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ARTICLE INFO ABSTRACT

Keywords: Understanding the role of natural selection in driving evolutionary change requires accurate estimates of the
Migration-selection balance strength of selection acting at the genetic level in the wild. This is challenging to achieve but may be easier in the
Dispersal

case of populations in migration-selection balance. When two populations are at equilibrium under migration-
selection balance, there exist loci whose alleles are selected different ways in the two populations. Such loci
can be identified from genome sequencing by their high values of Fgr. This raises the question of what is the
strength of selection on locally-adaptive alleles. To answer this question we analyse a 1-locus 2-allele model of a
population distributed between two niches. We show by simulation of selected cases that the outputs from finite-
population models are essentially the same as those from deterministic infinite-population models. We then
derive theory for the infinite-population model showing the dependence of selection coefficients on equilibrium
allele frequencies, migration rates, dominance and relative population sizes in the two niches. An Excel
spreadsheet is provided for the calculation of selection coefficients and their approximate standard errors from
observed values of population parameters. We illustrate our results with a worked example, with graphs showing
the dependence of selection coefficients on equilibrium allele frequencies, and graphs showing how Fsr depends
on the selection coefficients acting on the alleles at a locus. Given the extent of recent progress in ecological
genomics, we hope our methods may help those studying migration-selection balance to quantify the advantages
conferred by adaptive genes.

Population genetics
Ecological genomics
Fsr

1. Introduction the generations. For example, Vitalis et al. (2014) introduced a method
extending the diffusion approximation of genetic drift in the migration-
drift equilibrium island model to allow for the effects of selection. When

applied to analysis of selection on the lactase-producing gene LCT,

A complete understanding of the role of natural selection in driving
evolutionary change requires accurate estimates of the strength of se-

lection acting at the genetic level in the wild. Until recent advances in
molecular population genetics, measuring natural selection at the ge-
netic level has been challenging (Linnen and Hoekstra, 2009; Thurman
and Barrett, 2016). Thurman and Barrett (2016) located 79 papers that
used molecular techniques to study natural selection acting at the ge-
netic level in natural populations, from which the importance of
genomic data is clear, though variation in time and space can complicate
tracking the strength of selection (Rudman et al., 2018). Several
methods for inferring the strength of selection from gene frequency data
have been developed (Tataru et al., 2017). Starting with the Wright-
Fisher model of the effects of random genetic drift in a randomly mat-
ing population of finite size, several approaches have used the diffusion
approximation to estimate the effects of various combinations of mu-
tation, migration and selection on how allele frequencies change over

* Corresponding author.

Vitalis et al. (2014)’s method showed that the strongest selection co-
efficients occurred in Europe and the Indus Valley, where scaled selec-
tion coefficients ranged up to 100.

These studies started with a model of genetic drift and required
complex mathematical development. Some simplification can be ach-
ieved if the starting point is instead a large population, so that drift can
be ignored. The advantages of this approach have been investigated by
Jewett et al. (2016), who concluded that at least for time-series data,
“ignoring drift leads to estimates of selection coefficients that are nearly
as accurate as estimates that account for the true population history,
even when population sizes are small and drift is high. This result is of
interest because inference methods that ignore drift are widely used in
evolutionary studies and can be many orders of magnitude faster than
methods that account for population sizes.” Hoekstra et al. (2004)
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followed this approach of ignoring drift. Starting from models of pop-
ulations in migration-selection balance (Haldane, 1930; Wright, 1931),
they derived for a simple 2-allele 2-population model an equation that
allows estimation of the selection coefficient against a deleterious allele
from its equilibrium frequency in each of two populations, the level of
dominance and the migration rates between the populations. Using the
equation, Hoekstra et al. (2004) estimated the selection coefficient
acting on the Mc1r gene, which codes for coat colour, in populations of
pocket mice living on black lava and on neighbouring light rocks. Here
we use a similar approach to study locally adapted populations at
equilibrium, held in a balance with selection acting in different di-
rections in different populations. This results in genetic differentiation
between the populations if migration rates between the populations are
sufficiently low.

Genetic differentiation between populations is generally summarised
by Fst (Whitlock, 2011), and Beaumont and Nichols (1996) showed how
Fgt can be used in genomic studies to identify loci responsible for local
adaptations by their relatively high values of Fst (see, e.g., (Flanagan
and Jones, 2017; Graham et al., 2018; Savolainen et al., 2013)). Loci not
under selection have relatively low values of Fsy and information from
these loci can provide estimates of migration rates between niches. As an
example consider Graham et al. (2018)’s study of high and low altitude
populations of the speckled teal (Anas flavirostris) in South America,
which used genome sequencing and Fsr analysis to identify ‘outlier’
genes selected in opposite ways in the two populations. The outlier
genes had Fgr values in the range 0.44-0.77, and in some cases it was
possible to identify the functions of the outlier genes that are adaptive at
high altitude. The remaining non-outlier genes had Fsr values around
0.05 which, when further analysed, suggested < 3% migration rate from
low to high altitude, and less from high to low. This genomic study of
local adaptation identified loci responsible for local adaptations by their
high values of Fsr, and genomic variation in unselected regions of the
genome to estimate migration rates between niches. High values of Fst
occur in genes responsible for local adaptation in large populations at
equilibrium, but Fst may also be high in populations not at equilibrium,
in which evolution is still under way (Lotterhos and Whitlock, 2014;
Lotterhos and Whitlock, 2015). The methods developed in the present
paper are for populations at equilibrium.

Intuitively it is clear that Fgr is increased by the strength of selection
in each population and decreased by migration between them, but a
method is needed to quantify the relationship. As a first step, we show
here how Hoekstra et al. (2004) ’s equation for a deterministic 1-locus 2-
allele model of a large population distributed between two niches can be
extended to show how selection coefficients can be obtained for both
niches. We account for selection acting on migrants as well as residents,
which was not addressed by Hoekstra et al. (2004). In section 2 we
describe a finite and an infinite population genetic model and compare
the resulting evolutionary trajectories towards equilibrium. From this it
appears that final evolutionary outcomes do not depend on population
size. The rest of the paper investigates the interdependence of the factors

m
Niche 1 12 Niche 2
P advantageous <4 | Qadvantageous
my;

Fig. 1. Conceptual overview of the models. For clarity the niches, of sizes Ny
and N, are shown distinct, but in nature may be contiguous or overlap. m;, and
my; specify the proportion of individuals in one niche that migrate to the other
each generation after viability selection and population regulation have
occurred. When analysing the models we suppose that Q is disadvantageous in
niche 1 (i.e., s; is negative) but advantageous in niche 2 (i.e., s, is positive),
while PP homozygotes have fitness 1 in both niches. There are no sex differ-
ences in fitnesses or migration rates.
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affecting evolutionary outcomes in the infinite-population model. In
section 3 we show how selection coefficients depend on equilibrium
allele frequencies, migration rates, dominance and relative population
sizes in two niches. A worked example of the use of the method is pro-
vided, together with visualisations of the relationships between selec-
tion coefficients and equilibrium allele frequencies. Section 4 considers
the implications for Fsr and presents visualisations of the dependence of
Fs7 on selection coefficients and migration rates. Given current interest
in studying local adaptation using ecological genomics, we hope our
methods may help quantify the advantages conferred by adaptive genes.

2. Comparison of evolutionary trajectories of finite and infinite
population genetic models

2.1. Population genetic models

In this section we begin by describing the finite and infinite popu-
lation genetic models on which the paper is based. In both, a single locus
with two alleles P and Q is modelled in an environment consisting of two
niches with some migration between niches prior to mating, as depicted
in Fig. 1. The locus determines ecological adaptation to one niche or the
other. The fitness of the three genotypes in each niche is shown in
Table 1.

Generations are discrete and individuals die after mating. Here we
analyse two types of Wright-Fisher model: a model with finite popula-
tion sizes coded in SLiM (Haller and Messer, 2019), and a deterministic
infinite-population model described below. All models include muta-
tion. In the SLiM model parents mate randomly in each patch each
generation and are chosen with probability proportional to their fitness.
N; and N; individuals are created in this way and some of them migrate
to form part of the next generation’s population in the other patch as
shown in Fig. 1. The SLiM code for the SLiM model is given in Supple-
mentary Materials. The deterministic infinite-population model is
described in subsection 2.2.

2.2. Recurrence equations giving the frequencies of the P allele in
successive generations in the deterministic infinite-population model

Life histories in this model occur in the following order. At the start
of each generation individuals in each niche mate at random, and all
mating individuals obtain the same number of offspring. The number of
offspring of each genotype that survive in each niche is the product of its
initial frequency and its fitness. Population regulation then returns the
population number in each niche to its initial value, N; in niche 1 and N,
in niche 2 (only the ratio N1:Nj is relevant in the infinite population
model, but for clarity of exposition we here retain notation dis-
tinguishing population sizes in the two patches). Finally some in-
dividuals migrate between niches as shown in Fig. 1, which leads to the
start of the next generation. The recurrence equations derived below
give the frequencies of the P allele in successive generations in each
niche. The relative frequencies of P and Q at the start of a generation in
the two niches are given in Table 1. These are first modified by mutation
so that:

’

P =pi(1 =) +qp (1a)

Py =po(l — ) +qup (1b)

where p is the mutation rate per genome per generation. The relative
frequencies of P in the two niches after selection and population regu-
lation are then:

P = (pi + (1+hs)py gy )/(1+2hpy g, st +519,) (22)

P, = (P, + (1 +hs2)py qy )/ (14 2hp, a2 + 520, 7) (2b)

The relative frequencies of P after migration are:
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Table 1

The fitness of the three genotypes in each niche. p; and q; represent the relative
frequencies of the P and Q alleles at the start of a generation in niche 1, their
frequencies in niche 2 are p, and q. Carriers of the QQ genotype obtain fitnesses
1 +5; and 1 + sy in niches 1 and 2 respectively, PP homozygotes have fitness 1 in
both niches. Parameter h indicates the level of dominance of the Q allele.

Niche 1, size N Niche 2, size Ny

Genotype PP PQ QQ PP PQ QQ
Fitness 1 1+ hsy 145 1 1+ hsy 1+sy
Relative frequency  pi  2piay qa PP 2pa2 %

p’ = (1 = mp)Nipt" + myNopy" ) [ e (3a)

P = (1 = my)Nopy" + miNipy") /2 (3b)
where p;” and py” are obtained from Eq. (2), ¢c;= (1—-mj3)N; + my;N»
and ¢y = (1 — m21)N2 + myaN;.

The equations show how the frequencies of P in the two niches in the
next generation, p;” and p2”’, can be derived from the frequencies in the
present generation, p; and po.

2.3. Dependence of evolutionary outcomes on population size

Evolutionary trajectories of the finite and infinite population genetic
models described in subsections 2.1 and 2.2 can now be compared.
Sample outputs from the SLiM finite population model and the deter-
ministic infinite-population model are shown in Fig. 2 for cases in which
N; = N3 = N. These outputs are from single simulations but the final
equilibrium values were found to be very similar in repeated simula-
tions. After chance variations in the times of occurrence of the first
successful Q mutations in finite population simulations, evolutionary
trajectories from initial mutation to final outcome were similar between
models with different population sizes and were completed within a few
hundred generations. Equilibrium frequency values of P alleles (blue
lines) are as expected always higher in patch 1 than in patch 2. In smaller
populations there is more variation between generations, as a result of
genetic drift, but overall there is good agreement between the models in
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their final frequencies. In the SLiM model times until first successful
mutation were sometimes appreciably longer than shown: the lengthy
time to the equilibrium in the lower panel example for N; = No = 1000
was due to the loss of earlier mutations through drift. Fixation some-
times occurred at N = 100 because of large fluctuations in allele fre-
quencies due to drift: a mutation producing a new Q allele was then
needed before populations could proceed to equilibrium.

To evaluate the effect of population size on final frequencies, final
SLiM frequencies were plotted against infinite-population final fre-
quencies as shown in Fig. 3. Note that the correspondence is very good
when population size is 10, 000 (black symbols). The aberrant red point
resulted from a simulation at N = 100 in which P was fixed after 100,
000 generations. The effect of increasing h from 0.5 to 1 is as expected to
increase the frequency of P in both patches, as can also be seen in Fig. 2.

In sum, for the parameters investigated final evolutionary outcomes
do not depend on population size. The rest of the paper reveals the
interdependence of the factors affecting evolutionary outcomes in the
deterministic infinite-population model.

3. Relationship between allele frequencies and selection
coefficients

In this section we show how in the deterministic infinite-population
model, selection coefficients can be derived from equilibrium allele
frequencies, migration rates, dominance and the relative population
sizes in the two niches. Formulae are given with which to calculate
standard errors, and a worked example of the use of the method is
provided, together with visualisations of the relationships between se-
lection coefficients and equilibrium allele frequencies. The inverse
relationship between allele frequencies and selection coefficients is also
considered.

3.1. Calculation of selection coefficients from equilibrium values of p; and
P2, migration rates and population sizes, ignoring mutation

Mutation rates are very small in comparison with the selection co-
efficients of interest here, and equilibrium frequencies are within 0.001
for the infinite-population model with and without mutation in Fig. 3.

N, =N, = 100 1000 10000 o0
g
K
‘©
o
4= 00
o 0 1000 2000 3000 4000 50000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000
9
o 10
>
o
k] 038
—
L

0.6

04

0.2

0.0

1000 4000 50000 1000 2000 3000 4000 50000 1000 2000 3000 4000 5000 0 1000 2000

Time in generations

Fig. 2. Frequency of the P allele in two patches over multiple generations in relation to population size. Population sizes in each patch are shown at the top of each

column. Top row: h = 1, bottom row: h = 0.5. Blue lines show frequency in patch 1, red lines in patch 2. s; =

—0.1, s; = 0.1; m = 0.05; mutation rate = 10°° per

generation except 107> for N = 100: higher mutation rates were used for N = 100 so that the first successful mutation occurred in a reasonable number of gen-

erations. Initial frequency of P was 1.0 in both patches.
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On this basis we replace p;’ by p; and p2’ by p, in the recurrence
equations derived in subsection 2.2, and this allows us to analyse what
happens when populations reach equilibrium. At equilibrium in large
populations, p1” = p; and p2” = py, so from equations 3:

s apr —muNopy"  capy — (1 — may)Nopy”
(1 — mlz)Nl m]ZNl

D1 “4)

If my5, myy, Ny, Ny and equilibrium values of p; and p; are known,
then Eq. (4) can be rearranged to obtain:

o= mip(c1p1 + eap2) — capz

= = K ;) 5a

z (miz 4+ my—1)N, 2 Sy (5a)
Similarly

P = myi(c1py + Capa) — 6‘1[71’ — Ki, say. (5b)

! (myp + my —1)N;

Equating p2” in Egs. (5a) and (2b), and remembering p;’ has been
replaced by p;, we obtain:

pr— K>

§ = (6a)
? T Kago? + hpaga (2K, — 1)
And similarly
p1 — K, (6b)

5§ =
: Kigi* + hp1qi (2K, — 1)

where K; and K are given by Eq. (5).

Approximate standard errors for the estimates of s; and s, can be
obtained by Taylor series expansion about the infinite-population values
of p; and po. These standard errors quantify the uncertainty in estimates
of s; and sy that result from uncertainty in estimates of allele fre-
quencies, migration rates and population sizes. Assuming the co-
variances between p;, p,, mi2, mg1, N; and Ny are small, the variance of
s2(p1, P2, Mi2, M1, N1, N2), V(s2), can be written as a Taylor series. If
third order terms and above can be ignored, then:

1.0 ° e ©
wvy
7] ®
3 [ 4
= 0.8 [
= %
=
(%]
£ 06
Q
2
©
o 04 ]
G
> '
i_—j ° . [
2 02 r
E .' »

O m
°
0.0 °
0.0 0.2 0.4 0.6 0.8 1.0

frequency of P allele in infinite-allele deterministic model

Fig. 3. Correspondence between outputs of SLiM and infinite-population
models. Black, green and red symbols correspond to N = 10,000, 1,000 and
100 respectively. Dominance indicated by squares if h = 1; circles if h = 0.5.
Outputs recorded after 10,000 generations except 100,000 for N = 100 (more
generations were allowed for N = 100 to let successful mutations occur). m =
0.01, mutation rate 10~°. Values of (s;, so) were either s; = —0.1 and s, = 0.1,
0.2,0.3 0or 0.9; or s = 0.1 and s; = —0.2, —0.3 or —0.9. Left-hand 21 points are
outcomes in patch 2, right-hand 21 points in patch 1.

P = Nopy” +

P11 = No(
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v = (22) Voo + (22) Ve + () vome)

+(£zl>zv(m21) + (%)2\/(1\/1) 4 (%)ZV(NZ)

This gives the square of the standard error of s, V(sz), in terms of the
squares of the standard errors of p,, p,, mjz, ma1, Ny and Na; V(p,), V(p,),
V(miz), V(mg1), V(N1), V(N;) respectively. The last four of these will
need to be estimated experimentally. V(s;) is obtained similarly.

In finite populations p, varies about its infinite-population value as a
result of genetic drift, with variance Vg (p;), say, here called drift
variance, and is also independently subject to sampling variance. Using
the finite sampling correction without replacement, the formula for the
sampling variation is p; (1 —p;)(N1 — Ngen)/(2Ngen (N1 — 1)), where N,
is the number of sampled genomes. Division by 2 is necessary because
there are twice as many alleles as genomes if sampling takes place after
random mating but before selection. V(p, ) is obtained as the sum of the
drift and sampling variances of p;. V(p2) is obtained similarly. A worked
example of calculation of selection coefficients and their approximate
standard errors using an Excel spreadsheet is provided in Supplementary
Materials.

3.2. Visualising the relationship between selection coefficients and
equilibrium allele frequencies

Until now theory has been illustrated with frequencies of the P allele
— which may be thought of as wild type — but in this subsection it is
convenient to focus instead on the Q allele, remembering thatq; =1-p;
and qz = 1 — pa. The selection coefficients corresponding to particular
equilibrium allele frequencies can be calculated using equations 6 and
these are illustrated in Fig. 4. To attain a stable equilibrium with sy >
0 and s; < 0 it is necessary that there be more Q alleles in niche 2 than in
niche 1, i.e., q2 > @1, and this is why points only occur in the corre-
sponding triangle of q; q2 space in Fig. 4. The upper panels of Fig. 4 show
that to maintain equilibrium, for a given value of qi, selection for Q in
niche 2, sy, has to increase increasingly with qo. Thus relatively strong
selection for Q is needed in niche 2 if Q is to be maintained there at high
levels, as shown by the rightward upturn in the surfaces in the upper
panels. The lower panels show the converse situation in niche 1 (note
reversal of q; and gy axes). To maintain equilibrium, selection against Q
in niche 1 has to increase as q; decreases. Relatively strong selection
against Q is needed in niche 1 if it is to be maintained there at low levels,
as shown by the rightward downturn in the surfaces in the lower panels
as q tends to zero. The effects of level of dominance, here shown at the
extremes of h = 0.5 and h = 1, appear relatively minor, though there are
differences close to fixation in niche 1. There is a leftward downturn as
q; tends to 1 in the lower lefthand panel but not in the lower righthand
panel. This is because to maintain equilibrium close to fixation, stronger
selection against Q is needed in niche 1 if h = 0.5 than if h = 1.

3.3. Calculating equilibrium frequencies of alleles in each population
when selection coefficients are known

We now turn to the inverse problem of calculating equilibrium fre-
quencies of alleles in each population when selection coefficients are
known. From Eq. (4):

_ompp+my — 1 1-

mp
C2p2 ®
Cimpa Cimyz

Substituting for py” from Eq. (2b), and remembering we are setting
p1 = p1’ and p2 = p2’ as explained above, gives an equation for p; in
terms of pp, mys, mo1, h, 57 and so,:

[)2(1 + hquz)
cimyy 1+ 2hs:p2q04 + $292°

_mp+my —1 1 —mp
c

2P2 (9a)

Cimyy
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Fig. 4. Three-dimensional plots showing selection coefficients s, and s; needed to maintain particular equilibrium allele frequencies q; and q». Upper panels show s;
in niche 2, lower panels show s; in niche 1. Left hand panels are for level of dominance h = 0.5, right hand panels h = 1. Selection coefficients were calculated over a

grid of q; qo values, using equations 6 for the case m;; = mz; = 0.01, N; = Na.

The analogous equation for p; is:

1—m21

_mn +my — lNl( pi(1+hsiqr)

c (9b)
Camyy L+ 2hsipigiy + 51912 CaMiyy i

P2

Substituting py from Eq. (9b) into Eq. (9a) yields an equation in pj,
mjy, Moy, Ny, No, h, s; and s which can be solved to obtain equilibrium
values of p; for given values of m;, ma;, N1, No, h, 57 and sy. Equilibrium
values of py can be obtained similarly.

Equations (9) do not provide explicit expressions for the equilibrium
values of p; and p,. An alternative to using an equation solver to obtain
equilibrium values is to simulate the evolutionary process for specified
values of h, mj2, maj, N1, No, 51 and s using the recurrence equations (2)
and (3). Checks showed that the simulated evolutionary outcomes
satisfied equations (9).

Equations (9) show how equilibrium frequencies of alleles in each
population can be calculated when selection coefficients are known.

4. Implications for Fsy and visualisations of the dependence of
Fst on selection coefficients and migration rate

The interdependence of the factors affecting evolutionary outcomes
has been shown in equations 6 and 9. In this section we explore the
implications for Fgp; how equilibrium values of Fgy are related to the
migration rates between the niches, and the strengths of selection s; and
So within them.

4.1. Calculation of Fsr

Fgt was calculated from allele frequencies using the equation Fsr =
6s? /o012, where 652 and 72 represent the variances of an allele’s fre-
quency between subpopulations, and in the total population,

respectively (Holsinger and Weir, 2009). The variance of p, the fre-
quency of an allele in a population of size n, is given by the binomial
distribution as npq. So Fsr = (prqr —%plql —%pzqz) /prqr, where sub-
scripts T, 1 and 2 refer to the total population and the populations in
niches 1 and 2 respectively. Fsr can therefore alternatively be thought of
in terms of the average frequency of heterozygotes in the two pop-
ulations compared with the frequency of heterozygotes if there was
random mating between all the individuals in the two populations. Fgr
was assigned the value 0 when one allele became fixed in both niches
because Fgst tends to 0 as any one allele tends to fixation.

4.2. Visualisation of the function Fst = Fsr(m, s, s2) when mjz = my; =
m

In this subsection we show how equilibrium values of Fst are related
to the migration rates between the niches, and the strengths of selection
s; and sp within them. For simplicity we assume that migration rates are
the same in each direction, so that my5 = my; = m, and that population
sizes in the two niches are equal so that N; = Na. We begin by showing
how genetic differentiation, measured by Fsr, is reduced by migration
when selection is maximal, total selection one way in niche 1 and the
other way in niche 2 (Fig. 5). Maximal selection produces maximum
values of Fsr, and these decline as migration rates increase, from a
maximum of 1 when populations are isolated, to around 0.4 when
migration rates are 10% and down to zero when migration rate is 50%
(Fig. 5). The maximum values of Fgy are a little higher for h = 0.5 than
for h = 1 (dominance) when migration rates are less than 15%, but
otherwise similar.

To visualise the effects of varying values of s; and sy on Fgy we
calculated equilibrium values of Fsr over a grid of values of m, s; and s
to obtain visualisations of the function Fst = Fst(m, s1, s2), and these are
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Fig. 5. The maximum values of Fsr in relation to migration rate, m. Maximum
values of Fgr occur when selection on QQ is total one way in niche 1 and the
other way in niche 2, and this was approximated by setting s; at —1 and s; at
10°. Solid blue curve is for h = 1, dashed red curve h = 0.5. Values of Fsr were
calculated for populations at equilibrium as determined by simulation of
evolutionary trajectories of allele frequencies. Equilibrium judged by eye was
generally achieved within 100 generations.

presented in Fig. 6 for two levels of dominance h. The panels in the rows
of Fig. 6 represent visualisations of the function Fst = Fsr(m, s1, s2) for
three values of migration rate m. The highest values of Fsr are achieved
when migration rates are lowest (left-hand panels of Fig. 6). Within each
panel the highest value of Fst occurs when selection is at its strongest,
for Q in niche 2 (s = 1) and against Q in niche 1 (s; = —1). If selection is
too low, then either P or Q go to fixation and Fst goes to zero. At other
values of s; and s the equilibrium is a polymorphism and Fst > 0. The
shapes of the Fsr surfaces for h = 1 (top row of Fig. 6) and h = 0.5
(bottom row) are qualitatively similar but they differ a little in quanti-
tative detail. The Fgy surfaces shown in Fig. 6 are not perfectly sym-
metrical about the s; = —s; plane, because s; = —1 represents total
selection against QQ in niche 1 but s = +1 does not represent total
selection for QQ in niche 2; that is achieved when sy = .

Migrationrate= 1%

FST 05

op

s1 ™

FST 05

5%
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5. Discussion

Methods to estimate selection coefficients are needed to further un-
derstand evolutionary processes in wild populations. Here, using a
simple two-niche two-allele model, we show in equations 6 how selec-
tion coefficients s; and sy can be estimated from measurements of
migration rates, population sizes, dominance and the equilibrium values
of allele frequencies in two habitats. In a worked example it is shown
that the standard errors of the selection coefficients can also be esti-
mated from measurements of the other population parameters. These
estimates rely, as in all Wright-Fisher analyses, on the simple model life
history analysed being an adequate representation of reality. The
method of estimating selection coefficients using equation 6 requires
knowledge of migration rates, allele frequencies and population sizes in
the two habitats, and the level of dominance. Migration rates can
sometimes be estimated by marking individuals or using genetic
markers (e.g., (Sunde et al., 2020)), and allele frequencies are routinely
measured in genomic studies. Effects of levels of dominance are dis-
cussed below.

Because Fgr is generally reported rather than allele frequencies, we
analysed the relationship between Fsr and selection coefficients, and
presented the results graphically in Figs. 5 and 6 as visualisations of the
function Fsy = Fsr(m, s, S2), where both migration rates m between the
two niches and the populations sizes within them are equal. These vis-
ualisations show how equilibrium values of Fgr are related to the
migration rates between the niches, and the strengths of selection s; and
sy within them. The graphs provide quantitative detail as to how Fsy
declines as migration rates increase (Figs. 5 and 6). If Fst and migration
rates are known, Fig. 6 shows that some inferences are possible as to the
values of selection coefficients.

All the results presented here show some dependence on levels of
dominance. Although there is interest in the evolution of dominance,
surprisingly little is known of values of levels of dominance in natural
populations (Billiard et al., 2021; Huber et al., 2018; Thurman and
Barrett, 2016) except that overdominance is infrequent (Thurman and
Barrett, 2016) but see also Brookfield (2020)). Here in Figs. 2-6 we
present evolutionary outcomes for what are, in the absence of over-
dominance, the extreme values 0.5 and 1. Fig. 4 suggests that to

10%

h=1

Fig. 6. Values of Fgr in relation to selection coefficients s; and s, for three rates of migration between niches m, and two levels of dominance h. Top row: Q is
dominant (i.e. h = 1); bottom row h = 0.5. Values of Fsy were calculated for populations at equilibrium as determined by simulation of the evolutionary process.
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maintain equilibrium close to fixation, stronger selection against Q is
needed in niche 1 if h = 0.5 than if h = 1, but otherwise it seems that in
the absence of overdominance, levels of dominance have only small
effects on equilibrium values.

Inferences in practice will need to take account of several caveats.
Our calculations are for populations at equilibrium, but in the real world
selection pressures, migration rates and population sizes may vary over
time, so that allele frequencies, Fst and other variables vary too. Fig. 2
gives an indication of how populations approach equilibrium in the
presence of drift, but further analysis would be valuable, perhaps using
approaches such as those reviewed by Tataru et al. (2017). The effects of
drift on standard errors are shown in equation 7. Loci may become
differentiated between populations not because they are themselves
selected but because they are physically close to loci that are selected
(Petry, 1983), the phenomenon of linked selection (see, e.g., (Aesch-
bacher et al., 2017; Burri, 2017)).

Here we have derived equations, for populations in migration-
selection balance, that show the relationships between equilibrium
allele frequencies, selection coefficients, migration rates, population
sizes and dominance. These are illustrated by graphs that show quan-
titatively how, at a given locus, equilibrium allele frequencies are
related to the selection coefficients that hold them in equilibrium, and
how Fgr increases with the selection coefficients acting on the alleles at
the locus. We hope our methods may help those studying migration-
selection balance to quantify the advantages conferred by adaptive
genes.
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Appendix A. Supplementary data

Supplementary data (SLiM code for the finite population model
described in the text. Worked example of calculation of selection co-
efficients and their approximate standard errors using an Excel spread-
sheet. Excel spreadsheet showing how selection coefficients and their
approximate standard errors may be calculated from observed values
and standard errors of allele frequencies, migration rates, population
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sizes and level of dominance, on the assumption that populations are in
equilibrium.) to this article can be found online at https://doi.org/10.10
16/].jthi.2023.111463.
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