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Abstract

Semantic interoperability establishes intercommunications and enables data sharing across disparate systems. In this study,
we propose an ostensive information architecture for healthcare information systems to decrease ambiguity caused by using
signs in different contexts for different purposes. The ostensive information architecture adopts a consensus-based approach
initiated from the perspective of information systems re-design and can be applied to other domains where information
exchange is required between heterogeneous systems. Driven by the issues in FHIR (Fast Health Interoperability Resources)
implementation, an ostensive approach that supplements the current lexical approach in semantic exchange is proposed. A
Semantic Engine with an FHIR knowledge graph as the core is constructed using Neo4j to provide semantic interpretation and
examples. The MIMIC III (Medical Information Mart for Intensive Care) datasets and diabetes datasets have been employed
to demonstrate the effectiveness of the proposed information architecture. We further discuss the benefits of the separation
of semantic interpretation and data storage from the perspective of information system design, and the semantic reasoning
towards patient-centric care underpinned by the Semantic Engine.

Keywords Healthcare information systems - Semantic interoperability - Digital healthcare - FHIR - Ostensive approach -

Graph database - Ontology graph - Knowledge graph

1 Introduction

A health information system (HIS) manages healthcare data
and supports decision-making in order to improve the qual-
ity of health services. The nature of demands, particularly
resulting from patient-centred care policies (Stewart, 2001)
and evidence-based medicine (Sackett, 1997), necessitates
the efficient management and usage of healthcare resources.
In view of the benefits provided to healthcare services by
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advances such as sensor-based technology and the ubiq-
uitous computing environments for multiple HIS users,
including physicians, patients, funders of healthcare, and
regulatory bodies (He et al., 2019), the HIS faces multiple
challenges (Haux, 2006). The HIS landscape has signifi-
cantly expanded, with its complexity increasing exponen-
tially; the examination of this fundamental issue in terms
of HIS architecture, therefore, has great importance. In
response to increased levels of connectivity and stakeholder
demand, HISs are evolving into healthcare ecosystems;
facilities of this nature should have the capacity to deal with
multiple domains of knowledge (Blobel, 2019), particularly
heterogeneous data collected by novel medical devices or
sensors (Kankanhalli et al., 2016).

Interoperability facilitates intercommunication, enabling
data sharing across disparate information systems (Geraci,
1990; Mouttham et al., 2012). The diversity of datasets gen-
erated by information obtained from wearable devices, tel-
ehealth, and digital therapeutics (Aungst & Patel, 2020; Li
et al., 2015) requires exchangeability, not only of the data
themselves but also of the information they contain. Accord-
ingly, the issue of the interoperability of digital ecosystems
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is receiving an increasing amount of attention from both
academia and industry (Grimson et al., 2000).

From information network connectivity to application
interaction, interoperability can be categorised into three
forms, specifically: technical, syntactic, and semantic (Joshi
et al., 2017; Tolk et al., 2007). In the dimensions of technical
and syntactic interoperability, consensus solutions have,
to some extent, been developed; for example, information
exchange protocols such as REST (Resource Representational
State Transfer) API and unified data formats are, in practice,
becoming more widely adopted. However, there remain
significant challenges for semantic interoperability, which
concerns the capacity of systems to interpret the meaning of
the exchanged information within ecosystems. Because the
applications of artificial intelligence, advanced data analytics,
and wearable technologies are becoming increasingly common
within healthcare ecosystems, the subject of interaction
between heterogeneous applications and systems has attracted
the interest of many academics. This research explores the
meaningful information exchange between two or more
entities within a healthcare ecosystem at the semantic level
(Liu & Li, 2015; Ouksel & Sheth, 1999) from the perspective
of information systems, proposing a new architecture for HIS
designed to support the delivery of high-quality care.

In view of the complex nature of medical information
representations, international standards have been produced
in order to achieve their semantic interoperability, such as
HL7 v2, and v3 (HL7 International, 1987), open EHR (open
EHR, 2003) and CEN/ISO 13606 (ISO) (European Commit-
tee for Standardization (CEN), 2019). Although these stand-
ards claim to solve the problem of semantic exchange, from
the perspective of information exchange, they are actually
applied at different levels of information systems, i.e. syn-
tactic, semantic, and pragmatic (Liu & Li, 2015). However,
the semantic ambiguity persists (Dolin et al., 2018; Jiang
et al.,, 2015, 2016).

Because of the sub-optimal performance of these
standards, especially at semantic and pragmatic levels,
all continue to evolve. FHIR (Fast Health Interoperability
Resources) (HL7 International, 2011) is the latest version
of HL7; it is applicable in the majority of healthcare sce-
narios and has been adopted by all UK hospitals, and those
in many other countries. One of the main reasons for the
healthcare sector’s wide acceptance of FHIR is its excel-
lent compatibility with Internet protocols and its ease of
deployment (Bender and Sartipi, 2013). However, with its
widespread application in industry, FHIR’s limitations in
terms of semantic interoperability create ambiguity (Jiang
et al., 2015, 2016), leading researchers to address the issues
associated with its implementation (Dolin et al., 2018; Jiang
et al., 2015). Focusing on its limitations, this paper proposes
an ostensive information architecture for the enhancement of
FHIR’s interoperability in digital healthcare systems.

@ Springer

The ostensive approach, which defines concepts by direct
demonstration, is often applied in language and philosophy
(Malcolm, 1954; Wittgenstein, 2019); it is considered par-
ticularly effective in the clarification of semantics. In the
context of healthcare ecosystems, FHIR can be regarded
as a language to encapsulate local health data for cross-
institutional exchange. Semantic ambiguities are gener-
ated when implementers have contrasting understandings
of the FHIR’s lexical definition, leading to inconsistencies
in its use. Therefore, this paper considers the clarification
of FHIR’s meanings as understood by an implementer via
the illustration of FHIR-represented data in local health
information systems as examples of inconsistency between
implementers.

In this research, the ostensive approach is a process of
demonstrating the way in which FHIR is used by implement-
ers to represent the healthcare services supported by local
health information systems (HISs). Thus, this paper explains
a healthcare service through the following steps:

1) explaining its lexical semantics by use of an FHIR
knowledge graph;

2) explicating semantics by highlighting explicit corre-
spondences between FHIR and local data attributes, and

3) showing examples of these attributes by describing the
values of attributes that are stored in local datasets

The above three actions are carried out by the Semantic
Engine, which is composed of a core and peripheral knowl-
edge graphs. The core is the FHIR knowledge graph, and
the peripherals are the nodes and their relationships, which
reflect the correspondences between FHIR resources and
the local database. The Semantic Engine has the capacity to:

1) provide semantic interpretation by displaying nodes and
their relationships, and

2) retrieve relevant data from multiple local databases,
map these data back to the nodes, and assemble the data
according to the relationships between nodes.

The Semantic Engine can be regarded as a ‘switch’ within
HISs to facilitate semantics interaction; it provides the deno-
tation of healthcare concepts by a topology of nodes and
corresponding examples to answer semantic queries from
heterogeneous systems within healthcare ecosystems. There-
fore, semantic interoperability can be enhanced through the
sharing of consensus ontology and examples, while patient-
centred care can be supported by the proposed ostensive
healthcare information architecture.

This paper will illustrate two example cases of proposed
ostensive information architecture functionalities. The first
shows the way in which the Semantic Engine responds to
semantic queries, while the second demonstrates how it
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retrieves data from heterogeneous databases to enable cross-
institutional data sharing. Overall, this study provides a new
perspective on the solution of semantic ambiguity in terms
of information architecture. Further, the proposed ostensive
information architecture naturally separates semantic expla-
nation and data storage, which is an option to ensure data
privacy and enhance data security.

This paper is structured as follows: Section 2 introduces
the interoperability supported by FHIR and addresses its
limitations in this respect. Section 3 reviews the available
related work, while Section 4 explores the root cause of
semantic ambiguity in FHIR implementation, comparing the
lexical and ostensive approaches from a theoretical perspec-
tive. Section 5 describes the proposed ostensive information
architecture, the functions of the Semantic Engine, and the
value it offers, and Section 6 demonstrates the effectiveness
of the proposed information system architecture by employ-
ing the MIMIC III dataset and diabetes datasets. Section 7
presents a summary of the Semantic Engine’s applications,
discusses the study’s limitations, and provides some sugges-
tions for future research directions, followed by the conclu-
sions of this research.

2 Interoperability Addressed by FHIR and its
Limitations

FHIR is proposed by HL7 International to improve the
interoperability of systems in the healthcare domain and to
facilitate information exchange between the stakeholders of
healthcare ecosystems. FHIR is an open suite of software
specification and implementation, comprising two elements:
information models entitled ‘resources’, and a specification
for the exchange of these resources. The goal of FHIR is to
render all health data accessible to large-scale analytics in
order to improve the quality of healthcare services.

In contrast to the earlier standards of HL7 v2 and v3,
FHIR is likely to rapidly gain attention from the sector
because it actively embraces Internet technologies and offers
advantages such as agility, fast iteration, and low learn-
ing costs (Bender and Sartipi, 2013, Zong et al., 2021, Xu
et al., 2020, Leroux et al., 2017), with additional support
for mobile applications (Mandel et al., 2016, Bender and
Sartipi, 2013, Sayeed et al., 2020). FHIR adopts a REST-
ful API which facilitates interactions and represents data in
the currently popular JSON (JavaScript Object Notation)
format, in addition to the EDI and XML formats provided
by the earlier standards. FHIR provides a set of standards
with established patterns to improve interoperability among
a wide range of systems and devices that transcend EHR
(Electronic health record) systems. FHIR for heterogeneous
healthcare information systems is akin to the TCP/IP stand-
ard for the Internet. FHIR significantly reduces the difficulty

of the transformation of incumbent information systems and
its implementation compared to OpenEHR and the previous
versions of HL7 (Bender and Sartipi, 2013).

In 2018, six Internet giants, namely Amazon, Google,
IBM, Microsoft, Oracle, and Salesforce, jointly committed
themselves to the elimination of interoperability barriers
in healthcare by adopting FHIR as an exchange standard
(Information Technology Industry Council, 2018). FHIR is
selected as the basis of this research because it has been
adopted as the national standard across all hospitals in the
United Kingdom (UK) (NHS, 2020) and has also been
widely adopted in other sectors.

In addition to the RESTful interface, FHIR resources can
be exchanged through the paradigms of document, messag-
ing and services; these comprise the three types of resource
collections serving different purposes (McKenzie, 2016).
For current solutions, FHIR is usually adopted as a front-
end server, expressing the local healthcare data with the term
‘resources’; it provides an HTTP/REST interface for appli-
cations by developers to access data (Saripalle et al., 2019).
Heterogeneous databases mutually communicate through
their front-end servers. These FHIR servers are oriented
towards each other, establishing an unimpeded network of
intercommunication through RESTful APIs at the technical
and syntactical level. The semantic interoperability between
heterogeneous databases is theoretically ensured by FHIR
resources, which constitute unified information models to
ensure that all agents communicate via the same discourse
system.

The fundamental units of FHIR that represent clinical
information are resources, which are information models
featuring a set of pre-defined properties for a specific aspect
of the domain. For example, the resource representing an
individual patient has attributes including name, gender,
address, and date of birth. Effectively, a resource can be
identified as a schema, which describes all of the relevant
attributes of a conceptual entity. Currently, FHIR R4 defines
146 types of resources within five categories; these are
Foundation (30), Base (26), Clinical (39), Financial (16),
and Specialised (35). FHIR consolidates all categories of
data with these pre-defined resources, which are already in
use or will be used in HISs. FHIR, as a sign system, offers a
defined lexical space in which clinical concepts, healthcare
services, and FHIR resources are utilised.

The widespread adoption of FHIR has led to an increased
debate on the limitations of semantic interoperability;
Kubick (2016) and Kraus (2018) discuss the semantic
ambiguity introduced by the implementors due to different
combinations of FHIR resources being used to explain the
same healthcare service. When FHIR is adopted as an ‘inter-
pretation wrapper’ in a healthcare ecosystem for information
exchange, all parties to it are able to choose FHIR resources
to represent their healthcare services. In consequence,
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different institutions may not be able to interoperate due to
the inconsistencies in the use of FHIR resources; semantic
ambiguity in communication based on FHIR resources is
introduced and amplified by the interactive process.

Three types of semantic ambiguity have been identi-
fied in FHIR implementation, with the first caused by the
insufficient rigour of the FHIR specification. Beale (2019)
contends that the inconsistency in the definition of FHIR
produces semantic ambiguity. The following examples have
been found in FHIR v4.3.0:

o Same semantics with different lexical names

Dosage in Medication Statement has the same mean-
ing as Dosage Instruction in Medication Dispense. The
three elements, Location.hoursOfOperation, Healthcare
Service.Available Time, and Slot.start, are different names,
although they appear to designate the same thing.

o Same lexical name with different semantics

The ‘substitution’ in Medication Request and Medication
Dispense describes two different actions.

e Same lexical name and semantics, but different data
structure

The ‘status reason’ in Medication Request is defined as a
Single-valued attribute; in Medication Administration, it is a
container attribute, and in Medication Dispense, it includes
two sub-elements.

These imprecise definitions inevitably lead to misuse
or inconsistency in the implementation of FHIR; further,
the FHIR specification involves terminology in a variety

Fig.1 An example of cor-

of fields and is relatively complicated. The lexical defini-
tions do not have the capacity to guide implementers to
precisely match FHIR resources to idiosyncratic local data-
bases because it is impossible for the FHIR specification to
describe all mapping scenarios; this is an inherent flaw of
the lexical approach, which is discussed in Section 4 from a
theoretical perspective.

The second type of semantic ambiguity is introduced
by FHIR extensions. As the 80/20 rule of FHIR resources
(HL7 International, 2019) is adopted to avoid overlap and
redundant definitions of resources, lesser-used terms can be
freely defined by implementors in the format of extension of
resources, which accounts for 20% of clinical terminologies.
Because FHIR unifies healthcare resources but lacks explicit
contextual constraints, the 80/20 rule enables an institution
to define its own extensions for the same healthcare service.
An issue of this nature both causes barriers to information
exchange and also obstructs medical discoveries based on
cross-institutional data analysis (Dolin et al., 2018). Seman-
tic interoperability particularly deteriorates when extensions
of resources are used to deal with specialist health data.

The third type of semantic ambiguity is due to the free-
dom and flexibility FHIR offers implementers; they can
employ FHIR resources, or combinations of them, in order
to interpret healthcare services, even though some may not
be mature and/or stable, which leads to semantic ambiguity.
FHIR v4.3.0 defines 139 resources, of which 100 belong to
non-clinical categories. The number, which increases with
every release, grants a substantial degree of freedom to
implementers to use these resources. For example, in Fig. 1,
the resources of ‘observation’ can be combined with other
resources to represent laboratory results, imaging study find-
ings, diagnostic test results, vital signs, and other physical
examination findings. These are the combinations of FHIR

respondence between clinical —— Lab
actions and FHIR resources
(HL7, 2022)

{ »  Clinical Diagnosis

Imaging Study
Findings

Diagnostic Test
Results

Vital signs

Other Physical Exam
-
Findings

Pulmonary Artery
Catheter readings

Allergy

y Results Di
Report

Observation

Allergy
Intolerance

> Adverse Event

FHIR Resources

i Adverse Event
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resources suggested by HL7 (https://www.hl7.org/fhir/resou
rceguide.html). The potential misuse of resources occurs
when healthcare data are beyond the scope of HL7-sug-
gested combinations. Additionally, FHIR implementers can
tailor FHIR integrations to specific business needs, result-
ing in multiple customised resource collections occurring
between different systems (Dolin et al., 2018; Jiang et al.,
2016). The interoperability issue caused by diversified FHIR
collections is recognised by HL7 International (2022).

This research aims to demonstrate these semantic ambi-
guities generated in FHIR implementation and seeks to
decrease their occurrence by exposing the correspondences
between FHIR resources and the attributes of local datasets.
When the custom use of FHIR is demonstrated to other par-
ties within the healthcare ecosystem, stakeholders can select
its optimum interpretation and promote it to the standard of
the whole ecosystem.

3 Related Work to Improve FHIR Compliance

Regarding the three types of semantic ambiguity discussed
in Section 2, HL7 launched an office website (http://hl7.org/
fhir/registry/) to manage extension publications. Once an
extension defined by implementers is approved by HL7, it
is shared with all FHIR users through an official channel,
this centralised management method effectively unifies and
standardises custom extensions. However, the use of exten-
sions faces the problem of interoperability caused by imple-
menters' contrasting understandings of lexical definitions.
McClure et al. (2020) propose a framework to guide harmo-
nisation among multiple FHIR users in terms of terminol-
ogy, data elements, measure clauses, and measure concepts.
Tute et al. (2021) take a similar approach, proposing a data
quality assessment method for the support of collaborative
governance.

The approach of ensuring FHIR conformity through
review processes is usually costly in terms of time and
labour. Sayeed et al. (2020) take an alternative approach,
proposing an application that automatically merges
patient-generated health data, represented by FHIR
resources, into EHR. This approach is effort-effective but
its scope is limited to patient-generated health data, and
it does not cover electronic health records, which are the
most complex aspect of healthcare ecosystems. Pfaff et al.
(2019) contribute mapping scripts for the interpretation
of medical data with FHIR resources; in their study, the
data from the Integrating Biology & the Bedside (i2b2),
the Patient-Centred Outcomes Research Network (PCOR-
net), and the Observational Medical Outcomes Partnership
are automatically encapsulated by the FHIR. However,
the script compatibility issues caused by the idiosyncra-
sies of local data sources persist. In their framework, the

adaptation of a local database to the mapping script is allo-
cated to the local database layer; therefore, the inconsist-
ency of using FHIR resources caused by different imple-
menters remains unresolved.

Another approach is to leverage the national effort to
harmonise the FHIR resources for medical data repre-
sentation across hospitals. The Medical Informatics Ini-
tiative (MII) and local data integration centres (DICs) in
Germany collaborate to standardise COVID-19 data in
FHIR profiles through another set of models, i.e., the Ger-
man Corona Consensus Dataset (GECCO). Using FHIR,
GECCO defines 83 data elements and has been extended
to all hospitals nationwide (Rosenau et al., 2022). The
United Kingdom adopts the same approach and proposes
FHIR UK Core (NHS, 2020) to enable consistent infor-
mation flows across borders. However, the disadvantage
of this approach is the lack of agility and the high cost of
upgrading.

In industry, a more straightforward approach is adopted;
a developer collaboration and publishing platform (Firely,
2015) plays the role of coordinator and facilitator among
developers to improve the conformance of FHIR, consti-
tuting a loosely-regulated approach. The above approaches
have their own advantages and disadvantages; this study
seeks to develop a low-cost, and high-efficiency method by
which to ensure FHIR conformity.

Table 1 summarises the benefits and constraints of exist-
ing FHIR compliance solutions in terms of cost, efficiency,
implementation difficulty, and application breadth. The sug-
gested ostensive information architecture has clear advan-
tages over current solutions.

In view of the necessity for FHIR to use a consensus-
based approach, this study considers the related work of
ontology used as an artefact to promote the harmonisation of
health information systems. Ontology artefacts play a critical
role in the fields of medical terminology unification, cross-
medical protocol interoperability, and information exchange
between heterogeneous systems for healthcare services. In
summary, relevant ontologies comprise the following three

types:

¢ Ontology for terminology: representing terminologi-
cal and taxonomic aspects of medical knowledge

Ontology has been used to unify the medical inter-
pretations in order to establish an agreement on medical
terminologies in diverse clinical systems, such as LOINC
and SNOMED-CT. From this perspective, terminology
ontologies are the pre-defined agreements designed to
standardise the language of a domain, providing each
term with a precise meaning and a specific granularity.
Therefore, terminology ontologies lay the foundation for
the exchange of medical information.
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Table 1 Comparison between FHIR Compliance Solutions

Solution Time and cost Efficiency to Easy to Scope of
decrease ambiguity Implement application

HL7 official website (http://hl7.org/thir/registry/) Low Low Easy Wide

A framework for harmonisation High High Hard Wide

(McClure et al., 2020; Tute et al., 2021)

Automatic tools Low High Easy Narrow

(Pfaff et al., 2019; Sayeed et al., 2020)

FHIR resources harmonisation national wide High High Easy Wide

(NHS, 2020, Rosenau et al., 2022)

A developer collaboration and publishing platform Low Low Easy Wide

(Firely, 2015)

An ostensive information architecture Low High Easy Wide

¢ Ontology as a bridge between two systems: represent-
ing the relationships between terminology ontologies

Regarding the clinical concepts that comprise the medical
terminologies defined by different standards, ‘bridge’
ontologies are adopted to facilitate information exchanges
between terminology ontologies and are employed to
unify the definitions of clinical concepts. Ryan (2006)
interconnects HL7 v3 and SNOMED-CT through ontology
matching, and Bodenreider (2008) uses the same method
to enable SNOMED-CT to understand the laboratory test
result coded in LOINC. Those similar operations facilitate
semantic interoperability between heterogeneous coding
systems and also support the integration of dispersed health
information systems (Plastiras et al., 2014).

¢ Domain ontology: providing a common knowledge
base for healthcare ecosystems

Compared to the healthcare domain ontology proposed
by individual researchers or national institutions, the FHIR-
based ontology has evident international influence and the
advantage of wide promotion. To encourage FHIR’s adop-
tion, the following studies propose methods for the trans-
formation of healthcare data into the corresponding HL7
FHIR structure (Jiang et al., 2017; Kiourtis et al., 2019). A
significant amount of research effort has been devoted to
the improvement of FHIR coverage scenarios. Beredimas
et al. (2015) propose an OWL (Web Ontology Language)
ontology that defines the primitive and complex data types
of the FHIR framework and the validation rules to enable
FHIR to express data information externally to traditional
medical databases.

El-Sappagh et al. (2019) extend FHIR to the telehealth
scenario, introducing real-time sensor data into the
historical EHR medical data with the aim of providing
more comprehensive patient data to clinical decision

@ Springer

support systems. Similar works have been carried out by
Peng and Goswami (2019), combining data generated from
the Internet of Things (IoT)-empowered smart home devices
to EHR; meanwhile, Mavrogiorgou et al. (2019) collect
multi-dimensional data reflecting patients’ health. This
type of research (Moreira et al., 2018; Wagholikar et al.,
2017) extends the application of FHIR to a broader range of
medical data, promoting the wider adoption of FHIR.
Literature review provides evidence that ontology arte-
facts are widely-adopted, with the aim of improving data
harmonisation and accessibility, and FHIR-based ontology is
a mainstream approach to contend with the ever-increasing
complexity of healthcare ecosystems. Thereby, this research
study explores the FHIR conformity solution on the basis of
the FHIR ontology artefact. The next section delves into the
root cause of semantic ambiguity in FHIR implementation.

4 Information Interaction through Lexical
and Ostensive Approach

By investigating the practice of information management
and human communication, we recognise that the
fundamental cause of semantic ambiguity generated in
FHIR implementation lies in using signs to represent
objects. A sign can be anything that is interpreted as a
substitute for something else (Eco, 1979), particularly in
human communication. In semiotics, researchers examine
information interaction through the study of signs and their
effect on the human actors involved. Multiple semiotic
theories hold different stances in epistemology and have laid
different cornerstones in communication. They profoundly
impact the fields of informatics (Liu & Li, 2015; Liu et al.,
2010), information systems (Baxter et al., 2018; Brodner,
2019), knowledge management (Holzinger et al., 2014) and
artificial intelligence (Chartier et al., 2019; Staab, 2019;
Targon, 2018).
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Saussure’s theory of signs originated with the thought of
a dichotomy. He believed that a sign links a signifier and a
signified, which may exist in material form or as a concept.
The signifier in his theory is something that explicitly exists
and can be distinguished by human senses (Leeds-Hurwitz,
1993). Peirce reckoned that the existence of an interpretant
is critical and must be introduced in the process of making
sense of a sign, which he terms a semiosis. An interpretant
directly connects a sign and an object, while the sign and
the object are linked by a dotted line (Fig. 2) in Peirce’s
triadic model. The dotted line in the figure indicates that
the correspondence between the sign and the object is not
objectively determined but is dependent on the context and
purpose of the communication and hence subject to personal
interpretation. The interpretant can be regarded as the effect
of such a sense-making process (Chandler, 2017) through
the use of signs in different contexts or for different purposes
(Liszka, 1990; Savan, 1987). Therefore, between a sign and
an object, there is no strict one-to-one correspondence as
suggested in Saussure’s model; although most specifications
for information sharing adopt the Saussurean model of static
mapping between lexicons and objects, including FHIR.

Peircean semiotics emphasises the effect of using signs
in context (Staab, 2019). By emphasising the subjectivity in
the mapping between the sign and the business context in
which the sign is used, the triadic model of semiosis offers
a theoretical basis for an ostensive approach to pinpoint the
meaning of the sign (i.e., semantics) and its effect on the
sense-making of the sign (i.e., pragmatics).

To deal with the possibility of one-sign-multiple-objects,
the ostensive approach is introduced to explicate the sign-
object correspondence via direct demonstrating actions and
examples. In such a way, semantic ambiguity is resolved,
especially when complex signs such as FHIR are involved.

Interpretant

Object Sign

Fig.2 Peirce’s triadic model (Peirce, 1958)

The FHIR specification uses the lexical approach to
explain the definitions of resources. In other words, FHIR
interprets the meanings of resources in language, which can
be understood as the ‘sign’ (as illustrated in Fig. 2). In the
context of FHIR implementation, different implementers
may have contrasting understandings of the FHIR definition,
leading to the same FHIR resource being used to explain
different clinical data. Semantic ambiguity is created when
many interpreters illustrate the same concept with contra-
dicting signs. The ambiguity of "same semantic with dif-
ferent lexical names" is depicted in Fig. 3. Similarly, the
ambiguity of ‘same lexical name with different semantics’
occurs when the same sign is mapped to multiple objects by
different interpretants. Just as Dolin et al. (2018) addressed,
the primary challenge of FHIR adoption is to transform mul-
tiple distributed local datasets into consistent FHIR formats.

Therefore, this paper proposes an ostensive approach as
a complement to the lexical approach in order to reduce the
semantic ambiguity introduced by the contrasting under-
standing of the FHIR definition.

5 An Ostensive Approach of Elucidating
Semantics

This research study adopts FHIR as the grounds on which to
explain the concepts in the healthcare domain. In response to
the limitations of FHIR, an ostensive approach is proposed
that provides clinical data as examples to further explain the
semantics defined by FHIR, along with the understandings
of different implementors.

Thus, a knowledge graph is constructed on the basis of
FHIR, and the FHIR knowledge graph is extended in order
to connect attributes stored in local databases; this is termed
‘FHIR-centric knowledge graph of the Semantic Engine’,

Interpretant 1

Sign 2
Object ® ® g.
Sign 1

Interpretant 2

Fig.3 Peirce’s triadic model
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enabling semantic elaboration and reasoning, and the clini-
cal data stored in heterogeneous local information systems
can be retrieved by the Semantic Engine. In summary, the
core of the Semantic Engine is the FHIR knowledge graph;
the peripheral consists of attribute nodes in the local data-
sets. The correspondents between the FHIR resource nodes
and local attribute nodes are connected by ‘mapping’ lines.
Due to the fact that attribute nodes are defined by local
implementors, it is difficult to name nodes consistently,
which may lead to ambiguity.

The query statements sent by clients to the Semantic
Engine reflect their understanding of the FHIR specifica-
tion through the lexical approach. The data in response to the
request ostensibly exhibits the data providers’ understand-
ing of FHIR specifications. If there is mismatching between
the clients and data providers in terms of the understand-
ings of FHIR, the data in the response can help the user to
comprehend the gap. In summary, the proposed information
architecture helps users to comprehend the semantic ambi-
guity produced by the lexical approach through the ostensive
examples.

In general, the Semantic Engine is responsible for the
processing of all semantics-related tasks. For example, the
meaning of a node can be elaborated by the nodes connected
with it and their relationships; effectively, the topology
graph of this node discloses the node’s meaning. Semantic
reasoning can be conducted through analysis of the relation-
ships between nodes, for example, the shortest path between
two of them.

This paper proposes this semantics-data separated archi-
tecture for HISs to support semantic interoperability (Fig. 4),

semantic queries

Semantic Engine
(FHIR Core + peripheral knowledge graph)

query responses

Electronic Laboratory Ambulatory
Health Record information electronic
(EHR) system medical record

Fig.4 A semantics-data separated information architecture
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which can be regarded as a federated architecture. The
Semantic Engine maps and integrates data from autonomous
component database systems. The federated architecture
(Wallender et al., 1979) is a common approach to integrate
data from dispersed databases (Batini et al., 1986) and is
adopted in the healthcare domain (Dusetzina et al., 2014).

The key purpose of this design is to employ FHIR in
a computational method that leverages the advantages of
the knowledge graph to process semantics, and takes pri-
vacy and security concerns into account. The separation of
semantic processing and data storage can reduce the problem
of data privacy leakage caused by the unified storage of data,
and access mechanisms based on authorization further guar-
antee data privacys; this is discussed in Section 7.

In summary, the Semantic Engine has two main functions:

1) the enhancement of semantic interoperability across
dispersed health information systems by feeding back
the JSON file to show the semantic definitions in FHIR
along with the understandings by implementors; and

2) the elimination of semantic ambiguity by providing cor-
responding examples in the form of data stored in differ-
ent local health information systems.

5.1 An Ostensive Information Architecture

On the principle of separating semantic processing and data
storage, this study positions FHIR in health information sys-
tems. In contrast to the use of FHIR as a standard protocol
for the transformation of local databases for information
exchange, FHIR is abstracted from the front-end of each

Data retrieving request

Data retrieving response

Radiology Pharmacy
information information etc.
system system
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local information system and unified at the logical top level
of the entire health information system (Fig. 5).

This study’s proposal simplifies the architecture of health
information systems by centralising the semantic interpreta-
tion layer in order to avoid the ambiguity caused by different
interpretants of FHIR, which means that the correspond-
ence between the data provided by the specified primary
database and FHIR resources is a system-wide standard,
and other systems that differ from the standard definitions
should follow the semantic interpretation of the primary
system. For example, patients’ names and addresses could
come from multiple clinical systems, but the patient registra-
tion system is usually taken as the primary system. When a
query requires the ICU (intensive care units) information of
a patient to be provided by the Semantic Engine, this will
feed back the name and address from the patient registration
system and the relevant ICU information from the intensive
care information system, with the name and address of this
patient stored in the intensive care information system in
different formats being ignored. The centralised semantic
interpretation layer can be deployed on the cloud to solve the
problem of access bottlenecks caused by multiple requests.

Semantic interpretation Layer

FHIR query

Semantic Engine
* Semantic interpretation
* Semantic reasoning

Transformation Layer

saL

* Retrieving data from local
databases

* Storing the mapping
relationship between FHIR
and local

* Identifying records of the
same patient stored in
different local databases

* Processing FHIR query to :

Local health information systems

*  Clinical data storage .
Patient Mgmt.

Database

Fig.5 An ostensive architecture of HISs

(FHIR core + the peripherals)

Through setting the master—slave relationships between
dispersed systems, the system-wide semantics are now uni-
fied; in other words, regarding a piece of data to describe a
certain patient attribute, there is only one mapping relation-
ship between FHIR and local clinical information systems
within an entire ecosystem, even though there are multiple
databases storing the same patient attributes. When two peer
hospitals make inconsistent use of FHIR resources, the two
different mapping methods are represented as two external
graphs to the FHIR knowledge graph. The local implement-
ers of both hospitals can establish a consensus by comparing
and selecting.

The architecture of the proposed HISs is shown in Fig. 5.
To support data retrieval, the Semantic Engine comprises
two main elements: FHIR knowledge graph and transforma-
tion components.

This architecture contains three layers in order to
respond to the FHIR queries; the semantic interpreta-
tion layer is a FHIR knowledge graph, which provides an
explanation of semantics in lexical definition by nodes and
their relationships. The transformation layer works with
local health information systems to provide the semantics

Query response (JSON+data)

Knowledge Graph

Mapping connector

Record linker

Querying processor

Surgery
Database

Patient Billing
Database
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by example, constituting the data stored in heterogeneous
local systems. The mapping connector in the transfor-
mation layer matches data with FHIR resources, generat-
ing conflict alerts if and when data inconsistencies are
detected. For example, an alert occurs if a date of birth
has been assigned to two data sources through schema
matching (Section 5.2.2) or the same concept has been
interpreted by different FHIR resources. Therefore, the
mapping connector consists of several sub-components.

An explanation is provided in Section 6.2.2. of the func-
tions that convert the data from two data sources into a
unified FHIR-defined format in the Record linker, which
combines the records of the same patient from different
databases. For example, the record linker can recognise
the records for a patient in a hospital’s billing system and
the claim management system of an insurance company,
associating the two records. The querying processor
translates queries from the Semantic Engine and obtains
data from local databases. The bottom layer represents the
local healthcare information systems where the clinical
data are stored.

Semantic Engine

Semantic
interpretation
Layer

3. Confirm mapping
relationships

Transformation

Layer
Record linker
4. Update
mapping relationships
e

Local health
information
systems

Fig.6 Semantic query processing flow
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1. Send query to FHIR

2. Identify the connected
resources and send resource list

6. Translate query into
each source and run

Figure 6 illustrates the processes of a semantic engine
dealing with a semantic query. The FHIR knowledge graph
plays a critical role as a user interface and semantic inter-
preter. Ten internal steps (shown in Fig. 6) include redi-
recting user queries to different local databases, generating
query statements, collecting query results, and merging
them to return responses to users. Nie and Roantree (2019)
address the question of how to merge the records of different
aspects of the same object when they are stored in multiple
databases. In this study, the patient profile can be taken as a
key variable by which to conduct the record linkage.

5.2 Semantic Engine

As previously mentioned, the core of the Semantic Engine
is the FHIR knowledge graph; this study uses Neo4;j (Lal,
2015) for its development. In order to facilitate data
exchange between dispersed information systems, the
local data require connections to the Semantic Engine.
This research transforms the properties of local data into
these property nodes; values of local data are retrieved

10. Reply results

Knowledge Graph
(FHIR core + the peripherals)

9. Combine results
Mapping connector

5. Provide the

8. A list of query
mapping relationships

results

Querying processor

7. A list of query results

Local
database N

Local
database 1



Information Systems Frontiers

as examples to further render the semantics explicit.
This Semantic Engine can support semantic interpreta-
tion, semantic computing, and semantic reasoning. This
research study focuses on the function of semantic inter-
pretation, which explains concepts to the queries. The
details of how the Semantic Engine is structured based
on FHIR schema are shown below, along with how local
data connections to the Semantic Engine are implemented.

5.2.1 The Construction of an FHIR Knowledge Graph

The JSON representation of an FHIR schema is used to
construct the knowledge graph, with each defined entity

becoming an Entity node. Each property of the defined
entities occupies a Property node. Relationships between
entities that are defined within the JSON schema become
edges within the knowledge graph. Figure 7 details the
construction of a knowledge graph from the FHIR JSON
schema.

This JSON is parsed and converted into a series of map-
pings which are imported into a Neo4j graph database with
the top-level object “Patient” becoming an Entity node
and all sub-objects become property nodes within the
graph. Once the data is inside Neo4j the query language
Cypher (Lal, 2015) can be used to view all information
relating to a Patient. The software to generate the knowl-
edge graph is available here (Guo et al., 2023).

Command box 1 Query attributes of ‘Patient’

Neo4j $ match (a:Table {table_name: ‘FHIR.Patient’}) — [r:PROPERTY_OF]-(b:Column) return a,b,r

Similar Cypher commands can be used to query other
resources. Since the resources are interconnected, the FHIR
knowledge graph can be constructed.

5.2.2 Schema Matching

This step is designed to clarify the correspondence between
FHIR resources and local data. The knowledge graph of the
Semantic Engine comprises a set of nodes, N, and a series

~"description":

"properties": {
"resourceType": {
"description": "This is a Patient resource",
"const": "Patient"

y{?{

resource. Once assigned, this value never changes.",

"Demographics and other administrative information about an
individual or animal receiving care or other health-related services.",

'déscription": "The logical id of the resource, as used in the URL for the

of edges, E. This knowledge graph contains not only the
low-level mappings for individual data sources but further
abstractions of these data, providing the capacity to seman-
tically reason. For the remainder of this section, this paper
focuses on the schema-matching and schema-mapping com-
ponents, which are used to provide a basis for interoper-
ability between healthcare systems. To map data stored in
dispersed systems correctly to the Semantic Engine, each
individual source must be understood in detail; this requires

\

‘ Patient | Entity node

"$ref": "id.schema.json#/definitions/id"
h \ /
"@escription": "Image of the patient.", / \ / /!
"items": { ( \ “,” \ / \
"$ref": "Attachment.schema.json#/definitions/Attachment" 1 ID | Photo | L Contact )
}, / ’x_“ / \ /y/.\‘
”type": |larrayl| 4 R 4 //:v./""
} -~ - o B — S ——
description": "A contact party (e.g. guardian, partner, friend) for the
| patient.",
"items": { Property nodes

“ "$ref": "#/definitions/Patient_Contact"
{ }

’
”type" : “array"

Fig.7 FHIR — Graph mapping
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Source 1 Source 2
1 1
n n
Entity 1 Entity 2
1 1
n n
Property 1 Mapping Property 2

Fig.8 Graph Structure

a graph model that can capture the complexity of this indi-
vidual source.

Figure 8 illustrates, at a high level, the nodes and edges
required to effectively provide a means by which to perform
schema mapping. Nodes in the graph represent sources,
properties, and mappings; edges are used to denote rela-
tions between them. Within the graph, there are four node
types, specifically:

1. Source denotes a particular data source, identifying the
system from which the data are obtained. This node con-
tains the connecting information for an individual source
to facilitate communication with a particular mapping
connector. 2. Entity relates to a particular entity from a
data source; within a DBMS (database management sys-
tem), these may correspond to tables. 3. Property refers to
an entity’s attribute, such as the name of a patient, which
corresponds to columns within an RDBMS (relational
database management system); there is a ‘one-to-many’
relationship between an entity and its property. Finally,
4. Mapping denotes the way in which two properties
between local data sources and the semantic engine may
be related.

5.2.3 Mapping Data to FHIR

This study uses MIMIC III (https://mimic.physionet.org/
about/mimic/) and a diabetes dataset (https://archive.ics.
uci.edu/ml/datasets/Diabetes) as two local health infor-
mation databases. MIMIC III consists of 26 tables with
58,598 instances covering 12 years intensive care data
from 2001 to 2012. The diabetes dataset includes more
than 250,000 records. In the process of mapping the data
with corresponding FHIR resources, it is often the case
that a concept defined by FHIR requires data from multiple
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MIMIC data tables for ostensive interpretation. Because
MIMIC datasets are focused on intensive care medicine,
many concepts defined by FHIR cannot be fully explained
by MIMIC data, although it can be the case that two data
records need to be amalgamated to match an attribute of
an FHIR resource or a data record needs to be split into
two segments to match the attributes of the FHIR resource.
There is also a conflict between the index relationship
between the MIMIC database and the FHIR resource,
which occurs when querying the health information of an
individual patient. Restrictions such as data types should
follow the definition of FHIR and be guaranteed by the
implementer.

When all datasets within a health ecosystem are matched
with FHIR resources, it can be said that the health informa-
tion relating to patients has been semantically connected.
By this stage, any stakeholder in the health ecosystem can
theoretically access all health information relating to a spe-
cific patient; therefore, patient-centred diagnosis, evidence-
based medical research, medical insurance services, public
health policy development, and such other healthcare-related
services can be supported by this system.

In order to map data to FHIR, the structural mapping
information of the data source, a set of contextual mappings,
and a series of transformation functions are all required.

Structural information links entities and their properties
within the graph, with each entity and property representing
a node. The structural information is either derived from a
supplied schema such as an RDBMS or, for flat files, manu-
ally supplied by a user. Once the structural information is
converted into the graphical format, it can be mapped to the
FHIR knowledge graph using the ‘Cypher’ command for
processing. This is required in order to overcome differences
in terminology and structural differences where one entity in
FHIR may be composed of two or more entities within the
local data source. This challenge resulted from the semantic
ambiguity described in Section 2 and is the reason why this
study sought to expose the inconsistent use of FHIR among
its implementers.

The contextual mappings denote the context in which a
specific data source is to be used; for example, the FHIR
schema contains the concept of an “observation”, refer-
ring to medical observations, such as body weight or bone
density. While this entity has wide usage due to its generic
nature, specific data sources may focus only on a specific
measurement. For the diabetes dataset, while it is an obser-
vation within the FHIR schema, it should only be queried if
the user is requesting blood glucose levels.

This requires a mapping that can determine context;
it can be achieved by embedding the semantics of the
mapping within a mapping node. When mapping across
data sources, the data may require semantic augmentation
in order to ensure accuracy. An example is data, which
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https://archive.ics.uci.edu/ml/datasets/Diabetes
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provide values for the same entity, such as blood glucose
levels, but are represented by differing units of measurement.
These inconsistencies are overcome by using transformative
functions embedded within the mapping nodes linking two
properties.

In this research, the MIMIC data are converted into a
graphical format using the relational schema and then sup-
plemented with manual mappings to FHIR supplied in CSV
format for batch processing with Cypher. The diabetes data
are a series of flat-files; this representation therefore does not
contain the necessary structural information, which was pro-
vided by a domain expert. In addition, the diabetes dataset
has low dimensionality, requiring the provision of additional
contextual mappings in order to accurately map the data to
FHIR. The schema and data mapping are performed manu-
ally in this research, whereas in industry, developers can use
tools to convert local data into the FHIR format in batches
(Kiourtis et al., 2019). Regardless of the method used by
the implementer, the purpose of this step is to illustrate the
corresponding relationships between FHIR and local data
in node-edge format.

6 Enhancing Semantic Interoperability
with the Semantic Engine

In this section, two case studies are conducted in order to
explain that the proposed ostensive information architecture
can:
(1) decrease semantic ambiguity by showing the data val-
ues and their context, and

synthesise data from disparate systems with the aim of
achieving patient-centred diagnosis.

@)

m EXPIRE_FLAG

SUBJECT_ID GENDER DOB

2 M 7/17/38 0:00 0
3 M 4/11/25 0:00 6/14/02 0:00 6/14/02 0:00 1
4 F 5/12/43 0:00 0
5 M 2/2/03 0:00 0
6 F 6/21/09 0:00 0
7 F 5/23/21 0:00 0
8 M 11/20/17 0:00 0
9 M 1/26/08 0:00 11/14/49 0:00 11/14/49 0:00 11/14/49 0:00 1
10 F 6/28/03 0:00 0
1 F 2/22/28 0:00 11/14/78 0:00 11/14/78 0:00 1
12 M 3/24/32 0:00 8/20/04 0:00 | 8/20/04 0:00 | 8/20/04 0:00 1
13 F 2/27/27 0:00 0
16 M 2/3/78 0:00 0
17 F 7/14/87 0:00 0
18 M 11/29/16 0:00 0
19 M 1808-08-05 00:00:00  8/18/09 0:00 8/18/09 0:00 1
20 F 6/13/07 0:00 0

Fig.9 Patient table in MIMIC data sets

6.1 Ostensive Approach to the Enhancement
of Semantic Interpretation

FHIR v4 defines 146 types of resources to describe the
concepts within the healthcare domain; all resources are
represented in JSON format, and naturally have sufficient
feasibility to be represented by a knowledge graph.
Because Neo4j enables semantic searching and reasoning,
the meaning of a concept such as ‘Patient’ can be easily
understood through the property node and its relationships.
For this reason, the FHIR knowledge graph is termed a ‘core
Semantic Engine’. The lexical definition can be searched on
the Semantic Engine, while the ostensive examples can also
be retrieved by it. The following example illustrates the way
in which the ostensive approach supports the reduction of
semantic ambiguity.

In FHIR, for example, one of the properties of ‘patient’
is ‘DeceaseDateTime’. Because FHIR has not clearly
defined the concept of date of death with context, the pos-
sibility of the introduction of semantic ambiguity occurs.
In MIMIC datasets, two tables reflect the content of ‘death
time’. There are three relevant columns in the patient table
(Fig. 9): DOD, DOD_HOSP and DOD_SSN.

DOD_HOSP indicates the date of death stored in the
hospital database, and DOD_SSN refers to the date of
death in a social security database. The screenshot to the
right of Fig. 9 shows that the values of DOD_HOSP and
DOD_SSN are different. From the screenshot to the left of
Fig. 9, it can be deduced that DOD is the combination of
records of DOD_HOSP and DOD_SS, and DOD_HOSP
has a higher priority for adoption if both values exist.

There is also a DEATHTIME in the Admission Table
(Fig. 10). The comparison demonstrates that records of
death times in the two tables are inconsistent; for exam-
ple, in Patient table, the death time of HADM_ID =9 is

?5/61 0: Og
9/12/66 0:00|

SUBJECT_ID GENDER DOB

670 M 9/30/80 0:00 2/15/61 0:00 /22/61 0: 00
834 M 6/15/90 0:00 9/12/66 0:00 9/20/66 0: 00
115 F 1/20/19 0:00 3/24/95 0:00 / 3/24/95 0:00 | \ } ||3/23/95 0:00 \
281 F 10/12/41 0:00 10/25/01 0:00 | 10/25/01 000\' j‘ 10/24/01 0:00 ‘
294 M 5/21/39 0:00 1/27/19 0:00 ‘ 1/27/19 0:00 ’ 1/28/19 0:00
545 F 3/27/96 0:00 10/25/81 0:00 ‘ 10/25/81 0:00 | | 110/19/81 0:00
584 F 1814-10-21 00:00:00 4/1/150:00 | 4/1/15 0:00 | 1‘ 3/26/15 0:00
1339 F 3/16/71 0:00 2/27/40 0:00 \‘ 2/27/40 0:00 ’ | /2/28/40 0:00 ]
937 M 9/24/87 0:00 1/26/63 0:00 1/26/63 0: 00 1/25/63 0:00 ’
2452 M 10/16/54 0:00 1/5/13 0:00 1/5/130 /6/13000 /
3612 F 8/30/03 0:00 9/15/86 0:00 QQ)/BS 07Z 911 6/86 0 Oﬂ
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SUBJECT_ID HADM_ID ADMITTIME  DISCHTIME DEATHTIME ) ADMISSION_TYPE ADMISSION_LOCATION DISCHARGE_LOCATION INSURANCE

2 163353 | 7/17/38 19:04 | 7/21/38 15:48 N— NEWBORN PHYS REFERRAL/NORMAL DELI A HOME Private

3 145834 | 10/20/01 19:08 | 10/31/01 13:58 EMERGENCY EMERGENCY ROOM ADMIT SNF Medicare

4 185777 | 3/16/91 0:28 3/23/91 18:41 EMERGENCY EMERGENCY ROOM ADMIT HOME WITH HOME IV PROVIDR | Private

5 178980 | 2/2/03 4:31 2/4/03 12:15 NEWBORN PHYS REFERRAL/NORMAL DELI A HOME Private

6 107064 | 5/30/75 7:15 6/15/75 16:00 ELECTIVE PHYS REFERRAL/NORMAL DELI | HOME HEALTH CARE Medicare

7 118037 | 5/23/21 15:05 | 5/27/21 11:57 NEWBORN PHYS REFERRAL/NORMAL DELI A HOME Private

8 159514 | 11/20/17 10:22 | 11/24/17 14:20 NEWBORN PHYS REFERRAL/NORMAL DELI | HOME Private

9 150750 11/9/49 13:06  11/14/4910:15 11/14/49 10:15 EMERGENCY EMERGENCY ROOM ADMIT DEAD/EXPIRED Medicaid
10 184167 | 6/28/03 11:36 | 7/6/03 12:10 NEWBORN PHYS REFERRAL/NORMAL DELI | SHORT TERM HOSPITAL Medicaid
1 194540 | 4/16/78 6:18 5/11/78 19:00 EMERGENCY EMERGENCY ROOM ADMIT HOME HEALTH CARE Private
12 112213  8/7/04 10:15 8/20/04 2:57 8/20/04 2:57 ELECTIVE PHYS REFERRAL/NORMAL DELI ' DEAD/EXPIRED Medicare
13 143045 | 1/8/67 18:43 1/15/67 15:15 EMERGENCY TRANSFER FROM HOSP/EXTRAM | HOME HEALTH CARE Medicaid
16 103251 | 2/3/78 6:35 2/5/78 10:51 NEWBORN PHYS REFERRAL/NORMAL DELI A HOME Private
17 194023 | 12/27/34 7:15 | 12/31/34 16:05 ELECTIVE PHYS REFERRAL/NORMAL DELI | HOME HEALTH CARE Private
17 161087 | 5/9/35 14:11 5/13/35 14:40 EMERGENCY EMERGENCY ROOM ADMIT HOME HEALTH CARE Private
18 188822 | 10/2/67 11:18 | 10/4/67 16:15 EMERGENCY PHYS REFERRAL/NORMAL DELI A HOME Private
19 109235 | 8/5/08 16:25 8/11/08 11:29 EMERGENCY EMERGENCY ROOM ADMIT REHAB/DISTINCT PART HOSP Medicare
20 157681 | 4/28/83 9:45 5/3/83 14:45 ELECTIVE PHYS REFERRAL/NORMAL DELI A HOME Medicare
21 109451 | 9/11/34 12:17 | 9/24/34 16:15 EMERGENCY EMERGENCY ROOM ADMIT REHAB/DISTINCT PART HOSP Medicare
21 111970 | 1/30/35 20:50 | 2/8/35 2:08 2/8/35 2:08 EMERGENCY EMERGENCY ROOM ADMIT DEAD/EXPIRED Medicare
22 165315 | 4/9/96 12:26 4/10/96 15:54 EMERGENCY EMERGENCY ROOM ADMIT DISC-TRAN CANCER/CHLDRN H | Private
23 152223 | 9/3/53 7:15 9/8/53 19:10 ELECTIVE PHYS REFERRAL/NORMAL DELI | HOME HEALTH CARE Medicare
23 124321 | 10/18/57 19:34 | 10/25/57 14:00 EMERGENCY TRANSFER FROM HOSP/EXTRAM | HOME HEALTH CARE Medicare
24 161859 | 6/6/39 16:14 6/9/39 12:48 EMERGENCY TRANSFER FROM HOSP/EXTRAM | HOME Private
25 129635 | 11/2/60 2:06 11/5/60 14:55 EMERGENCY EMERGENCY ROOM ADMIT HOME Private

Fig. 10 Admission table in MIMIC data sets

11/14/49 0:00; while in Admission table, the record is 11
/14/49 10:15. As the times in all records in the Patient
table are 0:00, it is assumed that the record in the Admis-
sion table is more accurate.

Thus, on the basis of the above observations, seman-
tic ambiguity is generated if the data source has not been
shown to data users; this leads to misjudgements during
data analysis. Semantic ambiguity, a typical type of data
quality problem that occurs often, has been identified as the

cause of such issues because the FHIR specification cannot
enumerate all matching situations for local databases.

The ostensive approach has the capacity to reduce this
type of ambiguity by providing the sources of data. The
source of DOD_HOSP, DOD_SSN and DEATHTIME
can be found by retrieving the fable, property, and source
attributes from the knowledge graph, as a similar process
to a ‘reverse lookup’.

The following query would return all sources and tables
by initially searching for all mappings that link to the
FHIR Patient attribute ‘deceasedDateTime’.

Command box 2: Query the links to “deceasedDateTime”

MATCH

(src:Source) - (tab:Table) - (prop:Property) - (map:MAP) - (eprop:Property)
WHERE eprop = “deceasedDateTime” RETURN src,

tab;

In order to identify the source, a query must be run on that
source dataset to identify matching values. Such an operation
is for data users to figure out how the FHIR implementer maps
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local data to FHIR, which is beneficial for the data users to use
data correctly. For example, for a datetime x and patient ID y
this would be converted into the following queries.
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Command box 3: Query the sources of “deceasedDateTime”

SELECT * FROM Patient where SUBJECT ID

SELECT * FROM Patient where SUBJECT ID

SELECT * FROM Admission where SUBJECT ID

In summary, the Semantic Engine performs the lexi-
cal- and ostensive approach through semantic searching
facilitated by the FHIR knowledge graph, retrieving data
and their context as examples from local clinical systems.
Furthermore, specifying primary data sources in local
datasets through the construction of mapping relationships
can prevent data conflicts in data exchange processes.

6.2 Querying Blood Glucose Levels in the FIHR
Defined Format

In this section, an example is used to explain how data can be
retrieved from multiple institutional EHRs in FHIR format.

Entity Node:
MIMIC.sources

Property Node: T
properties of MIMIC.sources

The mapping
relationships between
FHIR and MIMIC

Fig. 11 Mappings for FHIR Observation

y and DOD HOSP = x;

y and DOD_ SSN X;

y and DEATHTIME X;

This case study queries blood glucose levels from
MIMIC and diabetes datasets in FHIR format by
using the Semantic Engine; the query is posed to the
system using FHIR terminology. In this instance, all
observations related to a patient, which are blood glucose
measurements, are the object of the research. Command
box 4 details the query in SQL format. The observation in
FHIR is used to model the result of medical observations,
while the coding property of FHIR is used to denote the
type of test. For this example, it is assumed that LOINC
codes (McDonald et al., 2003) are used to code medical
observations. Within an observation, ‘subject.reference’
refers to the patient with ID 1.

The mapping relationships
between FHIR and diabetes

data sets Diabetes

O,

Property Node:
properties of diabetes.source

Property Node:
properties of FHIR.observation

Entity Node: FHIR.observation
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Table 2 Mappings for the diabetes dataset

column map

{"column_name”:

diabetes.data.Patent1 } subject.reference = “1”}

{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: code="2339-0" AND

{"column_name”:

diabetes.data.value} subject.reference = “1”}

{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: code="2339-0" AND

{"column_name”:

diabetes.data.datetime} subject.reference = “17}

{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: code="2339-0" AND

Command box 4: Query to view all blood glucose levels for patient with ID=1

SELECT *

FROM Observation

WHERE coding.code = “2339-0” and subject.reference = 1

Using the query SQL format, the next step is to query
the Semantic Engine in order to determine what sources are
required in order to fulfil the query. This is achieved by exam-
ining all mapping nodes connected to an FHIR observation.

Figure 11 details the mappings for an FHIR observation
of both the MIMIC data and the diabetes datasets. The FHIR
knowledge graph sits at the centre of the Semantic Engine
and remains stable unless FHIR evolves to a new version.
The MIMIC and diabetes datasets are connected to the FHIR
knowledge graph through schema mapping (Section 5.2.2)
and data mapping (Section 5.2.3). When a new data source
is connected to the FHIR knowledge graph, the Semantic
Engine is updated.

6.2.1 Query Processing

After identification of what source(s) are required to fulfil
the query, in this case the diabetes data and the MIMIC
dataset, the next step is to translate the query into a format
that can be read by each mapping connector.

The diabetes data are a single-source dataset; thus,
in this instance, manual mappings provided by domain
experts are required to match FHIR entities to the dimen-
sions within the diabetes dataset schema. This is achieved
by examining the mapping nodes between the diabetes
dataset and FHIR shown in Table 2.

From these mappings, it can be observed that the
‘patient’ attribute is a STATIC value embedded within the
mappings, the attribute ‘value’ from ‘observation’ maps
directly to the column ‘value’ within the diabetes dataset
and that the FHIR attribute ‘issued’ maps to the ‘date-
time’ attribute within the diabetes dataset. The STATIC
value represents an annotation to the source data to supply
required semantics in order to achieve integration. In this
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instance as the source dataset only contains the dimen-
sions datetime and value annotated information such as
the Patient is required as a static annotation to the source
dataset. An example of the dataset with semantic annota-
tions can be seen in Table 6.

Examining these mappings, which describe the source
data, a comparative SQL query to extract the data from
their respective source can be seen in Command box 5.

Command box 5: Translated query for the diabetes dataset

SELECT datetime,value

FROM diabetes.data;

MIMIC.
labevents

MIMIC.

labevents.
hadm_id

%

S

MIMIC.
admissions.
hadm_id

N

N\ meps
MIMIC. i
labevents. Maps < P
itemid - o

s

admissions

MIMIC.d.

PROPERTY,

Labitems.
itemid

MIMIC.
labitems

Fig. 12 MIMIC internal mappings
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The MIMIC dataset shows that an observation in FHIR
is represented by the tables Lab events, Admissions,
Patients, and D_Labitems within MIMIC. A query for
these data requires a join across these tables, necessitating
knowledge of the MIMIC schema. The knowledge graph
can be queried to identify these internal joins to translate
the query (Fig. 12); a tabular representation of these joins

is presented in Table 3 where entity refers to an FHIR
entity, and property relates to the property of the entity.
Each row of the table represents a mapping across enti-
ties within FHIR and the properties that join the above-
mentioned entities.

By examining these relationships, the query can be
translated into a similar one that can query data in the
MIMIC schema (Command box 6).

Command box 6: Translated MIMIC query

SELECT *

FROM labevents

JOIN d labitems ON labevents.itemid = d labitems.itemid

Join admissions ON labevents.hadm id = admissions.hadm id

Where d labitems.loinc code = “2339-0” AND admissions.subject id =1

The query is now translated and can be passed to the local
clinical database for the retrieval of data according to the
mapping relationships.

6.2.2 Combining Data from Multiple Data Sources

Each query passed to the local clinical database returns a csv
file. The data returned from the MIMIC and diabetes queries
are shown in Tables 4 and 5 respectively. The next steps are
to convert these files into FHIR format and integrate them
in order to return a unified view.

In the case of sparse data sources, these may not con-
tain sufficient information to correctly integrate data into
FHIR. For example, the diabetes data (Table 5) contains only
two columns, i.e., datetime and value. These data require

Table 3 Tabular representation of MIMIC internal mappings pre-
sented in Fig. 11

Entity Property

Labevents MIMIC .labevents,itemid
Labevents MIMIC .labevents.hadm_id
Labitems MIMIC .labitems.itemid
Admissions MIMIC.admissions.hadm_id

annotation with static semantic data in order to be integrated
with FHIR; these semantic annotations are embedded within
the mapping nodes with the static identifier. These STATIC
mappings are used in conjunction with the mappings derived
from the source to facilitate semantic integration within the
knowledge graph.

For the diabetes dataset, the static data requiring annota-
tion are patient id, the LOINC code, and the unit of meas-
urement. This produces an intermediate csv file, as shown
in Table 6.

The next step of the process is the re-examination of the
mappings in order to transform each attribute into FHIR.
This is achieved by re-examining the mappings to deter-
mine how attributes returned map to FHIR, and by applying
any transformations embedded within the mapping nodes.
Any attributes that contain no mappings are disregarded.
The MIMIC data and diabetes data after this re-mapping are
shown in Tables 7 and 8 respectively.

Finally, the two datasets require integration. A previous
work (Scriney et al., 2019) proposes a methodology for the
determination of an integration strategy by examining the
common datasets for each source in order to design a com-
mon data model. In this study, the common data model is
the FHIR JSON schema. Using this methodology, the row-
append method is selected to produce the unified data mart
shown in Table 9.

@ Springer



Information Systems Frontiers

@ Springer

Table 4 Data returned from MIMIC

LOINC_CODE

CATEGORY

FLAG LABEL FLUDID

VALUEUOM

VALUENUM

VALUE

_ ITEMID CHARTTIME

HADM_ID

Subject_ID

2339-0

Blood gas

Blood
Blood

Glucose

abnormal

mg/dL
mg/dL
mg/dL
mg/dL

265
267
299
294

265
267
299
294

20/10/2018 20:04

50,809
50,809
50,809
50,809

2339-0

Blood gas

Glucose

abnormal

20/10/2018 21:51

2339-0
2339-0

Blood gas

Glucose Blood

abnormal

21/10/2018 00:42

Blood gas

Glucose Blood

abnormal

21/10/2018 01:46

Table 5 Data returned from
diabetes query

DATETIME VALUE

23/10/2018 08:00 354
23/10/2018 18:00 275

7 Discussion and Conclusions

Interestingly, during the review process of this paper, FHIR
released its latest version (FHIR v4B, released on May 28,
2022), which discusses the issue of conformality. FHIR v4.3.0
introduces a conformance layer (HL7 International, 2022) to
mitigate the interoperability problem caused by the inconsistent
use of FHIR specifications by different applications,
which is the third type of semantic ambiguity discussed in
Section 2. The conformance layer is a statement provided by
implementers about how the resources and their exchange
paradigms are used to solve particular use cases, comprising
a value set, a structure definition, a capability statement, and
an implementation guide. The conformance layer is similar to
the extension publishing management, which can improve the
FHIR conformality, but challenges nevertheless remain.

The proposed ostensive architecture is demonstrated
by the prototype of the Semantic Engine to enable data
exchange and improve semantic interoperability in this
research study. The work has been partially tested in a pro-
ject supported by the Government of the Republic of Ireland
in 2021, which involved multiple data sources for COVID-
19 data analytics; a relational database was constructed to
interpret semantics, and acts as the Semantic Engine.

This research broadens the scope of the application of
FHIR in healthcare ecosystems. The data from heterogene-
ous sources, such as smart devices, can be interchanged with
clinical data via the Semantic Engine.

7.1 The Functionalities of the Semantic Engine

The main functionalities of the Semantic Engine can be
summarised in the following four respects:

1. Semantic reasoning

Underpinned by Neo4j, the concepts or resources defined in
FHIR are explained through the connected properties of nodes and
their relationships. This schematized FHIR data naturally develops
the capacity for semantic reasoning between clinical concepts.

The steps for general semantic reasoning are summarised
as follows.

Data acquisition:
A query enters the system in FHIR format. From this
query, a list of entities is obtained, represented as e and
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Table 6 Diabetes data after

. DATETIME VALUE FHIR.Observation. FHIR.Observation. FHIR.Observation.

annotation subject.reference coding.code Unit

23/10/2018 08:00 354 1 2339-0 mg/dL

23/10/2018 18:00 275 1 2339-0 mg/dL
Table7 MIMIC data after FHIR Observation.  FHIR.Observation. FHIR.Observation. FHIR.Observation. FHIR.Observation.
fe-mapping subject.reference issued value Unit coding.code

1 20/10/2018 20:04 265 mg/dL 2339-0

1 20/10/2018 21:51 267 mg/dL 2339-0

1 20/10/2018 00:42 299 mg/dL 2339-0

1 20/10/2018 01:46 294 mg/dL 2339-0
Table 8 .Diabetes data after FHIR.Observation. FHIR.Observation. FHIR.Observation.  FHIR.Observation. FHIR.Observation.
re-mapping issued value subject.reference coding.code Unit

23/10/2018 08:00 354 1 2339-0 mg/dL

23/10/2018 18:00 275 1 2339-0 mg/dL
Table 9 FHIR Observation FHIR.Observation. FHIR.Observation. FHIR.Observation. FHIR.Observation. FHIR.Observation.
response of diabetes data subject.reference issued value Unit coding.code

1 20/10/2018 20:04 265 mg/dL 2339-0

1 20/10/2018 21:51 267 mg/dL 2339-0

1 20/10/2018 00:42 299 mg/dL 2339-0

1 20/10/2018 01:46 294 mg/dL 2339-0

1 23/10/2018 08:00 354 mg/dL 2339-0

1 23/10/2018 18:00 275 mg/dL 2339-0

their properties as e, which are required to deliver the
query. Where e, is a subset of all available properties
within an entity.Data source (src¢) which can satisfy this
query are discovered through a traversal of the knowl-
edge graph identifying mapping nodes (m) which link to

Command box 7 Query the relationships of a given property

MATCH

(eprop:Property) WHERE eprop =

tab, prop,

(src:Source) - (tab:Table) - (prop:Property) - (map:MAP) -
e, RETURN src,

these properties. Mapping nodes (m) can subsequently be
viewed as relations between properties (ep) and sources.

The following query (Command box 7) identifies any map-

pings for a given property (e,) and returns the data source (src),
the relevant entity (tab) and the property required (prop).

eprop;,
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For each mapping, the data source (src) is queried in
order to return the defined properties (prop). The data
obtained from the source systems are then converted back
into FHIR format (as specified in Section 6.2.2).

2. Patient-centric data organisation

The organisation of data into a patient-centric approach is
the premise of achieving patient-centric care. From the perspec-
tive of the stakeholders of the healthcare ecosystem, ranging
from clinicians to carers, legal practitioners, and taxpayers, a
wide range of individuals seek to obtain a holistic view of every
individual patient’s case. The benefits and challenges of this
have been addressed by academics from many different fields
(Pelzang, 2010), with the organisation of patient data used in a
patient-centric approach representing the first step towards the
elimination of the silos between the health systems.

To facilitate semantic interoperability, the Semantic Engine
organises the distributed healthcare data relating to patients
and reflects the logic of diagnosis and treatment. Therefore, in
addition to the provision of holistic patient health information
which can be presented via the Semantic Engine, the patient
him/herself can be empowered to authorise which data can be
accessed and used by which organisations and agencies. This
function can be achieved by the use of an extra module of data
authority management, which is not discussed in detail in this
paper. Moreover, patients may not be aware of the consequences
of their own choices, which is an issue worthy of further
exploration from the perspective of healthcare management.

3. Enhancing semantic interoperability

In addition to the definition and interpretation of medical
terms, the Semantic Engine can retrieve data from disparate
local databases to further clarify the meaning of definitions
by providing examples. Through this ostensive approach,
the ambiguity caused by lexical definition can be minimised.

In the process of designing the verification scenarios, this
study identifies a problem with unclear data sources, which
potentially poses challenges for subsequent data analysis
processes. The same FHIR resource, observation, has been
used to interpret data collected from patient-worn monitoring
equipment and clinical equipment in hospital settings.
On consideration of the level of data reliability needed to
support patient-centred diagnosis, it is clear that patient-worn
monitoring equipment is less reliable than clinical equipment
used in a clinical setting. Therefore, in practice, physicians
should carefully review the laboratory reports and only use the
data provided by the monitoring equipment for reference. In
order to provide a firm foundation for an information-assisted
clinical diagnosis system, the limitations of this study and
suggestions for future research are discussed.

@ Springer

4. Applicability in other fields

This proposed information architecture processes
semantics and data separately to avoid privacy and security
issues arising from centralised data storage, while support
information can be exchanged across heterogeneous
databases. This architecture can be applied in other domains
that require information exchange and communication
between dispersed systems. The construction of a consensus
knowledge graph is the premise of the application of this
semantic-data separated architecture.

7.2 The Limitations of the Research Study

This study adopts FHIR as domain knowledge to
construct a Semantic Engine for the interpretation of the
meanings of clinical concepts. It is observed that FHIR
does not distinguish between the different levels of data
reliability. When this ostensive information architecture
is brought into use, consideration should be given to
the level of data reliability and the conflicts caused by
multiple data sources being used for the same indicator.
This problem can potentially be solved by specifying the
primary database, although due to the limited availability
of medical data, this study does not provide an in-depth
discussion of this issue.

This study focuses on semantic interoperability but
does not explore the relationship between semantics and
operational processes, such as patient pathways or clinical
procedures. The context of the data is an extremely
important factor concerning their semantics and may vary
in the different processes, which this study does not explore
in depth.

The ostensive information architecture proposed by
this study is applicable to the entire medical ecosystem,
therefore, it is evident that there is a serious problem
of record linkage, specifically in terms of detecting,
identifying, matching, and merging records across
heterogeneous databases that relate to the same patient
(Reyes-Galaviz et al., 2017). For example, two systems may
refer to the same patient but use different identity codes to
correctly identify a patient across systems. To overcome
these issues, this study proposes a model of record linker
in the transformation layer; this is similar to the method
proposed by Nie and Roantree (Nie & Roantree, 2019)
which seeks to produce a probabilistic means of identifying
patients during the re-mapping process. Due to the fact that
no public medical data contains patient details in order
to protect patient privacy, the difficulty of obtaining data
on patients’ profiles from multiple systems precludes the
conduct of a case study in this study to demonstrate how
the record linker works.
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7.3 Implications for Future Research

This proposal of the ostensive information architecture simply
represents the first step towards the achievement of patient-cen-
tric diagnosis. The following are directions worthy of further
exploration:

e In the current Semantic Engine, the properties for edges
are limited, which indicates the affiliation between nodes.
In further research, richer semantic properties could be
added to the edges. For example, data from a wearable
device could be given low priority if there are data for
the exact measurement from a medical device. The richer
semantic properties can support the Semantic Engine in
the construction of a diagnostic graph, which has the
capacity to reason and prioritise the level of data reli-
ability according to its sources.

e Breakthroughs in the medical field and the discovery of
new diseases mean that the definitions of clinical concepts
are in constant evolution; this underlines the fact that a
gap between the Semantic Engine and the data examples
is likely to persist. Therefore, the function of tracing
and managing the changes of FHIR resources becomes
essential to ensuring rigour in the mapping of relationships.
Blockchain technology offers an optional solution to this
challenge; it can be used to record the evolutionary history
of FHIR whilst also tracking the changes in patients’
medical history records (Zhang et al., 2018). The use of
blockchain technology in healthcare information systems
has many potential application scenarios and is of high
practical value (Mettler, 2016). For example, blockchain
can be used to provide access to medical data (Azaria et al.,
2016) and privacy control (Yue et al., 2016). Overall, the
proposed ostensive information architecture provides a
foundation for HISs; additional research work, including
mapping of organisations, patient pathways, and clinical
processes to the Semantic Engine, should be based on a
comprehensive HIS proposal.

7.4 Conclusion

In this study, in order to enhance the semantic interoperability
of FHIR, and also consider the data privacy issues and
regulatory requirements for data sharing, an ostensive
information architecture is proposed that separates semantic
processing from clinical data storage. There is deliberate
separation of semantic schema and underlying data, with the
aim of improving flexibility and scalability. The centralised
FHIR knowledge graph has the capacity to reduce the cost of
the application of FHIR to multiple disparate clinical systems,
and is also be flexible in its evolution. This study summarises
the benefits of the semantics-data separated architecture into
three principal points, as follows:

1. The centralised deployment of FHIR can reduce the
costs incurred by its separate deployment in individual
local systems, alleviating the impact of its evolution. Our
system is a federated architecture where queries are first
to run on their respective sources and the data returned
are mapped and integrated using the Semantic Engine,
returning a unified view of the data. As we do not envisage
incremental updates to the Semantic Engine, it is possible
to alleviate potential time costs within the integration and
mapping steps by hosting multiple instances of the FHIR
knowledge graph within the cloud.

2. 'This architecture acquires horizontal scalability through
the maintenance of the distributed storage of clinical data
and the deployment of the centralised FHIR knowledge
graph layer in the cloud cluster. This architecture
supports vertical scalability in terms of handling complex
semantic reasoning and the evolution of FHIR.

3. The abstract semantic layer provides patients with the
capacity to gain a complete view of their healthcare
from dispersed data sources, enabling them to precisely
decide the degree and extent of information exposure by
managing the access permissions that can be embedded in
the Semantic Engine. The Semantic Engine executes the
role-based accessed management tasks without exposing
the FHIR knowledge graph to patients.
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