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Abstract

We investigated two important means for improving source reconstruction in presurgical ep-
ilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic
spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of
the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the
irritative zone. The second study focuses on the differences in single modality EEG (80-
electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/
MEG (EMEG) source analysis. Both investigations were validated with simultaneous ste-
reo-EEG (sEEG) (167-contacts) and low-density EEG (IdEEG) (21-electrodes). To account
for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment fi-
nite element head model with anisotropic white matter conductivity, and calibrated the skull
conductivity via somatosensory evoked responses. Our results show that, unlike single mo-
dality EEG or MEG, combined EMEG uses the complementary information of both modali-
ties and thereby allows accurate source reconstructions also at early instants in time
(epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propaga-
tion and thus supposed to be closer to the origin of the epileptic activity. EMEG is further-
more able to reveal the propagation pathway at later time points in agreement with sEEG,
while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important
and accurate information about both the center of gravity and the extent of the epileptogenic
tissue that neither single nor grand-averaged spike localizations can supply.
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Introduction

Noninvasive EEG and MEG are important tools for presurgical epilepsy diagnosis, they can
guide the placement of invasive electrodes, the current gold standard in presurgical epilepsy di-
agnosis, and in some cases they can even supply sufficient information for a surgical interven-
tion without invasive recordings [1-12]. Especially with increasing use of realistic and
individual head models, improved MRI co-registration approaches and high sensor numbers,
the accuracy and precision of noninvasive source reconstructions have increased notably
[13-17]. It has also been recently shown that there is good agreement between noninvasive
EEG and MEG source reconstructions and fMRI responses [18].

Sensitivity differences of EEG and MEG with regard to source location
and orientation

EEG and MEG contain complementary information [19]. Although the sources that produce
EEG and MEG recordings are the same, their distinct properties cause them to produce differ-
ent sensor signals. Patients with detectable epileptic activity only in EEG or MEG illustrate the
importance of simultaneous measurements for epileptic spike detection [20-22]. Furthermore,
with regard to the reconstruction of the sources underlying the measured signals, unlike MEG,
which measures almost only quasi-tangential sources, EEG can measure both quasi-tangential
and quasi-radial sources [23-30]. When compared to the EEG, MEG is thus also less sensitive
to all deeper sources, not only because the signal decays with the square of the distance from
the source to the measurement sensors (MEG shares this drawback with the EEG), but also be-
cause deeper sources become more quasi-radial. On the other hand, in comparison to EEG,
MEG achieves higher SNRs (signal-to-noise-ratios) for more lateral quasi-tangential sources,
also because the measured signals are nearly not contaminated by mainly quasi-radial biologi-
cal noise [31]. The signal topographies of EEG and MEG are almost orthogonal to each other
and, because the low skull conductivity smears out the EEG, the distance between the poles of
dipolar EEG topographies is in practice greater than for MEG. Therefore, the simultaneous ac-
quisition of EEG and MEG increases the probability of measuring the important aspects of the
signal topographies by at least one of the two modalities, thus stabilizing the

source reconstructions.

Sensitivity differences of EEG and MEG with regard to volume
conduction

Noninvasive EEG measures the signals passing through the poorly conducting skull, which
spatially smoothens and attenuates the electric potentials. On the contrary, the skull conductiv-
ity has small to negligible effects on magnetic fields recorded by the MEG. Therefore, EEG is
shown to be very sensitive to uncertainty and variations in skull conductivities while MEG is
largely insensitive to these changes [29], [32]. Furthermore, studies showing the importance of
modeling skull inhomogeneity in EEG address the need for distinguishing the higher resistive
skull compacta and lower resistive skull spongiosa compartments [33-35]. Both EEG and
MEG are sensitive to differences in the cerebrospinal fluid (CSF), the gray and the white matter
compartments, and thus accurate modeling of these compartments is important [29], [36].
White matter is known to be anisotropic and diffusion tensor imaging (DTI) provides the nec-
essary information to model this [37], [38]. Earlier studies revealed that it might be important,
especially for deeper sources, to model white matter anisotropy for accurate EEG and MEG
source reconstructions [30], [39]. Therefore, in this study, we constructed and used a six-
compartment (scalp, skull compacta, skull spongiosa, CSF, gray matter, white matter) finite
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element (FE) head volume conductor model with anisotropic white matter compartment. In
addition, we calibrated the head model by means of adjusting skull conductivity to ensure the
best fit to the somatosensory evoked potential and field data to reduce localization errors due
to highly unrealistic assumptions on the patient’s individual skull conductivity [40-42].

Combined EEG and MEG source reconstruction

The different sensitivity profiles and especially the complementarity of EEG and MEG as ex-
plained in the previous two paragraphs encourage researchers to increase the synergy by mea-
suring and evaluating EEG and MEG simultaneously [21], [24], [25], [27], [42]. In this paper
we investigated if EMEG (combined EEG/MEG) can add additional information to single mo-
dality EEG or MEG with regard to source reconstruction of epileptic activity. For this purpose,
we especially focused on time instants at spike onset, which on the one hand have limited reli-
ability due to smaller SNRs but which on the other hand are more immune to misleading local-
izations due to propagation.

Extent of the epileptogenic tissue

Determining the location and the extent of the epileptogenic tissue is of great importance for
successful surgery and seizure freedom. K6hling et al. [43] and Speckmann et al. [44] employed
optical imaging on epileptic human neocortical slices removed during epilepsy surgery to show
that the activated cortical areas during epileptic activity are focal and their spatial positions
change in a dynamic manner within the epileptic tissue. In line with these results, many studies
used the size of the area producing interictal epileptic spikes, the irritative zone, as an indicator
of the focality and the chance of seizure freedom after surgery [5], [17], [45]-[47]. For this pur-
pose, usually each single spike is localized separately and then the scatter is calculated from the
distance of each spike localization to the centroid location. While this approach seems reason-
able for high SNRs, it was shown in Bast et al. [2] that the scatter size depends highly on the
SNR for EEG single spike localizations. On the other hand, it is possible to average epileptic
spikes with similar origins (having a sufficiently similar EEG/MEG topography) to improve
SNR and to achieve more reliable source reconstructions [2], [11]. However, the latter ap-
proach does no longer provide much information on the actual size of the underlying irritative
zone, because it often uses a single dipole that only represents the center of gravity of a larger
activated cortical patch. At first view, distributed source models and current density ap-
proaches might seem more appropriate, but the reconstructed extent in commonly used cur-
rent density approaches mainly depends on the chosen approach/norm and huge differences
in spatial dispersion have been shown for one and the same underlying source [48]. Here, we
propose the concept of subaveraging with the aim of accurately reconstructing the center of
gravity and at the same time not losing all information about the possible extent of the irritative
zone. One further main topic investigated here is thus assessing the sensitivity of single spike
localizations on SNR in order to better estimate both the center and the spatial distribution of
the epileptic activity. We used source reconstructions of EEG, MEG and EMEG to outline their
specific performance. Multiple subaverages with different numbers of spikes were produced
with a bootstrap like algorithm and these subaverages were compared with each other and with
single spike reconstructions.

Structure of our study and main contributions

The remainder of our study is structured in the following way: In the Patient and Methods sec-
tion we present the medical history of the patient, the construction of the individual FE head
model and the source reconstruction procedure including epileptic spike detection and
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subaveraging. Results and Discussion sections are both divided into the following two subsec-
tions: In subsection “Effects of Epileptic Spike Averaging on Source Reconstruction” we present
and discuss the differences between different subaverages on the calculated center of gravity
and extent of the scatter. In subsection “Comparison of EEG, MEG and EMEG Source Recon-
structions” we use our findings on subaveraging in order to assess the differences between
EEG, MEG and EMEG source reconstructions during different phases from spike onset to later
propagation at the spike peak. Our results in the latter subsection confirm our hypotheses that,
unlike single modality EEG or MEG alone, combined EMEG in calibrated multi-compartment
realistic head models allows meaningful source reconstructions at early instants in time, i.e., at
time points with low SNR (spike onset). These early time points are not yet subject to propaga-
tion and thus closer to the origin of the epileptic activity. Furthermore, we show that combined
EMEG source analysis reveals the propagation pathways at later time points in complete agree-
ment to sEEG, while single modality EEG or MEG might only be sensitive to, however, comple-
mentary, parts of the epileptic activity.

Patient and Methods
Ethics Statement

The patient and her parent signed written consent forms and all procedures have been ap-
proved by the ethics committee of the University of Erlangen, Faculty of Medicine on
10.05.2011 (Ref. No. 4453).

Patient

A 17 years old female suffering from pharmaco-resistant focal epilepsy since the age of six has
been investigated. In one of the 3T MRIs the radiologist made a remark of a suspected left tem-
poro-mesial FCD that could not be confirmed in later MRI investigations. An FDG-PET scan
showed a diffuse and extended left fronto-temporal hypometabolism. The video-EEG (surface
EEG) recorded seizures with temporal and frontal semiology and the EEG showed early tempo-
ral left and bifrontal/frontal left seizure activity. One of the hypotheses before the invasive EEG
was that, while there are several interictal spike foci, there might be an initial temporal left
onset with propagation to frontal areas. However, the invasive EEG showed that this is not
true, but instead there were three seizure onset zones: frontal basal mesial, rostral frontal and
temporal. Resective epilepsy surgery was refused after the invasive work-up due to multifocal
activity and an unfavorable risk-benefit ratio of any resective surgical intervention.

MRI Measurements

T1-weighted (T1w), T2-weighted (T2w) and diffusion-tensor (DT) MRI scans were acquired
with a 3T scanner (Gyroscan Intera/Achieva 3.0T, System Release 2.5 (Philips, Best, NL)). Ad-
ditionally, a diffusion weighted data set with flat diffusion gradients but with reversed encoding
gradients was measured to be used for susceptibility correction [49]. T1w and T2w MRIs had
1.17 mm and DT-MRI had 1.875 mm edge length for the measured cubic voxels. MR images
were resampled to 1 mm isotropic resolution, used as the resolution of the FE mesh throughout
this study. The total acquisition time required for these four scans was 28 minutes.

Head Model Construction

ESL (http://www.tmrib.ox.ac.uk/fsl) routines-FLIRT and-BETSURF were used to register T1w
and T2w MRIs, and to distinguish between scalp (which includes all extracranial tissues), skull
and brain. The results of the automatic segmentation algorithm were afterwards inspected and
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manually corrected. FSL-FAST [50] and Freesurfer (http://surfer.nmr.mgh.harvard.edu/) were
later used to distinguish CSF, white and gray matter. The skull spongiosa-compacta classifica-
tion was implemented by eroding the skull estimate and performing a threshold based segmen-
tation on the T2w MRI (limited to the skull estimate).

The information on anisotropy was included to the white matter using the DT-MRIs. FSL-
FLIRT was used for eddy current correction and registration of the DT MRI to T2w MRI. The
two data sets with flat diffusion gradients but with reversed encoding gradients were used for
susceptibility correction using a diffeomorphic nonlinear correction approach with a variation-
al multiscale nonlinear image registration framework as implemented in the freely-available
SPM (http://www.diffusiontools.com/documentation/hysco.html) and FAIR (http://www.mic.
uni-luebeck.de/people/jan-modersitzki/software/fair.html) software packages [49]. Following
the susceptibility correction, diffusion tensors were determined with FSL-DTIFIT [51]. As a
last step, the conductivity tensors were calculated from the artifact-corrected and registered dif-
fusion tensors using an effective medium approach as described in [37], [38].

A geometry adapted hexahedral FE mesh, which was created by shifting the nodes on mate-
rial interfaces to increase the conformance to the real geometry and to mitigate the staircase ef-
tects [52], was constructed based on the labeled MRI using SimBio-VGRID (http://www.
rheinahrcampus.de/~medsim/vgrid/index.html) [53]. The overall construction of the head
model took about two days, most of it for the manual correction and optimization of the auto-
matic segmentation results.

Simultaneous EEG/MEG Measurements

80 channel EEG, 275 channel whole head MEG (plus 29 reference channels for synthetic gradi-
ometers) (CTF, VSM MedTech Ltd.) and electrocardiography (ECG) were measured simulta-
neously in a magnetically shielded room. The amplifiers for EEG system were supplied with
the MEG and use the same system clock to ensure synchrony. The EEG cap had 74 Ag/AgCl
sintered ring electrodes placed equidistantly according to the 10-10 System (EASYCAP
GmbH, Herrsching, Germany). In addition to those 74 electrodes, 6 additional channels were
available and used for both eye movement detection (with a bipolar software montage) and as
additional EEG channels for source reconstruction. Electrode locations were digitized with a
Polhemus Fastrak system (Polhemus Incorporated, Colchester, Vermont, U.S.A.) prior to mea-
surement. The patient was measured in lying position to reduce head movements and to avoid
erroneous CSF effects due to brain shift when combining EEG/MEG and MRI [54]. Six runs
were acquired in total. The first run was 7 minutes long with the aim to measure somatosenso-
ry evoked responses following electrical stimulation of the left median nerve for head model
calibration. The next 5 runs (8 minutes each) were spontaneous measurements without any
stimulation for spike detection. During the measurements the position of the head inside the
MEG scanner was constantly measured via three coils that are placed on nasion, left ear and
right ear canal and only the runs with maximum head movement lower than 8 mm were used
in further analysis.

Epileptic Spike Detection

As a first step the 3 runs with minimal head movement were filtered with an 80 Hz low pass fil-
ter, resampled to 250 Hz, concatenated, and corrected for ECG artifacts using BESA (http://
www.besa.de). For this purpose, the ECG channel was selected for detection and averaging,
and principal component analysis was used for minimizing the artifact. The measurements
were then examined and epileptic spikes were marked by 3 clinical reviewers (PK, CK, SR).
From these markings, 10 clear left temporal spikes, which belong to the most frequent spike
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type, were selected using source montage (temporal) and averaged. The averaged spike was
used in BESA template search in order to find further spike candidates. Selecting left temporal
polar, basal and lateral channels from the temporal source montage for template search en-
sured the detection of spikes with similar location and orientation. After visual inspection 200
left temporal spikes without any clear artifacts (e.g., eye-blinks), were selected for further analy-
sis. The butterfly plots of the grand-averaged (all 200 spikes) EEG and MEG signals, 4 solid ver-
tical lines with different colors indicating the important instants in time, namely -33, -23, -13
and -3 ms, which are discussed in the manuscript, and the respective topographies at 0 ms (sig-
nal peak in EEG shown with dashed vertical line) after averaging are visualized in Fig. 1.

Subaveraging

Ten subaverage groups each with 200 realizations were constructed from the 200 single spikes
detected in the previous section. Each realization in each subaverage group was an averaged
signal that was calculated using the same number of single spikes and the name of the subaver-
age group was determined by this number. For example in the Av10 subaverage group there
were 200 Av10 realizations, each of them obtained by random drawing and averaging 10 single

Butterfly plot Topography

+50
M

-500

-200

MEG ©

+200

Fig 1. Butterfly plots and topographies of grand-average EEG and MEG spikes. Butterfly plots (left) and topographies (right) of EEG (upper row) and
MEG (lower row) for the grand-average (average over all 200 single epileptic spikes). The time points that are discussed in the manuscript, namely -33 ms
(dark blue), -23 ms (light blue), -13 ms (yellow) and -3 ms (orange), are indicated by solid vertical lines with different colors. Topographies are shown for the
EEG spike peak (time point 0 ms) as indicated by the dashed vertical line in the butterfly plots.

doi:10.1371/journal.pone.0118753.9001
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spikes. The random drawing was performed with Matlab (The Mathworks, Inc.) and it was en-
sured that none of the spikes was chosen more than once in the same realization. The subaver-
age groups that were constructed with this procedure were Av5, Av10, . . ., Av50 with
increments of 5. Additionally, the group containing all 200 single spikes was denoted Av1.

The continuous EEG and MEG data were imported into Curry (http://www.neuroscan.
com/curry.cfm), filtered from 1 to 100 Hz and divided into 400 ms long epochs (200 ms before
and 200 ms after each EEG spike peak). The SNRs were calculated by dividing the signal power
at a certain time point, which was used for source reconstruction, by the variance of the noise
determined from the interval -200 to -70 ms. The SNRs of EEG, MEG and EMEG signals were
calculated separately for each time instant (from -33ms to 0 ms) and only the signals with
SNRs higher than three in the corresponding modality and subaverage were included in the
further analysis.

Source Reconstruction Procedure

A cortically-constrained deviation scan inverse approach was used for source reconstruction
[55], [56]. For this purpose, a source space with 2 mm resolution was calculated. A custom
written Matlab code ensured that all source space points were located inside the gray matter
compartment and sufficiently far away from other tissues. This ensured the closest node of the
FE mesh for each source space point to only belong to elements that were labeled as gray mat-
ter. Thus, the so-called Venant condition, being crucial to avoid unrealistic source modeling
when using the FE-Venant approach, was satisfied [57]. The SimBio software (https://www.
mrt.uni-jena.de/simbio and the SimBio integration into Fieldtrip: http://fieldtrip.fcdonders.nl/
development/simbio) was then used to calculate EEG and MEG leadfield matrices for the given
source space, FE head model and sensor configurations. The Venant source modeling ap-
proach was selected together with standard piecewise trilinear basis functions and an FE trans-
fer matrix approach using an algebraic multigrid preconditioned conjugate gradient solver to
obtain numerically accurate and computationally efficient forward EEG and MEG solutions
[53], [57], [58]. The calculation of the leadfield matrix for 80 channels EEG and 275 channel
MEG took about 60 minutes and 6 hours respectively on a standard workstation (Intel Core i7-
860 Processor, 2.80 GHz and 16 GB RAM). The leadfield matrices were then imported into
Curry and single dipole scans were calculated from -33 to 0 ms with 0 corresponding to the
peak of the EEG signal. Unlike classical dipole fit algorithms, the cortically-constraint deviation
scan provides goodness-of-fit (GOF) values for all source space points and the location with
the highest GOF was then used as the final deviation scan result.

Unlike MEG source reconstructions in which we used regularization to avoid implausible
results, which might occur due to MEG’s insensitivity to radial components, for EEG and
EMEG we did not use any regularization. Furthermore, only the MEG sensors over the left
hemisphere were used for MEG and EMEG source reconstructions to improve SNR and GOF.

In order to perform combined source reconstruction, EEG and MEG signals were trans-
ferred to a unitless common space. This was achieved by using the SNRs of each electrode and
gradiometer instead of the original signals [25].

In the results section we also use, instead of spike clusters, so-called centroid dipoles, de-
fined by the mean location and orientation of all deviation scan result dipoles belonging to the
corresponding cluster. In addition, in spike clusters the distances of each deviation scan recon-
struction (that passes the SNR criterion) to the centroid dipole were determined and used to
calculate the mean distance and its standard deviation for each cluster. Then, the reconstruc-
tions in which the distance to the centroid exceeds mean plus two times the standard deviation
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for this cluster were excluded from the cluster and not used for further analysis (see Algorithm
1 in [40] for details).

Skull Conductivity Calibration

EEG and, to a lesser extent, EMEG source reconstructions are sensitive to the conductivities of
the highly isolating skull tissues [25], [40], [42]. However, skull conductivity values are quite
controversial in literature with huge interindividual variance [26], [33], [59], [60]. We therefore
calibrated the skull conductivity using the N20 component of the measured and reconstructed
somatosensory evoked potential (SEP) and field (SEF) data as described and evaluated in detail
in [40]. Similar calibration procedures have also been proposed by [41], [42].

The tissue conductivities (S/m) that are used in this study are [40], [61], [62]: Scalp (0.43),
CSF (1.79), gray matter (0.33), anisotropic white matter along with the skull conductivity val-
ues individually calibrated for the patient: skull compacta (0.0024) and skull spongiosa
(0.0084).

Stereo-EEG Measurements

SEEG relying on 14 intracerebral depth electrodes with 167 contacts in total, showed indepen-
dent epileptic activity with left frontal and temporal origins from 3 different seizure onset
zones: 1) left fronto-basal mesial, ii) left temporal and iii) left frontal parasagittal. In this paper
we focused only on the left temporal spikes due to their high occurrence rate. 24 contacts from
5 different electrodes and 8 contacts from 2 electrodes were active during temporal interictal
spikes and seizure onset, respectively. Examples of an averaged spike and a single spike mea-
sured simultaneously with sSEEG and low density scalp EEG (IdEEG) (21 electrodes) are shown
in Fig. 2. Based on information from the clinical report we represent the sEEG contacts with
three different colors: The green spheres represent the sEEG contacts that measured only inter-
ictal activity, red spheres represent the SEEG contacts active during the seizure onset and the
blue spheres represent the contacts near the left temporal lobe that measured neither interictal
nor seizure onset activity. All contacts that were active during seizure onset were also measur-
ing interictal spikes and were thus within the irritative zone. The locations of the sEEG contacts
were marked manually using the post-operative T1-MRI and computed tomography images
that had been registered to the pre-operative T1-MRI using an affine registration scheme.

Square Distance Index (SDI)

In order to quantify the amount of agreement between noninvasive source reconstructions and
SEEG, we used a formula which weights each dipole by the inverse of its square distance to
each active sEEG contact.

g
SDI, = ——— % 100 1
Where i represents a specific sSEEG contact, e.g., A1, which measures frequent interictal activity,
N is the number of dipoles that passes the SNR criterion (SNR>3) for the respective modality
and d; represents the Euclidian distance between the j’th dipole and the SEEG contact i. The ad-
dition of 1 ensures the appropriate weighting for perfect localizations (d; = 0). A high value of
this index at a certain SEEG contact indicates concentrated dipole localizations in the vicinity
of this contact. On the other hand, high differences in SDIs for different sSEEG contacts

indicate that the localizations highlight only a certain area within the irritative zone and not
the whole. Thus, the mean of SDIs over all SEEG contacts should be high, while its standard
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Fig 2. Locations of SEEG contacts inside the brain and epileptic activity measured with sEEG and
IdEEG. Examples for an averaged (top right block) and a single epileptic spike (bottom right block) measured
simultaneously with sEEG (left column in each block) and 21 electrodes low density scalp EEG (IdEEG) (right
column in each block). Maximum of SEEG is at the HP2 contact as shown by the vertical lines at the peak of
this contact. In the upper two brain figures (left block) only the active (that measures interictal or ictal signals)
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SEEG contacts are indicated while the bottom two indicate the positions of both active and not active sEEG
contacts close to the left temporal lobe. The union of green and red spheres shows the sEEG contacts
measuring frequent interictal activity, red spheres alone show the contacts measuring seizure onset and blue
contacts do not measure interictal or seizure activity.

doi:10.1371/journal.pone.0118753.9002

deviation over different contacts should be low for an accurate and complete depiction of the
irritative zone.

Results

Our result section is divided into two subsections. In the first subsection, we investigate epilep-
tic spike subaveraging with the aim of finding the subaverage number that allows both an ap-
propriate reconstruction of the center of gravity and an estimation of the size of the irritative
zone. The determined optimal subaverage number is then used in subsection two to investigate
sensitivity differences of EEG and MEG, and especially to evaluate the contribution of com-
bined EEG/MEG in comparison to single modality EEG or MEG source analysis of the
epileptic activity.

Effects of Epileptic Spike Averaging on Source Reconstruction

Fig. 1 (left column) presents butterfly plots of the grand-averaged (all 200 spikes) signals in
EEG (upper row) and MEG (lower row). As the dashed vertical line in this figure clearly shows,
the MEG signal peak (time point-7 ms) precedes the EEG signal peak (time point 0 ms) by 7
ms. Furthermore, the time instants that are discussed in the following are indicated in Fig. 1 by
solid vertical lines with different colors (-33 ms in dark blue, -23 ms in light blue, -13 ms in yel-
low and -3 ms in orange).

Next, the SNRs of the different modalities, subaverages and time points were investigated.
Fig. 3 shows the SNR results (average values with error bars indicating the standard devia-
tions) for EEG (blue), MEG (green) and EMEG (red). The upper row presents the results for
time point-23ms at the rising flank of the averaged spike (see light blue vertical line in Fig. 1)
for different average numbers. It shows only single spikes with a minimal SNR of 3 (Av1) or
subaverages (Av5 to Av50) made up of spikes with possibly lower SNRs than 3, but which
then reach the threshold of 3 within the averaging procedure. As a result of this, and because
the amplitudes of the single spikes vary, the SNR does not increase with the square-root of
the average number of spikes as it would be expected for example in an analysis of evoked re-
sponses. However, it still clearly increases with increasing average number and for all three
modalities. Fig. 3 (lower row) shows the results for subaverages of 10 (Av10) for different
time points. A different behavior of EEG and MEG over time can be observed in this subfi-
gure. At spike onset (time point -33 ms, see dark blue vertical line in Fig. 1), EEG and MEG
SNRs are almost identical. However, in later instants in time at the rising flank of the epileptic
spike (time points -30 ms to -3 ms) the SNR of the EEG increases faster than the SNR of the
MEG, which leads to considerable differences in SNRs at the EEG spike peak (time point 0
ms). Finally, it is also clearly visible that the standard deviations (error bars) increase with in-
creasing SNR.

We then calculated centroid dipoles for different subaverages at -23 ms (see light blue verti-
cal line in Fig. 1) and visualized the results in Fig. 4. This figure shows large differences in
source reconstructions between single and subaveraged epileptic spikes. The single spike source
reconstructions (Av1) are considerably more superior and deeper than the subaverages for
EEG, MEG and EMEG indicating a systematic noise bias of Av1. The noise bias in Av5 has a
similar tendency, but is already much smaller than for Avl, and no more bias can be observed
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Fig 3. Mean SNRs for EEG, MEG and EMEG for different subaverages and different phases. Average SNRs (with error bars indicating the standard
deviations) for EEG (blue), MEG (green) and EMEG (red). Only single epileptic spikes (Av1) or subaverages (Av5-Av50) with SNRs higher than three have
been taken into account in these figures. The upper row shows the results for different average numbers for time point-23 ms at the rising flank of the
averaged epileptic spike and the lower row for different time points from -33ms (spike onset) to Oms (spike peak in EEG) for subaverage 10 (Av10).

doi:10.1371/journal.pone.0118753.g003

for subaverages with more spikes, especially for MEG and EMEG. Starting from Av10 and fur-
ther increasing the number of averaged spikes results in only minor changes to the centroid di-
poles. Fig. 4 thus shows that a minimal average number of 10 should be used for this patient to
avoid a noise bias in the reconstruction of the center of gravity of the irritative zone.
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Fig 4. Centroid dipoles of EEG, MEG and EMEG for different subaverages at -23 ms. Centroid dipoles determined from the dipole scan peaks of EEG
(upper row), MEG (middle row) and EMEG (lower row) for different subaverages at 23 ms before the EEG spike peak. Each color shows centroids for
different subaverages and Av1 is the centroid for single spike reconstructions. The centroid dipoles were computed from those random realizations out of 200
random realizations for each group, which satisfied the SNR>3 criterion.

doi:10.1371/journal.pone.0118753.g004

Fig. 5, which shows, visualized with blue dipoles, the deviation scan peaks for Avl, Av5,
Av10, Av 25 and Av50 at -23 ms, further strengthens and complements the results of Fig. 4.
Green and red spheres in Fig. 5 represent the sSEEG contacts which measured frequent interictal
epileptic activity, thus giving an impression of the minimal size of the irritative zone, and red
spheres are the sEEG contacts that additionally measured ictal activity. Most of the observa-
tions in this figure are similar for EEG, MEG and EMEG, and as long as the modality name is
not explicitly mentioned in the following description, these observations are valid for all three
of them. It is clear from Fig. 5 that very few single spikes (Av1) pass the SNR criterion
(SNR>3) and even among them spurious dipoles (outliers) persist. When the subaverage num-
ber is increased to five, although the localizations become more stable and dipole clusters start
to emerge, still many outliers can be observed. For Av10 the clusters become more distinguish-
able with only few outliers. These results thus support our argumentation from the previous
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Fig 5. Peaks of the deviation scans of EEG, MEG and EMEG for different subaverages. Peaks of the deviation scans (illustrated by blue dipoles) of EEG
(left two columns), MEG (middle two columns) and EMEG (right two columns) for different subaverages. The figure shows the results at 23 ms before the
peak of the EEG. Both green and red spheres show the SEEG contacts where frequent interictal activity can be measured, thus giving an impression of the
minimal size of the irritative zone, and red spheres alone show seizure onset contacts.

doi:10.1371/journal.pone.0118753.g005
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paragraph (Fig. 4) to use a minimal average number of 10 for this patient. The following argu-
mentation now delivers the complementary information that, from the chosen subaverage
numbers, Av10 even seems to be optimal: Av25 results again differ from Av10, especially with
regard to a further decrease in the scatter of dipoles. When increasing the subaverage number
to 50 the scatter of the dipoles further decreases and MEG epileptic spikes are localized more
lateral than for Av10 and Av25. Now the dipole scatters can be evaluated with the information
from the sEEG. Fig. 5 shows that for Av10 the dipole scatter covers almost all active sSEEG con-
tacts, i.e., it covers the minimal size of the irritative zone. For Av25 the clusters are already too
focal, missing the active HA8-10 and all HP contacts. Av50 is even more focal, missing even
more of the active SEEG contacts (additionally to HA8-10 and all HP, also HA1-5 are outside
the estimated irritative zone) and thus strongly underestimating the size of the irritative zone.

Comparison of EEG, MEG and EMEG Source Reconstructions

For comparing EEG, MEG and EMEG localizations, based on the results of the previous sub-
section, the focus will be on Av10 results. This choice is based on Figs. 4 and 5, which show
that a minimal average number of 10 is needed to sufficiently reduce noise bias and appropri-
ately reconstruct the center of gravity of the irritative zone and that higher average numbers re-
sult in too focal dipole clusters that lead to an underestimation of the extent of the

irritative zone.

The Av10 EEG reconstructions in Fig. 5 are mainly localized in an area close to the pole of
the temporal lobe and close to sEEG TA contacts (Temporal Anterior, see Fig. 2). On the other
hand, no activity is localized near HP1-3 and HA1-5 (the hippocampus posterior and anterior
contacts). In MEG the localizations are more posterior than in EEG with clusters in the vicinity
of HA8-10 (the posterior lateral neocortical contacts that, in contrast to their label, are not lo-
cated in the hippocampus anterior, see Fig. 2), and close to HP contacts although no cluster
was formed around them. Unlike EEG there are no localizations in the vicinity of TA in MEG.
In EMEG, noninvasive reconstructions cover all active sEEG contacts. EMEG even shows lo-
calizations in the vicinity of the HP contacts, where neither the sensitivity of EEG (see EEG
side-view in the second column of Av10 in Fig. 5) nor of MEG (see MEG bottom-view in the
third column of Av10 in Fig. 5) was sufficient to reconstruct any activity.

The plots in Fig. 6 add quantitative information to Av10 source reconstructions visualized
in Fig. 5. The plots show the SDIs (upper subfigure) and the percentage of dipoles that are clos-
er than 10 mm to each SEEG contact measuring frequent interictal activity (lower subfigure).
In these plots, the contacts that are also part of the seizure onset zone (amygdala contacts A1-
3, and hippocampus anterior contacts HA1-5) are enclosed within rectangles with dotted lines.
The upper subfigure clearly shows that most of the EEG localizations are clustered near the TA
contacts and the lower subfigure shows that there are dipoles within 10 mm at only 6 out of
overall 24 interictal and 1 out of 8 ictal contacts. MEG values for the same measures are 10 out
of 24 interictal and 2 out of 8 ictal, and the localizations are clustered especially near the poste-
rior lateral neocortical contacts HA8-10 and HP contacts. On the other hand, for EMEG 23
out of 24 interictal and 7 out of 8 ictal contacts have at least one noninvasive localization within
10 mm. In the SDI plot the EEG SDIs for TA contacts are considerably higher than for other
contacts, while for MEG the SDIs at contacts HA8-10 are larger. For EMEG the SDI index is
almost equally distributed over the sEEG contacts and does not show a huge variation as in
EEG and MEG. The means and standard deviations of SDIs for EEG, MEG and EMEG demon-
strate this behavior well. The average SDIs for EEG and MEG are 0.22+0.15 and 0.18+0.11, re-
spectively, and with 0.24 the average SDI for EMEG is higher and, most importantly, with 0.05
its standard deviation is considerably lower than for EEG or MEG.
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doi:10.1371/journal.pone.0118753.g006
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As already noted, the MEG signal peak precedes the EEG maximum by approximately 7 ms
(Fig. 1). In order to investigate which sources are dominating the EEG and MEG signals, we
compared the timings of epileptic spikes in SEEG and the simultaneously measured IdEEG
(Fig. 2). We observed that simultaneously with the IdEEG peak, sEEG contact TA4 is also at its
peak value. On the other hand, the peak of the HP2 contact, the contact which measures the
highest amplitude in sEEG, is occurring 7.5 ms before the IdEEG and T A4 peaks. Moreover,
the peaks of A1-3 and HA1-5, i.e., the seizure onset contacts, are also preceding the TA con-
tacts and are almost simultaneous with the HP contacts.

Fig. 7 shows the pathways from spike onset to late propagation determined from EEG
(upper two rows), MEG (middle two rows) and EMEG (lower two rows). Av10 deviation scan
reconstructions for 4 different time points are visualized from -33 ms (spike onset, left column;
also see dark blue vertical line in Fig. 1) to -3 ms (late propagation phase close to EEG peak,
right column; also see orange vertical line in Fig. 1) in steps of 10 ms. The first striking observa-
tion in this figure is the considerably higher stability of EMEG source reconstructions at spike
onset in comparison to single modality EEG and MEG. The EMEG source reconstructions at
time point -33 ms are correctly clustered close to the seizure onset zone (red spheres at A1-3
and HA1-5 contacts). In contrast, EEG is strongly dominated by noise with source reconstruc-
tions spreading over a wide region. Although MEG reconstructions at spike onset are already
better than EEG, they are still too lateral and spread over a too large region and the low SNR
still leads to many spurious reconstructions. The results for EEG, MEG and EMEG at the prop-
agation phase also differ between one another. EMEG source reconstructions show that during
the 10 ms period from spike onset to time point-23 ms, at the rising flank of the signal, the re-
constructed activity spreads from amygdala and hippocampus to a wider area over the tempo-
ral lobe, then covering all active sEEG contacts. At time points-13 ms and -3 ms, the
reconstructed EMEG activity accumulates near the pole of the temporal lobe. The propagation
paths shown by single modality EEG and MEG differ quite much from the one of EMEG and,
when compared to the sEEG findings and the EMEG reconstructions, are both incomplete. For
EEG, the first stable (by improved SNR) source reconstructions shown in Fig. 7 are the ones at
-23 ms in the vicinity of the pole of the temporal lobe. EEG alone completely misses the more
posterior activity close to the HA and HP contacts (see Fig. 2) in this early propagation phase
(see especially the first row and second column in Fig. 7). At later instants in time the EEG is
only able to reconstruct activity at the tip of the temporal pole. With regard to the MEG, at -23
ms, source reconstructions are at more posterior temporal areas covering especially the HA8-
10 contacts (see Fig. 2 and second row in Fig. 7) very well. Later on at time points-13 ms and -3
ms, the reconstructed MEG activity travels to more anterior and temporobasal regions. During
the whole propagation phase MEG alone completely misses the temporo-polar activity close to
the TA contacts (fourth row in Fig. 7).

Corresponding to the visualizations of the propagation pathway in Fig. 7, the plots in Fig. 8
add quantitative information on Av10 EMEG source reconstructions for the 4 different time
points (please see supporting information for the same figure for EEG (S1 Fig.) and MEG (S2
Fig.)). The upper subfigure, presenting the SDIs, shows that at -33 ms (spike onset) the source
localizations are mostly clustered near the A and HA1-5 contacts (seizure onset). At later time
points, i.e., closer to the spike peak, the reconstructed activity propagates to E and TA contacts.
The lower subfigure, presenting the percentage of dipoles that are closer than 10 mm to each
sEEG contact measuring frequent interictal activity, shows that at -33 ms 7 contacts are cov-
ered by the noninvasive EMEG reconstructions. Among them, 6 are ictal contacts (it covers 6
out of 8 ictal contacts) and the other one is the HP1 contact, which peaks earlier than the TA
contacts, as shown in Fig. 2. While the EMEG reconstructed activity continuously decreases
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EEG

MEG

EMEG

Fig 7. EEG, MEG and EMEG deviation scan peaks of Av10 at different propagation phases. EEG (upper two rows), MEG (middle two rows) and EMEG
(lower two rows) deviation scan peaks (illustrated by blue dipoles) of Av10 for time points -33 ms (spike onset, left column) in steps of 10 ms until time point -3
ms (late propagation phase close to EEG peak, right column). Both green and red spheres show the sEEG contacts where frequent interictal activity can be
measured, thus giving an impression of the minimal size of the irritative zone, and red spheres alone show seizure onset contacts.

doi:10.1371/journal.pone.0118753.g007
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doi:10.1371/journal.pone.0118753.9008

over time at the seizure onset amygdala and hippocampal contacts, it continuously increases at

most of the TA and E contacts.
In Figs. 6 and 8 we compared the SDI values on active SEEG contacts to study the sensitivity

of our noninvasive source reconstruction results. For studying specificity, we plotted in Fig. 9
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Fig 9. SDI values for EEG, MEG and EMEG at -33 ms. The SDI bars are colored according to the measured
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doi:10.1371/journal.pone.0118753.9009
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the SDI values for EEG, MEG and EMEG at -33 ms, now also including the not active sSEEG
contacts. The SDIs were colored according to the measured activity: seizure onset contacts
(red), interictal contacts (green) and not active contacts (blue). The figure shows that not only
the sensitivity but also the specificity of EMEG results are superior to EEG and MEG alone.
EMEG SDIs of sSEEG contacts are gradually decreasing with distance to the seizure onset con-
tacts (see HA6 to HA15 and A4 to A9). EEG and MEG source reconstructions alone not only
failed to highlight the seizure onset due to low SNRs but also their specificities were qualitative-
ly inferior to our EMEG results.

Discussion

This section starts with the most important results first, the ordering of the subchapters was
therefore inverted.

Comparison of EEG, MEG and EMEG Source Reconstructions

Propagation phenomenon: Problems and opportunities for noninvasive source reconstruc-
tion. Propagation of interictal epileptic activity is a well-known phenomenon which might lead
to misinterpretations and spurious diagnosis if not taken into account. In order to cope with it,
many studies suggested reconstructing sources at the middle of the rising flank instead of the
peak of the epileptic spike (see [63] and references therein). Although this might seem to be a
good compromise between low SNRs at the spike onset and propagation at the spike peak, the
activity at the middle of the rising flank might have already been subject to propagation, e.g., in
mesial temporal lobe epilepsy, as shown in this study. On the other side, in cases where the
propagation pathway is always identical over different spikes, like the case discussed here,
propagation provides also a great opportunity: Propagation of activity from low SNR locations
(in our case the deep amygdala and hippocampal structures) to locations with much higher
SNRs (in our case the pole of the temporal lobe; see Fig. 3 with regard to the increase in SNR)
enables the examiner to find spikes and thus supply the necessary triggers for averaging, which
in turn might then enable revealing the preceding activity with lower SNR. This has been
shown in our study where we were able to accurately (with regard to our sEEG validation mea-
sure, see further discussion below) reconstruct the complete pathway of the epileptic activity
from onset to spike peak using subaveraging techniques and combined EEG and MEG source
analysis. Similar scenarios are discussed in the literature. For example, simultaneous scalp and
intracranial EEG studies showed that, while scalp EEG might not directly be able to distinguish
the activity from deeper structures from the noise, it might be possible to extract the EEG signal
by averaging intracranial epileptic spikes [64], [65].

EEG, MEG and EMEG source reconstructions at spike onset. Despite the strategies ex-
plained in the previous paragraph, as we have shown in Figs. 7 and 8, at very early instants in
time (-33 ms, see dark blue vertical line in Fig. 1) single modality EEG or MEG source recon-
structions might not be reliable enough to draw conclusions on the origin of the epileptic spike.
In our results, EEG was strongly dominated by noise and although MEG source reconstruc-
tions were more stable, they had a lateral bias with still too many spurious dipole positions.
The source reconstructions with single modality EEG or MEG stabilized at later instants in
time (see time point-23 ms in Fig. 7), but the activity had already been subject to propagation
by then. One of the most important and clinically relevant findings of this study is thus the
ability of EMEG to benefit from the complementary information of EEG and MEG at especially
these very early instants in time and to thereby stabilize the source reconstructions in cases of
low SNR. As shown in Figs. 7 and 8, at -33 ms the source reconstructions of EMEG are mainly
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clustered near amygdala and hippocampus, i.e., regions within the seizure onset zone as esti-
mated from sEEG.

Differences of EEG, MEG and EMEG source reconstructions in revealing the propaga-
tion pathway. The EEG, MEG and EMEG source reconstructions differed not only at spike
onset but also at later instants in time. At -23 ms (see light blue vertical line in Fig. 1), while
both EEG and MEG source reconstructions were clustered in the vicinity of spiking sEEG con-
tacts, they highlighted different contacts. EEG localizations were mainly clustered near TA con-
tacts, while MEG results were close to the posterior lateral neocortical contacts HA8-10 and,
partially, to HP. In agreement with our findings, in temporal lobe epilepsy, posterior MEG
source reconstructions in comparison to EEG were also observed in other studies [66], [67].
The main reason for this difference might be the increased size of the active patch at this time
point due to propagation. Considering the wide extent of active cortex measured with sEEG in
this study, our hypothesis is that the peak of the EEG deviation scan was found at the temporal
pole because of its considerable radial source orientation component. As a result, this activation
did not contribute much to the MEG signals. On the other hand, the activity arising from espe-
cially the posterior lateral neocortical contacts HA8-10 and from the HP contacts was more
tangentially oriented, leading to higher SNRs in MEG, and thus MEG was mainly focusing on
this part of the cortex. Furthermore, the averaged MEG signal peak was not synchronous with
the EEG peak; it preceded the EEG by approximately 7 ms (see dashed vertical line in Fig. 1).
In order to determine the sources dominating the EEG and MEG signals, we investigated the
time relationship between the peaks of the simultaneously measured sEEG and low-density
EEG (IdEEG) epileptic spikes. We observed that the peaks of the IdEEG and the TA4 contact
were simultaneous, and our EEG localizations were clustered around TA4. Although MEG and
SsEEG were not measured simultaneously, we might extrapolate the results of the simultaneous
IdEEG-sEEG to the simultaneous EEG-MEG measurements and comment on the timings of
the measured signals. Considering the fact that the MEG peak is also approximately 7 ms be-
fore the EEG we might state that the MEG maximum is concurrent in time with the HP2 con-
tact. This means, the peaks of the MEG and the HP2 contact are almost simultaneous and
might explain why MEG was also localized closer to HP2. All these results fit well to our hy-
potheses that a larger activated cortical patch is underlying the measured activity and that EEG
and MEG focus on only parts and, due to their distinct sensitivities, to non-identical parts of
this activity. Although EEG and MEG source reconstructions were able to highlight just a sub-
set of spiking sEEG contacts, EMEG results were covering almost all relevant sEEG contacts
with only a few spurious localizations. EMEG localizations were not simply the union of EEG
and MEG results but a rather complicated interplay of both modalities compensating their rel-
ative shortcomings. For example at -23 ms, in Figs. 6 (especially the lower subfigure) and 7, no
major dipole cluster was noticeable neither with EEG nor with MEG around the E contacts in
SEEG, while there were clear clusters around these active contacts in EMEG. This also supports
the idea that combining EEG and MEG can supply important additional information that can-
not be achieved by localizing EEG and MEG alone, and then comparing their results. There-
fore, whenever it is technically feasible to measure EEG and MEG simultaneously, it might be
important to not only analyze single modality EEG and MEG but also to compare with com-
bined EMEG reconstructions to obtain accurate localization results. Furthermore, the asyn-
chronous EEG and MEG peaks along with the more complete overview on the propagation
pathways provided only by EMEG, as shown here, might also help distinguishing between the
primary and secondary interictal areas as reported in [68].

Close to the spike peak (-3 ms) the source reconstructions were more anterior in compari-
son to earlier instants in time and were clustered close to the pole of the temporal lobe. The
SNR values shown in the lower subfigure of Fig. 3 support our findings that epileptic activity
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had started at deeper areas and then propagated to the pole of the temporal lobe at the spike
peak. The SNRs of EEG and MEG at spike onset were almost identical, but later on, the in-
crease in EEG SNR was higher than in MEG due to the mainly radial source orientation in the
area of the temporal pole.

Effects of Epileptic Spike Averaging on Source Reconstruction

The decision between localizing each single epileptic spike separately and averaging spikes with
similar topographies before source reconstruction is a highly disputed issue in presurgical epi-
lepsy diagnosis, and both approaches have their merits and drawbacks. Single spike localiza-
tions might be used to estimate the size of the irritative zone [5], [17], [43-46]. However, these
localizations suffer from low SNRs as also shown in our study. On the other hand, averaging
similar spikes might increase the SNR and thus, the reliability of the localizations remarkably
[2], but information on the extent might get lost. In this paper, motivated by the findings of
Bast et al. [2] and Wennberg and Cheyne [69] for EEG, and Wennberg and Cheyne [67] for
MEG source reconstructions, we calculated multiple subaverages in order to investigate the ef-
fects of SNR and averaging on EEG, MEG and EMEG source reconstructions. This enabled us
to compare the effects of averaging and the resulting SNR in a step-by-step fashion.

Systematic localization bias in single spike source reconstructions due to low SNR. Our
results show that the centroid dipoles obtained from epileptic spike clusters differ considerably
between different subaverages. We observed that spikes with lower number of subaverages and
thus lower SNRs were localized more mesial and superior in comparison to those with higher
number of averages (and higher SNRs) at -23 ms (Fig. 4). The reason for this localization bias
might be due to background activity, which can be considered as noise in our case. Since at this
time instant the propagation had already occurred, the noise bias shifted the localizations from
lateral parts of the temporal lobe into deeper regions in the brain. Our data support this hy-
pothesis by showing higher localization differences in the left-right (LR) and superior-inferior
(SI) than in the anterior-posterior (AP) axis. The lateral regions of the left temporal lobe are sit-
uated farther away from the center of the brain in LR and SI axes, while in AP axis they are
close to the center. In agreement to our results and our hypothesis, the studies of Wennberg
and Cheyne [67], [69] also showed similar shifts to the center of the brain.

Preselection criteria to improve single and subaveraged spike source reconstructions.
Different preselection criteria for epileptic spikes have been suggested to avoid errors in single
spike localizations [5], [11], [46]. We followed these criteria and localized only the spikes with
SNR higher than three. This preselection strategy resulted in more reasonable localizations but,
on the other hand, the number of single spikes that satisfied this condition also got smaller.
From the 200 measured single spikes, only 20 EMEG spikes passed the criterion at 0 ms (spike
peak with highest SNR). At -23 ms this number was even reduced to only 7 for EMEG and
even among them spurious localizations persisted (see EMEG results for Av1 in Fig. 5). There-
fore, we recommend (1) to use subaverages and (2) to observe the changes in centroid dipoles
and scatter size with increasing averages.

Estimation of the optimal subaverage number. For the estimation of the optimal subaver-
age number, we recommend the following procedure: A subaverage should be selected that av-
erages enough spikes (in our case Av10) so that its centroid dipole does no longer differ much
from the centroids of the subaverages with more spikes (in our case Av25 and Av50). Since
even for an extended source the center of gravity would always result in the same position in
noise free set-up, the changes in the centroid dipole for different subaverages are mainly due to
insufficient SNR. By selecting Av10 in which the location of the centroid dipole does not differ
much from Av50, we reduced the effects of noise on dipole scatter [70-72]. Averaging more
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spikes may not be favorable, as this may artificially reduce the scatter size leading to an under-
estimation of the extent of the irritative zone. Nevertheless, even for the optimal subaverage
number estimated with this procedure, the effects of spatial averaging on scatter size will persist
and possibly lead to a slight underestimation of the size of the irritative zone. However, the
negative influence will be much smaller than localizing single spikes with insufficient SNRs. In
this study Av10 was a good compromise, but this number might surely be different for other
patients. The better performance of Av10 in comparison to Av50 might be surprising since the
higher SNRs of Av50 might be expected to result in better localizations. However, in the light
of our results and the relevant literature we can question this expectation at least for localiza-
tion of interictal spikes: In [73], among 19 patients with Engel I or I outcomes, the resected
areas in four cases were concordant to only single spikes, in two to only averaged spikes, and in
five to both single and averaged spike localizations. A possible explanation for the latter results
can be sought in the light of the publications of [43] and [44], in which using optical imaging
they showed that the origins of the epileptic activity change in a stochastic way within a certain
region. This questions the assumption that spikes from the same irritative zone have exactly
the same origin and waveform, and can be used as an argument against averaging.

Topology of the irritative zone. Another important aspect is the topology of the irritative
zone. In our study, the irritative zone had a convex shape so that the center of gravity was part
of the zone. However, in case of a concave shape, this might change. As an example, the center
of gravity of a half-moon-shaped concave topology might be outside the structure (see, e.g., the
half-moon-shaped single spike localizations of patient 5 in Fig. 1B in [73]). However, even in
the latter case, using the centroid localization change between different subaverages is still an
important measure, because a centroid shift between single spike and subaveraged spike locali-
zations will still indicate a systematic shift of single spike localizations due to noise.

Relationship between size of dipole scatter, SNR and extent of the irritative zone. Oishi
et al. [46] showed in an MEG study that 8 out of 9 patients in which the spike cluster coincided
entirely with the ictal onset zone determined by subdural EEG (and resected afterwards) be-
came seizure free whereas the ratio was just 3 out of 11 for the cases where spike cluster and
ictal onset zone either only coincided partly or did not coincide at all. In agreement with the
studies of [5], [17], [45], [74], this shows the potential benefit of single spike localizations. On
the other hand, our results show that the amount of scatter is highly correlated with the num-
ber of subaverages and the SNR, especially for relatively low SNRs. Our results on scatter size
are mainly in line with Bast et al. [2] and Wennberg and Cheyne [67], [69]. However, we addi-
tionally show here that the effects of subaveraging and SNR on scatter size are valid for all in-
vestigated modalities, i.e., EEG, MEG and EMEG. Furthermore, while the other studies rely on
simpler volume conduction modeling such as spherical shell models used in Bast et al. [2], the
high-resolution six-compartment head model with calibrated skull conductivity and aniso-
tropic representation of the white matter compartment as proposed in our study does not only
enable simultaneous analysis of EEG and MEG, but also has the potential to improve localiza-
tion accuracy for single modality EEG or MEG or in combined EMEG analysis. The latter is es-
pecially important in the temporal lobe, where a sphere approximation of the skull can result
in significant errors for both EEG (e.g., [15]) and MEG (e.g., [75], [76]). Our results are also in
agreement with EEG simulations of Kobayashi et al. [77] showing dipole clusters to become
less erroneously distributed with increasing SNR. However, in summary, the identification of
the exact size of the irritative zone still remains a difficult problem because, as also shown in
this study, scatter varies significantly with SNR, spike selection criterion and
subaverage number.

Reconstructing slightly distributed activity using a single dipole model might lead to a small
depth-bias (sources that are localized slightly too deep). Here, we took three measures to
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alleviate such depth-bias and to accurately (as validated by the sEEG) reconstruct the center of
the underlying activity: 1) We used a cortically-constrained source space, which prevents erro-
neous localizations inside white matter. 2) We constructed a head model that distinguishes
CSF, gray matter, and anisotropic white matter instead of a homogeneous brain, in which the
topographies for dipoles with different depths and locations would have been more similar and
homogeneous. 3) We preferred a dipole scan instead of a dipole fit to ensure finding the global
optimum of the cost function over the cortically-constrained source space.

It is important to state that in this study the aim was not to estimate the extent of a patch in
which all neurons are active simultaneously and always in the same way but to estimate the ex-
tent of a patch in which the origin of the activity is different for each spike. Using optical imag-
ing on epileptic human neocortical slices removed during epilepsy surgery, Kohling et al. [43]
and Speckmann et al. [44] showed that the activated cortical areas during epileptic waves are
focal and their spatial positions change in a dynamic manner within the epileptic tissue. This
finding was the main reason why a subaveraging procedure was selected instead of averaging
all spikes. Therefore, in this study our aim with investigating the dipole scatter was not to deter-
mine the extent of a patch that always follows exactly the same activation pattern but to benefit
from the small differences on the activation pattern within the epileptogenic zone due to the
dynamic and stochastic behavior of each spike as shown in [43,44].

With regard to the chosen inverse approach, besides the cortically-constrained deviation
scan as employed here (see, e.g., [38], [55], [56]), promising results were also achieved with cur-
rent density approaches [38], with hierarchical Bayesian modeling frameworks [48], [78] and
with spatio-temporal current density approaches [79], [80] in non-invasively reconstructing
networks of (epileptic) activity from EEG and/or MEG. However, also those methods need to
embed correct prior knowledge in some form into the inverse approach and it still needs to be
shown that the methodology is stable even in the presence of low SNR in realistic epilepsy data-
sets [78], [79]. Furthermore, in Bouet et al. [81], using frequency domain beamformers, the de-
termination of the spiking volume was possible in 16 out of 21 patients with sensitivity (76%)
and specificity (67%), as also validated through SEEG measurements. However, Steinstriter
et al. [82] showed that beamformer approaches are sensitive to head volume conductor proper-
ties. Therefore, in a future study, it will be interesting to combine other inverse methods with
the subaveraging, the head modeling and the combined EEG/MEG procedure as presented
here and to evaluate their quality by means of the intracranial EEG recordings.

Limitations of the current study. There are two important aspects that need attention re-
garding the interpretation of the results presented here: 1) We used sEEG measurements for
validation purposes because this is widely accepted as the “gold standard” in presurgical epilep-
sy diagnosis. SEEG has advantages over noninvasive EEG because not only the target sources
are closer to the measurement sensors but also the attenuation and smoothing of the signals
due to volume conduction, especially due to the highly insulating skull, are avoided. Despite
these advantages, SEEG still lacks the ability to show the ground truth due to its low spatial res-
olution and overall coverage caused by the limited number of electrodes and contacts. 2) Al-
though we have simultaneously measured EEG/MEG and IdEEG/sEEG, we did not measure
EEG/MEG/sEEG simultaneously. Thus, we cannot be sure that all epileptic spikes that were
visible in sSEEG were also visible in EEG and MEG. Nevertheless, we verified that most sSEEG
spikes were also visible in IdEEG and, as Fig. 7 (EMEG, -23ms) shows, the irritative zones de-
termined by sEEG (green and red contacts) and by noninvasive EEG/MEG (blue dipoles) were
well in agreement with each other.
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Conclusions

In this study, a high-resolution realistic six-compartment finite element head model with an-
isotropic white matter and calibrated skull conductivity enabled us to take into account the dif-
ferent sensitivity profiles of EEG, MEG and EMEG in reconstructing the underlying sources in
the brain, and to make reliable interpretations on the effects of spike averaging and SNR. Our
study shows that EMEG source analysis can increase accuracy and confidence in source recon-
structions significantly, which might have important clinical implications especially for localiz-
ing at spike onset and for revealing propagation pathways as complete as possible.
Furthermore, subaveraging might provide important and accurate information that neither
single nor grand-averaged spike reconstructions can give. However, the extent of dipole scatter
will still be correlated to the number of subaverages and to the SNR. Although an advanced
head model as used in this study can improve the accuracy of source reconstructions, also stud-
ies that use more homogenized ways of forward modeling such as the classical three compart-
ment (skin, skull, brain) approach might still benefit from the subaveraging pipeline and the
calibration procedure for combining EEG and MEG as presented in this study.

Supporting Information

S1 Dataset. Dataset underlying the results presented. The spreadsheet contains all deviation
scans of EMEG (page 1), EEG (page 2), and MEG (page 3) for subaverages Av5, Av10, Avl5,
Av20, Av25, Av30, Av35, Av40, Av45, Av50 and single spikes (Av1) at -33, -23, -13, and -3 ms.
For each deviation scan signal-to-noise-ratio “SNR”, “Residual variance”, the coordinates of
the deviation scan dipole “Locations”, the normals to determine the orientation “Normals”,
and the strengths of the dipoles “Strengths” are given. The fourth page contains the names of

the sEEG electrodes “Electrode name”, “Contact number”, and their coordinates “Locations”.
(XLSX)

S$1 Fig. Quantitative comparison of EEG source reconstructions and sEEG contacts at dif-
ferent propagation phases. Square distance indexes and the percentage of dipoles closer than
10 mm for each sEEG contact. The values are given for Av10 EEG subaverages at -33, -23, -13
and -3 ms. The sEEG contacts enclosed by dashed lines were within the seizure onset zone.
(TIF)

S2 Fig. Quantitative comparison of MEG source reconstructions and sEEG contacts at dif-
ferent propagation phases. Square distance indexes and the percentage of dipoles closer than
10 mm for each sEEG contact. The values are given for Avl0 MEG subaverages at -33, -23, -13
and -3 ms. The sEEG contacts enclosed by dashed lines were within the seizure onset zone.
(TIF)
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