In our case this
convergence is exponential (cf. [41, Example 12.11], [63, Sect. 19]).

Proposition 4.10 Let f and c be as in Proposition 4.8. Then, for every t € R and
N €N,

2’”||1r<t||oc||1<t||co
271Nc -1

H(kt - I%t,N)I%t <
o0

To prove this proposition we will use the following classical result.

Theorem 4.11 (Theorem 9.28 in [40]) Let ¥ : R — C be a 1-periodic function that
can be extended to a bounded analytic function on X for some ¢ > 0. Then

211¥ .

1 1 N
[Ty — vyl = /0 x/f(x>dx—ﬁq§w(xq,m <7 NeN

-1’

Proof. 1t is clear from the definitions of K ; and Igt, N that it is enough to consider
the case t € [—m, w]. Assuming t € [—m, 7], let Mg, : C[0, 1] — C[O, 1] be mul-
tiplication by g;(x) := e/*’. Then My, is a surjective isometry with M;,l = M,_,.
Let l~,t = Mg,IE,M_t1 and f,t N = Mg,Igt NM_1 Then Z, is an integral opera-
tor with kernel L,(x, y) = /0~ y)’Kt(x y). As K;(x +1Ly) = e_”Kt(x y) and
Ki(x,y + 1) = K (x, y), we get Li(x +1Ly = Lt(x y) = Li(x, y + 1) for
all x,y € R. Moreover, [|L/]lo,c < €™|K;llo,c and |L;llco < €™||K/|lc0. For
¢ € CJ0, 1],

1
¥ (x) :=/0 Lix, () dy, xe 2,

i§ an analytic and 1-periodic extension of Z,d) from [0, 1] to .. Thus also y >
L;(x, y)¥(y) is analytic and 1-periodic for every x € R. By Theorem 4.11 we obtain
that, for x € R,

I(Ly — Le ) Ligp ()| = |Lipr (x) — Loy ¥ (%))

|J(Ly(x, )¥)) — In(Le(x, )¥)|
2C(x)
S N1
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where C; (x) := sup ez, [Li(x, )Y (0. As [¥ (0] < sup_cpo 17 |1Li (v, )] 8]l oo, for
y € ¥, we get

Crx) < ILello.clLelleo 1dlloe < €™ UK No.clKille.o 19llo »
for all x € [0, 1] and ¢ € CJ[O, 1]. Therefore,

_ 267 CUK ol Kille.o
- e2nNe _ | :

|(K = Kok

= H (le - it,N)Zt
o0

e¢]

Let A; x be the N x N-matrix defined by [cf. (3.15)]

- 1 -~
At»N(p’ q) = wq,NKt(xp,N»xq,N) = NKt(xp,Na-xq,N)s pv q = la R N
4.31)

K; (-, -) is defined by the series (4.15) which we truncate to evaluate numerically. For
M e Nlet

pite,y) (1 + f’(axf)‘“au\.ﬂ-

M
~ 1 ..
KM, y)i=— Y €l T |logal, ,y €10, 1],
T jsze 1T+g;(x, )2 \ 14 f/(@)? floger. — x,y 0,11

(4.32)
where p; and g; are defined by (4.16), and consider the matrices A;"”N given by
A%N(p,q) = %I@M(xp,lv,xq,;v), p.g = 1,...,N, so that Af‘j’N is an approxi-

mation to A, y obtained by using finitely many terms in the series deﬁningﬁ ().
Similarly, define K" by (4.30) with K, y and K, (-, -) replaced by K, and KM (-, -),
respectively. For M, N € N, with M > 2, and ¢ € R, by (3.17),

[y = aly] S IRw =Rl = sup (Kot y) = KM (v < QL0

x,y€[0,1]
(4.33)
where, using the notations of (4.20) and Remark 4.9,
2| log @|§o 1/4
Ci(M) == =22 (14 5) By (4.34)

this bound (4.33)—(4.34) [cf. (4.22)] is obtained as in Proposition 4.8 (set ¢ = 0, only
take the terms with |j| > M + 1, and note that Jy = 0), and by using (4.24). Notice
that, by (4.26), C{(M) = O(a@™/?) as M — oo.

Our aim now is to estimate p(Dr; L>(I")) and o (Dr; L>(I')) by computing
p(Af:IN) and a(Af”[N) for only finitely many ¢. For this purpose bounds on the Lip-
schitz constants of Af‘j[N and K ¢.N as functions of ¢ will be helpful. It follows from
(4.32) that, for M, N e Nt e R,and p,g =1,..., N,
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IA

BM(p,
Yy N (P, q)

0
— A (p, q)‘

M .
1 1l |pjGepns xg.n)|
27 N Py 1+q‘,~(x,,’N,xq,N)2

1/4 § .
1+ f/(OlXP'N)2 Yp.NtXg N 1)
<W o 2 |10g0l| 5 (435)

SOthat,fOFS,l GR, M,N EN,
s s,

Note that, for all M and N,

1 Sl 14 iy
1BY oo = Cai= 5= sup D" 1l |py | (14 171%) @7 llogal,
27 xyel0] ;57
(4.37)
which is finite by the bounds on p; in the proof of Proposition 4.8. Similarly, from

(4.15),fort e R, N e N, x, y € [0, 1],

<Cy sothat ||K;y — Ksnlloo < |5 —1[C2.  (438)

0 ~
—K ,
‘Bt N (X, Y)

fors,t € Rand N € N, by (3.17). Further, by (3.16), (4.23) with ¢ = 0, and (4.25)
with!> n = 10,

[KiNlloo = C3 :=

(148" 1+ 4ot
b 42

+ 2| loga| §o BTO(Q)},

(4.39)
forr € Rand N € N. Provided c is such that the conditions of Lemma 4.7(iii) and
(4.21) hold, we have also, by Propositions 4.8 and 4.10 and (4.25), that,

Cy

< _
co — e2nNe _ 1’

H (R, — K. K, teR, NeN, (4.40)

where Cy = 2¢2¢C5Cg, and Cs and Cg denote the right hand sides of (4.22) and
(4.23), respectively, with the sum replaced by its upper bound B} (c).

As noted above Proposition 4.10, {K +.N - N € N} is collectively compact for each
t € R. We will need, in the proof of Theorem 4.13, the following stronger statement.

Lemma4.12 The sets (K, : t € R, N € N} and {KM, : t € R, M, N € N} are
collectively compact.

15 Computations indicate that BTO(a) exceeds the left hand side of (4.25) by not more than 1.4% for
a e (0,1).
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Proof Where c is such that the conditions of Lemma 4.7(iii) and (4.21) hold, Proposi-
tion 4.8 implies that, forr € R, N € N, and ¢ € C[0, 1] with ||¢]lcc < 1, I?,’N¢ has
an analytic continuation from [0, 1] to .. Where F denotes this set of analytic con-
tinuations, it follows from (4.22) that F is uniformly bounded on X, so that (e.g., [58,
Theorem 14.6]) F is normal, so that {Igt,Nqb teR, N eN, ¢l < 1}isrelatively
compact, i.e., {IE’, N :t € R, N € N} is collectively compact. The same argument
applies to the family K, ..n» On noting, by inspection of the proof of Proposition 4.8,
that, under the same conditions on c, KM . (-, ¥) extends to an analytic function on X,
bounded by the right hand side of (4.22), forall ¢,y € R, M € N. O

In the following result, which holds for every I" that satisfies our standing assump-
tion (4.8), we propose an approximation for the spectrum of Dr as the union of
the spectra of finitely many finite matrices, and show that this approximation con-
verges in the Hausdorff metric. In this theorem o (K ) denotes the spectrum of K

either on L2(0, 1) or on CJ0, 1] [cf. (4.19)], which 001n01des with {0} U a(A N) by

Lemma 3.7(ii), and o (Dr) denotes the spectrum of Dr on L?(I"), which commdes
with the essential spectrum by Corollary 4.2.

Theorem 4.13 Choose sequences (my)neN, (My)nen C N such that my, My —
oo as N — oo, and for each N, let Ty == {x(k — 1/2)n/my : k= 1,...,my}
Then

oM (Dr) = oK) =101U | o(A/N) % o(Dr) = 0us(Dr)  (4.41)

teTn teTn
as N — oo.

Proof Set A := o(Dr), so that A = U,e[_mﬂ] o (K;) by Theorem 4.4 and (4.19),
and set Ay = oV (Dr). We first observe that (Ay)nen is uniformly bounded as
{||K Moo : N € N, t € Ty} is bounded by (4.33) and (4.39). Thus, as noted
above Theorem 3.6, to prove that Ay —> A it is enough to show that liminf Ay =
limsup Ay = A.

Next, we note that if the sequences (M )reny C N, (Ni)ken C N, and (f)ren C
[—m, ] satisfy Ny — oo, My — oo, txy — t € [—m, ], as k — oo, then the
sequence (K 331 Z’Qk) keN 18 collectively compact by Lemma 4.12, and converges strongly
to K; by (4. 38) and (4.33), and since K, y, — K;, as noted above Proposition 4.10.
Thus also a(K )—> o (K,), by Theorem 3.6.

For every ¢ e [ 7, w] we can choose a sequence (fy)neN such that 7y € Ty for
each N and ry — t. Then, by the observation just made, Ay D a(f%f"N) LN a(kl)
as N — 00, so that liminf Ay O liminf o (K,'") = &(K,). Thus liminf Ay D A.

If A € limsup Ay then there exists a sequence (Ny)reny C N and a sequence
(A)ken such that Ay — A and, for each k, Ay € Ay, so that A; € O’(Klk Nk)
for some #; € Ty,, where My := Mpy,. By passing to a subsequence if necessary,
we may assume that tpy — t € [—m, ], so that O'(K )—> O’(Kt) in particular
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liminf o (K;%) = o(K,), so that A € o(K,) C A. Thus limsupAy C A C
liminf A . But also liminf Ay C limsup Ay, so the proof is complete. O

Remark 4.14 (Reduced computation expressionfor o™V (Dr)) Note that, by Remark 4.5
and Lemma 3.7(ii), oV (Dr), given by (4.41), can be written as

oN(Dr)={0}U{r.a:heo(AVN), €Ty, 1 >0}

Our second main result, obtained by applying Theorem 3.8,'¢ provides a criterion,
given py > 0, for p(Dr; L*(T")) < po. Note that this criterion requires computation
of spectral quantities only for the N x N matrices A%N for finitely many ¢ € [0, 7 ].

Theorem 4.15 Under our standing assumption (4.8), define g by (4.10) so that, by
Lemma 4.7, g has an analytic continuation to X., for some ¢ > 0, such that g,
g, and g are bounded on T., and, without loss of generality, assume that (4.21)
holds. Suppose that pg > 0, m, M, N € N, with M > 2. Fork = 1,...,m, set
t := (k — 1/2)/m, suppose that P(A%,N) < pofork =1,...,m, and recursively
define k¢, for £ =1,2, ..., by k.1 = po, and by

- Vk, ¢

1 Ve
Vi, 1= H (A%N — e D! HOO and pupoy1 i= e 20, forl e N.  (4.42)

Further, for k = 1, ..., m, let ny denote the smallest integer such that ZZ"ZI Vko >
47 po, and let

If

c
L(f,N) = eZnN—C“_l < Re(f.m, M, N)

T -1\ "!
=1} (1 + C3 (Rm,M,N —Ci(M) — %HB}\‘,”HOO) ) , (4.43)

then p(Dr; L*(IN) < po. Conversely, if p(Dr; L*(N)) < 00, then, provided m and
M are sufficiently large, there exists Ny € N such that (4.43) holds and ,o(Af’IN) < po
fort € [0, ] and all N > Ny.

Proof By Theorem 4.4, Re[nark 4.5, and (4.19), to show that p(Dr; LX) < 00, it
is enough to check that p(K;; C[0, 1]) < pg for every ¢ € [0, 7]. So pi~ckt e [0, ].
Then |t —t;| < /(2m),forsomek € {1, ..., m}. To conclude that p (K;; C[0, 1]) <

16 To obtain (4.43), motivated by Remark 3.10 our starting point is (3.21) rather than (3.20), since our
interest will be to apply Theorem 4.15 in cases where pg < || Dr||.
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M

po we apply Theorem 3.8 with K = k,, Ky = Igt,N, An = A; N, and A;r\, = Atk’N,

noting that, with these definitions, ||Ky ||co = ||I?,,N||Oo < Cs,

s
IAN = A}llos < 1Arn — AMylloo + 1AMy — AY oo < C1(M) + 21BN llos,

by (4.33) and (4.36), and || (K — KN)K ||oo < C4/(e**N¢ — 1), by (4.40).
Conversely, if p(Dr; L*(I")) < po then, by Theorem 4.4 and (4.19),,0([@; C[0,1)) <

po fort € [0, w]. Arguing as in the proof of Theorem 3.8, this implies that for every
t € [0, ] there exists Ny(z) such that ||(I€,,N — D! | is bounded uniformly in
Aand N for N > No(t) and |A| > pg. This, combined with the estimate (4.38)
and a standard compactness argument, implies that, for some N* € N, and ¢* > 0,
I(K;ny — 2D~ 7! > ¢* forall N > N*, |x| > po, and ¢ € [0, ]. It follows, by
(4.33) and (3.1), and recalling Lemma 3.7(ii), that, for all # € [0, 7] and all sufficiently
large M and N, p(AM\) = p(KM,: C[0,1]) < po and (KM, — D)1 7! = ¢*/2,
for |A| > po. Thus, and by Lemma 3.7(iii), R, y.m > 3¢*/8, for all m € N and all
sufficiently large M and N. It follows that (4.43) holds, for all sufficiently large m,
M, and N, since (4.34) and (4.26), and that || Bll\‘,’l lloo 1s bounded independently of M
and N by (4.37), imply that the right hand side of (4.43) is positive and bounded away
from zero. O

4.3 The 2D case: two-sided infinite graphs

We now extend the results of the previous subsection, for the case when d = 2 and
A =R, to the more involved case!’ where d = 2 and A = R. Our goals and methods
are those of Sect. 4.2, but, where R := R\{0}, we assume now that f € A(R), the
space of functions R — IR that are real analytic on R with f(0) = 0 (a prototypical
example is Fig. 3). Thus our standing assumption through this subsection is that

' ={(x, f(x)): x €e R} where f € A(R) and, for some
ae0,1), flax) =af(x), xeR. (4.44)

Define f+ : Ry — Rby fa(x) := f(£x),x € Ry, and g1 : R — R [cf. (4.10)]
by

g+(x) :=a F fr(a®), x€R, sothat fi(x)=xgs+(log,x), xeR,.

(4.45)

Note that the assumption f € A(R) is equivalent to the assumption that fi € A(R,)

and f(0) = 0. Note also that Lemma 4.7 applies with f and g replaced by f4 and

g+. One simple consequence of these observations [see the discussion below (4.11)]
is that (4.44) implies f € C%1(R).

As in the one-sided case, our starting point is the formula for o (Dr) in Corollary 4.4

in terms of o (K;), for t € [—m, w]. Again, K; is compact for every ¢t € R by Corol-

17" As discussed in the introduction and at the beginning of Sect. 4, it is this case which is relevant to the
spectral radius conjecture.
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Fig.3 Graphof f: R — R, f(x) := |x]| sinz(n log, |x]), in the case o = %

lary 4.6, and, following the pattern of Sect. 4.2, our goal is to compute o (K;) and p(K;)
by the results of Sect. 3.2. As in Sect. 4.2, to make use of these results it is convenient
to work with integral operators on [0, 1] rather than I'g. Reflecting that I'g has two
components, F(J{ ={kx, f(x) €lp:x>0}and 'y := {(x, f(x)) € [p:x <0},
it is natural to work in this case with a unitary operator U : L?(I'g) — (L%(0, 1))?,
defined by Uy := (UL P+, U_P_lﬂ)T, Y€ LZ(FO), where P, is restriction to
FSE, ie. Pry = wlroi, V¥ € L*(Ty), and Uy : LZ(FSE) — L2(0,1) is the unitary
operator defined by [cf. (4.12)]

Usd(x) == p(xa®, fa(@* )+ fi@)H a2 logal'?,
xe[0,1], ¢ e LXTY).

With U as given above we define an operator K , on (L%(0, 1))2, which is unitarily
equivalent to K;, by (4.13). It is easy to see [cf. (4.14)] that

- (KL
Ko=(%1 24 ), reR, 4.46
(R a0

where the entries of K + are integral operators on L?(0, 1) with continuous kernels.
The kernels of K,ﬂE are K,i(~, -), where [cf. (4.15)]

+ 1/4

. 1 = ;, P&y 1+ fi(a®)? rhyti

KE(x,y) = — et J E= a 2 |loga|, x,yeR,
1 ( )’) 27 j;oo 1+qut(x’ y)2 1+ fi(ay)Z | g I y

(4.47)
and p;t and qji are defined by (4.16), (4.17), and (4.18), but with f replaced by fx.

The kernels of I:,i are I:,i(-, -), where, for x, y € R,

~4 1/4

. 1 & .. Py 1+ f](a*)? byt

L,i(x,y) — Z et j~:t f:F(OZ )2 o +)2)+] |10got|
2w TG 2 \ T fe)

(4.48)
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and

(@ + o) fr(@) + fa(a™t)) — fﬂF(“y)

ﬁj:(-xv Y) = (le+/ +ay)2
x+jy y
G y) = /. i(aaxﬂ)- +£(a ). (4.49)

Analogously to (4.19), we have that
o (Ky; L* (D)) = o (K;; (L*(0, 1)) = o (K;; (C[0, 1)?), reR.  (4.50)

As in the one-sided case [see the discussion around (4.30)], to estimate spectral prop-
ertles of K + as an operator on (CI[O0, 11)% we approximate K by finite rank operators
 given by

N 1
K yo(x) = 5 Y KFC xan$ (), ¢ €CI01], xe[0,1], NeN.

n=1

Similarly, we approximate f,i by ZtiN, leading to finite rank approximations K {.N»
N € N, to K;, given by (4.46) with K; K+ and L;t replaced by K; K+ v and LjE . Arguing
as below (ft.30),~we hzlve that K,’ N — K, and (Kt, N)NeN 18 collectlvely compact,
so that || (K; — K; n)Killoo = 0 as N — oo, where || - ||o here denotes the oper-

ator norm of an operator on (C[0, 1])% equipped with the norm || - |« defined by

Ipllo := max(ll¢+lloo, I#-llo), for ¢ = (¢+,9-)" € (C[0, 1)* Indeed, we have
the following analogue of Proposition 4.10, in which our other norm notations are as
defined above Proposition 4.8.

Proposition 4.16 Lett € R and ¢ > 0 and assume that, for every x,y € R, Igi(x ),

Li(x ), K jE( y) and L (-, ) have analytic continuations from R to ¥ that are
bounded in .. Then ||(K, K, VKoo < 2677€C* (2N — 1), where

C* := max { 1K No.clIK; Nle.o + L7 Nlo.e 1L le.o + K No.e L7 lle.o + L o, I K lle.o.

1L oK lle.o + 1K o, 1L .o + 1L o Iy leo + 1K ol kfrllc,o}~ (4.51)
Proof Notice first that

(12 KN)Iet_<(I€z rN)K +(L _LrN)Lf (K _KtN)L +(L _LtN)K)
t t =

(LF = LI WK, + (KT = KEOLE (LF = L)L + (K = KK

and denote the entries of this matrix by A x, j, k = 1, 2. For each of these terms we
obtain an estimate similar to that in Proposition 4.10, by arguing as in the proof of that
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proposition. Since also

2
1K = KM Killoo = max Z 1A klloos

the result follows. O

Let us now estimate, under our standing assumption (4.44), the norms of the kernels
that appear in Proposition 4.16 [cf. Proposition 4.8].

Proposition 4.17 Given (4.44), define g+ by (4.45) so that, by Lemma 4.7, g+ have
analytic continuations to X, for some ¢ > 0, such that g+, g'., and gi are bounded
onXe.and g1 (z+ 1) = g1(2), z € . Let

Jex = Imgsllc + I Im g/ ||c/|loge| and

Rex =o' [loga| max(lgx e, llgx o), (4.52)
and set
Sax = llgxlla +lghlla/|logel and
Gax = lglla + llgklla/Ilogel, ford =0,c. (4.53)
If

¢ <arccos(e)/ [loga|, Tex+ <1, and |[[Imgs|lc+ache+ < o2, (4.54)

then I%,i(x, ), Zti(x, ), 1@*(-, y), and f,li(-, v) extend to bounded analytic functions
on X forall x,y,t € R, and

1/4 _
. 1+32,) 1+al?4+a7!/? all?
+ ( c,+

1K Nle,o < T -222) [ ok 12 + [og o|(Fe, + + Fo,+) Z ]
(1 32 1/4

_ +33.) 1 +al/2 4 o712 > il

IR Nl < ’ 54[ et < +2lloger| e s ) ]
71( j%,i) / 4o et oa—al
1 llog | §o,+ + Re,+ 14 all?

ILE o < 5 TR (1430 Y s 459)
71— (I gel, + acfex) je—e @ T

1/4 )
IEE o, logor| ez + Aoy L+ 8 i ' (456)
c = ~ T A A .
27‘[ 1 —q4 (||Im g=ll, + QCRC,;)Z 1-— JgFF ; alt2 4+ o2

j=—00

Moreover, the mappings R — C([0, 1] x [0, 1]), I?ti(', Jandt +— I:ti(~, -), are
continuous.
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Remark 4.18 [Bound on the sum in (4.55) and (4.56)] For fixeda € (0, 1),let F(x) :=
(@*/? 4+ a=/2)~1 for x € R, so that the jth term in the sum in (4.55) and (4.56) is
a~2F(j), and note that F is even. Arguing as in Remark 4.9, since F is decreasing
on [0, 00),

s oll? - ) o [ 2 arctan(o"/?)
3 e Y P =G =a [ rwer = SR
j=n+1 Jj=n+1
(4.57)
forO0 <o < landn € Ny := NU{0}. Thus, for0 < « < 1 and n € Ny,
> o/ CH@) = —— +2 22": (j) +2Cy(@) and  (4.58)
——— <Ci(@) := —5 + 2o~ F(j)+2Cy(o) an .
2 g2 = 2
= o/ T+ o 2a o
oo i n i
0l @il
e < S, TR (4.59)
2 1 o2 Z 22| = “n
i al T4+ o = al/ T4+ o

Proof of Proposition 4.17 The results for K ,i(‘, -) follow immediately from Proposi-
tion 4.8, applied with f replaced by f. It remains to consider the off-diagonal entries
i,i We give the detail for L;; the results for L, follow by the same argument with
the roles of f4 and f_ reversed.

We extend the definition of I:t+ via (4.48) to all x, y € ¥.. The upcoming com-
putations will show that this is well-defined and the estimates (4.55) and (4.56) hold.
Denote by T (x, y) the jth term in the sum (4.48), that is,

Tj(x, y) = !

iy (14 fl@)? Y e

pour 5 ) a2 |logal, x,ye€Z..
L+g) @2 \ T+ fL@)

' (4.60)
We clearly have T (x + 1, y) = el Tj11(x, y) and the dilation invariance, f(ax) =
a f(x),implies that T (x, y+1) = e”Tj_l(x, y)forx,y e ., j € Z. Thus, to prove
the uniform convergence of the series (4.48) and the bounds (4.55) and (4.56), it suffices
to restrict considerationto x,y € E. = {z € C:Rez € [0, 1], Imz € (—c, ¢)}. First
notice that, for x, y € E,

ot 4 ozy‘ > oR*H cos(loga Im x) + R cos(log o Im y)

> Rex Tl Ryt > o F2 4 o2, (4.61)

by the first of (4.54), which implies that cos(f log ) > «, for —¢ <t < c¢. Hence, for
x,y € B¢ and j € Z, recalling (4.45),

@t () —avg ()| _ afH gy ()| +aR Vg (y)]
Xt @Y - aRex+j+1 4 gRey+l

‘éf(x,y)‘ =
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Using the estimate
(a+b)/(c+d) <max{a/c,b/d}, (4.62)

which holds for all a, b > 0, ¢, d > 0, it follows that

sup | ‘c}}'(x, y)’ < Rc.+/|loga| and

x€&.,y€l0,1

sup
x€l0,1],ye &,

G )| = e llogal, jez

Noting that (4.27) holds with f and g replaced with fi and g4, we have also that
| fL(a”)| < Fo.+, for y € [0, 1], while | f1 (¢*)| < e+, for y € E.. Thus

[fZ ()] + ’é;'(x, y)‘ _ S0 + Re4/lloga]

sup ‘ﬁf(x,y)(s sup

x€Ee,yel0,1] x€Ee,yel0,1] ¥t + o - alt? + a2
. Se,— + Re,—/|loga|
sup | 5f 0| = : .
xel0,1],yeg. | 7 alt? +a?

Moreover, for x, y € B,

x+j — Y
e = fm (285 =080

ot 4 ¥
1 . Sy i ,
= m ’Im (az(ReH])ng(x) — o e () +a g (x) - OlZRe"g—(y)N .
ot oY

Thus, using (4.61), noting that | Im(a’z)| < |Im(z)| + | sin(t log &) ||z| < |Im(z)| +
|tlogxl|z|, for t € R and z € C, and using (4.62) again to obtain the last two
inequalities, we see that for x, y € E., where r = «R*+/ and s = oR¢,

1
a2y (P Im e+ 57 g )
+rs(1Tm g ()] + [ Tm g (0)] + el logarl(lg- ()] + g+ (@)D) )

- rIIm g4 (x)| + s/ Im g (y)| + c|loga| max{s|g—(y)|, r|g+(x)[}
- a2(r + )
< o % (max{|Im g (x)|, | Im g_ ()|} + c|log or| max{|g— ()], [g+(X)[}) -

MG oew)| <

Thus
~+ )
sup [Imgf (e, )| =@ (I gylle +@cfet) and
xX€E.,y€[0,1]
sup  [Imgf (e, )| = o (Img- |l + ek, -)
x€[0,1],y€E,
so that

. ~ 4 2 ~ 4 2
inf 1437 21— s [Imgf )
xe&c,yel0,1] / x€EBe¢,y€el0,1] J
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>1—a*(|img, |+ acf. )’ and

inf
x€[0,1],y€E,

~ _ 2
L+ G7 0?2 1— a7 (Img e + ek, )

Combining these estimates, and using (4.28) with f replaced by f_, we get

|log a|So, - + Re, 14 all?
sup |Tj(x, y)| = s 5 (1 +&2>.+) / 2 o2 and
x€Ec,vel0,1] 1—a*(IImgyll, +acfe ) /T
1/4 )
|log | Fe.— + Re— 1+82 \" i
sup  |Tj(x,y)| < 5 — P
x€[0,1],y€ &, 1—a*(IImg_|l, +oche, )" \ 1 =7 /Tt
The estimates (4.55) and (4.56) and the other results for l~,,+ follow. ]

Let t}fN and C ZEN be the N x N matrices defined by the right hand side of (4.31)

with Kt(-, -) replaced by 1%?(-, -) and I:fc(-, -), respectively, and define the 2N x 2N
matrix A; y by

B, C~
AI,N:=<@N ler>, teR, NeN
Con Bin

Recalling Remark 3.11, the matrix A, y and the operator K; y are related by
Lemma 3.7(ii) and (iii). As in Sect. 4.2, our goal is to estimate the spectrum and
spectral radius of K; x via computing the spectra of approximations to A; y for some
fixed N and finitely many ¢ € [—m, 7].

To define these approximations, proceeding analogously to Sect. 4.2, for M € N
let I%,i’M (-, -) and Z,i’M(, -) be approximations to ]Zti(., -) and Z,i(~, -), respectively,
given by (4.47) and (4.48) but with the infinite series replaced by finite sums from
Jj=—MtoM [cf.(4.32)]. Let Bf ,’VM and C;E ,’VM be the corresponding approximations
to the matrices BfN and CfN, so that

1.
BV (p.q) = 5 KM (p v 2.,
1 -~
Czj,E/\/M(Pv‘I) = ﬁLti’M(xp,N,xq,N), p,g=1,...,N,
and let
B—,M C—,M
A =N ) e R, MUN eN. (4.63)

+M p+.M
Ct,N Bt,N

Similarly, define the operators K f;\,M and if}VM as we defined K fN and I:fN above
Proposition 4.16, but replacing the kernels K ,i(~, -) and liti(~, -) in their definitions
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by the respective approximations K ,i’M (-,-) and I:ti’M (-, +), and let
, teR, M,N eN. (4.64)

Then, similarly to (4.33), we have that, fort € R and M, N € N with M > 2,
AN — Ay lloo < 1Ky — KMy lloo < CL(M), (4.65)

where, using the notations of Remarks 4.9 and 4.18 and Proposition 4.17, and setting

Ro = Ro,4+ = Ro,—,

1
(M) = —max { (1485 ,)""" (2 logalo.+ Bu (@) + (| log IS0, + R0)Cir (@),

(1+85 )" (2log o Bu (@) + (logalo. + Ko)Cur @) }. (4.66)

Note that by (4.26) and (4.57), C{(M) = O(aM/?) as M — oo.
Arguing as in (4.35), we have also that, for M, N e N,t e R, p,g=1,..., N,

d
B (p.q) <y, (467

a1

il
< By"(p.q) and ‘ECff;VM(p,q)

where By (p, q) is defined by (4.35) but with p;, q;, and f replaced by p7, g7

and fy, respectively [compare (4.15) and (4.47)]. Similarly, Cljf]’M (p, q) is defined by
the right hand side of (4.35) with p; and g; replaced by ﬁf and cj]i respectively, and
with f replaced by f4 in the numerator, by f+ in the denominator [compare (4.15)
and (4.48)]. Thus, where

- M - M
B," Cy
BIA\;[:=<N N

oM B+’M> , M,N €N, (4.68)
N N

Eq. (4.36) holds (with the above definitions of A; y, Af”[N and BY) for all s, 7 € R,

M, N € N. Note also, arguing as in (4.37) and (4.38), that ||B}1\‘,’1||OO is bounded

uniformly for M, N € N, and that ||I€',,N — IESJ\/HOo =O(ls—1t])as|s — 1] > 0,

uniformly for s, € R, N € N. Further, similarly to (4.39) and (4.66), || K; yllec < C3

fort € Rand N € N, where!8

1/4(

1
Cs 1= s—max [ (1485 ,) " (B0.+9(@) + 4l logalo. Bio(e) + (| logalfo.- + K)Cio(@)),

(1433 (®0.-Re) + 4l logalFo,-Big@) + (logalFo.+ + R)Cly(@)}.  (4.69)

18 Computations indicate that CTO (o) exceeds the left hand side of (4.58) by not more than 2.1% for
a e (0,1).
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R(a) == (1 + a2 + a71/2)/2a?), B}, and C}, are defined by (4.25) and (4.58),
and the other notations are defined in Proposition 4.17. Provided c is such that the
conditions of Proposition 4.17 hold, we have also [cf. (4.40)], by Propositions 4.16
and 4.17, that (4.40) holds with

Cy := 2627 C*, (4.70)

where C* is defined by the right hand side of (4.51), but with the norms on that right
hand side replaced by the upper bounds in Proposition 4.17. Additionally, we replace
the infinite sums in these upper bounds by the bounds BTO (@) and CTO ().

The following result, which holds for every I" that satisfies our standing assumption
(4.44), is identical to Theorem 4.13, except that K tM,\],V and A%]\\,’ are defined here by
(4.64) and (4.63), respectively. In this theorem o (K A’IN) denotes the spectrum of K tIE/IN
either on (L*(0, 1)) or on (C[0, 1])* (cf. (4.19)), which coincides with {0} Uo (AM,)
by Lemma 3.7(ii) and Remark 3.11, and o (Dr) denotes the spectrum of D on L2(I"),
which coincides with the essential spectrum by Corollary 4.2. The proof of this result
follows that of Theorem 4.13, noting that the argument of Lemma 4.12 applies to each
of the operator families K [i 1’\,M and if}VM so that [where K %N is defined by (4.64)]

{I%%N it € [—m, ], M, N € N} is collectively compact.

Theorem 4.19 Choose sequences (imn)neN, (My)nen C N such that my, My —
oo as N — oo, and for each N, let Ty = {x(k — 1/2)n/my : k = 1,...,my}.
Then, as N — oo,

oNDr) = o R =101 [ o(AN) S o(Dr) = oes(Dr).  (4.71)

teTy teTy

Remark 4.20 Using Remark 3.11, we see that Remark 4.14 applies also to o™ (Dr)
given by (4.71).

Our second main result of this subsection, obtained by applying Theorem 3.8, noting
Remark 3.11, is proved in the same way as the analogous result, Theorem 4.15, in the
one-sided case. In this theorem A%N, Bll\‘,”, C1(M), C3, and C4, are defined by (4.63),
(4.68), (4.66), (4.69), and (4.70), respectively.

Theorem 4.21 Under our standing assumption (4.44), define g1 by (4.45) so that, by
Lemma 4.7, g+ have analytic continuations to X., for some ¢ > 0, such that g,
g\, and gl are bounded on X, and, without loss of generality, assume that (4.54)
holds. Suppose that pg > 0, m, M, N € N, with M > 2. Fork = 1,...,m, set
t := (k — 1/2)/m, suppose that p(A%N) < po fork =1,...,m, and recursively
define py ¢, for€ = 1,2, ..., by ur.1 := po, and by (4.42). Further, fork =1, ..., m,
let ny denote the smallest integer such that Z'Z": | Vk,¢ = 41 po, and let

. Vie o Vk+l
Ry m. N = min (— + —+> .
m 4 2

@ Springer



The double-layer operator on locally-dilation-invariant domains 677

If

Cy

L(f,N) = Ne

<Rc(f,m,M7N)

Tu -1\ !
=13 (1463 (R = CLOD = 1B 1) ) . @72)

then p(Dr; L*(I")) < po. Conversely, if p(Dr; L>*(I')) < po, then, providedm and
M are sufficiently large, there exists Ny € N such that (4.72) holds and ,O(A N) < 0o
fort € [0, ] and all N > Ny.

Remark 4.22 The condition (4.72) can be written as
S.(I',m,M,N) <0,

where S.(I', m, M, N) := L.(f, N) = Rc(f,m, M, N). For any ¢ > 0 such that the
conditions of the first sentence of the above theorem are satisfied (and these conditions
are necessarily satisfied for all sufficiently small ¢ > 0), we note that:

(1) The proof of the above theorem, which follows that of Theorem 4.15, shows
that, provided p(Dr; L2) < 00, Rm m. n 1s positive and bounded away
from zero for all sufficiently large m, M, N € N, so that the same holds for
Re(f,m, M, N). Since also L.(f,N) > 0as N — oo, S.(I',m, M, N) <0
for all sufficiently large m, M, and N, if p(Dr; L)) < po.

(ii) For fixed m, M, N € N, evaluation of the functionals L(f, N) and R.(f, m,
M, N) requires inputs relating to the functions f1 defined by (4.45), namely:
the constant o € (0, 1) and the bounds ||g+[lo, ||g’l0, and ||/ |lo on g defined
by (4.45) (to evaluate C(M) and C3); the bounds ||g+x|lc, 1% 1lc. and [|g7L1l¢
(to evaluate Cy); the values fu(a*r-NTJ), fi(e®rN), and fi(a*rV), for p =

.,Nand j = —M, ..., M (to compute the entries of the matrices AKN,
fork=1,...,m).

(i) I exact values of llgalo, gkl 1810, Ilg=lles Iglle, and g4 le are not
available, it is_enough to replace them with upper bounds which leads to
upper bounds C 1(M), C3 and C4 for C;(M), C3 and Cy, respectlvely (with
Cl(M) — 0 as M — oo at the same rate as C;(M)). Let L (f,N)
and R (f,m, M, N) be defined by (4. 43)1v1th Ci(M), (;\3, Cy, replaced by
their upper bounds, so that L.(f, N) < L.(f,N) and R.(f,m, M, N) <
Re(f,m, M, N). Then the conclusions of Theorem 4.21 hold with L.(f, N)
and R.(f,m, M, N) replacedbyz (f,N) andﬁ (f,m,M,N), respectively;
in particular S.(I', m, M, N) < 01f£ (f N) < R (f,m, M, N) and, pro-
vided p(Dr; L)) < 00, E (f,N) < R (f,m, M, N) for all sufficiently
large m, M, and N.
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4.4 The 2D case: lower bounds for the numerical range

This paper is motivated by the question at the end of Sect. 1.1 which notes that there
exist (e.g., [11, Fig. 3]) 2D examples of I' € D with wes(Dr) > % and asks: is
PL2(T)es8 = % for any of these examples? We will explore this in Sect. 6 where we
will see that p2 ) o) < % for each example we treat, supporting Conjecture 1.2.
We will also see that wegs(Dr) > % for at least some of these examples, indeed that
Wess(Dr) D Bg := {z € C : |z] < R} for R substantially larger than %

As the route to obtain these estimates for Weg(Dr), in this subsection we obtain
lower bounds!® for W(Dr) = Wes(Dr) in the case when T is a dilation invariant
graph, precisely in the 2D case when either (4.8) or (4.44) applies. It is enough to
restrict attention to the one- s1ded case (4.8) as one easily sees (e.g., [11, Sect. 2.3])
that if I satisfies (4.44) and T= = {(x, f(x)) : x > 0}, then T satisfies (4.8) and

W(Dg) C W(Dr). (4.73)

We obtain lower bounds for W (Dr) in the case that (4.8) applies via the Nystrom
method that we used in Sect. 4.2 to approximate o (Dr). Firstly, by Corollary 4.4,
and since, fort € [—m, ], I:t, defined in the proof of Proposition 4.10, is unitarily
equivalent to K ; defined by (4.13), which is unitarily equivalent to K;, we have that
W(L;) C W(Dr).For p € Ny,let7, C L?(0, 1) denote the set of trigonometric poly-
nomials of degree at most p. An orthonormal basis of 7, is given by {e_ prees€p },

where ¢ (x) 1= 271X Consider the restricted numerical range

WL = {(Lig.9) : ¢ € Ty 19l 200y = 1]

It is clear that Wp(I:,) C W(I:,) for t € [—m, 7], and that (e.g., [11, Sect. 2.3])
Wp(I:,) = W(TP?"),where TP = (T isthe 2p+1) x (2p+1) matrix with

Tﬁ(’t = (Lsey, ej), j.k = —p,..., p.Recalling from the proof of Proposition 4.10
p.t,N

)j k=—p

that L, has kernel L, (x, y) = IR (x, y), we will approximate 77! by T
where

4.74)
recalling that x,, v := % (m — %), m = 1,..., N, and then approximate TPt.N
further by T7"-N-M defined by (4.74) but with K;, given by the infinite sum (4.15),
replaced by K M given by the finite sum (4.32). The following result, which uses the
notation (4.34), will enable us to estimate the difference between W), (L) = W(TP)
and W (T PHN-My,

19 By a lower bound for W (Dr) we mean, simply, a set S C C such that S C W (Dr).
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Proposition 4.23 Let f and ¢ > 0 be as in Proposition 4.8, in particular satisfying
(4.21), so that L;(x, -) and L, (-, y) are analytic and bounded in = forall x, y,t € R,
let liﬁ”(x, y) = O NKM(x y) forx,y € Rand M € N, and suppose that g is a
bounded, analytic, 1-periodic function on ¥.. Then, for M, N € Nandt € [—m, ],

N
~ 1 ~ I
(Lig, 8) = 2z D Lo Comns 20, 8)8 (i M) Cm )

m,n=1

IKllo.c + 11K lle.o

<2liglollglle ™ = Sy + Ci(M).
Proof
N
- 1 - P
(Lig, 8) = 55 D LiCom v 20,88 Cin ) Com N)
m,n=1
1 1 1Mo
< [Cewl| [ Litxygmay = 5 3 Litr. vl dx
0 0
n=1
1 Lt 1Y
+ 52 /O OOL; (o, 2 ) Ao = = 3 & Com, W) L1 Com v, 20,0) | [ Gon )|
n=1 m=1
20Lillo.c gl 2llgle I Zille,0
<lglo = zeme — 5 e lglo.

by Theorem 4.11, noting that g and, from the proof of Proposition 4.10, I:,(x, ),
for x € R, and it(-, y), for y € R, are all 1-periodic. The claimed result now fol-
lows immediately from (4.33) and by noting that, from the proof of Proposition 4.10,
ILello.c < €™l K¢llo.c and [ Lelle.o < €™ Kt lle.0- o

Clearly, g € 77 with |gll;2(9,1) = 1 if and only if

p p
g= Y cje; with Y e =1, (4.75)

j==r j==p
in which case
P p p
lglle < > leillleile = D2 leillleil. = D2 les e < V2p+ 120,
j==p j==r j==p

The following corollary follows immediately from this observation and Proposi-

tion 4.23, noting that, if g and c_, ..., ¢, are related by (4.75), then the summation
in Proposition 4.23 coincides with ij k= p TJP,‘:’N’Mckc_j € W(TP-1:N.My,

@ Springer



680 S.N. Chandler-Wilde et al.

Corollary 4.24 For p € Ng, M, N € N, t € [—n, ], where ¢ > 0 is as in Proposi-
tion 4.23,

dy(Wy(Ly), W(TPHN-Myy < C7(p, N, M)

K lo.c + 11K lle.o

o wTe(2p+1
= 2@2p + e TN IR

+ C1(M).

We can approximate W (T ”""N-M) by a standard method that dates back to Johnson
[31]. Choose n € N and, for £ = 0,...,n, let 6, := 27¢/n, let Ay denote the
largest eigenvalue of Re(e~i0eTP-:-N.-My and x, an associated unit eigenvector, and
let zg 1= (TPHN-My, x), for £ = 0,1,...,n — 1, and z,, := z9. Then W, :=
conv({zo, ..., z,)) C W(TP-N-My and (Johnson [31]) W, > W(TP-1-N-My a5y —
0o. The following simple corollary of the above results, in which we use the notations
just introduced, will enable us to show that B C W(I:,) C W(Dr) for concrete
values of R > 0 in the examples we treat in Sect. 6.

Corollary 4.25 Suppose that p € No, M,N,n € N, t € [—mn, ], that ¢ > 0 is
as in Proposition 4.23, and that O is an interior point of W, in which case zy =
exp(y)lzel, € = 0,...,n, with yoy < y1 < ... < ¥» = Yo + 2m. Then, where
Omax = maxe—i,. ,(¥e — ve—1) € (0,27] and Ruyin = ming—g . lzel > 0, if
R* := Rpin c08(0max/2) — C7(p, t, N, M) > 0, then Bgx C W(Dr).

Proof Under the above assumEtions, B_RNC Wy, where R := Rpin c08(0max /2). Since
W, C W(T?t:N-Myand Wpy(L:) C W(L;) C W(Dr), it follows that Bg« C W(Dr)
by Corollary 4.24. O

5 Localization and deformation

LetQ2_ CcRY,d>2,bea Lipschitz domain with boundary I' = 92_ and outward-
pointing unit normal vector ny, = n' at almost every y € T If : RY — RY is
a C!-diffeomorphism, then v ($2_) is a Lipschitz domain with boundary v (I") by
Hofmann et al. [29, Theorem 4.1]. Note that this is no longer true if v is only assumed
to be a bi-Lipschitz map (see [21, Lemma 1.2.1.4], and the discussion in [29]). As
before, Dr will be the double-layer operator on I". To simplify notation we will use ~
to denote equality up to compact operators, and abbreviate D — Al as Dr — A. For
xeRlandr >0, B(x,r):={yeR?: |y —x| <r}.

5.1 Localization without deformation

To start, we will consider domains with locally-dilation-invariant boundaries I' € Z;
recall Definition 1.3. Note that being locally dilation invariant at x is equivalent to the
existence of an isometry ¥ : R? — R? with ¥, (x) = 0 and ¥, (B(x, s(x)) N F) =
B(0,8(x)) N Ty, for some §(x) > 0, where I'y is the graph of a Lipschitz continuous
function with oI, = I',. We also assume that i, preserves the orientation of the outer
normal vector field, that is, the outward-pointing normal vector field on B (x, §(x))NT
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is mapped to the upwards-pointing normal vector field on B (0, §(x)) N I'yx. Similarly,
I"is locally C! at x if there is a §(x) > 0 and an Euclidean map v, : RY — R? with
Yy (x) = 0and ¥ (B(x, 6(x))NI") = B(0, §(x))NTy, where 'y is the graph of a cl-
function with compact support. Again, we assume that v, preserves the orientation
of the outer normal vector field. We will use extensively below the notation 8 (x), for
x € I', which will have one of the above meanings, depending on whether I is locally
dilation invariant at x oris C! at x.

Note that Dr is compact for every C I domain [19], as we recalled in Sect. 1.2;
this implies that also D is compact if T is the graph of a C!-function with compact
support. Consequently, if I" consists of different parts that are separated by C! areas,
we are able to localize using sharp cut-off functions. In the following we equip I" with
the topology induced from R? and the standard surface measure. In particular, xz
denotes the characteristic function of a subset E C T that is measurable with respect
to the surface measure on I'.

Lemma 5.1 Let E C T be ameasurable subset and assume that T is locally C' at every
x € d0E. Then Dr essentially commutes with xg, i.e., the commutator [Dr, xg] :=
Dr xg — xgDr is compact.

Proof Since 0E is a compact subset of ', there is an & > 0 such that

(0E + B(0,e))NT C U (B(x,8(x))NT).
xedE

Set E, := (0E + B(0, %)) N T'. We know that x4 Dr xp is compact, even Hilbert—
Schmidt, whenever A and B have positive distance from each other. We have

E=(ENE,)U(E\E,) and E°=(E°NE,)U(E®\E,),

where E¢ := I' \ E. By inspection, we see that the four sets on the right of these
equalities, if non-empty, have pairwise positive distance from each other except for
ENE,and E° N E,. We thus have

XEDr xge ~ XenE,Dr XEcnE, = XEXE,Dr XE, XE*>
XecDrxe ~ XgnE,Dr XENE, = XEXE,DrXE, XE-

The operator xg, Dr xg, is compact because E, is C! everywhere by construction.
We conclude that [Dr, xg] = xge Drxe — xgDr xgc is compact as well. O

In particular, this shows that if " is locally C' at some point x € I, then Dr is
not Fredholm, since if £ = B(x, @), then g Dr xg is compact, and Lemma 5.1
implies that Dr ~ xg Dr xg + xEcDr xgc. Hence

0 € 0ess(XEDr xg) C 0ess(Dr). (5.1

More generally, if Eq, ..., Ex are measurable subsets of I' such that I' = U?’: 1 Ejs
E; NEy = @ for j # k and I is locally Clatevery x € U?’ZIBEJ-, then Dr ~
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N
>_j—1 XE; Dr xg; and thus

N

Tess(Dr) = | 0ess (xe; Drxe;)- (5.2)
j=1

Equation (5.2) is a localisation result. We have also the following, more substantial
localisation result (cf. [11, 15, 16, 48]) for the case where I € 9.

Theorem 5.2 Let Q_ C R? be a bounded Lipschitz domain such that T = dQ_ € 9,
and pick x1, ..., xy €I for which " C Uj'\]:l B(xj,8(x;)). Then

N
Oess(Dr) = U Uess(Dl“X) = U Uess(Dij)~

xel j=1

Proof Let x € TI". If T is locally C! at x, then, by (5.1) and since Dr, is compact,
Oess(Dr,) = {0} C 0ess(Dr). So assume that I' is locally dilation invariant at x.
Then there is an o € (0, 1) such that «I'y = I'yx. Let n: I’ — [0, 1] be a Lipschitz
continuous function with supportin B(x, §(x))NI" thatisequal to 1 in a neighbourhood
of x. Let ¥/, : RY — R< be an isometry with ¢, (x) = 0 and ¥, (B(x,5(x))NT) =
B(0, 8(x)) N Ty. Define W, : L>(T",) — L*(I') by

d(Yx(y)) ify € B(x,8(x))NT,
0 otherwise,

Yy (y) = {

which has adjoint W, : L) — L(Ty) given by

dW () ify € BO,8(x) Ny,
Wg(y) = PP e :
0 otherwise.
W, and W, are partial isometries with initial spaces LZ(B(O,S(x)) N Fx) and
L? (B (x,8(x)N F), respectively. For m € N the composition W,y W, : L(T,) -
L2(T,) is the operation of multiplication by ("), where 1'(y) := n(w;l(y)), for
y€B(x,8(x)NTy,n'(y) :=0,y € Ty\B(x, §(x)).
Let V,, be the unitary dilation as defined in (4.2) but with I' replaced by I'y. Then

Ny @ y)p(y) ifa”y € B(0,8(x)) NTy,
0 otherwise,

Van' V"¢ (») = {

forn e N,y € I'y and ¢ € LZ(FX). By dominated convergence, it follows that
VIn'v, "¢ — ¢pasn — ooforall ¢ € L?(T",). (We can see, similarly, that, for
everym € N, VI())"V, "¢ — pasn — oo forall ¢ € L?(T'",).) Using that v/, is
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an isometry, we further observe that W.n Drn\W, = n’ Dr n’. This implies, since also
Dr Vy = Vo Dr,, that

Vo WenDrnWe V" = Vyn'Dr,n' V" = (Vin'Vy, ") Dr, (Vyn'V, ") — Dr,
5.3)
in the strong operator topology.
Now assume that D — A is Fredholm and let A: L?(I") — L?(T") be a Fredholm
regularizer of Dr — A, so that the products A(Dr — A) and (Dr — A)A are compact
perturbations of the identity. Then, for any ¢ € L*(T',),

Il < | Ve winAn(Dr — MWV, "¢||+|| Ve (I — WinAn(Dr — MWV, "] .
(5.4)
The first term can be estimated as

Ve winAn(Dr — MnW, V"¢ | < Al |n(Dr — Mnw,V, "¢ ||
= |A|l |V Win(Dr — Mn¥,V, "¢

k]

where we used that Vy is an isometry, W/, is an isometry on the range of the multipli-
cation operator 7, and ||| < 1. By (5.3),

H Vo:L\I})/cn(DF — MWy Va_nq&” — ||(DFX — N

as n — 00. The second term in (5.4) can be estimated as
[Via —¥nAn(Dr — nvo)V,"¢|
< |Vaa = WinADr =P w0 v g | + | Vv A, Drinw, Ve
< Ve - wyvere| +|
+ |Vi¥nAln, Drlnv.V, "] .

VaWn(ADr = 3) = DiP WV, "0

Note that both A(Dr — A) — I and [, Dr] are compact. We also observe that for
any compact operator K : L>(T'y) — L*(I'y) we have VKV, — 0 in the strong
operator topology, since V" — 0 in the weak operator topology. Therefore, and
using that V'y/ 3 V, " — I, we obtain that the second term in (5.4) tends to zero as
n — oo. We conclude that [|¢]| < [|A]l [(Dr, — A)¢|| for every ¢ € L?(T,). The
same argument also shows that ||@] < || A|| ||(Drx — A || for every ¢ € L2(I"y). It
follows that Dr_ — A is invertible and thus Fredholm.

Conversely, choose x1,...,xy € I'suchthat I' C UZNZIB(xi, 8(x;)), and suppose
that Dr’fi — A is Fredholm for j = 1,..., N, and let A j be a Fredholm regularizer

of DFx, — . For every j let ¥y, : R? — R4 be an isometry with ¥y, (x;j) = 0 and
Yy, (B(xj, §(x;))NT) = B(0,8(x;j)) NI'y;. Choose Lipschitz continuous functions
N1, ..., ny such that {n? j=1,..., N} is a partition of unity of I" subordinate to
the sets B(x;, §(x;)). Now note that, since Dl"xj essentially commutes with n’/., Aj
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essentially commutes with n; as well. This implies that

N
D WA, nj(Dr =)
j=1
N N
~ Y WAL (Dr = M =) W AW (Dr = 2)n;
j=1 j=1
N N
=D W Ajn(Dr, =iV, ~ Y WA (D, — MV
j=1 j=1

N N
2 2
QW =) =
j=1 j=1

N
Similarly, (Dr — 1) nleJxJ.Ajn;.\IJ)’Ci ~ I. Thus Dy — A is Fredholm. O
j=1 '

5.2 Deformations

Let B € (0, 1). We will now consider the situation where a Lipschitz domain 2_ with
boundary T is deformed by a C!-#-diffeomorphism v : R? — R that is conformal
or anti-conformal at a point x € I', meaning that the Jacobian Jv(x) of i at x
lies in RO(d), where RO(d) := {AA € R?*¢ : } € R, A orthogonal}. Due to the
invariance of the double-layer potential under transformations from RO (d), we will
for our purposes be able to assume that J (x) = I. Let Dr(:, -) denote the kernel of
Dr. Likewise, V; will be the integral operator with kernel V; (-, -), | Dr| will be the
integral operator with kernel |Dr (-, -)|, and so on. We write

Dy (¥ (2), ¥ (y)) = Dr(z,y)

— . F
+ Dy (D, ¥ = S DO ) 1T )
Vi(z,y)
+ Dr )@@ o) - Jyon" () - 1)

Va(z,y)

d
Dete O - FomT [&_1] 5.5
+DeGn? W ON - oM ) | TS (5:5)

Vi(z,y)

The term V is weakly singular, satisfying an estimate of the form |V (z, y)| < Cglz—
y|'*#=d for B € (0, 1) and almostevery z, y € I', see [44, Lemma 6]. (In order to apply
Medkovd’s results from Medkova [44], note that the reduced boundary 0,2 C T
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has full surface measure for a Lipschitz domain 2_, cf. [17, p. 209].) Therefore the
operator V;: L>(I") — L?(I") is compact.

We view V; as the composition of Dr with a multiplication operator, noting that
by Medkova [44, Lemma 3] we have

lim esssup YD) - Jyn"(y) -1 =0.
p—>07F yel'NB(x,p)

In particular, for every ¢ > 0, there is p > 0 such that the operator norm of
Va: L*(T' N B(x, p)) — L*()

is smaller than ¢.

For a bounded Lipschitz domain with boundary T, let @ = %(I") denote the
algebra of integral operators K such that |K|: L>(I") — L*(T") is bounded. We will
work within the class of domains such that Dr € 9% in this subsection. The preceding
considerations show that Dy, ry € @ (Y (I')) if Dr € @ (T"). Since the relationship
between I" and ¢ (I") is symmetric, we see that

Dy ry € @ (Y (I)) if and only if Dr € @A (). (5.6)

Note that Dr € .o for any C'#-boundary I, since Dr has a weakly singular
kernel in this case. It is also known that | Dg|: L*(I') — L*(T") is bounded for any of
the following graphs I':

(1) a 2D wedge (modelling a polygonal corner) [49];
(i1) a 3D wedge (modelling a polyhedral edge) [52];
(ii1) a 3D polyhedral cone [16];
(iv) a 3D smooth cone (such as a circular cone) [53].

Furthermore, this statement may be extended to dilation-invariant domains which are
built from such graphs.

Lemma 5.3 Suppose that T is a dilation- invariant graph, i.e., I = af, for some
a € (0, 1), and suppose that, at every x € 1"\ {0}, T is either locally C"P for some
B € (0, 1), or coincides locally with a graph of type (i)—(iii), or (iv). Then |Dg| is
bounded on Lz(l")

Proof By hypothesis, we know that |Dj| : LZ(FO) — LZ(FO) is bounded for j =
—1,0, 1, where D; and I'y are as in Sect. 4.1. The lemma therefore follows from
Proposition 4.3 and (4.4). ]

A simple localization argument now demonstrates that the condition Dr € @ is
quite general.

Theorem 5.4 Suppose that at every x € T, T is locally C-#, for some g € (0, 1), or
coincides locally with a graph satisfying the hypothesis of Lemma 5.3. Then Dr €
h(I).
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Returning to the decomposition of Dy, (¥ (2), ¥ (y)), we note, for the third term
V3, the following consequence of the fact that Jyr(x) = 1.

Lemma5.5 Suppose that Dr € <. Then |V3|(z,y) = |Drl(z, y)Q(z,y), where
Q € L™ x T) is non-negative and lim,_, o+ €ssSUpy, .crnp(x,p) 2z, ¥) = 0,
where the essential supremum is taken with respect to the product measure on I" x T.

Let n,: I' — [0, 1] be a Lipschitz continuous function with suppn, C B(x, p)
such that n, is equal to 1 in a neighbourhood of x. Furthermore, denote the operator
of composition with i by

Cy: L*(Y(D)) — LA(1), Cyd(x) = ¢ (¥ (2)),

and let n/p =1npo0 ¥ ~!. Note also that we have the change of variables formula

/ d()dsym)(y) = /(1 + T ()W (y)dsr(y), (5.7
¥ (I r
where T € L*°(T") and lim,_, T'(y) = 0. The operator
0, Dyry,: LA () — LAy ()
is then similar to
Cyn, Dy (ryn,Cy-1: L*() - L*(T),

which, by (5.7), is an integral operator with kernel (1 + T (y))n,(z) Dy ) (¥ (2),
¥ (¥))n,(y). By the previous calculations, if Dr € %, we therefore find that

CI//’ILDW(F)TI;C\/,—I ~npDrn, + 7),0‘777,0, (5.8)

where \N/Nis an integral operator induced by a kernel of the form Viz,y) =
Dr(z, y)Q(z, y) with O € L°°(I" x T") such that

lim esssup |Q(z,y)| =0. (5.9)
p—0T y 2eI'NB(x,p)

For ¢1, ¢» € L*>(I") with support in B(x, p) we have

IA

(701, ) /F /F 0207z 399100 ds(3) s

esssup | Oz, Y I1Drlll g1l 2]l -

v,2€lNB(x,p)

IA

Since Dr € 4%, (5.9) implies that

lim Vi, = 0. 5.10
P ||77,o 77,0” ( )
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Taking powers, we conclude that

. / /
i 101 D" = Cy 07, Dy )" Cyt s = 0 (5.11)

for every n > 1.

We now prove the main theorem of this section. When R = 1/2, it says the follow-
ing: if, for every point x, I is locally obtained by deforming a domain that satisfies
the spectral radius conjecture, then I" satisfies the spectral radius conjecture as well.

Theorem 5.6 Let R > 0 and B > 0. Suppose that for every x € T there exists a C1-P-
diffeomorphism ¥, : RY — R?, conformal or anti-conformal at x, and a Lipschitz
cut-off function n, : R — [0, 1] such that n, is equal to 1 in a neighbourhood of x,
Dwx(r) (S} 5272, and

Oess (1, Dy, (ryny) C B(0, R),
where 0, = 1y o 1//;1. Then Dr € @ and oess(Dr) C B(0, R).

Proof As noted previously, the condition on I', even for just one x, implies that Dr €
.

Fix x e T. Since the commutator [Dy (), n,] is compact, we see that
(', Dy yn )" — Dz S n is compact for every n > 1. By the hypothesis, choose
n=n(x) sufﬁcwntly large so that

||(77XD¢¥(1“)77X) ”ess = ”ann (r)’]n”ess < R”CI/IXH_E”C —1 |~ »

If we choose a new cut-off function 7, : R — [0, 1] such that suppn, C
{y eRY: e (y) = 1}, note that, since (1, Dy, (yn,)" — D& (F)n;” is compact,
we have

1
||(77XD1/JX(F)77x)n”eS§ = ”ann (1")77n||esq

- _1 _1
= ”ann (r)n;n”gss < R”C%H " ||C1/,;l|| n,

so that

1

ICy, (1 Dy ryi1)" C i léss < Ny Dy, rymy! ”eSS”CI//x”n 1€, " < R

Hence, by making the support of 1, sufficiently small and applying (5.11), we obtain
that

1
||(77xDF77x)n ”ess = ”nnDr‘nx”ess < R.

Now choose § (x) sufficiently small so that n,, = 1 in a neighbourhood of B(x, §(x))N
I'. By compactness, we may pick points xq, ..., xy so that I' C Uiy:lB(xj, 8(xj)).
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Let

e
ri= max Gy, D))" less” < R
=

andlet {rj: j =1,..., N} be a Lipschitz partition of unity of I' subordinate to the
sets B(xj, 8(x;)). Choose m to be a large integer such that n(x;) divides m for all j.
Then

N N
2
D! = thDl’f‘ = sznx;"D?
j=1 j=1
and therefore, recalling that [Dr, n xj] is compact,

D lless = ZTJ(Ux,DFﬂx,)

j=1

<y H (x; D )"

j=1
< Nr'" < NR™.

€ss

N
<> G Drne )™ | o,
< j=1

=z

n(x

ess

Therefore oess(Dr) C B(0, R). O

Referring back to Lemma 5.3, all graphs T of type (1)—(iii) satisfy (the graph version
of) the spectral radius conjecture, results which can also be found in the correspond-
ing references. Graphs of type (iv) that are convex also satisfy the spectral radius
conjecture, by Fabes et al. [18]. If : R? — [0, 1] is a compactly supported Lipschitz
function, we thus have that

”(T'IDfn)n”ess = ”77 D” 77””6%8 =< ”D fless < 27"
for n sufficiently large. Applying Theorem 5.6 we obtain the following.

Corollary 5.7 Letd = 3 and let T be the boundary of a Lipschitz domain. Assume that
forevery x € T there exists a CVP-diffeomorphism v, : R?> — R3, conformal or anti-
conformal at x, such that ¥, (') is locally a subset of the boundary of a polyhedral
cone or a convex smooth cone. Then Dr satisfies the spectral radius conjecture.

The class of domains considered in Corollary 5.7 encompasses all domains in
3D that may reasonably be referred to as a Lipschitz curvilinear polyhedra. From
Theorem 5.6 we of course also obtain the analogous corollary for 2D domains, a
well known result; the corresponding class of curves precisely describes the C1-#-
curvilinear polygons in 2D.
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5.3 Possible extensions and further questions

Theorem 5.6 in particular shows that the spectral radius conjecture only depends
on the local behaviour of I', under the extraneous assumption that Dr € <%. To
achieve the same result for a general Lipschitz domain, we need a different tool to
treat the term V3 which does not rely on the introduction of absolute values. Since
Va(z,y) = é(z, v)Dr(z, y), for a specific kernel é(z, y), we would like an answer
to the following question.

Question 5.8 Describe suitable classes of kernels B such that the kernel B(z,y) Dr(z,y)
defines a bounded operator on L2(I"), and estimate the norm of the corresponding
operator.

When B is of the form B(z,y) = a(z) —a(y), for some function a on I, the resulting
operator is the commutator [a, Dr]. Commutators of singular integral operators are
very well studied, but we have been unable to identify or correctly apply existing
results to the kernel multiplier of interest to us, namely,

lz—yl?

B(z, = = Jr
@) "”(Z)<|w(z>—w<y)|d

1) no(y).

Other versions of Question 5.8 also seem interesting. For example, one could ask for
the stronger property that B(z, y) be a kernel multiplier of each of the Riesz transforms
of I". We also note the similarity between the term V3 and the kernel of the Clifford—
Cauchy integral operator, as presented in [4, Consequence 3.6].

Of course, one would like to know that not only the spectral radius conjecture is
local, but that the entire essential spectrum is as well.

Question 5.9 For a domain €2_ with boundary I, is the essential spectrum local and
invariant under locally conformal deformations?

We can give a positive answer to this question if we, in addition to the hypotheses
of Theorem 5.6, assume that we do not have too many singular points, by which we
mean points where the boundary is not C!. In the statement, we let x,. 0 = XB(x,p)
and Xy , '= Xx.p oyl forx € [and p > 0.

Theorem 5.10 Let B > 0 and assume that T has at most countably many singular
points. Further suppose that for every x € T there exists a C“P-diffeomorphism
Uy : RY — R4, conformal or anti-conformal at x, such that Dy, vy € 5. Then
Dr € @ and

Oess(Dr) C U ess (X py Dy (D) Xy )
xel’

for arbitrary px > 0. Moreover, there exist py > 0 such that

Oess(Dr) = U ess (X py D (0) X py )+
xel’
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Proof By (5.6), Dy, (r) € @ for just one x € I' already implies Dr € 4.

Letx €T, ppy >0and L € C.If A =0, then 0 € oess(x;’px Dl//x(r)x)/c,px) either by
5.1 af X)/c, o = 1) or by construction (otherwise). So assume that A 7 0 and suppose
that x; , Dy, ()X ,, — * is Fredholm for every x € T'.

Fix x for a moment. As I" has at most countably many singular points and ¥,
is a diffeomorphism, we know that x| ; Dy, )X, ; —  is Fredholm for all but at
most countably many p, € (0, py]. In this case the essential norm of the Fredholm
regularizer A, 5 of X)/c,ﬁx Dy, )X, 5, — *1s bounded by

HALP} ess = max i ”Ax,ﬁx “ess ’ Ml_]} .
Therefore, by (5.8) and (5.10), for every x € I" we can choose p, sufficiently small
such that x, 5 Dr Xy 5, — A is also Fredholm, and such that 9 B(x, o.) contains none
of the singularities of I".

By compactness, we may choose finitely many points x; and corresponding radii
ﬁxj such that the balls B(x;, ﬁxj) cover I'. Define recursively

J
Ey:=B(x1, py) ML, Ejy1 = (Bxjy1, py) T\ Ere
k=1

Now we can apply (5.2) to obtain that D — A is Fredholm.

Conversely, assume that Dr — A is Fredholm and fix x € T". By (5.1), we must
have A # 0. As we only have countably many singularities, x,, ,Dr xx,p — A is also
Fredholm for all but at most countably many p > 0 by (5.2). Now note that the
situation between Dr and Dy, (r) is symmetric. Hence, the same argument as above
shows that x; , Dy, )Xy, ,, — A is also Fredholm for a sufficiently small p; > 0. O

In particular, we may extend Theorem 5.2 to domains that are only approximately
locally dilation invariant in the following sense.

Corollary 5.11 Let B > 0 and assume that T has at most countably many singular
points. Denote the set of singular points by S. Suppose that for every x € S there
exists a CVP-diffeomorphism 1, : RY — R such that

(1) Yy is conformal or anti-conformal at x,
@) Yy (I) is locally clBor locally dilation invariant at V¥ (x),
(iii) Dy, (1) € @ (e.g., a domain with local behaviour as in Theorem 5.4).

Then there exist py > 0 such that oes(Dr) = {0} U, cs UeSS(X)/c,pX D%(r)x;’px).

6 Synthesis and numerical examples
In this final section we bring earlier results together to study the case where I' € Z 4
(recall Definition 1.4), meaning that I" is the boundary of a bounded Lipschitz domain

Q_ C R? that is locally dilation invariant and is piecewise analytic. We then illustrate
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the various results of the paper by several examples. Regarding our first aim, the
following result is immediate from Theorems 5.2, 4.19, and 4.21.

Theorem 6.1 Suppose that I' € P4 and let F C T be the finite set of points at
which T is not locally analytic but is locally dilation invariant, so that I" coincides
locally near x € F with Ty, a dilation invariant graph (in some rotated coordinate
system centred at x). Then, where o is as defined in Theorem 4.19, >N(Dr) =
UxeFaN(Drx) L Gess(Dr; L2(IN)) as N — oo. Further, suppose that ¢ > 0 is small
enough such that the conditions of the first sentence of Theorem 4.21 are satisfied
for ' =Ty, x € F. Then, for every pg > 0, where Ry (Dr) is defined by (1.13),
pess(Dr; L>(I)) < po if: i) Ry(Dr) < po; and ii) for some m, M, N € N, with
M =>2,

Se(T,m,M,N) = ma;;Sc(l"x,m,M, N) <0, 6.1)
xe
where S.(-, -, -, -) is as defined in Remark 4.22. Conversely, if pess(Dr; L2 < 00,

then, for all sufficiently large N, Ry (Dr) < po, and, ifm, M € N are also sufficiently
large, then /;(T,m, M, N) < 0.

Proof Sincel’ € 24 C Z,Tislocally C! atxifx € '\ F,while,ifx € F,T, satisfies
(4.44) (in some local coordinate system centred at x). Thus, and by Theorem 5.2,
Oess(Dr) = UyxerOess(Dr,) = UxeF0ess(Dr,), since oess(Dr,) = {0} if x € '\ F,
and 0 € oess(Dr, ) if x € F, by Theorem 4.4 and Corollary 4.6. The result thus follows
from Theorems 4.19 and 4.21. O

The following examples illustrate the above result and the results of Sects. 4 and 5.
In each example, whether I is a dilation invariant graph or I' € Z 4, we demonstrate
that pess(Dr; L>(I)) < % providing new evidence in support of the spectral radius
conjecture.

Example 1 We first consider an example where I" satisfies (4.8), with f : Ry — R
given by
f(x):=x sin2(71 log,(x)), x>0, (6.2)

for some a € (0, 1), so that [recall (4.10)] g(x) = sin®(rx) = (1 — cos(2mx))/2,
for x € R. As « increases in (0, 1) the graph of f (see Fig. 2) becomes increasingly
oscillatory and its Lipschitz character increases; elementary calculations give that
the maximum and minimum of f’ are f), = c0s2(0y /2) + 7 sin(fy)/|logar| > 1
and f;. = 1— fi.. < O, where 6, := arctan(27/|loga|); note that f;. =
w/|loga|+1/2+ 01 —a)asa — 1. To apply Theorem 4.15 we need to compute
C1(M), C3, and Cy; see (4.34), (4.39), and the definition below (4.40). This requires

computation of quantities that are defined in Proposition 4.8 in terms of2°

. 271)/
||Img<f)||c=(’;) sinh27e), j=0,1, ¢>0,

20 In this example, and the other examples below, we are able to compute these norms exactly. We
can, instead, just compute upper bounds; the theory and algorithm apply essentially unchanged—see
Remark 4.22(iii).
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1
5
10 0.5
10° k] o
05
o 104837
10°h 0.5
0.45
10710 \ 1
04
3264 128 256 512 1.5 - 0.5 0 05 1 15
N Re
(a) Le(fiN), Re(f,m,M,N), for pg = 3, () e¥(Dr) = {0} U U,e,, 0(AYY), for N = 512,
and the maximum of the spectral radii of my = 16,000, My = 100, an approximation to o(Dr) =

A%,N: k = 1,...,m, plotted against N for Oess(Dr) by Theorem 4.13. Also shown are the boundary
m = 16,000 and M = 100. The right-hand of Wioo (for p=10, N =512, M = 100 and ¢t = 7/18) in
scale (in red) is to be used for o (plotted in black, R*T C Wigo C W(Dr) in blue (see Corollary 4.25

red). The R.(f, m, M, N) value is not shown for definitions), 3T in red. The crosses on %']1' are fik,¢ for
for N = 16 because it is negative. k =16,000 and £ =1,...,n, = 67 (see Theorem 4.15)
3

Fig.4 Numerical results for Example 1; f given by (6.2), @ = 3

. 27/
lglle = cosh?(e), ||g<”||c=(g) coshme), j=1,2, ¢>0.

Theorem 4.15 applies for all ¢ > 0 such that (4.21) applies, i.e. provided

2|log | )

arccos(a)
2 + | log |

1
and ¢ < — arsinh ( (6.3)
2

loga]

In Fig. 4 we plot results for the case o = % (see Fig. 2), when f, ., ~ 11.43
and the above conditions reduce to ¢ < arccos(3/4)/log(4/3) ~ 2.51 and ¢ <
arsinh (21log(4/3)/(2m +1og(4/3))) /(2m) ~ 0.0139. Choosing ¢ = 0.013 we plot
in Fig. 4a, for the case pg = %, L(f, NyandR.(f,m, M, N), givenby (4.43), against
N,forN = 2j,j =3,4,...,9,choosingm = 16, 000and M = 100. We see that with
these choices R.(f, m, M, N) is positive and bounded away from zero for sufficiently
large N, while, as is clear from its definition, £.(f, N) decreases exponentially with
N; note that (4.43) is satisfied for N = 512. To apply Theorem 4.15 to conclude that
p(Dr) = pess(Dr) < % we also need to check that p(Af‘f’N) < %, for M = 100, N =
512, and t =t = (k —1/2)/m, k =1, ..., m, with m = 16, 000; equivalently, that
N =max_c,v (p 12l < 3. where oV (Dr) is as defined by (4.41) with N = 512,
mpy = 16,000, My = 100. For these parameter values o™ (Dr), an approximation to
0 (Dr) = 0ess(Dr) by Theorem 4.13, is plotted in Fig. 4b, and rnl\{ax ~ 0.4837 < %
Our calculations are in standard double-precision floating-point arithmetic rather than
exact arithmetic,?! but this is convincing evidence, by application of Theorem 4.15,

that p(Dr) < 3.

21 In all these examples the spectral radii of the matrices A ;VIN as well as the norms of the (AfWN —N1 y~!
are computed using standard Matlab routines; our codes are available at https://github.com/Raffael-Hagger/
DLP.
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In Fig. 4b we also plot, for the parameter values p = 10, N = 512, M = 100,
n = 100, and ¢ = 7/18, the bounded domain W,,, which?? is contained in and is an
approximation to W (TP-1:N-My (these notations defined in Sect. 4.4). Where R* is
as defined in Corollary 4.25, we also plot the circle R*T of radius R* ~ 1.163; by
Corollary 4.25 it is guaranteed that Br+ C W(Dr) = Wes(Dr), so that w(Dr) =
Wess(Dr) > R* is significantly larger than % for this example. We note that, for these
parameter values, C7(p, N, M) < 3.964 x 1073 (see Corollaries 4.24 and 4.25).

In Fig. 4b we additionally plot, to illustrate the application of Theorem 4.15 and the
adaptive definition of the parameters deﬁned by (4.42), the points i ¢ at which the
resolvent of A’:fN is calculated when pg = 2, =512, M =100, m = 16, 000, for
the case k = 16, 000 (sothatty &~ w)and € = 1, ..., ny = 67. This value of k is fairly
typical; ng varies in the range [67, 110] as a function of k. It is clear that the adaptive
algorithm of Theorem 4.15 (and see Corollary 3.5) is significantly more efficient than
the uniform grid on pgT of Corollary 3.3 (recall the discussion above Lemma 3.4). For
k =16, 000 we have ming v; ¢ ~ 0.0101 and maxg vr ¢ &~ 0.2216 [see (4.42) for this
notation]. The ratio of these maximum and minimum values, which is approximately
the ratio of the maximum to the minimum spacing of the points px ¢, is about 20.2.

Example 2 'We now turn to examples where we can apply the theory of Sect. 4.3. First
we consider the case of a cone, thatis I' = {(x, f(x)) : x € R} where

f@)=uplxl, xeR, (6.4)
for some n € R. This clearly satisfies (4.44), for any o € (0, 1), and, where f4+ and

g+ are defined by (4.45), fi(x) = ux, g+(x) = u, for x > 0. For this example the
spectrum and spectral radius are known, viz.

0es(T) = o(Dy) = {0} U {iSin(arctan(lul)(l —iy) R}

2sin(w (1 —iy)/2)
|l

214+ pu?

(see, e.g., [49]) and, since Dr is diagonalised by the Mellin transform when T is a
2D cone, Dr is normal so that Wee(Dr) = W(Dr) = conv(o(Dr)) and ||Dr|| =
w(Dr) = p(Dr).

so that p(Dr) = (6.5)

To make comparison of these known results with the methods of Sect. 4.3 we can
choose, in principle, any @ € (0, 1), but the choice of « affects the choice of ¢ via (4.54),
and thus the rate of decrease with N of L.(f, N), defined by (4.72). The operators
~,i, given by (4.48), and thus the matrices Ai” N> given by (4.63), also depend on

a, while the operators K= ., given by (4. 47) vanish in this case. It is worth noting
that the blocks of AM _v corresponding to L are Toeplitz matrices in this example.

22 In our computations of Wy, we neglect the factor &/ Cm, N =%, N)! \when using (4.74) with [51 replaced
by K, ,M . The resulting matrix is unitarily equivalent to 77> N.M a5 defined in Sect. 4.4, so has the same
numerical range.
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1,...,m, plotted against N for m = 2,000 and (blue), u = 5 (green), p = 10 (red). The yellow
M = 200 in the case p = 10. dashed lines indicate the lemniscates (6.5), i.e. the

(exact) spectrum of Dr in each case.

. . . . _1
Fig.5 Numerical results for Example 3; f given by (6.4), @ = ¢

The conditions (4.54) reduce to ¢ < arccos(er)/|loga| and e < o?/|logal. As
the right hand sides of these inequalities are increasing on (0, 1), it is beneficial to
choose « closer to 1 in order to be able to choose a larger c. We select @ = %, so that
arccos(w)/|loga| ~ 3.78 and o/ loga| ~ 5.73, and then take ¢ = 0.57, so that
(4.54) is satisfied for || < 10. For u = 10 we see from Fig. 5a that, with M = 200,

,,,,,

0.4975 < %, sothat p(Dr) < % by Theorem 4.21, in agreement with (6.5) which gives
p(Dr) = S/M ~ 0.4975. We see in Fig. 5b that the approximations oV (Dr) to
o (Dr), given by Theorem 4.19, agree closely, for the given parameter values, with
the expected lemniscates given by (6.5) for different values of w.

Example 3 In this example we take
f(x) := |x|sin®(z log, |x]), x €R, (6.6)

and T satisfies (4.44), but now just for one « € (0, 1). Note that f3 and g4, given
by (4.45), are the same as f and g in Example 1, so that g satisfy the same bounds
as g in Example 1, and I" has Lipschitz character f,. as defined in that example.
Thus the conditions (4.54) reduce in this example to (6.3) plus the condition that
sinh(2rc)/2 4 c|log «| cosh?(rc) < a?. We choose o = % (see Fig. 3), for which
¢ = 0.019 satisfies this condition and (4.54), and f;,,, ~ 8.26. We see from Fig. 6a
that, with M = 60, m = 10,000 and N = 256, the inequality (4.72) is satisfied
and maxg=1,...m ,o(A;ZN) < %, so that p(Dr) < % by Theorem 4.21. Figure 6b plots
an approximation oV (Dr) to o (Dr) given by Theorem 4.19, which is contained in
the circle of radius % (in red). By contrast, by (4.73), and arguing as in Example 1,
the numerical range W (Dr) contains at least the closed disc of radius R* ~ 0.8179
(shown in blue in Fig. 6b), where R* is as given in Corollary 4.25.

Figure 6 is also, by Theorem 6.1, relevant to the bounded Lipschitz domain 2_
shown in Fig. 1b. This has boundary I' € 24 which is C! except at the single point
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(@) L(f,N), Re(f,m, M,N), for po = 3, and  (b) o™ (Dr) = {0} U U,,, o(A)R), for N = 256,
the maximum of the spectral radii of A} v, my = 10,000, My = 60, an approximation to

k=1,..., m, plotted against N for m = 10, 000 0(Dr) = 0ess(Dr) by Theorem 4.19. By Theorem 6.1
and M = 60. Rc(f,m,M,N) values are not this is also an approximation to gess(Dr) for T' € Z4 as
shown for N = 2,4, and 8 because they are in Figure 1(b). Also shown are the boundary of Wigo

negative. (for p =10, N = 256, M = 60 and ¢ = 7/13) in black,
R*T C Wigo C W(Dr) in blue (see Corollary 4.25),
%’]I‘ in red.

i ical results p . ooi -2
Fig.6 Numerical results for Example 3; f given by (6.6), @ = 5

x = 0 where it coincides locally with the graph of f given by (6.6). It follows by the
above calculations and Theorem 6.1 that pegs(Dr) < % for I' = 0€2_ and that Fig. 6b
is also a plot of the approximation X (Dr), defined in Theorem 6.1, to the essential
spectrum of Dr for ' = 9Q_. While pess(Dr) < % Wess(Dr), for I' = 9Q2_,
contains the closed disc of radius R* ~ 0.8179 shown in Fig. 6b, by the above result
for the graph I given by (6.6), and a localisation result [11, Theorem 3.2] (and see [11,
Theorem 3.17]) for the essential numerical range, analogous to Theorem 5.2. Thus
also, by (1.8), | Dr|less = wess(Dr) > R*.

Example 4 In this example we define f by (6.2) for x > 0 and set f(x) := 0 for
x < 0, so that I and f satisfy (4.44). Recalling (4.45), we see that f and g are
the same as f and g in Example 1, while f_ = 0 and g = 0. The graph I" has
Lipschitz character L = (fi — fiin)/2 = fiax — 1/2, where fl.. and f/. are
as defined in Example 1. The conditions (4.54) reduce in this example to the same
conditions as in Example 3, and again we choose o = % and ¢ = 0.019, so that I" has
Lipschitz character L = f; . — 1/2 ~ 7.76. Similarly to the previous example, we
see from Fig. 7a that, with M = 50, m = 5, 000, and N = 256, the inequality (4.72)

is satisfied and max;—; p(A%N) < %, so that p(Dr) < % by Theorem 4.21. The

,,,,,

approximation oV (Dr) to o (Dr), given by Theorem 4.19 and plotted in Fig. 7b, is
contained in the circle of radius %, while the numerical range W (Dr) contains at least
the closed disc of radius R* ~ 0.8179 shown in Fig. 7b.

Figure 7 is also, by Theorem 6.1, relevant to the bounded Lipschitz domain 2_
shown in Fig. 1a. This has boundary I' € 24 which is C! except at the single point
x = 0 where it coincides locally with the graph of the function f described above. It
follows by the above calculations and Theorem 6.1 that pegs(Dr) < % forI' = 0Q2_
and that Fig. 6b is also a plot of the approximation £ (Dr), defined in Theorem 6.1,
to the essential spectrum of Dr for I' = 9€2_. Arguing as in the previous example,
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(b) eN(Dr) = {0} UU,g,, o(AM), for N = 256,
my = 5000, Mx = 50, an approximation to o(Dr) =
0ess(Dr) by Theorem 4.19. By Theorem 6.1 this is
also an approximation to oess(Dr) for I' € 24 as in
Figure 1(a). Also shown are the boundary of Wigo (for

p =10, N = 256, M = 50, and ¢t = 7/13) in black,
R*T C Wioo C W(Dr) in blue (see Corollary 4.25),
%'Jl' in red.

Fig.7 Numerical results for Example 4; f1 = f given by (6.2), f— =0,a = %

while pess(Dr) < %, Wess(Dr), for I' = 9Q_, contains the closed disc of radius
R* 2~ 0.8179 plotted in Fig. 7b, and || Dr ||ess > Wess(Dr) > R*.

Remark 6.2 (Symmetry of the spectrum and essential spectrum) For Example 2 it is
immediate from (6.5) that o (Dr) is symmetric with respect to the origin; if z € o (Dr)
then —z € o(Dr). We conjecture, based on the numerical results for Examples 3
and 4 and similar calculations, that this same symmetry holds in 2D whenever I"
is a dilation invariant graph satisfying (4.44). If this conjecture is true, then, for all
I' € 94, 0ess(Dr) is symmetric with respect to the origin by Theorem 6.1. We note
that symmetry results in the 2D case of this sort are proved for D : L>(I") — L*(I")
when I is the boundary of a bounded C 2 domain ©2_ in [35, Proposition 6], and for
D as an operator on the natural energy space for general Lipschitz Q_ [25, Theorem
2.1] (in both these cases the relevant spectrum lies in [—1, 1]). In 3D, even when I" is
a polyhedron, the spectrum and essential spectrum of Dr need not be symmetric with
respect to the origin (see, e.g., [15]).
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