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A B S T R A C T   

Understanding the role of natural selection in driving evolutionary change requires accurate estimates of the 
strength of selection acting at the genetic level in the wild. This is challenging to achieve but may be easier in the 
case of populations in migration-selection balance. When two populations are at equilibrium under migration- 
selection balance, there exist loci whose alleles are selected different ways in the two populations. Such loci 
can be identified from genome sequencing by their high values of FST. This raises the question of what is the 
strength of selection on locally-adaptive alleles. To answer this question we analyse a 1-locus 2-allele model of a 
population distributed between two niches. We show by simulation of selected cases that the outputs from finite- 
population models are essentially the same as those from deterministic infinite-population models. We then 
derive theory for the infinite-population model showing the dependence of selection coefficients on equilibrium 
allele frequencies, migration rates, dominance and relative population sizes in the two niches. An Excel 
spreadsheet is provided for the calculation of selection coefficients and their approximate standard errors from 
observed values of population parameters. We illustrate our results with a worked example, with graphs showing 
the dependence of selection coefficients on equilibrium allele frequencies, and graphs showing how FST depends 
on the selection coefficients acting on the alleles at a locus. Given the extent of recent progress in ecological 
genomics, we hope our methods may help those studying migration-selection balance to quantify the advantages 
conferred by adaptive genes.   

1. Introduction 

A complete understanding of the role of natural selection in driving 
evolutionary change requires accurate estimates of the strength of se
lection acting at the genetic level in the wild. Until recent advances in 
molecular population genetics, measuring natural selection at the ge
netic level has been challenging (Linnen and Hoekstra, 2009; Thurman 
and Barrett, 2016). Thurman and Barrett (2016) located 79 papers that 
used molecular techniques to study natural selection acting at the ge
netic level in natural populations, from which the importance of 
genomic data is clear, though variation in time and space can complicate 
tracking the strength of selection (Rudman et al., 2018). Several 
methods for inferring the strength of selection from gene frequency data 
have been developed (Tataru et al., 2017). Starting with the Wright- 
Fisher model of the effects of random genetic drift in a randomly mat
ing population of finite size, several approaches have used the diffusion 
approximation to estimate the effects of various combinations of mu
tation, migration and selection on how allele frequencies change over 

the generations. For example, Vitalis et al. (2014) introduced a method 
extending the diffusion approximation of genetic drift in the migration- 
drift equilibrium island model to allow for the effects of selection. When 
applied to analysis of selection on the lactase-producing gene LCT, 
Vitalis et al. (2014)’s method showed that the strongest selection co
efficients occurred in Europe and the Indus Valley, where scaled selec
tion coefficients ranged up to 100. 

These studies started with a model of genetic drift and required 
complex mathematical development. Some simplification can be ach
ieved if the starting point is instead a large population, so that drift can 
be ignored. The advantages of this approach have been investigated by 
Jewett et al. (2016), who concluded that at least for time-series data, 
“ignoring drift leads to estimates of selection coefficients that are nearly 
as accurate as estimates that account for the true population history, 
even when population sizes are small and drift is high. This result is of 
interest because inference methods that ignore drift are widely used in 
evolutionary studies and can be many orders of magnitude faster than 
methods that account for population sizes.” Hoekstra et al. (2004) 
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followed this approach of ignoring drift. Starting from models of pop
ulations in migration-selection balance (Haldane, 1930; Wright, 1931), 
they derived for a simple 2-allele 2-population model an equation that 
allows estimation of the selection coefficient against a deleterious allele 
from its equilibrium frequency in each of two populations, the level of 
dominance and the migration rates between the populations. Using the 
equation, Hoekstra et al. (2004) estimated the selection coefficient 
acting on the Mc1r gene, which codes for coat colour, in populations of 
pocket mice living on black lava and on neighbouring light rocks. Here 
we use a similar approach to study locally adapted populations at 
equilibrium, held in a balance with selection acting in different di
rections in different populations. This results in genetic differentiation 
between the populations if migration rates between the populations are 
sufficiently low. 

Genetic differentiation between populations is generally summarised 
by FST (Whitlock, 2011), and Beaumont and Nichols (1996) showed how 
FST can be used in genomic studies to identify loci responsible for local 
adaptations by their relatively high values of FST (see, e.g., (Flanagan 
and Jones, 2017; Graham et al., 2018; Savolainen et al., 2013)). Loci not 
under selection have relatively low values of FST and information from 
these loci can provide estimates of migration rates between niches. As an 
example consider Graham et al. (2018)’s study of high and low altitude 
populations of the speckled teal (Anas flavirostris) in South America, 
which used genome sequencing and FST analysis to identify ‘outlier’ 
genes selected in opposite ways in the two populations. The outlier 
genes had FST values in the range 0.44–0.77, and in some cases it was 
possible to identify the functions of the outlier genes that are adaptive at 
high altitude. The remaining non-outlier genes had FST values around 
0.05 which, when further analysed, suggested < 3% migration rate from 
low to high altitude, and less from high to low. This genomic study of 
local adaptation identified loci responsible for local adaptations by their 
high values of FST, and genomic variation in unselected regions of the 
genome to estimate migration rates between niches. High values of FST 
occur in genes responsible for local adaptation in large populations at 
equilibrium, but FST may also be high in populations not at equilibrium, 
in which evolution is still under way (Lotterhos and Whitlock, 2014; 
Lotterhos and Whitlock, 2015). The methods developed in the present 
paper are for populations at equilibrium. 

Intuitively it is clear that FST is increased by the strength of selection 
in each population and decreased by migration between them, but a 
method is needed to quantify the relationship. As a first step, we show 
here how Hoekstra et al. (2004) ’s equation for a deterministic 1-locus 2- 
allele model of a large population distributed between two niches can be 
extended to show how selection coefficients can be obtained for both 
niches. We account for selection acting on migrants as well as residents, 
which was not addressed by Hoekstra et al. (2004). In section 2 we 
describe a finite and an infinite population genetic model and compare 
the resulting evolutionary trajectories towards equilibrium. From this it 
appears that final evolutionary outcomes do not depend on population 
size. The rest of the paper investigates the interdependence of the factors 

affecting evolutionary outcomes in the infinite-population model. In 
section 3 we show how selection coefficients depend on equilibrium 
allele frequencies, migration rates, dominance and relative population 
sizes in two niches. A worked example of the use of the method is pro
vided, together with visualisations of the relationships between selec
tion coefficients and equilibrium allele frequencies. Section 4 considers 
the implications for FST and presents visualisations of the dependence of 
FST on selection coefficients and migration rates. Given current interest 
in studying local adaptation using ecological genomics, we hope our 
methods may help quantify the advantages conferred by adaptive genes. 

2. Comparison of evolutionary trajectories of finite and infinite 
population genetic models 

2.1. Population genetic models 

In this section we begin by describing the finite and infinite popu
lation genetic models on which the paper is based. In both, a single locus 
with two alleles P and Q is modelled in an environment consisting of two 
niches with some migration between niches prior to mating, as depicted 
in Fig. 1. The locus determines ecological adaptation to one niche or the 
other. The fitness of the three genotypes in each niche is shown in 
Table 1. 

Generations are discrete and individuals die after mating. Here we 
analyse two types of Wright-Fisher model: a model with finite popula
tion sizes coded in SLiM (Haller and Messer, 2019), and a deterministic 
infinite-population model described below. All models include muta
tion. In the SLiM model parents mate randomly in each patch each 
generation and are chosen with probability proportional to their fitness. 
N1 and N2 individuals are created in this way and some of them migrate 
to form part of the next generation’s population in the other patch as 
shown in Fig. 1. The SLiM code for the SLiM model is given in Supple
mentary Materials. The deterministic infinite-population model is 
described in subsection 2.2. 

2.2. Recurrence equations giving the frequencies of the P allele in 
successive generations in the deterministic infinite-population model 

Life histories in this model occur in the following order. At the start 
of each generation individuals in each niche mate at random, and all 
mating individuals obtain the same number of offspring. The number of 
offspring of each genotype that survive in each niche is the product of its 
initial frequency and its fitness. Population regulation then returns the 
population number in each niche to its initial value, N1 in niche 1 and N2 
in niche 2 (only the ratio N1:N2 is relevant in the infinite population 
model, but for clarity of exposition we here retain notation dis
tinguishing population sizes in the two patches). Finally some in
dividuals migrate between niches as shown in Fig. 1, which leads to the 
start of the next generation. The recurrence equations derived below 
give the frequencies of the P allele in successive generations in each 
niche. The relative frequencies of P and Q at the start of a generation in 
the two niches are given in Table 1. These are first modified by mutation 
so that: 

p1
′

= p1(1 − μ)+ q1μ (1a)  

p2
′

= p2(1 − μ)+ q2μ (1b)  

where µ is the mutation rate per genome per generation. The relative 
frequencies of P in the two niches after selection and population regu
lation are then: 

p1
′′ = (p1

′2 + (1 + hs1)p1
′q1

′

)/(1 + 2hp1
′ q1

′ s1 + s1q1
′2) (2a)  

p2
′′ = (p2

′2 + (1 + hs2)p2
′q2

′

)/(1 + 2hp2
′ q2

′ s2 + s2q2
′2) (2b) 

The relative frequencies of P after migration are: 

Fig. 1. Conceptual overview of the models. For clarity the niches, of sizes N1 
and N2, are shown distinct, but in nature may be contiguous or overlap. m12 and 
m21 specify the proportion of individuals in one niche that migrate to the other 
each generation after viability selection and population regulation have 
occurred. When analysing the models we suppose that Q is disadvantageous in 
niche 1 (i.e., s1 is negative) but advantageous in niche 2 (i.e., s2 is positive), 
while PP homozygotes have fitness 1 in both niches. There are no sex differ
ences in fitnesses or migration rates. 
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p1
′′′ = ((1 − m12)N1p1

′′ + m21N2p2
′′)/c1 (3a)  

p2
′′′ = ((1 − m21)N2p2

′′ + m12N1p1
′′)/c2 (3b)  

where p1
′′ and p2

′′ are obtained from Eq. (2), c1= (1− m12)N1 + m21N2 
and c2 = (1 − m21)N2 + m12N1. 

The equations show how the frequencies of P in the two niches in the 
next generation, p1

′′′ and p2
′′′, can be derived from the frequencies in the 

present generation, p1 and p2. 

2.3. Dependence of evolutionary outcomes on population size 

Evolutionary trajectories of the finite and infinite population genetic 
models described in subsections 2.1 and 2.2 can now be compared. 
Sample outputs from the SLiM finite population model and the deter
ministic infinite-population model are shown in Fig. 2 for cases in which 
N1 = N2 = N. These outputs are from single simulations but the final 
equilibrium values were found to be very similar in repeated simula
tions. After chance variations in the times of occurrence of the first 
successful Q mutations in finite population simulations, evolutionary 
trajectories from initial mutation to final outcome were similar between 
models with different population sizes and were completed within a few 
hundred generations. Equilibrium frequency values of P alleles (blue 
lines) are as expected always higher in patch 1 than in patch 2. In smaller 
populations there is more variation between generations, as a result of 
genetic drift, but overall there is good agreement between the models in 

their final frequencies. In the SLiM model times until first successful 
mutation were sometimes appreciably longer than shown: the lengthy 
time to the equilibrium in the lower panel example for N1 = N2 = 1000 
was due to the loss of earlier mutations through drift. Fixation some
times occurred at N = 100 because of large fluctuations in allele fre
quencies due to drift: a mutation producing a new Q allele was then 
needed before populations could proceed to equilibrium. 

To evaluate the effect of population size on final frequencies, final 
SLiM frequencies were plotted against infinite-population final fre
quencies as shown in Fig. 3. Note that the correspondence is very good 
when population size is 10, 000 (black symbols). The aberrant red point 
resulted from a simulation at N = 100 in which P was fixed after 100, 
000 generations. The effect of increasing h from 0.5 to 1 is as expected to 
increase the frequency of P in both patches, as can also be seen in Fig. 2. 

In sum, for the parameters investigated final evolutionary outcomes 
do not depend on population size. The rest of the paper reveals the 
interdependence of the factors affecting evolutionary outcomes in the 
deterministic infinite-population model. 

3. Relationship between allele frequencies and selection 
coefficients 

In this section we show how in the deterministic infinite-population 
model, selection coefficients can be derived from equilibrium allele 
frequencies, migration rates, dominance and the relative population 
sizes in the two niches. Formulae are given with which to calculate 
standard errors, and a worked example of the use of the method is 
provided, together with visualisations of the relationships between se
lection coefficients and equilibrium allele frequencies. The inverse 
relationship between allele frequencies and selection coefficients is also 
considered. 

3.1. Calculation of selection coefficients from equilibrium values of p1 and 
p2, migration rates and population sizes, ignoring mutation 

Mutation rates are very small in comparison with the selection co
efficients of interest here, and equilibrium frequencies are within 0.001 
for the infinite-population model with and without mutation in Fig. 3. 

Table 1 
The fitness of the three genotypes in each niche. p1 and q1 represent the relative 
frequencies of the P and Q alleles at the start of a generation in niche 1, their 
frequencies in niche 2 are p2 and q2. Carriers of the QQ genotype obtain fitnesses 
1 + s1 and 1 + s2 in niches 1 and 2 respectively, PP homozygotes have fitness 1 in 
both niches. Parameter h indicates the level of dominance of the Q allele.   

Niche 1, size N1 Niche 2, size N2 

Genotype PP PQ QQ PP PQ QQ 

Fitness 1 1 + hs1 1 + s1 1 1 + hs2 1 + s2 

Relative frequency p1
2 2p1q1 q1

2 p2
2 2p2q2 q2

2  

500040003000200010000

1.0

0.8

0.6

0.4

0.2

0.0

500040003000200010000

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 2. Frequency of the P allele in two patches over multiple generations in relation to population size. Population sizes in each patch are shown at the top of each 
column. Top row: h = 1, bottom row: h = 0.5. Blue lines show frequency in patch 1, red lines in patch 2. s1 = − 0.1, s2 = 0.1; m = 0.05; mutation rate = 10− 6 per 
generation except 10− 5 for N = 100: higher mutation rates were used for N = 100 so that the first successful mutation occurred in a reasonable number of gen
erations. Initial frequency of P was 1.0 in both patches. 
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On this basis we replace p1
′ by p1 and p2

′ by p2 in the recurrence 
equations derived in subsection 2.2, and this allows us to analyse what 
happens when populations reach equilibrium. At equilibrium in large 
populations, p1

′′′ = p1 and p2
′′′ = p2, so from equations 3: 

p1
′′ =

c1p1 − m21N2p2
′′

(1 − m12)N1
=

c2p2 − (1 − m21)N2p2
′′

m12N1
(4) 

If m12, m21, N1, N2 and equilibrium values of p1 and p2 are known, 
then Eq. (4) can be rearranged to obtain: 

p′′
2 =

m12(c1p1 + c2p2) − c2p2

(m12 + m21− 1)N2
,= K2, say (5a) 

Similarly 

p′′
1 =

m21(c1p1 + c2p2) − c1p1

(m12 + m21− 1)N1
,= K1, say. (5b) 

Equating p2
′′ in Eqs. (5a) and (2b), and remembering p1

′ has been 
replaced by p1, we obtain: 

s2 =
p2 − K2

K2q2
2 + hp2q2(2K2 − 1)

(6a) 

And similarly 

s1 =
p1 − K1

K1q1
2 + hp1q1(2K1 − 1)

(6b)  

where K1 and K2 are given by Eq. (5). 
Approximate standard errors for the estimates of s1 and s2 can be 

obtained by Taylor series expansion about the infinite-population values 
of p1 and p2. These standard errors quantify the uncertainty in estimates 
of s1 and s2 that result from uncertainty in estimates of allele fre
quencies, migration rates and population sizes. Assuming the co
variances between p1, p2, m12,m21,N1 and N2 are small, the variance of 
s2(p1, p2, m12, m21, N1,N2), V(s2), can be written as a Taylor series. If 
third order terms and above can be ignored, then: 

V(s2) ≈

(
∂s2

∂p1

)2

V(p1) +

(
∂s2

∂p2

)2

V(p2) +

(
∂s2

∂m12

)2

V(m12)

+

(
∂s2

∂m21

)2

V(m21) +

(
∂s2

∂N1

)2

V(N1) +

(
∂s2

∂N2

)2

V(N2)

(7) 

This gives the square of the standard error of s2, V(s2), in terms of the 
squares of the standard errors of p1, p2, m12,m21,N1 and N2; V(p1), V(p2),

V(m12), V(m21), V(N1), V(N2) respectively. The last four of these will 
need to be estimated experimentally. V(s1) is obtained similarly. 

In finite populations p1 varies about its infinite-population value as a 
result of genetic drift, with variance Vdrift(p1), say, here called drift 
variance, and is also independently subject to sampling variance. Using 
the finite sampling correction without replacement, the formula for the 
sampling variation is p1(1 − p1)(N1 − Ngen)/(2Ngen(N1 − 1)), where Ngen 

is the number of sampled genomes. Division by 2 is necessary because 
there are twice as many alleles as genomes if sampling takes place after 
random mating but before selection. V(p1) is obtained as the sum of the 
drift and sampling variances of p1. V(p2) is obtained similarly. A worked 
example of calculation of selection coefficients and their approximate 
standard errors using an Excel spreadsheet is provided in Supplementary 
Materials. 

3.2. Visualising the relationship between selection coefficients and 
equilibrium allele frequencies 

Until now theory has been illustrated with frequencies of the P allele 
– which may be thought of as wild type – but in this subsection it is 
convenient to focus instead on the Q allele, remembering that q1 = 1 – p1 
and q2 = 1 – p2. The selection coefficients corresponding to particular 
equilibrium allele frequencies can be calculated using equations 6 and 
these are illustrated in Fig. 4. To attain a stable equilibrium with s2 >

0 and s1 < 0 it is necessary that there be more Q alleles in niche 2 than in 
niche 1, i.e., q2 > q’1, and this is why points only occur in the corre
sponding triangle of q1 q2 space in Fig. 4. The upper panels of Fig. 4 show 
that to maintain equilibrium, for a given value of q1, selection for Q in 
niche 2, s2, has to increase increasingly with q2. Thus relatively strong 
selection for Q is needed in niche 2 if Q is to be maintained there at high 
levels, as shown by the rightward upturn in the surfaces in the upper 
panels. The lower panels show the converse situation in niche 1 (note 
reversal of q1 and q2 axes). To maintain equilibrium, selection against Q 
in niche 1 has to increase as q1 decreases. Relatively strong selection 
against Q is needed in niche 1 if it is to be maintained there at low levels, 
as shown by the rightward downturn in the surfaces in the lower panels 
as q1 tends to zero. The effects of level of dominance, here shown at the 
extremes of h = 0.5 and h = 1, appear relatively minor, though there are 
differences close to fixation in niche 1. There is a leftward downturn as 
q1 tends to 1 in the lower lefthand panel but not in the lower righthand 
panel. This is because to maintain equilibrium close to fixation, stronger 
selection against Q is needed in niche 1 if h = 0.5 than if h = 1. 

3.3. Calculating equilibrium frequencies of alleles in each population 
when selection coefficients are known 

We now turn to the inverse problem of calculating equilibrium fre
quencies of alleles in each population when selection coefficients are 
known. From Eq. (4): 

p1 =
m12 + m21 − 1

c1m12
N2p2

′′ +
1 − m12

c1m12
c2p2 (8) 

Substituting for p2
′′ from Eq. (2b), and remembering we are setting 

p1 = p1
′ and p2 = p2

′ as explained above, gives an equation for p1 in 
terms of p2, m12, m21, h, s1 and s2,: 

p1 =
m12 + m21 − 1

c1m12
N2(

p2(1 + hs2q2)

1 + 2hs2p2q2+ + s2q2
2)+

1 − m12

c1m12
c2p2 (9a) 

Fig. 3. Correspondence between outputs of SLiM and infinite-population 
models. Black, green and red symbols correspond to N = 10,000, 1,000 and 
100 respectively. Dominance indicated by squares if h = 1; circles if h = 0.5. 
Outputs recorded after 10,000 generations except 100,000 for N = 100 (more 
generations were allowed for N = 100 to let successful mutations occur). m =
0.01, mutation rate 10− 6. Values of (s1, s2) were either s1 = − 0.1 and s2 = 0.1, 
0.2, 0.3 or 0.9; or s2 = 0.1 and s1 = − 0.2, − 0.3 or − 0.9. Left-hand 21 points are 
outcomes in patch 2, right-hand 21 points in patch 1. 
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The analogous equation for p2 is: 

p2 =
m12 + m21 − 1

c2m21
N1(

p1(1 + hs1q1)

1 + 2hs1p1q1+ + s1q1
2)+

1 − m21

c2m21
c1p1 (9b) 

Substituting p2 from Eq. (9b) into Eq. (9a) yields an equation in p1, 
m12, m21, N1, N2, h, s1 and s2 which can be solved to obtain equilibrium 
values of p1 for given values of m12, m21, N1, N2, h, s1 and s2. Equilibrium 
values of p2 can be obtained similarly. 

Equations (9) do not provide explicit expressions for the equilibrium 
values of p1 and p2. An alternative to using an equation solver to obtain 
equilibrium values is to simulate the evolutionary process for specified 
values of h, m12, m21, N1, N2, s1 and s2 using the recurrence equations (2) 
and (3). Checks showed that the simulated evolutionary outcomes 
satisfied equations (9). 

Equations (9) show how equilibrium frequencies of alleles in each 
population can be calculated when selection coefficients are known. 

4. Implications for FST and visualisations of the dependence of 
FST on selection coefficients and migration rate 

The interdependence of the factors affecting evolutionary outcomes 
has been shown in equations 6 and 9. In this section we explore the 
implications for FST; how equilibrium values of FST are related to the 
migration rates between the niches, and the strengths of selection s1 and 
s2 within them. 

4.1. Calculation of FST 

FST was calculated from allele frequencies using the equation FST =

σS
2/σT

2, where σS
2 and σT

2 represent the variances of an allele’s fre
quency between subpopulations, and in the total population, 

respectively (Holsinger and Weir, 2009). The variance of p, the fre
quency of an allele in a population of size n, is given by the binomial 
distribution as npq. So FST = (pTqT −

1
2p1q1 −

1
2p2q2)/pTqT, where sub

scripts T, 1 and 2 refer to the total population and the populations in 
niches 1 and 2 respectively. FST can therefore alternatively be thought of 
in terms of the average frequency of heterozygotes in the two pop
ulations compared with the frequency of heterozygotes if there was 
random mating between all the individuals in the two populations. FST 
was assigned the value 0 when one allele became fixed in both niches 
because FST tends to 0 as any one allele tends to fixation. 

4.2. Visualisation of the function FST = FST(m, s1, s2) when m12 = m21 =

m 

In this subsection we show how equilibrium values of FST are related 
to the migration rates between the niches, and the strengths of selection 
s1 and s2 within them. For simplicity we assume that migration rates are 
the same in each direction, so that m12 = m21 = m, and that population 
sizes in the two niches are equal so that N1 = N2. We begin by showing 
how genetic differentiation, measured by FST, is reduced by migration 
when selection is maximal, total selection one way in niche 1 and the 
other way in niche 2 (Fig. 5). Maximal selection produces maximum 
values of FST, and these decline as migration rates increase, from a 
maximum of 1 when populations are isolated, to around 0.4 when 
migration rates are 10% and down to zero when migration rate is 50% 
(Fig. 5). The maximum values of FST are a little higher for h = 0.5 than 
for h = 1 (dominance) when migration rates are less than 15%, but 
otherwise similar. 

To visualise the effects of varying values of s1 and s2 on FST we 
calculated equilibrium values of FST over a grid of values of m, s1 and s2 
to obtain visualisations of the function FST = FST(m, s1, s2), and these are 

Fig. 4. Three-dimensional plots showing selection coefficients s2 and s1 needed to maintain particular equilibrium allele frequencies q1 and q2. Upper panels show s2 
in niche 2, lower panels show s1 in niche 1. Left hand panels are for level of dominance h = 0.5, right hand panels h = 1. Selection coefficients were calculated over a 
grid of q1 q2 values, using equations 6 for the case m12 = m21 = 0.01, N1 = N2. 
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presented in Fig. 6 for two levels of dominance h. The panels in the rows 
of Fig. 6 represent visualisations of the function FST = FST(m, s1, s2) for 
three values of migration rate m. The highest values of FST are achieved 
when migration rates are lowest (left-hand panels of Fig. 6). Within each 
panel the highest value of FST occurs when selection is at its strongest, 
for Q in niche 2 (s2 = 1) and against Q in niche 1 (s1 = − 1). If selection is 
too low, then either P or Q go to fixation and FST goes to zero. At other 
values of s1 and s2 the equilibrium is a polymorphism and FST > 0. The 
shapes of the FST surfaces for h = 1 (top row of Fig. 6) and h = 0.5 
(bottom row) are qualitatively similar but they differ a little in quanti
tative detail. The FST surfaces shown in Fig. 6 are not perfectly sym
metrical about the s2 = − s1 plane, because s1 = − 1 represents total 
selection against QQ in niche 1 but s2 = +1 does not represent total 
selection for QQ in niche 2; that is achieved when s2 = ∞. 

5. Discussion 

Methods to estimate selection coefficients are needed to further un
derstand evolutionary processes in wild populations. Here, using a 
simple two-niche two-allele model, we show in equations 6 how selec
tion coefficients s1 and s2 can be estimated from measurements of 
migration rates, population sizes, dominance and the equilibrium values 
of allele frequencies in two habitats. In a worked example it is shown 
that the standard errors of the selection coefficients can also be esti
mated from measurements of the other population parameters. These 
estimates rely, as in all Wright-Fisher analyses, on the simple model life 
history analysed being an adequate representation of reality. The 
method of estimating selection coefficients using equation 6 requires 
knowledge of migration rates, allele frequencies and population sizes in 
the two habitats, and the level of dominance. Migration rates can 
sometimes be estimated by marking individuals or using genetic 
markers (e.g., (Sunde et al., 2020)), and allele frequencies are routinely 
measured in genomic studies. Effects of levels of dominance are dis
cussed below. 

Because FST is generally reported rather than allele frequencies, we 
analysed the relationship between FST and selection coefficients, and 
presented the results graphically in Figs. 5 and 6 as visualisations of the 
function FST = FST(m, s1, s2), where both migration rates m between the 
two niches and the populations sizes within them are equal. These vis
ualisations show how equilibrium values of FST are related to the 
migration rates between the niches, and the strengths of selection s1 and 
s2 within them. The graphs provide quantitative detail as to how FST 
declines as migration rates increase (Figs. 5 and 6). If FST and migration 
rates are known, Fig. 6 shows that some inferences are possible as to the 
values of selection coefficients. 

All the results presented here show some dependence on levels of 
dominance. Although there is interest in the evolution of dominance, 
surprisingly little is known of values of levels of dominance in natural 
populations (Billiard et al., 2021; Huber et al., 2018; Thurman and 
Barrett, 2016) except that overdominance is infrequent (Thurman and 
Barrett, 2016) but see also Brookfield (2020)). Here in Figs. 2–6 we 
present evolutionary outcomes for what are, in the absence of over
dominance, the extreme values 0.5 and 1. Fig. 4 suggests that to 
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values of FST occur when selection on QQ is total one way in niche 1 and the 
other way in niche 2, and this was approximated by setting s1 at − 1 and s2 at 
109. Solid blue curve is for h = 1, dashed red curve h = 0.5. Values of FST were 
calculated for populations at equilibrium as determined by simulation of 
evolutionary trajectories of allele frequencies. Equilibrium judged by eye was 
generally achieved within 100 generations. 
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maintain equilibrium close to fixation, stronger selection against Q is 
needed in niche 1 if h = 0.5 than if h = 1, but otherwise it seems that in 
the absence of overdominance, levels of dominance have only small 
effects on equilibrium values. 

Inferences in practice will need to take account of several caveats. 
Our calculations are for populations at equilibrium, but in the real world 
selection pressures, migration rates and population sizes may vary over 
time, so that allele frequencies, FST and other variables vary too. Fig. 2 
gives an indication of how populations approach equilibrium in the 
presence of drift, but further analysis would be valuable, perhaps using 
approaches such as those reviewed by Tataru et al. (2017). The effects of 
drift on standard errors are shown in equation 7. Loci may become 
differentiated between populations not because they are themselves 
selected but because they are physically close to loci that are selected 
(Petry, 1983), the phenomenon of linked selection (see, e.g., (Aesch
bacher et al., 2017; Burri, 2017)). 

Here we have derived equations, for populations in migration- 
selection balance, that show the relationships between equilibrium 
allele frequencies, selection coefficients, migration rates, population 
sizes and dominance. These are illustrated by graphs that show quan
titatively how, at a given locus, equilibrium allele frequencies are 
related to the selection coefficients that hold them in equilibrium, and 
how FST increases with the selection coefficients acting on the alleles at 
the locus. We hope our methods may help those studying migration- 
selection balance to quantify the advantages conferred by adaptive 
genes. 
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Appendix A. Supplementary data 

Supplementary data (SLiM code for the finite population model 
described in the text. Worked example of calculation of selection co
efficients and their approximate standard errors using an Excel spread
sheet. Excel spreadsheet showing how selection coefficients and their 
approximate standard errors may be calculated from observed values 
and standard errors of allele frequencies, migration rates, population 

sizes and level of dominance, on the assumption that populations are in 
equilibrium.) to this article can be found online at https://doi.org/10.10 
16/j.jtbi.2023.111463. 
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