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A height bound for abelian schemes with realx Q? multiplication

ZACHARY YOUELL

Abstract. In this paper, we prove a height bound for points on the base
of a family of abelian varieties at which the fibre possesses additional
endomorphisms. This complements a result of André in his book (G-
Functions and Geometry Aspects of Mathematics, E13. Friedrich Vieweg
and Sohn, Braunschweig, 1989) as well a result of Daw and Orr (Ann
Scuol Norm Super Class Sci 39:1, 2021). The work in this paper will be
used to prove a new case of the Zilber-Pink conjecture which will form
part of the author’s PhD thesis.

Mathematics Subject Classification. Primary 11G18; Secondary 11G50.

Keywords. Shimura varieties, G-functions, Height bound.

1. Introduction. The Zilber-Pink conjecture is a vast open problem in arith-
metic geometry concerning Shimura varieties. To give the statement of the con-
jecture, we first define an atypical subvariety of a Shimura variety Shx (G, X).

Definition 1.1. Let S be a subvariety of Shi (G, X). A subvariety W C S is
called atypical with respect to .S if it is an irreducible component of SNT with
T a special subvariety of Shx (G, X) and

dim(W) > dim(S) + dim(7T) — dim(Shg (G, X)).
We write Atyp(S) for the set of all atypical subvarieties with respect to S.

Conjecture 1.2 (Zilber-Pink conjecture). Let S be a subvariety of Shi (G, X).
Then Atyp(S) is a finite union of atypical subvarieties with respect to S.

The author aims to prove in his thesis that, given appropriate arithmetic
data, one can combine the methods of Daw and Orr from both [2] and [3] to
prove a new case of Conjecture 1.2. These works both employ the Pila-Zannier
method in different ways. In [2], Daw and Orr deal with a “acteur” case as they
call it, while in [3], the case is “on-facteur”. The authors thesis will deal with a
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combination of facteur and non-facteur cases. The purpose of this paper is to
provide a height bound on points on the base of a family of abelian varieties
with quarternionic times CM multiplication. This height bound will be used
to show that the Galois orbits of such points are sufficiently large, providing
the necessary arithmetic data in the authors case.

1.1. Statement of the main theorem. Let V' be a smooth connected algebraic
curve over a number field K, and let V denote the complement of a closed
point vy € V/(K). Let h denote the Weil height on V”.

Theorem 1.3. Let f : X — V be an abelian scheme of relative dimension 4
with multiplicative reduction at vy. Let 71 be a geometric generic point of V.
In addition, assume that we have abelian schemes g1 : A — V of relative
dimension 2 with End(A;) ® Q = Q(v/d) a real quadratic field and go : E — V
of relative dimension 2 with End(E;) ® Q = Q? such that X is the fibred
product A Xy E. Then there exist effective constants Cy and Cs such that, for
every v € V with End(A4,) ® Q a rational quarternion algebra non-split over Q
and End(E,) @ Q containing a product of the form L x Q with L an imaginary
quadratic field, we have

h(v) < C1[K(v) : K]2.

By multiplicative reduction at vy we mean that the fibre X,,, of the Néron
model X’ of X at v is a torus.

This complements Theorem 1.3 in Chapter X of [1] and Theorem 8.2 in
[2]. We shall refer to fibres X, of the desired form in Theorem 1.3 as excep-
tional fibres. André deals only with fibres that are simple abelian varieties of
odd dimension g > 1 over Q and the endomorphism algebra at exceptional fi-
bres is an extension of the generic endomorphism algebra. Daw and Orr allow
their fibres to have even dimension but require that the maximal commutative
subalgebra of the generic endomorphism algebra is a totally real field of odd
degree. Here our fibres have dimension g = 4 and the maximal commutative
subalgebra of Endy (X) ® Q is a product.

1.2. Outline of the paper. In Section 2, we define the generic period matrix
and give a loose idea of G-functions and their importance.

In Section 3, we show that, at all exceptional fibres of the desired type,
we have an additional relation, then we use André’s methods, along with the
work of Masser in [7], to show that these relations are in fact non-trivial.

2. Preliminaries.

2.1. Trivial relations. Following André’s methods in Chapter X of [1], we con-
struct trivial relations on the fibres of our scheme f : X — V. We may assume
that Endy (X) ® Q = End(X5) ® Q. If this is not the case, then replacing K
with a finite extension and V' with an étale neighbourhood would achieve this.

Let 7 be a generic point of V. The relative de Rham cohomology Hiy (X/V)
is a locally free sheaf. Further we may assume it is a free sheaf, if not we may
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replace V' by a Zariski open subset. We write
WPH = D(Hpp(X/V)) @ K(V) = Hpp(X,).

The fibre X,, is isomorphic to A, x E1, x Es,. This isomorphism, together
with the Kiinneth theorem, establishes

H]13R(X77) = H%)R(An) D H%)R(El,n) @ HlljR(EQJI)-
Then the action of our generic endomorphism algebra D := Endy (X) @ Q &
End(X,)®Q = Q(Vd) x Q x Q, after possibly extending K to include Q(v/d),
induces a splitting of this space into @l 1 VVDR Here the o; are the morphisms
of algebras D — K (V') corresponding to the embeddmgs of each of the simple
factors of D into K.

If we consider some embedding K — C, then, along with the relative de
Rham cohomology, we have a local system of vector spaces that also splits as

4
RifE%(Q(Vd) = W = EB W,

Here the sum is over the four algebra morphisms o; : D — C.

Looking at the analytification of our curve V over C, we can include an
open disc A centred at vy in (V')2". Then we write A* for the punctured
open disc centred at vy and choose some open dense simply-connected set
YV C A*. Writing My, for the field of meromorphic functions on V, the space
WDhR QK vy My is 'dual’ to W, Og(va) My, via the comparison isomorphism
multiplied by (27i)~!

Pyy + Hpp(X/V) ®0, Over — R f2"Qxan @gyen Ovan.

The notion of dual we mean here is that the stalk of WPR @Ky My at a
point v € V is isomorphic to the dual space of the stalk of W, Dg(va) My, at v.

As V is simply-connected, we can trivialise Ry f2%(Q(v/d))|y. Then we choose
a frame {v,, ;} for Ry f3%(Q(V/d))|y adapted to the splitting W = @?:1 W,
and, using the freeness of H)p (X/V), a basis {wg, , } for T HIIDR(X/V))Q@K(V)
inside I'(H (X/V)) adapted to the splitting WPR = @k L WPR. With this,
we get the following relations:

1
— We, 1 = 0 for i # k. 1
27_[_2 kvl 7{ ( )
Yoi.i
Since the generic fibre X, is an abelian variety, it comes equipped with a
skew-symmetric form < -,- >PR on WPR and 2mi < -,- > on W taking values
in Q(V/d)(1). Likewise each of the simple factors A,, F ,,, and Fs, have skew-
symmetric forms < -, - > AR, <- >]§?n, and < -, - >1§§n on their respective de
Rham cohomologies and 2772 < e >a,,2m < - >py s and 210 < - >p,
on their respective homology groups.
Proposition 2.1. The forms < -, - >B? and 2mi < -, >4, split as < -,- >D1R S3)

< >PRognd omi < .- >, @2mi < -, >,, respectively.

o2
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Proof. We prove only the case for the form < -, - >2:{ as the other case uses
the same argument. Similarly to above, we write WPR for the space Hjy (4,,).
Then WPR splits as WPR&WDR for the two embeddings o; : Q(Wd) — K(V).
Then pick forms a; € WPR and a, € WOR. For any o € Q(vV/d), we have

< aar,as >PR=< a1, afay >PR, (2)

where | represents the Rosati involution. As Q(\/&) is a real field, it is pointwise
invariant under the Rosati involution. By definition, a acts on WEiR via o; and
Equation (2) becomes

< aap,an >DR =< al,oﬁag >DR
< aap,as >DR =< ay,aa >DR

0'1(0[) < ai,az >DR = O'Q(Oé) < ai,az >DR .

Choosing o € Q(V/d) such that o1 (a) # o2(a) implies < ay,az >PR= 0 for all
a1 € W(]%R and as € WEIR. Hence the space WEIR is orthogonal to WEQR with
respect to < -,- >PR and

O

The form < -,- >PR is dual to the form 2mi < -,- > via the untwisted
comparison isomorphism Q% o= (2mi) Py, sv- In other words, the matrix

representing P)l( v satisfies

MP® = (QXv) (2mi) T MPQX v, (3)

where the matrices MPR and M P represent the form < -,- >PR and the form
defined on the dual of W respectively (by an abuse of notation, we write Py v
for both the period isomorphism and the matrix representing it). For further
information on the comparison isomorphism, see Chapter IX of [1]. The matrix

P)l(/v acts via a right action, hence by ordering our bases {7, ;} and {wy, 1}

in a certain way and rescaling where appropriate, we may assume both MPR
and M7 are block diagonal with diagonal J = (§ 7'). Then, this ordering of
our bases, combined with Relation (1), gives Py v the following form:

0 Q) 0 0 0 0 0 0
NOUONST 0 0 0 0 0 0
0 0 QF QF o0 0 0 0

Pl _| 0 0 N N2 0 0 0 0

x/v 0 0 0 0 QF QF 0 0o |’
0 0 0 0 NP N2 0 0
0 0 0 0 0 0 QF
0 0 0 0

0 0 N NS
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with the notation used being ij =L f7

9 — 1
2 wo,,1 and N7 = f’y

—y o Woj,2-

o4,

Now that MPR and MPB are as above, Equation (3) gives the classical “Rie-
mann relations”, which in our case simplify to

o 1

NJ QT — Q' Ny = vt 4)
2.2. Locally invariant periods. As R f2" (Q(v/d))|a~ is a local system, it arises
from some representation of 71 (A*). At each point v € A*, the monodromy
action gives an automorphism on the vector space Ry f& (Q(v/d))(v). We con-
sider the logarithm of this action, which we denote by 27iN, and write 27N,
for the specific action on the vector space Ry 2" (Q(v/d))(v). Thanks to Corol-
lary 11.19 in [9], we know that the monodromy action is unipotent and so
2miN is nilpotent with degree of nilpotency 2 (see [6] for proof). Looking
again at R f2%(Q(v/d))|a~, we shall denote by W' the maximal subsystem of
Ry f22(Q(v/d))|a- that is invariant under the monodromy action at each point
v € A*. We note that, like W, this maximal constant subsystem also splits as

4
w=pw,,
i=1

and Chapter IX of [1] tells us that each of the W, has half the dimension
of Ws,. In our case, since W, has dimension two, this tells us that W is a
maximal totally isotropic subspace. /

The isotropy of W, allows us to choose the frame {v,,;} for Ryf&"
(Q(Vd))|a- in such a way that, for each o;, we have v,,1 € W; Doing
so may change the values of the non-zero entries of P)lf na but does not change
the form of the matrix P)l(/v or the relation given in Equation (4).

Definition 2.2. A locally invariant period is one of the form
1

211
v

with v € Wt

2.3. G-functions. For a place v of a field K, we write K, for the completion
of K with respect to v and let i, : K — K, denote the associated embedding.

Definition 2.3. Let F' be a fixed number field. A G-function over F' is a formal
power series of the form

f(z) = Z anz", an € F,

satisfying the following properties:

(1) f is the solution to a linear differential equation with coefficients that are
polynomials in z over F,

(2) there exists a sequence of natural numbers {d, },cny that grows at most
geometrically such that d,a,, € Op for m =0,...,n,
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(3) for every infinite place v of F', the series ) - iv(an)2" € Fy[[2]] defines
an analytic function around zero.

Theorem 2.4. Consider the periods to be functions on the disc A. Let x be
a local parameter at vy for V' as in André [1]. Then there exists a basis of
sections for Hhg (X/V) over V such that the Taylor expansions in x of the
locally invariant relative periods are G-functions.

Proof. See Chapter IX, Section 4 of [1]. O

The next two sections show that at exceptional fibres we can construct a
non-trivial global relation between the locally invariant periods. Then using
the following theorem of Bombieri together with Theorem 2.4, this proves
Theorem 1.3.

Theorem 2.5 (Theorem E from [1], Introduction). Let Y5 denote the set of
points & € Q where there exists some global non-trivial relation of degree 0 at
& between given G-functions y1,...,y,. Then Y5 has bounded height (at most
a power of 6 +1).

3. Relations at a fixed Archimedean place.

3.1. Additional relations. Let v be an infinite place of the field K. To this
place, we may associate an embedding ¢, : K — C. We fix this embedding and
construct additional relations present only at exceptional fibres. The method
for doing this varies from that of André in [1]. As our exceptional fibre is a
semi-simple abelian variety, we construct an additional relation at two of its
simple factors. The fact that we have two additional relations allows us to
eliminate any factor of 274, yielding a relation with coefficients in Q.

3.2. Additonal relation for the abelian surface. Let X, be an exceptional fibre.
This gives a fibre A, from g; : A — V with a non-split rational quarternion
algebra B as its endomorphism algebra. The algebra B not only contains
Q(V/d) but also, by [2, Lemma 8.7], an imaginary quadratic field Q(y/—c),
stable under the Rosati involution on B. We denote by E and E the fields
Q(V/d) and Q(y/—c) respectively and let F denote their compositum. We let
K denote the compositum of K (v) and F. We construct an additional non-
trivial relation at A, with the desired property via André’s method on the
scheme g1 : A — V.

We set up the problem in the same way as for our larger abelian scheme.
We again let V' be a smooth connected algebraic curve over a number field K,
with V denoting the complement of the closed point vg € V/. Theng; : A — V
is an abelian scheme of relative dimension 2 with multiplicative reduction at
vy and End(4,) ® Q = E. Once again 7 is a geometric generic point of V.
This setup, after possibly extending K to include F, allows us to construct a
relative period matrix P}‘ v as we did before. This matrix has the form

Q0 0

pt _|[NTONS 0 0
AV 0 0o Q7 Qp
0 0 N{* Nyg?
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Lemma 3.1. There exists a linear or quadratic relation with coefficients in

K (27wi), among the values at v of the locally invariant entries of the period
matriz P} v

We write W, for the space Rig}'t.(F)(v) = Hi(Aj, E) that splits as
Wei .0 ® We, 0, Where the o; : E — C are algebra morphisms. The space W,
also has a subspace arising from the maximal constant subsystem W? of the
local system that we shall call W!, which also splits as

As with our main case, we may replace V with an open neighbourhood
to ensure that the relative de Rham cohomology Hi,(A/V) is free and in
particular

WP =T (Hpg(A/V)) @ K(V) = Hpg(Ay),
where 7 is a generic point of V. This splits as
DR _ /DR DR
W =W oW,
We have another splitting of both W, and WPR,
W, @p F = Ws, & Ws,,
WER ®K(u) K = VAV[];DIR (&) WPR

o2 )
where 61 2 denote the embeddings of F into C instead. Then, if
Ws, N WL @p F] # {0},

as in Case 2 of Construction 2.4.1 from [1], we can choose a non-zero cycle v
that belongs to this space. By Relation (1) (after replacing o; with &;), for any

w € WEIR, we have
/@:a (5)

¥
Writing & in terms of our basis for WDR and 7 in terms of our basis for W}
gives us a linear relation of locally invariant periods.

If the intersection Wj, N [W! @ F| is trivial, then the situation is similar
to what André calls Case 3.

Before showing how to construct an additional relation in this case, we first
establish that the splittings of W, into W,, & W,, and W&I @ VAV&2 are not
identical.

Proposition 3.2. We have W, , Qp F # W[}j for any pair i, j.

Proof. We know W, is a four dimensional F-vector space and that it inherits
an action of F from the action of B on A,. Let us extend scalars so that we work
with the space W, ® g F', then this space splits as both Wy, , Qg F&W,, ,Qp F
and W;,l QpF @ W&Q ®p F. Then the action of B is a representation p : B —
GL(W,), and we may represent the action of elements of E C B by matrices
with entries in E. To study the action of this representation, we need only
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look at the action of j = /—¢ € E on W, @p F, where we view j as an
endomorphism via p. We know that the action of p(j ) splits W, @ I into two
elgenspaces VV(,1 ®g F and VV(72 ® g F, with eigenvalues j and —j respectively.
Pick w € Wj, ®z F, then by definition,
p(jw = jw,
where on the right j is acting by standard scalar multiplication. Now we can
take an element o € Gal(Q/Q) that acts trivially on E with o(j) = —j. Then
o(p(j)w) = o(jw),
which is equivalent to
a(p(j))o(w) = o(j)o(w)
= —jo(w).
But the matrix representing p(j) has entries in E, therefore o(p(5)) = p(j),
p(j)o(w) = —jo(w), and o(w) € Ws,. Thus for o € Gal(Q/Q) as above, we
have that
O’(Wol,v QE F) = WU1,U QF F7 U(W&1 ®E F) = W52 ®E F.
Hence W,, » @ F # W&j ®p I for any pair i, j. O
As we saw earlier, there is a symplectic form 273 < -,- > on W,,.
Lemma 3.3. The subspaces W&Q ®@F and W@ F Cc W, ® F are both La-
grangian.

Proof. First take Wl ® F. Since E C F, it has a decomposition into W;l QF P
W;z ® F. Both of these subspaces are maximal isotropic subspaces of W,,, ® F’
respectively (since they are both one dimensional). We can then use that W,
is symplectic with orthogonal complement W,,, to establish that for any two
vectors v,w € W! @ F, we have

21 < v, w >= 21 < w,v >= 0,

and so V}Ji ® F' is isotropic. R
For W;, ® F, we recall that £ C F is an imaginary quadractic field stable
under the Rosati involution on B, our quarternion algebra over Q. If we pick
a € E with a totally imaiginary (so that the complex conjugate a = —a) and
non-zero vectors v,w € Ws, ® I, then
G2(a)(2mi < v,w >) = 2w < da(a)v,w >
=2mi < —a-v,w >
=2m < v, —aw >
=2m <v,a-w >
=27 < v, —a(a)w >
= —d2(a)(2m < v,w >),
here we have assumed that 61 : E — C acts as the iclentity and that the
Rosati involution restricts to complex conjugation on E. This implies that
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2mi < v,w >= 0, hence, VAVCA,2 is isotropic as well. As both subspaces have half
the dimension of W, ® F' and are isotropic, this makes both Lagrangian. [

Now that we have two Lagrangian subspaces we can construct an additional
relation when W, N [W! @ F] is trivial.

Using Lemma 1.4.35 of [8], Lemma 3.3, and the assumption that W&Q N
Wl @p F] = {0}, we may write

W, @F =W FaW;, @ F

with a symplectic basis {Vs, ,,70,,,, 3} for W, with respect to < -,- >.
This basis is chosen such that Vo, ,,%s,, € Wi ® F and «a,f € Ws, @ F.
Then, because E is an imaginary quadratic field and stable under the Rosati
involution, we may write {ws, 1,ws, 2, Ws,,1,Ws,,2} for a symplectic basis for
WDPR @ F with respect to the form < -,- >PR as both W(%R and W(%R are
Lagrangian by similar arguments to Lemma 3.3.

Now consider the “Period Matrix” P defined as

f»yglrl Woq,1 f70211 Waq,1 fa Wsq,1 f,B Wé,1

L L wee [ wer [uwee  [zwenn
211 f%l_l Wéy,1 - Wés,1 fa Wés,1 fﬁ Wso,1
Yoyt Wés,2 Yog,1 Wés,2 fa Wéy,2 fﬁ W2

For simplicity, we shall name the four quadrants of this matrix,

(1 Q
po(m2)

Since «, § € W;,z ® F, we have
Q=0 (6)

by Relation (1) (again replacing o; with &;). As the bases above have been
chosen to be symplectic, both 2mi < -,- > and < -,- >P® are represented by
(? ’OI ) Since both bases are symplectic and the two forms are dual, we have
that P multiplies the matrix representing the symplectic form by (27i)~!, the
justification of this is the same as that of Equation (3). Thus we can establish

additional relations between its entries via
1

P(p )P =5 (05)-

This, combined with (6), gives the following two relations:

NEQ, — QEN, =0, (7)
1
NiQ, = —1.
2 = 5 (8)

Using the fact that we can also write

Wy®@F =W, @ F&W;, @ F,
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we observe that 75, 1 can be written as v+ aja + b; 3 with v € )/AV&1 ® F'. This
observation allows us to express Nj in terms of the entries of Ny. Observe

N, — a1N211 + b1N212 a2N211 + b2N212
V7 \ai N3 + b1 N2 ay N3 4 by N32
= NQTa
where T = (3! $2) € My(F) and N3’ denotes the entry of Ny in the ith
row and jth column. Here, all terms involving cycles from VAVCA,1 automatically

become zero as we are integrating forms from W?zR over them.
Thanks to Proposition 3.2, we know that

W,, @ F ¢ Ws, @ F,

to establish that T' # 0. Now, if we re-examine Equation (8), we may use that
N{ = T*N{ to obtain

1
T'NiQ, = — T 9
281 o2 ( )

1
NtQ, = —Tt. 10
P on (10)

Now we are guaranteed at least one (possibly more) inhomogenous quadratic
relation between our locally invariant periods with coefficients in the field
F(27i) because T # 0 implies that Equation (9) is not just 0 = 0.

3.3. Additional relation on CM elliptic curve. The field L in our exceptional
endomorphism algebra B x L x QQ arises due to the elliptic curve E; having
complex multiplication. To construct a relation in this case, we use a result
proved by Masser in [7].

For an elliptic curve E, we denote a basis for H;(E(C),Q) by {71,72}
Likewise we denote a basis for H) (F(C),Q) by {w1,ws2}. Then the periods
7; and pseudo-periods 7; of the elliptic curve are given by

1 1 /
Ty = : w1, M = : w2,
211 L7 211 2

Yi Yi

we note that this definition has an extra factor of 1/27mi compared to the one
given in [7] to bring it in line with Definition 2.2. While this is not the relative
case, by writing v; = 7,,,:(v) and w; = we, j(v), we can think of 71 and 7, to
be the so called “locally invariant” periods between which we wish to find an
additional relation.

Theorem 3.4 (Theorem III from [7]). Let E be an elliptic curve defined over
Q. Let U be the Q-linear span of the set {1,7,71,72,m1,1m2}. If E has complex
multiplication, then dimgU = 4.

Masser gives two relations to reduce the dimension to 4 when the curve
E has complex multiplication. Let E be defined by the equation y? = 4z> —
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gox — g3. Then the first relation is 79 = a7, where o has minimal polynomial
az? 4 bx + c over Z. The second relation is

a*amy — acny + v =0,

where v € Q(ga, g3, @). Combining both, along with the relation given in Equa-
tion 4, gives us a relation in terms of the “locally invariant” periods
c 1

- T (= ) = (11)
The numbers gs, g3, and « all belong to the field K due to choices we have
made. So the left hand side of this relation is defined over K. Any fibre of
(E x E) which has an endomorphism algebra containing L x Q is isomorphic
to the product of a CM elliptic curve with another elliptic curve so we may
apply Theorem 3.4 to obtain a relation of the form found in Equation (11). We
note that Case 3 in Chapter X of [1] may also be used to construct a relation
of the form found in Equation (11).

3.4. Relation on an exceptional fibre. At the exceptional fibre X,, we now
have a relation between the periods on A, and on one of the elliptic factors.
The relation on the abelian surface can be expressed as Fy = t/2mi for some
algebraic number ¢ and Fj is a linear or quadratic combination of periods.
Likewise the relation on the elliptic curve can be expressed as Fy = 1/27i with
F of the same form as the left hand side of Equation (11). After rescaling F5
by t, we gain a relation for the infinite place v of K, the relation is

Fy — tF, =0. (12)

4. Relation at all Archimedean places. To construct a relation at every
Archimedean place of the field K, we follow [1], Chapter X, Section 3. Let
v be an infinite place of K and ¢ : K — C the corresponding complex em-
bedding. Following Section 2 above, we obtain a period matrix and the locally
invariant part of this matrix, after making the same choice of local parameter
as we did in Theorem 2.4, yields a matrix of G-functions. These G-functions
are Taylor expansions in the local parameter z around vy via the embedding
t: K — C. We write y1,...,ys € K[[z]] for these G-functions over K and the
third point of Definition 2.3 guarantees t(y;) is also an analytic function (here
¢ acts coefficient wise).

Lemma 4.1. For any other complex embedding ' : K — C, the complex Taylor
series ' (y1), ..., (ys) (where ' acts coefficient wise) are again expansions in
x of the locally invariant entries of a period matriz attatched to the same basis
of local sections of Hiyr (X/V') and some local frame in (Ry f&,;, /)«(Q).

Proof. See Chapter X, Section 3 of [1]. O

For each infinite place v of K , apply the construction of Section 3 above

to the exceptional fibre X, Xz ¢, (K). By Lemma 4.1, we obtain a linear or
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quadratic polynomial relation g, (y1,...,ys) over K such that, for & = x(v),
(Y1, -.-,ys)(&) = 0 holds v-adically if

‘§|V < RV(y17 .. 7y8)a

where R, denotes the v-adic radius of convergence.
We define a polynomial

¢=]] (13)

where the product is taken over all infinite places v of K such that |¢], <
R, (y1,---,ys). The polynomial ¢ is then a homogeneous polynomial with co-

efficients in K of degree at most 2[K : Q]. We now show that this is a non-trivial
relation of G-functions.

4.1. Non-triviality of the relation. The proof of this is once again very similar
to the one that André gives, as it boils down to checking that the relations
we constructed in 3.1 cannot be generated from the relations (2.3.1), (2.3.2)
or (2.3.3) in Chapter X of [1]. We note that in [1], the generic endomorphism
algebra is a totally real field of odd degree. Here it is E x Q?, but in Subsection
2.1, we established that the same relations are present in our case, namely
Equation (4) and the non-diagonal blocks of the period matrix being zero.
Further to this, we note that the sublemma of Tankeev in Chapter X of [1] does
not cover our case, but does hold for the simple factors of a non-exceptional
fibre X,,, then the generic special Mumford-Tate group is Resg,qSps g X Spg@,
or Spg, g after extending scalars to £/. Then the results in the last two sections
of [4] ensure that the ideal vanishing on the coefficients of the period matrix
is the same as the one given by André in [1].

Let the ideal © be as in André [1, Lemma 3.3] and V(©) the vanishing locus
of this ideal in A1® (where we think of the coordinates as Q7*,Q57, N, and
N3 for 1 < i < 4).1In [1], André states that showing non-triviality is equivalent
to showing that the variety given by our relation is a proper subvariety of the
image of V(©) after projecting onto the space spanned by the locally invariant
periods (27" and Ny* for each 7). In André’s work, the projection of V(©)
onto this space is defined by the relation saying (N7?)'Q{ is symmetric for
each 7. However in our case, this relation is trivial as each of Ny’ and Q7" are
just complex numbers and hence commute with one another, so the projection
of V(©) onto the locally invariant subspace is just the whole of the subspace.
Hence the ideal defined by the relation given in Equation (13) defines a proper
subvariety of this space and the relation is non-trivial.

4.2. The relation is global. The proof of globality of the relation is unchanged
from Lemma 3.4 that André gives in [1]. The key condition is that End X,, ¢~
M4(Q), this holds in our case. The maximal commutative subalgebra of End X,
is five dimensional over Q and is isomorphic to ' x L xQ, which has no nilpotent
elements. By [5], the maximal commutative subalgebra of M4(Q) has dimen-
sion five over Q but has nilpotent elements, hence there is no isomorphism
between the two and End X, does not embed into M4(Q).
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