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Abstract
Global pollinator declines threaten food production and natural ecosystems. The drivers of declines are complicated and 
driven by numerous factors such as pesticide use, loss of habitat, rising pathogens due to commercial bee keeping and climate 
change. Halting and reversing pollinator declines will require a multidisciplinary approach and international cooperation. 
Here, we summarize 20 presentations given in the symposium ‘Protecting pollinators and our food supply: Understanding 
and managing threats to pollinator health’ at the 19th Congress of the International Union for the Study of Social Insects 
in San Diego, 2022. We then synthesize the key findings and discuss future research areas such as better understanding the 
impact of anthropogenic stressors on wild bees.

Introduction

Pollinators are vital to the health of natural ecosystems and 
global crop production, but many species are in decline 
(Powney et al. 2019; Wagner et al. 2021; Zattara and Aizen 
2021). Certain wild bees, such as bumblebees and solitary 
bees, are experiencing range contractions (Biesmeijer et al. 
2006; Kerr et al. 2015; Powney et al. 2019; Soroye et al. 
2020) and localized declines in managed honey bee colo-
nies are occurring particularly in North America (Aizen and 
Harder, 2009; van Engelsdorp and Meixner 2010). The driv-
ers of bee declines are complex and multifaceted (Goulson 
et al. 2015; Siviter Bailes et al. 2021a, b; Vanbergen and 
Insect Pollinators Initiative 2013). Intensive agricultural 
practices reduce floral resources and rely heavily on pesti-
cides (Tilman et al. 2002). The commercial honey bee and 
bumblebee trade can increase bee pathogens and diseases 
(Cameron et al. 2011), and has led to the spread of inva-
sive species (Cameron et al. 2016; Schmid-Hempel et al. 
2014). Climate change can directly harm pollinators through 

extreme weather events and also disrupt flowering times 
which can lead to nutritional stress on pollinators (Miller-
Struttmann et al. 2015; Soroye et al. 2020; Zaragoza‐Trello 
et al. 2021). Furthermore, bees are simultaneously exposed 
to multiple anthropogenic stressors which may result in 
synergistic effects (Goulson et al. 2015; Siviter Bailes et al. 
2021a, b; Vanbergen and Insect Pollinators Initiative 2013). 
While complicated, determining the drivers of pollinators 
declines is of utmost importance to inform policy.

Identifying the drivers of global pollinator declines is 
complicated by the fact that managed and wild pollinators 
are challenged by an overlapping, yet unique, set of threats. 
These threats are best understood for managed bees, but are 
likely different for unmanaged wild pollinators, which are 
also effective and important pollinators in both agricultural 
and natural landscapes (Cusser et al. 2021; Dainese et al. 
2019; Garibaldi et al. 2013; MacInnis and Forrest 2019; 
Rader et al. 2016). Understanding how common and unique 
threats impact pollinator populations is further complicated 
by variation in the social biology of pollinators. Most man-
aged pollinators are eusocial insects (honey bees, bumble-
bees and stingless bees) with very different social dynamics 
and life cycles from each other and solitary species. Nev-
ertheless, solitary species, such as leafcutting and mason 
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bees, are becoming increasingly important in commercial 
agriculture (Horth and Campbell 2018; Motzke et al. 2016; 
Pitts-Singer and Cane 2011). Sustaining effective pollina-
tion services thus requires understanding how environmen-
tal stressors (e.g., pesticides, habitat loss, diseases, climate 
change) impact both managed and wild pollinators across a 
range of sociality.

This global and multifaceted problem requires a multi-
disciplinary approach rooted in international cooperation. 
To promote international and interdisciplinary study of pol-
linator decline, especially among scientists studying social 
insects, we organized a symposium at the 19th Congress of 
the International Union for the Study of Social Insects in San 
Diego, 2022. This symposium brought together 20 scientists 
studying pollinator decline in many different taxa and at a 
variety of disciplinary levels. Here, we present an overview 
of 20 presentations given at the symposium ‘Protecting pol-
linators and our food supply: Understanding and managing 
threats to pollinator health’, and synthesize key findings and 
future research directions.

Pesticides: understanding pollinator 
exposure to pesticides

Kirsten Traynor: pesticides in pollen: real‑world 
exposure in stored pollen of Apis mellifera

High levels of honey bee (Apis mellifera) colony mortal-
ity in the USA (2006–2007) increased interest in the risk 
factors honey bees experience. As such, the Animal Plant 
Health Inspection Service National Honeybee Disease 
Survey incorporated pesticide residue analysis into long-
term monitoring of honey bee colonies. Traynor presented 
pesticide residue data collected from honey bee colonies 
over 7 years from 2011 to 2017. The dataset looked at 
218 different active ingredients and their metabolites in 
1055 apiary samples of bee bread, investigating five dif-
ferent ways to estimate risk: (1) pesticide prevalence, 
which looks at absence or presence in an apiary sample, 
(2) pesticide diversity, how many different residues are 
detected in an apiary sample, (3) pesticide concentration in 
parts per billion (ppb) summed across all products found, 
(4) relevant pesticides that contribute a minimum of 50 
points when the detected concentration is divided by the 
pesticide product’s LD50, and (5) the pollen hazard quo-
tient. In the USA, 82.1% of samples contained at least 
one pesticide per sample, with 2.78 different pesticide 
residues detected per sample on average (Traynor et al. 
2021). The mean concentration of pesticides in colonies 
was high in the USA at 600.32 ppb. Altogether, 5.4% of 

samples (N = 54) exceed the Hazard Quotient threshold 
of 1000 points (Traynor et al. 2021). Pesticide use in the 
USA occurs at concerning levels in some apiary samples 
and was correlated with colony risk factors such as brood 
disease and queen losses.

Jessica Cole: investigating wildflowers as a route 
of pesticide exposure to bees

Loss of habitat is undoubtedly a driver of wild bee declines 
and as such agri-environmental schemes encourage the 
planting of wildflowers to promote pollinator health (Stout 
and Dicks 2022). However, wildflowers can be contami-
nated with pesticides, creating a potential trade-off (David 
et al. 2016). Here, Cole presented data determining (i) the 
species of wildflowers most frequently visited by bees in 
agricultural environments and (ii) if they expressed pes-
ticides. Floral abundance, diversity and visitation were 
surveyed at 9 transects sites at the University of Vermont 
Horticultural Center. Plantago lanceolata was preferen-
tially visited by both honey bees and wild bees and Trifo-
lium pratense was preferentially visited by wild bees, but 
not honey bees. These flowers (P. lanceolata & T. prat-
ense) were subsequently grown in greenhouses in one of 
four treatment groups: control (no pesticides), insecticide 
(imidacloprid), fungicide (difenoconazole) and insecti-
cide + fungicide (imidacloprid + difenoconazole). High 
concentrations of imidacloprid were expressed in pollen 
of both plant species, but difenoconazole was higher in T. 
pratense compared to P. lanceolata. Furthermore, difeno-
conazole concentrations in the pollen were higher when 
the flower was treated with both the insecticide and fun-
gicide. When toxicity is considered, and hazard quotient 
calculated, difenoconazole exposure posed a relatively low 
risk to wild bees, but imidacloprid led to an increased risk 
of bee mortality.

Pesticides: Determining the impact 
of pollinator exposure to pesticides

Julia Fine: Indirect exposure to insect growth 
disruptors affects honey bee reproductive behaviors 
and ovarian protein expression

Insect growth disruptors (IGD’s) are pesticides that inhibit 
the growth and development of insect pests, but beneficial 
insects can also be exposed (Fine and Corby-Harris 2021). 
Here, Fine presented data on the potential impact that 
IGD’s have on honey bee (Apis mellifera) egg production 
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and embryo viability. Honey bee queens were exposed to 
3 different IGD’s (methoxyfenozide, novaluron and dif-
lubenzuron) at 10 parts per million (ppm) for two weeks. 
In all treatment groups, the proportion of eggs that suc-
cessfully hatched was significantly lower when compared 
to controls. There was no evidence of reduced oviposi-
tion, suggesting a transovarial route of pesticide exposure 
(Fine 2020). To determine if transovarial effects occurred 
at lower concentrations, the experiment was repeated at 
1 ppm (diflubenzuron, methoxyfenozide and pyriproxy-
fen). Methoxyfenozide lowered daily egg production com-
pared to controls, but there was no difference in the total 
number of eggs laid between different treatment groups 
and no difference in queen-worker interactions. Surpris-
ingly, pyriproxyfen treatment resulted in a higher hatching 
rate compared to controls. There were also 55 differen-
tially expressed proteins in the ovaries of queens exposed 
to pyriproxyfen compared to control queens. Lastly, 
worker bees reared in foster colonies from eggs laid by 
queens exposed to pyriproxyfen were more responsive 
to novel queens relative to workers from control queens. 
This suggests that at least in this setup, low concentrations 
(1 ppm) of IGD’s do not have negative transovarial effects 
on honey bees, and further work is needed to explore the 
possible hormetic effects of transovarial pyriproxyfen 
exposure.

Walter Farina: glyphosate exposure in honey bee 
colonies: effects on brood and social implications

The development of GM crops which are herbicide tolerant 
has resulted in the herbicide glyphosate becoming the most 
used agrochemical in the world. Farina summarized recent 
developments on the impact of glyphosate on honey bee 
health. Glyphosate can have indirect effects on pollinators 
by reducing flowering weed species, but can also change 
gut microbiota and make bees more susceptible to patho-
gens (Motta et al. 2018). The herbicide can impair honey 
bee behavior, influencing navigation, orientation, learning 
and even sleep (Balbuena et al. 2015; Herbert et al. 2014; 
Mengoni Goñalons and Farina 2018; Vázquez Balbuena 
et al. 2020a, b). Honey bee larvae chronically exposed to 
glyphosate can have lower survival and a reduced likeli-
hood of molting. There are also colony level differences, 
with some colonies more vulnerable to glyphosate expo-
sure than others (Vázquez et al. 2018). However, even 
when larvae are asymptomatic, differences in gene expres-
sion are still observed (Vázquez Latorre-Estivalis et al. 
2020a, 2020b). Follow-up experiments in agricultural set-
tings showed that honey bee larvae are more vulnerable 
than adult workers to glyphosate (Macri et al. 2021). The 

data summarized demonstrate that glyphosate exposure 
poses a significant threat to honey bees and their pollina-
tion services.

Adrian Fisher II: a widely used mito‑toxic fungicide 
negatively affects honey bee (Apis mellifera) 
hemolymph protein levels and ontogeny

Pesticides are a major environmental stressor for pollina-
tor health but among the various pesticide categorizations, 
fungicides may be particularly insidious due to their tra-
ditional designation as safe for pollinators (Rondeau et al. 
2022). The approval of several fungicides for application 
during the blooming period of major crops contributes to 
the potential risk of fungicides relative to other pesticides. 
Fisher examined the impact of a widely used fungicide, 
Pristine (25.2% boscalid, 12.8% pyraclostrobin), on honey 
bee health at field-relevant concentrations. Chronic Pris-
tine consumption negatively impacted honey bee colony 
health by reducing population levels, inducing precocious 
foraging, and reducing worker lifespan (Fisher et al. 2021). 
Analysis of fungicide effects in different seasons and over a 
shorter exposure duration supported the findings that field-
relevant exposure to a fungicide can negatively affect honey 
bee health (Fisher et al. 2022). Furthermore, the underly-
ing physiological mechanism by which Pristine fungicide 
adversely affects honey bees may be its premature reduc-
tion of vitellogenin concentration. These findings suggest 
that current laboratory assessment procedures do not reflect 
field-relevant exposure effects and adjustments are needed 
to adequately assess pesticide toxicity.

Liliana Fischer: the novel insecticide flupyradifurone 
impairs collective brood care in bumble bee 
microcolonies

Bees are routinely exposed to multiple pesticides simulta-
neously (Mitchell et al. 2017; Traynor et al. 2021) and syn-
ergistic interactions may amplify the impact of individual 
pesticides. Fischer investigated how long-term simultane-
ous exposure to the novel insecticide flupyradifurone and 
the herbicide, glyphosate, influenced bumblebee (Bombus 
terrestris) microcolonies. Glyphosate in isolation or combi-
nation did not influence the bumblebee microcolonies, yet 
long-term exposure to flupyradifurone significantly impaired 
brood thermoregulation. This led to a longer development 
time of brood and lower reproductive output of the microcol-
onies. As a result, drone production and colony growth were 
over fifty percent lower when microcolonies were exposed to 
flupyradifurone. This suggests that current risk assessments 
are not protecting bees from the unwanted consequences of 
pesticide use by overlooking such sub-lethal but fitness rel-
evant effects. The effect on brood thermoregulation is worth 
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noting as active and passive thermoregulation is an impor-
tant aspect of insect life, especially in a warming global cli-
mate (Wagner et al. 2021) and for wild pollinators with a 
short colony cycle. Brood thermoregulation and temperature 
therefore marks a suitable readout to track such sub-lethal 
effects of pesticides in social insect pollinators.

Harry Siviter: does the novel pesticide 
flupyradifurone have sub‑lethal effects on non‑Apis 
bees?

Bumblebees visit thousands of flowers daily collecting nec-
tar and pollen. In an ever-changing floral marketplace, bum-
blebees need to quickly learn and retain information about 
rewarding flowers. Here, Siviter presented data that demon-
strated that the novel insecticide flupyradifurone impaired 
the feeding motivation of bumblebees (Bombus impatiens) 
as well as color/olfactory learning and memory (Siviter and 
Muth 2020). This suggests that these novel insecticides have 
similar sub-lethal effects on bees to those observed with neo-
nicotinoids (Samuelson et al. 2016; Siviter Koricheva et al. 
2018a, b; Stanley et al. 2015a, b). Siviter also presented pre-
liminary data suggesting that Sivanto (commercial formula 
containing flupyradifurone as an active ingredient) can have 
both lethal and sub-lethal effects on solitary bees (Osmia 
lignaria). These data add to a growing body of data demon-
strating that flupyradifurone pose a threat to bees in general 
and their pollination services (Siviter and Muth 2020; Stan-
ley, Garratt et al. 2015a, b).

Isabella Fernanda Camargo: toxicity of clothianidin 
pesticide in the development of larval Scaptotrigona 
postica

Brazil has the greatest diversity of stingless bees in the 
world, yet the Brazilian Institute of the Environment and 
Renewable Natural Resources (IBAMA) uses honey bees as 
a model species for conducting pesticide risk assessments. 
Clothianidin, a neonicotinoid which is banned from use in 
the Europe Union due to negative impacts on bees (Di Prisco 
et al. 2013; Rundlöf et al. 2015; Tsvetkov et al. 2017), was 
recently assessed by IBAMA, and the report highlighted an 
absence of data on native stingless bee adults and larvae. 
Camargo presented data that assessed the impact of clothia-
nidin on the development and survival of the stingless bee 
(Scaptotrigona postica) larvae. Bees were reared in vitro and 
exposed to field-realistic concentrations of clothianidin. Lar-
vae exposed to clothianidin had reduced survival, pupation 
rates and emergence when compared to control bees. This 
suggests that stingless bee larvae are more vulnerable to 
clothianidin than honey bees (Tadei et al. 2019) and sug-
gests that more attention should be given to stingless bees 
in pesticide risk assessments (Cham et al. 2019).

Nigel Raine: muddying the waters? The risks 
of exposure to pesticide residues in soil for bees

Pesticide risk assessments use honey bees as a model-sys-
tem; however, this is not representative of all bee species 
which differ in many aspects of their life-history (Chan et al. 
2019; Franklin and Raine 2019; Sgolastra et al. 2019). For 
example, pesticide residues in soil are not currently consid-
ered as they are seldom encountered by honey bees (Grad-
ish et al. 2019). Here, Raine presented data on the potential 
impact of pesticide exposure through soil on ground nest-
ing bees. In a semi-field experiment using hoop-houses, soil 
applied imidacloprid reduced the nesting success of Hoary 
Squash bees (Eucera pruinosa) by 85% and reduced off-
spring production by 89% (Willis Chan and Raine 2021). A 
follow-up experiment using a similar experimental design 
demonstrated that exposure to a combination of the pesti-
cide Sivanto (flupyradifurone, as an active ingredient) and 
the fungicide Quadris top (azoxystrobin + difenoconazole) 
had sub-lethal impacts on the behavior and reproduction of 
female Hoary Squash bees. Interestingly, bumblebee queens 
hibernating in the ground might be exposed to pesticide res-
idues in soil in agricultural environments (Rondeau et al. 
2022), and preliminary data from another hoop-house based 
experiment suggested that bumblebee queens may prefer to 
hibernate in soil contaminated with pesticides, increasing 
their potential exposure risk. In combination, these data con-
firm that soil is an important route of pesticide exposure that 
should be considered in environmental risk assessment for 
insect pollinators.

Parasites and pathogens

Allyson Ray: evidence of decreased virulence 
of a major viral variant in isolated, mite‑surviving 
honey bees

The arrival of the ectoparasitic mite Varroa destructor 
altered the disease ecology of the deformed wing virus 
(DWV) facilitating its virulence and increasing its distribu-
tion (Ray et al. 2021). Varroa transmitted DWV contributes 
to honey bee colony failure if not properly managed; how-
ever, some honey bee populations are able to survive despite 
high levels of mite infestation. Ray investigated if virulent 
strains of DWV may explain the ability of unmanaged col-
onies within the Arnot Forest (New York State, USA) to 
persist despite high mite levels. DWV isolates from Arnot 
Forest honey bee populations were compared against isolates 
sampled from managed apiaries. Viral load per individual 
bee was similar across field sites but viral isolates from the 
Arnot Forest samples exhibited significant genotypic dif-
ferences. The underlying genotypic differences resulted in 
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variation in virulence as Arnot Forest DWV samples had 
reduced pupal and adult mortality, as well as reduced inci-
dences of the deformed wing phenotype in laboratory assays. 
As these experiments were limited to a subset of isolates, a 
fascinating future research direction is to examine additional 
viral genotypes and the dynamics that underlie presence of 
less-virulent form of DWV in these feral bees.

Yves Le Conte: Varroa resistant honey bees: keys 
for the understanding of a balanced host‑parasite 
relationship

Despite the devastating impact of Varroa mites on honey 
bee health, some populations have been able to mitigate the 
effects of mite infestation in the absence of management or 
treatment (Mondet et al. 2021; Moro et al. 2021; Oddie et al. 
2021). Le Conte and Mondet examined Varroa resistant 
honey bee colonies in France to understand the underlying 
mechanisms by which some bee populations persist. Varroa 
resistance does not stem from a single factor but a com-
bination of behavioral and physiological changes in honey 
bee hosts as well as physiological changes in mite pests. 
Honey bees in resistant colonies were observed to swarm 
with greater frequency and have a better ability to recognize 
Varroa-specific chemical compounds. Olfactory genes were 
overexpressed in resistant bees providing an underlying basis 
for the recognition of mite compounds. Resistant bees also 
engaged in elevated levels of hygienic behavior including 
the removal of infected brood and the collection of greater 
quantities of propolis. Le Conte also presented evidence for 
reduced reproductive capabilities and virulence for Varroa 
in resistant colonies. These specific markers for resistant 
colonies may provide beekeepers with resources to identify 
resistance for selective breeding.

Boris Baer: innate immune responses as effective 
parasite defenses in honey bees

A variety of pests and pathogens can negatively impact 
honey bee health resulting in colony losses; however, honey 
bees may combat various threats through innate immune 
responses (Fang et al. 2022; Holt et al. 2021). To better 
understand honey bee immune responses, Baer examined 
the horizontal transmission of the fungal pathogen Nosema 
between drones and queens. Nosema can occur in the ejacu-
late transferred to queens during mating; thus, drones are 
able to confer some degree of protection through the upregu-
lation of antimicrobial molecules in seminal fluid. These 
protective factors also conferred protection to the drones 
themselves, helping to suppress Nosema prevalence. Fur-
ther evidence of innate immune responses was presented 
in honey bee larval responses to Varroa mites, where the 
upregulation of proteins involved in immune responses 

facilitated larval defense. The innate immune responses 
documented in both larval and adult honey bees may have 
implications for management practices for important pests 
and pathogens. In the case of antifungal chitinases or other 
proteins, the identification of antimicrobial molecules and 
their physiological functioning can be used for future bee 
breeding purposes to select for bees with increased levels 
of disease tolerance. The identification of individual anti-
microbial metabolites can also be used for the development 
of novel medications that can be used in case of disease out-
breaks. Given that these metabolites are naturally produced 
by honey bees as part of their innate immune systems, such 
medications are not expected to have any toxic effects on 
bees or pose additional contamination risks in bee products 
used from human consumption.

Marla Spivak: Honey bee social immunity 
and beekeeping

Spivak presented on the social immunity mechanisms by 
which honey bees collectively defend against various para-
sites and pathogens, such as the removal of infected brood 
through hygienic behavior, and the collection of antimi-
crobial plant resins, or propolis (Spivak and Danka 2021). 
Current beekeeping practices, particularly the large-scale, 
migratory movement of commercial operations for pollina-
tion and honey production facilitate increased transmission 
of parasites and pathogens, overburdening natural social 
immunity. Nevertheless, some commercial operations are 
allowing honey bees’ natural defenses to evolve, resulting 
in increased resistance to Varroa mites. An example was 
provided of a commercial operation of 8000 colonies that 
selects 4% of their top honey producing colonies and does 
not treat those colonies for Varroa mites, but does treat the 
remaining 96% of the colonies. In March, the beekeepers 
select colonies from the untreated 4% that still have low mite 
levels and large colony populations as breeder colonies for 
a next generation of queens for the entire operation. This 
philosophical shift away from treating all colonies multiple 
times per year to leaving a portion untreated as potential 
breeders increases the effectiveness of natural social immu-
nity by complementing rather than counteracting natural 
honey bee social immunity.

Land use and management

Briann Dorin: Wild bee conservation in vineyards—
an interdisciplinary approach

Pollinator diversity is necessary for both natural and agri-
cultural ecosystems (Garibaldi et al. 2013; Ollerton 2017). 
However, population declines are occurring for many bee 
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species, likely due to a variety of environmental stressors 
(Vanbergen and Insect Pollinators Initiative 2013). Coop-
eration with land managers may be a key factor in promot-
ing the conservation of wild bees and addressing several of 
their threats including habitat loss and pesticide exposure. 
Dorin examined the effect of land management practices 
in a pollinator-independent crop, the European wine grape 
(Vitis vinifera), on bee species diversity and abundance in 
Canada. Floral abundance and vegetation height between the 
vine rows was positively correlated with bee diversity and 
abundance for certain taxa, suggesting that efforts to protect 
pollinators in agricultural systems should extend beyond the 
fields where they are required for crop pollination. Further, 
Dorin presented developments in improving dialog with 
growers and promoting the implementation of more effective 
land use practices for pollinator protection. This is especially 
important in pollinator-independent crops which lack the 
economic motivation of enhancing crop pollination services.

Gaurav Singh: spatial and temporal distribution 
of stingless bees in mango orchards and its effect 
on fruit set

In tropical habitats, various stingless bee species are man-
aged for crop pollination (Meléndez Ramírez et al. 2018) but 
face challenges due to agricultural practices that disrupt hab-
itat availability and facilitate exposure to pesticides. Singh 
and colleagues investigated changes in the spatio-temporal 
distribution of the stingless bee species Tetragonula melli-
pes, and other pollinators as well as the resulting agricultural 
outcomes in mango orchards. The proximity of natural habi-
tat to mango orchards facilitated the pollination services of 
native bees in mango orchards, increasing fruit set. However, 
stingless bee distribution in a mango orchard was limited by 
distance from natural habitat; thus, the inclusion of natural 
habitats within orchards may promote greater crop produc-
tivity. Various fly species were also observed to visit mango 
flowers and were more evenly distributed in mango orchards; 
however, fruit set corresponded to stingless bee distribution. 
Understanding the importance of natural and semi-natural 
habitats for native pollinator behavior and efficiency may 
facilitate conservation and agricultural productivity.

Margarita López‑Uribe: crop widespread cultivation 
facilitates rapid population growth and regional 
adaptation in an oligolectic bee pollinator

Agricultural practices including the domestication and cul-
tivation of various plant species have dramatically altered 
ecological conditions for associated insect pollinators. To 
examine the effects of plant cultivation on a close insect 
associate, López-Uribe and colleagues examined the effects 
of Curcubita spp. cultivation on the Curcubita specialist 

squash bee Eucera (Peponapis) pruinosa. Genomic analy-
ses of various E. pruinosa populations across its modern 
range suggest that E. pruinosa geographic distribution and 
recent demographic history have been directly shaped by the 
human-mediated widespread cultivation of Curcubita spp. 
in North America. A high concentration of selective sweeps 
was detected in the population of eastern North American 
suggesting widespread positive selection that is likely linked 
to the colonization of areas where these bees exclusively rely 
on agricultural resources.

Climate change

Tereza Cristina Giannini: impact of climate change 
on Eastern Amazon native bees and possible 
consequences on food production

Climate change may affect natural and agricultural ecosys-
tems, impacting native pollinator distribution and pollina-
tion services. Giannini analyzed the current and projected 
distribution of several native bee species using models that 
accounted for potential climate change induced scenarios 
(Giannini et al. 2020). The overwhelming majority of bee 
species may experience significant reductions in range due 
to the loss of suitable habitats. Habitat loss and range restric-
tion were projected for both specialists and generalist bee 
species which may adversely affect agricultural production. 
Projected bee losses suggest that climate change may have a 
devastating impact on bee species diversity and abundances, 
as well as crop productivity. This is particularly concerning 
given the importance of bee diversity for buffering agricul-
ture against other environmental stressors.

Kimberly Przybyla: effects of heat stress on mating 
behavior and colony development in bumblebees

The increased occurrence of extreme weather events associ-
ated with climate change may reduce agricultural produc-
tion by adversely affecting pollinating insects. Heatwaves 
in particular may induce physiological disturbances and 
reduce fertility. To examine heatwave effects on the repro-
ductive capacity of a pollinator, Przybyla and colleagues 
examined the effects of a static and constant exposure of 
40 °C, until heat stupor is reached, on males of the bumble 
bee species Bombus terrestris (Przybyla et al. 2021). Heat 
stressed B. terrestris males exhibited resiliency as they did 
not experience a reduction in pheromone quality or copula-
tory behavior, and the heat exposure did not adversely affect 
nest development for queens mated with these males. These 
findings suggest that some pollinators may engage in adap-
tive responses that allow for the mitigation of heat stresses 
that are not too extreme.
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The interactions between multiple 
anthropogenic stressors

Michael Garratt: pesticide and pathogen effects 
on pollinators: Implications for crop pollination 
and food production

Pollination services are delivered by a diversity of pollina-
tor species, yet there are opportunities to improve the yields 
of several crop species by managing these pollination ser-
vices (Dainese et al. 2019; Garratt et al. 2021; Lemanski 
et al. 2022). Pollinators are threatened by multiple different 
anthropogenic stressors (Vanbergen and Insect Pollinators 
Initiative 2013); however, the effects of these on the deliv-
ery of pollination services have rarely been directly studied. 
Garratt presented work on the potential impact of pesticides 
and parasites on the pollination services provided to crops 
by bumblebees (Bombus terrestris). In a semi-field experi-
ment using pollination cages, it was found that the neoni-
cotinoid thiamethoxam can impair the pollination of apples 
by bumblebees. Flower visitation was reduced when bees 
were exposed to the pesticide and the number of bees car-
rying pollen was also lower (Stanley et al. 2015a, b). This 
had downstream negative consequences for fruit seed set 
(Stanley et al. 2015a, b). Using examples with preliminary 
data, a methodology was then presented for exploring effects 
of different stressors (including parasites) on Bombus ter-
restris and its pollination services. Standardized methods 
are required for assessing interactions between stressors, 
including pesticides and parasites, in order to improve our 
understanding of the potential consequences for pollination.

Mark Brown: parasites, pathogens, and pesticides: 
impacts on bumblebee health

Bumblebees are exposed to a multitude of different natu-
ral and anthropogenic stressors, including pesticides and 
parasites, and understanding how they influence bumble-
bee health is complicated. Indeed, even determining how to 
measure bumblebee health is not a trivial task. Brown pre-
sented a framework for considering bumblebee health, that 
scaled from the individual to the guild, and summarized how 
his research group and others have been answering these 
questions at each level. At the level of individual bumble-
bees, pesticides and parasites can have direct impacts on 
bumblebee mortality (Brown et al. 2000; Fürst et al. 2014; 
Straw et al. 2021) and they can also have a range of sub-
lethal effects (Brown et al. 2003; Linguadoca et al. 2021). 
At a colony level, both pesticides and parasites can have 
negative effects on colony development (Baron et al. 2017; 
Brown et al. 2003; Rundlöf et al. 2015; Siviter et al. 2018a, 
b), yet in certain contexts, parasite exposure might improve 

colony fitness. For example, uncontrolled infections of the 
parasite Crithidia bombi led to a reduction in worker ovary 
development, which means it takes the colony longer to get 
to competition stage, and thus the queen has longer to lay 
eggs (Shykoff and Schmid-Hempel 1991). At the popula-
tion level, mathematical models based on empirical data or 
historical data can be used to infer population level trends 
(Baron et al. 2017; Woodcock et al. 2016). In the case of par-
asites, the decline of some bumblebee species is correlated 
with a rise in the prevalence of V. bombi (Cameron et al. 
2011, 2016). Brown concluded that we cannot determine the 
overall impact of pesticides and parasites on global bumble-
bee health due the nature of studies that we can, and cannot 
conduct (Straub et al. 2022). Thus, a precautionary principle, 
which aims to reduce bumblebee exposure to pesticides and 
parasites as a consequence of anthropogenic change, should 
be implemented.

Synthesis and future directions

Several generalizations for four types of threats emerge from 
integration of the material presented at this symposium:

Pesticides

First, there is overwhelming evidence that many pesticides 
have sub-lethal effects on both managed and wild insect 
pollinators, decreasing pollinator fitness and negatively 
impacting agricultural productivity (Fisher et al. 2021; Siv-
iter et al. 2021a, b; Stanley et al. 2015a, b; Willis Chan and 
Raine 2021). A major goal for researchers and government 
regulators will be to find methods to control plant diseases 
and pests without adversely affecting the pollinators that 
are essential for both agricultural and natural ecosystem 
function. The evidence presented shows also that there is 
variation in the toxicity of pesticides to pollinators and clear 
evidence of dosage effects. The latter demonstrates that there 
may be possibilities to control plant diseases and pests with 
more targeted applications that do not adversely affect polli-
nators. Finally, a particular area of needed research is devel-
oping a better understanding of the impact of field-realistic 
pesticide exposure on wild bees (Franklin and Raine 2019; 
Siviter and Muth 2020).

Emerging pests and diseases

Invasive mites and viruses have had major negative effects 
on the populations of honey and bumble bees (Cameron 
et al. 2011; Fürst et al. 2014; Le Conte et al. 2010). Yet, 
there are exciting recent findings showing multiple mecha-
nisms by which bees may evolve resistance to both mites and 
viruses, suggesting that careful selection of stocks and traits 
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may aid resistance of managed bees, and that natural selec-
tion may allow wild bees to evolve resistance to new inva-
sive pathogens and parasites. As solitary species continue to 
increase in use for pollination, it will likely be necessary to 
consider how transmission dynamics and immune responses 
are altered in wild, non-managed pollinators.

Habitat loss

Habitat loss is very likely a major factor in declines of many 
wild pollinators, due to loss of specific plants, loss of nest-
ing habitats, and a general decline in available food quality 
(Carvell et al. 2006, 2017). There are exciting new find-
ings that show that land management practices that increase 
widespread patches of native flowering plants can conserve 
pollinator species diversity and abundance, particularly 
for species that need a high diversity of pollen resources. 
Practices that encourage patches of native flowering plants 
adjacent to, or within, agricultural fields can also improve 
fruit set and agricultural productivity (Blaauw and Isaacs 
2014; Kremen et al. 2002; Morandin and Winston 2006). 
More information on the specific mechanisms by which 
habitat loss affects particular bee species is critical in order 
to develop land management practices that conserve pol-
linators and our natural and managed ecosystems. Future 
research should also include understanding farmer perspec-
tives regarding various pollinator-friendly practices and 
mechanisms of support that would enhance their uptake.

Climate change

Climate change, in the form of heat waves or more variable 
rainfall, is predicted to have major negative effects on many 
pollinators (Giannini et al. 2017; Nicholson and Egan 2020). 
However, it is striking how few studies exist of how warmer 
temperatures will affect pollinator function and fitness. Moreo-
ver, there is extreme variation in the thermal tolerance and 
thermal range of managed and wild pollinators. For example, 
honey bee colonies experience all four seasons, but many wild 
pollinators spend their entire lifespan in just early spring or late 
summer. Additional information about how social and solitary 
bees deal with thermal stress as a function of their ecology will 
be useful to inform conservation solutions.

Conclusion

Pollinators and their pollination services are essential for 
food production and wild ecosystems. The 20 presentations 
given during the symposium ‘Protecting pollinators and our 
food supply: Understanding and managing threats to pol-
linator health’ demonstrate just some of the different ways 
that anthropogenic stressors threaten pollinators, how some 

pollinators are adapting to these conditions, and provide 
refreshing suggestions on how they can be safeguarded in 
the future. However, there is clearly much to do. The com-
plexity of the interactions between these anthropogenic 
stressors and pollinators provides a major challenge to sci-
entists and regulators, and interdisciplinary and international 
collaborations will be essential to address these challenges.
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